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Abstract

Sequence alignment is a standard technique in bioinformatics to measure the relationship be-
tween evolutionary or structurally related DNA /proteins sequences. Most modern programs
for sequence alignment optimize a given objective function that is a convex combination
of how many gaps need to be inserted into the sequences and how many characters become
aligned. Clearly, depending on the weights given to each of the two components, different op-
timal alignments can be obtained. Therefore, choosing only one weight setting may provide
an undesirable bias in further steps of the analysis, such as phylogenetic tree construction,

and provide too simplistic interpretations.

In this thesis, we take a different point of view on the mathematical formulation of the
sequence alignment problem. Rather than considering the optimization of a scalar score
function, resulting from a weighted sum of components, we consider a vector score function
with the goal of optimizing, simultaneously, the different score components. This brings us
to the topic of multiobjective optimization, which deals with the mathematical formulation
of optimization problems with several conflicting objectives as well as with algorithms to
solve them. Under this new formulation, these algorithms return a set of non-dominated
alignments, each of which representing a trade-off between the several components. This set
gives further information about the similarity of the sequences, from which a practitioner

could analyze and choose the most plausible alignment.

We consider the biobjective pairwise sequence alignment problem and propose extensions
of efficient dynamic programming algorithms for several variants of this problem. We pro-
pose a novel pruning technique that substantially reduces the computation time and memory
usage. Moreover, we consider a biobjective variant of this problem with more than two se-
quences, which is computationally intractable. We introduce local search techniques for
this problem and conduct an in-depth experimental analysis on a wide range of benchmark
instances. Based on the hypervolume indicator and empirical attainment function method-
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ology, we establish functional relationships between algorithm performance and instance
features. Finally, we present a method that uses multiobjective concepts for the construc-
tion of phylogenetic trees. We test this method on two real-life cases and show that the
number of distinct phylogenetic tree topologies obtained is very small.

This work shows that multiobjective concepts can successfully be applied to the sequence
alignment problem and identifies which approaches can be used for the several variants of this
problem. We believe that the methods proposed in this thesis, by providing more information
about the relationship between biological sequences than the current known procedures, can
be of great value to a broad range of research communities as well as to practitioners in the
field.

Keywords: Sequence Alignment, Multiobjective Optimization, Dynamic Programming,

Phylogenetic Trees, Combinatorial Optimization.
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Resumo

O alinhamento de sequéncias é um procedimento utilizado na Bioinformatica que tem por
objetivo medir a semelhanca entre sequéncias de DNA ou proteinas relacionadas entre si de
uma forma evolutiva ou estrutural. As aplicacOes atuais para alinhamento de sequéncias
otimizam uma determinada funcédo objetivo que resulta da combinacao convexa da quanti-
dade de espacos a inserir nas sequéncias e da quantidade de caracteres que ficam alinhados.
Dependendo das ponderacoes atribuidas a cada um destes dois componentes, diferentes alin-
hamentos podem ser obtidos. Desta forma, a escolha de uma s6 ponderagao pode enviesar,
indesejadamente, os passos seguintes da andlise, por exemplo, na construcao de arvores filo-

genéticas, e fornecer interpretagoes demasiado simples.

Esta tese aborda o problema de alinhamento de sequéncias de uma forma diferente na
perspetiva de formulacdo matematica. Em vez da otimizacdo de uma funcio escalar que
resulta de uma soma ponderada das componentes, considera-se uma funcdo vetorial em que
se pretende otimizar, simultaneamente, as suas componentes. O estudo destes problemas é
abordado em otimizag¢do multi-objetivo, que lida com as formulagées matematicas de prob-
lemas de otimizacdo com varios objetivos conflituosos entre si e com algoritmos para a sua
resolugdo. Com esta nova formulagdo, os algoritmos retornam um conjunto de alinhamentos
nao-dominados, cada um representando um compromisso entre as varias componentes da
funcao objetivo. Este conjunto, ao fornecer mais informacao acerca da semelhanca entre as

sequéncias em andlise, permite, ao profissional, escolher o alinhamento mais plausivel.

Neste estudo, considera-se o problema bi-objetivo de alinhamento emparelhado de se-
quéncias e variantes deste problema, para os quais propoem-se extensdes de algoritmos efi-
cientes baseados em programacao dindmica. Propde-se iguamente uma variante bi-objetivo
deste problema para mais do que duas sequéncias, que é considerado um problema com-
putacionalmente intratavel. Por esta razao, apresentam-se técnicas de procura local para
este problema. Estes algoritmos sdo analisados experimentalmente num conjunto de instan-
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cias de referéncia. Com base no indicador de hipervolume e na metodologia das fungdes de
aproveitamento, estabelecem-se relagoes funcionais entre o desempenho dos algoritmos e car-
acteristicas destas instancias. Finalmente, apresenta-se um método que utiliza conceitos de
otimizagdo multi-objetivo para a construcao de arvores filogenéticas. Este método é testado
em dois casos reais. Os resultados obtidos indicam que o ntimero de topologias distintas de
arvores filogenéticas é bastante pequeno.

Este estudo mostra que os conceitos multi-objetivo podem ser utilizados com sucesso
no problema de alinhamento de sequéncias e permite identificar quais as abordagens que
podem ser utilizadas para cada uma das variantes apresentadas. Ao fornecer mais informacao
acerca da relagdo entre as sequéncias biolégicas do que os métodos atuais, espera-se que as
contribuicoes desta tese possam de grande valor tanto para a comunidade académica como

para os profissionais de Bioinformatica.

Palavras-chave: Alinhamento de Sequéncias, Otimizacdo Multi-objetivo, Programacao

Dinamica, Arvores Filogenéticas, Otimizacdo Combinatoéria.
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Chapter 1

Introduction

1.1 Motivation

Sequence alignment is the first step in evaluating the degree of similarity between biological
sequences, such as DNA or proteins. An alignment allows highlighting the differences be-
tween potentially similar biological sequences, which may result from mutations and can be
interpreted in evolutionary terms. Based on the information provided by the alignment, it is
possible to explain and predict functional and structural information of a sequence. For this
reason, finding biologically meaningful alignments is a fundamental aspect in Bioinformatics.

A DNA sequence is made of 4 different repeating units called nucleotides (Egli and
Saenger, 2013) and a protein is produced of 20 units called amino acids (Nelson et al., 2008).
In biology, a single unit (nucleotide/amino acid) that makes up the DNA or protein is called
residue. The assessment of the relationship between two or more sequences is performed by a
sequence alignment procedure, which consists of aligning the sequences in order to optimize
a given score function that takes into account the numbers of identical or similar residues

between the sequences.’

LSimilar residues are those that have similar chemical characteristics. For instance, in proteins, substitution
of amino acid residues by chemically equivalent ones often does not have a substantial effect on the structure

or on the function of that protein.
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There are some rules on how to build the score function of a sequence alignment procedure
such that the alignment produced is meaningful in a biological context. For instance, there
is a wide consensus that the score function should take into account the matching between
identical or similar residues from the different sequences as much as possible. However,
matching comes with a cost: very often, blocks of residues must be detached from each
other in order to maximize the matching. Depending on how the matching and the number
of detached blocks of residues are handled in the sequence alignment procedure, different
alignments may be obtained.

The following example shows a possible alignment between the sequences GCPVSSPNVEM
and GCPYGCDPEADA.

1: GCPVS-SPNVEM

| || %%—3 | kkkk

2: GCPYGCDPEMDA

The identical residues (matches) between the two sequences are marked by the character |’
and the unequal ones (mismatches/substitutions) are shown with character ‘*’. Note that
one of the residues in the second sequence does not have a corresponding residue in the first,
which is marked by the character -’ in the alignment (an indel). Another possible alignment

of the same sequences is shown below.

1: GCPVSS-PNVEM--

|| e | == | | -

2: GCPYGCDP--EMDA

The quality of the alignment is assessed by means of a score function, which can be as
simple as subtracting the number of indels from the number of matches in the alignment. In
the two examples above, this score function would return 4 — 3 = 1 for the first alignment
and 5 — 5 = 0 for the second alignment. Note that the second alignment has more matches
than that of the first, but this is achieved by inserting more indels. When introducing indels
in the alignment, the following question may arise: How many indels can be introduced?
Actually, by introducing a large number of indels, the similarity would increase, but would
that be biologically relevant? (See discussion in (Morrison, 2015))

In general, the score function in sequence alignment is defined as a combination of dif-

ferent components with different weights. Each component, such as the number of matches,
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cost

The fastest

The cheapest
@}

time

Figure 1.1: A trade off between time and cost

mismatches, and indels can be assigned a positive weight. For instance, giving more weight
to the number of matches, the score function would favor alignments with very large simi-
larity, even if a large number of indels is required. If more weight is given to the number of
indels, then the score function would promote alignments with very few numbers of indels,
which may result in low similarity. Clearly, the choice of different weights may produce
distinct alignment, but, unfortunately, there is no explicit agreement on how to choose those
weights. Therefore, an alignment generated by a computer program such as Blast or FASTA
represents only one of many possibilities that can be obtained in optimizing the given score

function.

In this thesis, we take a different point of view on the mathematical formulation of the
sequence alignment problem. Rather than considering a scalar score function, resulting from a
weighted sum of components, we consider a vector score function with the goal of optimizing,
simultaneously, the different score components. This brings us to the topic of multiobjective
optimization, which deals with the mathematical formulation of optimization problems with

several conflicting objectives as well as with algorithms to solve them.

Multiobjective optimization problems arise naturally in many real-world optimization
scenarios, for example, when planning a trip from a city X to another city Y. There may be
different paths between two cities with different objectives: distance, cost, travel time, etc.
A solution to this problem is the one which is optimal with respect to all objectives. But is

there such a ideal solution? The cheapest path is not necessarily the fastest, nor the fastest
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needs to be the cheapest if tolled highways are considered.

When the decision maker is cannot express his preferences a priori, the notion of Pareto
optimality is the most natural to be used when dealing with multiobjective optimization. In
this case, one is interested in obtaining a set of solutions that represent the optimal trade-
off between the different objectives, i.e., solutions which are not worse than any other and
strictly better in at least one of the objectives. Figure 1.1 shows a set of optimal solutions
to the problem of finding a path between two cities that minimize both cost and time. The
leftmost point corresponds to the fastest solution whereas the rightmost point corresponds
to the cheapest solution; the point in the middle corresponds to a solution that is as relevant
as the other two since it is not so fast as the cheapest and not so expensive as the fastest.
Finding this optimal trade-off between the objectives is commonly known as solving the
multiobjective problem in terms of Pareto optimality.

From our point of view, the sequence alignment problem is a natural multiobjective opti-
mization problem — it deals with the conflicting goal of maximizing similarity and minimizing
the insertion of indels. A multiobjective formulation of the sequence algorithm problem has
the advantage of requiring no setup of weights. However, there might be several incompa-
rable alignments that have to be considered in the analysis, but we consider this to be a
natural consequence of the way the problem is considered in practice. The applications of
these concepts to sequence alignment were mentioned, for the first time, in Roytberg et al.
(1999). Up to our knowledge, no other published work explored the same concepts until the
starting of this thesis, in 2011.

Finding such a set of optimal solutions to multiobjective optimization problems is a big
challenge in computer science. Many such problems are known to be NP-hard even if their
single objective versions can be solved in a polynomial amount of time. However, for the
multiobjective formulation of the sequence alignment problem, it is known that this is not
the case if only two sequences are considered in Roytberg et al. (1999). This is an appealing
feature not only for practitioners but also for the scientific community in multiobjective
optimization.

In the following, we introduce the main research questions that motivate this work.

Q1 - In Roytberg et al. (1999), a simple dynamic programming approach is proposed to solve
the multiobjective optimization problem of maximizing matches and minimizing indels
with two sequences. However, in real-life applications, gaps are usually considered

instead of indels. A gap is a consecutive set of indels and may have a score value that



1.2. Contributions 5

Q2 -

Qs -

Q4 -

Q5 -

1.2

is not a linear function of its length. In addition, the score functions that are used
in computer programs for sequence alignment rely on substitution score matrices to
determine the score of aligning two distinct characters. How to adapt the dynamic

programming approach to these new problem formulations?

The dynamic programming approach proposed in Roytberg et al. (1999) solves a se-
quence of subproblems that takes a polynomial amount of time. However, some of
the subproblems do not need to be solved since their solution do not probably lead
to optimal alignments. Can pruning conditions be determined for this problem, for
instance, based on upper and lower bounds of partial alignments? This is a standard

procedure in branch and bound.

A generic way of solving multiobjective optimization problems is to solve one objective
while the remaining are used as constraints. This is known as e-constraint method. Can

this paradigm be also used for solving the multiobjective sequence alignment problem?

When more than two sequence alignments are considered, the problem becomes NP-
hard, which means that we do not expect to solve the problem in a polynomial amount
of time. For this reason, it is natural to consider heuristic approaches. A known ap-
proach to solve multiobjective optimization problems is called Pareto Local Search (Pa-
quete et al., 2007), which is based on the local search paradigm. How to adapt this

framework to solve this problem?

Sequence alignment is commonly used to construct a phylogenetic tree, which gives
further insight into the evolutionary relationships among several species. It is expected
that multiobjective sequence alignment gives rise to several phylogenetic trees. How to

generate such trees and how to analyze them?

Contributions

This thesis aims at solving the research challenges described in the previous section. The

contributions are mostly of algorithmic and methodological nature. In summary, the main

contributions of this thesis are as follows.

C1 -

We propose extensions of the dynamic programming approach proposed in Roytberg
et al. (1999) for different multiobjective problem formulations with two sequences, for

instance, considering gaps and substitution matrices.
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C2 -

C3 -

C4 -

C5 -

We define pruning techniques that considerably reduce the number of subproblems to
be solved on the dynamic programming approach. Our experimental results show that
the pruning technique can improve the computational time up to 80% and memory

storage up to 90% on well-known benchmark data sets.

We present an e-constraint technique to solve the multiobjective sequence alignment
problem for two sequences. The proposed algorithm maximizes the substitution score

with an equality constraint on the number of indels or gaps.

We propose several heuristic approaches, based on local search procedures, to solve
the problem when more than two sequences are considered. Several algorithm design
options are discussed and analyzed, with particular emphasis on the starting alignment
and neighborhood search. A novel perturbation technique is proposed to improve
the local search. In addition, for comparison purpose, we have adapted NSGA-II
technique (Deb et al., 2002), a well-known multiobjective evolutionary algorithm, to

this problem.

We propose a new method for the construction of phylogenetic trees based on the
multiobjective sequence alignment. We illustrate the application of this method on
known sequence data to show the effectiveness of this approach in practice. Noteworthy,
the number of phylogenetic trees is shown to be very low, and the analysis gave a further

interesting insight into the relations between species.

In this work, we prove the correctness of our algorithms, discuss their time complexity

and analyze their performance in practice on well-known benchmark data sets. The most

effective dynamic programming algorithms presented in this thesis for the sequence alignment

problem with two sequences are publicly available at the website http://mosal.dei.uc.pt,

which also allows the user to run them online and to visualize the set of alignments.

Most of the contributions were published in international journals and presented at in-

ternational conferences. They are listed next, in chronological order for each type of venue,

together with reference to the contribution.

Journals

P1 -

M.Abbasi, L.Paquete, A.Liefooghe, M.Pinheiro, P.Matias, Improvements on bicriteria
pairwise sequence alignment: algorithms and applications. Bioinformatics, 29(8):996-

1003, 2013 (Abbasi et al., 2013a). See contributions C1, C2 and C5.
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P2 -

P3 -

L.Paquete, P.Matias, M.Abbasi, M.Pinheiro, MOSAL: Software tools for multiobjective
sequence alignment. Source Code for Biology and Medicine, 9(2), 2014 (Paquete et al.,
2014). See contributions C1 and C2.

M.Abbasi, L.Paquete, F.Pereira, Heuristics for multiobjective multiple sequence align-
ment. BioMedical Engineering Online, 15(70), 2016 (Abbasi et al., 2016). See contri-
bution CA4.

Conferences

P4 -

P5 -

P6 -

P7 -

P8 -

P9 -

M.Abbasi, L.Paquete, A.Liefooghe, M.C.Dias, Multiobjective sequence alignment: For-
mulation and Algorithms. The 19th International Conference on Intelligent Systems
for Molecular Biology and the 10th European Conference on Computational Biology
(ISMB ECCB 2011), 2011 (Abbasi et al., 2011) (with poster). See contributions C1
and C2.

M.Abbasi, L.Paquete, M.Pinheiro, Dynamic programming algorithms for biobjective
sequence alignment. The 1st Conference on the Bioinformatics and Computational
Biology, Bioinformatics Open Days (BOD 2012), 40, 2012 (Abbasi et al., 2012) (with
poster). See contributions C1 and C2.

L.Paquete, M.Abbasi, M.Pinheiro, P.Matias, Algorithms for multiobjective sequence
alignment. The 2nd Workshop on Bio-Optimization, 2012 (Paquete et al., 2012b)

(with oral communication). See contributions C1 and C2.

L.Paquete, M.Abbasi, F.Pereira, P.Matias, Algorithms and applications of biobjective
pairwise sequence alignment. The 2012 Mini EURO Conference on Computational Bi-
ology, Bioinformatics and Medicine (EURO-CBBM 2012), 2012 (Paquete et al., 2012a)

(with oral communication) . See contributions C1 and C2.

M.Abbasi, L.Paquete, F.Pereira, S.Schenker, Local search for bicriteria multiple se-
quence alignment. The 5th German Conference on Bioinformatics, 102, 2013 (Abbasi

et al., 2013b) (with poster). See contribution C4.

M. Abbasi, L.Paquete, F.Pereira, Local search for multiobjective multiple sequence align-
ment. The 3rd Work-Conference on Bioinformatics and Biomedical Engineering (IWB-
BIO 2015), Lecture Notes in Computer Science Vol. 9044, 175-182, Springer, 2015

(Abbasi et al., 2015) (with oral communication). See contribution C4.
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During this work, I also gave several talks about the main topic of this thesis.

e On multicriteria sequence alignment, Department of Informatics Engineering, Univer-
sity of Coimbra, April 2011.

e On multiobjective sequence alignment: formulation and algorithms, Mathematical In-

stitute, University of Koblenz-Landau, Germany, November 2012.

o Algorithms and applications of biobjective pairwise sequence alignment, Department of

Mathematics, University of Coimbra, December 2012.

o Advances in multiobjective sequence alignment, Department of Informatics Engineering,

University of Coimbra, June 2013.

In addition, I participated in the following summer schools.

o Artificial Evolution Summer School (AESS2013), June 2013, Quiberon, France

e Summer School in Computational Biology, September 2016, Coimbra, Portugal

From 2011 to 2013, I was awarded a Ph.D. grant within the project MOSAL - Multiobjec-
tive sequence alignment, a research project funded by FCT (PTDC/EIA-CCO/098674/2008).
In addition, I was a team member of the project RepSys - Representation systems with quality
guarantees for multiobjective optimization problems, a Germany/Portugal Bilateral Cooper-
ation Research Project funded by DAAD/CRUP, from 2012 to 2013. In the context of this
project, I had the opportunity of visiting Prof. Dr. Stefan Ruzika and his group at Mathe-
matical Institute from the University of Koblenz-Landau, Germany. Finally, from 2013 to
2017, T was granted and supported by the scholarship SFRH/BD/91451/2012 from FCT,
which without it this thesis would not be possible.

1.3 Thesis Structure

This thesis is divided into three main parts: the first is concerned with introductory notions
and a review of the literature associated with sequence alignment and multiobjective opti-
mization problems and algorithms (Chapter 2 and 3). The second covers the algorithmic
contributions of this thesis, in particular for pairwise sequence alignment (Chapter 4) and
multiple sequence alignment (Chapter 5). The third part discusses the real-life application
of multiobjective concepts for constructing phylogenetic trees. In the following, we provide

an outline of this thesis, together with a brief description of the main contributions.
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e Chapter 2 - Sequence Alignment.

This chapter introduces the main concepts of sequence alignment and how to evaluate,
or score, its quality. It also covers the different methods for solving the several variants
of this problem. What is a biological sequence? What is a sequence alignment? How
to score an alignment? What is a pairwise and a multiple sequence alignment? These
questions are answered in Chapter 2 which introduces the different methods of scoring

and explains proposed single objective methods to solve them.

e Chapter 3 - Multiobjective Optimization.

This chapter covers the topic of multiobjective optimization. It introduces notations
and definitions required to define different notions of optimality under several conflict-
ing objectives, as well as solution methods, exact and heuristic, to solve this problem.
In this chapter, the notations, definitions, solutions methods (exact and heuristic) as
well as performance assessment in order to compare the different heuristic methods are

explained in details.

e Chapter 4 - Multiobjective Pairwise Sequence Alignment.

Chapter 4 introduces the multiobjective formulation for pairwise sequence alignment.
It describes dynamic programming approaches for the several variants and a prun-
ing technique to improve computation time and space. Thereafter, we introduced an
approach based on the epsilon-constraint paradigm. This chapter contains the contri-
butions of C1 and C2.

e Chapter 5 - Multiobjective Multiple Sequence Alignment.

Chapter 5 presents the multiobjective formulation of the sequence alignment problem
when more than two sequences are considered. A local search method and an adapta-
tion of NSGA-II are proposed to tackle this problem. A thorough experimental analysis
is performed in order to compare the two heuristic methods. This chapter contains the

contributions of C3 and C4.

e Chapter 6 - An Application to the Construction of Phylogenetic Trees

In this chapter, we turn our attention to the use of multiobjective pairwise sequence
alignment to construct phylogenetic trees. In particular, it proposes a new method to
construct the tree based on the optimal alignments obtained from pairs of sequences.

This chapter contains the contributions of C5.
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e Chapter 7 - Conclusions and Future Work

Chapter 7 presents the final conclusions of this thesis and discusses further research

directions of this work.



Chapter 2
Sequence Alignment

2.1 Introduction

Sequence alignment is one of the most frequent tasks in Bioinformatics is (Notredame, 2002).
Procedures that rely on sequence comparison are diverse and range from database searches
to secondary structure prediction (Jones, 1999). Sequences can be compared in pairs to find
gene function, or multiple of them can be aligned in order to visualize the effect of evolution

across a whole protein family (Notredame, 2002).

In this chapter, we start by introducing the problem of finding sequence similarity be-
tween the two sequences, the so-called pairwise alignment problem. Then, we describe exact
algorithms based on the dynamic programming paradigm to solve this problem. In addition,
we present extensions of this algorithm to solve variants of this problem: global alignment,
for comparing the complete sequences, local alignment, for comparing only some parts of the
sequences, and alignment with gap penalties. At last, we introduce the problem of finding
sequence similarity for more than two sequences, the multiple sequence alignment, which is a
much more challenging problem from a computational point of view. We describe an exact
algorithm based on dynamic programming as well as some well-known heuristic approaches.

11



12 2. Sequence Alignment

2.2 Genomic Data and Sequence Similarity

DNA is understood as a sequence, or string, that contains characters from the alphabet
{A, C, G, T} (known as nucleotides). Similarly, proteins can be seen as sequences taken
from an alphabet of 20 characters (known as amino acids). If two DNA or amino acid
arrangements are similar, there is a chance that they are homologous, that is, they share
common evolutionary roots. Comparing homologous sequences is a fundamental step in
Bioinformatics to detect functional regions (La et al., 2005) and to reconstruct evolutionary
histories (Notredame, 2002; Durbin et al., 1998). The relationships between sequences are
very complex since they have been exposed to evolutionary mutations over millions of years.
Nevertheless, the first step towards understanding this is to look for sequence similarity. To
detect if the two sequences are similar, one has to align them properly.

When sequences develop from a common ancestor, their characters (residues!) can go
through substitutions (characters are replaced by some other characters), insertions (new
characters added to a sequence besides to the existing ones) and deletions (some characters
disappear) (Isaev, 2004). Sometimes, the insertion or deletion (indels) occurs in an entire
subsequence sequence as a single mutational event. Many of these single mutational events
can have quite different sizes (Gusfield et al., 1994). Therefore, when aligning two sequences,
characters must be allowed to be aligned not only with other characters but also with indels,
which we denote with the ‘ —’ character. However, by considering indels, there may be many

more possible alignments as shown in the following example:

Example 2.1. An example of alignments between two sequences TACCAGT and CCCGTAA:

TACCAGT TACCAGT-- TACCAGT--
CCCGTAA C-CC-GTAA --CCCGTAA

In Bioinformatics, sequence similarity has been used in different applications:

1. Finding homology. One of the core purposes of sequence alignment is to find homology.
Homology means that two sequences share a mutual ancestor. Discovering homology
amongst organisms may enable us to use information of one known sequence to other

sequences, or to infer the purpose of one organism’s gene from that of a related species.

1 A residue is a single unit within a polymer, such as an amino acid inside a polypeptide or protein.
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2. Defining the origin of a sequence. If a DNA or protein sequence is found, but its
originating species is undetermined, sequence alignment can be used to detect likely

sources, that is, the known sequences that most closely match the sequence.

3. Constructing Evolutionary Trees. From homology data, evolutionary (phylogenetic)
trees can be built. A phylogenetic tree is a branching diagram (tree) that shows the
inferred evolutionary relationships among various biological species upon similarities

and differences in their physical or genetic characteristics.

2.3 The Pairwise Sequence Alignment Problem

In this section, we introduce the problem of calculating an alignment between two sequences.
This problem is known in the literature as Pairwise Sequence Alignment (PSA). We describe
a classical dynamic programming algorithm for this problem. Then, we explain the general-
ization of this method for the comparison of two sub-sequences. Comparing the similarity of
the entire sequences is called global alignment, whereas for similar sub-sequences is known

as local alignment.

2.3.1 Notation and Definitions

To establish the degree of similarity, the sequences need to be aligned. However, how to
choose between several possible alignments? To answer the question, we need to find a way
to score all possible alignments. In order to mathematically define an alignment and define
a measure of similarity between sequences, some formal definitions need to be introduced.

A formal definition of an alignment is given as follows (Bockenhauer and Bongartz, 2007):

Definition 2.3.1. Pairwise sequence alignment.

Let A= (a1,...,an,) and B = (b1, ..., by,) be two strings over an alphabet ¥. Let‘—" ¢ %
be an indel character, X' =X U {* =’} and X\ denote an empty string. Let h : (X')* — ¥* be
a homomorphism defined by h(a) = a for all a € X, and h(‘ —’) = A. An alignment ¢ of A
and B is a pair (A', B") of strings of length ¢ > maxz{ny,na} over the alphabet 3, such that
the following conditions hold:

I
S

1. h(A)

2. h(B) =B
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= | Ot
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Figure 2.1: An alignment in a 2 x -matrix

3. there is no position containing an indel character in both A" and B', i.e., if a, (b))

indicates the i-th position in A'(B') then a; #‘—" and b, # ‘=’ for alli € {1,...,¢}.

Conditions 1 and 2 in the definition above state that deleting all indel characters from
A’ and B’ yields the string A and B, respectively. Condition 3 states that it is not possible
to have two indels in the same position of the alignment.

For the sake of explanation, we represent a pairwise alignment ¢ in a 2 x {-matrix in
such a way that the sequences of the alignment are written one below the other. Also, an
alignment can be represented as a sequence of ordered pairs, ¢ = (p1,...,pr); we use these
representations interchangeably, depending on the context. Figure 2.1 shows the second
alignment of Example 2.1 (in Page 12) in a matrix format. In an alignment each column can

be classified as follows:

o Match: Both characters are the same (columns 3, 4, 6 and 7 in Figure 2.1).

9

e Mismatch: Both characters are not the same and there is no indel ¢ — ’ character in

both (column 1 in Figure 2.1).

o Substitution: There is no indel ‘ —’ character in both (column 1, 3, 4, 6 and 7 in Figure
2.1).

o Indel: Either the character in the first row or in the second row is an indel (columns

2, 5,8 and 9 in Figure 2.1).

Note that there is a gap when consecutive columns of indels occur (columns 8 and 9 from
a gap in Figure 2.1). Gaps are represented as contiguous indels in a sequence alignment.
2.3.2 Scoring an Alignment

To evaluate the quality of an alignment, there is a need to define a score function. The

most popular score function assumes independence among the columns, and the total score
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of the alignment is set to be equal to the sum of the scores of each column. Therefore, for
such functions, only the scores for indel, match/mismatch or substitution need to be defined

(Gusfield, 1999; Bockenhauer and Bongartz, 2007).

To score a given alignment ¢ between two strings, at least two parameters are required:

e A score for each indel in the alignment matrix, i.e., for each column in the alignment

matrix that contains an indel ¢ — ’ character.

e A weight for each column in the alignment matrix that does not contain an indel.

In the latter case, a substitution matriz is used, which gives a score for exchanging one
character in a sequence with another character in the other sequence. For amino acids, a
substitution matrix assigns scores or frequencies to the alignment of each possible pair of
amino acids, usually based on the similarity of the chemical properties the amino acids’
and/or the evolutionary probability of the mutation. The substitution matrices for amino
acids are available as standard 20 x 20 matrices. The two most well-known matrices are
PAM and BLOSUM families (Isaev, 2004). For nucleotides sequences, typically a much
simpler substitution matrix of size 4 x 4 is used, which contains two weights: matches («)
and mismatches (53).

The score of an alignment can be simply be defined as follows (Bockenhauer and Bongartz,
2007):

Definition 2.3.2. Score of a pairwise alignment.

Let A = (a1,...,ayn,) and B = (by,...,by,) be two sequences over an alphabet 3. Let
© = (¢1,...,90) be an alignment with length £. For a,b € X, let s(yp;) indicate the score of
the j-th column (i.e, a pair such as ((a,*—="), (‘=7,b) or (a,b)) in the alignment, 1 < j < {.

let M be a substitution matriz for aligning two characters and let 0 be the score for a pair

that contains (a,* —") or (‘ =’,b). The score function 6(y) of the alignment p is given by:
l
3(p) =Y sle)) (2.1)
j=1
where,

Mla,b] if p; = (a,b),
(o) = [a,0] if p; = (a,b) (2.2)

0 otherwise
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A very common particular case of scoring an alignment ¢ is to count the number of indels
(d(¢)), matches (m(¢)) and mismatches (ms(y)). Different weights can be defined to express
the relative importance of an indel, match or mismatch. Therefore, a particular case of the

score function given above is given by the following expression:

6(p) = a-m(e) + B -ms(p) +0 - d(p) (2.3)

Usually, 8 and 6 are non-positive real numbers, whereas « is a non-negative real number.
Consider the second alignment of Example 2.1 in Section 2.2 (page 12). Let m(p), ms(p)
and d(y) be equal to 4, 1 and 4 respectively. Let o, 5 and 6 be 1, —1 and —2. Then, the
score of the alignment according to Equation (2.3) is —5.

The scoring scheme provides a quantitative measure of how good an alignment is. In the
literature, the problem of maximizing this score is known as the sequence alignment problem.
Finding an optimal alignment between two sequences (pairwise sequence alignment) can be
a computationally complex task as there is a considerable number of possible alignments.
Dynamic programming (DP) is a method that allows solving this problem in an efficient
manner, that is, in time proportional to the size of the sequences. DP is particularly well
suited for this problem due to the natural definition of sub-problem that arises from the
prefixes of the sequences. In the following subsections, we discuss different methods based

on DP that have been proposed in the literature for pairwise sequence alignment.

2.3.3 Needleman-Wunsch Algorithm for Global Alignment

The Needleman-Wunsch Algorithm (Needleman and Wunsch, 1970) is a DP algorithm that
solves the problem of sequence alignment. It was one of the first applications of DP to com-
pare biological sequences. In this section, we explain this algorithm and show its correctness.

To determine the degree of similarity between two sequences, we use the score function
as given in Definition 2.3.2. For finding the optimal alignment between two sequences, we
need to compute the maximum score of this function and the alignment that yields it. We

use the DP paradigm to solve it. A DP algorithm includes four parts:

i) a recursive definition of the score;
ii) a dynamic programming matrix for storing the optimal scores of sub-problems;

iii) a bottom-up approach to complete the matrix starting from the smallest subproblems;
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iv) a traceback method to recover the optimal alignment (Kleinberg and Tardos, 2006).

In the following, we describe these four parts in more details.

A Recursive Definition of the Score

The working principle for solving the pairwise sequence alignment problem with DP is to
compute the optimal alignment for all pairs of prefixes of the given sequences. In the follow-
ing, we explain the recursive formula for calculating the maximum score of the prefixes of

the sequences. First, we give a well-known fundamental property of an alignment.

Lemma 2.3.1. (Kleinberg and Tardos, 2006)
Let A = (a1,...,an,) and B = (b1,...,by,) be two sequences. An alignment ¢ of A
and B does not contain any crossing pair, that is, if (a;,bj), (ay,bj) € @, and i < ', i,

i"e{l,...,n1}, 4,7 €{1,...,na}, then j < j'.

Proposition 2.3.2. Let ¢ be any alignment of A = (a1,...,an,) and B = (by,...,bn,). If
(Gny,bny) & , then either the ni-th position of A or the na-th position of B is aligned with

character ¢ — .

Proof. This proof is done by contradiction: Suppose that b, is aligned to a; € A, 1 <i <mny
in A and a,, is aligned to a position b; € B, 1 < j < ng in B; then, there exists a crossing

pair, which contradicts Lemma 2.3.1. ]

The proposition states that an alignment between two sequences can end in one of the
following three pairs: (an,,bn,), (any, =) or (‘=’,bn,). The following corollary is equivalent

to Proposition 2.3.2.

Corollary 2.3.3. (Barton and Sternberg, 1987) Let ¢ = (¢1, ..., pe) be an optimal alignment
with length ¢ of two sequences A = (ai,...,an,) and B = (b1,...,by,). The alignment can

possibly end in three ways:
i) characters ay,, and by, are aligned to each other, i.e., oy = (an,,bny);
it) character ay, is aligned to an indel, i.e., pp = (ap,, =) ;

iii) character by, is aligned to an indel, i.e., g = (* =, bp,).



18 2. Sequence Alignment

The corollary leads us directly to the formulation of the recurrence.

Let 4(i, j) denote the maximum score of an optimal alignment between the two prefixes
(a1,...,a;) and (b1,...,b;), 1 <i<mny, 1 <j<ng. Let M be a scoring matrix and let 6 be
the indel score for each character of A or B that is aligned to an indel character. If case i)
holds, we have that

d(ni,n2) = Mlan,,bn,] +d(n1 —1,n2 — 1)

If case ii) and iii) holds we have that
d(n1—1,m2) =0+0(n1 —1,n3) and d(ni,ne—1)=60+3d(ni,ne—1)

respectively. As a result, the optimal alignment is the highest scoring of these three cases.
Before writing the general recursive formula, we need to show that, if there exists an
optimal alignment for the two sequences, by removing one of the three alternative pairs from
the optimal alignment, the remaining alignment is also optimal for the three alternative
prefixes. This shows that optimal substructure exists, which is an important property of an

optimization problem that can be explored by DP.

Proposition 2.3.4. Let A = (a1,...,an,) and B = (b1,...,by,) be two sequences. Let

© = (p1,...,p0) be an optimal alignment of A and B with maximum score §(ni,ns).

i) If o = (an,,bn,), then (p1,...,0e-1) is an optimal alignment of (a1,...,an,—1) and

(bla cee 7bn271);
i) if oo = (an,, =), then (p1,...,00-1) is an optimal alignment of (ai,...,an,—1) and
(bl, e ,bn2>;

i1) if o = (‘ =" bp,), then (¢1,...,900—-1) is an optimal alignment of (a1,...,an,) and

(b1y. .y bpy—1).
Proof.
i) Assume that (p1,...,¢s—1) is not an optimal alignment of prefix (ai,...,a,,—1) and
prefix (b1,...,bn,—1). Then there exists another optimal alignment with larger score

for the same prefixes. By summing this score to M|a,,,by,], we obtain an alignment

with larger score than §(ni,ns), which is a contradiction;

ii) Assume that (¢1,...,%¢—1) is not an optimal alignment of prefix (ay,...,an,—1) and
prefix (b1,...,bn,). Then there exists another optimal alignment with larger score for
the same prefixes. By summing up 8 to the score of that alignment, we obtain an

alignment with a larger score than §(ny, ng), which is a contradiction;
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iii) Symmetric to ii).
Ul

By applying the same argument inductively for the subproblem of finding the maximum
score alignment between (a1, ...,a;) and (by,...,b;), 1 <i < nq, 1 < j < ng, we arrive to

the following general recursive definition.

i-0 if j=0
j-0 ifi=0
6(i,7) = 5(i — 1,5 — 1) + Mlai, b;] (2.4)
max < §(i —1,7) + 6 ifi£0and j#0
6(i,j—1)+0

\
Where (0, 5) and d(7,0) correspond to the base case of the recursion, that is, the score of
aligning a prefix with an empty sequence. Due to the overlapping subproblem property of this
problem, it is possible to store the values of §(7,j) in a matrix to discard recursive function
calls, which would correspond to a top-down DP approach. In order to avoid the overhead

of recursion, we introduce the bottom-up version in the following section.

Dynamic Programming Matrix and Bottom-up Approach

We consider a two-dimensional matrix P with the size (n1+1)x(n2+1), where the value P[i, j]
is the score of the optimal alignment with the prefixes (a1, ag, ..., a;) and (b1, b, ..., b)), i.e.,

(4, 7). Matrix P[i,j] is built in two steps. (Needleman and Wunsch, 1970)

1. Initialization. This step treats the base case of the recursion in Eq. (2.4). The [0, 0]
element of P is set to 0 and the top row and leftmost column of the matrix are initialized

with the cost of indels of lengths ¢ and j, respectively.

2. Matriz fill. The matrix is filled row-wise from top-left to bottom-right. There are three
possible ways that the best score of an alignment up to a; and b;, P[i, j], 1 <i < nq,
1 < j < ng, is obtained: a; could be aligned to b;, P[i,j] = Pli — 1,j — 1] + M]a;, b;];
or a; is aligned to an indel character, P[i,j] = P[i — 1,j] + 0; or b; is aligned to an
indel, P[i,j] = P[i,j — 1]+ 6. The best score up to (i, j) will be the maximum of these

three options.
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0

A e | T | &
0 -[0| 2] 4] -6/|-8
1 A|-2|"1|+-1]| 3|5
2 T|-4| -1 0 |~0| -2
3 A[-6] 3] 2 |-1|~1

Figure 2.2: Illustration of the DP matrix of the Needleman-Wunsch algorithm and the

traceback of the alignment (red arrows)

P[Z - 1,j - 1] —i—M[ai,bj]
Pli,j] =max< Pli—1,7] +0 (2.5)
Pli,j—1]+6
For nucleotides sequences, matches are rewarded with «, mismatches are penalized by

B and indels are penalized by 6. The corresponding recurrence can be rewritten as:

Pli—1,5—-1]+a, ifa; =0b;

[
Plij] = maxd LTI U8 a2, (2.6)
Pli—1,j]+6
P[Z’] *”+0

The recurrence is repeatedly applied to fill the matrix P and once it is filled, the last

element of the matrix at position (ni,n2), holds the score of the optimal alignment.

The Traceback Method

In order to reconstruct an optimal alignment, and given that matrix P is filled, there is only
the need to trace back the decisions taken by the DP algorithm above.

Figure 2.2 shows the matrix P for the nucleotide sequences AGTA and ATA with match
reward 1 (o = 1), mismatch penalty —1 (8 = —1) and indel penalty (# = —2). From the
bottom-right cell, a route is traced back to the top-left cell, which gives the alignment. By

following the path in the matrix, an optimal alignment, with score 1, is:

AGTA
A-TA
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One may be interested in reconstructing all optimal alignments. In that case, each of the
three options that are selected during the matrix fill needs to be stored in each cell. Note
that if multiple options result in the same score, all of them need to be stored. This can be
performed by storing ‘predecessor’ pointers for each cell, or by storing the result for each of

the three options in a separate matrix and looking up which has the highest result for a cell.

2.3.4 Global Alignment with Gap Penalties

Defining the best alignment between two sequences depends on the score function. It is pos-
sible that for two different score functions the best alignments differ considerably. Therefore,
it is crucial that a score function is biologically relevant in order to produce an alignment that
may have a biological interpretation (Jones and Pevzner, 2004). Such a function must take
into account factors that constrain sequence evolution. The notion of a gap in an alignment
is one of these factors.

Usually, a gap is penalized according to its length in the alignment. However, clearly,
the way gaps are scored critically influences the effectiveness of the gap. There are different
models of gap penalties such as constant, linear, affine, convex, and arbitrary (Gusfield et al.,

1994). The first three gap models are as follows.

e (Constant gap model. This model is the simplest type of calculating gap penalty, for which
each gap is scored independently of its length. Consider the following alignment of two

short DNA sequences:

+1 +1 -1 +1

Assuming that each match is 1 and each gap is —1, the total score of the alignment under

the constant gap modelis 1+1+1—-1=2.

o Linear gap model. This model takes into account the length of the gap. In this case,
each indel in the gap is penalized with a fixed negative value. The problem of finding
the optimal alignment with gap penalties by considering linear gap model is the same as

given in Eq. (2.3).
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Assuming that each indel is penalized by —1, then the total score of the alignment by
considering the linear gap model is1+14+1—-1—-1—-1=0.

e Affine gap model. This is the most widely used model. The score of a gap region of length
g is equal to v+ u(g — 1), where v and u are fixed negative values. In this case, v is called
the gap open weight, since it represents the cost of starting a gap, and p is called the gap
extension weight. Usually, p is set to be smaller than v, which reflects the fact known

from biology that starting a gap region is harder than extending it (Gusfield et al., 1994).

- - - c
¢ T A A G
+1 +1 -5 -1 -1 +1

Assuming that the gap open weight is —5 and the gap extension weight is —1, the score

of the alignment by considering the affine gap model is 3 —5—-1—1= —4.

The Needleman-Wunsch Algorithm (Needleman and Wunsch, 1970) solves the problem of
pairwise sequence alignment with the linear gap model (see Section 2.3.3). In the following,

we describe an extension of this algorithm for the affine gap model (Gusfield et al., 1994).

Definition 2.3.3. Score of an alignment with affine gap model.

Let ¢ be an alignment of two sequences A = (ai1,...,an,) and B = (by,... by,). Let
«, B,v, 1 denote weights for match, mismatch, gap open weight and gap extension weight,
respectively. Let m(p), ms(¢), g(v) and d(p) indicate the number of matches, mismatches,
gaps and indels orderly in the alignment . Then, the score function of an alignment ¢

under the affine gap model is computed as follows:

6(p) = a-m(p) + B-ms(p) +v-g(p) + p-(dlp) —g(p)).

The DP algorithm that finds the alignment that is maximal for this score function is
discussed in Gusfield et al. (1994). It requires four matrices: @, R, S, and T. For a given
(i,7) € {1,...,m1} x {1,...,na}, entry RJ[i,j], S[i,j] and T[i,j] stores the set of states
corresponding to optimal alignments of prefixes (ai,...,a;) and (b1,...,b;) that end with
(ai, bj), (‘—=7,bj) and (as,* =), respectively, 1 <1i <nq, 1 < j < ng. The element Q[, j] is
the score corresponding to optimal alignment of prefixes (ai,...,a;) and (b1,...,b;). Then,
the recursion by considering a substitution matrix M, gap open weight v and gap extension

weight p is as follows:
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S[i, j] = max{ S[Z’.’j._ U+ p
Q[laj - 1] +v
Tli,j] = max{ =1 +np
Q[Z - 1)3] +v

with 1 < i < nj, 1 <j <nsg. A bottom-up DP algorithm can easily be derived from the

above recursions, analogously to the Needlman-Wunsch algorithm described in Section 2.3.3.

2.3.5 Smith-Waterman Algorithm for Local Alignment

Global alignment methods force alignments to span the entire length of the sequences by
attempting to align every character of each sequence. They are useful when two sequences
are similar and have roughly equal length. Local alignment methods seek to identify regions
of similarity between two sequences. Local alignments are more useful to identify discrete
regions of similarity between otherwise divergent sequences; for example, when it is suspected
that two protein sequences share a common domain, or when comparing extended sections of
genomic DNA sequence. It is also the most sensitive way to detect similarity when comparing
two very highly diverged sequences, even when they may have a shared evolutionary origin
along with their entire length (Smith and Waterman, 1981).

The algorithm for finding an optimal local alignment is called the Smith-Waterman al-
gorithm (Smith and Waterman, 1981). It is closely related to the algorithm for global

alignment as described in the previous section. The two main differences are:
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i) In each cell in the matrix, P[i, j| can take the value zero if all the three options have
negative values. This option allows the algorithm to start a new alignment, which
might result in a better score of the prefixes’ alignment than continuing an existing

one. This translates into resetting the current score of the prefixes’ alignment to zero.

ii) In order to reconstruct the alignment, the traceback must start from the highest value

in P. The traceback ends when a cell with value zero is found.

The recurrence equation for local alignment is given as follows:

0 fori >0o0r j >0,
Pli—1,5]+6 for i > 0,

Pli, j] = max i i o (2.7)
Pli,j—1]+6 for j >0,

Pli—1,7 — 1]+ Mla;, bj] fori>0orj>0.
with 1 <i<nj, 1 <j <ns. A bottom-up DP algorithm can also be derived from the above
recursions, analogously to the Needlman-Wunsch algorithm described in Section 2.3.3.
A comparison between global and local alignment of two hypothetical genes is shown in
Figure 2.3 (Jones and Pevzner, 2004, page 182). By considering the scoring scheme with
match reward 1 (a = 1), mismatch penalty -1 (5 = —1) and indel penalty (0§ = —2); the

alignment score of the global alignment is -29 whereas for the local alignment is 12.

2.4 Multiple Sequence Alignment Problem

A multiple sequence alignment (MSA) is an alignment of more than two biological sequences.
Usually, the set of sequences considered in this problem is assumed to have some evolutionary
relationship. From the resulting MSA, sequence homology can be inferred, and a phylogenetic
tree can be conducted to assess the shared evolutionary origins of the sequences.

This section introduces the problem of finding an alignment for more than two sequences.
First, the required mathematical definition and three different models of scoring an MSA are
presented. Then, the strategies for solving this problem are introduced. An exact algorithm,
which is a natural extension of the DP algorithm presented in Section 2.3, is discussed as

well as heuristic methods such as progressive alignments and iterative approaches.

2.4.1 Notation and Definitions

Multiple alignment can formally be defined analogously to the alignment of two sequences

as follows.
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Sequences:

TCCCAGTTATGTCAGGGGACACGAGCATGCAGAGAC
AATTGCCGCCGTCGTTTTCAGCAGTTATGTCAGATC

Global alignment:

--T--CC-C-AGT--TATGT-CAGGGGACACG--A-GCATGCAGA-GAC

[ 0 O
AATTGCCGCC-GTCGT-T-TTCAG----CA-GTTATG--T-CAGAT--C

Local alignment:

TCCCAGTTATGTCAGGGGACACGAGCATGCAGAGAC

NERRENRRRNN
AATTGCCGCCGTCGTTTTCAGCAGTTATGTCAGATC

Figure 2.3: A comparison of the global versus local alignment (Jones and Pevzner, 2004,
page 182)

Definition 2.4.1. Multiple sequence alignment (Bockenhauer and Bongartz, 2007, page
101).

Let Ay = (a11,.-.,01ny), -y Am = (@mi1s- -, Qmn,,) be m sequences over an alphabet 3.
Let * —> ¢ % be an indel character and let ¥/ = X U {* =’} and X denotes the empty string.
Let h: (X')* — X* be a homomorphism defined by h(a) = a for alla € &, and h(‘*=") = X. A
multiple sequence alignment ¢ of (A1, ..., Ay) is an m-tuple of A} = (a}y,...,dl,),..., A, =
(al,1,--.,al,) of sequences with length ¢ such that £ > max{|A4;|,1 < i < m} over the alphabet

Y/, such that the following conditions are satisfied:
) 1AL = [A] = .. =| AL
i) h(AL) = A; foralli e {1,...,m};
iii) For every j € {1,...,£} there exists ani € {1,...,m} such that a;j £,

Note that Condition iii) of the definition above indicates that it does not exist any
j €{1,..., £} such that an indel character occurs in all a};, i € {1,...m}.
There are different ways of scoring an MSA, which may lead to different multiple sequence

alignments. In the following, the three most known score functions are described in detail.
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i) Sum-of-pairs score.

The most widely used scoring scheme for MSA is the sum of pairs score (SP-score),
which is consists of summing up the pairwise sequence alignment score between each
pair of sequences in the alignment. The SP-score dgp(¢) of an MSA ¢ is computed as
follows:
dsp(0) = D oY)
1<i<j<m

where ¢ denotes the pairwise alignment between sequences A4; and Aj and ¢ () is
the pairwise alignment score as given in Definition 2.3.3. By considering the affine gap

model, we can recast the score function above as follows.

¢
8(67) = s(ajy, aly)

k=1

where
Mla,b] if(a#‘—"andb#‘—")
(a.b) if (a#‘—"xorb#‘—") and it is a gap opening
s(a,b) =
1 if (a#‘—"xorb#‘—") and it is a gap extention
0 if(a=‘—"andb="*-")

and ¢ is the length of ¢. Function s(a,b) evaluates each pair of aligned residues in the
MSA. The score for the matching of residues a and b is obtained from the substitution
matrix M. If either a or b is an indel character and it is a gap opening, then s(a,b)
is equal to v (gap opening penalty), otherwise if it is a gap extension then the score is

equal to p (gap extension penalty). If both are * —’, then s(a,b) = 0.

If the linear gap model (see Section 2.3.4 page 21) with a fixed indel penalty pu is used,

this formulation can be simplified as follows.
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ii)

where
Mla,b] if(a#‘—"andb#‘—")
s(a,b) =< pu if(a#‘—"xorb#‘=")
0 if(a=‘—"andb="*-")

In the following, we provide an example for the calculation of this score function.

Example 2.2. Consider the following MSA of the sequences TACCAGT, CCCGTAA and
TCC:

1 3 4 6 7 8 9
1|T|A|lc|clalc|T|-]|-
2(c|-|clc|-|a|T|A|nA
3(T|-|clc|-|-]-|-]|-

Let the score of (a,b) be 1, if a = b and 0 otherwise. Let the penalty score be y = —1.

Then, the SP-score of this alignment is as follows:

9 2 3
dgp(9) = ZZ Z S(Q;;k’a;‘k)
k=1 i=1 j=i+1
=0+14+0)+(-1-1+0)+(1+1+1)+(1+1+1)+(-1—-1+0)

Weighted Sum-of-Pairs score.
The weighted sum-of-pairs score (WSP-score) is an extension of SP-score, where each
pair of sequences contributes differently to the total score. The WSP-score is defined

as:

Swsp(@) = Y wij-6(¢")

1<i<j<m

where w; ; is the weight associated with the pair of sequences A; and A; in the align-

ment. This weight is usually calculated according to the distances between the two
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sequences using methods such as UPGMA (Sneath et al., 1975) or Neighbor Joining
(Saitou and Nei, 1987) (see Section 6.3.2, page 135).

iii) Mazimum consistency score.

The maximum consistency score is used by recent MSA programs such as T-Coffee
(Notredame et al., 2000), MAFFT version 5 (Katoh et al., 2002) and ProbCons (Do
et al., 2005). For calculating the score of an alignment with this method, the substitu-
tion score is calculated between each residue pair using the information from pairwise
alignments (local and global) between sequences. This method is known to increase the
accuracy of the MSA, but it has a costly computation time (Notredame et al., 1998).
The calculation of this score is explained more in detail in the following section (page
33).

2.4.2 Algorithms for the MSA Problem

In the following, we introduce the most common strategies for solving the MSA problem.
The algorithms are classified into three main categories: exact, progressive and iterative
algorithms (Notredame, 2002). The exact algorithm solves the MSA problem with a DP
approach using an n-dimensional matrix from n sequences. Unfortunately, this method
needs a significant amount of time and memory resources and is not feasible in practice.
The most commonly used heuristic methods are progressive algorithms. They build
up the MSA by performing a series of pairwise alignments. This approach starts with a
particular pairwise alignment and iteratively adds a sequence or a pairwise alignment to the
growing multiple alignment. One of the primary problems of progressive alignments is that,
when errors are made at any stage in the growing MSA, they are propagated through the
final result. Iterative algorithms are similar to progressive methods, but repeatedly realign

the initial sequences and add new sequences to the growing MSA in order to refine it.

Exact Algorithms

The MSA problem can be solved by extending the DP approach for the pairwise sequence
alignment problem (see Section 2.3.3). By assuming an SP-scoring method with a linear gap
cost function (see Section 2.4.1) the following parameters are required. For calculating the
SP-score (0sp), we assume that the scores s(a, b) are available from a substitution matrix M,
s(a,‘—") is a fixed value (indel weight) and s(‘ —’,* —’) = 0. Suppose we have m sequences

A1 = (an,...,alm),Ag = (agl,...,agm),...,Am = (aml,...,amnm). Let P[Zl,,Zm] be
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the maximal score of an alignment for the prefixes ending with ay;,, ..., @m,,. The recursion
step of the dynamic programming algorithm is given by the following recurrence (Jones and
Pevzner, 2004; Cohen, 2004; Isaev, 2004):

P[il —1,...,im—1}—|—5gp(a1il,...,amim)

P[il,ig—1,...,im—1]+5sp(‘—’,a2i2,...,amim)

P[Zl —1,i2,i3—1,...,im—1]—I—CSSP((IMI,‘—’,agis,...,amim)
P[7’17’Zm] = max P[Zl _17"'7im—1 _1;7;m]+5SP(a1i17~-->am—1im,17‘_7)

P[i177:2)i3_]-7"'7/L-m_]-]+5SP(‘_’7‘_’7a3i37"‘7am’im)

P[il,’ig,ig,...,im—1]—|—5Sp(‘—’,‘—’,...,‘—’,amim)

where all combination of indels occurs except the one where all residues are replaced by
indels. The algorithm is initialized by setting P[0,...,0] = 0. The traceback starts at
P[ny,...,ny) and is analogous to the traceback method for pairwise alignments (see Section
2.3).

For m sequences, the method above requires constructing an m-dimensional matrix equiv-
alent to the one for pairwise sequence alignment (see Section 2.3). Therefore, the search space
increases exponentially with increasing m and is also strongly dependent on the length of
the sequences. If the length of the largest sequence is equal to £, then the space and time
complexity of this method would be O(¢™). In fact, the problem of finding the global op-
timum for an arbitrary number of sequences has been shown to be NP-hard (Just, 2001;
Isaac, 2006). Carrillo and Lipman introduced some speed-up technique that uses pairwise
alignments to constrain the m-dimensional search space. The idea is to reduce the number
of elements of the DP matrix that need to be examined in order to find an optimal multiple
alignment (Carrillo and Lipman, 1988; Lipman et al., 1989). Still, the exact algorithm has
large memory and computational time. Thus, it is impractical for many MSA applications

that require the simultaneous alignment of many sequences.
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Progressive Algorithms

Progressive algorithms are heuristic approaches to MSA (Jones and Pevzner, 2004). Heuris-
tics are applied to problems where the time required to find an optimal solution is very large.
These approaches do not guarantee the optimal solution but employ clever techniques to find
a satisfactory solution in a short amount of time.

Progressive alignment algorithms produce a multiple sequence alignment from a number
of pairwise alignments. They greedily select a pair of sequences with the largest similarity
score and merges it into a new sequence or already constructed pairwise alignment following
the principle “once a gap, always a gap”. This principle states that once a gap is introduced
into the alignment, it will never be removed, even if that leads to a worse multiple alignment
(Feng and Doolittle, 1987). The motivation for the choice of the most similar sequences
in the early steps of the algorithm is that they often provide the most reliable information
about the optimal alignment. Clearly, different alignments can be produced by considering
different orderings of the sequences to be merged.

In the following, we discuss two progressive algorithms that have been used extensively

by practitioners, ClustalW (Thompson et al., 1994) and T-Coffee (Notredame et al., 2000).

ClustalW One of the most popular multiple sequence alignment algorithms that uses a
progressive strategy is ClustalW (Thompson et al., 1994). The three basic steps in the
ClustalW approach are almost equal to all progressive alignment algorithms: i) Calculate
a matrix of pairwise distances based on pairwise alignments between the sequences; ii) Use
the result of (i) to build a guide tree, which is an inferred phylogeny for the sequences (see
Section 6.3.2); iii) Use the tree from (ii) to guide the progressive alignment of the sequences.

We illustrate this technique by considering the following four sequences of protein sequences:

SeqA: XNLFMELD TPE LNST FNT RNT
SeqB: KNLFMELD TPE FNST RNT
SeqC: KNLFMELD TPE AELY FNST RNT
SeqD: TPE FNT RNT

i) Calculation of the pairwise distances

In the first step, all pairs of sequences are aligned by a DP algorithm, and then a simi-
larity or distance value is calculated for each pair using the aligned portion (indels/gaps

are excluded). Figure 2.4 shows an optimal pairwise alignment of all pairs of the four
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SeqA: KNLFMELDTPELNSTFNTRNT SeqB: KNLFMELDTPE----FNSTRNT
SeqB: KNLFMELDTPEFNSTRNT--- SeqC: KNLFMELDTPEAELYFNSTRNT

SeqA: KNLFMELDTPELNSTFN-TRNT SeqB: KNLFMELDTPEFNSTRNT

SeqC: KNLFMELDTPEAELYFNSTRNT ~ SeqD: —-------- TPEFN-TRNT
SeqA: KNLFMELDTPELNSTFNTRNT SeqC: KNLFMELDTPEAELYFNSTRNT
SeqD: —-—----- TPEFN----TRNT SeqD: —------- TPEFN----- TRNT

Figure 2.4: All pairwise alignments for the four sequences?

sequences above. A possible measure of distance is to use the number of matches in the

alignment as follows (Thompson et al., 1994):

Number of matches

distance =1 —
istance Length of aligned region with no indels/gaps

In our example, the distance between sequences A and B is equal to 1 —16/18 = 0.1(1).
Note that we have computed distances to be in the range of 0 to 1, with smaller values
indicating more closely related sequences. The distance matrix for the sequences of the

example is shown in the following table.

Seq.A | Seq B | Seq C | Seq D
Seq A | 0.0000 | 0.1(1) | 0.1905 | 0.1(1)
Seq B | 0.1(1) | 0.0000 | 0.0000 | 0.0000
Seq C | 0.1905 | 0.0000 | 0.0000 | 0.2(2)
Seq D | 0.1(1) | 0.0000 | 0.2(2) | 0.0000

ii) Building the guide tree

In the following step, the guide tree is built based on the distance matrix computed in
the previous step. The exact details of the tree construction are discussed in Chapter
6. ClustalW uses the neighbor-joining method (Saitou and Nei, 1987) to compute this
tree. The sum of the branch lengths of the guide tree between each pair of sequences
corresponds, ideally, to the distance between those sequences. However, the current

methods build a tree that approximate the information given in the distance matrix.

2The global pairwise alignments were obtained from the online tool EMBOSS Needle, available at
http://wuw.ebi.ac.uk/Tools/psa/emboss_needle, with substitution matrix BLOSUMSG62, gap opening value
—10 and gap extension weight —0.5.
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0.08 SeqA
0.04
0.04 SeqD
SeqB
0.04
0.08
SeqC
—
0010
Figure 2.5: The guide tree obtained with the Neighbor-Joining method.?
Figure 2.5 shows the corresponding guide tree from the above distance matrix. As it is
shown, the distance between SeqA and SeqD in the tree is 0.08 + 0.04 = 0.12 which is
close to the value 0.1(1) in the distance matrix.
iii) Progressive alignment

In this step, the idea is to use the pairwise alignments already computed to align
larger and larger groups of sequences, following the branching order of the guide tree.
Alignments are combined starting from the most closely related sequences and then
proceed from the leaves of the tree towards the root. Fach step consists of aligning two
existing alignments or a sequence with alignments. At each stage, a DP algorithm is
used with a substitution matrix (e.g., a PAM or a BLOSUM matrix) and gap opening
and extension penalties. The score at each position in the DP matrix is equal to the
average of all scores from the two sets of sequences. We illustrate this procedure by

considering the two following pairwise alignments:

seqB: KNLFMELDTPE----FNSTRNT
seqC: KNLFMELDTPEAELYFNSTRNT

seqA: KNLFMELDTPELNSTFNTRNT
seqD:  -—--————- TPEFN----TRNT

3The tree was generated using MEGA7 (Kumar et al., 2016) available at http://www.megasoftware.net/
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The scoring of the first column of the first alignment against the fourth column of the

second alignment is calculated as follows (given a substitution matrix M):
(2-MK,K|+2-M[F, ="]) /4
For the four sequences of the example, the alignment order is the following:

i) Align SeqB with SeqC (Group 1)
KNLFMELDTPE----FNSTRNT
KNLFMELDTPEAELYFNSTRNT

ii) Align SeqA and SeqD (Group 2)
KNLFMELDTPELNSTFNTRNT
———————— TPEFN----TRNT

iii Align Group 1 with Group 2
KNLFMELDTPE----FNSTRNT
KNLFMELDTPEAELYFNSTRNT
KNLFMELDTPELNSTFNTRNT-
———————— TPEFN-----TRNT

T-Coffee This progressive method for MSA uses consistency information for the scor-
ing (Notredame et al., 2000). The main idea of this technique is to preprocess a dataset of
all pairwise alignments between the sequences, which provides a library of alignment infor-
mation that is later used to guide the progressive strategy. We illustrate the steps of this

technique with the four sequences used in the previous example.

i) Generation of the primary library

The primary library is created by generating the pairwise alignments between all pairs of
sequences. For each pair of sequences, T-Coffee calculates one global pairwise alignment
and several non-overlapping local alignments. The global alignments are usually con-
structed by using the ClustalW program and default parameters. The local alignments
are generated by Lalign program* with default parameter (Huang and Miller, 1991).
The algorithm for each sequence pair chooses the top ten scoring local alignments that

do not have intersections.

4Lalign finds a set of non-overlapping local alignments (Huang and Miller, 1991; Pearson and Lipman,
1988). It is an implementation of Sim program inside FASTA package (see http://embnet.vital-it.ch/
software/LALIGN_form.html)
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SeqA: KNLFMELDTPELNSTFNTRNT PW=88  SeqB) KNLFMELDTPE----FNSTRNT PW=100

SeqB: KNLFMELDTPEFNSTRNT--~ SeqC: KNLFMELDTPEAELYFNSTRNT
SeqA: KNLFMELDTPELNSTFN-TRNT PW=77 SeqB: KNLFMELDTPEFNSTRNT PW=100
SeqC: KNLFMELDTPEAELYFNSTRNT SeqD: ———————- TPEFN-TRNT

SeqA: KNLFMELDTPELNSTFNTRNT ~ PW=100 SeqC: KNLFMELDTPEAELYFNSTRNT = PW=100
SeqD: —------- TPE----FNTRNT SeqD: ——------ TPE----FN-TRNT

Figure 2.6: T-Coffee primary library, with all pairwise alignments and the Primary Weight
value (PW)

ii)

iii)

iv)

Calculation of the primary weights

In the primary library, the alignments are kept as a list of aligned residue pairs, for
example, if the residue x of sequence A is aligned with the residue y of sequence B,
then the alignment contains the residue pair (A(z), B(y)). These residue pairs called
constraints; Each constraint gets a value. In this method, to evaluate the multiple
sequence alignment instead of using the values of substitution matrices, these values
are considered. Nevertheless, all of these pairs may not have equal importance in
producing the sequence alignment. Some of them may come from parts of alignment
that seem to be more correct. Therefore, T-Coffee assigns a weight to each residue
pair. The primary weight in the primary library is based on the sequence identity. In
this step, each constraint (residue pair) get a value (weight) equal to the percentage
of sequence identity of the pairwise alignment that it originates. Figure 2.6 shows all

global alignments of the four sequences and the corresponding primary weights (PW).

Merging of the two primary libraries

The primary library consists of local alignment and global alignment for a pair of
sequences. Since a residue pair in the global alignment can appear in local alignments,
the weights for such aligned residue pairs need to be merged. This merging step consists
only of summing up the two weights if a residue pair is duplicated between the two
libraries. Otherwise, the residue pair is stored as it is. For residue pairs that do not

occur in any pairwise alignment, the default weight value is equal to zero.

Ezxtending the merged primary library

The merged primary weights can be used directly to compute the MSA, but T-Coffee
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SeqA: KNLFMELD TPE LNST FNT RNT weight = 88
SeqB: KNLFMELD TPE FNST RNT ---

SeqA: KNLFMELD TPE LNST FN-T RNT
SeqC: KNLFMELD TPE AELY FNST RNT weight = 77
SeqB: KNLFMELD TPE FNST RNT- ---

SeqA: KNLFMELD TPE LNST FNT RNT
SeqD: —————-—- TPE ---- FNT RNT  weight = 96
SeqB: KNLFMELD TPE FNST RNT ---

Figure 2.7: The three possible alignments of SeqA and SeqB for our example

extends this library information. It increases the value of the library information by
testing the consistency of each residue pair with residue pairs from all the other align-
ments. For this purpose, T-Coffee takes each aligned residue pair from the primary
library and check if it aligns with the residues from the remaining sequences. This
procedure is illustrated in Figure 2.7. For the sake of the explanation, let ax, bx and ¢k
denote the index of the first K in SeqA, SeqB and SeqC, respectively and let W (bx, ak)
denote the weight of the pair (ax, bx), which is 88. In the alignment of SeqA and SeqB
through sequence SeqC, ax and by are aligned, as well as bx and ck. Therefore, the
residue pair (ag, bg) is aligned through SeqC. In order to increase the quality informa-
tion of residue pair (ag, bx) of SeqA and SeqB, T-Coffee adds a weight equal to the
minimum of W (ag, cx) and W (bg, cx), that is min(77,100) = 77, to its primary weight.
Therefore, the weight of residue pair (ax, bx) increase to 88+77. T-Coffee repeats this
procedure for all the other triples. The algorithm converts consistency information into
weights for aligned residue pairs. Once weights are updated, T-Coffee proceeds to the

next step.

Progressive strategy

In the last step, T-Coffee progressively aligns sequences. This process occurs the same as
the ClustalW procedure. Pairwise alignments are first calculated to create a distance
matrix. Then, based on a distance matrix, a guide tree using the neighbor-joining
method is calculated (Saitou and Nei, 1987). At last, with the help of a phylogenetic
tree, the sequences align progressively to produce the MSA. The only difference is that
for aligning in the last step, T-Coffee uses the weights from the extended library and



36 2. Sequence Alignment

the gap penalties are set to zero.

Iterative Algorithms

One of the main problems with progressive alignments is that wrong choice occurring in the
initial alignment will be propagated to the rest of the alignment procedure. The iterative
approaches were introduced to overcome this problem. They repeatedly realign all sequences
so that the overall alignment score, such as the sum-of-pair score, can be improved. Iterative
methods can be deterministic or stochastic, depending on the strategy used to improve the
alignment. Traditional stochastic iterative methods include simulated annealing and genetic
algorithms. Bioinformatics packages that use iterative algorithms are IterAlign, PRRP,
DIALIGN, MUSCLE (Gotoh, 1996; Morgenstern et al., 1998; Berger and Munson, 1991).
The approach described in Barton and Sternberg (1987) is one of the first deterministic
iterative algorithms. It uses information provided by a profile, which is a matrix that stores
the relative frequency that each character appears in each column of an MSA. The following

table shows an example of a profile (right) for an MSA of 4 sequences (left).

1 2 3 4

1.00 0.50 0.00 0.00
0.00 0.25 0.75 0.00
0.00 0.00 0.00 0.00
0.00 0.00 0.00 1.00
0.00 0.00 0.00 0.00

S1: AABDB--BCC-CEAA
S2: AA-DABBBCCCCE-A
S3: A-BD--BBCCC-EAA
S4: ABBDABBBCC--E-A

MmO Q W =

The algorithm works as follows:

i) Find two sequences with largest score and align them using standard DP (see Section
2.3).

ii) Update the profile matrix by merging the two selected sequence in the previous step.
Find a sequence that largest score to a profile of the alignment of the first two sequences
and align it to the first two by profile-sequence alignment. Repeat until all sequences

are included.

iii) Remove randomly one sequence and create a profile of other sequences. Realign that

sequence to profile alignment. Repeat for all sequences.

iv) Repeat step 3 until either the score converges or a fixed number of iterations is reached.
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Another iterative algorithm, DNR, was proposed in Gotoh (1996). It is a double nested
iterative algorithm with randomization, which optimizes the weighted sum-of-pairs score
function with the affine gap model. It starts with a preliminary MSA, which may be obtained
by any more straightforward method. This MSA is the “seed” for all the calculations. Then,
a set of weights is calculated by a phylogenetic tree.® The algorithm consists of two nested
loops. The first loop contains a randomized iterative method. After the convergence, a
new phylogenetic tree and weights between pairs of sequences are calculated, and the second
loop starts. In this way, the double nested iterations are continued until the total weighted

sum—of—pairs Score converges.

2.4.3 Other MSA Score Functions

Several other methods for assessing the quality of an MSA have been proposed in the liter-
ature, some of them being very distinct from those mentioned in the previous sections. For
instance, some of them, such as BAliScore (Thompson et al., 2005) takes into account an
existing reference MSA. In the following, we briefly mention some of them, with particular
emphasis on BAliScore, Entropy (Soto and Becerra, 2014), MetAl Blackburne and Whelan
(2012) and STRIKE (Kemena et al., 2011).

BAliScore This computes the accuracy of an MSA with respect to an existent refer-
ence MSA. It is provided together with the datasets in the benchmark database BAIiBASE
(Thompson et al., 2005) that consists of a large set of reference MSAs of known sequences.
To compare the accuracy of an MSA with respect to the reference MSA in the benchmark,
BAliScore computes two ratios: correctly aligned residue pairs (SP) and correctly aligned
columns (TC) (Thompson et al., 1999). The score SP is the percentage of correctly aligned
pairs of residues in the MSA. Consider an alignment of m sequences consisting of £ columns
(see Definition 2.4.1 and notation therein). Let the j-th column in the MSA be denoted by
(a};,ads -5 @), 5 € {1,..., £}, where £ is the length of the MSA. For each pair of residues
a;; and azj, i,k € {1,...,m}, let py; = 1 if the residues aj; and az,j are aligned with each
other in the reference MSA, and p;,; = 0 otherwise. The S; score for the j-th column is

defined as follows:

5For reconstructing the guide tree, the UPGMA method is used (Michener and Sokal, 1957), which is
constructed from the distance values between members in the initial alignment and is assigned to all pairs of

sequences
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m—1 m
S; = E Dik;j
=1 k=i+1

The SP score for the MSA is then computed as follows:
¢
2.5
_ J=l
SP=TF—
25
j=1

where ¢" is the number of columns in the reference MSA and 57 is the score of the j-th
column in the reference MSA.

The column score TC is the percentage of correctly aligned columns in the MSA. Let C}
be the score for the j-th column in the alignment, where C; = 1 if all the residues in this
column are aligned as in the reference MSA, otherwise C; =0, j € {1,...,¢}. The score TC

for an MSA is then given as follows:

14

> .G

j=1
l
These ratios can be computed by the program BAliScore, which is publicly available at

TC =

http://wuw.lbgi.fr/balibase. This program calculates the SP and TC only for special
regions that are called core blocks. Core blocks correspond to the regions of the alignment
that are reliably aligned. These regions are defined by some method based on a combination

of secondary structure and sequence conservation (Thompson et al., 2005).

Entropy It measures the variability of an MSA by defining the frequencies of the occur-
rence of each character in each column. The total entropy for an MSA is the sum of the
entropies of its columns (Soto and Becerra, 2014). Let ¢ be an MSA over an alphabet X'
with ¢ columns (see Definition 2.4.1, page 25 ). Let P;(z) be the frequency of the occurrence
of each character z € ¥’ in each column j of the MSA, j € {1,..., ¢}, where ¢ is the length
of the MSA. Then, the entropy value Pj(¢) on each column j of the MSA ¢ is defined as

follows:

Pi(¢) =~ > Pj(x)log, P;(x)

ey’
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The entropy E(¢) of the MSA ¢ is the sum of entropies of its columns:

Usually good alignments are considered to be those that minimize their total entropy.

Similarity Similarity can have a different meaning in bioinformatics but in this context is
a measure that is defined by Kaya et al. (2014) in their method. It is a measure of similarity
among all sequences. They first generate a position weight matrix from the alignment. A
basic position weight matrix is created by counting the occurrences of each residue in each
column and dividing by the number of sequences. Table 2.1 shows an example of an alignment
and its corresponding position weight matrix. Then, the dominance value dv of the dominant

residue in each column is calculated as follows:

dv(i) = max{f(a,i)}
where f(a, ) is the score of each residue a in column i, i = {1,...,¢}. In the position weight
matrix regardless of the existence of an indel, dv(i) is the dominance value of the dominant
residue on column ¢, and ¢ is the alignment length. For the alignment in Table 2.1, the
dominant residue for column 1 is P and its dominance value is 0.75. The dominance values
of the other columns are 1, 0.75, 1 and 1, respectively.
At last, the similarity objective function of alignment ¢ is defined as the average of the

dominance values of all columns in the position weight matrix.

Yoisy doli)
14

For the above example, the similarity value, is computed as:

Similarity(¢) =

<0.75+1+0.75+1+1) 0.9
= =0.

Support Kaya et al. (2014) used this measure in their algorithm. The meaning of support
is the same as that in the data mining field. Sometimes, if in the alignment we remove a
sequence, the alignment score may increase. In other words, we can find alignment with a
better score if a sequence that corrupts the alignment quality is removed. Therefore, support
is the number of sequences present in alignment with a higher score. The greater the support

value, the stronger is the alignment covered by most of the sequences in the dataset.
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Table 2.1: An alignment with length 5 and its position weight matrix.

1 2 3 4 5 . , s . s
Fl-F/FD Flo2s] 0o o] 1 [ 0
PID/F|-|D|] = : :

Plo7s] o] o | o] o
Pl-|F|F|D

D| 0 1 lo2s] 0 | 1
PID|/D|/F|D

MetAL. It is a scoring scheme that is obtained from four metrics to compare different
MSAs. This score is based on: (i) a simple correction to the sum-of-pairs score; (ii) raw gap
information; (iii) positions of gaps occurring in a sequence; and (iv) positions of indel events
occurring both in a sequence and on its phylogenetic tree. The more detailed information
regarding these metrics can be found in Blackburne and Whelan (2012). MetAl is available
at http://kumiho.smith.man.ac.uk/whelan/software/metal.

STRIKE [t is a scoring scheme to compare two alternative MSA from the same sequences
by knowing the structural information of at least one the sequences (Kemena et al., 2011).

STRIKE is available at http://www.tcoffee.org.

2.4.4 Benchmarks

Currently, many of data sets and techniques have been designed to standardize the compar-
ison of sequence alignment results. Examples are OXBench (Raghava et al., 2003) HOM-
STRAD (de Bakker et al., 2001) or Prefab (Edgar, 2004). In the thesis, for the purpose of the
experimental analysis, we have chosen sequences obtained from the benchmark database BAI-
iBASE 3.0 (Thompson et al., 2005), which is the most recent and used in the literature. The
database contains high quality, manually constructed multiple sequence alignments together
with detailed annotations. The alignments are all based on three-dimensional structural
superposition.

BAIiBASE is divided into five hierarchical reference data sets. The dataset Reference
1 consists of equidistant family sequences with two subgroups: RV11 and RV12. RV11
contains 38 datasets with less than 20% residue identity between groups and RV12 contains
44 data sets with residue identity between 20% and 40%. Reference 2 (RV20) contains 41
alignments comprising family sequences with more than 40% similarity and a highly divergent

orphan sequence. Reference 3, with 30 datasets, contains subfamilies such that the sequences
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within a given subfamily share more than 40% identity, but any two sequences from different
subfamilies share less than 20% identity. The reference set RV40, with 49 datasets, contains
sequences that are composed of groups with N/C-terminal extensions. The reference set
RV50 contains 16 datasets with large internal insertions. We tested our approaches on all
the instances from the sets RV11 and RV20, composed of sequences with different sizes and

varying percentage identities.

2.5 Summary and Discussion

This chapter reviews the concept of the genomic data in Bioinformatics, sequence similarity,
and sequence alignment. Then, it introduces the basic notation of scoring functions for
pairwise and multiple sequence alignment and introduces dynamic programming approaches
to solve the pairwise alignment based on global and local similarity. In addition, it describes
the exact multiple sequence alignment algorithms in terms of sum-of-pairs score, followed by
heuristic strategies that try to solve the multiple sequence alignment in a short amount of
time.

Noteworthy, dynamic programming can be applied to most of the sequence alignment
problems, at least, if two sequences are considered. The fact that the problem can be de-
composed on subproblems based on the prefixes of the sequences gives a natural justification
to the proper use of this paradigm. Interestingly enough, the heuristic methods reviewed in
this chapter are far from being standard in the optimization field. Although the progressive
approaches could resemble greedy algorithms that are guided by the guide tree, and iterative
methods perform some kind of neighborhood search on the space of sequences, they do not
fall into the usual classification of metaheuristics, such as genetic algorithms, tabu search,
simulated annealing and so forth. In fact, the current optimization methods used in Bioin-
formatics are rather complicated and incorporate a wide knowledge from the practitioner to
solve the problem at hand. Although they have been widely accepted by the Bioinformatics
community, it is not yet clear whether better results could be achieved by following princi-
pled guidelines for the design of heuristic approaches to this problem, such as it has been
observed for many other combinatorial optimization problems (Hoos and Stiitzle, 2004).

This chapter also shows that there has been a lot of effort in defining appropriate score
functions. However, it is known that there is no “right” score function that assesses the
true homology between the sequences (Morrison, 2015). One problem with the current

approaches is that the usual score functions take into account a linear combination of several
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components. Unfortunately, there is considerable disagreement about how to weight the
several components (Gusfield et al., 1994), and with different weight combinations, different
alignments can be achieved. Note, in addition, that the increase in the number of matches
is followed by an increase of indels and/or gaps, which shows that the components are
conflicting with each other.

A possible way of overcoming the problem is to consider a multiobjective formulation of
this problem, which does not assume any definition of weights a priori. The alignment is
then optimal with respect to this formulation if none of the components can be improved
without degrading some of the other component values. The following chapter introduces
notation and general algorithms to solve multiobjective optimization problems, which gives
the basis for the design of algorithms to solve the multiobjective version of the sequence

alignment problem.



Chapter 3
Multiobjective Optimization

3.1 Introduction

Many problems in bioinformatics and computational biology can be formulated as optimiza-
tion problems (Handl et al., 2007). Multiobjective formulations are realistic models for many
complex optimization problems. In most real-life problems, objectives conflict very often with
each other, and optimizing with respect to a single objective can result in a poor solution
for the remaining objectives. A reasonable approach to a multiobjective problem is to find a
set of solutions, each of which cannot be improved in one objective without deteriorating at
least one of the others.

This chapter introduces the basic concepts of multiobjective optimization. This class of
problems can have different meanings according to different notions of optimality. Therefore,
we need to introduce some of these notions but with particular emphasis on the notion of
Pareto Optimality, which will be used throughout this thesis. Some of the existing solution
approaches to solve multiobjective problems in terms of Pareto optimality are reviewed and
discussed, from exact algorithms, which provide the set of optimal solutions with respect to
this notion of optimality, to some relevant heuristic methods, which return an approximation
of bounded size. In the end, performance assessment methods for heuristic approaches are
explained in detail.

43
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Xn fq
Objective Space

Decision Space
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Figure 3.1: Mapping of the n-dimensional space to the g-dimensional objective space

3.2 Notation and Definitions

A multiobjective optimization problem (MOP) is the problem of finding values for a set of
decision variables that optimize a vector objective function given a set of constraints. The
components of this function form a mathematical description of performance criteria which
are usually in conflict with each other. Hence, the term “optimize” means finding a solution
that would be as good as possible to all objectives. A general MOP can mathematically be

defined as follows:

“maximize” z = f(x) = (f1(z), f2(x), ..., fy())
strxe X

(3.1)

where x is an n-dimensional decision vector, or solution, and X is the set of all feasible
solutions.

Note that if some objective function is to be maximized, it is equivalent to maximize its
negative. Without loss of generality, we assume mazimization of all objectives. The objective
function f maps X into R?, where ¢ > 2 is the number of objectives and the vector z = f(x)
is an objective vector or point; see an illustration of these concepts in Fig. 3.1.

The term “maximize” appears above in quotation marks because its meaning is not yet
defined. Alternative formulations of a MOP exist, such as Pareto optimality, lexicographic
optimality, maximization of the minimum of all the objectives (maxmin), and maximization

of a scalarized combination of the objectives (Ehrgott, 2005). Pareto optimality is the notion
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Figure 3.2: A schematic illustration of the “dominance relation”, assuming two maximizing

objectives

of optimality that requires less information about the preferences of a decision maker. In the

following, we specify the notion of “maximize” that is considered in this work.

3.2.1 Pareto Optimality

The main goal of solving MOPs in terms of Pareto optimality is to find solutions that are
not worse than any other solution and strictly better in at least one of the objectives. To
understand how the corresponding objective vectors can be ordered, the following binary

relations in R? are introduced (Ehrgott, 2005). Let v and v be vectors in RY.

c UZV = U >V,t=1,...,q;
e urv < uFvandu; >v,i=1,...,q;
e US>V = Uu; >V,t=1,...,q.

In the context of optimization, we denote the relation between objective function vectors

of two feasible solutions z and z’ as follows:
o if f(x) = f(a'), then f(z) weakly dominates f(x').

o if f(z) = f(a), then f(z) dominates f(z');
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o if f(z) > f(2'), then f(z) strictly dominates f(z');

Figure 3.2 illustrates the concept of dominance in the biobjective case, assuming maxi-
mization. In this example, the point B strictly dominates point A. Point C strictly domi-
nates points A and B;. Point By and By are mutually non-dominated, but they are (weakly)
dominated by point B.

For simplification purposes, we shall use the same notation among solutions when the
above relations hold between their objective function vectors. Since the notion of optimal so-
lution clearly differs from the single-objective counterpart, we define the notion of optimality

in multiobjective optimization:

Definition 3.2.1. (Pareto optimal solution) A feasible solution z* € X is Pareto optimal if
there exists no x € X such that f(x) > f(z*).

Definition 3.2.2. (Pareto optimal set) X' C X is the Pareto optimal set if and only if it

contains only and all Pareto optimal solutions.

The image of a Pareto optimal solution in the objective space is a non-dominated point
and the set of all non-dominated points is called non-dominated point set . Solving a MOP
in terms of Pareto optimality would correspond to find the Pareto optimal set. However,
rather than finding all solutions in this set, the non-dominated point set may be preferable,
since, in practice, the decision maker takes his decision by inspecting the objective space.

In many real-life applications of multiobjective optimization, only approximations to the
non-dominated point set are required since there might be many or infinite numbers of non-

dominated points. In the following, we give a definition of the outcome of these approaches.

Definition 3.2.3. (Approximation set) Any approzimation to the non-dominated point set
is called approximation set. If A is an approximation set then the elements of A are mutually

non-dominated.

In the following, we introduce two different notions of optimality in multiobjective opti-

mization that are related to Pareto optimality.

3.2.2 Lexicographic Optimality

In many cases, the decision maker is able to rank the objectives according to their relevance.
This notion of optimality considers a ranking of the objectives according to lexicographic
ordering: given two vectors u and v in R?, u >, v if there exists a j € {1,...,q — 1} such

that u; = v;, Vi =1,...,j and uj41 > vj41.
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Definition 3.2.4. (Lexicographic optimal solution) A solution x* € X is lexicographic opti-

mal solution if and only if there exists no x € X such that f(x) >e. f(x*).

This definition implies that the objectives are ordered according to decreasing importance
(Ehrgott, 2005). Usually, methods for obtaining an optimal lexicographic solution are based
on solving each objective sequentially by decreasing the order of priority and using the
optimal solutions of higher priority objectives as constraint values. An essential property of
this notion of optimality is that an optimal lexicographic solution is also a Pareto optimal

solution for the same multiobjective problem (Ehrgott, 2005).

3.2.3 Scalarized Optimality

When the decision maker is able to weight the importance of each objective, it is possible
to solve a MOP in terms of scalarized optimality. The objective function vector is scalarized
with a weight vector A = (A1,...,Aq) € R%;\{0}. The weight vector A is usually normalized
such that "7 | \; = 1. The scalarized obj_ective function is then denoted by fi(x) (Ehrgott,
2005).

Definition 3.2.5. (Scalarized optimal solution) A solution x* € X is a scalarized optimal

solution if and only if there is no x € X such that fx(x) > fa(a*) with respect to a given .

In the case of different ranges of values between objectives, normalization by range equal-
ization factors must be considered.
The scalarization of the objective function vector is usually based on the family of

weighted L,-metrics as follows:

q 1/p
z) = <Z(>\i!fi(w) - Zi!)p> (3:2)

i=1
where z € X, p > 0, 2* = (z1,..., %) is the ideal vector defined as z; = max f;(z), for

x € X. Usually, p=1 or p = oo are often used. When p =1, Eq. 3.2 becomes:

@) =D Ailfilx) = zil. (3.3)
=1

which is equivalent to the well-known weighted sum formulation:

@) = Nifi(@). (3.4)
i—1
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For ¢ = oo the above formula gives:

fale) = max (Ailfi(x) — zl) . (3.5)

1=1,....q

The following relation between weighted sum scalarization and Pareto optimal solutions
is explored in this thesis: An optimal solution for the weighted sum is also a Pareto optimal

solution for the same problem (Ehrgott, 2005). However, the contrary is not true in general.

3.3 Solution Methods for Multiobjective Optimization

This section reviews some of the existing solution methods to solve MOPs in terms of Pareto
optimality, ranging from exact algorithms that find the Pareto optimal set to heuristic ap-

proaches that return an approximation set.

3.3.1 Exact Methods

Exact methods can solve optimization problems to optimality, and they can range from
very general techniques, such as branch-and-bound, to problem-dependent algorithms, such
as Dijkstra’s algorithms for the shortest path problem. However, for most MOPs, exact
algorithms can take exponential time to terminate. There could be a Pareto optimal set of
intractable size, which makes the use of exact algorithms even less appealing. In addition,
many MOPs whose single objective version are solvable in polynomial time become NP-hard
when one more objective is added (Ehrgott, 2005). This means that extensions of well-known
polynomial time exact algorithms cannot efficiently solve the corresponding MOP versions.
This is the case for the shortest path problem, the minimum spanning tree problem, etc.

Despite these negative results, many exact approaches have been discussed in the litera-
ture (Ehrgott, 2005). In fact, some result obtained in Mote et al. (1991) indicate that some
highly specific exact algorithms can achieve the Pareto optimal set in a reasonable amount
of time, depending on some instance feature.

In the following, several general techniques are discussed. They are based on consecutive
runs of an underlying algorithm that is able to solve the single objective counterpart of the
MOP. Two main approaches exist, those based on solving several scalarized versions of the
original MOP and others based on the optimization of one objective while the others are

being used as constraints.



3.8. Solution Methods for Multiobjective Optimization 49

2

10

NowW oA O N ®
>
[ J

Figure 3.3: Illustration of the weighted-sum method

Methods Based on the Weighted-sum Scalarization

A well-known way of solving a MOP is to scalarize the objective function vector for different
weight vectors as a weighted-sum ( see Section 3.2.3). A given weight vector A can be
interpreted as a given search direction in the objective space. Figure 3.3 illustrates an
example with 5 non-dominated points. For A = (0.6,0.4), the point (8,5) is the maximum
for the scalarization with respect to A. It is important to note that it is not possible to
construct the whole Pareto optimal set by applying this method. In discrete optimization
problems, there exist Pareto optimal solutions that are not optimal for the weighted-sum
scalarization (Ehrgott, 2005). Those solutions are called non-supported. In Figure 3.3, point
A = (6.5,5.5) is a non-supported point that is not optimal for any value of A.

Definition 3.3.1. (Supported (non-supported) solutions) A Pareto optimal solution that
is (not) optimal for a (any) weighted sum with non-negative weight vector is a supported

(non-supported)solution.

Many methods based on solving several scalarized versions of the original MOP return a
set of solutions, each of which is obtained by solving a certain scalarization of the objective
function vector by means of Eq. (3.4) (weighted sum). Assuming that the non-dominated
score set has a convex shape in the objective space toward the improvement of all objectives,

all its elements can be achieved by the appropriate weight vectors. However, convexity
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Figure 3.4: A schematic illustration of the e-constraint method, assuming biobjective opti-

mization, maximizing f; subject to the constraint fo

should not be expected to hold in the general case, since non-convex shapes can also occur
for MOPs of discrete nature (Ehrgott, 2005). Therefore, this approach is not suitable for
many problems.

Nevertheless, weighted-sum approaches are still applied to MOPs where the convexity of
the non-dominated score set in the objective space does not hold, for example, for generating
supported solutions that are used as starting solutions for another solution method. An
alternative to the weighted-sum formulation is to consider Eq. (3.5), where the distance
from the ideal vector is to be minimized. If the underlying algorithm is applied to several
weights, some non-supported solutions can indeed be obtained, but it is not possible to
distinguish between Pareto optimal solutions and the solutions that are weakly dominated
by them. Moreover, these formulations imply the need to add further constraints, making

the problem harder to solve.

e-constraint Method

The e-constraint method (Haimes et al., 1971) is another scalarized approach. It converts
the MOP problem into a single objective problem with ¢ — 1 constraints. The principle of
e-constraint method is based on optimizing one objective while others are used as constraints.

The advantage of the e-constraint method is that it can obtain all the non-dominated set, even
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if convexity in the objective space does not hold (Ehrgott, 2005). However, the disadvantage
of this method is that the number of single objective problems to solve may be very large
since it depends on the range of objective values for each objective function.

The e-constraint method consists of solving, iteratively, a single objective problem in g—1
constraints, each of which is defined with respect to a given right-hand side (¢). The right-
hand of each constraint is varied iteratively during the run of this method. The formulation

of e-constraint in a biobjective problem is as follows:

max f1(z)
st fo(z) > €
T €

where fi(z) is the objective to be maximized while the constraint is defined with respect
to fa(x). The solutions that can be found for the underlying MOP largely depend on the
selection of the values of e¢. In particular, they must be chosen such that they lie between
the minimum and maximum value of each objective function. Moreover, if the gap between
two consecutive € values is too large, non-dominated points may be missed. Figure 3.4 shows
an illustration of the e-constraint method in a biobjective problem where the constraint is
defined with respect to objective fa. In this case, if the value of € is considered to varying

one by one, then the point (6.5,5.5) will be missed.

3.3.2 Heuristic Methods

Despite the hardness of many MOPs, these problems still need to be solved. Therefore,
high-quality approximations are usually required in many practical applications. One class
of these methods that provide approximations are heuristic algorithms. In the following, we

review some of the heuristic methods that have been successfully applied to MOPs.

Evolutionary Algorithms

Evolutionary algorithms (EAs) are inspired by natural evolution and the Darwinian concept
of “Survival of the Fittest” (Coello et al., 2007). Several EAs have emerged as flexible and
robust metaheuristic methods for solving optimization problems. In this section, we explain
the basic concepts and terminology in EA and provide a generic structure for these ap-
proaches. Next, we review existing multiobjective evolutionary algorithms, with a particular

focus on MOGA (Fonseca and Fleming, 1993) and NSGA-II (Deb et al., 2002).
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Basic Concepts of EA In general, an EA maintains a set of candidate solutions that
goes through a selection process and is altered by genetic operators, usually recombination
(crossover) and/or mutation. In analogy to the natural evolution, a candidate solution is an
individual and a set of candidate solutions is a population. Each individual may represent
a possible solution to the problem, although it can also represent an infeasible solution to
over-constrained problems.

In the selection process, which is usually probabilistic, low-quality individuals are re-
moved from the population, while high-quality individuals are reproduced. The goal is to
increase the average quality of the population. The quality of an individual in a single-
objective optimization problem is represented by a scalar value, the fitness value, which,
in most cases, corresponds to the objective value of the solution it represents. Crossover
and mutation aim at generating new solutions by changing the existing ones. The crossover
operator takes a certain number of individuals in the population (parents) and creates a
certain number of new individuals (children) by recombining the former. To imitate the
stochastic nature of evolution, a crossover probability is associated with this operator. The
mutation operator modifies individuals according to a given mutation rate. Both crossover
and mutation operators work on individuals, i.e., in the decision space.

Of particular importance is how the solution is “computationally” represented by an in-
dividual since this affects the choice of the genetic operator. In the following explanation,
we assume optimization problems with n integer variables. Therefore, an individual is repre-
sented by a vector of n elements and stores, at each position 7, the value of the i-th variable,

1=1,...,n.

Generic Structure of an EA  Algorithm 1 shows the basic structure of an EA. Each loop
iteration is called a generation. The population P at a certain generation ¢ is represented
by P;, the offspring population is denoted by ); and N is the population size. First, an
initial population is created. Then, a loop to generate offspring consisting of the steps
crossover, and/or mutation, evaluation (fitness assignment) and selection is executed until a
termination criterion is satisfied. In the end, the best individual(s) in the final population
or found during the entire search process is the outcome of the EA. In the following, these

terminologies are explained more in details.

o Initialize population: This is a crucial task in EAs since it can affect the convergence

speed and also the quality of the final solutions. If no information about the problem
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Algorithm 1 The general scheme of Evolutionary Algorithms

procedure GENERAL EVOLUTIONARY ALGORITHM:
t=0
Initialize population with candidate individuals
Generate N individuals to form the first population Fj.
Evaluate the fitness of individuals in Fp.
while termination criterion is not satisfied do
Generate offspring population QQy :
Crossover: Choose parents individuals z and y from P, and use a crossover
operator to generate offspring and add them to Q.
Mutation: Mutate some individual z € @; with a predefined mutation rate.
Fitness assignment: Evaluate and assign a fitness value to each individual
x € Q¢ based on its quality.
Selection: Select N individuals from ); based on their fitness and assign
them to Pi1.
t=t+1

return the current population P;

is available, then random initialization is the most commonly used method to generate

the initial population.

o Crossover and/or Mutation: The most used crossover method is single point crossover.
Given two parents A and B, and a given value ¢ randomly chosen between 1 and n, the
single point crossover generates a new individual by merging the first ¢ elements from
A with the last n — i elements from B. A similar procedure is performed to generate
a second individual by exchanging A with B. Another type of crossover is the double-
point crossover, where two merging points are considered. Figure 3.5 illustrates the two
operators. In principle, crossover operation leads the population to converge by making
the individuals in the population alike. In mutation, small parts of an individual are
altered or replaced with a new one to create a new individual. Figure 3.6 shows an
example. It is expected that mutation introduces diversity into the population and

assists the search process to escape from local optima.

o Fitness Assignment: Fitness assignment consists of assigning a measure of quality,

the fitness value, to an individual. Usually, in optimization, the fitness value of an
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Figure 3.5: Illustration of single point (left) and double point (right) crossover operator
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Figure 3.6: Illustration of mutation operator

individual is the objective function value of the solution it represents.

e Selection: There are different selection procedures in EAs depending on how the fitness
values are used. Stochastic universal sampling, proportional sampling, and tournament
selection are the most popular ones. In the following, there is a brief explanation of

how each of them works:

- Tournament selection. In this selection process, some individuals are randomly
chosen from the population and several “tournaments” runs among them. The

winner of each tournament (the one with the best fitness) is selected for crossover.

- Fitness proportionate selection (FPS). An individual is selected in a probabilistic
manner. Let f; be the fitness of the j-th individual in the population. Then, the
probability of being selected is given by f;/ Ziil fi, where N is the number of

individuals in the population.

- Stochastic universal sampling (SUS). This is similar to FPS, but with no selection
bias. SUS uses a single random value to sample all of the individuals by choosing
them at evenly spaced intervals. This gives weaker members of the population
(according to their fitness) a chance to be chosen and thus reducing the unfair

nature of FPS selection methods.
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- Elitist selection. In this selection process, the best solutions according to their

fitness values always remain in the population.

o Termination criterion: To stop the iteration process, a different type of termination
criterion may be used such as a predefined maximum number of generations, stagnation

in the population or existence of an individual with sufficient quality.

Multiobjective Evolutionary Algorithms

There is a wide belief that EAs can be applied successfully to MOP because they can han-
dle multiple solutions simultaneously. In fact, EAs can be easily modified in order to return
multiple non-dominated solutions in a single simulation run. Such EAs are known as Multiob-
jective Evolutionary Algorithms (MEAs). However, since they are heuristic methods, MEAs
cannot generate the entire Pareto optimal set in general. Moreover, they may fail to find
a single Pareto optimal solution. For this reason, they return approximation sets. Clearly,
there is the need to define the quality of an approximation set, which should characterize
the performance of the MEA that produced it. Therefore, the goal of an MEA has been
to produce approximation sets that minimize the distance from the optimal non-dominated
point set as well as to maximize the distribution and spread of its elements (Zitzler and
Thiele, 1999).
The development of an MEA for a given MOP should address the following issues:

e How to accomplish fitness assignment and selection, respectively, in order to guide the

search towards the non-dominated point set.

o How to maintain a diverse population in order to avoid early convergence and achieve

a well-distributed and well-spread approximation set.

To deal with these issues different techniques have been applied, which are explained in

the following sections.

o Fitness assignment and selection In contrast to single-objective optimization, where
objective function and fitness function are the same, both fitness assignment and se-
lection must allow for several objectives values. In general, there are two main types

of MEAs:

— Algorithms that are based on the classical scalarization techniques (e.g., ap-

proaches that use a weighted-sum scalarization);
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— Algorithms that use dominance relations (e.g., rank the population based on dom-

inance relation).

e Population diversity. To have a diverse population, several techniques have been de-

veloped. The most frequent ones are as follows:

— Fitness Sharing. In this technique, the subset of individuals that are close to
each other (niche) shares their fitness values. This corresponds to a decrease
in their fitness value, which gives them less chance of surviving in the selection

process (Fonseca and Fleming, 1993).

— Crowding distance. Crowding distance approaches aim to obtain a uniform spread
of solutions without fitness sharing. They compute the population density around
a solution without requiring a user-defined parameter, and less crowded solutions

are emphasized in the selection process (Deb et al., 2002).

e FElitism. This policy always selects the best individual of a population, according to
dominance relation or to other quality measures, in order to prevent losing it due to
sampling effects or genetic operators. This strategy can be extended to k > 1 best

solutions in the population.

The first MEA was proposed by Schaffer (1985), called Vector Evaluated Genetic Algo-
rithms (or VEGA). Afterwards, several MEAs were developed such as Multiobjective Genetic
Algorithm (MOGA) (Fonseca and Fleming, 1993), Niched Pareto Genetic Algorithm (Horn
et al., 1994) , Non-dominated Sorting Genetic Algorithm (NSGA) (Srinivas and Deb, 1994),
Strength Pareto Evolutionary Algorithm (SPEA) (Zitzler and Thiele, 1999), Pareto-Archived
Evolution Strategy (PAES) (Knowles and Corne, 2000) and Fast Non-dominated Sorting Ge-
netic Algorithm (NSGA-II) (Deb et al., 2000). In the following, we discuss two MEAs that

use a selection process based on the dominance relation.

Multiobjective Genetic Algorithm (MOGA) This MEA was proposed by Fonseca
and Fleming (1993), which employed the concept of niche along with rank-based fitness
assignment, named Pareto ranking. Pareto ranking is a process for ranking individuals in
a population based on the distances of their objective vectors from the non-dominated set
obtained so far during the search process. Individuals that have an objective vector closer

to the non-dominated set are better ranked. The closeness to the non-dominated set is
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Figure 3.7: Tllustration of Pareto ranking in MOGA

determined in terms of dominance relations. For simplification purpose, we use the same
notation among individuals when the dominance relations (see Section 3.2.1) hold between

their objective function vectors. Let r; be a rank of each individual 7. It is assigned as:

where n; is the number of individuals that dominate individual 7. Since n; is zero for non-
dominated individuals in the population, non-dominated individuals are assigned a rank
of 1. Figure 3.7 illustrates a hypothetical population and the corresponding ranks of the
individuals. The individuals whose associated objective vector are non-dominated have rank
1 while the worst individual has rank 7.

Based on the Pareto ranking, a fitness value is assigned to each individual so that indi-
viduals with better ranks have larger fitness values. If N is the population size, and N R(r;)
is the number of individuals with rank r;, the fitness value obtained by the following formula:

ri—1

F'(i) = N = 0.5(NR(r;) — 1) = > NR(k) (3.7)
k=1

The fitness value varies from 1 to N depending on the rank of each individual and the number
of individuals in each rank.

In order to impose diversity in the population, MOGA employs the sharing function
approach for each individual i. More formally, the shared fitness F(i) for each individual ¢

in population P is equal to its old fitness F'(i) (Equation 3.7) divided by its niche count.



58 3. Multiobjective Optimization

Algorithm 2 The fitness assignment algorithm in MOGA
procedure FITNESS ASSIGNMENT (P, 0spare)

for each : € P do

ri=1+mn;
Sort population P according to ranking r
for each : € P do

Calculate fitness values F'(7)

return fitness values of P

The niche count for each individual is equal to the sum of the sharing function (SH) values

for all of the individuals with the same rank in the population:

F'(i)

FG) = v (3.8)

)
> SH(d(, j))
j=1

where the standard sharing function SH(-), as suggested by Goldberg et al. (1987) is defined

as follows:

1— (45D 5t d(i, 5) < Tanare

0 otherwise

(3.9)

where ogpare is the niche radius and d(7,j) is a distance function. A normalized niche
radius ogpere in the g-dimensional objective space and population of size N is calculated as

follows (Fonseca and Fleming, 1993):

(1 + Ushare)q =N X (Ushare)q (310)

A normalized distance between any two individuals 7 and j of the same rank is calculated in

the objective space as follows:

d(i,j) = i( Thi = Jieg >2 (3.11)

P mazx fr, — minfi

where fi.; and fi ; are the k-th objective function for individuals ¢ and j, respectively, and
max fi, and minf; are the maximum and minimum objective function values of the k-th

objective function observed so far during the search, respectively.
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The high-level pseudo-code of Algorithm 2 shows the steps of fitness assignment procedure
in MOGA. First, it calculates the rank for each individual according to the dominance relation
and, then, each individual is assigned a fitness value based on its rank in the population (Eq.
(3.7)). To maintain diversity, it adjusts the fitness function according to sharing function
(Eq. (3.8)).

Miller and Shaw (1996) proposed a dynamic niche sharing approach to increase the
effectiveness of computing niche counts. Note that one of the disadvantages of MOGA in
fitness sharing based on niche count is its computational effort. However, its benefits surpass

the burden of extra computational effort in many applications.

Non-dominated Sorting Genetic Algorithm (NSGA-II) NSGA-II (Deb et al., 2000,
2002) is the second version of the NSGA (Srinivas and Deb, 1994), “Non-dominated Sorting
Genetic Algorithm”, to solve multiobjective optimization problems. In the following, we
explain the working principles of this algorithm with respect to the choice for sorting the

individuals in the population as well as strategies for keeping diversity and elitism.

e Fast non-dominated sorting. NSGA-II ranks the individuals in the population into
layers based on dominance relation. Any two individuals in the same layer are non-
dominated. An individual belongs to a certain layer if it is not dominated by any
individual of the inferior layer. The first layer is computed by finding the individuals
that are not dominated by any other individuals in a population. The next layers
are computed similarly by ignoring the individuals that belong to the previous layers.
Figure 3.8 (left) shows an illustrative example of the ranking in NSGA-II. The first
layer £ is shown with white circles. By putting aside them, the second non-dominated
layer Ly is shown with gray circles and the last individual create the last layer (black

circle). Efficient algorithms for the ranking are discussed in Jensen (2003).

e Diversity. In order to obtain individuals uniformly distributed over the non-dominated
set, NSGA-II uses the crowding distance. For a particular individual in the population,
the algorithm estimates its density by calculating the average distance from other
individuals around it on each objective. Figure 3.8 (right) illustrates the crowding
distance calculation, where dist(i) is the estimation of density of individual i inside
its non-dominated layer, which is equal to the size of largest cuboid surrounding i,
without considering any other individuals in the population (shown with a dashed

box). Algorithm 3 shows the calculation of the crowding distance for each individual
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Figure 3.8: Illustration of ranking (left) and crowding distance (right) in NSGA-II

in a given layer. For each objective function k, kK = 1,...,¢q, the algorithm sorts the
individuals in £ in non-increasing order; f,fz refers to the k-th objective function value
of the i-th individual in layer £. The main advantage of the crowding approach is
that a measure of population density around a solution is calculated without requiring
a sharing parameter (ogpqre). In the NSGA-II, in the selection phase, this crowding
distance measure is used as a tiebreaker. In order to compare solutions, NSGA-II
introduces the crowded comparison operator <,,. Each individual ¢ in the population
has two attributes: the layer that belongs to (rank(i)) and the local crowding distance

(dist(i)). Then, the crowded comparison operator is defined as follows:
Jj<pi if rank(i) < rank(j) or (rank(i) = rank(j) and dist(i) > dist(j))

If two individuals belong to different layers, the individual from the layer with the
lowest index is selected; otherwise, if both of them belong to the same layer, then the
individual with the highest crowding distance (that is located in a region with a lesser

number of individuals) is selected.

Elitism. Elitism in the context of single-objective GA means that the best solutions
found so far during the search always survive in the next generation. In this respect,
all non-dominated solutions discovered by a multiobjective GA are considered as elite
solutions. However, implementation of elitism in multiobjective optimization is not
as straightforward as in single objective optimization mainly due to a large number

of possible elitist solutions. NSGA-II uses two strategies to implement elitism: it
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Algorithm 3 The algorithm for calculating the crowding distance in NSGA-II

procedure CROWDING DISTANCE CALCULATION(L)

ne = |L]|

for each i € £ do
dist(i) =0

for K =1to qgdo
Sort individuals in layer £ in non-increasing order of objective k
dist(1) = dist(ng) = 00
fort=2ton—1do

dist(i) = dist(i) + f 1 — FEia

maintains elitist solutions in the population, and stores elitist solutions in an external

secondary list and reintroduces them into the population.

Algorithm 4 The main loop of NSGA-II algorithm
procedure MAIN ITERATION:

Generate layers L1,...,Lg from P, U @Q; with fast non-dominated sorting
=1
P=P =0

while |P| < N do
CrowdingDistanceCalculation(L;)
P=PUL;
t=141
Sort P in non-decreasing order of crowding distance
P, 1 contains the best N individuals from P
Generate Q¢11 from P11 by evolutionary operators

t=t+1

In the following, we describe how NSGA-II works. Initially, a randomly generated pop-
ulation Py of N elements is created. The population is sorted into layers based on the fast
non-dominated sorting step. Since the maximization of the objectives is considered, each
individual is assigned with a fitness equal to the reciprocal of the non-dominated layer it
belongs to (the best layer is 1). To create an offspring population @, binary tournament

selection, crossover and mutation operators are applied. After the first generation is created,
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the procedure will keep the N best individuals (elitism strategy). Algorithm 4 shows the
main loop of NSGA-II at iteration t. Non-dominated layers L1, Lo, ..., Lr are identified
in the combined population P; U ;. The next population P,y is filled starting with in-
dividuals from £, then Lo, and so on as follows. Let k be the index of a non-dominated
layer Ly such that [£; ULy U ... ULk < N and [£1 ULy U... ULk ULkiq| > N. First,
all non-dominated individuals in the levels L1, Lo, ..., Ly are copied to P;y1, and then the
N — |Pyy1| with the least crowded distance from Ly, are added to P,41. This approach
ensures that all non-dominated individuals from £; are included in the next population if
|£1] < N, and, otherwise, the selection based on a crowding distance is used to keep diversity.
Finally, population Q)y+1 is obtained from P,;; by the application of selection, crossover and

mutation.

Algorithm 5 The general outline of an Local Search algorithm

procedure LOCAL SEARCH:
Determine initial candidate solution
Initiate incumbent solution with candidate solution
while termination criterion is not satisfied do
Perform search step

If necessary, update incumbent solution

return incumbent solution or report failure

Local Search

Local Search (LS) techniques vary from simple iterative improvement algorithms to general
algorithm frameworks such as Simulated Annealing and Tabu Search, which can be adapted
to a specific problem. In general, they are based on the idea of iteratively improving a
candidate solution by means of small modifications. Most of them use randomized decisions
in the search process such as generating an initial solution or determining the search step.
Algorithm 5 illustrates the working principle of LS algorithms. They need to keep track
of the best solution (incumbent solution) found during the search process. Among the com-
ponents underlying the LS algorithm, the neighborhood definition and the step function are
important. The set of all solutions that are obtained by applying a given modification in
the current solution is called the neighborhood, and it is very problem specific. It is often
difficult to predict which of the various neighborhood definitions results in the best perfor-

mance. The step function describes how to move between candidate solutions. Search steps
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are usually defined by means of a procedure that draws a sample from the probability dis-
tribution determined by the underlying step function. The search process is typically guided
by an evaluation function that is used to assess or rank candidate solutions heuristically.
There exist two basically different LS models for MOPs (Paquete and Stiitzle, 2007). The
first approach consists of constructing the search step based on the dominance relation (see
Section 3.2.1). The LS algorithms that use this approach follow the component wise accep-
tance criterion (CWAC) search model. The second approach is based on the parameterized
scalarization of the objectives (see Section 3.2.3), known as scalarized acceptance criterion
(SAC) search model. Most LS algorithms for MOPs return a set of non-dominated solutions,
which are created during the search process. The best non-dominated solutions found during
the run are maintained into an archive. During the search process, the algorithm needs to
update the archive, and this update consists of adding new non-dominated solutions and
removing the dominated ones. In the following, we discuss a particular LS approach that

follows the CWAC model, which will be used in the context of this thesis.

Algorithm 6 The general scheme of Pareto Local Search (PLS)
procedure PLS: PARETO LOCAL SEARCH (initial solution: xg )

visited(xg) = false
A ={zo}
repeat
Choose randomly x € A s.t. visited(z) = false
for all 2/ € Neighbors(z) do
if f(a") # f(2'), for all 2”7 € A then
A=AU{z"}
A=A\{z |z € A2~ 7}
visited(x') = true
until A Z € A such that visited(Z) = false

return A

Pareto Local Search Applying an LS in the form of iterative improvement algorithms
to a MOP is relatively simple. This can be done by modifying the acceptance criterion,
making use of dominance relation to compare solutions in the objective space, and keeping an
archive of the best non-dominated solutions. With such modifications, iterative improvement

algorithms under the CWAC search model can iteratively improve the current set of candidate
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solutions in the archive by adding non-dominated neighboring solutions (Paquete et al.,
2007). Such an algorithm can be seeded either by one single solution that may be generated
randomly or by a set of candidate solutions generated by, for example, an exact algorithm.
An example of iterative improvement algorithms for MOPs is the Pareto Local Search (PLS),
proposed in Paquete et al. (2007). PLS algorithm is illustrated in Algorithm 6. Given an
initial solution (xg), PLS iteratively applies the following steps. First, it randomly chooses
an unvisited solution z from the archive (A). Then, the neighborhood of « (Neighbors(z)) is
thoroughly explored, and all neighbors that are not dominated by any solution in the archive
are added to the archive. Solutions in the archive dominated by the newly added solutions
are removed. Once the neighborhood of z is fully explored, x is marked as visited. The
algorithm stops when all solutions in the archive have been visited, which indicates that a

particular set of local minimum solutions was obtained (Paquete et al., 2007).

Algorithm 7 The general scheme of Pareto Iterated Local Search

procedure PARETO ITERATED LOCAL SEARCH:
Generate initial solution zg
A = PLS(xzo)
while termination criterion is not satisfied do
x = Choose(A)
x’ = Perturb(x)
A" =PLS (2)
A = MergeFilter(A, A")

return A

Iterated Pareto Local Search A major problem of PLS algorithms is that they may get
trapped in a set of local minima. Exactly in such a situation, an action should take place that
allows the algorithm to leave the local minima set and to continue the search for possibly
better solutions. One straightforward possibility is to perturb one or more solutions in the
archive and restarts the local search from them. This is analogous to the Iterated Local
Search described in (Lourenco et al., 2010) for single-objective optimization problems. We
name this extension for MOPs, [terated Pareto Local Search (IPLS). Algorithm 7 shows the
working principle of IPLS. First, it generates an initial solution (zg), then it calls PLS with
xg as an initial solution and keeps the non-dominated solutions in the archive A. In order

to help the PLS to escape out from local optima, IPLS iterates by recalling the following
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procedures. First, function Choose randomly selects a solution x from archive A. Then,
function Perturb perturbs the solution z into x’. PLS is called again with 2’ to create a new
archive A’. In the end, function MergeFilter add the new non-dominated solutions from A’
into A and eliminates the dominated solutions from A. The algorithm continues until some
termination criterion is met, such as the number of iterations or some kind of convergence

is achieved.

3.4 Performance Assessment of Heuristic Methods

There are different aspects to consider when measuring the performance of different heuristic
approaches for MOPs, such as the quality of the solutions returned by each heuristic as well as
the computation time to achieve those solutions. In this section, we focus on quality aspects
of the approximation set returned by the heuristics with a particular focus on standard
comparison procedures that have been reported in the literature.

We also note that most heuristic methods for solving MOPs take randomized decisions
during the search process. Therefore, if we apply them several times to the same problem
instance, each time may result in a different approximation set. From a statistical point
of view, the collection of all approximation set is the population of interest that we would
like to characterize. As a result, to compare two methods in the same problem instance, we
need to compare their corresponding approximation set samples. In principle, there exist
two approaches in the literature that allow analyzing two or more heuristic approaches from
a statistical point of view. The first approach transforms each approximation set into a real
value using quality indicators. Then, the resulting indicator values are compared based on
statistical testing procedures. The alternative approach is the attainment function method.
In this method, the approximation set samples are summarized in terms of the empirical

attainment function. In the following, we will review the two approaches in more details.

3.4.1 Indicator of Performance

By far, the most commonly used approach to measure the quality of an approximation set
is to apply wunary quality indicators. A unary quality indicator is a function that assigns
each approximation set a real number. Therefore, we can compare two heuristic methods
by comparing the indicator values of the approximation sets that resulted from each. In the
following, we introduce two well-known indicators: the hypervolume indicator (Iy ) and the

unary e-indicator (I). In the following, we assume that a reference set R of non-dominated
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points is available. It can be the non-dominated set, the non-dominated points obtained

from the union of all available approximation sets, or some upper or lower bound set.

The Hypervolume Indicator (Igy). This indicator measures the size of the region
dominated by the approximation set bounded below by some reference point that is strictly
dominated by all elements of the approximation set (Zitzler and Thiele, 1998). Note that we
can consider the relative hypervolume with respect to a reference set R. Given an approxi-

mation set A, the relative of hypervolume indicator is defined as

Irpv(A) = Igv(A)/Igyv(R) (3.12)

where larger values correspond to a better quality with respect to this indicator (Zitzler
et al., 2003). The left plot of Figure 3.9 illustrates the hypervolume indicator with two
maximizing objectives. The reference set and approximation set is shown with white and
gray points, respectively. For the given approximation set and a selected reference point,
the hypervolume indicator for the approximation set corresponds to the size of the region
shown in the white and the gray area plus the white corresponds to the hypervolume of the
reference set. The main advantage of the hypervolume indicator is that it always increases
as a non-dominated point is added to the approximation set, and its value is maximal if
the approximation set coincides with the non-dominated point set. Similarly, the relative
hypervolume indicator increases as a non-dominated point is added to the approximation
set, and its value is maximum if the approximation set coincides with the non-dominated
point set. Zitzler et al. (2003) has shown that the hypervolume indicator is one of the few
that have these properties.

The Unary e-indicator (/) and (I.4+). Zitzler et al. (2003) introduced the e-indicator
family, a multiplicative and an additive version. The e-indicator (multiplicative), I.(A, R),
corresponds to the smallest factor € that can be multiplied to each element in the approx-
imation set, A, such that every point in the reference set, R, is weakly dominated by the

resulting transformed approximation set that is
I.(AR) = inIf& {VvreR3a€cA :a>.7} (3.13)
€c
where the e-dominance relation, >, is defined as

Urme ¥V <= u;>e-v, i=1,...,q (3.14)



3.4. Performance Assessment of Heuristic Methods 67

f 4 . Reference set f2 &

) .- Approximation set

R

O e
o1
Reference :

oint Reference' set
point @ fi fi

Approximation'set

Figure 3.9: Illustration of the hypervolume indicator (left) and the e-indicator (right)

for a maximization problem, and assuming that all non-dominated points are positive in all
objectives. An equivalent unary additive epsilon indicator, I.; (A, R), is defined analogously

with the additive e-dominance >4
Urer V <= u; > e+, i=1,...,q (3.15)

Figure 3.9 illustrates the e-indicator. The approximation set and the reference set is indicated
with gray and white points, respectively.

Note that, in some cases, the hypervolume and the e-indicator may return different
orderings of a given collection of approximations sets. This naturally arises since both
indicators summarize the approximation sets from different points of view. There is an in-
depth discussion about the relationship between these two indicators and others in (Zitzler
et al., 2003) and (Knowles et al., 2006).

3.4.2 Attainment Function

Fonseca and Fleming (1996), and later developed in Shaw et al. (1999), da Fonseca et al.
(2001) and Fonseca et al. (2005), introduced the concept of attainment function (AF) to
characterize the statistical distribution of approximation sets in the objective space. This is
particularly relevant for comparing and characterizing randomized heuristic methods. Given
a collection of approximation sets obtained from a sequence of runs of a randomized heuristic,
they can be partially characterized by the empirical attainment function (EAF), which can
be seen as a generalization of the empirical probability distribution (Fonseca et al., 2005).
To explain the underlying idea, suppose a randomized heuristic is run on a specific

problem, which produces an approximation set. For each objective point z in the objective
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Figure 3.10: Hlustration of the empirical attainment function

space, there is a probability P that the resulting approximation set contains a non-dominated
point that weakly dominates z. We say that P is the probability that z is attained by the
heuristic. The AF gives, for each objective point z in the objective space, the probability
that z is attained in one run. The true attainment function is unknown, but we can estimate
it, based on the approximation set collected from several runs by counting the number of
approximation sets by which each objective point is attained and dividing it by the number
of runs (sample size).

Figure 3.10 shows an example of three approximation sets collected from three runs and
the corresponding empirical attainment function. The lower left region is attained in all runs
and, therefore, is assigned to a relative frequency of 3/3; the upper right region is attained
in none of the runs and the two remaining regions are assigned to 1/3 and 2/3 since they
are attained in one and two of the three runs, respectively. A more formal definition is given

by Fonseca et al. (2005) is as follows:

Definition 3.4.1. (Attainment Function and Empirical Attainment Function) Let z € R?
and ¢ > 2. Let A= {a; € RY, j=1,...,m} be a random set of m non-dominated points.
The attainment function AF is defined as

AF(z)=P(a1 = zVag = zV...Vay = z)=P(A={z}) (3.16)

The attainment function can be estimated from a sample of r random non-dominated point
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Figure 3.11: Hypothetical outcomes of the three runs for a MOP instance

sets through the empirical attainment function (EAF), defined as :
1 T
FAF(z) = - I(A; = 3.17
(2) r;( = {z}) (3.17)

where A; is the i-th non-dominated point set and I is the indicator function.

EAFs is particularly useful for visualizing the outcomes of multiple runs of a heuristic.
For instance, one might be interested in plotting all the points that have been attained in
50% of the runs or other quantiles. By running the heuristics for several times, we can
produce several of these surfaces, which will lead us to have an estimation of the quantiles
of the corresponding AF. These are boundaries in the objective space that delimit regions
which are likely to be attained with the same probability. The k% attainment surface is
an orthogonal polyline that separates the objective space attained by &% of the runs. For
example, the median attainment surface delimits the region attained by 50% percent of the
runs. Similarly, the worst attainment surface delimits the region attained by all runs, whereas
the best attainment surface corresponds to the line between the region attained by at least
one run and the points that were never attained by any run. Figure 3.11 shows an example
of the EAF computed for three approximation sets. The lower left region is attained in all
of the runs (black area) and therefore is assigned to 100%, the upper right region is attained

in none of the runs (0%) and the remaining two regions are assigned 33% and 66% because
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they are attained in one and two of the three runs, respectively. The polylines that separate
the regions are the corresponding attainment surfaces.

EAFtools is an R script for computing bi-dimensional EAFs from a collection of ap-
proximation sets and plotting attainment surfaces as well as differences in terms of EAFs
produced by pairs of heuristics (Lépez-Ibanez et al., 2010). The package is available at
http://lopez-ibanez.eu/eaftools.

3.5 Summary and Discussion

Many real-world problems, such as the sequence alignment problem involves the simultaneous
optimization of several conflicting objectives. When dealing with MOPs, there is a set of
alternative trade-offs, generally known as Pareto optimal set. These solutions are optimal
on a broader sense that no other solutions in the feasible set are superior to them when all
objectives are considered.

In this chapter, the principles of multiobjective optimization are outlined, and basic
concepts are formally defined. This is followed by a discussion about traditional approaches
to approximate the non-dominated point set. Afterwards, local search and evolutionary
algorithms are presented as optimization methods which possess several characteristics that
are desirable for this kind of problem. The performance assessment methods are briefly
outlined in order to compare the results in this research area.

In the next chapter, one of the main contributions of this thesis is introduced, in partic-
ular, the biobjective formulation of the pairwise sequence alignment and algorithms to solve

it.



Chapter 4
Multiobjective Pairwise Sequence Alignment

4.1 Introduction

Many problems that arise in Bioinformatics and Computational Biology can be formulated
as multiobjective optimization problems (Handl et al., 2007). One of these problems is the se-
quence alignment. Typically, this problem has been tackled as a weighted sum optimization
problem with weights for matches, mismatches and indels/gaps (see Section 2.3). Moreover,
there is often a considerable disagreement on how to specify fixed values for these weights in
the most commonly used sequence alignment software packages (Morrison, 2015). Multiob-
jective sequence alignment can overcome the problem of setting weights a priori, and it can
also provide different alignments that may give further information to the practitioners. To
the best of our knowledge, Roytberg et al. (1999) was the first to propose a multiobjective
formulation of the pairwise sequence alignment and an algorithm to solve it. As opposed
to many other multiobjective optimization problems (see discussion about the difficulty of
solving these problems in Ehrgott (2000); Figueira et al. (2017)), this formulation leads to a
polynomial number of non-dominated points and to solution approaches that take polynomial
amount of time, which is not only an interesting result for itself but also an appealing result

for the practitioner, since she does not need to investigate (ezponentially) many alignments.

In the following, we describe the main contributions of this chapter, which resulted in the
71
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publication of two journal articles (Abbasi et al., 2013a; Paquete et al., 2014), two extended
abstracts (Paquete et al., 2012a,b) and two posters presented at international conferences
(Abbasi et al., 2011, 2012).

i) We extend the formulation of multiobjective pairwise sequence alignment given in
(Roytberg et al., 1999) for the case of gaps and substitution matrices. In addition,
we modified some steps of the dynamic programming algorithm given in (Roytberg
et al., 1999), which improved its running time. Moreover, we introduce extensions of

this approach to the other formulations.

ii) We propose a novel pruning technique, based on the branch-and-bound principle, which
considerably reduces the number of states to be visited by the dynamic programming
algorithm. The experimental results report a speed-up of 80% and a saving of memory

usage up to 90%.

iii) We also propose a dynamic programming approach that uses the e-constraint principle
(see Section 3.3.1). This approach maximizes the substitution score while considering

several constraint values on the number of indels/gaps.

iv) We conduct a thorough computational analysis of these approaches on randomly gen-
erated data sets as well as on real data sets from the benchmark BAliBase version 3.0
(Thompson et al., 2005).

The remainder of this chapter is organized as follows: Section 4.2 provides the required
notation and definitions for multiobjective pairwise sequence alignment; Section 4.3 explains
the parametric sequence alignment problem which is closely related to our multiobjective
formulation; Section 4.4 describes the proposed algorithms for the several variants of the
multiobjective pairwise sequence alignment problem; in Section 4.5, we empirically evaluate
the proposed models, and finally we present the main conclusions and discussion in Section
4.6.

4.2 Notation and Definitions

In this section, we explain the required notation and definitions for multiobjective pairwise

sequence alignment. We start by defining the several problem variants.
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Definition 4.2.1. Let ¢ be an alignment of two sequences A = (ai,...,an,) and B =
(b1,...,bn,). Let m(p) and d(p) indicate the number of matches and indels respectively
in the alignment ¢ and let g(p) and s(p) indicate the gap and substitution score of the
alignment according to affine gap model and a substitution matric M, respectively. The

following (vector) score functions are defined:

VMD(p) = (m(p), —d(p))
VMG(p) = (m(e), 9(¢))
VSD(p) = (s(), —d(¢))
V5G(p) = (s(¢), 9(¢))

Let @ denote the set of all feasible alignments. The biobjective sequence alignment
problem consists of finding the alignments that are “maximal” with respect to the above
score functions. In the following, we define four biobjective sequence alignment problems,

each of which related to a score function presented in Definition 4.2.1.

argvmax {¢ : VMD(p), ¢ € &} (VMDP)
arg vinax {¢ : VMG(y), ¢ € &} (VMGP)
arg vimax {g : VSD(y), ¢ € &} (VSDP)
argvmax {¢ : VSG(p), p € &} (VSGP)

where arg vimax is understood in terms of Pareto optimality (see Section 3.2.1). The image
of set @ in the score function space is called feasible score set. Using the example of problem
VMDP, the notion of Pareto optimality is described as follows: Given two feasible alignments
@ and ¢', VMD(p) = VMD(¢') (¢ dominates ¢') if and only if it holds that m(¢) > m(¢’)
and d(p) < d(¢’), and VMD(p) # VMD(y') (see Section 3.2.1, page 45). Accordingly,
an alignment ¢* is Pareto optimal if there exists no other feasible alignment ¢ such that
VMD(¢) = VMD(¢*). The set of all Pareto optimal alignments is called Pareto optimal
alignment set. The image of a Pareto optimal alignment in the score function space is a
non-dominated score and the set of all non-dominated scores is called non-dominated score
set. The dominance relation and the above notation also apply to the other problem variants

with the necessary changes.
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Figure 4.1: Various alignments of sequences AAGTAGC and ATGACG (left) and their images in
the score space (right)

Figure 4.1 illustrates some possible alignments of two sequences AAGTAGC and ATGACG.
Matches in the alignments are marked by vertical lines. Alignments (1) and (2) are Pareto
optimal for the score function VMD(p). Note that alignment (1) dominates alignment (3)
and alignment (2) dominates alignment(4). Besides, the scores of the alignments (1) and
(2) are mutually on-dominated. In fact, for this example, the non-dominated score set is
{(4,-3), (3, ~1)}.

Computing the Pareto optimal alignment set can be an intractable task: Consider the
sequences A = G" and B = T(GT)?" and the substitution matrix M[i,j] = 1 and M]Ji, j] = 0,
1 # j; then, there exist (27?) Pareto optimal alignments that match G™ in both sequences
since there exists no other alignment with larger substitution score and lesser number of
indels (3n + 1 indels). The example above also applies to the score functions with gaps.
However, the size of the non-dominated score set is bounded by min(¢;.s,n1 + no — 205.5),
where /. is the size of longest common subsequence of A and B (see Roytberg et al., 1999).
Note that few multiobjective combinatorial optimization problems are known to have this

property (Figueira et al., 2017).
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4.3 Parametric Sequence Alignment

In parametric sequence alignment, the problem of how to specify fixed values for the weights
is avoided by computing the optimal alignment as a function of variable weights (Gusfield
et al., 1994). This method partitions the weight space into convex regions such that in each
region one alignment is optimal. Thus, parametric alignment allows understanding the effect
of different weight combinations on the alignment. As presented in Eq. (2.3), for a simple
sequence alignment, the weights «, 8 and u can be varied to adjust the relative contributions
of the matches, mismatches and indels.

In the simplest model of parametric sequence alignment (Gusfield et al., 1994), by con-
sidering that § has a fixed value, different values for (a, ) correspond to different optimal
alignments. In addition, a particular region in the («, u)-space may correspond to the same
optimal alignment. («, p)-space can be decomposed into convex polygons such that any two
points in the same polygon correspond to the same optimal alignment. Waterman (1994) and
Gusfield et al. (1994) describe efficient algorithms for computing a polygonal decomposition
of the weight space. (A recursive algorithm for an arbitrary number of objectives and for
general multiobjective optimization problems is discussed in Przybylski et al. (2010).)

The parametric sequence alignment is, in fact, related to the notion of scalarization of
a MOP (see Section 3.2.3). As a result of scalarization, these algorithms only return the
set of supported solutions ( see Section 3.3.1 ), which is a subset of a Pareto optimal set.

Therefore, this approach may fail to find some relevant alignments.

4.4 Algorithms for Multiobjective Pairwise Alignment

For solving the multiobjective pairwise sequence alignment problem, two types of approaches
are explained in the following sections: dynamic programming (DP) and e-constraint. We
assume that the aim is to find the non-dominated score set and not the set Pareto optimal
alignment set, which may be exponentially large. The DP approach is based on the algorithm
proposed in Roytberg et al. (1999), which extends the approach of Needleman and Wunsch
(1970) (see Section 2.3.3, page 16). We improve the running time of this approach and
introduce a pruning technique that is based on the comparison of lower and upper bounds,
as performed in branch and bound procedures. The second method to solve the problem is
based on the e-constraint approach (Haimes et al., 1971) (see Section 3.3.1), which tackles

the problem by solving a sequence of constrained sequence alignment problems.
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4.4.1 Dynamic Programming for Multiobjective Pairwise Alignment

For two sequences of length ny and ny, Roytberg et al. (1999) introduced a multiobjective
version of the DP approach in (Needleman and Wunsch, 1970) to solve the problem (VSDP)
that takes O(ny - ng - (n1 + n2)log(ni + ng)) amount of time. In the following, we propose
techniques to reduce its running time and extend it for solving Problem (VSGP) (see Section
4.2). The same techniques can be used for solving Problems (VMDP) and (VMGP) by a

proper choice of values in the substitution matrix.

Improvements on the Dynamic Programming Algorithm for (VSDP)

The main idea to solve problem (VSDP) with DP is to compute the Pareto optimal align-
ments for all pairs of prefixes of the given sequences (Roytberg et al., 1999). The algorithm
extends the DP approach for the single objective sequence alignment (see Section 2.3.3). The
recursive formulation of the DP algorithm is similar to that of the single objective formula-
tion. Similarly, the solution to each subproblem depends only on three smaller subproblems.
However, at each step of the recursion, the set of non-dominated scores must be chosen.

In the following, we show that a multiobjective variant of the optimal substructure prop-
erty holds for this problem,' that is, a Pareto optimal alignment for a subproblem can be
obtained from a Pareto optimal alignment to one of the three immediately smaller subprob-

lems; this is analogous to the proof of optimal substructure in Proposition 2.3.4.

Proposition 4.4.1. Let A = (a1,...,an,) and B = (by,...,by,) be two sequences. Let
© = (p1,...,p0) be a Pareto optimal alignment of A and B with score (s(p), —d(p)).

i) If oo = (an,,bn,), then (p1,...,pp-1) is a Pareto optimal alignment of (ai,...,an,—1)
and (bl, e ,bngfl);

it) if or = (an,, =), then (p1,...,pe—1) is a Pareto optimal alignment of (a1, ..., an,—1)
and (b1, ..., bpn,);

iii) if o = (‘=" bp,), then (p1,...,00—1) is a Pareto optimal alignment of (ai,...,an,)
and (b1, ..., bpy—1).

Proof.

case i) Assume that (¢1,...,@y_1) is not a Pareto optimal alignment for prefixes (a1, ..., an,—1)

and (by,...,bp,—1). Then, there exists another Pareto optimal alignment, ¢’, for the

!The proof of correctness of the DP algorithm was not shown in (Roytberg et al., 1999).
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7

same prefixes with score (s(¢'), —d(¢')) = (s((¢1,..-,00-1)),—d((¢1,---,00-1)). By

summing up the score vector (M]a;,b;],0) to (s(¢'), —d(¢’)), we obtain a new score

vector that dominates (s(p), —d(y)), which is a contradiction;

case ii) Assume that (¢1,...,¢s—1) is not a Pareto optimal alignment for prefixes (a1, . .

. 70/1’L1—1)

and (b1,...,bj_1). Then, there exists another Pareto optimal alignment, ¢”, for the

same prefixes with score (s(¢”), —d(¢")) = (s((p1,-.-,00-1)),—d((p1,...,0¢-1)). By

summing up the score vector (0, —1) to (s(¢”), —d(¢")), we obtain a new score vector

that dominates (s(¢), —d(y)), which is a contradiction;

case iii) Symmetric to ii).

O
Based on this proposition, we arrive to the following recursive definition for the sub-
problem of finding the non-dominated score set of (a1,...,a;) and (b1,...,b;), 1 < i < ny,
1 < j < ng. Let I'(4, j) denote the non-dominated score set of two prefixes (a1, ...,a;) and
(bl,...,bj), 1<i1<n, 1< <no.
{(0,—1)} ifi=0
{00, =)} if j=0
L(i,j) = {v+ (Mlas,b;],0 : yeT(i—1,j—1)} (4.1)
vmax { {y+ (0,—1) : y€T'(i—1,5)} ifi£0and j#0

\

where M a;, b;] is the substitution score for (a;, b;), and I'(0, j) and I'(4,0) correspond to the

base case of the recursion, that is, the score of aligning a prefix with an empty sequence. In

the case that ¢ # 0 and j # 0, operator vmax merges the three sets and extracts the states

that are not dominated by any other state; note that I'(i,j) may contain states

from the

three sets. In the following, we show that I'(7, j) contains the non-dominated score set.

Proposition 4.4.2. Recursion (4.1) computes the non-dominated score set.
Proof. For the basis cases, we have that:

i) If i = 0 and j = 0, the non-dominated score of two empty sequences is (0, 0);
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ii) If i = 0 and 0 < j < ng, which corresponds to aligning a non-empty sequence to an

empty sequence, the only non-dominated score is (0, —75);
iii) Symmetric to ii).

If i # 0 and j # 0, then, from Proposition 4.4.1, the three sets contain all, but not only, the
non-dominated score sets for 1 <7 < nj and 1 < j < no. Since vmax merges the three sets
and keeps only those that are not dominated, set I'(, j) contains all and only non-dominated
scores. By induction, I'(n1, ng) contains all and only non-dominated scores for the original

problem. O

Similarly to the single-objective case, set I'(¢,7) can be stored in a bi-dimensional ma-
trix in order to discard recursive function calls. This would correspond to a top-down DP
approach, which coincides with the approach in (Roytberg et al., 1999).

For a given alignment ¢ of two sequences A = (a1,...,an,,) and B = (by,...,by,), we
define a state p = VSD(y). A matrix P is constructed for storing the non-dominated score
set. Each entry P[i,j], for (i,7) € {1,...,n1} x {1,...,n2}, stores the list of states corre-
sponding to the set of images of the Pareto optimal alignments of subsequences (a1, ..., a;)

and (b1, ...,b;). The recurrence for computing P[i, j] in a bottom-up fashion is as follows:

{p+ (Mla;,b5],0) : pePli—1,7—1]}
P[i,j] = vmax ¢ {p+ (0,-1) : peP[i—1,;]}
{p+(0,-1) : pePli,j—1]}

with the basis cases

Pli,0] = {(0, —i)} 1<i<m (4.2)
P[0,0] = {(0,0)} (4.4)

Assuming two sequences of length n, the approach above, as described in Roytberg et al.
(1999) has O(n3logn) time-complexity, due to the number of cells in matrix P, the number of
non-dominated scores stored at each cell of P and the time complexity of removing dominated

scores at each iteration. In the following, we introduce some further improvements.

1. Faster removal of dominated scores Roytberg et al. (1999) suggests the use of a

quasi-linear time algorithm for performing the operation of vmax by applying a sweep-line
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approach after merging the three sets (see the general algorithm described in (Kung et al.,
1975)). However, this can be performed in linear time under the assumption that each of
the three sets is already sorted with respect to one of the objectives. Similar idea is also
described in (Beier and Vocking, 2011, pp. 380) for a different problem. In the following,
each state p = VSD(y) is shown briefly with p = (s,d) where s = s(y) and d = —d(p).
Moreover, assume that the set of non-dominated scores in entry Pli — 1,5 — 1], P[i,j — 1]
and P[i,j — 1], 1 <i < mny, 1 <j < ng,is kept in a sorted list Ly, k = 1,2, 3, respectively,
in increasing order of the number of indels (and decreasing order of the substitution score).
The algorithm iterates over the following steps to compute the non-dominated score set for

entry PJi, j].
1. Set Sjmax = —oo and indices ¢ = 1, for k = 1,2, 3;

2. For each list Ly, for k = 1,2, 3, search linearly starting at index £, for the first state
with score (s, di) such that sp > spax; if no state is found for each of the three lists,
return P[q, j]; otherwise, let ¢} be the index in Lj where the state with score (s, dj)

was found.

3. Select one of the three states with the least number of indels and, in case of equality,

that with the maximum substitution score s; append it to P[i, j].
4. Set Smax = s and £ = ¢}, k =1,2,3, and go to 2.

Note that syax is used for advancing the iterators in each list, passing through dominated
states, until a state with a substitution score s larger than sy, is found, which is a potential
non-dominated state. Since the lists are ordered, a non-dominated state among those found
in the lists at each step is probably a non-dominated state for the subproblem, since there
exists no other in the three lists that can dominate it. The algorithm continues until all the
states in the three lists are visited. Therefore, the overall time-complexity of this operation
is O(n1 + n2). Hence, the overall time and space-complexity of the proposed algorithm for
Problem (VSDP) is O(nq - n2 - (n1 + n2)), which improves upon the approach described in
(Roytberg et al., 1999).

2. Pruning strategy in dynamic programming We describe a pruning technique
for the DP algorithm for Problem (VSDP) that is able to reduce the number of states by
comparing their upper bounds with a pre-computed lower bound set, following a branch-

and-bound principle.
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e Lower bound set. For the definition of lower bounds on the non-dominated score set,

we use the notions of lexicographic and scalarized score functions as in Section 3.2.2

and 3.2.3, respectively.

We consider two lexicographic optimization problems that consist of finding an align-
ment that is lexicographic maximal (lexmax) according to a given order of priority on

the optimization of the two score function components:

arglexmax {¢ : (s(p),—d(¢)), ¢ € D} (LexSDP)
arglexmax {¢ : (=d(p),s(¢)), ¢ € P} (LexDSP)

The order of the function components indicates the priority that is considered among
the objectives. Let s and ¢4 be the lexicographic maximal alignments for Prob-
lems (LexSDP) and (LexDSP), respectively. Let MAX = VSD(ys) and MIN =
VSD(¢q4). By the definition of optimality for Problem (VSDP), it holds that MAX
and MIN belong to the non-dominated score set (Ehrgott, 2005). Moreover, they indi-
cate that there cannot exist a Pareto optimal alignment with more (less) substitution
score and indels than given by the components of MAX (MIN). Hence, the two score
vectors give a bound on the possible ranges of the non-dominated score set. In fact, if
MAX = MIN, then the non-dominated score set contains only a single element and no

further computation is required.

Another lower bound is given by the solution to a scalarized version of the biobjec-
tive alignment problem. (see Section 3.2.3.) We consider the following weighted sum

scalarization

WSD(p) = ws - s(¢) + wa - d()
where w, and wy are real weighting coefficients. The goal is to find the alignment that
maximizes the scalarized score function as follows:

argmax {¢ : WSD(y), ¢ € &} (WSDP)

Note that other scalarized functions are also possible. In the particular case of the
weighted sum function, the alignment that is optimal to Problem (WSDP) is also
Pareto optimal to Problem (VSDP), although the opposite does not hold in general
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—d(9)
Y

Figure 4.2: Illustration of the lower bound set. Lower bound set contains the three pre-
computed non-dominated score vectors MIN, MID and MAX. Any alignment whose score
vector is inside of the shaded area cannot be Pareto optimal, since it would be dominated
by MIN, MID or MAX

(see Section 3.3.1, page 49 ). Let ¢,, denote the optimal alignment for Problem (WSDP)
for a given w, and wy and let MID = VSD(¢p,,). It is also important to highlight that
the scalarized problem can be solved several times for different weights to get a tighter
lower bound set; for the sake of the explanation, we use only one. The score vectors
MAX, MID and MIN allow to define a lower bound set on the non-dominated score
set of Problem (VSDP). Let R denote the region

R={reRf xRy : b>r be {MAX, MID,MIN}}.

Figure 4.2 illustrates the location of MAX, MID and MIN and definition of R (shaded
area). Note that there may exist further Pareto optimal alignments whose score vectors
are located in the complement of R. However, any alignment whose score vector is
in the interior of R cannot be Pareto optimal, since it would be dominated by an

alignment with a score vector equals to MIN, MID or MAX.

The computation of the three score vectors can be performed with Needleman-Wunsch
algorithm (see Section 2.3.3) by keeping the components separately in the DP matrix
also, by choosing the state at each entry that maximizes the scalarized score function

WSD, for the case of MID, or according to the lexicographic ordering for the case
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of MAX and MIN, respectively. Therefore, the three score vectors can be found in
O(n1 - n2)-time. In the following, we only introduce the recurrence formula that is
required for computing the lexicographic maximal alignment for Problem (LexSDP),
which gives the score vector MAX. We consider a DP matrix L, where for each en-
try L[, 7], (4,7) € {1,...,n1} x {1,...,na}, stores the state corresponding to a lexico-
graphic maximal alignment of subsequences (a1, ...,a;) and (b1,...,b;). The elements

of matrix L are calculated recursively as follows:

L[i —-1,5— 1] + (M[az-,bj],())
L[i,j] = lexmaxq L[i,j — 1] + (0, —1)
L[i — 1,5] + (0, 1)

with basis cases L[0,0] = (0,0), L[i,0] = (0, —¢) and L[0, j] = (0, —j), for 1 < i < my
and 1 < j < ng. The operator lexmax keeps only the lexicographic maximum of the

three states in the recursive step.

Upper bound. For a given state t = (s,—d) at entry P[i,j], (i,5) € {1,...,n1} X
{1,...,nga}, if its upper bound ub(s) = (s + 8, —d — 1) is located in the interior of R,
then ¢ will not lead to any state that corresponds to a non-dominated score vector.
Therefore, state ¢ can be discarded from entry P[i, j]. We consider an upper bound of
a state t in P[i, j] that is given by the maximum substitution score # and minimum
number of indels 7 that can be achieved from entry P[i, j] to entry Plnj,na]. The
value of # can be computed by the size of the longest common subsequence (with a
substitution matrix) of (a;41,...,an,) and (bj41,...,bp,). This can be easily obtained
for every entry in matrix P in a pre-processing step with the classical DP algorithm for
computing the longest common subsequence in the reversed sequences. The minimum
number of indels 7 is computed by the absolute difference between the sizes of two
subsequences (a;,...,an,) and (bj,...,by,), i.e. n=|(n2 —j) — (n1 —i)|. Therefore,
ub(s) = (s + 0, —d — n) is a valid upper bound of state ¢. Note that this bound may
not correspond to a feasible alignment. Matrix L as well as the longest common
subsequence for the reversed sequences can be computed in a pre-processing phase in
O(n1 - n2)-time. Hence, the upper bound at each matrix entry can be computed in a

constant amount of time during the main phase of the algorithm.
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Table 4.1: Upper bounds for the example in Section 4.4.1

A c T A G G G
0 1 2 3 4 5 6 7

0 (4,1)  (4,2) (4,3) (4,4) 35)  (2:6) (1,7) (0,8)
A1 3,00  (3.1) (3,2) (3,3) (34)  (2)5) (1,6) (0,7)
¢ 2 3,1) (3,0 (3,1) (3,2) 33)  (24) (1,5) (0,6)
¢ 3 32)  (3.1) (2,0) (2,1) (22)  (23) (1,4) (0,5)
¢ 4 33) (3.2 (2,1) (1,0) (1L,1)  (1,2) (1,3) (0,4)
c 5 34)  (33) (2,2) (1,1) (1L,0)  (1,1) (1,2) (0,3)
cC 6 25) (24) (2,3) (1,2) (L) (1,0) (1,1) (0,2)
T 7 (1,6)  (1,5) (1,4) (1,3) (12)  (1,1) (1,0) (0,1)
¢ 8 0,7) (0,6 (0,5) (0,4) 0,3)  (0,2) (0,1) (0,0)

In the following, we describe an example that illustrates the pruning technique for Prob-
lem (VSDP). Let A = AGGGCCTG and B = ACTAGGG. Table 4.2 (left) shows the contents of
matrix P without using the pruning technique, where the non-dominated score set is given
at entry P[8,7]. The lower bounds are MIN = (-3, —1) and MAX = (4, —7); for ws = 1.5
and wy = —0.5, we have that MID = (3,—5). Table 4.1 gives the upper bound for each
entry (i,7), i.e. the maximum substitution score and the minimum number of indels for the
suffixes (a;,...,an,) and (b;,...,by,). Table 4.2 (right) shows matrix P with the pruning
technique; each dash indicates the location of a state that was pruned. For example, the
upper bound of state ¢t = (0, —6) at entry P[6,0] is ub(¢) = (0+2,—6 —5) = (2, —11), which
is dominated by MAX and MID. Therefore, this state can be pruned. In contrast, for the
state t = (1,—2) at entry PI[5,3] we have that ub(s) = (14+1,—2 — 1) = (2, —3), which is

not dominated by any lower bound. Hence, in this case, state ¢t cannot be pruned.

A Dynamic Programming Algorithm for (VSGP)

In this section, we introduce a (bottom-up) DP algorithm for Problem (VSGP). This ap-
proach extends the DP algorithm for global alignment with gap penalties for the affine gap
model (see Section 2.3.4, page 21). For a given alignment ¢ = (A, B’), we define a state ¢ =
VSG(p) (see Section 4.2). For computing the set of non-dominated scores, we keep four dy-
namic programming matrices: Q, R, S, and T. For a given (i,7) € {1,...,n1} x{1,...,na},
entry RJ[i, j], S[¢, j] and T[i, j] stores the set of non-dominated scores corresponding to Pareto

optimal alignments of prefixes (a1,...,a;) and (b1,...,b;) that end with (a;,b;), (‘ —’,b;)



4. Multiobjective Pairwise Sequence Alignment

84
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4 )

and (a;,‘ —’), respectively, where ‘ —’ is an indel character. The entry Q][i, j] stores the
states corresponding to non-dominated scores of prefixes (a1, ..., a;) and (by,...,b;). Let the
substitution matrix be denoted by M, the gap opening penalty be v and the gap extension

be p. Then, the recursion is as follows:

R[i, j]
Qli,j] = vmax< S[i, j]
Tli, ]
R[i,j] = {q+ (Mla;,b;],0) : ¢ Qi —1,j—1]}
(4.5)
.. {Q+(O7/j’) : qES[’i,j—l]}
S[i,j] = vmax
{g+(0,v) : ¢€Qli,j—1]}
T(i.j] = vmax {a+O,pn) + g€ Tli—1,5]}
{a+(0,v) : ¢€Qli—1,j]}

The bases cases of the matrices are: Q[0,0] = {(0,0)}, Q[i,0] = S[i,0] = Q[0,j] =
T[0,5] = {(0,n)}, for 1 < ¢ < m; and 1 < j < mg. Operation vmax takes also linear
amount of time by using the same technique introduced for Problem (VSDP). Since the
number of gaps is bounded from above by the number of indels in an alignment, the time
and space-complexity is also O(ny - ng - (n1 + na2)).

Note that the properties of the optimal substructure for Problem (VSGP) hold similarly
to Problem (VSDP). Moreover, this algorithm calculates the non-dominated score set by
considering the affine gap model. By fixing the value of v to 1 and p to 0, this algorithm
can solve the problem with constant gap model. When v = p, this algorithm is appropriate
for the linear gap model. In fact, when v = u = 1, the algorithm becomes the DP algorithm
for Problem (VSDP) (see Section 4.4.1, page 76).

For this problem, the computation of lower and upper bounds follow the same reasoning
as for Problem (VSDP). In the following, we will only give a brief explanation and highlight

the main differences.

e Lower bound set. The lexicographic and scalarized alignment problems described in
the previous section (page 79) can also be formalized in terms of gaps. In this case,

MAX and MIN correspond to the scores of Pareto optimal alignments that maximize
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the substitution score and minimize the gap score, respectively. Also, MID corresponds
to the score vector of the Pareto optimal alignment that maximizes a scalarized score
function by taking into account the gap score (we will use wy instead of wg). Score
vectors MAX and MID can be computed in O(n; - ng)-time by using the algorithm
described in (Gusfield, 1999) with the necessary changes. However, the score vector
MIN can be computed faster. Note that the gap score can only be minimum when there
exists zero or one gap, the latter case arising when ny # ns. Assume, without loss of
generality, that n; < ne. Then, the computation of the maximum substitution score
that is possible for one gap can be performed by comparing the substitution score for
each of the n; + 1 possible locations of the gap. This can be performed in O(n,)-time

in an incremental manner.

Upper bound. The computation of the maximum substitution score that can be achieved
at entry Q[ni,ng] by a state ¢ at entry Q[i, j] follows the same procedure as explained
in the previous section (page 82). For the computation of the minimum gap score,
we consider a partition of matrix Q into three sections; without loss of generality,
we assume that ny < na. Let QP = Qi —ng + nq,i], for ng — ny < i < ng, which
corresponds to the diagonal in Q starting at Q[0,ne — n1] and ending at Q[nq,na.
Let Q# and QP denote the entries in matrix Q that are located above and below QP
respectively. From this partitioning of Q, we can derive the following results for v, the
minimum gap score, that is achieved at Q[n1,ns] by a state ¢ (here, we relate state ¢

with a partial alignment ¢ = (A", B')):

i) If state t € QP, then v = 0;
i) If state t € Q4 (QP) and alignment ¢ ends with a gap in A’ (B’), then v = 0;
iii) If state t € Q4 (QP) and alignment ¢ ends with two characters or a gap character
in B (A"), then there is a gap with the size of |(n2 — j) — (n1 — )|, where the

minimum gap score in affine gap model can be computed simply as follows :

n=v+mp-l(ng —j) = (n—i) =1

Note that conditions ii) and iii) can be determined by keeping an additional variable
that stores whether state ¢ was obtained from matrix R, S, or T in the recursion.
Therefore, the upper bound for the case of gaps can also be computed in a constant

amount of time. Moreover, by fixing the value of v to 1 and p to 0, the above formula
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calculates the upper bound for the constant gap model and, when v = pu, it becomes

the solution for the linear gap model.

4.4.2 An e—constraint Algorithm for Multiobjective Pairwise Alignment

In this section, we introduce an e-constraint technique (see Section 3.3.1) for solving problems
(VSDP) and (VSGP). By changing the substitution matrix, the same techniques can be
used for solving the Problems (VMDP) and (VMGP) as well. Our approach is based on the
algorithm proposed in (Sankoff, 1972) for computing the sequence alignment that maximizes
the number of matches with an inequality constraint on the number of gaps. In this work,
we apply the same technique for solving Problems (VSDP) and (VSGP) with an equality

constraint on the number of indels/gaps.

e-constraint for Problem (VSDP)

The principle of e-constraint method is based on optimizing (maximizing) one of the objec-
tives while the others are used as constraints (see Section 3.3.1, page 50). To tackle Problem
(VSDP) with an e-constraint method, we consider the maximization of the substitution score
with a constraint on the number of indels. Note that the maximum number of indels in an
alignment is bounded by a non-negative integer (dmax). Therefore, it is possible to solve
Problem (VSDP) by maximizing the substitution score constrained to a given number of in-
dels that range from 0 to dyax, with an increment of one. From the set of optimal scores for
all the dpyax + 1 constraint problems, the non-dominated score set is extracted by removing
the dominated scores from that set.

Let A = (a1,...,ayn,) and B = (b1,...,b,,) be two sequences. Let .5 be the longest
common subsequence between the two sequences; the maximal feasible number of indels is
given by dmpmax = n1 + na — 2.5 . In the following, we show that optimal substructure also
holds for the problem of maximizing substitution score given a fixed number of indels. We
recall that, according to Proposition 2.3.2, any alignment between two sequences can possibly

finish in three ways : i) (an,,bn,), i) (‘ =, bp,) or iii) (an,, =) .

Proposition 4.4.3. Let A = (a1,...,an,) and B = (b1,...,by,) be two sequences and let
M be a substitution score matriz. Let o = (¢1,...,¢¢) be an optimal alignment of A and B

with mazimum substitution score s(¢) and k indels.

i) if or = (Gny,bny), then (p1,...,00-1) is an optimal alignment of (a1,...,an,—1) and

(b1, ..., bny—1) with mazimum substitution score s(¢) — M [an,,bn,| and k indels;
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i) if oo = (an,, =), then (p1,...,¢p-1) is an optimal alignment of (ai,...,an,—1) and

(b1, ..., bny) with mazimum substitution score s(¢) and k — 1 indels;

ii1) if o = (‘ = bp,), then (¢1,...,900—-1) is an optimal alignment of (a1,...,an,) and

(b1, ..., bny—1) with mazimum substitution score s(¢) and k — 1 indels.

Proof.

i)

ii)

iii)

Assume that (¢1,...,9r—1) is not an optimal alignment with maximum substitution
score. Therefore, there exists another optimal alignment with larger substitution score
for the same subsequences. By summing up the score of M]ay,,,by,], an alignment
with larger substitution score than s(p) is obtained, which is a contradiction. Now,
assume that (¢1,...,¢p—1) is an optimal alignment that does not contain k indels.
Consequently, by adding the pair (an,,bn,), it is not possible to have k indels in ¢,

which is, again, a contradiction;

Consider that ¢y = (an,,‘—’) and assume that there exists another optimal alignment
with larger score than s(¢) for (ai,...,an,—1) and (b1,...,by,). This is a contradiction,
since by adding the pair (a,,,‘ —’), there exists another alignment for A and B with
larger score than s(¢). Now assume that there exists another optimal alignment with
more (less), than k£ — 1 indels for the same subsequences. By adding the pair (a,,,‘—’)
to the alignment, we have an alignment with more (less) indels than k, which is a

contradiction.

Symmetric to ii).

By induction, it is possible to arrive in a general recursive definition to generate the optimal

alignment. For each value of k, two matrices are required: Matrix P, which keeps the maxi-

mum substituting score corresponding to the optimal alignment of subsequences (a1, ..., a;)

and (bq,...,b;) constrained to k indels that ends with the pair (a;, b;), and matrix Q, which

keeps the maximum substituting score for the alignments of subsequences that end with

(aia‘

— ") or (‘ —7,b;j) and constrained with £ indels. The recurrence for matrices P/[i, j, k|

and Q[i, 7, k| for (i,7,k) € {1,...,n1} x{1,...,na} x {1,...,dmasz} are as follows:
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i— 1,7 —1,k] + MJa;,b;
P[i, j, k] = max Ql / | lai; b (4.6)
P[i —1,5— l,k] —i—M[ai,bj]
,j—1,k—1
QUi j. K] = max d 27 | (4.7)
P[Z - lvjvk - 1]
Pli,j—1,k—1]
The basis cases for 0 <i<mny, 0<j <ng and 0 < k < dpax are:
0 ifi=5=0
P[i,5,0] =S P[li — 1,5 — 1,0] + Mla;,b;] ifi=j#0 (4.9)
—0 if i #j
P[i,0,k] = P[0,j,k] = —c0 k>0 (4.10)
0 ifi==k
Qli,0, k] = (4.11)
—oc0 ifi#k
. 0 if j=k
Q[()?]?k] = (412)
—o00 ifj#k

where the value —oo corresponds to an infeasible alignment and value 0 is used when there

is no residue-residue pair? in the alignment. Eq. (4.8) gives the initial values for matrix

Q with £ = 0. In this case, the alignments have to end with an indel-residue pair, but

there is no possibility of having indels (k = 0); since they are infeasible, the matrix Q takes

the value —oco. Eq. (4.9) gives the initial values for matrix P with & = 0. In this case, the

alignments have to end with a residue-residue pair while no indel is allowed in the alignment.

Therefore, the only possible way to obtain a feasible alignment under these conditions is to

“write down” one sequence below the other. Therefore, matrix P can only take feasible

2 A residue-residue pair is any pair in the alignment that does not contain indel.
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values on the diagonal, which corresponds to align prefixes with equal sizes. It is clear that
with ¢ = 0, 7 = 0 and k£ = 0, the maximum substitution score is 0, and with ¢ = 5 > 0 this
score is the sum of the individual substitution scores of the previous residue-residue pairs in
the alignment.

Eq. (4.10) gives the initial values for the first rows and columns of matrix P, i.e., when
it =0o0r j=0forall 0 <k < dpyax. This corresponds to alignments between a sequence
and an empty sequence while ending with a residue-residue pair. Since these alignments are
infeasible, matrix P takes the value —oo. Eq. (4.11) gives the initial values for the first rows
of matrix Q. Using similar reasoning, in matrix Q, the first rows when ¢ # k take —oo
values. But when ¢ = k, it is possible to align a sequence with an empty sequence by adding
indels equal to the size of sequence. Finally, Eq. (4.12) works similarly to Eq. (4.11) for the
first columns of matrix Q.

For each iteration k =0, 1,. .., dpax , the maximum between P[nq, ng, k] and Q[n1, na, k]
gives either the maximum score that can be achieved with k indels or —oo if no feasible
alignment exists. To compute the non-dominated score set, these values need to be kept for
each k . Due to the equality constraint, the algorithm finds a superset of the non-dominated
score set. Therefore, once k = dyax, a filtering step is needed to remove the dominated states.
Note that, the corresponding Pareto optimal alignments can be obtained by tracing back the
matrices just as in Needleman-Wunsch algorithm (see Section 2.3.3). In the following, we
provide an illustrative example.

Table 4.3 shows the matrices P and Q with (kK = 0) and (k = 1) for the example in
Section 4.4.1, page 82. P[8,7,0] = Q[8,7,0] = —oo shows that there is no feasible alignment
for the two sequences with no indel (K = 0). But with £ = 1, the maximum between
P[8,7,1] = —3 and Q[8,7,1] = —5 gives the maximum substitution score for an alignment
with one indel. Therefore, (—3, —1) is the first non-dominated score of the superset of non-
dominated score set. The numbers shown in boxes inside matrices show the traceback path of
a Pareto optimal alignment with the score (=3, —1). The direction of movements in matrix
P is diagonally and in matrix Q is either horizontally or vertically. Note that when the
traceback is from matrix Q we have to insert an indel in the alignment. The alignment

corresponds to the score (—3, —1) is as follows:

A|l-|C|T|A|G|G|G
AlIG|G|G|C|C|T|G

The time and space-complexity for each k value is similar to that of the DP method in
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Section 2.3.3, page 16, that is, O(ny - n2 - (n1 + n2)). Overall, the e-constraint approach
has O(ny - ng - (n1 + ng2)) time and space-complexity, which are of similar order to the DP
approach for the same problem (see Section 4.4.1). Note that, if the purpose is only to find
the non-dominated score set, by keeping the matrix P and Q for each k£ and k& — 1, we only

require O(n; - ng)-space to solve the problem.

Table 4.3: Matrices P and Q for K = 0 and k£ = 1 for the example in Section 4.4.1 with the
e-constraint approach. The numbers in the blue boxes show the traceback for the alignment

with score (—3,—1)

Q. j,0]: Q[i, j, 1]:
A C A G G G A A G G
0 1 2 3 4 5 6 7 0 3 4 5 6 7
0|-00 -00 -00 -00 -00 -00 -00 -00 0| -00 0 -c0o -00 -00 -00 -00 -00
A 1|-00 -0 -00 -00 -00 -00 -00 -00 A1 0 -o0 1 -c0 -0c0 -00 -0 -0
G 2|-00 -0 -0 -00 -00 -00 -00 -00 G 2| -00 1 -0 0 -c0o -0c0 -00 -
G 3|-00 -0 -0 -00 -00 -00 -00 -00 G 3|-00 -00 0 -o0 -1 -c0 -00 -0
G 4|-0 -0 -00 -00 -00 -00 -00 -00 G 4| -0 -00 -00 -1 00 -2 -00 -00
C 5H|-00 -0 -0 -00 -00 -00 -00 -00 C 5|-00 -00 -00 -00 -2 -o00 -3 -00
C 6|-00 -0 -00 -00 -00 -00 -00 -00 C 6|-c0 -0 -0 -o0 -00 -3 -c0 4
T 7|-00 -0 -00 -00 -00 -00 -00 -00 T 7|-00 -00 -0 -00 -00 =-00 -4 -00
G 8|-00 -0 -00 -00 -00 -00 -00 -00 G 8|-00 -00 -00 -00 -00 -00 -00 -5
P[i,7,0]: P[i,j,1]:
C T A G G G A T A G G G
0 1 2 3 4 5 [§ 7 0 2 3 4 5 6 7
0 0 -0 -0 -0 -00 -00 -00 -00 0] -00 0 -c0o -0 -0 -00 -00 -00
A 1| - 1 -0 -0 -0 -00 -00 -00 A1 0 -o00 1 -0 -0 -0 -00 -00
G 2|-00 -00 0 -co -0c0 -00 -00 -0 G 2| -00 -1 -o00 0 -c0o -0c0 -00 -0
G 3|-0 -0 -0 -1 -00 -00 -00 -0 G 3|-00 -00 0 -o0 -1 -c0 -00 -0
G 4|-00 -0 -0 -00 -2 -00 -00 -0 G 4| -0 -00 -00 -1 -o00 0 -oc0 -00
C 5 |-00 -0 -00 -00 -00 -3 -00 -0 C 5|-00 -00 -00 -00 -2 -0 -1 -o00
C 6|-0 -0 -00 -00 -00 -00 -4 -00 C 6|-00 -00 -00 -00 -00 -3 -00 -1
T 7|-00 -00 -00 -00 -00 -00 -00 -5 T 7|-00 -0 -00 -00 -00 -00 -4 -o00
G 8|-00 -0 -0 -00 -00 -00 -00 -00 G 8|-0c0 -0 -0 -0 -00 -00 -00 -3

e-constraint for Problem (VSGP)

To solve the sequence alignment problem with maximum substitution score and a fixed num-

ber of gaps, we use the extension of the Sankoff algorithm proposed in (Sankoff, 1972). This
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DP algorithm finds the longest common subsequence (equivalent to maximize the number
of the matches) with an inequality constraint on the number of gaps (except the gaps that
arise in the start or at the end of the alignment). Here, we modified this algorithm to find
an alignment with maximum substitution score, and equality constraint on the number of

gaps.

The number of gaps in an alignment is bounded by the number of indels. Let A =
(a1,...,an,) and B = (b1,...,by,) be two sequences and let /.5 be the longest common
subsequence between the two sequences. Then, dpnax = n1 + ng — 2., is the maximal

number of gaps in the alignment between the two strings.

For solving Problem (VSGP), we keep three matrices: P, Q and R.. Likewise the previous
method, for a given (i,5,k) € {1,...,n1} x {1,...,n2} x {0,...,d}, each entry P[i,j, k] ,
Qli, j, k] and Rz, j, k] stores the maximum score of aligning two subsequences (ay, . .., a;) and
(b1,...,b;) constrained to k gaps that end with (a;,b;), (a;, —’) and (‘ =", b;), respectively.
The reason to use an extra matrix, R, is to keep the track of gaps in both sequences in
the alignments, i.e. matrix Q keeps track of gaps in the first sequence whereas matrix R
keeps track of gaps in the second sequence. The recursion for 1 < i < nj, 1 < j < no and

0 < k < dpmax is as follows:

Pli —1,j — 1,k] + Mla;, b;]

Pli, j, k] = max ¢ Q[i — 1,5 — 1, k] + M]a;, bj] (4.13)
(R[i — 1,7 — 1, k] + M[a;, b;]

Pli,j —1,k—1]

Qli, j, k] = max { Q[i,j — 1, k] (4.14)
(Rli,j — 1,k —1]

(Pli— 1,5,k —1]

R[i,j, k] = max ¢ Q[i — 1,j,k — 1] (4.15)

R[Z - 17j7 k]

where M is a substitution matrix. The basis cases of the matrices for 0 < k <d, 0 <i<mny

and 0 < j < ng are:
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0 ifi=j=0

Pli,5,00 = { Pli — 1,j — 1,0 + Mla;,b;] ifi=5#0 (4.17)
—0 ifij

P[i,0,k] = P[0, j, k] = —o0 k>0 (4.18)

Qli,0,k] = R0, j, k] = —c0 k>0 (4.19)

. 0 ifk=1

Q[0,j, k] = (4.20)
—o0 ifk>1
0 ifk=1

R[i,0,k] = (4.21)
—o0 ifk>1

For the sequences in the example of Section 4.4.1, page 82, Table 4.4 shows the matrices
P, Q and R for £ = 1 and & = 2. For the basis cases, k = 0 (when no indel/gaps is
allowed), the matrix P is exactly equal to that of Table 4.3 and matrices Q and R do not
have feasible values. When k£ = 1, the maximum substitution score is —3, which is the
maximum between P[8,7,1] = —3,Q[8,7,0] = —oo and R[8,7,0] = —5. In this case, the
alignment corresponding to the score (—3,—1) is the same as for Problem VSDP in Table
4.4. With k = 2, the maximum substitution score is 4, which corresponds to two different
alignments, one from matrix P, and other from matrix R. The numbers in boxes show the
traceback path to the corresponding Pareto optimal alignment with the score (4, —2) from

matrix R. The alignment is as follows:

The removal of dominated scores is performed the same as the e-constraint approach for
Problem (VSDP). Since the number of gaps is bounded from above by the number of indels

in alignment, the time and space complexity is also the same.
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Qli, j, 1]

]

Table 4.4: e-constraint matrices for Problem (VSGP) with £ =1 and k = 2 for the example

in Section 4.4.1
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—0Q
—00
—00
—00

—00
—0Q
—0oQ
—

—00
—0Q
—0oQ
—oQ

—00
—0o0
—0o0
—0o0

—00
—00
—0o0
—0o0

P[i,4,2]
R[i,j,2]

—00
—00
—0

—00

—00
—00
—00
—00
—00
—00
—00
—00
—00
—00
—00
0

—00
—00
—00
—00
—00
—00
—0oQ
—oQ
—0oQ
—0oQ
—oQ
—0oQ
—0oQ
—00
—oQ
—0oQ
—oQ
—0oQ
—0oQ
—00
—0Q
—0oQ

0
G 3
G 4
C 6
T 7
G 8

0
G 2
G 3
G 4
c 5
cC 6
T 7
G 8

0
G 2
G 3
G 4
c 5
cC 6
T 7
G 8

1
2
4

—00
—00

—00
2
3
4

2

—00

-3

—00

—00

—00

—00

—00

—00

—00

—00

—00
—00
—00
—00
-4
—00
—00
—00
—00
—00
—00
—00
-4

—00
—00
—00
—00
—00
—00
—00
—00
—00
—00
—00
-3

—00
—00
—00
—00
—00
—00
—00
—00
—00
—00
-2

—00
—00
—00
—00
—00
—00

—00

—00

—00

—00

—00

-1

Pli, j,1]
R[i,j,1]

—00
—00
—00
—00
—00
—00
—00
—00
0
—00
—00

—0o0
—0oQ
—0Q
—0oQ
—0oQ
—0oQ
—0oQ
—0oQ
—0o0
—0oC
1
1
1
-1
1
—00
—00

—00
—00
—00
—00
—00
—00
—00
—00
—00
—00
—00
—00
—00
—00
—00
—00
0
—00
0

2

G 3
0
0

G 4
cC 5
cC 6
T 7
G 8
G 2
G 3
G 4
c 5
C 6
T 7
G 8
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4.5 Experimental Analysis

4.5.1 Performance of the Pruning Technique

In this section, we evaluate the performance of the pruning technique on the DP approach
described in the Section 4.4.1. We compare the DP with and without the pruning technique
(DP-Prune and DP-noPrune, respectively) for both problem variants (VSDP) and (VSGP).
The implementations were coded in C and compiled with gcc version 4.6.1 with the -03
compiler option, in a computer with two processors Intel Xeon 5620, 2.4 GHz, four core and
16 GB RAM, with operating system Ubuntu 11.10. Except for the compiler option, no other
code optimization technique was used in the experiments.

We considered the sequences available from the benchmark BAliBase version 3.0 (Thomp-
son et al., 2005) reference set 9. The subsets RV911, RV912, and RV913 were chosen since
they are organized into three different groups according to the sequence variability: less
than 20%, 20-40% and 40-80%, respectively. From the data sets we extracted the sequences
from the following groups: RV911-BOX096 (12 sequences), RV911-BOX115 (7 sequences),
RV911-BOX010 (18 sequences), RV912-BOX075 (13 sequences), RV912-BOX258 (16 se-
quences), RV912-BOX154 (5 sequences), RV913-BOX158 (55 sequences), RV913-BOX222
(7 sequences) and RV913-BOX063 (8 sequences). Our implementations were run on all pairs
of sequences of the same group; the substitution matrix PAM250 (Dayhoff and Schwartz,
1978) was considered in our experiments.

Preliminary experiments indicated that only three bounds (MAX, MID and MIN) were
insufficient for obtaining good performance in terms of running time. For this reason, several
weighted sum problems were solved for different weight combinations in order to obtain a
tighter lower bound set: 5, 10, 15 and 20. For each number w of combinations, the weights
were varying in the following manner: wg =7, wg = w—1t,4 =1,...,w—1. Other experiments
that we performed indicated that no improvement in terms of pruning could be obtained for
w values larger than 20. In a second set of experiments for Problem (VSGP), we observed
that the pruning technique was only being effective for entries Q[i, j], i > n1/2 and j > no/2.
Therefore, in order to reduce the overall CPU-time, we switched off the pruning technique

for smaller indices.
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Tables 4.5 and 4.6 give the results obtained for both problem variants, where column size
is the average sequence length, #nd corresponds to the average number of non-dominated
states, CPU-time gives the average and standard deviation of CPU-times in seconds to
terminate and %prun gives the percentage of states that were pruned in the DP-Prune(w)
version. A bold value indicates the best average CPU-time; in case of a tie, the value with
the largest pruning percentage was chosen, since it suggests less memory usage.

The results show that the DP-Prune version is able to prune from 31% to 92% of the states
that are generated by the DP-noPrune version for Problem (VSDP). The improvement in
terms of CPU-time can go up to 80% in the set RV913-BOX063. However, no improvement
can be found for RV912-BOX075 and RV912-BOX154, although all versions were extremely
fast in those cases ( less than 0.5 seconds). For Problem (VSGP), the pruning can reach 83%
and CPU-time improved up to 60% in RV913-BOX222. In both problems, it is possible to
observe that the increase of parameter w does not translate directly into faster CPU-time;
for instance, in the sets RV911 for Problem (VSGP), the best CPU-time was obtained with
w = 10, although better pruning percentage was obtained with w = 20 (> 20%). Clearly,
the larger, the lower bound set, the higher the required time for comparison. Moreover, the
pruning seems to be more effective for large levels of residue identity.

It is also noteworthy to mention that the number of non-dominated states is a small
fraction of the average size of the genes. We also observed that both algorithms on Prob-
lem (VSGP) take roughly 4 to 5 times more CPU-time than on Problem (VSDP).

4.5.2 Computational Analysis with Real Data

In this section, we report computational analysis on real data set for comparing the perfor-
mance of the DP algorithms and e-constraint approaches for both problem variants (VSDP)
and (VSGP) (see Sections 4.4.1 and 4.4.2). Moreover, we also examine the effectiveness of
the pruning technique described in Section 4.4.1, page 76.

Two real data set are considered. The first data set consists of Hepatocystis sp. CNRP11,
Hepatocystis sp. PP1, Plasmodium juxtanucleare, Breviata anathema (AF153206), Theileria
parva (AAGK01000006), Parvilucifera infectans (AF133909), Amylax triacantha (AB375869),
Ceratocorys horrida (AF022154) and Alezandrium catenella (AB088280). The second data
set consists of Candida genes, C.albicans PAPa C.albicans PA Palpha, C.tropicalis PAPalpha,
C.tropicalis PAPa and C.dubliniensis PAPa, as well as the genes Pichia stipitis PAPalpha
and Saccharomyces cerevisiae PAP (See Butler et al. (2009) for a more detailed description

of these genes).
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Table 4.7: Experimental results on the two data sets

Variant Set  #nd  %prun  %impr CPU-time
DP-Prune DP-noPrune EC
(VSDP) 1 348 57.7% 57.8% 0.8 £0.1 1.9 +£ 0.3 8.4+ 1.8
2 401 46.2% 60.0% 0.9 +0.3 2.3 +£0.8 10.8 +£ 1.6
(VSGP) 1 302 41.0% 39.6% 79+ 1.1 131 +£24 234+45
2 397 34.0% 31.2% 10.1 £ 1.9 14.7+ 32 225+ 3.8

The average size of the genes in the first and second data set is 1724 and 1703, respectively.
The implementations were coded in C and compiled with gcc version 4.4.3 with the -03
compiler option, in a cluster with 16 nodes. Each node contains Intel Core i7 CPU with
4-core and 2 GB RAM, with operating system Ubuntu 10.04.4. Except for the compiler
option, no other code optimization technique was used in the experiments.

Preliminary experiments with DP using the pruning technique indicated that three
bounds were also insufficient for obtaining good performance for Problem (VSDP). For
this reason, several weighted sum problems were solved for different weight combinations in
order to obtain a tighter lower bound set. A reasonable good trade-off between the time
spent on the pre-processing phase and the time spent on comparing bounds was achieved
with the number of bounds equal to 24, with weights varying in the following manner: w, = 1,
wy =25—14,1=1,...,24.

Table 4.7 gives the results obtained for problem variants (VSDP) and (VSGP) for both
data sets. The DP algorithm with pruning and without pruning as well as the e-constraint
technique are shown with DP-Prune, DP-noPrune and EC, respectively. Column #nd cor-
responds to the average number of non-dominated states, %prun gives the percentage of
states that were pruned in the DP-Prune version, CPU-time gives the average and standard
deviation of CPU-time in seconds to terminate and %impr corresponds to the percentage of
improvement of DP-Prune in terms of CPU-time in comparing to DP-noPrune version. The
values are averaged over all pairs of genes.

The results show that EC has the worst performance in terms of CPU time. We observed
that on Problem (VSDP) it takes nearly 10 times more than DP-Prune and DP-noPrune
and on Problem (VSGP) take almost twice more from DP-Prune and DP-noPrune version.
Moreover, the DP-Prune version is able to prune between 34% and 57% of the states that
are generated by the DP-noPrune version. This has a direct consequence on CPU-time; the

DP-Prune version is between 31% and 60% faster. It is noteworthy to mention that the
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Figure 4.3: The experimental results for DP-Prune for Problems (VSDP) and (VSGP) with
random data set ranged from n = 200 to 3000

number of non-dominated states is close to 1/5 of the average size of the genes. We also
observed that both algorithms on Problem (VSGP) take roughly 7-10 times more CPU-time
than on Problem (VSDP).

4.5.3 Computational Analysis with Random Data

In the previous section, the experimental results suggested that the DP algorithm using the
pruning technique (DP-Prune) has the best performance, whereas e-constraint (EC) takes
much more time. In this section, we analysed the performance of DP-Prune on various data
length for both problem variants (VSDP) and (VSGP). The implementations were run on
a wide range of randomly generated DNA sequences. The size of sequences ranged from
n = 200 to 3000. A total of 30 instances were generated for each combination of values of n.
We used the same system to run the experiments as in Section 4.5.2.

Figure 4.3 presents the experimental results obtained for Problem (VSDP) and (VSGP).

The values are averaged over 30 instances of the same size.

2The randomly sequences were obtained from http://www.bioinformatics.org/sms2/random_dna.html

Stothard (2000).
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4.6 Summary and Discussion

In this chapter, we introduced the multiobjective pairwise sequence alignment problem and
proposed the extensions of dynamic programming algorithms for several problem variants.
Furthermore, a pruning technique is presented to improve the performance of dynamic pro-
gramming algorithms for multiobjective pairwise sequence alignment, which uses lower and
upper bounds to discard states in the early stages of the process. This technique can easily be
extended to the case of the affine gap by performing the necessary changes in the recurrence
relation of matrices S and T (see Section 4.4.1). They can also be extended to the three
criteria case, where the substitution score, the number of indels and the number of gaps are
simultaneously considered in the score vector function.

In the next chapter, the other main contributions of this thesis are introduced, in par-
ticular, the multiobjective formulation of the multiple sequence alignment and algorithms to

solve it.



Chapter 5
Multiobjective Multiple Sequence Alignment

5.1 Introduction

In this chapter, we consider alignment problems with more than two sequences, called the
Multiple Sequence Alignment (MSA) problem. These alignments play a crucial role in molec-
ular biology. Many algorithms have been proposed for the inference of multiple sequence
alignments of protein and DNA sequences (Carrillo and Lipman, 1988).

The single-objective version of the MSA problem for an arbitrary number of sequences is
known to be NP-hard (Just, 2001). For this reason, most of the current approaches to this
problem are based on heuristics, ranging from progressive to iterative methods. In principle,
a multiobjective variant of the MSA is even harder from the computational point of view
since more than one solution is needed to attain. Therefore, in order to obtain solutions in
a short amount of time, we need to resort to heuristics for multiobjective optimization.

There have been several variants of this problem. In our particular case, we are consid-
ering the MSA problem with sum-of-pairs or weighted sum-of-pairs score (see Section 2.4.1,
page 24, for more details). There is a consensus that these scores reflect biological events
and that the optimization of them leads to biologically correct alignments. However, these
functions are highly dependent on the parameter setting, like the relative importance of in-
dels/gaps with respect to the increase of the substitution score. For the same reasons as

101
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presented for the PSA problem (see Section 4.1, page 71), we propose a new multiobjective

formulation for the sum-of-pairs score.

The main contributions of this chapter are explained in the following, which were partially

published in a journal paper (Abbasi et al., 2016), a conference paper (Abbasi et al., 2015)

and a poster with an oral presentation in an international conference (Abbasi et al., 2013b).

i)

ii)

iii)

iv)

We propose to approach the Multiobjective Multiple Sequence Alignment (mMSA) prob-
lem with a local search algorithm, extending the formulation given in Section 4.2, page
72, for an arbitrary number of sequences. This approach considers the sum-of-pairs
score function that maximizes the substitution score, based on a given substitution
matrix, and minimizes the number of indels/gaps. The local search algorithm starts
from alignments obtained from some well-known single-objective approaches, such as

Clustal Omega and T-Coffee, as well as from randomly generated alignments.

We propose an iterated local search algorithm to improve the quality of the alignments
produced by the local search algorithm. This procedure consists of successive local
search runs, each of which starting from solutions obtained from previous runs that

were slightly perturbed.

We present a modification of NSGA-II (Deb et al., 2002) to solve the mMSA. In the
literature, NSGA-II has been the main approach to solve the several variants of this
problem. In particular, we adapt the NSGA-II proposed by MOSAStrE, a known
approach for a different variant of the multiobjective sequence alignment (Ortuno et al.,

2013). The same type of genetic operators are applied.

The heuristic approaches proposed in this study are tested thoroughly under different
parameter options such as starting alignments, neighborhood definitions, and pertur-
bation mechanisms. In the experimental analysis, we used all the instances obtained
from the benchmark database BAIiBASE 3.0, subsets RV11, RV12 and RV20 (Thomp-
son et al., 2005). We used the hypervolume indicator to evaluate the performance of
the algorithms. Moreover, in order to assess local search and NSGA-II, we also applied
the attainment function methodology to visualize differences of performance in the

objective space.

This chapter is outlined as follows: Section 5.2 provides the required notation and defi-

nitions for the mMSA problem that is tackled in this thesis; Section 5.3 presents a review of
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known heuristic approaches for several different variants of mMSA; Section 5.4 describes the
proposed local search algorithm for our variant of the mMSA problem as well as implemen-
tation details of NSGA-II for this problem; Section 5.5 describes an in-depth experimental
assessment of the proposed methods and, finally, Section 5.6 presents the conclusions and

topics for future work.

5.2 Notation and Definitions

A number of different objectives have been formulated in the context of mMSA Problem, such
as TC (percentage of aligned columns), NonGaps (percentage of columns that do not contain
indels), SP-score (sum-of-pairs score), STRIKE, Entropy, BAliScore and MetAl (see Section
2.4.3, page 37, for more details). Among most of them, the sum-of-pairs score is the most
used objective. However, as mentioned in Chapter 4, this score is naturally multiobjective.
In this section, we introduce a particular definition and formulation of the mMSA prob-
lem. Analogous to the PSA problem, we disaggregate the two objective components of the

sum-of-pairs score: the substitution score and indels/gaps score.

Definition 5.2.1. Let A1 = (a11,..-,01ny)s- -+, Am = (@m1, - - -, @mn,,) be m sequences over
an alphabet X. Let * —’ ¢ 3 be an indel character and let X' = X U {* —’'}. Let ¢ be an
alignment of m sequences Ay, ..., An (see Definition 2.4.1, page 25). Consider ¢ to be the
length of the multiple sequence alignment. We define the following biobjective sum-of-pairs

(BSP) score of an alignment.

BSP(¢) = (BSPs(¢), BSPy(¢))

where

-
-

BSPs(¢) = s(aij, ar;)

1 =1 k=i+1

<.
Il
¥

{ m—1 m

BSPd = Z Z Z d azj,akj)

7j=1 i=1 k=i+1

The score s(a;j,ar;), for aj,ar; € X, is obtained from a substitution matriz, if neither
ajj = ‘=’ norag; ="‘—’, otherwise is 0. The score d(a;j, ak;), for aij,ar; € X' is 1, if either

ajj == orag; ="'—", otherwise is 0.
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Let @ denote the set of all feasible alignments. The mMSA problem consists of finding
the alignments that are “maximal” with respect to the above score function. By considering
the score function presented in Definition 5.2.1, we define a biobjective multiple sequence

alignment problem as follows:

argvmax {¢ : BSP(¢), ¢ € ®}

where arg vimax is understood in terms of Pareto optimality. The image of set of @ in the
score function space is called feasible score set. The notion of Pareto optimality is described
as follows: Given two feasible alignments ¢ and ¢/, BSP(¢) = BSP(¢') (¢ dominates ¢’ )
if and only if it holds that BSPs(¢) > BSPs(¢') and BSPy(¢) < BSPy(¢'), with at least
one strict inequality. An alignment ¢* is Pareto optimal if there exists no other alignment
¢ such that BSP(¢) = BSP(¢*). In this section we use the same terminology as used
in Section 3.2.1, page 45, that is, the set of all Pareto optimal alignments is called Pareto
optimal alignment set. The image of a Pareto optimal alignment in the score space is a
non-dominated score and the set of all non-dominated scores is called non-dominated score
set.

Although the multiobjective pairwise sequence alignment problem can be solved effi-
ciently, that is, the running time to find the non-dominated score set is a polynomial function
of the size of the sequences, this is no longer the case for the multiple counterparts for an
arbitrary number of sequences. Thus, the goal, in practice, is to find an approximation to
the non-dominated score set in a reasonable amount of time, which can be performed by
heuristics methods (see Section 3.3.2, page 51). In the following section, we review some of

the mMSA problem variants and the proposed methods to tackle them.

5.3 Review of Approaches to the mMSA Problem

In this section, we review several formulations of the mMSA problem that can be found in
the literature. These formulations are considerably different from ours and among them,
which make it difficult to approach this problem in a more general manner.

One of the first known approaches is MOSAStrE, Multiobjective Optimizer for Sequence
Alignments based on Structural Evaluations, proposed by Ortuno et al. (2013). The authors
considered a multiobjective MSA problem with the following objectives: i) STRIKE score,
score with structural information (see Section 2.4.3, page 40), ii) Total Column (TC) (the

percentage of identical aligned columns in the alignment) and iii) Percentage of non-gaps
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parts (the percentage of columns in the alignment that contains indels). They used a ge-
netic algorithm to solve this problem that is based on NSGA-II with a single-point crossover
operator and mutation based on shifting a gap in the alignment. On their experiments, the
initial alignments are obtained from 8 (single-objective) MSA programs: ClustalW (Thomp-
son et al., 1994), Muscle (Edgar, 2004), Kalign (Lassmann and Sonnhammer, 2005), Mafft
(Katoh et al., 2002), (Szab6 et al., 2010), T-Coffee (Notredame et al., 2000), Fast statistical
alignment (FSA) (Bradley et al., 2009) and ProbCons (Do et al., 2005).

Soto and Becerra (2014) considered two objectives: Entropy and MetAl (see Section 2.4.3,
page 38, for more information). Similar to Ortutio et al. (2013) they used a genetic algorithm
called, MOEA, also inspired by NSGA-II. A two-point crossover and a random shift of an
indel are used as crossover and mutation methods, respectively. They have selected six
algorithms to provide starting alignments, namely ClustalW, Muscle, MAFFT, ProbCons,
T-Coffee and Clustal Omega (Sievers et al., 2011).

Kaya et al. (2014) considered three objectives: similarity, affine gap penalty and support
(see Section 2.4.3, page 39). They proposed an algorithm called MSAMGA to solve this
problem, which is also based on NSGA-II. Two crossover operators (single and two-point)
and three mutation operators, namely random changing and shifts toward the right and left
of the gap were applied to a problem dataset from BAIiIBASE 2.0.

Zhu et al. (2016) proposed another multiobjective version that takes into account the SP-
score and affine gap penalty. They introduced an approach called MOMSA, which is based
on MOEA/D. The idea of MOEA/D is to convert a multiobjective optimization problem
into a number of scalarized optimization problems (Zhang and Li, 2007). In MOMSA, the
initial population is generated by adding randomly located indels on the alignment returned
by ClustalW. The performance of this technique was tested over the benchmark datasets
BAIiBASE 2.0 and BAIiBASE 3.0.

More recently, Zambrano-Vega et al. (2017) considered a three objective formulation
of the MSA problem that includes the STRIKE score, the percentage of aligned columns
and the percentage of non-gap symbols. They did an experimental study to compare the
performance of four heuristic approaches to solve this problem variant. In particular, they
applied NSGA-II (Deb et al., 2002), NSGA-III (Jain and Deb, 2014), GWASF-GA (Saborido
et al., 2017), and MOCell (Nebro et al., 2009). The crossover and mutation operators,
similar to MOSAStrE, are single-point crossover and shifting gap mutation, respectively.
The method for filling the initial population is the same as used in MOSAStrE. Instead of

creating random solutions, a number of pre-computed alignments are obtained from a set
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of MSA programs. They considered large datasets of instances from BAIiIBASE 3.0 for the
experimental analysis.

The methods presented in the above review formulate the MSA problem as a multiob-
jective optimization problem with different score definitions. The sum-of-pairs score is one
of the key objectives that is used in Soto and Becerra (2014) and Zhu et al. (2016).

In this work, we formulate the MSA problem as an extension of the PSA problem (see
Chapter 4) using substitution score and indels/gaps as different objectives to optimize. Since
the problem has some combinatorial nature (assigning characters to positions in an align-
ment), we tackled it with local a search approach, which has given good performance to
combinatorial optimization problems (Hoos and Stiitzle, 2004). Moreover, given that most
of the approaches above use NSGA-II, we also adapt it to our problem for comparison pur-

pose.

5.4 Algorithms

In this section, we use the working principle of the Pareto Local Search (PLS), an iterative
improvement search strategy, to find a set of alignments (see Section 3.3.2, page 62). Then,
we describe the options that are considered to apply PLS to the mMSA problem: starting
alignment and neighborhood function. We propose a k-block neighborhood to create neigh-
boring alignments. Next, we improve PLS by using the same working principle of iterated
local search. This procedure iterates over the PLS algorithm by perturbing some of the
alignments in order to escape from local optima. Finally, we introduce NSGA-II (Deb et al.,
2000, 2002) to solve the mMSA problem following the same working principle of MOSAStrE.

5.4.1 Pareto Local Search (PLS)

Pareto local search (Paquete et al., 2007) is a generic local search framework for multiobjec-
tive optimization problems. The algorithm starts with a feasible solution and searches locally
for better neighbors to replace the current one. This neighborhood search is repeated until
no improvement can be achieved, which means that the algorithm reached a local optimum.
The pseudo code of Pareto Local Search with more details has been presented in Section
3.3.2, page 63. In the context of the mMSA problem, the neighborhood function associates
every feasible alignment ¢ to a set of feasible alignments N(¢). An alignment ¢ is a Pareto

local optimum if there exists no alignment ¢’ in N(¢) such that BSP(¢’) = BSP(¢). In
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Table 5.1: Single objective methods that are used to create starting alignments

i. Rand: Rand is a random possible alignment for comparison of the results with minimum

possible number of indels.

ii. Clustal Omega (Clust): A feasible alignment obtained from program Clustal Omega (Siev-
ers et al., 2011) version 1.2.3 (available at http://www.clustal.org/omega).

ili. T-Coffee: A feasible alignment obtained from program T-Coffee (Notredame et al., 2000)
version 8.97 (available at http://www.tcoffee.org/Projects/tcoffee/).

iv. MUSCLE: A feasible alignment obtained from program MUSCLE (Edgar, 2004) version
3.8.31(available at http://www.drive5.com/muscle/downloads.htm).

v. Kalign: A feasible alignment obtained from program Kalign (Lassmann and Sonnhammer,

2005) version 2.04 (available at http://msa.sbc.su.se/cgi-bin/msa.cgi).

vi. Maft: A feasible alignment obtained from program Maft (Katoh et al., 2002) version 7.305
(available at http://mafft.cbrc.jp/alignment/software/).

vii. RetAlign: A feasible alignment obtained from program RetAlign (Szabo et al., 2010) version
1.0 (available at http://phylogeny-cafe.elte.hu/RetAlign/).

viii. ProbCons: A feasible alignment obtained from program ProbCons (Do et al., 2005) version

1.12 (available at http://probcons.stanford.edu/download.html).

ix. FSA: A feasible alignment obtained from program FSA (Bradley et al., 2009) version 1.15.5
(available at http://fsa.sourceforge.net/).

the following, we describe the options that are considered to apply PLS the mMSA problem

such as starting alignment and neighborhood function.

Representation of the Alignment

Alignments are represented as a m X n matrix, where m is the number of sequences, and n is
the maximum length that alignment can be extended. Note that a multiple sequence align-
ment rarely contains indels/gaps more than 20% of the length of the largest sequence (Chel-
lapilla and Fogel, 1999). Therefore, by considering the length of the largest sequence equal

t0 ez, the alignment is bounded by a matrix of size m x 1.20,,44.
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Starting Alignment

The starting solution may have a substantial impact on the overall performance of local
search algorithms. Therefore, we considered different possibilities for generating alignments
by using different well-known single-objective methods. We follow the ideas introduced in
Ortutio et al. (2013). We have generated, for every dataset, a number of alignments by
using MUSCLE, Kalign, Mafft, RetAlign, T-Coffee, ProbCons, FSA and Clustal Omega. In
addition, we consider a randomly generated alignment (Rand) for comparison purpose. This
alignment is obtained by inserting indels randomly into the sequences, except in the largest
one. We considered this initialization option to have a feasible alignment with the least
possible number of indels. Table 5.1 lists all the methods applied to generate the starting

alignments.

Neighborhood

We propose a k-block neighborhood technique for this problem. For a given sequence, its
neighborhood is obtained by exchanging, at each gap, the adjacent left and right substrings of
at most k characters with the indels in the gap. In the following, we establish the conditions
for two alignments to be k-block neighbors.

Let Ay = (a11,-.-,a1n,); o Am = (@m,1,- - - @m.n,, ) denote m sequences and let ¢pp and
¢c be two alignments, where ¢p = By,..., By, and ¢¢ = C1,...,Cp,. The alignments ¢p
and ¢¢ are k-block neighbors if and only if the following conditions hold:

i) |Bi| = |Ci], for i =1,...,m;
it) Let J={j | j€{1,...,m}: Bj # Cj}; then |J| = 1;

ii1) For j € J let 7TiBj and 7Ticj denote the position of aj; € A; in sequence B; and Cj,
rgspectively. Let Ip;, = {FZBJ_ | T, # Moyt = L...,|Aj]} and I, = {7‘(’ij | g, 7
TE, = L,...,|A]}. Then, ¢ = |Ip,| = |Ic;| < k.

iv) Let IBj = {IB]',la - ,IB].7£} and ch = {ICJ-,h .. .,ch7g}; then IB]-,i—l—l _IBj,i = ICj,i—i-l —
Ie,i=1fori=1,...,0—1.

Conditions i) and i7) state that both alignments should have the same size, and differ
only in the j-th sequence, respectively. In addition, conditions iii) and iv) state that at
most k characters from sequence A; do not occupy the same position in both alignments,

and that those characters are contiguous. For illustration purpose, consider the following
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alignment. The shaded cells show the position of exchanged characters to create a new

neighbor alignment.

The three possible 2-block neighbors for the first indel in the first sequence are as follows:

-\ b/G|G|F|-|] IDIG|-|G|F|-| |[D|IG|G|-]|F]|-
-/1b|{-|F|G|L| |-|/D|-|F|G|L| |-]|D|-|F|G]|L

For the second indel in the first sequence, we obtain the following neighbors:

D|-|G|-|G|F D|-|G|G|-|F
-/D|-|F|G|L|] |-|D|-|F|G|L

D|-1G|G|F]|-
D|-|-|F|G|L

For the second indel in the second sequence we obtain the following neighbors:

bD|-|1G|G|F|-] |[D|-]G|G|F|-] |[D|]-]|]G|G]|F|-
-/-/D|/F|G|L| |-|D|F|-|G|L| |-|D|F|G]|-|L

It is possible to visit all k-block neighbors of an alignment ¢ in a straightforward way.
Given the first sequence of an alignment ¢, consider the leftmost substring of size one that
contains only a character and an indel to its right. Then, exchange that character with
every indel in its right and stop when no indel is found. In case the substring has also indels
to its left, repeat the same exchange procedure. If it is still possible, increase the size of
the substring by one and repeat the same moves to its right and its left; repeat the overall
procedure until reaching a subsequence of size k. Then, consider the next substring of size

one to the right and repeat the same process as above. Note that each exchange generates a
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Algorithm 8 Iterated Pareto Local Search for mMSA
procedure IPLS

P =10
¥y = Generatelnitial Alignments()
for each ¢ € ¢y do

o’ = PLS(¢)

® = Merge-NonDominated(®, @)

repeat
®p = Selection(P)
for each (¢p € ®p) do
¢pr = Perturbation(¢p)
@ = PLS(6p)
® = Merge-NonDominated(®, ®')
until termination condition met

return ®

new k-block neighbor. In order to maintain feasibility, the columns that contain only indels

are deleted from the alignment.

5.4.2 Tterated Pareto Local Search (IPLS)

The PLS algorithm may get trapped in a set of Pareto local optima of poor quality. One
possibility for escaping from Pareto local optima is to perturb one or more alignments in the
archive and restart the PLS from those alignments (see Section 3.3.2, page 64). Iterated
Pareto Local Search (IPLS) implements this search behavior. Its main steps are presented
in Algorithm 8. Similar to the single-objective counterpart (see Lourenco et al. (2013)), four

components have to be specified in IPLS:

i) GenerateInitialAlignments: This generates an initial set of alignments ®; based on
the experimental results, we consider different starting alignments generated by single-
objective methods such as T-Coffee, Clustal Omega, Muscle, Kalign, Mafft, RetAlign,
ProbCons, FSA and Rand (see Table 5.1 for more details).

ii) Perturbation: This procedure modifies some of the current alignments in set ® leading
to some intermediate set of alignments ®’. In order to do that, first, p alignments are

selected for perturbation from the set ®. Based on preliminary experiments, we decided
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iii)

iv)

to choose alignments in such a way that the corresponding non-dominated scores are
spread enough in the objective space. This way, we avoid applying perturbation to
two alignments that are, in principle, similar to each other. For the selection of p
alignments for perturbation, we used a dynamic programming approach described in
Kuhn et al. (2016)!. Then, the alignments of the selected p points are perturbed and
each of which is used as a starting solution for PLS, following a randomized ordering.
For perturbing the alignments, we used the ideas applied in Zhu et al. (2016) to create
an initial population for MOMSA, in which for each alignment, a gap of a given size Ny,
is inserted into each sequence of the alignment. The sequences are randomly split into
two groups, and for each group, the gap is inserted in two randomly chosen positions.

Finally, the two groups of sequences are merged to form a complete alignment.

PLS: This procedure is applied to an alignment and returns a set of non-dominated

scores ( see Algorithm 6, page 63).

Merge-NonDominated: This procedure merges two non-dominated sets and filters out

the dominated scores.

Termination condition: Different termination conditions can be applied such as i)
algorithm stops by itself when it is not possible to find more non-dominated neighboring
alignments, ii) a predefined time limit of CPU-time is reached or iii) after computing

a predefined number of score vector function evaluations.

5.4.3 NSGA-II

NSGA-II (Deb et al., 2000, 2002) is a classic multiobjective evolutionary algorithm that

generates new individuals from the original population by applying the standard genetic

operators (selection, crossover, and mutation). A ranking procedure is applied to select the

elements in the population, and a density estimator (the crowding distance) is used to diver-

sify the selection (see Section 3.3.2, page 59, for more details). In the following, we illustrate

some options that are adapted from MOSAStrE (Ortuno et al., 2013) to apply NSGA-II to

our mMSA problem: solution representation, initial population (starting alignments) and

genetic operator.

i)

Solution representation: The NSGA-II uses the solution representation described

in Section 5.4.1, page 107.

'The software is available at https://eden.dei.uc.pt/~paquete/HSSP/.
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Select a random gap Sshift to another random indels columns are
position removed
EGEK- - -DGGDPEGRMMS EGEKDGGDPEGRMM}- -|-S EGEKDGGDPEGRMM- -S
R----- YKPQGPDRVN-A R----- YKPQGPDRVN|HA R----- YKPQGPDRVNA
RGGTGGHDKADGGDTF-S RGGTGGHDKADGGDTF|-S RGGTGGHDKADGGDTFS
R----- HIGGDTVN---A R----- HIGGDTVN--|-HA R----- HIGGDTVN--A
Figure 5.1: Mutation operator: gaps are randomly chosen and shifted to another position.

Columns with only indels are removed

ii) Initialize population: A number of alignments are generated by using the single-

objective methods from Table 5.1. For a population of size n, i alignments are generated

and added to the initial population, and the remaining n — i are created by applying

the ¢

rossover operator to pairs of randomly selected alignments which are taken from

the same initial population that is being created.

iii) Genetic Operators:

a)

Mutation: This mutation operator is adapted directly from the MOSAStrE algo-
rithm. In this operator, a set of random gaps is shifted to another random position
in the same sequence. This operator is illustrated in Figure 5.1. In Ortufio et al.
(2013), the authors consider this operator from two different aspects: first, new,
but closely related, variants of the existent alignments are introduced into the pop-
ulation; secondly, columns containing only gaps are removed, which may produce

alignments with less number of gaps.

Crossover: This operator is also adapted from the MOSAStrE algorithm. The
crossover operator is a single-point crossover over alignments as proposed in da Silva
et al. (2010). Figure 5.2 illustrates this operation. The procedure randomly selects
two alignments (Figure 5.2 A). Then, on the first alignment, it selects a random
position and splits it into two blocks. Afterward, for each sequence of the second
alignment, it finds the position where the split has occurred in the first alignment.
(Figure 5.2 B). In order to cross the blocks from both alignments, the blocks of
the second alignment are filled with indels until the subsequences of the blocks of
the second alignment have equal sizes (Figure 5.2 C). Finally, the blocks of two

parents are crossed between them to create the child alignments (Figure 5.2 D).
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A) Select two random alignment

Parent Alignment 1 (X)

EGEK- - -DGGDPEGRMMS

R------ YKPQGPDRVNA
RGGTGGHDKADGGDTFDS
R-------- HIGGDTVNA

Parent Alignment 2 (Y)

EGEK-DGGD- - PEGRMMS
--R--YKPQ--GPDRVNA
RGGTGGHDKADGGDTFDS
---R--HI---GGDTVNA

B) cut random X in two blocks and tailor Y

X1 X2
EGEK- - -DGGDPEGRMMS
R------ YKIPOQGPDRVNA
RGGTGGHDKADGGDTFDS
R-------- IGGDTVNA

Y1l Y2
EGEK-DG{GD - - PEGRMMS
--R--YKPQ--GPDRVNA
RGGTGGHDKADGGDTFDS
I---GGDTVNA

C) Fill the blocks of Y with necessary indels

X1 X2

Y1 Y2
EGEK---DG GDPEGRMMS EGEK-DG- - -GD- -PEGRMMS
R------ YK PQGPDRVNA --R--YK-- -PQ--GPDRVNA
RGGTGGHDK ADGGDTFDS RGGTGGHDK @ ---ADGGDTFDS
R-------- HIGGDTVNA ---R--HI- HI---GGDTVNA

D) crossover the two alignment

Child Alignment 1 (Z1)

X1 Y2
EGEK- - -DGFGD- -PEGRMMS
R------ YKFPQ--GPDRVNA
RGGTGGHDK- - -ADGGDTFDS
R-------- I---GGDTVNA

Child Alignment 2 (Z2)

Y1 X2
EGEK-DG- -GDPEGRMMS
--R--YK--PQGPDRVNA
RGGTGGHDKADGGDTFDS
--R------ IGGDTVNA

Figure 5.2: Single point crossover operator: The first parent alignment (X) is cut straight
at a randomly chosen position, and two blocks are created (X1|X2). The second parent
alignment (Y) is tailored so that the right piece can be joined to the left piece of the first
parent (Y1|Y2). Then, the blocks of (Y1|Y2) are filled with indels in order to match the size

and keep the order of the letters in the sequences. In the end, the blocks of two parents are

crossed (X1]Y2 and Y1]Y2)
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5.5 Experimental Analysis

In this section, we describe the experimental analysis of PLS and IPLS with different pa-
rameters. Moreover, we compare them against our approach based on NSGA-II. At last, the
alignments produced by the IPLS approach are compared with those produced by single-
objective methods such as T-Coffee and Clustal Omega.

5.5.1 Performance Analysis of PLS and IPLS

In the following, we analyze the effectiveness of various parameters such as starting align-
ments, neighborhood, and perturbation, on the overall performance of PLS and IPLS. These
experiments also allow us to understand the functional relationships between the perfor-
mance of the algorithms and instance features, such as the number of sequences and their
sizes.

The implementations were coded in C and compiled with GCC version 4.6.1 with the
-0O3 compiler option. Experiments were performed on a cluster with 16 nodes, each one with
4-core Intel Core i7 CPU and 2 GB RAM, operating system Ubuntu 11.10. Except for the
compiler option, no other code optimization techniques were used in the experiments.

We used all the 38 instances of RV11 and 41 instances of RV20 of benchmark BAIiBASE
3.0. In our experiments, we considered PAM250 as the substitution matrix. For the ini-
tial alignments, three possibilities were examined: i) Rand, is a random feasible alignment
with the least possible number of indels (see Section 5.4.1, page 108); ii) T-Coffee, is a
consistency-based method that outperforms the others existing programs in terms of accu-
racy; iii) Clust, is a progressive method that outperforms T-Coffee in sequences with large
N/C terminal extensions (Pais et al., 2014). We considered the default parameters for the
last two programs.

We analyzed the effectiveness of neighborhood size by considering different values for k
in the k-block neighborhood. For a given instance, let Min denote the length of the smallest
sequence. We considered k € {Min,Min/2,Min/4,Min/8 Min/16}. The PLS terminates once
it is not possible to find non-dominated neighboring alignments or the time limit of 5 minutes
of CPU-time is reached.

We evaluated the quality of each approximate set by computing its hypervolume indi-
cator value (see Section 3.4.1, page 65), where the reference point for each instance is the
minimum substitution score minus one and the maximum number of indels plus one, that

was obtained from the runs of all local search variants. In order to obtain the reference
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hypervolume indicator value, we merged all approximate sets collected in the experimental
analysis, removed the dominated scores and computed the hypervolume of the remaining set.
This value is used as a reference value to evaluate the relative performance of each approach.
Then, for each approximate set, we computed the relative hypervolume indicator value (see
Section 3.4.1, page 66).

Tables 5.2 and 5.3 report the results obtained for PLS on the benchmark sets RV11 and
RV20, respectively. The results are averaged over 30 runs, for each of the five k values
and the three starting alignments. Column id corresponds to the instance id from the two
benchmark sets (BB1100*.tfa and BB200*.tfa, where * denotes the id); column m gives the
number of sequences; columns Min and Max correspond to the length of the smallest and the
largest sequence, respectively. The instances are shown in the tables according to the number
of sequences and the length of the smallest sequence. The values in bold correspond to the
best result obtained for each instance. The last column Init shows the relative hypervolume
indicator obtained from the non-dominated score of the two starting alignments: Clustal
Omega and T-Coffee.

The results indicate that PLS has better performance when starting with alignments
Clust and T-Coffee, instead of a feasible random alignment. Also, the best value for k
strongly depends on the number of sequences and, to a smaller extent, to their sizes. As a
rule, for the given cut-off time, large (low) k values achieve better performance on problems
with a smaller (larger) number of sequences. Moreover, column Init indicates that PLS
actively improves upon the two starting alignments.

Tables 5.4 and 5.5 report results obtained for IPLS on the same benchmark sets, averaged
over 30 runs, for k-block size equals to 2; we recall that Clust and T-Coffee are used as
starting alignments. To produce the perturbed alignments, we set N;, = 5, if the maximum
length of the unaligned sequences is less than 100; otherwise, Nj, is set to 1/20 of the
maximum length of the sequences. The results reported in the tables do not include the
CPU-time taken to compute the starting alignments. IPLS always terminates once the time
limit of 5 minutes of CPU-time is reached. Column PLS™%* gives the best value of PLS from
Tables 5.2 and 5.3. The best results for each sequence set are shown in bold. In most of
the instances, IPLS improves over PLS, although the best performance may depend on the
number of sequences and their sizes: a small (large) number of perturbations gives better

performance on larger (smaller) sequences and larger (smaller) number of sequences.
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118 5. Multiobjective Multiple Sequence Alignment

Table 5.4: Average relative hypervolume indicator value (Iggy) for IPLS with several per-
turbation iterations (P) for each instance of dataset RV11. The results are averaged over 30

runs. See text for more details

id m Min Max PLS"™** P=1 P=2 P=4 P=8 P=16
22 4 63 205 0.90 0.91 0.87 0.89 0.88 0.97
25 4 64 103 0.86 0.86 0.89 0.91 0.89 0.87
29 4 81 138 0.88 0.91 0.91 0.94 0.92 0.98
1 4 83 91 0.35 0.36 0.38 0.40 0.42 0.44
9 4 97 337 0.87 0.87 0.81 0.87 0.83 0.86
21 4 102 139 091 0.95 0.89 0.92 0.88 0.93
8 4 104 540 0.89 0.87 091 0.97 0.88 0.90
17 4 247 264 0.91 0.92 0.93 0.95 0.96 0.97
15 4 297 327 0.94 0.90 0.92 0.96 0.97 0.97
12 4 320 397 0.92 0.92 0.91 0.96 0.97 0.99
24 4 372 465 0.90 0.87 0.85 0.86 0.83 0.80
4 4 390 456 091 0.93 0.87 0.88 0.88 0.84
3 4 414 516 092 0.92 0.89 0.89 0.88 0.88
10 4 490 492 0.95 0.97 0.95 0.96 0.90 0.94
13 5 51 101 0.87 0.91 0.92 0.93 0.93 0.95
35 5 71 138 0.85 0.86 0.89 0.88 0.93 0.99
11 5 160 242 0.94 0.94 0.89 0.91 0.88 0.91
37 5 335 1192 0.93 0.92 0.94 091  0.99 0.98
14 6 502 634 0.96 0.95 0.97 0.95 0.94 0.91
26 7 76 906 0.96 0.99 0.96 0.95 0.66 0.60
27 7 175 432 0.95 0.91 0.87 0.85 0.85 0.69
23 7 231 407 0.93 0.89 0.81 0.82 0.82 0.79
2 8 52 193 0.88  0.92 0.84 0.82 0.84 0.78
6 8§ 186 283 0.88  0.88 0.77 0.75 0.75 0.66
32 8§ 226 403 0.93 0.88 0.85 0.83 0.81 0.74
38 8 261 614 0.94 0.86 0.88 0.89 0.85 0.81
36 8 298 436 0.94 0.94 0.94 0.94 0.96 0.97
16 8§ 316 729 0.95 0.94 0.93 0.96 0.95 0.99
34 8 401 729 0.94 0.85 0.83 0.81 0.80 0.77
20 9 201 237 0.92 0.96 0.97 0.96 0.90 0.83
7 9 385 457 0.93 0.92 092  0.97 0.93 0.88

28 10 93 211 091 0.95 0.95 0.90 0.87 0.86
19 10 299 396 0.91 0.85 0.85 0.83 0.83 0.81
33 11 85 239 0.92 0.92 0.91 0.90 0.87 0.84
31 11 300 611 0.96 0.95 0.88 0.89 0.84 0.82
30 14 236 392 0.90 0.89 0.86 0.81 0.80 0.78

5 14 329 465 0.85 0.87 0.83 0.80 0.75 0.75
18 14 418 750 0.90 0.94 0.92 0.90 0.88 0.87
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Table 5.5: Average relative hypervolume indicator value (Iggy) for IPLS with several per-

turbation numbers (P) for each instance of the dataset RV20. The results are averaged over

30 runs. See text for more details

id m Min Max PLS"** P=1 P=2 P=4 P=8 P=16
20 16 74 697 095 0.95 0.95 0.88 0.83 0.73
1 16 247 527 0.90 0.90 0.90 0.87 0.88 0.85
2 20 52 1520 0.82 093 0.94 0.94 0.89 0.84
11 21 95 631 0.90 0.97 0.95 0.91 0.86 0.85
7 23 381 457 0.93 0.95 0.96 0.95 0.89 0.83
19 24 401 729 0.96 0.91 0.94 0.95 0.95 0.87
16 27 106 458 0.89 0.91 0.90 0.80 0.78 0.72
12 27 210 634 0.89 0.89 0.82 0.80 0.59 0.52
13 28 447 747 0.94 0.69 0.77 0.86 0.83 0.87
29 29 64 167 0.83 0.89 0.84 0.82 0.81 0.81
9 29 254 415 0.94 0.89  0.96 0.94 0.82 0.76
2v 29 279 1052 0.87 0.73 0.81 0.87 0.90 0.92
10 29 577 1233 0.92 0.64 0.73 0.80 0.90 0.94
24 30 74 739 0.86 0.80 0.85 0.90 0.91 0.88
23 31 202 244 0.92 0.98 0.95 0.91 0.87 0.73
26 32 271 1016 0.86 0.73 0.85 0.90 0.93 0.82
35 35 226 982 0.83 0.80 0.78 0.82 0.88 0.90
15 37 54 274 0.94 0.82 091 0.94 0.86 0.80
38 42 79 199 094 0.94 0.94 0.84 0.73 0.69
5 42 343 474 0.97 0.83 0.85 0.87 0.91 0.93
17 45 509 713 0.97 0.71 0.74 0.81 0.87 0.94
30 47 76 155 0.84 0.84 0.87 0.83 0.80 0.83
33 48 81 155 0.89 0.95 0.89 0.81 0.67 0.69
41 48 293 1520 0.64 0.88 0.84 0.82 0.83 0.86
6 51 224 293 0.95 0.85 091 0.95 0.93 0.86
18 53 296 381 0.96 0.70 0.87 0.94 0.83 0.67
21 53 418 838 0.83 0.89 0.91 093 0.94 0.91
28 54 241 610 0.97 0.96 0.97 0.96 0.94 0.93
4 55 401 734 0.93 0.81 0.80 0.84 0.89 0.94
8 56 98 1520 0.72 0.72 0.78 0.81 0.85 0.87
22 58 320 381 0.89 0.62 0.68 0.79 0.91 0.92
34 59 234 548 0.85 0.75 0.75 0.82 0.88 0.86
31 60 175 432 0.92 0.87 0.87 0.83 0.82 0.88
32 61 93 149 0.97 097  0.98 0.88 0.73 0.67
37 65 160 810 0.84 0.80 0.84 0.81 0.80 0.91
14 65 333 729 0.66 0.84 0.84 0.83 0.86 0.90
3 74 409 800 0.88 0.73 0.90 0.81 0.76 0.95
25 81 372 518 0.87 0.82 0.86 0.85 0.81 0.96
40 87 273 570 0.87 0.83 0.92 0.91 0.88 0.94
36 91 82 335 0.81 0.82 0.83 0.77 0.78 0.92
39 91 298 458 0.85 0.73 0.76 0.79 0.81 0.85
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5.5.2 Comparison of IPLS with NSGA-II

In this section, we compare our IPLS approach with NSGA-II as described in Section 5.4.3.
To create the initial solutions for both algorithms, we consider the pre-computed alignments
introduced in Table 5.1. We use the default parameters suggested for these programs. In
the IPLS approach, the initial set of alignments ®q were filled up directly with the obtained
alignments from Table 5.1. In the NSGA-II, we used the approach described in Section
5.4.3. In addition, we set the population size to 100, and used the mutation and crossover
operators as explained in Section 5.4.3, page 113. We set the probabilities of 0.8 and 0.2 for
the single-point crossover and gap shifting mutation operators as it is proposed by Ortufio
et al. (2013), respectively.

We selected a subset of the benchmark BAIIBASE 3.0, in particular, we chose the first
ten datasets from the families RV11, RV12, RV20, RV30, RV40 and RV50, which sums up
to 60 problem instances. The stopping condition was set to 50,000 function evaluations for
both methods (NSGA-IT and IPLS). PAM250 is used as the substitution matrix.

We used relative hypervolume indicator and the empirical attainment functions (EAF).
The hypervolume indicator was applied in the same way as described in the previous section.
The EAF was mainly used to visualize the differences of performance in the objective space.

The best results for each problem instances are shown with bold faces in Table 5.6.
From these tables, a first observation is that IPLS obtains the best average values for a
more significant number of instances. In almost all the sample instances of RV20, RV 30,
RV40, and RV50 families, IPLS has larger indicator values than NGSA-II. In addition, IPLS
in 80% of the instances in RV11 and 60% of the instances in RV12 has better indicator
values. IPLS presents better results when the sequences instances are more similar. Note
that RV11 contains datasets with less than 20% residue identity between groups and RV12
contains datasets with residue identity between 20% and 40%. The remaining dataset groups
comprise family sequences with more than 40% similarity.

We used the EAF tools? to compute bi-dimensional EAFs from the collection of approx-
imation sets and to plot the attainment surfaces as well as the differences in terms of EAFs
produced by pairs of heuristics (Lopez-Ibanez et al., 2010). Figure 5.3 and 5.4 show the EAF
difference plot for instances BB11008 and BB20003, respectively. The differences in favor of
NSGA II are shown in the left plots whereas those in favor of IPLS are shown in the right
plots. The EAF difference plot, for instance, BB20003 shows the superiority of IPLS over

2EAFtools is an R script, available at http://lopez-ibanez.eu/eaftools.



5.5. Experimental Analysis 121

NSGA-II in the objective space. However, for instance, BB11008, NSGA-II performs better
on the minimization of indels. These two findings are consistent with those obtained in the

remaining instances. Appendix A reports the EAF plots obtained in the 60 instances.

5.5.3 Comparison of IPLS with Clustal Omega and T-Coffee

In order to gain insight into the absolute quality of the alignments produced by IPLS, we
compared the alignments produced by IPLS with the reference alignments in the BAIiIBASE
benchmark (Thompson et al., 1999). The BAIiBASE dataset defines a well-known benchmark
to standardize the comparison of sequence alignment results. It consists of a group of protein
sequences that are properly prepared to be aligned by MSA algorithms (see Section 2.4.4,
page 40). We rely on the correctly aligned residue pairs (SP) and correctly aligned columns
(TC) measures (see Section 2.4.3, page 37). We used seven different datasets from BAIIBASE
with specific features chosen from this benchmark (see Table 5.7). Columns Reference and
id correspond to the reference and id number of the dataset in the BAliBASE benchmark.
Columns m, Min and Max correspond to the number of sequences, length of the smallest
and largest sequence, respectively. Len corresponds to the size of reference alignment in the
BAIiBASE benchmark.

We ran IPLS 30 times on these datasets, and for each collection of runs, we chose the
alignment with the least number of indels. We computed the SP and TC ratios by using
this alignment and the reference alignment available for each chosen dataset in BAliBASE.
For the calculation of the SP ratio, we used the substitution matrix PAM 250. Moreover,
for comparison purpose, we performed the same procedure for the alignments produced by
Clustal Omega and T-Coffee.

Tables 5.8 and 5.9 show the results obtained with SP and TC ratios, respectively. The
boldface values represent the best ratio. From Table 5.8, it can be observed that IPLS
obtained the best value for all the tested datasets. In Table 5.9, the best TC ratio is either
from T-Coffee or Clustal Omega. Note that a null TC value was obtained by the alignment
of Clustal Omega in RV12 id 20 and RV20 id 20, and by T-Coffee in set RV20 and id 1.
In general, IPLS has better results from both Clustal Omega and T-Coffee in terms of SP
ration. Clustal Omega and T-Coffee have better outcomes in TC ratio. However, there are
cases that either Clustal Omega or T-Coffee have null values, while the IPLS has positive

results.
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Table 5.6: Average relative hypervolume indicator value (Irgy) for IPLS and NSGA-IT for
the first 10 instances of the datasets RV11, RV12, RV20, RV30, RV40 and RV50. The results

are averaged over 30 runs for each algorithm. See text for more details

RV11 RV12
id NSGA-II IPLS id NSGA-II IPLS
BB11001 0.91 &+ 0.03 0.89 & 0.01 BB12001 0.95 £ 0.01 0.95 &+ 0.01
BB11002 0.95 £ 0.01 0.96 £+ 0.01 BB12002 0.90 £ 0.04 0.89 £ 0.04
BB11003 0.93 £ 0.02 0.94 + 0.02 BB12003 0.88 & 0.04 0.85 + 0.03
BB11004 0.95 £ 0.01 0.96 £+ 0.01 BB12004 0.89 £ 0.04 0.91 + 0.04
BB11005 0.96 £ 0.01 0.97 £+ 0.01 BB12005 0.92 4 0.02 0.93 £+ 0.02
BB11006 0.93 £ 0.01 0.95 + 0.02 BB12006 0.93 & 0.02 0.91 £ 0.03
BB11007 0.93 £ 0.01 0.94 + 0.02 BB12007 0.94 + 0.02 0.96 + 0.01
BB11008 0.93 & 0.01 0.92 £+ 0.02 BB12008 0.89 + 0.02 0.91 + 0.02
BB11009 0.95 £ 0.00 0.96 £+ 0.01 BB12009 0.92 + 0.02 0.94 + 0.02
BB11010 0.94 £ 0.01 0.94 £+ 0.01 BB12010 0.93 & 0.02 0.93 & 0.03

RV20 RV30
id NSGA-II IPLS id NSGA-II IPLS
BB20001 0.86 + 0.03 0.90 & 0.02 BB30001 0.85 £ 0.04 0.90 £+ 0.03
BB20002 0.97 £ 0.03 0.98 & 0.00 BB30002 0.93 £ 0.02 0.93 £+ 0.02
BB20003 0.85 + 0.03 0.92 4 0.02 BB30003 0.84 £+ 0.03 0.89 + 0.04
BB20004 0.91 £0.03 0.93 £+ 0.01 BB30004 0.92 + 0.02 0.94 + 0.02
BB20005 0.94 + 0.02 0.96 & 0.02 BB30005 0.89 £ 0.03 0.90 + 0.04
BB20006 0.91 £0.02 0.93 £+ 0.02 BB30006 0.91 & 0.03 0.91 + 0.02
BB20007 0.94 + 0.01 0.95 4 0.02 BB30007 0.93 £+ 0.01 0.94 £ 0.01
BB20008 0.97 =£0.00 0.99 £+ 0.00 BB30008 0.94 £ 0.02 0.96 £+ 0.02
BB20009 0.91 £ 0.03 0.92 & 0.02 BB30009 0.93 £+ 0.02 0.93 £+ 0.02
BB20010 0.88 & 0.04 0.93 + 0.04 BB30010 0.91 £ 0.02 0.94 £+ 0.02

RV40 RV50
id NSGA-II IPLS id NSGA-II IPLS
BB40001 0.93 +0.02  0.96 &+ 0.03 BB50001 0.95 4+ 0.01 0.96 £+ 0.01
BB40002 0.95 £ 0.01 0.96 £+ 0.01 BB50002 0.98 &+ 0.00 0.99 &+ 0.00
BB40003 0.92 £ 0.02 0.95 + 0.02 BB50003 0.96 &+ 0.01 0.98 4 0.01
BB40004 0.91 £ 0.03 0.92 £+ 0.03 BB50004 0.95 + 0.01 0.96 &+ 0.01
BB40005 0.91 £ 0.03 0.94 £+ 0.03 BB50005 0.93 &+ 0.01 0.95 4= 0.01
BB40006 0.92 £ 0.02 0.95 £+ 0.02 BB50006 0.95 + 0.01 0.96 £+ 0.01
BB40007 0.96 £ 0.01 0.97 £+ 0.01 BB50007 0.91 + 0.02 0.93 + 0.03
BB40008 0.92 £ 0.01 0.95 £+ 0.01 BB50008 0.91 + 0.02 0.92 4+ 0.03
BB40009 0.94 + 0.01 0.95 £+ 0.01 BB50009 0.93 + 0.01 0.95 &+ 0.01
BB40010 0.83 & 0.05 0.81 + 0.06 BB50010 0.95 + 0.00 0.98 =+ 0.00
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Figure 5.3: EAF difference plot for instance BB11008 from family group RV11.
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Figure 5.4: EAF difference plot for instance BB20003 from family group RV12.
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Table 5.7: The selective datasets from difference reference of the benchmark.

Reference id Identity m Min Max Len
RV11 1 <20% 4 8 91 96
RV11 4 <20% 4 390 456 603
RV12 20 <20% & >40% 4 118 129 141
RV12 42 <20% & >40% 4 448 561 611
RV20 20 >40% 16 74 697 615
RV20 1 >40% 16 247 527 780
RV30 17 - 15 231 370 416
RV40 10 — 9 67 214 275
RV40 14 - 9 298 609 712
RV50 4 — 9 386 505 547

Table 5.8: The results of SP score in T-Coffee, Clustal Omega and IPLS on the selected test

cases.

Reference id Clustal Omega T-Coffee IPLS

RV11 1 0.956 0.965 0.985
RV11 4 0.033 0.706 0.788
RV12 20 0.331 0.973 0.981
RV12 42 0.678 0.789 0.85
RV20 20 0.535 0.934 0.946
RV20 1 0.939 0.596 0.951
RV30 17 0.765 0.787 0.811
RV40 10 0.875 0.872 0.878
RV40 14 0.878 0.890 0.894
RV50 4 0.973 0.983 0.988

Table 5.9: The results of TC score in T-Coffee, Clustal Omega and IPLS on the selected test

cases.

Reference 1id Clustal Omega T-Coffee IPLS

RV11 1 0.912 0.930 0.885
RV11 4 0.408 0.554 0.378
RV12 20 0.000 0.957 0.851
RV12 42 0.548 0.662 0.434
RV20 20 0.000 0.775 0.654
RV20 1 0.775 0.000 0.459
RV30 17 0.552 0.581 0.535
RV40 10 0.639 0.590 0.330
RV40 14 0.671 0.658 0.463

RV50 4 0.919 0.940 0.892
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5.6 Summary and Discussion

In this chapter, we formulated the multiobjective multiple sequence alignment problem and
proposed a Pareto Local Search (PLS) algorithm for this problem according to a given
definition of neighborhood. Furthermore, we extended this approach to iterated local search
with a particular definition of perturbation (IPLS).

We analyzed the effect of various parameters such as starting alignments, neighborhood,
and perturbation on the overall performance of PLS and IPLS. The results indicate that
PLS improves upon the starting alignments and IPLS has better performance than PLS.
Moreover, we compared our IPLS approach with our adaptation of NSGA-II. From the
experimental analysis, we have observed that IPLS obtains the best performance in terms of
relative hypervolume in a large number of instances. At last, we compared the IPLS with two
single-objective methods: Clustal Omega and T-Coffee. From the chosen set of alignments
from the reference benchmark, we observed that the alignment obtained from IPLS with the
least number of indels has a better ratio in terms of SP and it has competitive results in
terms of TC score.

For the future work, we would like to consider other starting alignments that are not
just based on the similarity but also take into account other biological criteria such as the
secondary structure of the alignments. Further, we may test different perturbation methods.
One of the possibilities is to use the mutation methods that is proposed in genetic algorithms
such as the one used in MOSAStrE (Ortutio et al., 2013).

In the next chapter, the other main contribution of this thesis is introduced, in particular,
the application of the multiobjective formulation of sequence alignment in the construction

of phylogenetic trees.






Chapter 6

An Application to the Construction of Phy-

logenetic Trees

6.1 Introduction

Phylogenetic trees are diagrams that represent the evolutionary relationships among different
groups of organisms, or among a family of related nucleic acid or protein sequences, e.g., how
might have this family been obtained during evolution (Sleator, 2011). The construction of
phylogenetic trees requires multiple sequence alignment methods to align genetic data.

Different alignments may lead to different phylogenetic trees and, consequently, to dif-
ferent possible relationships between the organisms under study. In fact, Wong et al. (2008)
recently have recently shown that different alignment programs often lead to different tree
topologies. Our working hypothesis is that more information can be extracted from Pareto
optimal alignments, leading to different tree topologies. This would help the biologist to
describe the inferred phylogenies better.

In this chapter, we describe a method for constructing phylogenetic trees from the non-
dominated score set obtained from all pairwise combinations of sequences. In the context
of the multiobjective framework, it is important to understand whether the non-dominated

score set can provide further information than that produced by known methods. The main
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contribution of this chapter is proposing a new method for the construction of phylogenetic
trees based on the multiobjective sequence alignment. Moreover, we illustrate the application
of this method on known sequence data to show the effectiveness of this approach in practice.
The resulted publications are as follows: the publication of a journal article (Abbasi et al.,
2013a) and two posters presented at international conferences (Abbasi et al., 2011, 2012)
is the proposal of a novel approach to constructing the phylogenetic trees. Furthermore,
we discuss its application for deriving further information about the reliability of the tree
branches.

This chapter is organized as follows. We describe the required definitions, notations and
the main steps to construct a phylogenetic tree in Section 6.2. Section 6.3 presents the
main methods that can be applied to create a phylogenetic tree from given input sequences.
Section 6.4 introduces our biobjective method for constructing phylogenetic trees. In Section
6.5, two data sets are used for illustration purpose, and the resulting trees are compared with
those obtained with a well-known technique. At last, we present the main conclusions and

discussion in Section 6.6.

6.2 Introduction to Phylogenetic Trees

Phylogeny refers to the evolutionary history of species. Phylogenetics is the science that
explains the evolutionary relationship between species (Randall T. Schuh, 2009). In the
molecular phylogenetic analysis, the sequence of a common genome or protein can be used
to assess the evolutionary relationship among species. The evolutionary relationship obtained
from the phylogenetic analysis usually describes as phylogenetic tree. A phylogenetic tree or
evolutionary tree is a diagrammatic representation of the evolutionary relationships among
various species. It is a branching diagram composed of nodes and branches.

In phylogenetic trees, the terminal nodes (leaves) represent the operational taxonomic
units (OTUs), which are the actual objects under analysis such as the species, populations,
genome or protein sequences. The internal nodes represent hypothetical taxonomic units
(HTUs) that show the last common ancestor to the nodes starting from this point. A branch
or an edge describes the time estimate of the evolutionary relationships among the taxonomic
units. One branch can connect only two nodes. Phylogenetic trees can be rooted or unrooted.
A rooted tree has a node, the root, from which the rest of the tree diverges and corresponds
to the last common ancestor. Figure 6.1 shows different forms of phylogenetic trees; (A) and

(C) are rooted trees, while (B) is an unrooted tree. The tree in (C) is a dendrogram obtained
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Figure 6.1: Different representations of a phylogenetic tree.

from hierarchical clustering methods.

Several methods exist to construct/reconstruct phylogenetic trees. However, they deal

with certain assumptions such as i) the sequences are homologous, that is, the sequences

share a common ancestry, and they have diverged through time as they evolved; and i) each

position inside the sequences evolved independently.

In general, construction of a phylogenetic tree consists of the following steps:

i)

ii)

iii)

iv)

Selection of a proper molecular marker (genomes/proteins). A molecular marker in
phylogenetic analysis is the biological information that is used to infer the evolutionary
relationships among taxa. Depending on the need, nucleic acid or protein sequences

can be chosen as the appropriate marker.

Sequence alignment. Alignment of sequences is the most critical step in constructing a

reliable phylogenetic tree. Alignment identifies blocks of conserved residues.

Selection of a model of evolution. An evolutionary model of sequence data is a model
of nucleotide or amino acid substitution and resulting divergence of sequences. The
simplest way to determine divergence is to count the number of substitutions. The
simplest substitution model is the Bishop Friday model (Bishop and Friday, 1985)
which assumes that all amino acids substitutions occur at an equal frequency and all

substitutions occur at the same rate.

Construction of the phylogenetic tree. Many methods have been described for recon-

structing phylogenetic trees. The methods can be classified into two major types: 1)
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Figure 6.2: Illustration of bootstrapping method for a phylogenetic tree.

distance-based and ii) character-based. In Section 6.3, some of these methods are

explained in more detail.

Assessment of the reliability of the tree. Determining the reliability of a tree means
deciding whether the topology of the tree is accurate or a better tree can be obtained.
This question is answered by bootstrapping the tree. Bootstrapping, introduced in
Felsenstein (1985), is a resampling analysis that involves generating a series of se-
quence alignments by sampling, with replacement, columns from the original sequence
alignment. Each of these alignments is then used to rebuild the tree through the same
analysis as the original sample to obtain many bootstrap trees. At last, the topology
of these bootstrap trees is compared with that of the original to assess the reliability
of the original phylogenetic tree. A bootstrapping may re-sample 500-1000 trees from
the original sequences. If, for example, the same node recovered through 95 out of
100 iterations of taking out residues and resampling the tree, then the bootstrap value

would be 0.95 which indicates that the node is well supported. A node that is well
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Sequences: For each comparing Distar.lce
sequences pair: The matrix
1 2 3 4 5 6 distance is the number of 1 2 3
substitutions out of 6
a A T G G A A a 0 0.3 0.5
(a,b): 2/6=0.3
b 2 T G G C T - ~(ac): 1/6=02 ------ b 0.3 0 0.2
(b,e): 3/6=0.5
¢ A T G T A A c 0.5 0.2 0

Figure 6.3: The distance matrix of three sequences with length 6. The distance is calculated

as the number of substitutions between sequences divided by their lengths.

supported suggests that most of the residues support that node as removing them at
random would not lead to a different reconstruction of that node. Figure 6.2 illustrates

the principle of bootstrapping.

6.3 Construction of the Phylogenetic Tree

Phylogenetic tree construction methods can be categorized in two ways: distance and character-
based methods (Sleator, 2011). The most common distance-based methods are UPGMA
(Sneath et al., 1975) and Neighbor-Joining (Saitou and Nei, 1987). Both of these algorithms
are based on a distance matrix that expresses “genetic distance” between the sequences.
The alternative to these methods is the character based methods such as Maximum Parsi-
mony (Fitch, 1971) or Maximum Likelihood (Felsenstein, 1981), which take a probabilistic

approach. The following sections describe these methods in more details.

6.3.1 UPGMA

The UPGMA (Sneath et al., 1975) is one of the first distance-matrix methods that uses
sequential clustering to build a rooted phylogenetic tree. First, all sequences are compared
through pairwise alignment to compute a distance matrix. Figure 6.3 shows a simple com-
putation of a distance matrix for 3 sequences. Using this matrix, the two sequences with
minimum distance are identified and clustered as a single pair. Next, the distance between
this joined pair and all other sequences is recalculated. Using these new distances, the pro-
cess is repeated until all sequences have been included in the cluster. The result of UPGMA

can be visualized as a rooted dendrogram. In the following, we illustrate this procedure with



132 6. An Application to the Construction of Phylogenetic Trees

r =1
D,.=D

While distance matrix D, has size larger than 2 do

Step 1. Find two distinct terminal/internal nodes with the shortest pairwise distance value in the

matriz D,. Let (a,b) denote the indices of the two such nodes.

Step 2. Connect a and b and create a new node u. The branch lengths () between edge {u,a}
and edge {u,b} are equal to the half of the shortest pairwise distance (the mean distance)

in position Dy[a,b].

Step 3. Generate a new distance matrix Dy41 from D, by removing rows and columns a and b,
respectively, and add a new row/column with index u. Each distance between u and the
other nodes i (different from a and b) is given by the mean distance value between a and
i and between b and i. In case a or b is an internal node, this distance is calculated as
the mean value between all pairwise combinations of the nodes arising from that internal

node.

Step4. r=r+1

Figure 6.4: Steps of the UPGMA method

an example.

Consider n sequences and a distance matrix D of size n x n where D][a, b] is the distance
between the a-th sequence and the b-th sequence. The goal is to construct a rooted tree that
matches the information from the distance matrix. The UPGMA algorithm starts from the
two closest nodes and repeats the five steps until all the nodes are connected and branch

lengths specified. Figure 6.4 shows the main steps of this method.

Example 6.1. Consider 5 sequences (a, b, ¢, d, e) with the distance matriz D. The algorithm

works as follows:
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a b c d e
al|0 5 7 6
b|5 0 7 10 9
c 7 0 7 6
a|7 10 7 5
e|6 9 6 5 0

Copy matriz D to D1.

Iteration (r < 1)

Step 1. The minimum value in the distance matriz D1 corresponds to the pair (a,c) with
value 4.

Step 2. The tree starts by connecting (a,c) through a new node u. The new node u will

have the following branch lengths from a and c.

dla,u] = d[c,u] = Di[a,c]/2 u | a
—4/2=2

Step 3. Generate the matriz Dy from Di. The two indices (a and c) are removed and
replaced by the new index (u). Each distance between u and the other nodes i(different from
a and b) is given by the distance between a and i plus the distance between b and i, divided
by two.

Dslb,u] = (Dla,b] + Dlc,b]) /2= (5+T7)/2=6

Dyld,u] = (Dla,d] 4+ Dlc,d])/2 =(T+7)/2=7

Dsle,u] = (D[a, e] + Dic,e])/2 = (64+6)/2 =6

Therefore, the new distance matriz Do becomes:

u b e
u|0 6
b|6 0 10 9
d|7 10 0
e|6 9 0

Step 4. r <+ 2
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r =1
D, =D
While distance matrix D, has size larger than 2 do

Step 1. Calculate the matriz M from distance matriz D, as follows, where n is the number of

Sequences.

Mli,j) = (n = 2)Dy[i,j] = > Dyli, k] = Y Dy[j k]
k=1 k=1
Step 2. Find a pair (a,b) from matriz M with the lowest value.

Step 3. Create a new node u in the tree that joins nodes a and b such that the branch length §

between (a,u) and (b,u) is calculated as follows:

§(a,u) = %Dr[mb] + ﬁ (; Dyfa,k] = > Db, k])

] —
= k=1
0(b,u) = Dyla,b] — 6(a,u)

Step 4. Create a new distance matriz Dy41 from D, by removing the rows and columns a and b,
respectively, and add a new row/column with index u. Calculate the distance of this new

node u to the other node k (distinct from a and b):

Dyia[u, k] = = (Dy[a, k] + Dy[b, K] — Dy[a, b))

N

Step 5. r=1r+1

Figure 6.5: Steps of Neighbor Joining method

Repeat all the steps until the tree topology is fully resolved.

UPGMA for a dataset with n nodes requires n — 3 iterations. At each iteration, a matrix
D with size n x n is constructed and searched. As a result, the trivial computation time
is O(n3). However, for certain datasets is possible to obtained O(n?) (Gronau and Moran,
2007). Although it is a fast algorithm, it does not create a realistic result. UPGMA is only
suitable when the data is ultrametric, i.e., the distances from the root to the terminal nodes
are equal. Real sequence data is almost never ultrametric. Therefore, this method is not

commonly applied in phylogenetics for inferring relationships (Stamatakis, 2004).
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6.3.2 Neighbor Joining

Neighbor-joining methods (Saitou and Nei, 1987) use a distance matrix for tree construction
similar to UPGMA. Consider n sequences and a distance matrix D. The goal is to build a
tree such that the distance measured between terminal nodes (OUTs) ¢ and j corresponds to
Dii, j]. Fitting the exact distances in order to obtain a unique tree requires some conditions
on distance values that hardly hold. Therefore, the algorithm initially sums up individual
distances to calculate the divergence of an OUT (sequence) from all others and then based on
this sum, a corrected distance matrix is calculated (Stamatakis, 2004). Figure 6.5 illustrates
the main steps of this algorithm. It considers a tree topology such as a star and repeats the

steps until the final topology of the tree with branch lengths are specified.

Example 6.2. Consider the same sequences (a, b, ¢, d, e) from Ezample 6.1 and the

following star tree:

C,

a b c¢c d e
al0 5 4 7 6 b q
b|5 0 7 10 9
cla 7 07 6 TxoT
d|7 10 7 0 5 .
e|6 9 6 5 0 a .-

e
Step 1. Calculate matrix M from the distance matriz.

a b c d e
a 0 -13.0 -11.5 -10.0 -10.0
b | -13.0 0 -11.5 -11.0 -11.0
c|-11.5 -11.5 0 -10.5 -10.5
d| -10.0 -11.0 -10.5 0 -13.0
e | -10.0 -11.0 -10.5 -13.0 0

Step 2. Find the minimum value in matrix M. The pairs (a,b) or (d,e) have the
minimum value, -13; For this example, we choose (a,b).

Step 3. Create a new node u and calculate the branch lengths from a and b. Then join
a and b in the tree according to their lengths and the other nodes stay in the form of a star.

Branches with dotted lines have unknown lengths.



136 6. An Application to the Construction of Phylogenetic Trees

(S(a,u):5/2+2 [(54+4+746)—(B5b+74+10+9)] =1

1
G-2)
o(bju)y=5—-1=4

Step 4. Create a new distance matrix Do from Dy by removing the rows and columns

related to a and b and add a new one for u. Calculate the distances of all other nodes to u

according to the formula in Step 4.

u c d e

Dslu,c] = 3 (Dila, ] + Di[b,c] — Dila,b]) = 3(4+7—5) =3 u|0 3 6 5
Dsfu,d] = 1(Di[a,d] + Di[b,d] — Difa,b]) = £(7+10 — 5) = 6 c|3 0 7 6
Dslu,e] =1 (Difa,e] + Dilb,e] — Difa,b]) = 3(6+9—5) =5 d|e 7 0 5
e|b5 6 5 0

Repeat all the steps until the tree topology is fully resolved.

Neighbor-joining on a set of n nodes requires n — 3 iterations. At each iteration, a
matrix M with size n x n is constructed and searched. As a result, the time complexity
of the algorithm is O(n3). Note that this method is based on the criterion of “minimum-
evolution”, i.e., at each stage, a topology is chosen so that the length of the branches has
the lowest value (Gascuel and Steel, 2006). Therefore, if the distance matrix is tree-like,
i.e., there is a tree that exactly corresponds to the distance matrix, then neighbor-joining
returns that tree; otherwise it may not give a correct answer. Nevertheless, since Neighbor-
joining is fast and does not need ultrametric data, it became the most widely used method

for constructing phylogenetic trees with large data sets (Gascuel and Steel, 2006).

6.3.3 Maximum Parsimony

The Maximum Parsimony (MP) (Fitch, 1971) method computes many trees from the given

data set and assigns a cost to each tree. MP assumes that the simplest tree is the most
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Figure 6.6: Informative and non-informative sites in maximum parsimony method.
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Figure 6.7: Principles of tree construction by the maximum parsimony method. Tree 1
is the most parsimonious tree because its topology is based on the minimum number of

substitutions.



138 6. An Application to the Construction of Phylogenetic Trees

plausible one. This tree is the one that requires the fewest number of substitutions to
explain the data directly in the alignment. Therefore, parsimony uses the data and does not
attempt to use any model to estimate the total number of substitutions. If more than one
tree with the smallest number of substitutions can be obtained, then the trees are equally
parsimonious. In this method, the trees are constructed by using informative sites. A site
(i.e., alignment column) is considered to be informative if it has at least two different kinds
of residues represented in at least two of the sequences. Figure 6.6 shows an alignment and
the corresponding informative/non-informative sites. Columns 5 and 7 are informative sites.

The main steps of this method are as follows:

i) Identify all informative sites in the multiple alignment.

ii) At each informative site and for each possible tree calculate the minimum number of

substitutions.
iii) Sum up the number of substitutions for each possible tree.

iv) A tree with the smallest number of substitutions is selected as the most likely tree.

Figure 6.7 shows an example of tree construction by maximum parsimony using the
informative sites (columns 5 and 7) from the alignment in Figure 6.6. There are three
different topology tree for each column. Tree 1 in columns 5 or 7 has the minimum number
of substitution, which is one. The total number of substitutions for Tree 1 is two. Therefore,
Tree 1 is the most parsimonious tree since its topology is based on the minimum number of
substitutions.

In MP, the search for an optimal tree is a computationally intractable problem; The
large parsimony problem is challenging and is an NP-complete problem (Foulds and Graham,
1982). However, a tree can be computed in polynomial time. Given n aligned sequences of
length k, the most parsimonious tree can be computed in O(nk) (Fitch, 1971). Furthermore,
the MP works well when the sequences being compared are not too divergent. However, even
if the sequences are not very different, but the long branch attraction scenario arises, then

the resulting tree maybe misleading (Hendy and Penny, 1989; Huelsenbeck, 1995).
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6.3.4 Maximum Likelihood

Maximum likelihood (ML) (Felsenstein, 1981) is a statistical method that estimates the un-
known parameters of a probability model. The ML method is currently widely used for
the construction of the phylogenetic tree. ML evaluates the probability that the selected
evolutionary model predicts the observed sequences. In other words, the topology of the
phylogenetic trees constructed using maximum likelihood has the highest probability of pro-
ducing the observed sequences.

It is known that ML is a consistent method. Moreover, it has the ability to make statistical
comparisons between topologies and data sets, and it can return several equally likely trees. A
disadvantage of ML is the extensive computation (Egan and Crandall, 2006). Finding optimal
ML trees in general is an NP-hard problem (Chor and Tuller, 2006). Exact algorithms are
usually bounded to 20 sequences. For larger sequences, heuristic approaches are commonly

applied.

6.3.5 Overall Discussion

Distance-based methods require evolutionary distance, i.e., the number of substitutions that
have occurred along the branches between two sequences, between all pairs of OUTs. By
summarizing the input data (e.g., sequence) into a matrix of pairwise distances, distance
methods inevitably face a loss of information; this usually leads to less accurate tree recon-
structions than those of character-based methods, which entirely use the input data.

Due to the simplicity of their input, heuristic distance methods are the fastest available
and, therefore, are preferable when speed is an essential requirement (e.g., a large number of
taxa, or when a large number of trees must be generated). Moreover, they also produce only
one tree, and thus it is not possible to examine competing hypotheses about the relationship
between sequences.

On the contrary, character-based methods operate directly on the aligned sequences
rather than on pairwise distances. MP does not require an explicit model of sequence evo-
lution; it identifies the trees that involves the smallest number of mutational substitutions
necessary to explain the differences among the data at hand. In many cases, MP methods
are relatively free of assumptions considering nucleotide and amino acid substitution. How-
ever, these methods can lead to wrong relationship estimates for similar sequences (Hendy
and Penny, 1989; Huelsenbeck, 1995). In ML, the topology that gives the highest ML value
is chosen as the final tree. One of the strengths of the ML method is the ease with which
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hypotheses about evolutionary relationships can be formulated. However, this method is
computationally very intensive, and it cannot be used for very large datasets.

The distance-based methods are based on distances obtained from a single multiple se-
quence alignment. However, different alignments may lead to different tree topologies (Wong
et al., 2008). Moreover, statistical methods such as ML may be statistically inconsistent
with respect to a general model of sequence evolution, since they treat indels as missing data
(Warnow, 2012). We believe that by considering a set of Pareto optimal alignments instead
of a single alignment, different tree topologies can be obtained, from which a practitioner
can better infer the relationship between the species under analysis.

In the next section, we present a new method that directly reconstructs phylogenetic
trees from the non-dominated score set data. We use the algorithms introduced in Chapter
4 to compute the non-dominated score set for each pair of sequences under study. Then, from
this data, we construct several tree topologies. Furthermore, we introduce a new procedure

based on bootstrapping to validate the reliability of trees.

6.4 A Biobjective Method for Constructing Phylogenetic Trees

In this section, we describe a new method for constructing phylogenetic trees from the non-
dominated score set. Consider n sequences with a collection of non-dominated score sets
each of which obtained from each pair of sequences. For each gap/indel value that arises
from the union of all non-dominated scores sets, we build a phylogenetic tree. The algorithm

consists of the following four steps for each gap/indel value d:

1. Collect all the substitution score values of score vectors that have d indels/gaps.
2. Normalize each substitution score value between 0 and 1.

3. Compute the distance between two sequences as one minus the normalized substitution

score value of the non-dominated score vector obtained from those two sequences.

4. Build a phylogenetic tree using the distances computed above and using Neighbor-Joining

method 1.

An essential aspect of the analysis is to understand how often specific phylogenetic tree

topologies arise from this approach (see Section 6.2). A less frequent topology, or tree branch,

'In this step the PHYLIP package (Felsenstein, 1985) is used in our experiments.
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may indicate a less reliable relation between the corresponding species. Therefore, we count
how many times each branch arises in all phylogenetic trees and add the corresponding
relative frequency to each branch. Note that this information is analogous to the bootstrap
values (Felsenstein, 1985); instead of the sampling process, we use the non-dominated score

sets.

6.5 Analysis with Real Data

In this section, two data sets are used for illustration purpose. The results trees are compared

with those obtained with the well-known technique of Maximum Likelihood.

6.5.1 First Experiment

This experiments consists of dataset Candida genes, C.albicans PAPa, C.albicans PAPalpha,
C.tropicalis PAPalpha, C.tropicalis PAPa and C.dubliniensis PAPa, as well as the genes
Pichia stipitis PAPa, and Saccharomyces cerevisiae PAP (See Butler et al., 2009 for more
information about these genes). For each pair of genes, we computed the non-dominated score
set with respect to Problem (VSGP) with substitution matrix M[i, ] := 1 and M]3, j] := —1,
1 # j; see the complete non-dominated score sets with staircase line representation in Figure
6.9. It is possible to observe that there exists a large number of non-extreme supported score
vectors, as indicated by the straight lines.

We constructed 567 phylogenetic trees by using our method. Although we have obtained
567 phylogenetic trees, only two different topologies were obtained. One of them was dis-
carded from the analysis since it arose only once. Figure 6.8 (a) shows the remaining tree
obtained for a gap value of 283, the median of all gap values found; the value close to each
branch indicates the relative frequency of that branch. For comparison, we computed the
evolutionary tree using the Maximum Likelihood method based on the model from Felsen-
stein (1985) obtained by MEGA5 (Tamura et al., 2011); see Figure 6.8 (b). The bootstrap
consensus tree inferred from 1000 replicates was taken to represent the evolutionary history
of the taxonomic analysis. There were a total of 1613 positions in the final dataset with
all of them having less than 90% site coverage removed. The percentage of trees in which
the associated taxa clustered together is shown next to the branches. Initial tree(s) for the
heuristic search were obtained automatically as follows: when the number of common sites
was less than 100 or less than one-fourth of the total number of sites, the maximum parsi-
mony (Fitch, 1971) method was used; otherwise, BIONJ method (Gascuel, 1997) with MCL
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distance matrix was used. The tree is drawn to scale, with branch lengths measured in the
number of substitutions per site.

By comparing both trees, it is possible to infer that they have a similar topology and
similar relative branch frequency. This conclusion can also be understood by the regularity
of the lines of Figure 6.9. The nearest genes are C.albicans PAPalpha and C.dubliniensis
PAPa, which corresponds to the black line in Figure 6.9, with the largest substitution score.
In the same figure, the three pink lines allow us to infer the positioning of C.tropicalis PA-
Palpha with respect to C.albicans PAPalpha and C.dubliniensis PAPa, as well as the branch
(C.albicansPAPa,C.dubliniensis PAPa). As expected, P. stipitis PAP and S. Cerevisiae PAP
are the most distant species, as seen by the green dot-dash line in Figure 6.9.

Finally, note that both phylogenetic trees indicate a lower value for the branch that
contains P. stipitis PAP gene. We relate this value to the crossed lines between the pairs

formed by P. stipitis PAP and other genes (see blue lines in Figure 6.9).

6.5.2 Second Experiment

The second data set is a classic example of comparison between primates: Homo sapiens
haplogroup Jic3, Homo sapiens neanderthalensis, Gorilla gorilla graueri, Pan troglodytes
troglodytes and Pongo abelii species. We performed the same analysis as described in the
previous section. Figure 6.11 shows the non-dominated score sets with staircase line rep-
resentation. The figure shows a large number of non-extreme supported score vectors and
some intersecting lines. This indicates that the relationship between those species, in the
context of evolutionary studies, may depend on the score vectors chosen. We conjecture that
the existence of intersections may indicate a less reliable conclusion about the evolutionary
relationship.

By employing our biobjective method, a total of 144 phylogenetic trees were obtained,
which gave rise to two different tree topologies. Plots (a) and (b) of Figure 6.10 show
the two trees topologies obtained for a gap value of 22 and 54, respectively; these gaps
values correspond to the median of all gap values found in the phylogenetic trees with the
same topology. The evolutionary tree using the ML method was also computed using the
same method described in the previous section. The tree with the highest log likelihood
(-1351.1512) is shown in Figure 6.10 (c). All positions with less than 60% site coverage were
eliminated. That is, fewer than 40% alignment gaps, missing data, and ambiguous bases
were allowed at any position. There were a total of 376 positions in the final dataset.

The two trees obtained with our method differ slightly in the relationship of the Pan
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traglodytes traglodytes with the remaining species: in plot (a), this species arose in the top of
the branch (Homo sapiens neanderthalensis, Homo sapiens haplogrop J1c3), whereas in plot
(b), it arises in a different clade, paired with Gorilla gorilla graueri. The relative branch
frequencies suggest that the tree of the plot (b) may be more reliable. Interestingly, this is
also confirmed by the tree obtained with the ML method.

6.6 Summary and Discussion

In this chapter, we showed for the first time a successful link between non-dominated score
sets and phylogenetic tree construction. We propose a method based on our biobjective
framework that allows to construct phylogenetic trees as well as to give information about
the reliability of the tree branches. The advantage of this method is that no assumption
about a priori knowledge of users preferences is required; therefore, being less biased. We
evaluated this method with two real-life benchmark datasets. Although two many trees have
resulted, only a few topologies of interest were obtained and matched those obtained with
the maximum likelihood method. On the first input, the produced trees were quite similar,
on the second one, one of the two was similar, and the other one was different. For the
future work, further research is needed to derive a theoretical relation between maximum
likelihood estimations and the information provided by the non-dominated score set for tree

branch reliability.
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Figure 6.8: Phylogenetic trees for the first experiment: biobjective model for a gap value of
283 (a) and Maximum Likelihood model (b).
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Figure 6.10: Phylogenetic trees for the second experiment: biobjective model for a gap value
of 22 (a) and 54 (b) and Maximum Likelihood model (c).



Similarity score
50 100 150 200 250 300 350

=1 X Number o1 gaps

-20
-40
I@O —
— Neandert : H. sapiens
—— H. sapiens : Chimp
-80 - -- Neandert : Chimp
Neandert : Orangutan
H. sapiens :
— Neandert
---- H. sapiens :
- - - Gorilla : Orangutan
-100 49 Chimp : Orangutan
— Gorilla : Chimp
N
n
._,
-120 .

.wﬁ@EE@QN@ PUOI9s 973 I0]J S}oS 91008 pajeuluop-uou 9yl Jo Qoﬁadpﬁwmmﬁgww QUIT 9s®eaIIRlS TT°9 QMSwﬁm






Chapter 7

Conclusions and Future Work

7.1 Summary and Contributions

A practitioner of Bioinformatics needs to use programs that solve particular optimization
problems in order to analyze the biological data at hand. From our point of view, these
problems are naturally multiobjective and deal with conflicting objectives. The current
approaches oversimplify this problem by assuming specific preference information. However,
this preference information is not widely accepted by the community and cannot be easily
defined by a practitioner for a given data.

In this thesis, we have studied how multiobjective concepts can be used for sequence
alignment, a core problem in Bioinformatics. We have presented different multiobjective
formulations of the sequence alignment problem as well as several ways of tackling them.
Our findings show that the multiobjective pairwise sequence alignment problem can be solved
efficiently to optimality by extending principles of dynamic programming algorithms since
the size of the set of optimal scores is linear with respect to the problem size. Noteworthy,
this is a particular feature that does not arise on multiobjective combinatorial optimization
problems, in general. Moreover, we have introduced effective speed-up techniques that also
use fewer memory resources. Besides, we have adapted the classical principles of e-constraint

to solve the same problems, but the experimental results suggest that this approach requires
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more computational time.

We have also considered the multiobjective multiple sequence alignment, a natural exten-
sion of pairwise sequence alignment for more than two sequences. Given that this problem
is NP-hard for an arbitrary number of sequences, we have tackled it with heuristic meth-
ods based on local search procedures and multiobjective evolutionary algorithms. These
approaches return an approximation to the optimal scores at a given time defined by the
user. We conducted an in-depth experimental analysis on a wide range of benchmark in-
stances, which allowed us to relate the impact of algorithmic parameters on performance.
Moreover, we established functional relationships between instances features and algorithm
performance. The experimental results suggested that a simple local search can provide
high-quality results in a short amount of time.

Finally, we proposed a method that uses multiobjective concepts for the construction of
phylogenetic trees and to asses their reliability. Our method was tested on two well-known
real-life biological data. The results suggested that very few distinct tree topologies can be
obtained, each of which gives a possible relationship between the species under analysis. This
is a critical point of our thesis — the current approaches used by most practitioners can only
carry one perspective over the biological data. Differently, our methods provide alternative
perspectives, giving further insight to the practitioner.

In this work, we prove the correctness of our algorithms, discuss their time complexity
and analyze their performance in practice on well-known benchmark data sets. The most
effective dynamic programming algorithms presented in this thesis for the sequence alignment
problem with two sequences are publicly available at the website http://mosal.dei.uc.pt,

which, in addition, allows the user to run them online and visualize the set of alignments.

7.2 Future Work and Open Issues

We clearly think that much work has still to be done in the research on multiobjective
algorithms for bioinformatics problems in order to meet the knowledge gathered for the
single-objective case (Handl et al., 2007). In the following, we describe some future work

and open issues concerned with the main topic of this thesis.

« Extension to more objectives. The dynamic programming algorithm for mPSA
can be extended for the three objective case, where the substitution score, the number
of indels and the number of gaps are simultaneously considered in the score vector

function.
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« Representative set of Pareto optimal alignments. The number of alignments
returned by our approaches is still considerably large, which may be overwhelming for
the practitioner. Selecting the best alignments is out of the scope of this thesis, but
one could use methods discussed in the field of Multiple Criteria Decision Analysis
to support the decision. One possibility is to present a smaller subset of alignments
that are representative of the complete trade-off; such notion of representativeness may
be based on metrics of uniformity (the most spread subset) or coverage (the subset
that best covers the whole set). Algorithms that allow finding optimal representative

subsets for the biobjective case are available in (Vaz et al., 2015).

e Improvement in local search. The local search introduced in this article is able to
provide high-quality alignments in a reasonable amount of time. However, there are
still ways of improving it further. For the future work, we might try other starting
alignments that are not just based on the sequence similarities but also taking into
account other biological criteria such as the secondary structure of the alignments.
Further, we may test different perturbation methods. One of the possibilities is to use
the phylogenetic trees of the sequences and apply the ratchet strategy (Nixon, 1999;
Morrison, 2007) which may help to create new solutions with more information from

existing results.

o Phylogenetic tree construction. Further research is needed to derive a theoretical
relationship between maximum likelihood estimations and the information provided by

the non-dominated score set for tree branch reliability.

We believed that this thesis covered some fundamental aspects of the design and analy-
sis of multiobjective optimization problem for sequence alignments by providing conceptual
search principles and tools for performance assessment. However, we also feel that our con-
tribution is nothing more than a small step towards the more effective use of multiobjective
algorithms for problem-solving. We think that much more has to be done, and we hope that
answers to the questions posed above contribute actively to further improvement in the next

years of research on this topic.
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Appendix A

Experimental Results for the mMSA

In this chapter, we report the results obtained with NSGA-II and IPLS for the mMSA, with
respect to Chapter 5.
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Figure A.22: Plot of the EAF for the instance BB20002
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Figure A.38: Plot of the EAF for the instance BB30008
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