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Abstract

The situation, common in the current literature, is that of a whole family of location-scale/scale

invariant test statistics, indexed by a parameter λ ∈ Λ, is available to test the goodness of fit of

F , the underlying distribution function of a set of independent real-valued random variables,

to a location-scale/scale family of distribution functions. The power properties of the tests

associated with the different statistics usually depend on the parameter λ, called the “tuning

parameter”, which is the reason that its choice is crucial to obtain a performing test procedure.

In this paper, we address the automatic selection of the tuning parameter when Λ is finite, as

well as the calibration of the associated goodness-of-fit test procedure. Examples of existing

and new tuning parameter selectors are discussed, and the methodology presented of combining

different test statistics into a single test procedure is applied to well known families of test

statistics for normality and exponentiality. A simulation study is carried out to access the

power of the different tests under consideration, and to compare them with the fixed tuning

parameter procedure, usually recommended in the literature.
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1 Introduction

Given a sample X1, . . . ,Xn of independent and identically distributed real-valued random vari-

ables from a distribution function F , assume that Tn,λ = Tn,λ(X1, . . . ,Xn), for λ ∈ Λ, is a finite

family of statistics for testing the hypothesis

H0 : F ∈ F , (1)

against a general alternative hypothesis, where F is either a location-scale family,

F =
{

F0((· − b)/a) : a > 0, b ∈ R
}

(2)

or a scale family of distribution functions,

F =
{

F0(·/a) : a > 0
}

, (3)

with F0 a known distribution function on R. If the test statistics Tn,λ are location-scale invariant

in case (2), that is, Tn,λ(νX1 + µ, . . . , νXn + µ) = Tn,λ(X1, . . . ,Xn), for each ν > 0 and µ ∈ R,

or scale invariant in case (3), that is, Tn,λ(νX1, . . . , νXn) = Tn,λ(X1, . . . ,Xn), for each ν > 0,

the distribution of Tn,λ under H0 does not depend on F . Therefore, if large values of Tn,λ are

significant, each one of the tests with critical regions {Tn,λ(X1, . . . ,Xn) > cn,λ(α)}, has a level

of significance at most equal to α, that is, PF

(

Tn,λ(X1, . . . ,Xn) > cn,λ(α)
)

≤ α, for all F ∈ F ,
where α ∈ ]0, 1[, and cn,λ(α) = F−1

Tn,λ
(1 − α) denotes the quantile of order 1 − α of Tn,λ under

H0. Of course, if the distribution functions of all Tn,λ under H0, are continuous on R, the test

procedures associated with the previous critical regions have a level of significance exactly equal

to α. The power properties of the previous test procedures usually depend on the parameter λ

which is the reason that its choice is crucial to obtain a performing test procedure.

The previous situation, where a finite family of test statistics is available for testing the

hypothesis H0, is now common in the current literature as evidenced by the works of Epps and

Pulley (1983), Baringhaus and Henze (1991), Henze (1993), Güntler and Henze (2000), Klar

(2001), Henze and Meintanis (2002), Meintanis (2004, 2004a), and Meintanis et al. (2014), where

goodness-of-fit tests for the normal, exponential, Cauchy, Laplace, or logistic distributions, based

on the empirical characteristic function, the probability weighted characteristic function, the

integrated empirical distribution function or the Laplace transform, are proposed (for related

work, see also Henze and Zirkler, 1990, Fan, 1998, Tenreiro, 2005, 2007). In all these situations

the test statistics Tn,λ, λ ∈ Λ, are either location-scale invariant in case (2) or scale invariant in

case (3). More precisely, they can be written in the form Tn,λ(X1, . . . ,Xn) = T̄n,λ(Y1, . . . , Yn)

with

(Y1, . . . , Yn) = g(X1, . . . ,Xn), (4)

where g is a known function given by g(X1, . . . ,Xn) =
(

X1−b̂n
ân

, . . . , Xn−b̂n
ân

)

, in case (2), and

by g(X1, . . . ,Xn) =
(

X1
ân
, . . . , Xn

ân

)

, in case (3), where ân = ân(X1, . . . ,Xn) is a location invari-

ant and scale equivariant estimator of the scale parameter a, i.e., ân(νX1 + µ, . . . , νXn + µ) =
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ν ân(X1, . . . ,Xn), for each ν > 0 and µ ∈ R, and b̂n = b̂n(X1, . . . ,Xn) is a location-scale equivari-

ant estimator of location parameter b, i.e., b̂n(νX1 + µ, . . . , νXn + µ) = ν b̂n(X1, . . . ,Xn) + µ, for

each ν > 0 and µ ∈ R.

Focusing our attention on the normality test introduced by Epps and Pulley (1983), the con-

sidered test statistic is defined as a weighted L2-distance between the empirical characteristic func-

tion of the scaled residual Yj = (Xj − X̄n)/Sn, j = 1, . . . , n, given by ϕn(t) =
1
n

∑n
j=1 exp

(

itYj
)

,

t ∈ R, and the characteristic function ϕ(t) = exp(−t2/2) of the standard Gaussian density

φ(x) = (2π)−1/2 exp(−x2/2), x ∈ R, where X̄n = n−1
∑n

j=1Xj and S2
n = n−1

∑n
j=1(Xj − X̄n)

2,

are the sample mean and the sample variance, respectively. The weight function is given by

t 7→ exp(−λ2t2), where λ a strictly positive real number that needs to be chosen by the user.

Therefore the Epps-Pulley test statistic is given by

Tn,λ = n

∫

R

|ϕn(t)− ϕ(t)|2 exp(−λ2t2)dt = 2π
1

n

n
∑

i,j=1

Q(Yi, Yj;λ), (5)

with Q(u, v;λ) = φ(2λ2)1/2(u − v) − φ(1+2λ2)1/2(u) − φ(1+2λ2)1/2(v) + φ(2+2λ2)1/2(0), for u, v ∈ R,

λ ∈ ]0,+∞[, and φh(·) = φ(·/h)/h, h > 0. The simplicity of the previous expression shows the

attractive feature of the considered weight function (see Henze and Zirkler, 1990, and Fan, 1998, for

the relation between the Epps-Pulley test statistic and the Bickel-Rosenblatt test statistic). From

a practical point of view, it is well known that the finite sample performance of the Epps-Pulley

test is very sensitive to the choice of λ. Choosing a small value of λ, which means letting the weight

function decay slowly, will produce a test sensitive to short tailed or high moment alternatives,

whereas large values of λ, which means putting most of the mass of the weight function near zero,

are adequate for detecting alternative distributions with long tails, symmetric or asymmetric

(cf. Tenreiro, 2009). Note that for large values of λ the considered weight function puts most

of its mass near the origin, and then, the previous behaviour can be seen as a consequence of

the fact that the tail behaviour of a probability distribution is reflected by the behaviour of its

characteristic function at the origin (cf. Kawata, 1972, pp. 419–420).

The exponentiality tests introduced in Henze and Meintanis (2002), is another example where

a whole family of test statistics is available to the user. In this case the test statistics are based on

a weighted L2-distance between the empirical Laplace transform of the scaled data Yj = Xj/X̄n,

j = 1, . . . , n, defined by ψn(t) =
1
n

∑n
j=1 exp

(

− tYj
)

, t ≥ 0, and the Laplace transform of the unit

exponential distribution ψ(t) = 1/(1 + t), t ≥ 0, with weight function t 7→ (1 + t)2 exp(−λt), for
λ > 0. Thus, the Henze-Meintanis test statistic is given by

Tn,λ = n

∫ ∞

0

(

ψn(t)− ψ(t)
)2
(1 + t)2 exp(−λt)dt

=
1

n

n
∑

j,k=1

1 + (Yj + Yk + λ+ 1)2

(Yj + Yk + λ)3
− 2

n
∑

j=1

1 + Yj + λ

(Yj + λ)2
+
n

λ
, (6)

for λ ∈ ]0,+∞[. As the Epps-Pulley test for normality, the Henze-Meintanis test for exponentiality

is very sensitive to the choice of λ. As remarked by Baringhaus and Henze (1991, p. 552) (see
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also Henze and Meintanis, 2002, p. 148), from Tauberian theorems on Laplace transform (cf.

Feller, 1971, Chapter XIII.5), it is known that the tail behaviour of a probability distribution

concentrated on [0,∞[ is reflected by the behaviour ot its Laplace transform at zero and vice

versa. Therefore, choosing a small value of λ, which means letting the weight function decay

slowly, gives high power against alternative distributions having a point mass or infinite density

at zero, and a large value of λ means putting most of the mass of the weight function near zero,

which should give high power against alternatives that greatly differ in tail behaviour with respect

to the exponential distribution.

As illustrated by the previous examples, the parameter λ acts as a tuning parameter, through

which the user can increase the power of the test toward some particular direction along the

alternative distribution set. However, as the formulation of a specific alternative hypothesis is, in

general, impossible in a real situation, the usual practice is to evaluate the test power performance

for λ varying in a finite set Λ, and then suggesting a selection of λ that produces a test with a

reasonable power against a wide range of alternative distributions. However, this strategy of

taking a fixed tuning parameter does not prevent the user from obtaining a test that achieves a

very low power against some of the considered alternative distributions (cf. Henze and Meintanis,

2002).

Some efforts have been made in order to combine, based on the available data, test procedures

associated to different values of the tuning parameter λ into a single test procedure that could

show a good power performance against a wide range of alternative distributions. This was

the case of the multiple test approach, considered in Klar (2001), Fromont and Laurent (2006)

and Tenreiro (2011, 2017), which can be viewed as an improvement of the classical Bonferroni

multiple test procedure. The proposed test leads to the rejection of the null hypothesis if one of

the statistics Tn,λ, for λ ∈ Λ, is larger than its (1−u) quantile under the null hypothesis, the level
u being calibrated so that the resulting multiple test has a level of significance at most equal to

α. Thus, the associated critical region is given by
{

max
λ∈Λ

(

Tn,λ − cn,λ(u)
)

> 0
}

, (7)

for some u ∈ ]0, 1[. This testing procedure is closely related to the single-stepminP multiple testing

procedure based on minima of unadjusted p-values (cf. Dudoit and van der Lann, 2008, pp. 117–

121). Unlike classical Bonferroni multiple, that can be obtained by taking u = α/|Λ|, where

|Λ| denotes the cardinality of Λ, the previous rejection region takes into account the dependence

structure among the test statistics Tn,λ for λ ∈ Λ. As the previous critical region can be written

as
{

Tn,λ̄u
> cn,λ̄u

(u)
}

, where

λ̄u = λ̄u(X1, . . . ,Xn) = argmax
λ∈Λ

(

Tn,λ(X1, . . . ,Xn)− cn,λ(u)
)

, (8)

the previous multiple test procedure can be seen as a test based on a data-dependent procedure

for selecting the tuning parameter λ: for a given sample of size n, one selects the value λ in Λ for

which the test statistic Tn,λ shows stronger evidence, at level u, against the null hypothesis.
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More recently, Allison and Santana (2015) proposed an alternative data-dependent method,

based on the bootstrap, for choosing the tuning parameter. They considered the test with critical

region {Tn,λ∗ > cn,λ∗(α)}, where λ∗ = λ∗(X1, . . . ,Xn) is obtained by maximizing the bootstrap

power, that is,

λ∗ = λ∗(X1, . . . ,Xn) = argmax
λ∈Λ

1

B

B
∑

k=1

I
(

T̄n,λ(Y
∗
k1, . . . , Y

∗
kn) > cn,λ(α)

)

,

where (Y ∗
k1, . . . , Y

∗
kn) is a bootstrap random sample of size n drawn with replacement from the

empirical distribution function of the transformed sample (Y1, . . . , Yn) defined by (4), B ∈ N

is the considered number of bootstrap samples, and I(A) denotes the indicator function of the

set A. Unfortunately, the proposed method presents two important drawbacks. Firstly, the

suggested bootstrap procedure, as based on a bootstrap random sample drawn from the empirical

distribution function of the transformed sample (4), and not from the empirical distribution

function of the original sample, does not always produce a good approximation for the power

associated with the distribution of the observations. Secondly, by using the quantiles of order

1 − α of each one of the test statistics Tn,λ to define the critical region, the proposed test is not

correctly calibrated and may reach a level of significance much bigger than α (see Section 4, Figure

1). In order to overcome these problems, we consider in this paper the test with critical region
{

Tn,λ̃u
> cn,λ̃u

(u)
}

, for u ∈ ]0, 1[, where the modified tuning parameter selector λ̃u, is defined by

λ̃u(X1, . . . ,Xn) = argmax
λ∈Λ

1

B

B
∑

k=1

I
(

Tn,λ(X
∗
k1, . . . ,X

∗
kn) > cn,λ(u)

)

, (9)

with X∗
kj = XU(k−1)n+j

, for k = 1, . . . , B and j = 1, . . . , n, where Ul, for l = 1, . . . , nB, are

independent copies of the discrete uniform distribution on {1, . . . , n}, and u is calibrated so that

the test has a level of significance at most equal to α. Although not assumed or discussed in

this paper, if, for B and n large enough, the mean in (9) gives a good approximation for the

probability PF (Tn,λ(X1, . . . ,Xn) > cn,λ(u)), we might expect that λ̃u mimics the behaviour of the

ideal tuning parameter

λu(F ) = argmax
λ∈Λ

PF

(

Tn,λ(X1, . . . ,Xn) > cn,λ(u)
)

, (10)

this being the main motivation for the previous definition of λ̃u. As λ̃u depends on U = (Ul, l =

1, . . . , nB) ∈ {1, . . . , n}nB , any statement on this tuning parameter selector should always be

interpreted conditionally on U . However, by the law of large numbers, different choices of U ,

essentially lead to tuning parameter selectors with similar behaviours.

The paper is organised as follows. Sections 2 and 3 deal with the calibration and the con-

sistency of the tests with critical region {Tn,λ̂u
> cn,λ̂u

(u)}, where λ̂u = λ̂u(X1, . . . ,Xn) is a

general family of measurable functions, indexed by u ∈ ]0, 1[, taking values in Λ, which are either

location-scale invariant in case (2) or scale invariant in case (3). The cases of the tuning parameter



6

selectors λ̄u and λ̃u, defined by (8) and (9), respectively, are analysed in detail. In Sections 4 and

5 we will restrict our attention to the cases where Tn,λ is either the test statistic for normality of

Epps and Pulley (1983), or the test statistic for exponentiality of Henze and Meintanis (2002).

We conclude that the proposed calibration procedure is effective, and, as a result of a simulation

study, we deduce that the tests based on λ̄u and λ̃u are serious competitors for the tests based on

a fixed tuning parameter usually recommended in the literature, and perhaps should be employed

in practice, in the absence of any information about the type of deviation from the null model.

All the proofs and some auxiliar results are deferred to Section 8. The simulations and plots in

this article were carried out using the R software (R Core Team, 2014).

2 The calibration procedure

In this section we will denote by Tn,λ, for λ ∈ Λ, a finite family of test statistics for testing

the hypothesis (1), whose large values are considered significant. We will also assume that such

test statistics are either location-scale invariant in case (2) or scale invariant in case (3). This

assumption enables us to consider that the quantiles of order 1− u of Tn,λ under H0, denoted, as

before, by cn,λ(u) = F−1
Tn,λ

(1−u), are known quantities as they can be approximated by performing

Monte Carlo experiments under the null hypothesis.

Given a general invariant tuning parameter selector λ̂u = λ̂u(X1, . . . ,Xn), that is, a family

of measurable functions indexed by u ∈ ]0, 1[, taking values in Λ, which are either location-scale

invariant in case (2) or scale invariant in case (3), we have

{

Tn,λ̂u
> cn,λ̂u

(u)
}

⊂
{

max
λ∈Λ

(

Tn,λ − cn,λ(u)
)

> 0
}

=
⋃

λ∈Λ

{

Tn,λ > cn,λ(u)
}

, (11)

from which we conclude that it is always possible to choose u ∈ ]0, 1[ such that the test with

critical region {Tn,λ̂u
> cn,λ̂u

(u)}, has a level of significance at most equal to the nominal level α:

Theorem 1. Given an invariant tuning parameter selector λ̂u, and α ∈ ]0, 1[, then for all 0 <

u ≤ α/|Λ|, we have

PF

(

Tn,λ̂u
> cn,λ̂u

(u)
)

≤ α, for all F ∈ F ,

where the probability PF

(

Tn,λ̂u
> cn,λ̂u

(u)
)

, we denote by ψλ̂(u), is independent of F , for F ∈ F .

Note that the previous assumptions are fulfilled by the tuning parameter selector λ̄u given by

(8), and, conditionally on U = (Ul, l = 1, . . . , nB), by λ̃u defined by (9).

2.1 A first calibration stage

Although important, as it assures that the Type I error of the test with critical region {Tn,λ̂u
>

cn,λ̂u
(u)}, may be put under a preassigned level of significance α through an appropriate choice

of u, Theorem 1 does not provide a criterium for such a choice. Taking into account that the
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test should have a level of significance not only less than or equal to α but also as close to α

as possible, the practical selection of u will be performed by considering a regular grid Gp =

{uk, k ∈ Ip} on the interval ]0, 1[, where u1 = p, uk+1 = uk + p, for some 0 < p ≤ α/|Λ|, and
Ip = {k ∈ N : kp < 1}, and taking u = uλ̂n,α,p, where u

λ̂
n,α,p is the largest value of Gp satisfying

ψλ̂(u) := PF0

(

Tn,λ̂u
> cn,λ̂u

(u)
)

≤ α, that is,

uλ̂n,α,p = max{u ∈ Gp : ψλ̂(u) ≤ α}. (12)

We present in the next theorem a set of sufficient conditions on ψλ̂ assuring that the test with

critical region {Tn,λ̂u
> cn,λ̂u

(u)}, for u = uλ̂n,α,p, has a level of significance as close to α as possible,

when p tends to zero.

Theorem 2. Given an invariant tuning parameter selector λ̂u, let α ∈ ]0, 1[, and uλ̂n,α,p given by

(12). If ψλ̂ is increasing on ]0, 1[, with limu↑1 ψλ̂(u) = 1, we have limp↓0 u
λ̂
n,α,p = uλ̂n,α, where

uλ̂n,α = sup{u ∈ ]0, 1[ : ψλ̂(u) ≤ α}, (13)

is such that α/|Λ| ≤ uλ̂n,α < 1. Moreover, if ψλ̂ is continuous on ]0, 1[, we have

lim
p↓0

sup
F∈F

PF

(

Tn,λ̂up
> cn,λ̂up

(up)
)

= sup
F∈F

PF

(

Tn,λ̂u
> cn,λ̂u

(u)
)

= α,

where up and u stand for uλ̂n,α,p and uλ̂n,α, respectively.

The previous general result allows us to present a set of sufficient conditions on the null

distribution of the statistics Tn,λ, weaker that those considered in Tenreiro (2011, Theorem 1),

assuring that the test associated with the critical region {Tn,λ̄u
> cn,λ̄u

(u)}, with λ̄u given by (8)

and u = uλ̄n,α,p given by (12), has a level of significance not only inferior, but also as close to α as

possible, when p tends to zero.

Theorem 3. If the distribution function of Tn,λ under H0 is continuous, for all λ ∈ Λ, then, for

α ∈ ]0, 1[ we have

lim
p↓0

sup
F∈F

PF

(

Tn,λ̄up
> cn,λ̄up

(up)
)

= sup
F∈F

PF

(

Tn,λ̄u
> cn,λ̄u

(u)
)

= α,

where up and u stand for uλ̄n,α,p and uλ̄n,α given by (12) and (13), respectively, with α/|Λ| ≤ uλ̄n,α ≤
α.

2.2 A second calibration stage

Under the assumptions of Theorem 3 on the null distribution of the statistics Tn,λ, it can be proved

that limu↑1 ψλ̂(u) = 1, for any invariant tuning parameter selector λ̂u (see Section 8, Proposition

1). However, the same set of assumptions does not necessarily assure that ψλ̂ is increasing and

continuous on ]0, 1[. Therefore, under the assumptions of Theorem 3 the test with critical region
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{Tn,λ̂u
> cn,λ̂u

(u)}, with u = uλ̂n,α,p given by (12), has a level of significance no bigger than α, but

we cannot affirm that its level of significance becomes as close to α as possible, when p tends to

zero. Next, we will see that this goal can be achieved if a second calibration stage is performed.

For a fixed u ∈ ]0, 1[, consider the family of critical regions
{

Tn,λ̂u
> cn,λ̂u

(v)
}

, indexed by

v ∈ ]0, 1[. Although it is natural to take for u the value uλ̂n,α,p obtained in the first calibration

stage, this is not assumed in what follows. Define

vλ̂u
n,α,q = max{v ∈ Gq : ψλ̂u

(v) ≤ α}, (14)

where ψλ̂u
is given by ψλ̂u

(v) := PF0

(

Tn,λ̂u
> cn,λ̂u

(v)
)

, Gq = {vk, k ∈ Iq}, is a regular grid on the

interval ]0, 1[, with v1 = q, vk+1 = vk + q, for some 0 < q < u, and Iq = {k ∈ N : kq < 1}.

Theorem 4. Given an invariant tuning parameter selector λ̂u, where u is assumed to be fixed in

]0, 1[, if the distribution function of Tn,λ under H0 is continuous and strictly increasing (on the

set {t ∈ R : 0 < FTn,λ
(t) < 1}), for all λ ∈ Λ, then, for α ∈ ]0, 1[, we have limq↓0 v

λ̂u
n,α,q = vλ̂u

n,α,

where

vλ̂u
n,α = sup{v ∈ ]0, 1[ : ψλ̂u

(v) ≤ α}, (15)

is such that max(u, α/|Λ|) ≤ vλ̂u
n,α < 1, whenever ψλ̂(u) ≤ α, and α/|Λ| ≤ vλ̂u

n,α ≤ u, whenever

ψλ̂(u) > α. Moreover, we have

lim
q↓0

sup
F∈F

PF

(

Tn,λ̂u
> cn,λ̂u

(vu,q)
)

= sup
F∈F

PF

(

Tn,λ̂u
> cn,λ̂u

(vu)
)

= α,

where vu,q and vu stand for vλ̂u
n,α,q and vλ̂u

n,α, respectively.

This general result gives us a set of sufficient conditions on the null distribution of the statistics

Tn,λ, assuring that, conditionally on U = (Ul, l = 1, . . . , nB), the test with critical region {Tn,λ̃u
>

cn,λ̃u
(vu)}, with u = uλ̃n,α,p and vu = vλ̃u

n,α,q given by (12) and (14), respectively, has a level of

significance not only less than or equal but also as close to α as possible, when q tends to zero.

3 Consistency against fixed alternatives

Under some general assumptions, the test procedures considered in the previous section detect

an alternative F /∈ F , if such an alternative is detected by all the test statistics Tn,λ, for λ ∈ Λ.

Next we will restrict our attention to the tests that use a single calibration stage. However,

similar results can be derived for the test procedures considered in subsection 2.2, where a second

calibration stage is used.

Theorem 5. Under the conditions of Theorem 2, let F /∈ F , and assume that Tn,λ
p−→ +∞,

under F , for all λ ∈ Λ. If Tn,λ
d−→ T∞,λ, under H0, with FT∞,λ

strictly increasing (on the set

{t ∈ R : 0 < FT∞,λ
(t) < 1}), for all λ ∈ Λ, then

PF

(

Tn,λ̂u
> cn,λ̂u

(u)
)

−→ 1, as n→ ∞,
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where u stands for uλ̂n,α given by (13).

In the particular case of the tuning parameter selector λ̄u given by (8), it is interesting to

note that the previous consistency result may be obtained under weaker assumptions. In fact, the

test with critical region {Tn,λ̄u
> cn,λ̄u

(u)}, with u = uλ̄n,α, detects any alternative F /∈ F that

is detected by at least one of the tests based on Tn,λ, for λ ∈ Λ. This attractive property of the

tuning parameter selector λ̄u is stated in the following result.

Theorem 6. Under the conditions of Theorem 3, let F /∈ F , and assume there exists λ ∈ Λ such

that Tn,λ
p−→ +∞, under F . If Tn,λ

d−→ T∞,λ, under H0, where FT∞,λ
is strictly increasing (on

the set {t ∈ R : 0 < FT∞,λ
(t) < 1}), then

PF

(

Tn,λ̄u
> cn,λ̄u

(u)
)

−→ 1, as n→ ∞,

where u stands for uλ̄n,α given by (13).

4 Combining the EP and HM test statistics

In this and the following section we will restrict our attention to the families of test statistics of

Epps and Pulley (1983) and of Henze and Meintanis (2002), given by (5) and (6), respectively

(henceforth denoted by EP and HM). In the former case, the parametric family F is given by (2),

with F0 the distribution function of the standard Gaussian distribution, whereas in the latter it

is given by (3), with F0 the distribution function of the unit exponential distribution. We start

by showing that both test statistic families satisfy the assumptions of Theorems 3 and 4 stated

in the previous section.

Theorem 7. The null distribution functions of the EP test statistics (for n ≥ 3), and of the

HM test statistics (for n ≥ 2), are continuous and strictly increasing (on the set {t ∈ R : 0 <

FTn,λ
(t) < 1}), for all λ ∈ ]0,+∞[.

Taking into account Theorems 3 and 4, the previous result enables us to conclude that, either

for the EP test statistic family (n ≥ 3), or for the HM test statistic family (n ≥ 2), the test with

critical region
{

Tn,λ̄u
> cn,λ̄u

(u)
}

, with λ̄u given by (8) and u = uλ̄n,α given by (13), has an exact

α level of significance. The same is true for the test with critical region
{

Tn,λ̃up
> cn,λ̃up

(vup)
}

,

with λ̃u, up = uλ̃n,α,p, and vup = v
λ̃,up
n,α , given by (9), (12), and (14), respectively. Moreover, from

the results presented in Section 3, and those of Baringhaus and Henze (1988, Theorems 3 and

4), and Henze and Meintanis (2002, Theorems 2.3 and 2.7), we deduce that the previous tests

are consistent against each nondegenerated non-normal distribution with finite variance, when

Tn,λ, λ ∈ Λ, is the EP test statistic family, and they are consistent against each nonnegative

non-exponential distribution not degenerated at zero, when Tn,λ, λ ∈ Λ, is the HM test statistic

family.



10

0.00 0.05 0.10 0.15 0.20

0.
0

0.
1

0.
2

0.
3

0.
4

EP test − n = 50

u

es
tim

at
ed

 le
ve

l  
ψ

λ̂(u
)

α = 0.05

λ̂ = λ
λ̂ = λ~

0.00 0.05 0.10 0.15 0.20

0.
0

0.
1

0.
2

0.
3

HM test − n = 50

u

es
tim

at
ed

 le
ve

l  
ψ

λ̂(u
)

α = 0.05

λ̂ = λ
λ̂ = λ~

Figure 1: Estimates of ψλ̄(u) and ψλ̃(u), for u ∈ ]0, 0.2[ and n = 50, for the EP and HM test

statistic families with Λ = {0.1, 0.25, 0.5, 0.75, 1, 1.5, 2, 2.5, 3.5, 5}. These plots describe the level of

significance of the test procedures based on the tuning parameter selectors λ̄u and λ̃u, as a function

of u.

In order to implement the previous test procedures in practice, where the values uλ̄n,α and v
λ̃up
n,α ,

are replaced by the approximations uλ̄n,α,p and v
λ̃up
n,α,q, respectively, the values ψλ̄(u), ψλ̃(u) and

ψλ̃up
(v), with up = uλ̃n,α,p, need to be approximated by Monte Carlo experiments under the null

hypothesis, for u and v varying on the regular grid Gp = {wk, k ∈ Ip}, on the interval ]0, 1[, where

w1 = p and wk+1 = wk + p, for some 0 < p ≤ α/|Λ|. For that, we use 100,000 simulations under

the null hypothesis of the involved test statistics Tn,λ, λ ∈ Λ, and the R function quantile(·,type=7)

for estimating the 1− u quantiles cn,λ(u), for u varying on Gp with p = 0.0001. Further 100,000

simulations are used for estimating the probabilities ψλ̄(u), ψλ̃(u) and ψλ̃up
(v), for u and v varying

on Gp. In the evaluation of λ̃u, B = 100 bootstrap samples are used.

We always take Λ = {0.1, 0.25, 0.5, 0.75, 1, 1.5, 2, 2.5, 3.5, 5}, a set of tuning parameters that

includes the range of values for λ considered by Epps and Pulley (1983) and Henze and Meintanis

(2002). Although the choice of the set Λ, of relevant values for the tuning parameter λ, may be

based on some preliminar information, the previous set Λ is meant for the most common situation

in practice where no relevant information about the alternative hypothesis is available. For n = 50

we show in Figure 1 the graphics of the functions ψλ̄(u) and ψλ̃(u), for u ∈ ]0, 0.2[, that describe

the estimated levels of significance of the test procedures based on the tuning parameter selectors

λ̄u and λ̃u, respectively, as a function of u. As observed in Section 1, from these graphics we

clearly see that choosing u = α for λ̃u, as suggested by Allison and Santana (2015), leads to a

badly calibrated test procedure with a level of significance bigger than α. Similar graphics have

been observed for other sample sizes. The suggested continuity of ψλ̃(u) explains the similar
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λ̄u λ̃u λ̄u λ̃u

n uλ̄n,α,p EL uλ̃n,α,p EL uλ̄n,α,p EL uλ̃n,α,p EL

Normality test Exponentiality test

α = 0.01

20 0.0032 0.0092 0.0049 0.0096 0.0040 0.0101 0.0042 0.0101

50 0.0029 0.0098 0.0037 0.0095 0.0037 0.0099 0.0038 0.0099

100 0.0029 0.0099 0.0039 0.0102 0.0038 0.0096 0.0039 0.0095

α = 0.05

20 0.0183 0.0487 0.0325 0.0484 0.0220 0.0487 0.0225 0.0501

50 0.0172 0.0497 0.0264 0.0494 0.0217 0.0497 0.0223 0.0499

100 0.0173 0.0502 0.0277 0.0509 0.0218 0.0499 0.0224 0.0499

Table 1: Estimates of uλ̄n,α,p and uλ̃n,α,p, for a preassigned level α, based on regular grids of size

0.0001 on the interval ]0, 1[, and estimates of the nominal levels of significance (EL) for the tests

based on the EP and HM families of test statistics. For the estimation of the nominal levels, the

number of replications for each case is 100, 000.

results observed in practice for the test with critical region
{

Tn,λ̃up
> cn,λ̃up

(vup)
}

, that includes

two calibration stages, and the test with critical region
{

Tn,λ̃up
> cn,λ̃up

(up)
}

, that includes a

single calibration stage. For this reason, and because it is less time-consuming than the test with

two calibration stages, only the test with a single calibration stage is henceforth considered.

For α = 0.01, 0.05, and sample sizes n = 20, 50, 100, we present in Table 1 estimates of the

levels uλ̄n,α,p and uλ̃n,α,p, for the preassigned level of significance α, based on regular grids of size

0.0001 on the interval ]0, 1[, and estimates of the nominal levels of significance for the tests based

on the EP and HM families of test statistics. The estimation of the nominal levels was based on

100,000 simulations under the null hypotheses. With some few exceptions, the preassigned level

α is inside its approximate 95% confidence interval, revealing the effectiveness of the calibration

procedures.

5 Finite sample power analysis

In order to study the performance of the tests based on the data-based tuning parameter selectors

λ̄u and λ̃u, a simulation study is conducted for each one of the Epps-Pulley and Henze-Meintanis

families of test statistics. Other than to assess their empirical power, the simulation study is

also meant to compare the previous tests with the fixed tuning parameter procedures, usually

recommended in the literature. For the Epps-Pulley test of normality, we take λ = λEP := 1/
√
2,

which is one of the two values for λ recommended in the pioneering work of Epps and Pulley

(1983), and also considered in other studies like those of Baringhaus et al. (1989) and Arcones

and Wang (2006) (see also Tenreiro, 2009). For the Henze-Meintanis test of exponentiality, we take
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α = 0.01 α = 0.05

n = 20 n = 50 n = 100 n = 20 n = 50 n = 100

# 1 Uniform distribution

λEP 0.01 0.14 0.68 0.09 0.48 0.93
λ̄u 0.03 0.18 0.64 0.13 0.43 0.87
λ̃u 0.04 0.15 0.55 0.14 0.39 0.80

# 2 Logistic distribution

λEP 0.05 0.07 0.12 0.13 0.19 0.27
λ̄u 0.04 0.07 0.12 0.11 0.18 0.26
λ̃u 0.03 0.07 0.11 0.09 0.16 0.22

# 3 LN(0.5) distribution

λEP 0.30 0.76 0.98 0.50 0.90 1.00
λ̄u 0.27 0.74 0.98 0.46 0.89 1.00
λ̃u 0.24 0.71 0.97 0.36 0.82 0.99

# 4 Normal mixture 0.8N(0, 1) + 0.2N(3, 1)

λEP 0.11 0.45 0.86 0.28 0.69 0.95
λ̄u 0.08 0.34 0.78 0.23 0.59 0.92
λ̃u 0.08 0.32 0.74 0.19 0.52 0.86

# 5 Tukey(5) distribution

λEP 0.02 0.03 0.05 0.08 0.10 0.16
λ̄u 0.04 0.12 0.34 0.12 0.27 0.56
λ̃u 0.04 0.11 0.33 0.13 0.27 0.56

Table 2: Empirical power results for the normality tests based on the Epps-Pulley test statistic

family. The power estimates are based on 10, 000 samples from the considered alternatives.

λ = λHM := 1, which is one of the two values for λ recommended in Henze and Meintanis (2002).

As before the nominal levels α = 0.01, 0.05 and the sample sizes n = 20, 50, 100 are considered.

All the power estimates are based on 10, 000 samples from the considered alternatives.

Although the following conclusions are based on a simulation study carried out for large sets of

alternative distributions usually considered in power studies for testing normality (see Epps and

Pulley, 1983, Romão et al., 2010, Yap and Sim, 2011), and exponentiality (see Henze, 1993, Henze

and Meintanis, 2002, 2005), we limit ourselves to present in Tables 2 and 3 the empirical power

results for some of the considered alternatives. In these tables: LN(θ) denotes the lognormal

distribution with density (θx)−1(2π)−1/2 exp(−(log x)2/(2θ2))I(x ≥ 0); W(θ) denotes the Weibull

distribution with density θxθ−1 exp(−xθ)I(x ≥ 0); LF(θ) denotes the linear increasing failure

rate distribution with density (1 + θx) exp(−x − θx2/2)I(x ≥ 0); and PW(θ) denotes the power

distribution with density θ−1x1/θ−1I(0 ≤ x ≤ 1), where x ∈ R.

For all the considered alternatives, the tests based on the data-dependent tuning parameter

selectors performed similarly. Being clearly less time-consuming than the bootstrap-based method

for choosing λ, our preference goes to λ̄u. For the generality of the considered alternatives, these

data-dependent tuning parameter selectors compare well with the fixed tuning parameters λEP

or λHM, none of them being the best over the considered set of alternative distributions. This is
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α = 0.01 α = 0.05

n = 20 n = 50 n = 100 n = 20 n = 50 n = 100

# 1 Standard uniform distribution

λHM 0.22 0.73 0.99 0.53 0.92 1.00
λ̄u 0.13 0.76 1.00 0.46 0.96 1.00
λ̃u 0.13 0.76 1.00 0.46 0.96 1.00

#2 W(0.8) distribution

λHM 0.12 0.32 0.63 0.25 0.51 0.80
λ̄u 0.16 0.36 0.65 0.31 0.56 0.82
λ̃u 0.16 0.35 0.64 0.31 0.55 0.82

#3 LN(1.5) distribution

λHM 0.49 0.87 0.99 0.62 0.93 1.00
λ̄u 0.53 0.89 0.99 0.65 0.94 1.00
λ̃u 0.52 0.89 0.99 0.65 0.94 1.00

#4 LF(2) distribution

λHM 0.07 0.31 0.72 0.27 0.62 0.91
λ̄u 0.03 0.23 0.68 0.17 0.55 0.91
λ̃u 0.03 0.23 0.68 0.17 0.55 0.91

# 5 PW(2) distribution

λHM 0.07 0.15 0.30 0.17 0.30 0.50
λ̄u 0.25 0.54 0.84 0.44 0.73 0.94
λ̃u 0.25 0.54 0.85 0.44 0.73 0.94

Table 3: Empirical power results for the exponentiality tests based on the Henze-Mentainis test

statistic family. The power estimates are based on 10, 000 samples from the considered alternatives.

illustrated by the alternative distributions # 1, # 2 and # 3 shown in Tables 2 and 3.

For the alternative distributions # 4 in both tables, the tests based on the fixed tuning

parameters λEP or λHM are slightly more powerful than those based on the data-dependent tuning

parameter selectors. For the normality test this is a consequence of small and large values of λ, as

λ = 0.1 or λ = 5, included in the set Λ. In fact, for the considered normal mixture alternative the

power of the Epps-Pulley tests seems to behave like an inverted U-shaped function of λ. In the

case of the exponential test, the power of the Henze-Meintanis tests for the considered alternative,

is very low for small values of λ. Therefore, the inclusion of the value λ = 0.1 in the set Λ, may

explain the inferior power attained for this alternative by the tests based on the data-dependent

tuning parameter selectors. This is a price to pay for having tests with a reasonable power against

a wide range of alternative distributions.

The power results reported for alternatives # 5 in Tables 2 and 3, illustrate the already

mentioned weak point of the strategy of taking a fixed tuning parameter in the absence of any

prior information on the underlying alternative distribution. The usually recommended tuning

parameters λEP or λHM lead to tests that achieve a very low power against these alternatives, for

which a smaller tuning parameter value would be a better choice. As values as small as λ = 0.1

or λ = 0.25, have been included in the set Λ, the tests based on the considered data-dependent
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tuning parameter selectors perform much better than the recommended fixed tuning parameters

for these alternatives.

6 A practical example

In this section we illustrate the use of the tests with critical regions
{

Tn,λ̂u
> cn,λ̂u

(u)
}

, with

u = uλ̂n,α,p given by (12), for each one of the data-based tuning parameter selectors λ̂u = λ̄u

and λ̂u = λ̃u, defined by (8) and (9), respectively. To this end, we take the data considered in

Allison and Santana (2015, Table 9, p. 3287), which concerns the survival times of 43 patients

diagnosed with a certain type of Leukaemia. With the intention of testing the appropriateness

of the exponential distribution as the underlying distribution from which the Leukaemia data set

was obtained, we consider the family of test statistics Tn,λ given by (6), with λ ∈ Λ, where we

take for Λ the same set of tuning parameter values used in the previous sections. As before, in

the implementation of λ̃u we use B = 100 bootstrap samples. Approximations of the previous

tests p-values for this data set, are reported in Table 4.

At level α = 0.05 the null hypothesis of exponentiality is not rejected by any of the considered

test procedures. These results are compatible with that obtained by the test based on the fixed

tuning parameter λ = λHM = 1, which is one of the values for λ recommended in Henze and

Meintanis (2002). The associated p-value is also reported in Table 4.

λ̂u selector λ̂u value T
n,λ̂u

value p-value

λ̄u 5 0.00257 0.161

λ̃u 5 0.00257 0.170

λHM 1 0.37985 0.112

Table 4: Summary of the results for the Leukaemia data set (n = 43). The values shown for λ̂u

with u = uλ̂n,α,p, are those obtained when α is equal to the reported p-value.

7 Conclusions

As any goodness-of-fit test, the tests considered in this paper have a preference for some finite-

dimensional space of alternatives, and cannot pay equal attention to an infinite number of orthog-

onal alternatives (see Janssen, 2000). However, the considered tests based on the data-dependent

tuning parameter selectors λ̄u and λ̃u have shown to be serious competitors for the recommended

tests based on a fixed tuning parameter, and perhaps should be used — especially λ̄u because is

less time-consuming than λ̃u —, in the absence of any information regarding the type of deviation

from the null model.
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8 Proofs

Proof of Theorem 1: The first part of Theorem 1 follows from (11) as it implies that

PF

(

Tn,λ̂u
> cn,λ̂u

(u)
)

≤ |Λ|u, (16)

for all u ∈ ]0, 1[, where |Λ| denotes the cardinality of Λ. In order to prove that the probability

PF

(

Tn,λ̂u
> cn,λ̂u

(u)
)

, is independent of F , for F ∈ F , it is enough to use the invariance properties

of Tn,λ and λ̂u. �

Proof of Theorem 2: Let I λ̂n,α = {u ∈ ]0, 1[: ψλ̂(u) ≤ α}. As we are assuming that ψλ̂ is

increasing, we have In,α = ]0, uλ̂n,α[ or I
λ̂
n,α = ]0, uλ̂n,α], where u

λ̂
n,α = sup I λ̂n,α. Taking into account

(16), we get ψλ̂(α/|Λ|) ≤ α, and therefore α/|Λ| ≤ uλ̂n,α. On the other hand, as limu↑1 ψλ̂(u) = 1,

we necessarily have uλ̂n,α < 1. Using this fact, take p > 0 small enough such that Gp∩ ]0, uλ̂n,α[ 6= ∅
and Gp∩ ]uλ̂n,α, 1[ 6= ∅, where Gq is the considered regular grid on the interval ]0, 1[. By the

definition of uλ̂n,α,p, we have ψλ̂(u
λ̂
n,α,p) ≤ α, that is, uλ̂n,α,p ∈ I λ̂n,α; thus uλ̂n,α,p ≤ uλ̂n,α. On

the other hand, as ψλ̂(u
λ̂
n,α,p + p) > α we have uλ̂n,α,p + p /∈ I λ̂n,α, and uλ̂n,α,p + p ≥ uλ̂n,α. We

have proved that uλ̂n,α,p ≤ uλ̂n,α < uλ̂n,α,p + p, for p > 0 small enough, from which we deduce

that limp↓0 u
λ̂
n,α,p = uλ̂n,α. Taking into account the continuity of ψλ̂, we finish the proof by

showing that ψλ̂(u
λ̂
n,α) = α. Let us consider um ∈ I λ̂n,α such that um ↑ uλ̂n,α. Therefore we

get ψλ̂(u
λ̂
n,α) = ψλ̂(limm um) = limm ψλ̂(um) ≤ α. Using the fact that uλ̂n,α < 1, let us consider a

sequence um ∈ ]0, 1[ such that um ↓ uλ̂n,α. As uλ̂n,α is the supremum of I λ̂n,α we have ψλ̂(um) > α

for all m ∈ N, and therefore ψλ̂(u
λ̂
n,α) = ψλ̂(limm um) = limm ψλ̂(um) ≥ α. �

Proof of Theorem 3: For u ∈ ]0, 1[ we have

{

min
λ∈Λ

pn,λ < u
}

⊂
{

Tn,λ̄u
> cn,λ̄u

(u)
}

⊂
{

min
λ∈Λ

pn,λ ≤ u
}

, (17)

where pn,λ denotes the p-value pn,λ = inf
{

α ∈ ]0, 1[ : Tn,λ > cn,λ(α)
}

, with inf ∅ = 1 (see Lehmann

and Romano, 2005, Subsection 3.3). As FTn,λ
is continuous for all λ ∈ Λ, pn,λ is, under H0,

uniformly distributed on the interval [0, 1], and the distribution function of minλ∈Λ pn,λ under H0,

we denote by Fm, is continuous on R. Finally from (17) we get ψλ̄(u) = Fm(u) ≥ u, for u ∈ ]0, 1[,

and the stated result follows from Theorem 2, where uλ̄n,α = sup{u ∈ ]0, 1[ : Fm(u) ≤ α} ≤ α. �

Before given de proof of Theorem 4, we state two auxiliary results on the function ψλ̂(u) :=

PF0

(

Tn,λ̂u
> cn,λ̂u

(u)
)

, defined for u ∈ ]0, 1[. Firstly, note that from inequality (16), we have

limu↓0 ψλ̂(u) = 0, for any invariant tuning parameter selector λ̂u. The limit of ψλ̂(u) when u ↑ 1,

is given in the following proposition, where FTn,λ
denotes the null distribution function of Tn,λ.

Proposition 1. If FTn,λ
is continuous, for all λ ∈ Λ, then limu↑1 ψλ̂(u) = 1.

In the following proposition we analyse the case where λ̂u = λ̇, for all u ∈ ]0, 1[, with λ̇ =

λ̇(X1, . . . ,Xn) a measurable function that takes values in Λ, which is either location-scale invariant

in case (2) or scale invariant in case (3).
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Proposition 2. If FTn,λ
is continuous and strictly increasing (on the set {t ∈ R : 0 < FTn,λ

(t) <

1}), for all λ ∈ Λ, and λ̂u = λ̇, for all u ∈ ]0, 1[, then the function ψλ̂ is continuous and increasing

on ]0, 1[.

Proof of Theorem 4: For u fixed in ]0, 1[ define the invariant tuning parameter selector λ̂v by

λ̂v = λ̂u, for all v ∈ ]0, 1[. Using Propositions 1 and 2, the stated result follow from Theorem 2,

where uλ̂n,α,p = vλ̂u
n,α,q and uλ̂n,α = vλ̂u

n,α. �

Proof of Theorem 5: Let F /∈ F , such that Tn,λ
p−→ +∞ under F , for all λ ∈ Λ. As

α/|Λ| ≤ uλ̂n,α = u, for each λ ∈ λ we have PF

(

Tn,λ > cn,λ(u)
)

≥ PF

(

Tn,λ > cn,λ(α/|Λ|)
)

, since

cn,λ(u) ≤ cn,λ(α/|Λ|). Moreover, from the continuity of F−1
T∞,λ

, and the convergence F−1
Tn,λ

(t) →
F−1
T∞,λ

(t), for all 0 < t < 1 (see Shorack and Wellner, 1986, pp. 3–10), we get cn,λ(α/|Λ|) =

F−1
Tn,λ

(1−α/|Λ|) → F−1
T∞,λ

(1−α/|Λ|), which implies that supn∈N cn,λ(α/|Λ|) < +∞. Therefore, we

conclude that PF

(

Tn,λ > cn,λ(u)
)

→ 1, as n→ ∞, for all λ ∈ Λ. Finally, the stated result follows

from the equality PF

(

Tn,λ̂u
> cn,λ̂u

(u)
)

=
∑

λ∈Λ PF

(

Tn,λ > cn,λ(u), λ̂u = λ
)

. �

Proof of Theorem 6: Let F /∈ F , and take λ ∈ Λ such that Tn,λ
p−→ +∞ under F . Proceeding

as in the proof of Theorem 5, for u = uλ̄n,α we conclude that PF

(

Tn,λ > cn,λ(u)
)

→ 1, as n→ ∞,

and the stated result follows from the fact that PF

(

Tn,λ̄u
> cn,λ̄u

(u)
)

≥ PF

(

Tn,λ > cn,λ(u)
)

. �

Proof of Theorem 7: The Epps and Pulley test statistics given by (5) are nonconstant whenever

n ≥ 3, and well defined on Dn, where D
c
n =

{

x ∈ R
n : x1 = · · · = xn

}

. Therefore, they are

nonconstant and well defined with probability one, whenever n ≥ 3, and F is such that µnF (Dn) =

1. This condition is fulfilled whenever F is absolutely continuous on R, which occurs under the

null hypothesis of normality. Regarding the Henze and Meintanis test statistics given by (6), they

are nonconstant whenever n ≥ 2, and well defined on the set Dn = {x ∈ R
n : x1, . . . , xn > 0}.

Therefore, they are nonconstant and well defined with probability one, whenever n ≥ 2, and F is

such that µnF (Dn) = 1, where µF denotes the probability distribution of F and µnF is the product

measure. This condition is satisfied whenever F is such that F (0) = 0, which is true under the

null hypothesis of exponentiality.

We start by proving that FTn,λ
is strictly increasing on the set {t ∈ R : 0 < FTn,λ

(t) < 1}.
For that, let us take s, t ∈ R with s < t and 0 < FTn,λ

(s) ≤ FTn,λ
(t) < 1. As µnF0

(

{x ∈ Dn :

Tn,λ(x) ≤ s}
)

> 0 and µnF0

(

{x ∈ Dn : Tn,λ(x) > t}
)

> 0, the sets {x ∈ Dn : Tn,λ(x) ≤ s} and

{x ∈ Dn : Tn,λ(x) > t} are nonempty, which implies, from the continuity of Tn,λ and the fact that

Dn is open and connected, that the set {x ∈ Dn : s < Tn,λ(x) < t} = T−1
n,λ(]s, t[) is a nonempty

open subset of Dn. Taking into account that µF0 is either the standard Gaussian or the unit

exponential probability distributions on R, we conclude that µnF0

(

T−1
n,λ(]s, t[)

)

> 0, which finally

implies that FTn,λ
(s) < FTn,λ

(t).

Next we will prove that FTn,λ
is continuous on R. For that, we start by showing that is enough

to prove that

µF0

(

(T x2,...,xn

n,λ )−1(y)
)

= 0, for all (x2, . . . , xn) ∈ Dn−1 and y ∈ R, (18)
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where T x2,...,xn

n,λ is the section of Tn,λ determined by (x2, . . . , xn), defined, for z ∈ R, by T x2,...,xn

n,λ (z) =

Tn,λ(z, x2, . . . , xn). In fact, from Fubini’s theorem and the fact that µn−1
F0

(Dc
n−1) = 0, we have

µnF0

(

T−1
n,λ(y)

)

= µn−1
F0

⊗ µF0

(

T−1
n,λ(y)

)

=

∫

µF0

((

T−1
n,λ(y)

)x2,...,xn
)

dµn−1
F0

(x2, . . . , xn)

=

∫

Dn−1

µF0

((

T−1
n,λ(y)

)x2,...,xn
)

dµn−1
F0

(x2, . . . , xn)

=

∫

Dn−1

µF0

(

(T x2,...,xn

n,λ )−1(y)
)

dµn−1
F0

(x2, . . . , xn),

where
(

T−1
n,λ(y)

)x2,...,xn = {z ∈ R : (z, x2, . . . , xn) ∈ T−1
n,λ(y)} = (T x2,...,xn

n,λ )−1(y) is the section of

T−1
n,λ(y) determined by (x2, . . . , xn). Therefore, under (18) we get µnF0

(

T−1
n,λ(y)

)

= 0, for all y ∈ R,

which enables us to conclude that FTn,λ
is continuous on R.

Finally, in order to establish (18) it is enough to take into account that T x2,...,xn

n,λ is a noncon-

stant analytic function on R, for each (x2, . . . , xn) ∈ Dn−1. In fact, for those functions the set

(T x2,...,xn

n,λ )−1(y), for y ∈ R, is either empty or consists entirely of isolated points (cf. Carathéodory,

1983, p. 138), which implies that µF0

(

(T x2,...,xn

n,λ )−1(y)
)

= 0, as µF0 is an absolutely continuous

probability distribution on R. �
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