
SolCelSim – A Comsol App for Charge Transport in a Multilayer Solar Cell

 1

SolCelSim – A Comsol App for Charge Transport
in a Multilayer Solar Cell

Master’s in Informatics Engineering

Internship Report

João André Vieira

E-Mail: Uc2013136370@student.uc.pt

Adviser: Bruno Cabral

Date: 01/07/2019

SolCelSim – A Comsol App for Charge Transport in a Multilayer Solar Cell

 2

SolCelSim – A Comsol App for Charge Transport in a Multilayer Solar Cell

 3

Abstract

 Scientific Simulation software can often be daunting, even for experts of the associated
scientific area, as they usually have complex interfaces with a very large number of features.
At the same time, some ideas cannot be realized by someone without programming
knowledge, and require a lot of repetitive and menial work.

 More specialized applications can be used to make the process of using scientific
simulation software simpler, while also allowing the use of more complex features with
minimal work.

 This project consists of the development of an application for Comsol Multiphysics.
It focuses on the simulation of a multi-layer PEC solar cell used for hydrogen production.
Features that researchers need in this kind of simulation are made available, while Comsol
features that aren’t useful for this scenario are excluded. The result is a user-friendly
application that can be used by any researcher working on this area of physics.

Keywords

Comsol Multiphysics

Application Builder

Multilayer PEC Solar Cell

Hydrogen Production

SolCelSim – A Comsol App for Charge Transport in a Multilayer Solar Cell

 4

SolCelSim – A Comsol App for Charge Transport in a Multilayer Solar Cell

 5

SolCelSim – A Comsol App for Charge Transport in a Multilayer Solar Cell

 6

Contents

List of Figures... 9

List of Tables .. 10

List of Terms and Acronyms ... 12

1. Introduction ... 14

2. Related Work ... 16

2.1 Similar Software .. 16

2.2 Framework .. 22

2.2.1 Comsol Multiphysics ... 22

2.2.2. Comsol Application Builder.. 22

2.3 Model ... 24

3. Methodology and Planning .. 25

3.1 Methodology ... 25

3.2 Work Plan .. 26

3.3 Development Schedule ... 31

3.4 Risk Assessment ... 36

4 Requirements and Architecture .. 38

4.1 Functional Requirements .. 38

4.2 Non-Functional Requirements ... 40

4.2.1. Usability .. 40

4.2.2. Extensibility ... 40

4.2.3. Maintainability ... 40

4.2.4. Accuracy ... 40

4.3 Architecture .. 41

5. Interaction Design .. 47

5.1 Interface Design ... 47

5.2 Principles ... 47

5.3 Design Walkthrough .. 47

5.4 Use Case Diagram .. 48

5.5 Mockups .. 49

6. Final Interface .. 54

SolCelSim – A Comsol App for Charge Transport in a Multilayer Solar Cell

 7

7. Testing and Quality Assurance .. 59

7.1 Alpha Testing ... 59

7.2 Acceptance Testing ... 59

7.3 Accuracy Testing/Boundary Value Testing .. 60

7.4 Exploratory Testing ... 60

7.5 Negative Testing .. 61

7.6 Usability Testing .. 62

7.7 Others .. 64

8. Challenges... 65

Conclusion .. 67

Future Work .. 67

Final Comments ... 67

Bibliography .. 69

Attachment 1 – Comsol Explanation ... 70

Attachment 2 – Solar Panel Software ... 77

Attachment 3 – Functional Requirements ... 82

1.1. Layer Stack .. 82

1.2. Layer Parameters .. 83

1.3. Recombination Model ... 84

1.4. Boundary Conditions .. 85

1.5. Meshing.. 85

1.6. Computation ... 85

1.7. Experimental Data ... 88

1.8. Parameter Fitting .. 88

1.9. Global Parameters.. 89

1.10. Model Save and Load .. 89

1.11. Report .. 89

1.12. Heterointerfaces ... 90

Attachment 4 – Server Architecture ... 91

SolCelSim – A Comsol App for Charge Transport in a Multilayer Solar Cell

 8

SolCelSim – A Comsol App for Charge Transport in a Multilayer Solar Cell

 9

List of Figures

Figure 1 - GPVDM.. 18

Figure 2 – PC1D .. 18

Figure 3 – SCAPS .. 19

Figure 4 – AFORS-HET .. 20

Figure 5 - Trello ... 26

Figure 6 - Initial Work Plan .. 27

Figure 7 - End of First Semester Work Plan ... 28

Figure 8 - End of Second Semester Schedule .. 29

Figure 9 – Initial Development Plan ... 33

Figure 10 – Final Development Plan .. 34

Figure 11 – Sprint 0 Burndown ... 35

Figure 12 – Remaining Sprints Burndown ... 35

Figure 13 – General Architecture .. 41

Figure 14 – Diagram with Software Components .. 43

Figure 15 – Application Flow Diagram .. 45

Figure 16 – Application Flow Diagram (Solver) ... 46

Figure 17 – System Use Case Diagram ... 48

Figure 18 – Main Menu ... 49

Figure 19 – Layer Parameters... 50

Figure 20 – Recombination Type .. 50

Figure 21 – Recombination Parameters ... 51

Figure 22 – Solve ... 51

Figure 23 – IV Inputs .. 52

Figure 24 – Results .. 53

Figure 25 – Method and Termination .. 53

Figure 26 – Main Menu ... 54

Figure 27 – Results Screen.. 55

Figure 28 – Contact Properties .. 56

Figure 29 – Method and Termination .. 56

file:///C:/Users/João/Downloads/LEI/6º%20ano/Final_Report/Resources/Downloads/Thesis/Final_Report_Joao_Vieira.docx%23_Toc12568755

SolCelSim – A Comsol App for Charge Transport in a Multilayer Solar Cell

 10

Figure 30 – IV Solver Options .. 57

Figure 31 – Parameter Sweep Options ... 57

Figure 32 – Layer Parameters... 58

Figure 33 – Model Builder .. 70

Figure 34 – Application Builder... 71

Figure 35 – Layers.. 72

Figure 36 – Add Layer .. 73

Figure 37 – Getting two parameters ... 73

Figure 38 – Duplicating a default layer ... 73

Figure 39 – Adding Distance Value .. 74

Figure 40 – Setting Endpoints ... 74

Figure 41 – Adding New Doping Model ... 75

Figure 42 – Domain .. 75

Figure 43 – Build .. 76

Figure 44 – Updating Global Parameters ... 76

Figure 45 - PV Analyser .. 78

Figure 46 - PV PanelSim ... 78

Figure 47 – SES .. 79

Figure 48 - System Advisor Model .. 80

Figure 49 – Solar Pro IV Curve Graph .. 81

Figure 50 - Solar Cell Layers .. 82

Figure 51 – Connections from User to Server .. 91

List of Tables

Table 1 – Related Work Comparison .. 21

Table 2 – End of First Semester Work Plan .. 28

Table 3 – End of Second Semester Work Plan ... 30

Table 4 – Risk Assessment .. 36

Table 5 - Functional Requirements ... 39

Table 6 – Accuracy Testing Example ... 60

file:///C:/Users/João/Downloads/LEI/6º%20ano/Final_Report/Resources/Downloads/Thesis/Final_Report_Joao_Vieira.docx%23_Toc12568793

SolCelSim – A Comsol App for Charge Transport in a Multilayer Solar Cell

 11

Table 7 – Negative Testing Example .. 61

Table 8 – Task Time to Complete per User .. 63

Table 9 – Questionnaire Results Rankings .. 63

Table 10 – Related Work Comparison .. 80

Table 11 - Experimental Data .. 88

SolCelSim – A Comsol App for Charge Transport in a Multilayer Solar Cell

 12

List of Terms and Acronyms

a-Si Amorphous Silicon

CIGS Copper Indium Gallium Selenide

CV Capacitance-Voltage

GUI Graphical User Interface

IPCE Incident Photon to Current Efficiency

IV Current-Voltage

PEC Photoelectrochemical

SPICE Simulation Program with Integrated Circuit Emphasis

TE Thermal Equilibrium

Agile Software Development approach that incentivizes flexibility and
continuous improvement

Auger Recombination Non-radiative process involving three carriers1

Boundary-Value
Analysis

Software testing technique that tries to represent boundary values in
a range

Burndown Chart Graph showing ratio between work left to do and time left

Control-Flow Testing Testing strategy that carefully selects a set of test paths2

Direct Recombination Recombination through emission or absorption of a photon

Electrolysis Chemical decomposition using electrical current

Impact Ionization Process in which energetic charge carriers lose energy to create others

Nyquist Plot Parametric plot used to assess stability of a system

Ohmic Contact Junction between conductors with linear IV curve

Parameter Fitting Estimation of parameters using sample data

Photovoltaic Panels Panels designed to convert light into electricity

Quasi-Fermi Level Population of electrons when displaced from equilibrium

Schottky Barrier Electron barrier formed at metal-semiconductor junction

1 https://www.sciencedirect.com/topics/chemistry/auger-recombination
2 https://www.cs.drexel.edu/~spiros/teaching/CS576/slides/2.control-testing.pdf

https://www.sciencedirect.com/topics/chemistry/auger-recombination
https://www.cs.drexel.edu/~spiros/teaching/CS576/slides/2.control-testing.pdf

SolCelSim – A Comsol App for Charge Transport in a Multilayer Solar Cell

 13

Scrum Agile methodology that divides work into iterations called “sprints”

Thermionic Emission Thermally induces flow of charge carriers

Trap-assisted Recombination when an electron falls into a certain energy level3

Usability Heuristics Commonly recognized usability principles

3 http://ecee.colorado.edu/~bart/book/recomb.htm

http://ecee.colorado.edu/~bart/book/recomb.htm

SolCelSim – A Comsol App for Charge Transport in a Multilayer Solar Cell

 14

1. Introduction

This report will detail the work done for the course of Internship/Dissertation at the
University of Coimbra, within the Intelligent Systems specialization of the Master’s in
Informatics Engineering.

With growing concerns regarding global warming and the unsustainability of fossil fuels,
research regarding cheaper and more efficient use of renewable energy has been intensifying.
However, performing physical experiments is expensive, due to the need to acquire proper
material and equipment, making computer simulations especially important. Not only do they
allow researchers to quickly test and compare different parameters, obtaining detailed results
every time; they are also able to perform automatic parameter fitting.

Currently, researchers rely on generic computing software like Wolfram Mathematica and
Matlab. While these programs are very powerful, demand for more specialized software that
offers a deeper focus on a smaller number of features is growing.

One of these specializations is the production of hydrogen using solar energy. The
application developed during this internship is aimed at filling the demand for that type of
simulation, specifically one that uses multi-layer Photoelectrochemical (PEC) solar cells. The
objective was to create a powerful desktop application that could fulfil the needs of any
researcher in the area, without requiring any programming knowledge.

During this internship, the Comsol Multiphysics software was used. This is a physics
simulation program developed by Comsol Inc. in Sweden during 1986 that has been frequently
updated since. Application Builder, a feature of Comsol Multiphysics, was the framework
used. It allows for a quick implementation of standard Comsol Multiphysics features, while
also facilitating the creation of new features using the JAVA programming language.

This project was developed at the University of Žilina, at the satellite location Inštitút
Aurela Stodolu in Liptovsky Mikulas, Slovakia. It was done as part of the Erasmus+ Internship
Program.

It comes in the sequence of research regarding PEC solar cells done by Dr. Peter Cendula,
who served as the client for this project, at Zurich University of Applied Sciences; and work
done on Comsol by Matúš Vaňko, at the University of Žilina. The former research focused
on the more theoretical aspects of the use of PEC solar cells for hydrogen production. The
latter work is more practical, exploring the creation of a GUI that allows users to simulate this
situation.

Current software used for simulating solar cells often requires a thorough understanding
of the application itself, on top of the necessary knowledge about solar cells. The purpose of
this project was to eliminate that barrier, making researcher’s jobs easier while still providing
a very powerful specialized simulation tool.

This internship was very valuable as an Informatics Engineering internship. Although
learning about aspects of Scientific Simulation was important, the most relevant part of this
project was the knowledge that could be gained related to Software Development. The
necessity of writing good code, with proper documentation and testing, allowed for the
opportunity to apply knowledge gained through the Informatics Engineering course, while
also learning new things about Software Development such as, for example, good UI design.

SolCelSim – A Comsol App for Charge Transport in a Multilayer Solar Cell

 15

This report details every aspect of the creation of this app that is considered relevant. The
Related Work section shows the research done about previous projects within the field and
other related simulation apps.

In Methodology and Planning, information about how the development process was
organized is laid out, with the schedules for both the complete work and the development
phase; along with the chosen software development methodology and the reasons for that
choice. The Requirements and Architecture sections offer information used during the
development and testing phases of the project.

The following sections offer a more concrete look at the ideas behind the design of the
application. Interaction Design and Final Interface explain the choices made regarding how the
user is able to interact with the application, and how the application looks. Finally, some space
is reserved for final remarks.

SolCelSim – A Comsol App for Charge Transport in a Multilayer Solar Cell

 16

2. Related Work

 This chapter serves not only to look at and analyse existing software in the area of solar
cell simulation, but also to explain in detail what the Comsol framework consists of in the
scope of this project. The initial model that this project is based on is also examined.

2.1 Similar Software

Environmental concerns have resulted in a more urgent need for research regarding
renewable energies. One of this decade’s developments have been in PEC
(photoelectrochemical) water splitting. This concept consists of producing hydrogen from
water using photoelectrochemical materials and sunlight. Individual molecules of hydrogen
and oxygen are separated through this process. Usually, panel systems similar to photovoltaic
panels are used. With continued research, production costs are being lowered and efficiency
is being improved continuously4.

Recent research on photovoltaic-electrolysis has been motivated mostly by the
necessity to reduce the cost of this type of hydrogen production [Jia et al., 2016]. Currently,
the cost of fossil fuels is still generally lower; but with a decrease in material costs and an
increase in production efficiency, this scenario could be inverted in the future. Solar-to-
Hydrogen (STH) is a way to measure the efficiency of the system, with recent work showing
up to 30% efficiency. These results show a huge improvement (that hasn’t been surpassed
since) over the 18% STH efficiency achieved earlier [Ager et al., 2015] the 22% achieved in
Bonke et al, or the 24.4% in Nakamura et al.

Solar energy is defended as being the “main energy system of the future”, with “power
intermittency, grid flexibility, and surplus electricity” being the main obstacles [Delgado E et
al., 2018].

 In the research part of this project, it was also important to look at a previous paper
by the client for this project [Cendula et al., 2014]. It defends the use of computer software
for simulation of PEC solar cells, over the previous method of jumping directly from
sketching into physical experiments.

 When designing systems and devices for solar energy conversion, some guidelines are
necessary. In Dumortier et al., guidelines that optimize “technical, economic, sustainability,
and operating time constraints” have been designed with the help of a simulation platform
created by the research team. With this simulation platform, it was verified that the devices
that optimize efficiency, cost and energy demands are “device types utilizing high irradiation
concentration, as well as expensive photoabsorbers and electrocatalysts”. This paper also
alerts about the importance of replacing components with a frequency appropriate for the
device being used (too early means higher costs, too late means loss in efficiency due to
degradation).

 The last few years have also seen the release of new solar cell simulation software5.
One of these examples is General-purpose Photovoltaic Device Model (GPVDM6), designed
to simulate, for example, organic solar cells, crystalline silicon solar cells, a-Si solar cells and

4 https://www.energy.gov/eere/fuelcells/hydrogen-production-photoelectrochemical-water-splitting
5 https://www.linkedin.com/pulse/7-most-popular-solar-pv-design-simulation-software-eslam-allam/
6 https://www.gpvdm.com/

https://www.energy.gov/eere/fuelcells/hydrogen-production-photoelectrochemical-water-splitting
https://www.linkedin.com/pulse/7-most-popular-solar-pv-design-simulation-software-eslam-allam/
https://www.gpvdm.com/

SolCelSim – A Comsol App for Charge Transport in a Multilayer Solar Cell

 17

Copper indium gallium selenide (CIGS) solar cells. Much like the project described in this
report, ease of use was also a focus during the development.

SolCelSim – A Comsol App for Charge Transport in a Multilayer Solar Cell

 18

Figure 1 - GPVDM

PC1D7 is one of the more commonly used solar cell modelling programs. This
program was developed in Australia, at the University of Sydney, in 1982. It can be used to
simulate the performance of new devices and is available for free, along with is source code.
Its graphical user interface allows users to begin modelling quickly and easily. The user can
change a variety of component parameters, including material type, thickness and doping type.
As parameters are changed, the one-dimensional schematic for the device changes
accordingly, allowing the user to directly see the effect of his changes.

This software is currently the industry standard for solar cell simulation.8

Figure 2 – PC1D

7 www.pv.unsw.edu.au/info-about/our-school/products-services/pc1d
8 http://pv-i2e.mit.edu/

http://www.pv.unsw.edu.au/info-about/our-school/products-services/pc1d
http://pv-i2e.mit.edu/

SolCelSim – A Comsol App for Charge Transport in a Multilayer Solar Cell

 19

SCAPS9 is another one-dimensional simulator, created at the University of Gent. It
can display up to seven semiconductor layers, three different recombination mechanisms and
multiple contact functions, among other features. It features a script language that facilitates
initializing the program with the right internal variables. Like the previous example, designing
a simple and user-friendly interface was also a priority in the development of this software.

Figure 3 – SCAPS

AFORS-HET10 is a public simulation tool that can be used to simulate multiple layers,
with the ability to pick a variety of boundary conditions. Different characterisation techniques
such as IV (current-voltage), impedance and capacitance have also been implemented. The
user interface allows users to compare different generated simulations.

9 http://scaps.elis.ugent.be/SCAPSinstallatie.html
10 https://www.helmholtz-berlin.de/forschung/oe/ee/si-pv/projekte/asicsi/afors-het/index_en.html

http://scaps.elis.ugent.be/SCAPSinstallatie.html
https://www.helmholtz-berlin.de/forschung/oe/ee/si-pv/projekte/asicsi/afors-het/index_en.html

SolCelSim – A Comsol App for Charge Transport in a Multilayer Solar Cell

 20

Figure 4 – AFORS-HET

The reason why the software developed during this internship should stand out over
the applications listed in this section, is the focus on both PEC and PV solar cells, instead of
just PV solar cells. PEC cells have the ability to perform photon conversion and
electrochemical reaction on the same device11. They are, however, more recent, and still not
able to be commercialized. As such, the need to be able to simulate them is particularly
important. Furthermore, researchers from any University with a Comsol licence will be able
to use the application.

11https://dspace.library.uu.nl/bitstream/handle/1874/362927/Master%20thesis%20PEC%20versus%20PV-
E%20a%20future%20potential%20comparison%20-%20W.A.%20de%20Jong%20-
%20Energy%20Science%20-%2023-2-2018.pdf?sequence=2&isAllowed=y

https://dspace.library.uu.nl/bitstream/handle/1874/362927/Master%20thesis%20PEC%20versus%20PV-E%20a%20future%20potential%20comparison%20-%20W.A.%20de%20Jong%20-%20Energy%20Science%20-%2023-2-2018.pdf?sequence=2&isAllowed=y
https://dspace.library.uu.nl/bitstream/handle/1874/362927/Master%20thesis%20PEC%20versus%20PV-E%20a%20future%20potential%20comparison%20-%20W.A.%20de%20Jong%20-%20Energy%20Science%20-%2023-2-2018.pdf?sequence=2&isAllowed=y
https://dspace.library.uu.nl/bitstream/handle/1874/362927/Master%20thesis%20PEC%20versus%20PV-E%20a%20future%20potential%20comparison%20-%20W.A.%20de%20Jong%20-%20Energy%20Science%20-%2023-2-2018.pdf?sequence=2&isAllowed=y

SolCelSim – A Comsol App for Charge Transport in a Multilayer Solar Cell

 21

Table 1 shows a comparison between the simulation software examined in this section.
The last line shows the features of this project, for the sake of comparison:

Software Name Price Graphics Multi-Layer
Recombination

Types

GPVDM Free 3D Yes Two

PC1D Free 1D No Two

SCAPS Free 1D Yes Three

AFORS-HET Free 1D Yes Three

SolCelSim Free 1D Yes Five

Table 1 – Related Work Comparison

 From making this analysis, a few ideas were taken. For example, the GUI design for
this project took inspiration from GPVDM, as its general layout fit into the objective of this
project. The position and size of the Layer Plot was one of the ideas that was used for the
user interface, along with the interface for layer, contact and parameter editing. Like the
observed examples, this application was made available for free.

 While most of the examples allow the simulation of multiple layers, most are limited
in number. For example, SCAPS allows at most 7 layers at the same time. In comparison, our
application can support up to 20 layers at a time.

 One of the objectives of this project was to allow users to have more possibilities
regarding how they customize the simulated solar cell. The higher number of recombination
type options is an example of this.

 The way the user interacts with all these applications is similar: different parameters
and settings can be selected and, according to those inputs, the user can see a graphical
representation of the simulated system, along with the appropriate plots. The status of the
simulation and various inputs can also be saved and loaded so that the user can continue
interacting with the same simulation later. SolCelSim maintains this general idea and workflow.

 Some examples of solar panel software were planned to be included in this section but
were removed due to differing too much from the purpose of this project. Information about
these examples can be found in the “Attachment 2 - Solar Panel Software” section of this
report’s attachments.

SolCelSim – A Comsol App for Charge Transport in a Multilayer Solar Cell

 22

2.2 Framework

2.2.1 Comsol Multiphysics

 Comsol Multiphysics is a multi-purpose simulation software that allows the modelling
of a large number of devices and processes in the areas of physics research and engineering.
Different modules and add-ons can be added to complement the use of the software and allow
access to new features. This is especially useful when working on more specialized areas of
engineering and research that Comsol does not support natively.

 When working with Comsol, the user’s workflow is the standard one in physics
modelling: defining the geometry of the model, the properties of the parts that constitute it,
and changing values related to physics phenomena. In the end, the user obtains an accurate
simulation of the generated model, along with information in the form of reports and
graphical visualization.

 Comsol offers the user a high degree of creativity, allowing them to define their own
equations and expressions, and taking into consideration different operating conditions and
physical effects. Since simulation software is often restrictive in what it allows users to specify,
Comsol has an advantage in this regard compared to its alternatives. When a user makes a
change to the geometry of a model, the associated physics settings are affected, and vice-versa.

 Some additional features Comsol supports includes meshing of the model (both
manual and automatic), different types of studies/analysis (both time-dependent and
stationary), parametric sweeps and optimization studies.

2.2.2. Comsol Application Builder

 In version 5.0, Comsol Multiphysics implemented a new feature called the Application
Builder. This was the tool used to develop the project detailed in this report.

 The Application Builder is a separate module from the Model Builder, where
developers can create an entirely new application, based on the previously created model. It
gives the developer access to numerous parameters within the model, tools to create a GUI,
and the possibility of creating code that uses the Comsol API, allowing the developer a large
degree of control over the application.

 The Application Builder is divided into four parts:

Forms - Where the creation and editing of the user interface is allowed. Within each
form, different types of elements such as input boxes and buttons can be added. In addition,
a form can be contained within another form as a sub-form.

Declarations – Where the developer can set global variables and temporary files to
be used by both the forms and the methods.

Methods – Where the developer can write Java code that controls how the application
behaves, with access to the entirety of the Comsol API. The method editor also includes a
few built-in methods that allow interaction with the user interface, such as enabling and
disabling certain menu items and toolbars.

Library – Where specific files such as external images can be stored.

SolCelSim – A Comsol App for Charge Transport in a Multilayer Solar Cell

 23

Every action the developer writes in the application builder can be linked to the model.
For example, a button can be created to increase the size of the geometry, and the result of
those changes can be seen as soon as that button is clicked.

The Application Builder was created to allow experts to make their model available to
people within their organization. This way, people from different engineering disciplines, for
example, can make changes to the simulation without having to understand the underlying
structure of the model file.

A typical workflow in physics simulation involves a large number of steps, from
creating a geometry to post-processing the results. In addition, if any changes are made,
previous steps need to be redone. The goal of the Application Builder is to simplify this entire
process. 12

Comsol Multiphysics also comes with twenty example apps to give developers an idea
of what’s possible with the Application Builder.

Usually, the Application Builder is used for simple demonstrations of an underlying
model: the simulation of the model is shown, and the user can alter a few parameters and
display a few different graphics.

However, the objective of the SolCelSim project is more ambitious than that: it
involves having a fully featured solar cell simulation software that allows the user to change
every value that is relevant to solar cell simulation; while automatizing certain processes like
the creation of multiple layers and the parameter sweep that would usually require the user to
take multiple steps to achieve.

The addition and removal of layers is a good example of how useful SolCelSim can be
for researchers. In order to remove a layer from the model, the user would usually have to go
through a long process of manually deleting multiple semiconductor properties from the
model, changing domains of others, duplicating some and then changing their positions in the
model, changing a few global parameters, etc. SolCelSim simplifies this long and tedious
process into a single button press. By simply pressing the “Remove Layer” button in the
application, SolCelSim automatically handles the entire sequence in the backend and the user
immediately sees the results of this change in the simulation. This way, the user can focus on
making the changes they want without wasting time with such repetitive sequences. While the
removal of layers was specifically given as a practical example, the application also simplifies
all the other features that users working with Solar Cell simulation, from altering meshing
options to performing parameter sweep.

With the creation of this application, users within research fields in physics that want
to simulate solar cells can do it in a significantly more efficient and productive way. In addition,
people who would generally avoid Comsol Multiphysics due to the learning process associated
(and thus would stick to older software they are already familiar with) can have access to all
the necessary Comsol Multiphysics features in a simplified user interface that takes less time
to get used to.

Another advantage is that new employees and students can be easily introduced to the
physics concepts present in the model, without the learning curve needed to solve differential
equations.

12 https://www.comsol.com/showcase/application-builder

https://www.comsol.com/showcase/application-builder

SolCelSim – A Comsol App for Charge Transport in a Multilayer Solar Cell

 24

By using SolCelSim, the simulation of physics models becomes limited to only Solar
Cells, but the process of simulating a multi-layer solar cell becomes significantly streamlined,
more efficient, and should result in an increase in productivity within the research group.

2.3 Model

Each Comsol Application Builder application is associated with a model that it
interacts with according to user input. For this project, a base “baseline.mph” file was used as
the underlying model, and changes were made over time, as deemed necessary.

At first, this model included 3 layers: Cu2O, AzO and ZnO. Each layer included a
number of parameters and was associated to a one-dimensional geometry and multiple semi-
conductor properties. Material properties, global parameters and an interpolation file were
also previously defined. A few results tables for IV and TE studies were already computed
and plotted.

Over time, multiple changes were made to the underlying model. They were done both
to improve the quality of the “default” model the user of SolCelSim will interact with, and to
facilitate specific interactions with the Application Builder. For example, a few global
parameters were added specifically to give information about the status of the model, which
the application uses during certain methods. Some different tables, studies, semiconductor
properties and absorption coefficients were also added.

While it’s important that the default underlying model is good, the application was
fully designed to deal with changes to the model without breaking. This means that even if
the user changes every parameter and adds/removes multiple layers, to the point where the
underlying model is completely different from the default, SolCelSim will still function without
any issues.

SolCelSim – A Comsol App for Charge Transport in a Multilayer Solar Cell

 25

3. Methodology and Planning

 This section contains information regarding the Software Development Methodologies
used throughout this project, along with the initial and final schedules for the project. Finally,
there is also information about how risk assessment was performed.

3.1 Methodology

For this project, an agile methodology inspired by SCRUM was adapted to better fit
individual work13. In this case, the same person does the work of the Scrum Master, Product
Owner, and developer. While there couldn’t be team meetings (because the project was made
by a single developer), there was still frequent contact with the client and daily personal
analysis of the work done in the previous day.

Development was set to be divided into 1-month long sprints. Besides the project backlog,
which listed every task that should be accomplished during development, there were also
sprint backlogs. Each sprint started with a planning phase, where the list of requirements was
re-evaluated, and the objectives for that sprint were set. At the end of each sprint, there was
a period for evaluation of the flaws and successes of the previous sprint, a comparison
between the work done and the initial plan, with a Burndown chart to help this analysis.
Following the implementation, there was also a period of testing in every sprint.

Although the first sprint lasted one month, work for that sprint was finished significantly
earlier than expected. As a result, future sprints were changed to last two weeks instead, while
maintaining the same amount of work. This proved to be the right decision, as it allowed for
a more accurate assessment of the time required for each sprint and less time wasted. While
an alternative option of continuing with one-month sprints but doubling each sprint’s
workload was also considered, a personal decision to go with two-week sprints was made, in
part to help adapt to the incoming new requirements.

After the development phase, there was a month that consisted of frequent iterations with
the client, identifying possible new requirements and testing previously developed features.
For this phase, this version of the SCRUM methodology would not have been as useful. As
such, a more iterative approach with short iterations cycles was adopted. In practice, this
meant making some changes to the application, allowing the client to identify things he would
like to see changed, and repeating this process in short cycles of a few days to slightly over a
week.

The website Trello was used to help organize different tasks into a Scrum Board. Within
Trello, Tasks can be moved from the backlog to the development and testing sections and
marked as complete. Every sprint, a new Scrum Board was created, even if not every task in
the previous one was completed. Some feature add-ons for this website were used for, as an
example, easily creating Burndown charts.

13 https://www.lucidchart.com/blog/what-is-agile-scrum-methodology

https://www.lucidchart.com/blog/what-is-agile-scrum-methodology

SolCelSim – A Comsol App for Charge Transport in a Multilayer Solar Cell

 26

Figure 5 - Trello

Figure 5 shows an example of a Scrum Board created using Trello, with the three task
lists frequently used throughout the project.

Using this methodology helped make sure that every requirement was met, while avoiding
the situation where development of the initial requirements is finished early and the remaining
time is not properly used. The reason why an agile methodology had to be chosen was because
of the possibility of new requirements being added in each sprint due to requests from the
client.

3.2 Work Plan

Some constraints were considered when defining what the work plan should look like.
The following dates had been defined before the start of the project:

10th September – Beginning of Internship

21st January – Delivery of Intermediate Report

29th January – Intermediate Oral Presentation and Defence

14th June – End of Internship

1st July – Delivery of Final Report

8th to 12th July – Final Oral Presentation and Defence

Figure 10 shows the initial plan of how the different stages of creating the project would
be spread through time:

SolCelSim – A Comsol App for Charge Transport in a Multilayer Solar Cell

 27

Figure 6 - Initial Work Plan

While the plan for the first semester was mostly followed according to Figure 6, some
adaptations had to be made since the plan to create a prototype was scrapped due to request
from the client. As such, time that was supposed to be spent on the prototype was spread
along the other tasks, mostly the development of the requirements document and the
writing of the intermediate report.

Figure 7 shows what the work plan looked like at the end of the first semester. Table 2
has been added for clarity. The first semester part was changed according to how time was
spent, and some adjustments were made to the second semester section, as too much time
was initially attributed to the writing of the final report. In addition, both phases of
development were merged into a single one, as it was considered that having two separate
phases did not provide any important information:

21/09/2018 10/11/2018 30/12/2018 18/02/2019 09/04/2019 29/05/2019 18/07/2019

First Semester

 Understanding of Comsol software

 Analysis of the State of the Art

 Initial Work Plan/Schedule

 Development of Requirements and Quality…

 Writing Architecture

 Mockup drawing

 Development of Prototype

 Writing of First Semester Report

 First Semester Presentation and Defence

Second Semester

 First Phase of Development

 Second Phase of Development

 Implementation of Extra Features

 Testing and Quality Assurance

 Writing of Final Report

 Final Presentation and Defence

SolCelSim – A Comsol App for Charge Transport in a Multilayer Solar Cell

 28

Figure 7 - End of First Semester Work Plan

Activity Start End Duration

First Semester 21/09/2018 01/02/2019 128

 Understanding of Comsol software 21/09/2018 28/09/2018 7

 Analysis of the State of the Art 29/09/2018 13/10/2018 14

 Initial Work Plan/Schedule 14/10/2018 21/10/2018 7

 Writing of Requirements and Quality Attributes 22/10/2018 05/11/2018 21

 Writing of Architecture 13/11/2018 20/11/2018 7

 Mockup Drawing 21/11/2018 06/12/2018 16

 Writing of First Semester Report 07/12/2018 20/01/2019 44

 First Semester Presentation and Defence 21/01/2019 01/02/2019 12

Second Semester 04/02/2019 12/07/2019 157

 Development 04/02/2019 16/04/2019 71

 Implementation of Additional Features 16/04/2019 20/05/2019 34

 Testing and Quality Assurance 21/05/2019 13/06/2019 24

 Writing of Final Report 14/06/2019 30/06/2019 16

 Final Presentation and Defence 01/07/2019 12/07/2019 12

Table 2 – End of First Semester Work Plan

 The following list shows the purpose of each task:

1. Understanding of Comsol Software – Reading all the available Comsol Multiphysics
documentation and experimenting by making very simple test programs.

21/09/2018 10/11/2018 30/12/2018 18/02/2019 09/04/2019 29/05/2019 18/07/2019

First Semester

 Understanding of Comsol software

 Analysis of the State of the Art

 Initial Work Plan/Schedule

 Writing of Requirements and Quality Attributes

 Writing of Architecture

 Mockup Drawing

 Writing of First Semester Report

 First Semester Presentation and Defence

Second Semester

 Development

 Implementation of Additional Features

 Testing and Quality Assurance

 Writing of Final Report

 Final Presentation and Defence

SolCelSim – A Comsol App for Charge Transport in a Multilayer Solar Cell

 29

2. Analysis of the State of the Art – Researching past projects within the area,
discovering popular and high-quality simulation software used in simulating solar
cells.

3. Initial Work Plan/Schedule – Estimating how much time each task should take and
presenting it graphically.

4. Writing of Requirements and Quality Attributes – Writing the first version of the
Requirements document, with frequent feedback from the client.

5. Writing of Architecture – Defining elements of the software architecture, including
Client-Server interactions

6. Mockup Drawing – Initial designs for the GUI, following good UI design heuristics
and principles.

7. Writing of First Semester Report
8. First Semester Presentation and Defence
9. Development – Development process, following Scrum methodology
10. Implementation of Additional Features – Technically part of the development phase,

extra time to implement new features that the client might consider necessary.
11. Testing and Quality Assurance – Quality Assurance tests. Some extra time was

allocated to allow for changes to be made according to the results of these tests.
12. Writing of Final Report
13. Final Presentation and Defence

Figure 8 - End of Second Semester Schedule

21/09/2018 10/11/2018 30/12/2018 18/02/2019 09/04/2019 29/05/2019 18/07/2019

First Semester

 Understanding of Comsol software

 Analysis of the State of the Art

 Initial Work Plan/Schedule

 Writing of Requirements and Quality Attributes

 Writing of Architecture

 Mockup Drawing

 Writing of First Semester Report

 First Semester Presentation and Defence

Second Semester

 Development

 Implementation of Additional Features

 Testing and Quality Assurance

 Writing of Final Report

 Final Presentation and Defence

SolCelSim – A Comsol App for Charge Transport in a Multilayer Solar Cell

 30

Activity Start End Duration

First Semester 21/09/2018 01/02/2019 128

 Understanding of Comsol software 21/09/2018 28/09/2018 7

 Analysis of the State of the Art 29/09/2018 13/10/2018 14

 Initial Work Plan/Schedule 14/10/2018 21/10/2018 7

 Writing of Requirements and Quality Attributes 22/10/2018 05/11/2018 21

 Writing of Architecture 13/11/2018 20/11/2018 7

 Mockup Drawing 21/11/2018 06/12/2018 16

 Writing of First Semester Report 07/12/2018 20/01/2019 44

 First Semester Presentation and Defence 21/01/2019 01/02/2019 12

Second Semester 04/02/2019 09/07/2019 153

 Development 04/02/2019 16/04/2019 71

 Implementation of Additional Features 17/04/2019 23/05/2019 37

 Testing and Quality Assurance 24/05/2019 07/06/2019 14

 Writing of Final Report 08/06/2019 30/06/2019 22

 Final Presentation and Defence 01/07/2019 09/07/2019 9

Table 3 – End of Second Semester Work Plan

Figure 8 and Table 3 show how the schedule of the project ended up being organized.
Although the final schedule doesn’t differ much from the original plan, there were a few
changes to note. The Testing and QA phase was slightly shortened, to allow time for the
writing of this Final Report. The end of the project was also changed to reflect the official
date for the Oral Presentation. Otherwise, the remaining changes were very minor, generally
consisting of a two or three day’s difference at most. The labels for the table can be
consulted below Table 2, as both tables share the same activity names.

SolCelSim – A Comsol App for Charge Transport in a Multilayer Solar Cell

 31

3.3 Development Schedule

Figure 9, in the next page, shows the initial plan for the development phase of the project.
Each requirement is taken as a different task, and an estimated timeslot was attributed based
on its complexity. To see details about what each task entails, consult Attachment 3 –
Functional Requirements. This schedule was used to plan each sprint. It’s important to note
that the Report task refers to the report generation feature in the application, not to the
internship report.

 This schedule focuses only on the development phase. As such, information about
testing is not included in the figure, as the testing phase happened afterwards. However, it’s
also important to note that the development of each task includes a short period of testing at
the end. More information can be found in the “7. Testing and Quality Assurance” section of
this report.

 On the following page, Figure 10 contains the final development schedule. By
comparing it to the previous figure, we can observe the changes that were made to the
schedule during the development process.

 The order the tasks were developed in was changed in some places. For example, the
Compute EIS and Parameter Fitting tasks were delayed and other tasks were done earlier in
their place, while waiting for certain feedback from the client.

 It’s possible to note that some estimations ended up being inaccurate. For example,
layer parameter tasks took less time than expected, while computation tasks took longer. In
the end, the two compensated for each other and the overall time the development process
took was the same as initially estimated.

SolCelSim – A Comsol App for Charge Transport in a Multilayer Solar Cell

 33

Figure 9 – Initial Development Plan

SolCelSim – A Comsol App for Charge Transport in a Multilayer Solar Cell

 34

Figure 10 – Final Development Plan

SolCelSim – A Comsol App for Charge Transport in a Multilayer Solar Cell

 35

During the development phase, the time it took to complete each task from each sprint
was recorded. At the end of each sprint, a burndown chart was generated to help evaluate
whether or not work was being done in the right amount of time.

Figure 11 – Sprint 0 Burndown

Figure 11 shows the burndown chart from the first sprint. This sprint lasted one month
and, as can be observed, work was completed significantly earlier than expected. With these
results, the decision was made to change the duration of future sprints into two weeks. The
burndown charts corresponding to the following months can be seen in the next figures.

Figure 12 – Remaining Sprints Burndown

As can be observed in Figure 12, the following sprints went largely according to expected,
with the amount of work completed being very close to the expected amount. As such, the
same methodology with roughly the same workload per sprint was maintained throughout
development.

Also worth noting is the fact that the dates for the last sprint shown fell outside of the
timeframe for the development phase. This is because that timeframe corresponds to the first
few weeks of the project phase that were reserved for the addition of extra features.

SolCelSim – A Comsol App for Charge Transport in a Multilayer Solar Cell

 36

The following list will detail some information about each sprint:

Sprint 1 (Feb 4 to Feb 28) – As the first sprint, this was where the foundation of the
application was developed. Areas that a lot of different requirements had as dependencies
(especially areas related to layers and parameters) were worked on.

Sprint 2 (March 1 to March 14) – Implementation and testing of IV and TE solver
computation and plotting.

Sprint 3 (March 15 to March 31) – Multiple requested changes, remaining features
related to the layer stack, and completion of the solver computation and plotting requirements.

Sprint 4 (April 1 to April 14) – Completion and testing of all the initial requirements.

Sprint 5 (April 14 to April 30) – Focus on additional requirements added through
feedback from client.

Regarding the additional requirement phase, while the adapted SCRUM methodology that
was used up to that point was helpful for Sprint 5, it soon became clear through conversations
with the client that the remaining time for this phase would need to follow a different process.
This is due to the need that arose to have short iteration cycles where small changes to the
application and feedback from the client would be intercalated. As such, the move to an
iterative methodology consisting of small iterations of just a few days each was made. In order
to organize this, a Kanban board where tasks would be added when feedback from the client
came in and removed once they were completed was created.

This move to a more iterative process proved to be helpful for this phase, as it simplified
the process of rapidly iterating new versions with client feedback while keeping the remaining
tasks well organized.

3.4 Risk Assessment

A list of potential risks, with their importance and ways to prevent them, was written in
Table 4. “Risk” describes the nature of the risk itself, concern describes its potential impact,
“Ranking” is based on both likelihood and impact (1 being the lowest risk and 3 being the
highest), and “Mitigation Strategy” describes the steps taken to combat said risk:

Risk Concerns Likelihood Impact Ranking Mitigation Strategy

Unfamiliarity with
development tool

Could result in an
unexpected increase in
development time

3 2 2
Two weeks of preparation were
given just for getting used to
Comsol

Overly generous time
estimates

Could force some
requirements to be cut out
completely

1 3 1
Estimates should be re-evaluated
at the end of every sprint

Addition of too many new
requirements

Could require more time
to be developed than is
available

1 2 1
When a new requirement is
added, other requirement's time
estimates are taken into account

Lack of theoretical physics
knowledge

Could require extra time
studying materials

3 1 1
Client will provide help in these
situations, as required

Problems related to Comsol
version

Could make some features
impossible to implement

2 3 2
The University will attempt to
purchase licence to the latest
version

Comsol Application Builder
limitations

Could make some features
impossible to implement

2 3 2

Comsol Multiphysics manuals
were consulted when designing
requirements, making sure the
features we need are available

Table 4 – Risk Assessment

SolCelSim – A Comsol App for Charge Transport in a Multilayer Solar Cell

 37

At the end of every sprint, the development of every risk was analysed, in order to find
out if it needed more careful inspection or if it was no longer a risk and could be safely
removed without worry.

In the end, thanks to the mitigation strategies chosen, most of these risks ended up being
mitigated successfully. However, there were two exceptions that did cause an impact on the
development process.

The first problem was the addition of too many new requirements. Due to demands from
the client, some requirements required more work time than expected to be fulfilled. This did
not, however, significantly impact the development schedule.

The second problem was related to the Comsol version. Since the university did not have
access to a Comsol Server licence, the features related to the planned client-server architecture
had to be cancelled.

SolCelSim – A Comsol App for Charge Transport in a Multilayer Solar Cell

 38

4 Requirements and Architecture

This chapter contains information about both the functional and non-functional
requirements for this project, as well as a detailed explanation of the project’s architecture.

The list of requirements was developed based on the results from interviews with the
client, a short Specifications document, and paper sketches. An initial version was written to
try and fulfil every demand. From then on, four revisions were done with the client until
reaching the list shown in this document.

Each requirement is structured by ID, Dependencies and Description. Note that
Dependencies only consider other requirements, and not aspects of the original Comsol
model.

Functional and Non-Functional Requirements were divided into two different sections.
Within the Functional Requirements, multiple different sub-sections were created.

Since the development of this project followed an adapted version of the SCRUM
methodology, the end of each sprint served as time to review the requirements document, and
to make sure that the previously written requirements were respected.

All requirements listed were considered “Must”. As such, the threshold of success for this
project was the completion of every requirement listed in this section.

In order to understand this list of requirements, it’s important to understand how the
Comsol Application Builder works. The Application Builder is a feature within Comsol
Multiphysics that allows the developer to create an app that users can later interact with, with
their action affecting a saved model. In the particular case of this project, the model simulates
the charge transport inside a PEC or PV Solar cell. This solar cell simulates all the specific
aspects of real solar cells, including their different layers, as well as each layer’s properties.

Since the user must have control over the details of the simulation, it’s important to
parameterize as many aspects of it as possible. Many of the listed requirements will show
exactly that, parameters that the user can change to alter the simulation, and observe their
impact in the results.

For more information, an explanation about how Comsol works, and what steps need to
be taken to add a new functionality in Comsol Application Builder, has been included in the
Attachments section of this report (Attachment 1). This explanation serves to try and offer
the reader a more intuitive idea about how development in the Comsol Application Builder
works, which should make the requirements of this project easier to understand. The previous
“2.2. Framework” section of this report also contains important information regarding this
subject.

4.1 Functional Requirements

This section will show a shortened list of the functional requirements for this project in
Table 5. A more in-depth explanation of each of the requirements can be consulted in the
Attachment section of this report (Attachment 3).

SolCelSim – A Comsol App for Charge Transport in a Multilayer Solar Cell

 39

Requirement ID Dependencies

1.1. Layer Stack

 1.1.1. Add Layer FUN01 None

 1.1.2. Remove Layer FUN02 FUN01

 1.1.3. Move Layer Up FUN03 FUN01

 1.1.4. Move Layer Down FUN04 FUN01

1.2 Layer Parameters

 1.2.1. Add Parameter FUN05 FUN01

 1.2.2. Remove Parameter FUN06 FUN05

 1.2.3. Edit Parameter FUN07 FUN05

 1.2.4. Rename Layer FUN08 FUN01

1.3. Recombination Model

 1.3.1. Change Recombination Type FUN09 FUN01

 1.3.2. Edit Recombination Parameters FUN10 FUN09

1.4. Boundary Conditions

 1.4.1. Edit Boundary Conditions FUN11 None

1.5. Meshing

 1.5.1. Set Mesh Options FUN12 None

1.6. Computation

 1.6.1. Compute and Plot TE Solution FUN13 None

 1.6.2. Compute and Plot IV FUN14 None

 1.6.3. Compute and Plot CV FUN15 None

 1.6.4. Compute and Plot EIS FUN16 None

 1.6.5. Compute and Plot IPCE FUN17 None

 1.6.6. Plot Stack When Layers Changed FUN18 FUN02-FUN10

 1.6.7. Layer Sketch Labels FUN19 FUN18

 1.6.8. Edit Solver Method FUN20 FUN13-FUN17

 1.6.9. Edit Individual Solver Parameters FUN21 FUN13-FUN17

 1.6.10. Edit Illumination Value FUN22 FUN13-FUN17

 1.6.11. Plot Solution FUN23 FUN13-FUN17

 1.6.12. Change current plot FUN24 FUN23

 1.6.13. Change displayed parameter sweep values FUN25 FUN24

1.7. Experimental Data

 1.7.1. Load Experimental Data from Disk FUN26 FUN13-FUN17

1.8. Parameter Fitting

 1.8.1. Perform Automatic Parameter Fitting FUN27 FUN05, FUN20, FUN21

1.9. Global Parameters

 1.9.1. Import Spectrum Photon File FUN28 None

 1.9.2. Edit Individual Global Parameters FUN29 None

1.10. Model Save and Load

 1.10.1. Save Model FUN30 None

 1.10.2. Load Model FUN31 FUN30

1.11. Report

 1.11.1. Report Generation FUN32 FUN13-FUN17

1.12. Heterointerfaces

 1.12.1. Edit Interface Model Types FUN33 FUN29
Table 5 - Functional Requirements

SolCelSim – A Comsol App for Charge Transport in a Multilayer Solar Cell

 40

4.2 Non-Functional Requirements

4.2.1. Usability

 ID: NONFUN01

 Description: A user with knowledge in physics but with no experience with Comsol
or programming should be able to perform the tasks allowed by the application without
needing to be guided. In the sections “5.3. Design Walkthrough” and “7.6. Usability Testing”
of this report, details about how this was measured are detailed.

4.2.2. Extensibility

ID: NONFUN02

 Description: The application should allow for an easy implementation of new
functions, without breaking previously implemented ones. For example, if a change to the
experimental data import format is requested, it should be possible to change the system
accordingly in less than 20 work hours.

4.2.3. Maintainability

ID: NONFUN03

 Description: All defects should take, on average, less than 3 days for a developer
familiar with the application’s code to correct.

4.2.4. Accuracy

ID: NONFUN04

 Description: Application simulation results should never differ more than 1% from
regular Comsol model results. During quality assurance, model data will be used to ensure this
requirement is met.

SolCelSim – A Comsol App for Charge Transport in a Multilayer Solar Cell

 41

4.3 Architecture

 SolCelSim can be used as a desktop application by users with access to a Comsol
Multiphysics licence. The app indirectly connects the user to a Comsol model. This section
details that connection, with specific examples that illustrate how the architecture of the
project works.

Initially, the architecture was planned to include a server that could be accessed remotely
from a web browser or from the Comsol Client App. However, since the University where
this project was developed in wasn’t able to get access to the Comsol Server, this feature was
cancelled and SolCelSim was changed to be a standalone application. Details about these
Client-Server architecture plans can be found in Attachment 4 – Server Architecture.

Following those changes, Figure 13 represents the general architecture of the project:

Figure Element Labels:

• Blue Arrow: Interactions between user and application. Includes things such as parameter
inputs, addition of layers, etc.

• Yellow Arrow: Connection between model and application. Includes both writing
information to the model and retrieving information from it.

• User – Person interacting with the application.
• Application – The software simulator described in this report.
• Model – The underlying model of the solar cell, with which the application interacts.

The developer was responsible for developing the part highlighted in green. The part
highlighted in yellow was previously created by the research team, but had some changes made
over time both by the team and by the software developer.

This general architecture was chosen to maximize accuracy, according to the non-
functional requirement NONFUN04. Since data is retrieved from the model, results obtained
by the user while using the application should be as accurate as if they were performing
Comsol Multiphysics simulation directly through the Model Builder. To verify this accuracy,
accuracy testing was performed, and is detailed in section “7.3. Accuracy Testing/Boundary
Value Testing”.

Figure 13 – General Architecture

SolCelSim – A Comsol App for Charge Transport in a Multilayer Solar Cell

 42

The application seen in Figure 13 was created using the Comsol Application Builder. More
information about it can be found in section “2.2.2. Comsol Application Builder” of this
report.

The user only interacts with the User Interface of the Application. From there, the app
automatically reads information from the model, displays it, and changes it according to user
input.

Regarding the coding of the application, multiple methods were implemented. This way
of organizing code, with separate methods that interact with the model directly, should ensure
good extensibility (NONFUN02). New methods can easily be added, both by the developer
of this project and by future developers, without interfering with the rest of the application.
Frequent use of comments will also help allow future developers understand the code and
implement new features quickly.

Since data is stored locally, there is also no need for the creation of a central database.
Model files will be stored in .mph format; experimental data files will be stored in .csv format
and report files will be stored in .pdf format.

Model files can be saved and loaded through the application. When the user finishes
working on a model, they can save it locally, and later resume work. The entire model is saved
this way, including both the state of the application (for example, parameter sweep values to
be used later) and the information stored in the model itself.

The overall flow of execution when the user presses something involves the correct
method being activated, the parameters being checked, and information being sent and saved
to the model. When things are changed, information is sent from the model to the application
and shown on the user’s screen.

SolCelSim – A Comsol App for Charge Transport in a Multilayer Solar Cell

 43

Figure 14 – Diagram with Software Components

Figure Element Labels:

• Black Line: Interaction between user and application.
• Brown Lines: Connection between “Main” form and other subforms.
• Grey Lines: Connections between model and application.
• User – Person interacting with the application.
• Main – Main form of the application, giving access to the features enabled by the different

methods.
• Layer Stack – Controls the multiple simulated layers and the options for editing them.
• Layer Parameters – Allows altering of each layer’s parameters.
• Global Conditions – Allows the user to change the global parameters that affect the entire

model.
• Solver Options – Allows editing of the parameters used when computing solutions.
• Sketch – Displays the sketch of the simulated multi-layer solar cell.
• Options Buttons – Additional options related to the Layer Stack, including creation of

new layers.
• Application – Includes a selection of methods present in the application.
• Model – The Comsol Multiphysics model, which receives information from the previously

mentioned methods.

In Figure 14, we take a deeper look at the application, and specifically the groups of
methods created with the application builder. The brown lines show interactions between
the groups, while the grey lines show retrieval and delivery of information between the

SolCelSim – A Comsol App for Charge Transport in a Multilayer Solar Cell

 44

application and the model. From the “Main” menu, different modules are accessed, which
then interact directly with the model and alter or retrieve relevant information.

The main requests from the client were that users could dynamically change the number
of layers in the simulated model, along with each layer’s parameters and their values.

A number of solutions (TE, IV, IPCE, EIS and CV) of the model is computed and for
every one of them users can import experimental data and perform automatic Parameter
Fitting. They can also select the number of parameters of simulated data. The simulation takes
the layers added by the user into account. Details about the implementation of these features
is further detailed in the Requirement section of this report.

In Figure 15, we will look at the Application Flow Diagram that describes user’s
interactions with the entire application. By looking at this figure, it should be possible to
understand some of the choices made to ensure good usability (NONFUN01). For example,
in section “5.2 Principles” of this report the idea of managing a good balance between
Discoverability and Constraints was mentioned. By looking at the diagram, we can notice
that even completely unrelated features are never more than 6 clicks away from one another,
ensuring that it’s easy for users to get to different sections of the application without getting
lost. At the same time, the user doesn’t see every single feature at the same time, ensuring
that they don’t get overwhelmed and confused. Usability tests were performed to make sure
these measures were effective, as can be seen in section “7.6. Usability Testing” of this
report.

SolCelSim – A Comsol App for Charge Transport in a Multilayer Solar Cell

 45

Figure 15 – Application Flow Diagram

Figure Element Labels and Associated Functional Requirements. Functional Requirement
tags are included under squared brackets:

• Arrows: Each arrow in the figure represents the ability of the user to move from one part
of the application to the other. The user is always able to return to the previous section.

• Recombination Parameters – [FUN09] Includes the different recombinations types.
• Auger, Impact, Direct, Trap Recombinations – [FUN10] Each section allows for editing

of the parameters for that specific recombination type.
• Trap SRH, Trap ETD – [FUN10] Two available types of Trap Recombination.
• Layer Parameters – [FUN05 – FUN08] List of individual layer parameters.
• Main – [FUN31 – FUN32] Sections that can be immediately accessed upon opening the

application.
• Layer Stack – [FUN01 – FUN04, FUN18 – FUN19] Includes the currently simulated solar

cell layers.
• Layer Up, Remove Layer, Add Layer, Layer Down – [FUN01 – FUN04] Different

available solar cell layer options.
• Solver Options – [FUN20 – FUN22, FUN27] Available settings that affect solution

computation.

SolCelSim – A Comsol App for Charge Transport in a Multilayer Solar Cell

 46

• Solve IV, Solve TE, Solve EIS, Solve IPCE, Solve CV – [FUN13 – FUN17] Settings
specific to each solver type. The user can perform computation here.

• Contact Properties – [FUN11] Left and Right Metal Contact properties of the model.
Settings of each individual Contact can be changed.

• Meshing Options – [FUN12] Settings that affect the meshing of the model.
• Global Conditions – [FUN26, FUN28 - FUN29, FUN33] General parameters that affect

the entire model.
• Results – [FUN23 – FUN25] Displays results from previously computed solutions from

the “Solver Options” section.
• Report Generation – [FUN32] Creates a PDF file with information about the model and

the computed results.
• IV Plot, TE Plot, EIS Plot, IPCE Plot, CV Plot – [FUN23 – FUN25] Displays the plot

generated by each of the solvers.
• Band Diagram, Carrier Concentration, Current, Nyquist, Bode Arg, Bode Abs, Plot,

Energy Levels, Mott-Schottky – [FUN24] All of the different available result plots for
each individual solver. Allow access to each plot without re-computing the solution.

Figure 15 expands the application portion of Figure 14 into the entire application. This
diagram shows how the user can access all of its individual screens.

All parts of the application seen in the figure were developed by the intern, in Java code,
using the Application Builder. Initially, there was no application, only the underlying Comsol
model. The application was developed individually during the second semester of this
project.

The “Main” section includes the different tabs that can be activated in the main menu.
From there, some sections, such as the Contact Properties, can be accessed from any tab,
while others are specific to certain tabs. When the user moves to a different screen, they can
return to the previous screen by pressing the “Back” button at all times. To ensure good
extensibility and maintainability (NONFUN02 and NONFUN03), the application’s code is
designed so that the different “Main” sections aren’t dependent on one another. This means
that developers can make changes to one without breaking the others.

The user is also able to alternate between different plots (from CV Plot to IPCE Plot
and vice-versa, for example).

Figure 16 – Application Flow Diagram (Solver)

Figure 16 details the screens accessible from each Solver. This information was omitted
from Figure 15 for the sake of simplicity, as each individual solver (IV, TE, EIS, IPCE and
CV) has access to different versions of these screens.

SolCelSim was developed using the Comsol Multiphysics Application Builder, using the
JAVA programming language. Users are able to access it on Windows, Linux and Mac,
assuming they have access to a valid Comsol Multiphysics licence. The application was created
by a single developer, as an internship project.

SolCelSim – A Comsol App for Charge Transport in a Multilayer Solar Cell

 47

5. Interaction Design

 In this chapter of the report, we will look at the decisions made when designing the User
Interface of SolCelSim. Principles used, how design walkthroughs were performed, and an
example of a Use Case Diagram are shown. Finally, the initial mock-ups are shown, with
detailed comments about each of them.

5.1 Interface Design

This section will go into detail about the principles considered and the methods used to
ensure the best possible design of the GUI and the best possible user experience.

Good interface design was especially important in this project, as our objective was to
create a piece of software that can be understood in a relatively short amount of time with as
little frustrations as possible, serving as a good alternative to the difficulty of learning to work
with Comsol Model Builder.

Some methods used to evaluate the project from an interface design perspective will be
listed in the following subsections.

5.2 Principles

This section will detail some common UI design principles14 that were used in the design
of the User Interface:

1. Discoverability: The user should immediately have a general idea of how to access any
feature he might want to use. This was done by showing all the generic options on the
main menu, and through the use of icons, when their meaning is obvious, and labels
otherwise.

2. Feedback: The user should never be confused about the state of the application – if
something is loading, the application should make that very clear, through loading bar
or messages. If there is an error, an error box explaining exactly what happened should
appear. Finally, every single action should have an immediate, visible effect.

3. Constraints: Not every option should appear at all times. In each different menu, the
user should only have access to the options that are relevant for that menu.

4. Gather Similar Options: Similar tasks should be close to each other on the UI, so the
user doesn’t have to move the cursor through the whole screen to perform a
predictable, linear sequence of tasks.

5.3 Design Walkthrough

Once new features are implemented into the project, it was necessary to test whether users
could quickly access them through the User Interface without being guided by someone else.
As such, a sequence of tasks was designed, and users were asked to perform them without any
extra help. The steps they took, along with their thought process and the time it takes to

14 https://blog.prototypr.io/boost-your-ux-with-these-successful-interaction-design-principles-e2f0c2b49050

https://blog.prototypr.io/boost-your-ux-with-these-successful-interaction-design-principles-e2f0c2b49050

SolCelSim – A Comsol App for Charge Transport in a Multilayer Solar Cell

 48

perform each step, was recorded and analysed. One of the main objectives was to measure
learning time.

The expectations in these walkthroughs were that a new user should be able to perform a
series of 7 tasks, in less than an hour, without guidance.

At the end of any walkthrough, questionnaires were used to try to measure user
satisfaction. They used Likert Scales with cross-checking questions and generally contained
simple questions about the feature being evaluated. The user was expected to feel comfortable
using any feature within the application after two hours. The previously mentioned
questionnaires were used to measure whether or not that objective has been met.

Information about the results from these tests can be seen in section “7.6. Usability
Testing” of this report.

5.4 Use Case Diagram

Figure 17 shows a brief overview of how each user’s interactions with the system works.
It was made to make sure that the initial idea for user interaction was followed during the
design phase.

Figure 17 – System Use Case Diagram

SolCelSim – A Comsol App for Charge Transport in a Multilayer Solar Cell

 49

5.5 Mockups

A number of mockups were developed, based on feedback from the client and with
the objective of following every requirement. These mockups went through 3 revisions with
the client before reaching the final state, shown in the next figures.

The decision to include these mockups in this report was due to the high importance
of interface design and usability in this project.

 The requirements that each mockup looks to fulfil will be mentioned by their labels in
each mockup’s description.

When designing these mockups, the objective was to obey the good UI design
principles listed in section 5.2. Some examples of how each principle were considered will be
mentioned in this section.

The main menu serves as the centre from which all features can be accessed. From
here, the user has access to every option related to computation and the use of experimental
data. They can save (FUN30) and load (FUN31) the model. They also have access to four tabs
(Stack, Solve, Global Options, Results).

Figure 18 – Main Menu

The principle 4. Gather Similar Options was considered while designing every element
on the UI, which can be easily seen from the mockups. Parameter values that can be edited,
confirmation buttons, plot displays and report-related buttons all have their own specific part
of the UI reserved, which stay consistent throughout.

The principle 3. Feedback can’t be directly seen in the mockups. However, as
requested by the client, a separate window is seen whenever there is any kind of error, or while
plots and reports are being generated.

SolCelSim – A Comsol App for Charge Transport in a Multilayer Solar Cell

 50

When designing the main menu, it was important to find a good balance between the
principles 1. Discoverability and 3. Constraints. In order to achieve this, the idea was to make
the four tabs above the layer stack serve as a clear indication of which options the user can
access, without actually displaying every single feature on the home page. As such, they have
clear and unambiguous names, and clicking them leads to different screens with more specific
options. The use of labels for every single option should also increase discoverability.

In order to preserve both principles, the list of tabs is always visible when using the
program. What changes is the area below the tabs. This way, discoverability is maintained
because the user can always see how to access different options in the tab list, but there is still
some element of constraint present by limiting what the user can see while each tab is selected.

The first tab is the layer stack, seen in Figure 17, which allows the user to dynamically
adjust the number of layers (FUN01, FUN02), as well as changing their position (FUN03,
FUN04). It also gives the user the possibility of changing individual parameters within each
layer (FUN05, FUN06, FUN07) and altering its recombination type (FUN09) and
recombination parameters (FUN10). When a layer is changed, the plot shown in the main
menu updates automatically (FUN18).

Figure 19 – Layer Parameters

The available recombination types are Trap-Assisted, Auger, Impact Ionization and
Direct Recombination Models.

Figure 20 – Recombination Type

SolCelSim – A Comsol App for Charge Transport in a Multilayer Solar Cell

 51

Once the user selects the recombination type in the menu in the previous picture, the
list of parameters that appears when they click the “Parameters” button changes.

Figure 21 – Recombination Parameters

The second tab allows the user to solve for specific numerical solutions of the model.
Figure 21 shows the options available for customizing global parameters (FUN29).

Figure 22 – Solve

 When the user clicks one of the solution buttons, a window requesting a number of
inputs will appear. This data can also be used for Parameter Fitting (FUN27) if the user desires.

SolCelSim – A Comsol App for Charge Transport in a Multilayer Solar Cell

 52

Figure 23 – IV Inputs

If they press Solve IV (FUN14), a window with solution progress appears, and when
the solution is finished the Results tab is activated. Selecting CV (FUN15), EIS (FUN16) or
IPCE (FUN17) shows similar windows, with their respective curves as an added option. In
the case of EIS, the user can also see the Nyquist, Boder Arg and Boder Abs curves.

SolCelSim – A Comsol App for Charge Transport in a Multilayer Solar Cell

 53

Figure 24 – Results

 The user can alter the Solver Method and Termination settings (FUN20). These
changes are reflected in any future operation the user does, as well as any currently displayed
plots.

Figure 25 – Method and Termination

SolCelSim – A Comsol App for Charge Transport in a Multilayer Solar Cell

 54

6. Final Interface

This chapter will serve to show what SolCelSim looks like, the changes that were made
from the initial mockups and the reasons for those changes. Some examples that were
considered important to illustrate the general interface will be shown.

Figure 26 – Main Menu

Figure 26 shows what the main menu of the application looks like. While the general
design was kept from the initial mockups, some additions were also made. For example, a list
with the current layers and their indices is displayed on the top right corner of the sketch area.
Inside that area, the corresponding index for each layer is shown, along with the positions of
the right and left contacts. Otherwise, some slight aesthetic improvements were made, such
as lines separating the different sections, and logos on top of the menu screen.

This screen serves as the basis of the user’s interaction with the application. Clicking the
tabs above the layer section changes what appears inside that section, along with the graph on
the right panel, but the general structure of the screen stays the same throughout. The next
figure will serve to exemplify this behaviour.

SolCelSim – A Comsol App for Charge Transport in a Multilayer Solar Cell

 55

Figure 27 – Results Screen

Figure 27 shows what the application displays when the user presses the “Results” tab. As
is possible to see, the general layout of the menu remains the same, but what is displayed on
the left and right panel changes appropriately.

This is the area of the interface that has changed the most since the initial mockups were
designed. While the initial idea was to have only the graph, plot selection, and “export data”
buttons, significant changes were requested by the client in the meantime.

Firstly, the currently displayed plot is written in text above the options, to inform the user
of what graph they are currently seeing. If they want to move to a different study, they can
press, for example, “Show TE”, and the TE graph will appear, along with the available options
regarding TE plots. These buttons do not re-compute the solution, so the user can quickly
change between plots without a long waiting time.

Similarly to the prototype, the ability to change between plot types within the same study
(in the case of IV, this means Band Diagram, Carrier Concentration and IV Current) is
available. When the user clicks on of these buttons, the graph displayed changes, along with
the sweep range selections on the left. For some of these plot types, the user is able to import
experimental data from a .csv file, in order to compare the real results with the simulated ones.

The previously mentioned sweep range selections allow users to specify which sweep
values should be considered for plotting. The user can specify, for example, that they want to
show Voltage Sweep value for 0 and 0.1, and the plot will be shown only for those values.
While the Voltage Range selection was added early in development, the second table, which
allows the user to specify which Parameter Sweep values to plot for, was the last requirement
to be added to the project. The two selections work at the same time, meaning that users can
select, for example, two Voltage sweep values and three Parameter Sweep values, and the plot
will change accordingly. When a solution is computed without Parameter Sweep, the second
list is empty and a message will appear informing the user that there are no parameters to
show.

SolCelSim – A Comsol App for Charge Transport in a Multilayer Solar Cell

 56

Figure 28 – Contact Properties

Figure 28 serves as an example of the design of the parameter input sections of the
application. Here we can see the Contact properties of the simulated solar cell. By default,
most of the options are disabled, as the “Ohmic” contact property does not allow for
specification of the parameters listed. If the user changes “Ohmic” to “Schottky”, the related
options will become available and the user can now edit them at will. Some of the options like
“Thermionic currents” also enable and disable certain fields depending on what option is
currently selected.

Figure 29 – Method and Termination

SolCelSim – A Comsol App for Charge Transport in a Multilayer Solar Cell

 57

Figure 29 shows the Method and Termination selection page. While similar in
functionality to the Contact Properties page, this one has the peculiarity of completely
changing which options are displayed. This means that changing “Non-Linear Method” not
only disables some options, but completely changes the page to display a different list of
options instead.

Figure 30 – IV Solver Options

Like what was listed in requirements FUN20 through FUN22, the user should be able to
specify multiple aspects of the solving configuration. This page serves as a “hub” for those
options, from where the user can access other more specific features such as the Method and
Termination options shown in Figure 29 and the Parametric Sweep options. Pressing “Solve
IV” will take the user back to the results section of the main menu, where the results of the
computation will be displayed.

Figure 31 – Parameter Sweep Options

If the user chooses to perform parametric sweep, he must enable the option on this screen
and select the desired parameters through the menu. The first box displays the list of layers,
while the second displays the list of parameters for that layer. For example, if the user selects
layer “Cu2O”, a list of every parameter from that layer will show up in the second box. There,
the user can select one of those parameters and press “Add” to add it to the list of sweeping
parameters. Once the parameter is added, the user can specify the minimum, maximum and
step size of the sweep, along with the appropriate unit. This information is initially stored by
the app. When the user computes the solution, the application automatically converts this
information into a format that the model can recognize and creates the necessary temporary
variables. Afterwards, this data is cleaned up from the model but kept in the application.

SolCelSim – A Comsol App for Charge Transport in a Multilayer Solar Cell

 58

Figure 32 – Layer Parameters

In Figure 32, we can see the section where the user can edit the parameters of one layer.
Depending on the layer selected, the parameters displayed will change. This screen looks
similar to the one from the initial prototype, but with a few new options. Importing of the
absorption coefficient file can be done on the same page, instead of there being a button to
take the user to a different page as initially planned. The user can select a different absorption
coefficient file for each layer.

Layer names can also be renamed in this section, and the application checks to make sure
the new name is valid and not repeated.

The recombination type selection was moved to this section, to allow the individual
selection of different recombination types for each layer.

Regarding the parameter list, the user has multiple options besides just individually editing
each parameter. With the options below the list, they are able to add or remove parameters,
clean the list, save the currently saved list or load a previously saved one into the application.

SolCelSim – A Comsol App for Charge Transport in a Multilayer Solar Cell

 59

7. Testing and Quality Assurance

Careful testing is extremely important in a simulation project like this one. It is imperative
that results obtained from the simulation correspond to reality as closely as possible. In
addition, the user-friendly nature of the software can’t be fully realized if the user encounters
frequent bugs and faults. Since this project is individual, there could not be a separate team
for testing. As such, testing was intercalated with development, meaning that there was a
software review process after the development of every task.

Defects had to be detected as early as possible, in order to ensure a smooth development
process where the detection of defects didn’t interrupt the development of new tasks.

In order to allow us to intercalate development and testing in this manner, a number of
testing techniques, listed below, were used:

᛫ Boundary Value – Black box testing (tests designed previously based on requirements,
not code) technique. Consists of specifically testing the values near the boundaries of the
allowed ranges for each parameter. This technique was useful since parameterization was very
important in this project.

᛫ Regression testing – Previous tests were run after the implementation of each new
feature, ensuring that the new code is not interfering with past work.

᛫ Maintainability Testing – Time required to diagnose and fix faults was recorded.

In addition, other non-functional tests such as usability, acceptance, exploratory, negative
and accuracy testing were also important in order to obey the non-functional requirements of
this project. More information about usability tests is available in subsection “5.4 Design
Walkthrough” of this report.

The next section will go into detail regarding how Quality Assessment was performed,
divided into different subsections for the types of tests performed.

7.1 Alpha Testing

Alpha testing was performed to try and identify issues and defects within the application.
In order to achieve that, the application was made available to a small number of individuals
within the research group. Through regular use, some problems were identified, sent to the
developer of the application and subsequently fixed. While the main objective of alpha testing
was to find and fix bugs within the code, small design changes were also made when
appropriate.

7.2 Acceptance Testing

Acceptance testing was performed by the client, in order to make sure that the application
fulfilled all of the requirements. The software was considered accepted once all the desired
features had been implemented and worked as expected.

SolCelSim – A Comsol App for Charge Transport in a Multilayer Solar Cell

 60

7.3 Accuracy Testing/Boundary Value Testing

These two types were performed simultaneously and, thus, are included in the same
subsection.

For this specific application, it is not only important that the application behaves correctly
and without crashes for valid inputs, but the results obtained should accurately reflect the
simulations ran in the model.

As such, a list of valid inputs was created, based on the boundary level of the inputs the
user can set. For example, in values that must be positive, inputs near zero were used for
testing.

Afterwards, the results obtained by the application were compared to the results obtained
by simulating the underlining model by itself; and it was considered that tests were passed
when the results obtained from both were within 1% or less from each other.

All the inputs and outputs obtained, along with comments about the accuracy of the
results, were written and stored in a .xlsx format file.

Section Parameter Input 1 Input 2 Input 3 Result 1 Result 2 Result 3

New
Layer Name Test Layer 123

 Thickness 5.00E-08 5.20E-08 3.00E-07

Donor
Doping 1.00E+20 1.20E+20 0

Table 6 – Accuracy Testing Example

 Table 6 has a very small example of some of the data obtained from the tests and present
in the previously mentioned Excel file. These tests were repeated for every parameter within
the application, with multiple inputs. The results are represented by a different colour
depending on the expected behaviour and the real behaviour. This color system is explained
by the label below:

 Positive Result, Equal Result to Model

 Expected Negative Result, Equal To Model

 Positive Result, Different from Model

 Negative Result, Different from Model

7.4 Exploratory Testing

After the development of each new feature, a period of exploratory testing was performed.

This involved exploring the application and experimenting with different features in the
search for potential defects. Generally, the focus during these tests would be in the most
recently implemented feature, although older features were also tested at the same time in
order to make sure that new updates did not break previous code.

SolCelSim – A Comsol App for Charge Transport in a Multilayer Solar Cell

 61

7.5 Negative Testing

This technique was used to verify the behaviour of the application when the user inputs
incorrect data. In the specific case of this application, this meant writing inputs that, while
having the correct data type and being within acceptable boundaries, cannot generate a valid
physics model and thus can’t be computed by Comsol.

The expected behaviour in these circumstances is that the application accepts the inputs
but gives the user an error message when he tries to perform one of the “Study Solver”
options. When this happens, the “Results” section of the application is changed to represent
the fact that the current parameters should be changed. If the user tries to compute the “Study
Solver” again with correct parameters, the application will display the results correctly.

A second phase of negative testing was also performed. These second tests focused on
invalid, rather than incorrect inputs. This means ridiculous values, such as String inputs in
Integer input boxes, long sets of non-alphanumerical characters, and extremely high numbers
that are far outside of what should be expected for each parameter.

The inputs and outputs obtained in both phases were saved in the same file .xlsx
mentioned in subsection 7.3., each in a separate tab. Comments and appropriate labels were
added, comparing the results obtained with the expected behaviour. In cases where the
application behaved differently than expected, the defect was identified and fixed, and the
tests were repeated.

Parameter Input 1 Input 2 Input 3 Result 1 Result 2 Result 3

Name
<empty
string>

a <100
times>

a123<123
repeated
20 times>

Invalid
Parameter
Inserted

Invalid
Parameter
Inserted

Invalid
Parameter
Inserted

Thickness
\n\r@"!=)#$)
`*ª\r\n Letters

<empty
string>

Invalid
Parameter
Inserted

Invalid
Parameter
Inserted

Invalid
Parameter
Inserted

Donor
Doping

\n\r@"!=)#$)
`*ª\r\n Letters

<empty
string>

Error while
computing

Error while
computing

Invalid
Parameter
Inserted

Table 7 – Negative Testing Example

Table 7 contains a small example of some of the data obtained from Negative Testing.
This table is generally analogous to Table 6, with the difference that the inputs chosen were
intended to be invalid and force the application to return an error. As the following label
shows, the results obtained in this example show the application behaving as expected, and
recovering correctly from the forced errors:

 Positive Result

 Expected Negative Result, Recovered Correctly

 Expected Negative Result, Did Not Recover

 Unexpected Negative Result

SolCelSim – A Comsol App for Charge Transport in a Multilayer Solar Cell

 62

7.6 Usability Testing

Early in development, before implementing most of the methods related to the backend
of the application, usability tests were designed and performed.

In order to do this, a small prototype was developed, and users were asked to perform a
set of tasks.

Only two users participated in these tests. While this number is quite low, and thus results
can’t be fully generalized, they helped give us an idea of the usability of the application. User
1 had some general idea of how the application functioned before the tests began, while User
2 was completely unfamiliar with it. User 1 was also more familiar with aspects of solar cell
simulation in general than User 2.

The users were monitored during this time. The time they took to perform these tasks,
along with the steps they took, were analysed.

The following list shows the list of tasks required, in order:
1. Add a new layer. Move it up and then down. Remove it.
2. Add a new layer parameter to any layer and save your changes. Remove it and save your

changes.
3. Set Right Contact Properties to Schottky. Set Metal Work function to 1. Set Right

Contact Properties back to Ohmic.
4. Set any Layer Recombination Properties to Auger. Change Electrons Recombination

Factor to any value. Set it back to Trap Recombination.
5. Solve for IV.
6. Set Meshing Options Sequence Type to Physics Controlled.
7. Close the application.

After the users performed the tasks listed, they were asked for their thoughts regarding

the design of the user interface, and asked to answer 10 questions from the System Usability
Scale (SUS), a usability measuring tool created by John Brooke15:

1. I think that I would like to use this system frequently.
2. I found the system unnecessarily complex.
3. I thought the system was easy to use.
4. I think that I would need the support of a technical person to be able to use this system.
5. I found the various functions in this system were well integrated.
6. I thought there was too much inconsistency in this system.
7. I would imagine that most people would learn to use this system very quickly.
8. I found the system very cumbersome to use.
9. I felt very confident using the system.
10. I needed to learn a lot of things before I could get going with this system.

The questions were made available in an online questionnaire, where they were presented
on a Likert scale with five possible values for each. Something to note is that the questions in
the SUS were designed with some having a more positive connotation, while others have a
more negative one. This gives us more confidence in the user’s responses, as they can’t simply
select 1 or 5 for every answer, forcing them to think about each individual question.

15 https://www.usability.gov/how-to-and-tools/methods/system-usability-scale.html

https://www.usability.gov/how-to-and-tools/methods/system-usability-scale.html

SolCelSim – A Comsol App for Charge Transport in a Multilayer Solar Cell

 63

Task User 1 User 2 Average

1 01:03 03:06 02:04

2 01:31 02:51 02:11

3 00:36 01:42 01:09

4 00:47 01:23 01:05

5 00:13 00:48 00:30

6 00:30 00:38 00:34

Total 04:40 10:28 07:34
Table 8 – Task Time to Complete per User

 In Table 8, we can see the time each user took to complete each task. The expected
average for each task was around 5 minutes, so the results were significantly better than
expected. With both users, it’s possible to note that there was a short period of getting used
to the application, which explains why times for the first tasks were higher than times for later
tasks. As expected, the more experienced user (User 1) performed the tasks in a lower amount
of time.

Question User 1 User 2 Average

1 3 3 3

2 3 4 3.5

3 3 4 3.5

4 4 2 3

5 2 3 2.5

6 3 4 3.5

7 4 3 3.5

8 4 4 4

9 3 3 3

10 4 3 3.5

Total
Rank 82.5 82.5 82.5

Table 9 – Questionnaire Results Rankings

In Table 9, we can observe the rankings for the answers given by the users in the
Questionnaire. It’s important to note that the numbers in the table don’t correspond directly
to the ratings given by the users. Since in the System Usability Scale questions odd numbered
questions are positive and even numbered questions are negative, some adaptations have to
be made before analysing results. In order to obtain the SUS Usability Score, three steps are
taken. First, the score of odd numbered questions is subtracted by one. Then, the score of
even numbered questions is subtracted from 5. Finally, the sum of every score is multiplied
by 2.5. With this, we obtain the SUS score, on a scale from 1 to 100. In this case, the score for
both users was 82.5, which can be considered very positive.

The results obtained from these usability tests were very positive. The time users took to
perform each task was significantly lower than expected. As such, only some very minor
changes were made to the user interface based on feedback received from the user’s
comments, and the final UI design was accepted, allowing proper development of the
application to begin.

SolCelSim – A Comsol App for Charge Transport in a Multilayer Solar Cell

 64

7.7 Others

There are a few other aspects of the testing and quality assurance part of this project that
are worth mentioning.

Regression tests were used to make sure further development did not break previously
implemented parts of the project.

Since one of the functional requirements of this project was Maintainability, Dynamic
maintainability testing was performed by measuring the time needed to perform corrective
maintenance. These tests revealed that the application fulfils the requirement. Similarly,
extensibility was tested by measuring time required to implement new features, also showing
positive results.

SolCelSim – A Comsol App for Charge Transport in a Multilayer Solar Cell

 65

8. Challenges

This chapter will go into detail about what challenges emerged during the development of
this project, and how it was possible to deal with them and achieve positive results.

Layer Stack: The management of the layer stack is not a trivial problem in this project.
The physical concept of a solar cell layer is represented by multiple different parts of the
model.

Some of the defining characteristics of each layer are the “Variable” and “Interval” parts
of the model. The former stores the parameters of the layer, taking into account the data
stored in the Absorption Coefficient file. The latter stores the thickness and position of each
layer, and represents it graphically. For example, the interval for “Layer 3” would start at
d1+d2 and end at d1+d2+d3, where dX represents the thickness of Layer X. Consequently,
the interval for “Layer 4” would start at d1+d2+d3 and end at d1+d2+d3+d4.

Each interval defines a “domain”. The second big challenge related to the layer stack is
creating the correct semiconductor properties and associating them with the correct domains.
For example, if we have two layers in the model and the user wants to create a third one, we
need to create the semiconductor property “Trap Assisted Recombination 3”, and associate it
with Layer 3. This process needs to be repeated not just for recombination, but for all the
semiconductor properties, including the “Doping Model” and “User Defined Generation”,
among others.

With the creation of a new layer, the application needs to detect what the current highest
layer number is, create a new absorption coefficient with a new associated table, a new interval,
a new variable, and all the necessary new semiconductor properties (which must be associated
to the new domain). The domains of certain properties, such as the “Right Metal Contact”,
need to be adjusted to include only the new highest layer.

The problem then becomes more complicated when it involves removing and moving
layers. For example, if we have 4 layers, and the user tries to remove Layer 2, we can’t simply
remove that layer and leave the rest of the model as is. If we did that, then the model would
jump from Layer 1 to Layer 3 and the simulated solar cell would have a “hole” where the
second layer used to be.

Thus some adjustments need to be made automatically. Generally for removal, parts
associated to layers of higher number need to be “moved” accordingly. Using the duplication
functions of the Comsol API, we iteratively remove layers and copy the contents of the
subsequent layers into the previous positions. Domains are then adjusted for every part of the
model, including every semiconductor property of every layer. When moving layers up and
down, the application also needs to create temporary objects to store the properties of the
layer being moved before making the rest of the adjustments.

Parameter Sweep: A “Parameter Sweep” object, along with its solution and job
configurations, is kept in the model at all times, with one for each different solver. The user
can disable and enable it through the application’s user interface.

It was requested that users are able to perform parameter sweep on individual parameters
from each layer. However, Comsol only allows users to sweep global parameters. As such,
some adjustments need to be made whenever the user runs a solver with Parameter Sweep
enabled.

SolCelSim – A Comsol App for Charge Transport in a Multilayer Solar Cell

 66

The best solution that was found was to keep Parameter Sweep values inside the
application. When the user tries to compute a solution with Parameter Sweep enabled,
temporary global parameters are created based on the sweep values (for example, if “epsr”
from Layer 1 is a sweep value, a temporary global parameter “epsr01” is added). Then, the
layer parameter associated with that value is properly adjusted (in the previous example, layer
parameter “epsr” would get “epsr01” as its value). With all of this done, the Parameter Sweep
object can now be filled with the information entered by the user. The name of the parameter
is added to the sweep, followed by an automatically generated “range(X,Y,Z)” string, where
X, Y and Z are sweep values input by the user, and finally the parameter unit.

When these preparations are complete, the solution is computed, and table datasets are
adjusted to display the correct results. Some Boolean variables in the application are also
updated so that SolCelSim “remembers” to show the appropriate sweep results in the future,
even if the user interrupts their work. The second table in the left side of the Results tab of
the application then allows users to select which sweep values to plot for.

At the end of computation, or if the computation is interrupted by the user or an internal
error, the temporary global parameters that were stored earlier are deleted from the model,
but kept in the application.

Error Handling: Initially, when a computation for any solver was interrupted, certain
tables in the user interface would point to data from an unfinished computation and, as such,
would retrieve null values and break the normal functioning of the application. As an answer
to this problem, error detection was implemented in areas that involved solver computation.
When an error is detected, certain parts of the application are automatically adjusted. The used
dataset for the failed solution is changed to a “Safety Solution” dataset, which the user cannot
interact with, and serves simply to give the tables and graphs in the Results section a valid data
source. The user doesn’t actually see the tables associated to this dataset, as an error message
is displayed instead of the Results page when the last computation of a certain Solver has
failed.

This allows SolCelSim to recover effectively from any failed or interrupted computation.
Important to note is that this doesn’t affect successful computations. For example, if the IV
Solver fails, an error message is shown on the IV Solver Results page, but the user can still
access TE, EIS, IPCE or CV Solver Results pages normally. If the user then performs a correct
computation of the IV Solver, the error message is removed, datasets are reverted to their
regular values, and the user can continue using SolCelSim as usual.

Others: Some features such as the Results Sweep selection, Heterointerfaces and
Absorption Coefficient file import required some deep understanding of the Comsol API
documentation and some creative thinking. Since the Comsol Application Builder limits what
programmers can directly interact with in some regards, especially when it comes to the User
Interface, some problems that initially seemed trivial ended up requiring a significant
investment of time and some unconventional thinking to be achieved in spite of those
limitations.

SolCelSim – A Comsol App for Charge Transport in a Multilayer Solar Cell

 67

Conclusion

Future Work

Something that was noted near the end of development was that the application had a
bigger filesize than expected and took relatively long to start up. Performance wasn’t initially
considered one of the non-functional requirements of the project, and this problem was only
noticed during the last few weeks of the project. As such, there wasn’t enough time to optimize
both the size of application and its start up time. While some small changes were made to try
and combat the problem, any more significant changes would require a long period of
development, followed by regression tests to make sure previous features hadn’t been broken
by the changes. Because of this, there is the possibility that future work can be done in the
area of optimization.

One feature that was cut was the use of the Comsol Server, due to the lack of licence. If
a Comsol Server licence becomes available to the university, then the application can be
uploaded to the server and then accessed either from a Comsol Client application or from any
Web Browser.

As needed, new features that researchers find important to simulating solar cells can be
added. In order to make sure different developers are able to continue work on the application
and add those features, extensibility was made a priority. SolCelSim’s architecture being
friendly to the addition of new modules, along with the detailed comments throughout the
entire code, should make future developers’ jobs easier in this regard.

Final Comments

The first semester of this project was focused mostly on planning and research. In order
to ensure a smooth development process, it was important that a work schedule estimate was
created, to serve as a general guideline. There was also extensive study done on state of the
art, software design methodologies, human-computer interaction and quality assurance.
Developing a good set of design principles, and a solid methodology prevented the necessity
of wasting development time fixing mistakes that could have been avoided from the start.

The second semester encompassed the development phase, while leaving a few weeks for
the addition of new features and quality assurance. There was also some time at the end
dedicated to the writing of the final internship report. New requirements were added
throughout the second semester, according to the client’s wishes, ensuring that all of the
development time was used efficiently, and avoiding the situation where estimates are more
strict than necessary and all tasks are completed before expected.

While both the initial requirements and all the added requirements were fulfilled, there is
still space for future work. As such, the application’s code includes very detailed comments,
so that future developers can continue working on the project and add new features as
necessary. Overall, proper extensibility was made a priority to facilitate future work on
SolCelSim.

From the intern’s point of view, this project was extremely valuable as a way to learn about
proper User Interface design, the use of SCRUM methodology and Quality Assurance testing.

The resulting application is available to all users with a Comsol licence since June 2019.

SolCelSim – A Comsol App for Charge Transport in a Multilayer Solar Cell

 68

SolCelSim – A Comsol App for Charge Transport in a Multilayer Solar Cell

 69

Bibliography

[1] Jia, J. et al. Solar water splitting by photovoltaic-electrolysis with a solar-to-hydrogen
efficiency over 30%. Nat. Commun. 7, 13237 doi: 10.1038/ncomms13237 (2016).

[2] Cendula, P. et al. Calculation of Energy Band Diagram of a Photoelectrochemical
Water Splitting Cell, Zurich University of Applied Sciences (2014)
(https://arxiv.org/pdf/1407.5774.pdf)

[3] Delgado, E. et al. From solar to hydrogen energy: Modelling, design, and construction
of a system for hydrogen production using photovoltaic panels, Delft University of
Technology (2018)

[4] Dumortier, M. et al. Holistic design guidelines for solar hydrogen production by
photo-electrochemical routes, Energy Environ. Sci., 2015, 8, 3614

[5] Ager, J. et al., Experimental demonstrations of spontaneous, solar-driven
photoelectrochemical water splitting, Energy Environ. Sci., 2015,8, 2811-2824

[6] Bonkge, S. et al, Renewable fuels from concentrated solar power: towards practical
artificial photosynthesis, Energy Environ. Sci., 2015,8, 2791-2796

[7] Nakamura, A., A 24.4% solar to hydrogen energy conversion efficiency by combining
concentrator photovoltaic modules and electrochemical cells, Applied Physics Express, 8, 10

[8] Jong, W.A., PEC versus PV - E A Future Potential Comparison, Utrecht University

SolCelSim – A Comsol App for Charge Transport in a Multilayer Solar Cell

 70

Attachment 1 – Comsol Explanation

Comsol MultiPhysics

 Comsol MultiPhysics is a cross-platform physics simulation software. While the “core”
of the program is its Model Builder, version 5.0 introduced the new Application Builder, which
allows the creation of desktop apps with Java. The Application Builder was the main focus of
this project, although some interaction with the Model Builder was necessary to ensure the
application works properly.

Comsol Model Builder

Figure 33 shows the Comsol Model Builder. This mode allows the user to easily make
changes to the model using its interface. It allows the creation of complex Multiphysics
models.

Figure 33 – Model Builder

SolCelSim – A Comsol App for Charge Transport in a Multilayer Solar Cell

 71

Comsol Application Builder

Pressing the A button of the top left corner of the Model Builder takes the developer
to the Application Builder. This takes us to the programming side of things, where we can
write methods that activate when the user presses a specific button or enters a specific page.

Figure 34 – Application Builder

 Figure 34 shows a generic example of what a common screen will look like when
interacting with the Application Builder. Pressing “Test Application”, on the top bar, allows
the developer to immediately test the changes they’ve made.

 In this piece of code, the keyword ‘model’ can be seen often. This is used for all
interactions with the model which we saw in the Model Builder part of this document. For
example, the first few lines get parameters from Global Definitions -> Parameter, which we
could see on the left toolbar of Figure 33.

 Features mentioned in the Requirements Document were implemented in this
Application Builder.

 It’s worth noting that the examples in this section serve purely as a demonstration of
the functioning of the Application Builder, and are not representative of the final state of the
application. Some code displayed here might thus be outdated.

SolCelSim – A Comsol App for Charge Transport in a Multilayer Solar Cell

 72

 Example – Add Layer

 While learning how to work on the Application Builder, an initial version of the
method for addition of layers was written. As a way of explaining how working with Comsol
works, a step-by-step explanation of the implementation of this feature should be helpful.

Figure 35 – Layers

 First, this is a graphic that shows the layers present in the model. Each of the dots
represents the limits of one layer. Each layer has a different number of parameters that affect
its interaction with the other layers. Thus, any small change to each layer will completely
change the graphic. As such, whenever a layer is added, a number of changes have to be made
to the model, which will be shown next.

SolCelSim – A Comsol App for Charge Transport in a Multilayer Solar Cell

 73

Figure 36 – Add Layer

 Next, we will take a look at each part of this code, step by step, along with what
changes are made automatically to the model.

Figure 37 – Getting two parameters

 These lines are basically Getters, obtaining the current highest numbered layer and its
distance from the lowest numbered layer.

Figure 38 – Duplicating a default layer

 These lines duplicate a default layer, creating the new layer that we will edit next. In
this case, its number is an increment over the current highest numbered layer.

SolCelSim – A Comsol App for Charge Transport in a Multilayer Solar Cell

 74

Figure 39 – Adding Distance Value

 Assuming the layer added is Layer 4, a new parameter, d4, is added with its distance
from the previous layer.

Figure 40 – Setting Endpoints

 Based on the value previously added, d4, the written code automatically sets the new
left and right endpoints for the new layer. In this case, the left endpoint would be ep (the
previous highest endpoint) and the right endpoint would be ep – d4. In practice, we will be
able to see, in the graphic, that this new layers starts at the point where the previous layer
ended, and ends at that point minus d4 (200 nm, as defined in Figure 38).

SolCelSim – A Comsol App for Charge Transport in a Multilayer Solar Cell

 75

Figure 41 – Adding New Doping Model

 Each layer has an associated doping model. This part of the code creates a new one,
with the parameter values of the default doping model. In addition, since every layer has an
associated Domain, it also adds the new layer’s domain to the model.

Figure 42 – Domain

 The correct domain is then associated with the new layer.

SolCelSim – A Comsol App for Charge Transport in a Multilayer Solar Cell

 76

Figure 43 – Build

 Builds the whole geometry so the graphic can be updated automatically.

Figure 44 – Updating Global Parameters

 This is used for internal purposes within the application. The number of the highest
layer and its right endpoint are recorded, so they can be used when the user decides to create
a new layer.

 This section showed how to add a single feature using the Comsol Application Builder.
It should hopefully give the reader a more intuitive idea of how Comsol works, and what can
be done in the Application Builder.

SolCelSim – A Comsol App for Charge Transport in a Multilayer Solar Cell

 77

Attachment 2 – Solar Panel Software

Purdue University has also developed a MatLab model16 for a-Si solar cells, as well as
two other simulation tools, PV Analyser and PVPanelSim.

PV (Photovoltaic) Analyser17 provides “rapid data analysis and parameter extraction
for solar cell measurements”. It extracts diode and shunt parameters from the dark IV
characteristics of a solar cell. All the data and fit parameters can be later downloaded as text
files.

PVPanelSim18 provides “two-dimensional SPICE (Simulation Program with
Integrated Circuit Emphasis) simulation of thin-film solar panels”. The user can see the
effects of partial shadowing caused by objects nearby. It can show various plots, such as the
IV curve, PV cuve, 2D node voltage drop and 2D power generation

PVPlanner19 is an older application (from 2010) that allows users to estimate energy
loss, performance and efficiency of the system they design. It simulates two-dimensional
thin film solar panels. Losses due to terrain shading, snow, dirt, among others, are
considered in the simulation.

PVPlanner boasts ease-of-use as one of its strong points, without disregarding
accuracy of results. Since this is also one of the goals of the current project, PVPlanner’s
design will be used for inspiration, with some of its ideas being implemented whenever
possible.

16 https://nanohub.org/publications/20/1
17 https://nanohub.org/resources/pvanalyzer
18 https://nanohub.org/resources/pvpanelsim
19 https://solargis.com/products/pvplanner/overview/

https://nanohub.org/publications/20/1
https://nanohub.org/resources/pvanalyzer
https://nanohub.org/resources/pvpanelsim
https://solargis.com/products/pvplanner/overview/

SolCelSim – A Comsol App for Charge Transport in a Multilayer Solar Cell

 78

Figure 45 - PV Analyser

Figure 46 - PV PanelSim

SolCelSim – A Comsol App for Charge Transport in a Multilayer Solar Cell

 79

 The Solar Energy Simulator (SES)20, despite having a somewhat different overall
purpose, also has some ideas that can be applied to the current project. Particularly, the ability
to add new systems and appliances and have the results change accordingly is similar to what
we want to achieve. This application, however, is most useful for people who are interested
in using solar energy to power their own house, for example. Data about electrical
consumption and costs can be quickly obtained. It is also able to accurately model battery life,
and generate a variety of reports and analysis documents.

Figure 47 – SES

 System Advisor Model (SAM)21 can estimate performance and energy costs, based on
where the user wants to install the system, with the ability to generate a large number of
reports. It was developed by the National Renewable Energy Laboratory of the United States
in 2005. It is generally not as simple to use as other examples in this section.

Its main purpose is to help facilitate decisions in the renewable energy industry, by
predicting performance and energy costs based on the user inputs.

After a simulation, SAM can show metrics such as first year annual production,
detailed annual cash flow and hourly performance data. It also allows the user to directly
compare multiple different projects. The reports and tables generated by this application are
extremely in depth. There is also a custom scripting language available for the user to write
their own scripts within the user interface.

Different performance models and financial models with their own inputs and outputs
are included within the program, and used for performing calculations.

20 http://www.hybridsunshine.com/solar-energy-simulator/
21 https://sam.nrel.gov/download

http://www.hybridsunshine.com/solar-energy-simulator/
https://sam.nrel.gov/download

SolCelSim – A Comsol App for Charge Transport in a Multilayer Solar Cell

 80

Figure 48 - System Advisor Model

Solar Pro22 offers a 3D visualization of the system, with changes being computed and
displayed in real time. Some of its advantages are a user-friendly UI, data from weather stations
around the world and accurate formulas. These qualities make it a very strong option as far as
PV solar panel simulation goes.

The following chart summarizes the difference between the different software
analysed:

Software Name Price
Report

Generation
Weather Data 3D Plots

PVAnalyser Free Yes None No

PVPanelSim Free No None No

PVPlanner $560 to $3600 Yes Monthly and
Annual Satellite
Data

No

SES Free Yes Solar Irradiation
data from 2000 to
2013

No

SAM Free Yes Data from the
National Solar
Radiation
Database of U.S.

Yes

SolarPro $1300 to $2050 Yes Hundreds of
Weather Stations

Yes

Table 10 – Related Work Comparison

22 www.lapsys.co.jp/english/products/where_to_buy/index.html

http://www.lapsys.co.jp/english/products/where_to_buy/index.html

SolCelSim – A Comsol App for Charge Transport in a Multilayer Solar Cell

 81

Looking at Table 10, there are a few important ideas we can take. First off, the choice
to make the application free seems to be the correct one, as the programs most similar to the
one we’re trying to build are also free, and raising the price would create an unnecessary
barrier. From looking at the report generation feature in the listed software, it was decided
that the possibility to generate a report describing results from simulations would be important
and serve an advantage over GPVDM and PVPanelSim.

Figure 49 – Solar Pro IV Curve Graph

SolCelSim – A Comsol App for Charge Transport in a Multilayer Solar Cell

 82

Attachment 3 – Functional Requirements

1.1. Layer Stack

1.1.1. Add Layer

 ID: FUN01

 Dependencies: None

 Description: The user should be able to add a new layer at the push of a single button.
The application automatically makes all the necessary adjustments to the model: adding a new
variable, domain, distance parameter, interval and form union; adding associated domain to
the necessary parts of the model. The user is requested to add certain parameters (Thickness,
Donor Doping, Acceptor Doping, Eg, NV, NC, epsr, mue, muh, chi, ntd), while others are
added automatically with default values (Gipce, vhtp, Ge, sigman, sigmap, tn, tp, vthp).

 Note: Layers compose an individual solar cell. In this project, it’s important to be able
to deal with a variable number of layers. Figure 50 shows the layers of a typical solar cell. It’s
important to note that layers are a component of a solar cell, not a Comsol feature. Comsol
will simply be used to simulate the multiple layers.

Figure 50 - Solar Cell Layers23

23 http://www.greenrhinoenergy.com/solar/technologies/pv_cells.php

http://www.greenrhinoenergy.com/solar/technologies/pv_cells.php

SolCelSim – A Comsol App for Charge Transport in a Multilayer Solar Cell

 83

 1.1.2. Remove Layer

 ID: FUN02

 Dependencies: FUN01

 Description: The user should be able to remove any specific layer at the push of a
single button. The application automatically removes all the changes made to the model when
the layer was added and adjusts the domain and intervals of higher-numbered layers. For
example, if layer3 is removed, layer 4 will now be called layer 3, and its domain and interval
will be adapted to reflect this change.

 1.1.3. Move Layer Up

 ID: FUN03

 Dependencies: FUN01

 Description: The user should be able to decrease the number of a single layer. For
example, if the user selected this option on layer3, it would become layer2, and layer 2 would
become layer 3. Adjustments to domain and interval will be done automatically as well.

 1.1.4. Move Layer Down

 ID: FUN04

 Dependencies: FUN01

 Description: The user should be able to increase the number of a single layer. For
example, if the user selected this option on layer2, it would become layer3, and layer 3 would
become layer 2. Adjustments to domain and interval will be done automatically as well.

1.2. Layer Parameters

 1.2.1. Add Parameter

 ID: FUN05

 Dependencies: FUN01

 Description: The user can add a default parameter with blank values, which can be
edited at any time in FUN07.

 1.2.2. Remove Parameter

 ID: FUN06

 Dependencies: FUN05

 Description: The user can remove any parameter at the push of a single button.

SolCelSim – A Comsol App for Charge Transport in a Multilayer Solar Cell

 84

 1.2.3. Edit parameter

 ID: FUN07

 Dependencies: FUN05

 Description: The user can alter the values of a parameter’s name, expression and unit.

1.2.4. Rename Layer

 ID: FUN08

 Dependencies: FUN01

 Description: In the Layer Parameter section, the user can alter the name of each layer.

1.3. Recombination Model

 1.3.1. Change Recombination Type

 ID: FUN09

 Dependencies: FUN01

 Description: The user can select between the Trap-Assisted (Recombination when
an electron falls into a certain energy level), Auger (Non-radiative process involving three
carriers), Impact Ionization (Process in which energetic charge carriers lose energy to create
others) and Direct Recombination Models (Recombination through emission or absorption
of a photon).

The following quote explains the concept of Recombination:

“Any electron which exists in the conduction band is in a meta-stable state and will eventually stabilize to a
lower energy position in the valence band. When this occurs, it must move into an empty valence band state.
Therefore, when the electron stabilizes back down into the valence band, it also effectively removes a hole. This
process is called recombination.” 24

 1.3.2. Edit Recombination Parameters

 ID: FUN10

 Dependencies: FUN09

 Description: Depending on the Recombination Model selected, a different list of
parameters will appear. The user cannot change their names, but they can select their values
from a list.

24 https://www.pveducation.org/pvcdrom/pn-junctions/types-of-recombination

https://www.pveducation.org/pvcdrom/pn-junctions/types-of-recombination

SolCelSim – A Comsol App for Charge Transport in a Multilayer Solar Cell

 85

1.4. Boundary Conditions

1.4.1. Edit Contact Properties

 ID: FUN11

 Dependencies: None

 Description: The user can choose between Ohmic (Junction between conductors
with linear IV curve) and Schottky (Electron barrier formed at metal-semiconductor junction)
contact properties and edit their parameters, for both left and right contacts. Left and right
contacts are both displayed in the layer sketch.

1.5. Meshing

1.5.1. Set Mesh Options

 ID: FUN12

 Dependencies: None

 Description: The user can choose Mesh Options in the model.

1.6. Computation

1.6.1. Compute TE Solution

 ID: FUN13

 Dependencies: None

 Description: The user can press a button to compute the TE (Thermal Equilibrium)
Solution

 1.6.2. Compute and Plot IV

 ID: FUN14

 Dependencies: None

Description: The user can have the application compute and plot Current-Voltage
(IV) after specifying Voltage Sweep (Min/Max Value, Step Size), Illumination and (optionally)
Parameter Sweep. This last option should allow a dynamic increase in number of sweep
parameters and the selection of min/max values and step size for all of them. A window with
the solution progress from the model should appear during computation. Meshing of
individual domains needs to have automatic quality.

 1.6.3. Compute and Plot CV

 ID: FUN15

 Dependencies: None

 Description: The user can press a button to calculate and display a plot with the
Capacitance-Voltage (CV). The user chooses its frequency value and voltage sweep (min/max
value and step size).

SolCelSim – A Comsol App for Charge Transport in a Multilayer Solar Cell

 86

 1.6.4. Compute and Plot EIS

 ID: FUN16

 Dependencies: None

 Description: The user can press a button to calculate and display a plot with the
Electrochemical Impedance Spectroscopy (EIS).

 1.6.5. Compute and Plot IPCE

 ID: FUN17

 Dependencies: None

 Description: The user can press a button to calculate and display a plot with the
Incident Photon to Current Efficiency (IPCE).

 1.6.6. Plot Stack When Layers Changed

 ID: FUN18

 Dependencies: FUN02, FUN03, FUN04, FUN06, FUN07, FUN08, FUN09,
FUN10

 Description: When changes are made to the layers (addition, removal, position
change, parameter change, recombination model change or global condition change), the plot
should change accordingly.

 1.6.7. Layer Sketch Labels

 ID: FUN19

 Dependencies: FUN18

 Description: A window on the top right of the label sketch displays the name of each
layer at all times. When changes are made to the labels, the values shown in this window reflect
those changes.

 1.6.8. Edit Solver Method

 ID: FUN20

 Dependencies: FUN13, FUN14, FUN15, FUN16, FUN17

Description: The user can adjust the method used by each solver.

SolCelSim – A Comsol App for Charge Transport in a Multilayer Solar Cell

 87

 1.6.9. Edit Individual Solver Parameters

 ID: FUN21

 Dependencies: FUN13, FUN14, FUN15, FUN16, FUN17

 Description: The user can adjust individual parameters used by the solver.

1.6.10. Edit Illumination Value

 ID: FUN22

 Dependencies: FUN13, FUN14, FUN15, FUN16, FUN17

 Description: The user can change the value for Illumination that affects every study
solver.

1.6.11. Plot Solution

 ID: FUN23

 Dependencies: FUN13, FUN14, FUN15, FUN16, FUN17

 Description: The user can plot a specific graph without re-computing the solution.

1.6.12. Change current plot

 ID: FUN24

 Dependencies: FUN23

 Description: The user can press a button select a different Result plot within each
study. The following list shows the available Result plot for each study:

IV: Band diagram, Carrier concentrations, IV current

TE: Band diagram, Carrier concentrations

EIS: Nyquist plot, Bode arg, Bode abs

IPCE: Band diagram, Carrier concentrations, IPCE plot

CV: Energy Levels, Mott-Schottky

1.6.13. Change displayed parameter sweep values

 ID: FUN25

 Dependencies: FUN24

 Description: The user can select which sweep values should be taken into account
for plotting after computing each solution. As an example, when plotting IV they can select
which voltage sweep values to consider. If they run any additional parametric sweep, they can
also select which values from that sweep should be considered for plotting.

SolCelSim – A Comsol App for Charge Transport in a Multilayer Solar Cell

 88

1.7. Experimental Data

 1.7.1. Load Experimental Data from Disk

 ID: FUN26

 Dependencies: FUN13, FUN14, FUN15, FUN16, FUN17

 Description: The user should be able to load a .csv file with real experimental data.
The format and units of the loaded data file should be displayed. Table 7 describes the possible
formats. Absorption Coefficient values can be imported for every layer and are automatically
integrated into the model.

Name First Column First Unit Second Column Second Unit

General

Abs_coeff.csv Wavelength nm Absorption
Coeff

1/m

IV.csv Voltage V vs RHE Current mA/cm2

CV.csv Voltage V vs RHE Capacitance F/cm2

IPCE.csv Wavelength nm IPCE 1

EIS only

Nyquist.csv Real Part of
Complex

Impedance

Ohm/cm2 Imaginary Part of
Impedance

Ohm/cm2

BoderArg.csv Frequency Hz Complex
Impedance

Radian

BoderAbs.csv Frequency Hz Absolute Value
of Complex
Impedance

Ohm/cm2

Table 11 - Experimental Data

1.8. Parameter Fitting

 1.8.1. Perform Automatic Parameter Fitting

 ID: FUN27

 Dependencies: FUN05, FUN20, FUN21

 Description: Using the input data from the user, the application automatically
performs parameter fitting. The user can access this feature in any of the “Compute” nodes.
The user can choose however many parameters from the list of every parameter from every
layer, and they will be considered for this calculation.

SolCelSim – A Comsol App for Charge Transport in a Multilayer Solar Cell

 89

1.9. Global Parameters

1.9.1. Import Spectrum Photon File

 ID: FUN28

 Dependencies: None

 Description: The user can import information from a file on their computer into the
“spectralPhotonFluxVsLambda” table in the model.

 1.9.2. Edit Individual Global Parameters

 ID: FUN29

 Dependencies: None

 Description: The user should be able to adjust values for global parameters that affect
the whole model.

1.10. Model Save and Load

 1.10.1. Save Model

 ID: FUN30

 Dependencies: None

 Description: The user can save the model in its current state in a file to resume work
later.

1.10.2. Load Model

 ID: FUN31

 Dependencies: FUN30

 Description: The user can load a previously saved model.

1.11. Report

 1.11.1. Report Generation

 ID: FUN32

 Dependencies: FUN13, FUN14, FUN15, FUN16, FUN17

 Description: A PDF document is created with relevant information about the
simulation and saved in the user-specified folder.

SolCelSim – A Comsol App for Charge Transport in a Multilayer Solar Cell

 90

1.12. Heterointerfaces

 1.12.1. Edit Interface Model Types

 ID: FUN33

 Dependencies: FUN29

 Description: The user should be able to choose Thermionic Emissions (Thermally
induces flow of charge carriers) or Quasi-Fermi Levels (Population of electrons when
displaced from equilibrium) Interface Model Type. The user should be able to do this for
every interface. The number of interfaces should be equals to the number of layers minus one.

SolCelSim – A Comsol App for Charge Transport in a Multilayer Solar Cell

 91

Attachment 4 – Server Architecture

This attachment shows the initial plans for the cancelled Client-Server architecture:

The application will be uploaded to a server using the Comsol Server software. This will
allow any user to quickly have access to it from any web browser or from the Comsol Client
for Windows desktop application. The user can then locally save and load model files from
his own computer, but all physics computations are done on the server computer. They are
also able to work with a default model file. Any change made to the model through the
application, such as the addition of a new layer, is recorded and can be saved in an .mph file
for future use.

Having the users access the application through their web browser or Comsol Client rather
than downloading it will have two major advantages. The first one is the fact that changes
made to the application can be easily and quickly uploaded to the server, ensuring that users
are always accessing the most recent version. The other big advantage is that users do not
need a powerful computer to run the application, as the most computationally demanding
processes are all done by the server.

Rectangle Color Labels:

• Red – This part of the architecture will be done automatically by Comsol.

• Yellow – This part of the architecture has been previously written, but might require slight
adjustments by the developer.

• Green – The developer will make this part of the architecture.

Figure Element Labels:

• User – Person interacting with the application.
• Comsol Web Application – Web Browser used to remotely access the application
• Comsol Client App – Desktop Application used to remotely access the application.
• Application – The software simulator described in this report.
• Model – The underlying model of the solar cell, with which the application will interact.
• Server – The server where the application will be stored and which will perform all

computations.

Figure 51 – Connections from User
to Server

SolCelSim – A Comsol App for Charge Transport in a Multilayer Solar Cell

 92

In practical terms, we’ll have the user interacting with the application through one of the
two available clients. Their actions will activate different methods inside the application, which
alter the model being used. Since the model is changing, what is shown on the application,
such as the solar cell plot, for example, changes as well. The user will be able to observe this
in real time.

The Comsol Server application largely automates the process of uploading the application
created by the developer to the server. Since the server-client interactions do not need to be
coded, work will focus on coding and testing the application itself. Servers will be hosted by
the University of Žilina. It will be important to perform availability testing with these servers
at the end of development, to ensure above 99% availability.

