The PCMs4Buildings Project - Thermal Energy Storage PCM-based Systems for Building Applications

N. Soares^{1,2}, J.J. Costa¹

¹ ADAI, LAETA, Department of Mechanical Engineering, University of Coimbra, Coimbra, Portugal ² ISISE, Department of Civil Engineering, University of Coimbra, Coimbra, Portugal

Starting date: June 2016 Ending date: September 2019

The work was supported by FEDER funds through the COMPETE 2020 - Operational Programme for Competitiveness and Internationalization (POCI), and by Portuguese funds through FCT in the framework of the project **POCI-01-0145-FEDER-016750** | **PTDC/EMS-ENE/6079/2014**

Framework PCMS <u>How do they work?</u>

- Melting-peak temperature for ideal PCMs
- $\Delta T_{\rm m}$ Melting temperature range for common PCMs
 - h(T) for ideal PCMs
- ---- h(T) for common PCMs

Potential fields of application:

- <u>Temperature control and</u> <u>thermal management.</u>
- Storage and supply of heat with high storage density in a

small quantity of material.

Major goals

To develop a holistic and chain-strategic methodology to evaluate the thermal performance of new PCM-based systems for buildings:

- (*i*) thermophysical characterization of different PCMs;
- (ii) experimental and numerical evaluation of the heat transfer with solid-liquid phase change processes;
- *(iii)* evaluation of the thermal performance of new prototypes designed during the implementation of the research plan.
- To contribute to the dissemination of the technology, and ultimately, to the reduction of the environmental impact of the Built Environment, setting the world on a more sustainable path, as required by the 2030 Agenda.

Main challenges:

- To carried out a reliable thermophysical characterization of commercial PCM-based products since data provided by manufacturers are often lacking or uncertain;
- To overcome some of the problems of using conventional equipment and techniques to measure the main thermophysical properties of different kinds of PCMs.

PCM	Form	Melting-peak	Manufacturer
		temperature [°C]	
PCM 18	Bulk	18	Microtek laboratories
PCM 24	Bulk	24	Microtek laboratories
PCM 28	Bulk	28	Microtek laboratories
RT 22 HC	Bulk	22	Rubitherm
RT 25 HC	Bulk	25	Rubitherm
RT 28 HC	Bulk	28	Rubitherm
MPCM 18D	Microencapsulated	18	Microtek Laboratories
MPCM 24D	Microencapsulated	24	Microtek Laboratories
MPCM 28D	Microencapsulated	28	Microtek Laboratories
Micronal [®] DS 5001 X	Microencapsulated	26	BASF
Alba [®] balance 25	PCM-enhanced	25	Saint-Gobain
	plasterboard		

Commercial paraffin-based PCMs evaluated:

Measurements:

Thermal conductivity of both solid and liquid phases - k(T)

Transient Plane Source (TPS) method -Hot Disk TPS 2500 S equipment in the 0–50 °C range, with 5 °C intervals.

Liquid sample holder full with the DS 5001 X.

Liquid sample holder full with the RT 22 HC.

Powder sample holder full with the DS 5001 X.

Measurements:

Thermal conductivity of both solid and liquid phases - k(T)

Variation of thermal conductivity with temperature evolution of 3 different PCM-based products. The dashed lines indicate the thermal conductivity given by the manufacturers.

Measurements:

Melting and solidification peak temperatures - T_m / T_s
Latent heat of fusion and solidification - L_m / L_s
Specific heat of both solid and liquid phases - c_{p,m} / c_{p,s}
Effective specific heat curves - c_{eff}(T)

Q100 Modulated Differential Scanning Calorimetry (MDSC) equipment from TA Instruments - underlying heating/cooling rates of 0.5 °C min⁻¹, in the temperature range of –20 °C to 40 °C.

DSC and effective specific heat curves for the 7.40 mg sample of the Micronal[®] DS 5001 X.

Measurements:

- \rightarrow Volumetric mass density $\rho_{\rm m}$ / $\rho_{\rm s}$
- Thermogravimetric analysis (TGA)

Microstructure

scanning electron microscope (SEM)

MPCM 18D

- Heat transfer with solid-liquid phase-change of microencapsulated PCMs <u>purely diffusive transient</u> <u>model.</u>
- Heat transfer with solid-liquid phase-change of free-form PCMs (ongoing) – <u>adjective/diffusive transient model.</u>
 - natural convection
 - volume variation
 - hysteresis

Heat transfer with solid-liquid phase-change of microencapsulated PCMs - <u>purely diffusive transient</u> <u>model.</u>

Heat transfer with solid-liquid phase-change of microencapsulated PCMs - <u>purely diffusive transient</u> <u>model.</u>

Heat transfer with solid-liquid phase-change of microencapsulated PCMs - <u>purely diffusive transient</u> <u>model.</u>

Heat transfer with solid-liquid phase-change of microencapsulated PCMs - <u>purely diffusive transient</u> <u>model.</u>

Heat transfer with solid-liquid phase-change of microencapsulated PCMs - <u>purely diffusive transient</u> <u>model.</u>

Effective heat capacity (EHC) method

_C3 artificial curves:

4 geometries of the PCM-based sample (physical domain)

2 kinds of PCM-based samples

A Microencapsulated PCM Micronal® DS 5001 X B PCM-plasterboard Alba®balance C Aluminium container of the TES unit

3D numerical domain with the imposed boundary conditions

➡ Main results

Main results

f(t) - charging of the 1-single cavity TES for the different numerical approaches.

Field-distributions of T(t) and f(t)

T(t) and f(t) - charging of some domains considering the EHC method with the selfadjusted triangular $c_{eff}(T)$ profile.

3 Tests in the small-scale experimental setup

- A Movable heating module
- **B** Fixed test module
- **C** Movable cooling module
- 1 Hot-plate
- 2 Aluminium test-sample filled with PCM
- ③ Cold-plate

- 4 Rigid iron skeleton of the modules
- (5) Thermal insulation boundary cork
- (6) Rails for linear motion
- (7) Linear motion of the heating/cooling modules
- (8) Accessories for compressing and joining the modules
- (9) Threaded rods and nuts for the junction of the modules
- (10) Movable thermal insulation layer cork
- (1) Movable thermal insulation layer XPS

- 12 Digital wattmeter
- 13) Variac
- (14) Pico® USB TC-08 thermocouple data logger
- 15 $\texttt{PicoLog}^{\texttt{®}}$ data acquisition program
- (16) Circulator pump Grundfos UPE 25-60
- 17 Water circulation insulated flow
- (18) Water bath Heto Lab Equipment DBT KB21
- (19) HetoTherm DBT 200 thermostat

3 Tests in the small-scale experimental setup

Sketch of the distribution of the K-type thermocouples (a) on the cold- and hotsurfaces of the test-samples; (b) on the mid-plane section of the TES unit; (c) within the PCM-enhanced plasterboard at different depths.

Definition of full-scale prototypes

PV/PCM systems

Problem:

High operating temperatures reduce the performance of commercial polycrystalline silicon photovoltaic (PV) devices by reducing the efficiency of solar to electrical energy conversion in the PV cells.

Research question:

Can movable PCM-filled TES units be used to improve the energy efficiency of polycrystalline silicon PV panels

LSF systems with PCMs

Problem:

LSF construction may show lower thermal mass which can result in several comfort-related problems, larger temperature fluctuations and higher energy demand for heating and cooling.

27

Research question:

Can PCM-based solutions be used to improve the thermal performance of LSF construction

Tests in the Guarded Hot Box setup and other real-scale experimental apparatus

LSF walls with PCMs – Guarded Hot Box (ongoing)

Cold Box

3.60 m x 2.70 m Sample

Assembly of the LSF walls with PCMs

plasterboard

30

Tests in the Guarded Hot Box setup and other real-scale experimental apparatus

➡ <u>PV/PCM systems – outdoor apparatus</u> (ongoing)

Goal: To carry out an experimental <u>parametric study</u> to evaluate the influence of <u>different configurations of the TES unit</u> (horizontally and vertically oriented cavities) and the impact of <u>different phase-change temperature ranges</u> of the PCM.

Assembly of the PV/PCM systems

to be used in the TES units

Containers with vertically and horizontally oriented cavities

Assembly of the PV/PCM system

Experimental apparatus

Monitoring data:

- Time evolution of temperature and heat flux on the surfaces of both the PV panels and the TES units to be compared with each other;
- Time evolution of current and voltage of each PV module to determine the power output of each PV and the solar conversion efficiency;
- Time evolution of the weather conditions.

Location: Coimbra, Portugal.

Risen KSNI00-0-250F F v modules	U	National Instruments SCC-08 FO connector block	W	Pico ⁺ USB 1C-08 thermocoupie data logger
TES units filled with the PCM	8	Computer for data acquisition	14	PicoLog® data acquisition program
Support system	0	LabView [™] program interface - current, voltage and power monitoring/recording	(15)	Kipp&Zonen CM11 pyranometer
DC/AC microinverter BeOn	10	Main service panel	16	PVPM2540C mobile peak power and <i>I-V</i> -curve measurement device for PV modules
Shunt resistor	(1)	Thermocouples (K-type)	(17)	Davis Instruments Vantage Pro2 TM weather station
Voltage divider	(12)	Omega TM flexible heat flux sensor HFS-4		

8th Workshop & B2B Meeting of TESSe2b Project Setúbal, Portugal, September 18, 2019

The PCMs4Buildings Project - Thermal Energy Storage PCM-based Systems for Building Applications

Thank you!

Nelson Soares <u>nelson.soares@dem.uc.pt</u> ttp://www.adai.pt/pcms4buildings

http://www.adai.pt/pcms4buildings

