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This paper presents a hotel location model that incorporates concepts from both 

game theory and gravitational site location models. We consider a hotel chain intending 

to build new hotels in a given region. Customers travel to the region to visit some 

specific points, termed “attractions”, and they choose a hotel according to room price, 

location and hotel attractiveness. Competitor hotels react to the new hotels by changing 

prices, in order to maximize their own profits, so the final set of prices will be a Nash 

equilibrium. We propose an iterative procedure for finding the equilibrium prices and a 

genetic algorithm-based procedure for finding the optimal strategy, in terms of new 

hotels to be built and respective typologies. Using a mini case, we illustrate and analyse 

the influence of several parameters. Then, we present computational experiments, 

concluding that the proposed procedures are effective in finding good solutions for the 

model. 
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Highlights 

• A game theoretic/spatial interaction model is proposed for hotel site location 

• Customers choose according to price and non-price attributes 

• The specific sites that customers intend to visit are taken into account 

• Game theory is used to determine the equilibrium prices, considering the 

competitors’ reactions 

• A genetic algorithm is applied to determine the optimal hotel location and 

typology decisions 
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1. INTRODUCTION 

Location remains a potential source for competitive advantage for the 

accommodation sector (Adam and Amuquandoh, 2014; Yang, Luo and Law, 2014) with 

location decision-making gaining increasing attention from academic and business 

community in the past two decades (Chou, Hsu and Chen, 2008). Moreover, the 

financial crisis of 2008 has led to a subsequent global economic downturn marking the 

beginning of the “new normal”, characterised by fundamental changes in the appetite 

for risk taking (Phillips and Moutinho, 2014). Hotels remain a key element of the 

tourism industry, so new approaches to enhance strategic decision-making of hotel 

investors will benefit the growth and development of the tourism industry.  

Geographic location is important to a diverse range of retailers. For example, 

Wal-Mart operations in rural markets generate on average higher returns than its 

operations in more competitive urban markets (Ghemawat, 1986). Hotel location 

decisions may be quite problematic, especially in regions in which the market is mature 

and a significant supply already exists. In such cases, hotel chains must assume that 

competitors already in place will react to new hotels, which in the past led to room rate 

reduction in order to avoid losing customers. Given the scale and level of investments 

and maturity of the global hotel sector, opportunities exist for a more diverse range of 

methodological, philosophical and theoretical approaches. Williams and Baláž, (2015) 

contend that there is a need for stronger theoretical understanding of the different 

concepts of tourism risks.  

This study considers a game-theoretic approach to address the hotel location problem. 

In this paper we consider that hotels will set prices in order to maximize their profits. 

We also assume that demand takes into account not only the hotel price but also other 

attributes of the hotel. 

 A paucity of prior game theory research in the context of hotel location (see 

Yang, Huang, Song and Liang, 2008) provides a stimulant for this hotel location study. 

We aim to define an operational model that can be used both to find the optimal 

decisions in realistic and complex situations, and to analyse the outcome of such 

situations, particularly the impact of specific parameters on the outcome. To achieve 

this, we moved away from simplified models that would lead to closed-form 
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mathematical solutions and define a more complex model that can be used in regions 

with different characteristics. 

This study has some links to the operational component of the work of Arenoe, 

van der Rest and Kattuman (2015), by extending it in several areas. First, similarly to 

Arenoe at al. (2015), we assume that customers may choose not to be lodged in any of 

the alternatives explicitly included in the model. But, while Arenoe et al. consider a 

utility threshold, we assume that there is an alternative that consists of not choosing any 

of the modelled hotels and which has an attractiveness to the customer. Second, we 

explicitly model the places that the hotel guests wish to visit, allowing different 

customer segments to have different visitation patterns. Other authors (e.g., Hung, 

Shang and Wang, 2010) use proxies like the city centre to identify the places that attract 

visitors, but those will be just rough approximations in polycentric cities or when 

attractions are very far apart in a city. Another difference from the work of Arenoe et al. 

(2015) is the goal of the model. Determining the equilibrium prices is the final goal of 

Arenoe et al., but it is only the intermediate goal for this study. We assume that the 

hotel chain we are considering intends to build some new hotels, keeping the investment 

expenditure within a predefined budget. We want to find the optimal strategy (sites and 

hotel typology) for opening new hotels, in order to maximize the total profit of the 

chain. After the new hotel or hotels are built, new competition makes all hotels rethink 

their prices, and the set of prices becomes a game-theoretic Nash equilibrium. 

 

2. RELATED WORKS 

Yang et al. (2014) classify prior hotel location research into theoretical, 

empirical and operational models. Their analysis covers a diverse mix of academic 

disciplines from hospitality and tourism, geography, economics, marketing, finance and 

urban planning. The authors delve into the literature and identify four theoretical 

categories, six empirical categories, and three operational categories. The authors also 

recognise that some of the models do not fit these categories, since there are some 

diverse models concerning hotel location. 

Most models in the theoretical category and several models in the empirical 

category try to explain the spatial location or room pricing choices of the hotels. Since 

we take the perspective of defining the best locations based on the ability to attract 

demand, it is of interest to us to analyse models aiming to explain how customers make 

their choices. Masiero, Heo and Pan (2015) notice that there are limited studies focusing 
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on the relationship between hotel attributes and room pricing from a customer 

perspective. The authors propose a new discrete choice model for determining the 

customer’s willingness to pay based on a set of room attributes. Lee, Kim, Kim and Lee 

(2010) evaluate the importance of different factors in the satisfaction of frequent 

individual traveller / foreign independent traveller guests of five-star hotels in Korea. 

The authors consider six factors – tourism attraction, convenience, safety, surrounding 

environment, traffic and accessibility – and they consider several attributes for each 

factor. They conclude that tourism attraction is the most important factor in explaining 

the satisfaction of hotel guests. 

Such empirical studies might provide a solid foundation for operational models, 

but in fact there are very few operational models based on detailed quantitative 

definition of customer behaviour. For example, the operational categories defined in 

Yang et al. (2014) – checklists, statistical prediction models and Geographic 

Information Systems-based models – do not consider a direct model of customer 

behaviour. 

Among the authors considering a model of customer behaviour as the foundation 

for operational decisions, we can find Moutinho and Paton (1991). Moutinho and Paton 

propose a spatial interaction model for tourism site selection and analysis, the LOCAT 

model, based on the probability that tourists will patronise a given site location. It 

attempts to measure the total attractiveness of a particular site location taking into 

account the impact of the degree of accessibility, total catchment population and level of 

product uniqueness. 

Arenoe et al. (2015) consider a model of customer behaviour based on conjoint 

analysis. The authors assume that buyers respond both to price and non-price 

differences, so the price charged by a hotel manager must take into account the prices 

charged by other hotels, as well as the characteristics of the different hotels. Any 

realistic operational model must consider that competitors will not remain indifferent to 

decisions that may affect them – in the case of Arenoe et al., they will be affected by the 

price decisions made by other hotels, so they will react to them. To incorporate these 

reactions, Arenoe et al. define a game-theoretic model of hotel pricing. 

From an economics’ perspective competitiveness within a sector can be viewed 

through various lenses. Since the pioneering work of Von Neumann and Morgenstern 

(1945), which provided greater insights into game theory and economics, economists 

and mathematicians use the approach to assess decision-making in uncertain situations. 
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Game theory remains an active area of research in economics and is particularly useful 

for studying interactions among large numbers of participants (Cheung, 2014). 

Rubinstein (1990) posits that game theory is a key tool for the construction of the 

modern theory of industrial organisations. Behaviour of firms can be modelled in either 

continuous strategy (e.g., Awaya and Krishna, 2016; Laraki, Solan and Vieille, 2005) or 

discrete strategy sets (e.g. Ciliberto and Tamer, 2009; Godinho and Dias, 2013; Seim, 

2006). A behaviour model of the firm will incorporate informational and computational 

assumptions and relate to more complex phenomenon (Prietula and Watson, 2008).  

Knowing how rational players behave in a strategic context has appeal to business and 

management scholars. Niou and Ordeshook (2015) stress the importance of game 

theoretic decision-making, which provides insight for the managers as one assumes that 

other decision-makers are not fixed targets, and that they take into account their 

knowledge of the manager, and that the manager knows that they know. More recently, 

the ability to identify and predict behaviours to capture value in intense competitive 

markets is an emerging theme in the value capture theory (Gans and Ryall, 2017). 

Research that enables scholars to rethink fundamental ideas in competitive 

environments will provide academic as well as practical benefits which can flow 

through to the bottom line. Kuechle (2014) does highlight that entrepreneurial activity 

varies across regions and the phenomenon persists over time, and this impacts choice of 

hotel location.  

Game theory can amplify the interaction of competition from a behavioural 

modelling perspective (Clarke-Hill, Li and Davies, 2003). Moreover, the field of game 

theory provides a lens through which hotel location decision-making can be analysed. 

Game theory-based models have been used in the context of hotel competition, but 

mostly within very simplified models of price or quantity competition (e.g., Baum and 

Mudambi, 1995; Chung, 2000; Gu, 1997; Guo, Ling, Dong and Lian, 2013; Song, Yang 

and Huang, 2009; Yang et al., 2008). The goal of such studies is often to determine the 

equilibrium prices, and revenue maximization strategies, which are primary objectives 

of hoteliers. This is in part due to the cost structure of hotels. If fixed costs are high and 

variable or operating costs are low, revenue maximization may be a sensible objective 

(Friesz, Mookherjee and Rigdon, 2005). However, profit maximization is a more 

general objective since it does not rely on such an assumption and is more attractive to 

financially motivated stakeholders. 
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A factor that many studies consider to determine customer patronage is the 

closeness to the destinations that customers intend to visit. For example, Kimes and 

Fitzsimmons (1990) state that eighty percent of the customers of La Quinta Motor Inns 

visited destinations within four miles of the inn. In this paper we consider the special 

importance of this factor, which we model explicitly. In order to do it, we incorporate a 

spatial interaction perspective in the model. 

There are few spatial interaction models applied to tourism. Hurley, Moutinho 

and Witt (1998) propose a spatial interaction model for tourism site location. The model 

follows the site location approach proposed by Penny and Broom (1988), considering 

two attributes: distance and a subjective measure of attraction. The authors show that 

Genetic Algorithms (GAs) perform quite well in obtaining solutions for the model. 

Godinho, Silva and Moutinho (2015) also propose a hotel location model based on 

Penny and Broom (1988) and Hurley et al. (1998), including a cost structure and a 

budget constraint. In both cases, the spatial component is based on the origin of the 

visitors, and not on the closeness of the hotel to the intended destinations. 

 

3. A MODEL FOR TOURISM SITE LOCATION UNDER COMPETITION 

In this paper we consider that hotels will define prices in order to maximize their 

profits. We assume that demand takes into account not only the hotel price but also 

other attributes of the hotel. Like Arenoe et al. (2015), we assume that buyers respond 

both to price and non-price differences, and so the price charged by a hotel manager 

must take into account the prices charged by other hotels together with the 

characteristics of the different hotels. For modelling customer choice, Arenoe et al. use 

a utility-based multinomial logit model, while we choose a spatial interaction model, in 

the line of Moutinho and Patton (1991), Hurley et al. (1998) and Godinho et al. (2015). 

However, our spatial interaction model incorporates an attractiveness parameter, which 

encompasses all the relevant attributes found on the previous empirical studies (number 

of stars, hotel amenities, safety, surrounding environment, etc.) 

Our work was developed after contacts with hotel managers, who helped us 

identifying additional relevant factors that should be incorporated in the model. Among 

these factors, which we included in the model, are capacity constraints, segmented 

demand (heterogeneous customers, with different preferences and different average 

length of stay), annual periods of different demand (and different prices) and the 

possibility of different customer segments wanting to visit different venues within the 
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considered region, which we term “attractions”. This is done by considering that, 

depending on the hotel location, a customer will have a generalized cost for visiting the 

attractions to which he/she wants to go. This expands the use of spatial interaction 

models to the case in which the proximity to specific attractions within a region is taken 

into account. According to the hotel managers we contacted, a single hotel or chain is 

not able to influence the aggregate demand in a region that is already served by a 

reasonable number of hotels, but the distance from the most important attractions within 

a region may significantly influence the hotel demand. The parameters of the model, 

and respective notation, are summarized in Table 1. Table 2 shows the decision 

variables and calculated values, and the respective notation.  

We take the perspective of a profit-maximizing hotel chain that faces 

competition that already operates some hotels and is considering opening new hotels. 

We consider that decisions concern a touristic region, which may be a city, a seaside 

region, etc. In this region there are already Ne hotels belonging to the hotel chain and Nc 

hotels run by competitors. Each hotel has a specific attractiveness level jW , which may 

be the result of multiple factors, like the hotel rating (number of stars), surrounding 

environment or hotel amenities like the existence of a swimming pool. Each hotel has a 

given structure of costs and revenues, which includes the room price, additional revenue 

for each occupied room (e.g., average meal sales), variable cost per occupied room, 

fixed costs (independent of the occupation level) and capacity.  

To simplify the expressions, we define a “variable cost net of additional 

revenue” that incorporates the variable cost and the additional revenue per occupied 

room: jt jt jtc vc ar= − . The annual profit of the hotel is then defined as: 

( )
1

T

j jt jt jt jt t

t

P p c n F d
=

 = −  − 
        (1) 

It is assumed that the general touristic demand of the region will not be affected 

by the decisions made by the company. The region possesses attractions that are the 

main reason leading visitors to come to the region. In each period, customers visit the 

region attractions according to a pattern that may change for different customer 

segments. This pattern of visits is used to define a perceived generalized cost of the 

local trips for visitors lodged in a given site, jktg , calculated as: 

1

A

jkt ja kta

a

g v
=

=          (2) 
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Table 1 – Model parameters and respective notation 

Existing hotels:  

• Hotels from the considered chain Ne hotels (identified by 1, , )ej N=   

• Competitor hotels cN  hotels (identified by 

1, ,e e cj N N N= +  + ) 

Sites for potential new hotels 
pN  sites (identified by 

1, ,e c e c pj N N N N N= + +  + + ) 

Different periods per year with different demand 

characteristics (high season, low season, etc.) 

T periods ( 1, ,t T=  ) 

• Number of days in period t  td   

Hotel characteristics (hotel j ):  

• Additional revenue for each booked room in period 
t  

jtar   

• Variable cost, for the hotel, of having a room 

occupied for a day in period t  
jtvc   

• Daily fixed costs of the hotel in period t  jtF   

• Hotel capacity (per day) in period t  jtC   

• Hotel attractiveness jW   

Attractions (sites visited by the customers) A  attractions (identified by 

1, ,a A=  ) 

• Perceived generalized cost of a trip from hotel site 

j  to the attraction site a  
ja   

Demand segments K types of customers (identified by 

1, ,k K=  ) 

• Daily demand (number of rooms in all 

establishments) by customers of segment k  in 

period t  

ktR   

• Cost-sensitivity of customer segment k  k   

• Joint total attraction exerted by other establishments 

(not explicitly modelled) over visitors of type k  
ktMO   

• Average number of daily visits of customers of 

segment k  to attraction a  in period t  
ktav   

Set of typologies for new hotels (number of hotel stars, 

whether to build a swimming pool, etc.) 

1, ,q Q=    

Construction cost for building a hotel of typology q  at site 

 ( )  1, ,e c e c pj j N N N N N + +  + +  

( )jCC q   

Budget for building new hotels B   
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Table 2 – Decision variables and calculated values, and respective notation 

Decision variables 

Daily room price for hotel j  (or for a new hotel located at 

site j ) in period t  

jtp   

• Vector of room prices for the different periods 
1j jTp p =  jp   

Typology chosen for a new hotel located at site 

 ,   1, ,  e c e c pj j N N N N N + +  + +  (the value zero is 

used when no hotel is built)  

( )q j   

Calculated values 

For hotel j  (or for a new hotel located at site j ):  

• Variable cost net of additional revenue jt jt jtc vc ar= −   

• Average number of rooms sold daily in period t  jtn   

• Annual profit of the hotel jP   

• Average daily demand, if there were no capacity 

constraints 

' jtD   

• Attraction exerted to visitors of segment k  in 

period t  
jktI   

• Perceived generalized cost of the local trips for 

visitors from segment k  lodged at the hotel in 

period t  

jktg   

Average daily demand for other establishments (not 

explicitly modelled) in period t  
tDO   

Total profit TP   

 

We assume that customers choose a hotel considering both hotel attractiveness, 

room price (other hotel expenses are optional and assumed not to be an integral part of 

the decision) and the perceived generalized cost of the local trips to the attractions. 

Following the logic of gravitational models, the attraction exerted by hotel j to visitors 

of segment k in period t is defined as: 

k jtp

jkt jI W e
− 

=  .        (3) 

We also assume that, apart from the considered hotels, there are other 

establishments that are not explicitly modelled, possibly smaller and assumed to be less 

adaptable, which also exert some attraction over visitors. The spatial interaction model 

assumes that total demand is split among the hotels and other establishments 

proportionally to the attraction exerted by them. In the absence of capacity constraints, 

daily demand for hotel j in period t would be: 

1 '' 1

'
e C

K
jkt

jt ktN N
k j kt ktj

I
D R

I MO
+

=
=

= 
+




      (4) 
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For the other establishments: 

1 '' 1

e C

K
kt

t ktN N
k j kt ktj

MO
DO R

I MO
+

=
=

= 
+




      (5) 

In the presence of capacity constraints,  ' ; ,jt jt jtn min D C=  and when 

' jt jtD C  the remaining demand, ' jt jtD C− , is split among the other hotels and 

establishments, proportionally to the respective attraction. Using (1) and (4) we can say 

that, for a given hotel j, the profit is given by: 

( )
1 1 '' 1

;  
e C

T K
jkt

j jt jt kt jt jt tN N
t k j kt ktj

I
P p c min R C F d

I MO
+

= =
=

  
  = −   −  

 +    

 


  (6), 

with jktI  defined by (3). 

In this model we assume that all hotels will define prices that maximize their 

annual profit – the set of prices is a game-theoretic Nash equilibrium. This means that if 

we define jp  as the vector of prices of hotel j  in the different periods, then these prices 

should be defined in a way as to maximize the annual profit. If we look at profit jP  as a 

function of the price vector of hotel j, we can write: 

( ) arg max
T jP
+

=j
p

p p         (7) 

This assumption of profit maximization by each hotel may be useful in 

calibrating the model in applications with real world data. In fact, it is reasonable to 

assume that, for a hotel chain that already possesses some hotels in a given region, some 

parameters will be available, or can be estimated with some ease – this is, for example, 

the case for ,  ,  ,jt jkt kt kp g R  . However, other parameters may be more difficult to 

determine, such as the values of jW  for competitor hotels. Assuming that hotels are 

defining the prices that maximize their profit, we may indirectly estimate such 

parameters. 

 

The problem we address considers that a hotel chain intends to build some new 

hotels and has an investment budget for that. There is a set of sites for potential new 

hotels and, in each of these sites, a hotel may be built according to a set of pre-defined 

typologies (a typology may encompass the number of hotel stars, what amenities to 

build, etc.). So, in this stage there is a discrete set of potential decisions for the 
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company, comprising the choice of sites and typologies for the new hotels (in the 

literature, location decisions are often modelled as discrete – see, e.g., Godinho and 

Dias, 2013; Seim, 2006). 

The typology, along with the specific characteristics of the potential location, 

define the hotel attractiveness, fixed and variable costs and capacity, as well as the 

construction cost. As an example of the impact of location on attractiveness we can 

notice that, for the same typology, a more pleasant surrounding environment will 

increase the attractiveness. So, the company wants to determine the subset of sites in 

which to build new hotels, as well as the typologies of the hotels to be built, in order to 

maximize the total annual profit. Assuming that ( ) q j denotes the typology chosen for 

potential site j , with ( ) 0q j =  representing the cases in which no hotel is built in site j 

and higher values of ( )q j  representing costlier and more attractive hotels, we can 

define the objective of the hotel chain as maximizing the following total profit function: 

( )
( )

( )

( )
, 1, ,

11

0

max
e c pe

e c e c p
e c

N N NN

j j
q j j N N N N N

j N Nj

q j

TP P P

+ +

= + +  + +
= + +=



 
 

= + 
 
 

 j jp p    (8) 

In order to avoid cluttering notation, we omitted the dependence of prices and 

profits on the typologies of the new hotels. We will additionally consider a budget 

constraint. Denoting by B the available budget and defining that ( )0 0jCC = , that is, 

that the construction cost is zero when no hotel is built at a given site j: 

( )( )
1

e c p

e c

N N N

j

j N N

CC q j B

+ +

= + +

        (9) 

The prices and profits considered in (8) will be the ones resulting from each 

hotel being a profit maximizer. This means that we assume that competitors will react 

rationally to the company strategy, so, when there are new hotels in the region, they 

redefine the room prices in a way that maximizes their profits. This leads to a game 

between the hotels, with a continuous strategy set for each hotel (price competition is 

often modelled with continuous strategy sets – for an example, see Awaya and Krishna, 

2016). Models with a first stage that consists on choosing location and a second stage 

that is a game in which all competitors make decisions that will define how demand will 

be split among them can also be found in several other works (e.g., Saidani, Chu and 

Chen, 2012, in a retail context). We will assume that no competitor hotels will be closed 
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so we do not have to take into account competitor fixed costs in order to define 

competitor strategy. Each hotel from the chain we are considering is also assumed to be 

a profit maximizer, meaning that they will also define room prices that maximize their 

own profits. So, expression (7) must hold for each hotel. In fact, we can consider that 

there is a simultaneous decision about which hotels to build, which typology to choose 

for each one, and what prices to define. The final set of prices will constitute a Nash 

equilibrium, as usually considered in game theory, in which each hotel chooses a price 

that maximizes its own profit. 

 

4. SOLVING THE MODEL 

 Solving this model entails two challenges: determining the Nash equilibrium 

prices for a given configuration of hotels and finding the best strategy for opening new 

hotels. The second problem depends on the first – in order to assess the company profit 

with a given configuration, we must find the Nash equilibrium prices for such 

configuration. 

 It is possible to determine the Nash equilibrium prices by using a simple 

algorithm that iterates over all hotels and, for each hotel, applies a numerical algorithm 

for determining the optimal price. Detailing the proposed procedure, we start by 

considering the first hotel, and determine the optimal room price, given a set of initial 

prices for all other hotels. In order to determine the optimal price, a numerical algorithm 

like the Broyden–Fletcher–Goldfarb–Shanno algorithm (e.g., Broyden, 1970) or Brent’s 

method (Brent, 1973) may be used. We then go to the second hotel, and determine the 

optimal price in a similar manner. We go on, until we reach the last one, and complete 

the cycle over all hotels. After that, we return to the first one, and repeat the cycle. The 

algorithm stops when, after such a cycle, the maximum price change is below a given 

threshold (that is, when all price changes are very small). When this happens, all hotels 

are very close to the optimal price, and we have a good approximation to the Nash 

equilibrium. 

 If the number of potential new sites is low, then the problem of finding the best 

strategy for opening new hotels can be tackled by enumeration: it is possible to 

explicitly evaluate each possible configuration and to choose the configuration that 

maximizes the annual profit while meeting the budget. This is the procedure we follow 

in the analysis of the mini case presented in Section 5. However, in most cases that will 
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not be possible, so we propose using a Genetic Algorithm (GA) for determining the 

optimal strategy for opening new hotels. 

GAs are meta-heuristics that employ random choice as a guide to a search for 

the optimal solution, providing a population-based stochastic search procedure based on 

principles of natural genetics and survival of the fittest (a classical reference is Holland, 

1975). They operate through a simulated evolution process on a population of string 

structures, named chromosomes, which correspond to candidate solutions on the search 

space. The first step in using them is to represent the possible solutions of the problem 

we are solving by a string of genes that can assume some values from a specified finite 

range or alphabet. For the problem we are considering, a solution will be a strategy for 

building new hotels, so the string of genes can consist on a string of integer values, one 

for each potential new site, with each value representing the typology of the hotel to be 

built or zero in case no hotel is built at that site. Alternatively, these integer values can 

be converted into binary values, which are more adequate to some GA implementations. 

When starting the utilization of a GA, an initial population of chromosomes is 

randomly or heuristically generated, and this population will then evolve across several 

generations. At each generation, the performance of each chromosome is evaluated by 

computing its fitness value. In the case of the problem we are considering, the fitness 

will be the annual profit corresponding to the considered strategy, that is, the fitness 

function is given by expression (8), with the prices resulting from a Nash equilibrium in 

which each hotel is a profit maximizer (as defined in (7)) and the profits calculated 

according to (6). So, differently from other applications of genetic algorithms, the 

calculation of the fitness value of a chromosome is not straightforward, but it resorts to 

the previous determination of a Nash equilibrium for the set of hotels. 

The population evolves through successive generations by using some operators 

that intend to search for the best solutions. Selection, crossover and mutation are the 

most common operators. The selection operator defines which chromosomes will be 

combined in order to generate new individuals. It usually consists of a randomized 

procedure that gives priority to the individuals with better values of the fitness function. 

There are several different methods for defining this operator, with two popular 

methods being roulette wheel selection (the probability of the selection of a 

chromosome is proportional to its fitness) and linear rank selection (the probability of 

the selection of a chromosome is proportional to the rank of its fitness among the 

population, with larger values of fitness being assigned the larger ranks).  
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After the two individuals are selected, there is a probability of the chromosomes 

being combined through the crossover operator – this probability is termed the 

“crossover probability”. If that does not happen, the individuals are passed to the next 

generation unchanged. The crossover operator implements a mating scheme between 

pairs of parents to create two new individuals that carry out the characteristics of both 

parents. Due to its importance, several crossover techniques were developed. For a 

binary codification, single-point crossover is often used: this operator randomly chooses 

a locus and exchanges the sub-sequences before and after that locus between two parent 

chromosomes to create two descendants. 

The mutation operator is used to guarantee the genetic diversity of the 

population, changing randomly the values of one or more genes. This operator prevents 

the premature convergence of the method towards a local optimum, considering new 

points in the search area. Different crossover schemes may be defined – usually, each 

gene may be changed with a pre-defined probability.  

In passing from a generation to the next one, it is possible that the chromosome 

corresponding to the best solution is lost and all the chromosomes in the new generation 

are worse than that one. One way to avoid this is by using an elitist selection strategy, 

where a certain fraction of the best performing individuals is kept intact into the next 

generation. 

A GA starts by generating and evaluating the initial population. Selection, 

crossover and mutation are then performed, resulting in a new population. The 

suitability of each chromosome in the new population is evaluated and the entire cycle – 

selection, crossover and mutation – repeated. It is necessary to define when to stop this 

cycle. Usually the GA is stopped after a predefined number of generations, or if no 

improvements are perceived in the fitness function for a specified number of 

generations.  

Finally, we notice that, in problems like the one we are considering, there may 

be unfeasible solutions – that is, the GA may generate solutions in which the budget 

constraint does not hold. Disregarding unfeasible solutions is a simple and popular way 

to handle such solutions, but it is usually not the best option (see, e.g., Michalewicz, 

1995). Other approach that is often used is resorting to repair algorithms, which receive 

an unfeasible solution generated be the GA and “repair” it, transforming it into a 

feasible one. This approach has been reported as performing particularly well in several 

applications, at least when an unfeasible solution can be easily transformed into a 
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feasible one (Coello Coello, 2002). Notice that, usually, the repaired solution does not 

replace the unfeasible one in the population, but it is only used to calculate the fitness of 

the unfeasible solution. 

For this model, the repair procedure we recommend consists of identifying the 

typology reductions that seem less likely to cause significant reductions in the fitness 

function and performing successive reductions until the budget constraint holds. Notice 

that a reduction from the lower considered typology effectively consists of not building 

any hotel at a given site. Detailing this procedure, we start by ordering the typologies by 

the order of global attractiveness (that is, by increasing order of the associated jW ). 

Then, for each potential new site j and for each typology q, we calculate the value of the 

annual profit for a solution that consists of building just one hotel, of typology q, 

located at site j: let us call these values ,j qPS . Afterwards, for each potential new site 

and for each typology, we calculate the ratio jqra  between the reduction in ,j qPS  and 

the reduction in construction cost when we reduce the typology of the hotel from q to q-

1: 

( ) ( )
, , 1

1

j q j q

jq

j j

PS PS
ra

CC q CC q

−−
=

− −
.      (10) 

Small values of ,j qra  indicate that there is a small expected reduction in annual 

profit for each unit of saving in construction costs. So, when a solution generated by the 

GA exceeds the budget, we successively reduce the construction costs by reducing the 

typology of new hotels, starting with the lowest values of jqra , until the total 

construction costs fall within the budget. 

 

5. USING THE MODEL IN A MINI CASE 

As a first approach for applying the model, we define a mini case illustration that 

can be analysed by enumeration of the alternatives. This mini case intends to show the 

type of analysis of alternatives that the model allows and also to determine whether the 

model provides sensible results for straightforward situations. We define a setting and 

analyse how several parameters influence the choice between a large hotel, two small 

hotels, and a medium-sized, high quality hotel situated in a premium location. The 

parameters we analyse are the average number of visitors per day, distribution of days 

by the high and low season, percentage of visitors in the most cost-sensitive segment, 
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distribution of visitors by the high and low season, attractiveness of existing hotels and 

cost-sensitivity of the most affluent customers. Concerning each of these parameters, we 

aim to answer the following questions: 

• How does the profit of the alternatives change when the parameter value is 

changed? 

• How does the best alternative change when the parameter value is changed? 

For some parameters, it is easy to define expectations for the answers to these 

questions. For example, a higher number of visitors is expected to increase the profit for 

all alternatives and particularly favour the construction of a large hotel; a higher 

concentration of visitors in the high season is also expected to favour the construction of 

a large hotel. However, for others, the impact on the outcome is not so clear at the 

outset. We will now define the setting and then analyse the results. 

 

We consider a small town with three main attractions (A=3): a historic core 

(A1), a traditional commercial downtown area (A2) and an area where there is an old 

convent and a museum (A3). In this town there are already four hotels (H1-H4). There 

are three sites (S1-S3) where a company – which owns none of the hotels H1-H4 – is 

considering building new hotels. In site S1, it is possible to build either a large, high 

quality hotel or a smaller, medium quality hotel; in site S2, it is possible to build a 

small, medium quality, hotel; in site S3 it is possible to build a medium-sized, very high 

quality hotel. Figure 1 presents a simplified representation of the town. 

The existing hotels have different quality, H3 being the least attractive hotel, 

followed by H1 and H4, and H2 being the most attractive hotel. Hotels H1 and H3 are 

large hotels, while H2 and H4 are smaller hotels. The parameters used to define both the 

existing hotels and the potential new hotels are shown in Table 3. Table 4 presents the 

generalized cost of a trip from each hotel site to each attraction. 

 

We consider three different periods per year (T=3), with a duration of 122 days 

each. The number of visitors per day is 1200 in the high season, 800 in the middle 

season and 400 in the low season. 

For the visitors, we consider two segments (K=2), each with 50% of the visitors: 

segment 1 of cost-sensitive visitors (
1 0.050 = ) and segment 2 of more affluent and 

less cost-sensitive visitors (
2 0.015 = ). The pattern of visits to attractions is assumed 
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to be identical for both segments and for all periods: an average of 0.7 visits/day to A1 

(historic core), 0.5 visits/day to A2 (commercial downtown) and 0.2 visits/day to A3 

(old convent and museum). The joint attraction exerted by other establishments which 

are not explicitly modelled (
ktMO ) was defined as twice the average attraction exerted 

by existing hotels, for each customer segment and for each period. 

 

Figure 1 – Representation of the town considered in the analysis 

 

A1, A2 and A3: attractions (A1: Historic core; A2: Commercial downtown; A3: Old convent 

and museum); Small circles (H1, H2, H3 and H4): existing hotels; Small squares (S1, S2 and 

S3): potential locations for new hotels. 

 

Table 3 – Parameters of the hotels used in the mini case (in this case, the parameters do 

not change across periods) 
Hotel (j) Attractiveness (Wj) Capacity (Cj) Variable cost (cj) Fixed cost (Fj) 

H1 1.5 250 3 - 

H2 3.0 100 6 - 

H3 1.0 250 3 - 

H4 2.0 80 5 - 

New, large hotel at S1 2.0 260 7 1200 

New, small hotel at S1 1.2 100 6 1000 

New hotel at S2 1.2 100 6 1000 

New hotel at S3 2.5 140 10 2000 

-: not relevant for the model. 
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Table 4 – Generalized cost of a trip from each hotel site to each attraction (αja) 

 A1 A2 A3 

H1 25 8 25 

H2 30 15 3 

H3 17 0 15 

H4 1 12 30 

S1 23 6 23 

S2 17 5 20 

S3 0 10 28 

 

It was assumed that the company budget would allow it to choose one of the 

following alternatives: 

• Alternative 1: building two small hotels at sites S1 and S2; 

• Alternative 2: building a large hotel at site S1;  

• Alternative 3: building a luxury, medium sized hotel at site S3. 

In the central scenario described here, the best alternative is Alternative 1, with 

an annual profit of 2 804 090 monetary units. Alternatives 2 and 3 are not far behind, 

with profits of 2 757 675 and 2 764 483, respectively. 

The close profit values for the three alternatives make this a good case to analyse 

the influence of different parameters in the attractiveness of the three types of 

alternatives. The results we obtained are represented in Charts 2.1-2.6, in Figure 2. 

In Chart 2.1 of Figure 2 we can see that, as expected, an increase in the number 

of visitors benefits all alternatives while a decrease harms all alternatives. We can also 

see that the alternatives show different sensitivity to changes in the number of visitors. 

The profit of Alternative 2 (large hotel) displays the wider variations, while the profit of 

Alternative 3 (luxury hotel) presents smaller changes. So, as the number of visitors 

increases, Alternative 2 becomes the most profitable as Alternative 3 is the most 

profitable for smaller numbers of visitors. 
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Figure 2 – Charts representing the impact of the changes in some parameters on the 

profit of the alternatives 

  

  

  
Solid line: profit of Alternative 1 (building two small hotels at sites S1 and S2); dotted line: 

profit of Alternative 2 (building a large hotel at site S1); dashed line: profit of Alternative 3 

(building a luxury, medium sized hotel at site S3). 

 

Chart 2.2 shows the effects of changing the distribution of days by the high and 

low season (with the middle season unchanged). The X-axis of the chart shows the 

number of days in the high season, with a change in the number of days being 

accompanied by a symmetrical change in the number of days in the low season (the sum 

of days in the high and low seasons is always 244). In the chart we can see that the 

profit always increases when the number of days in the high season increases, which 
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was expected, since these are the days with the greatest number of visitors. We can also 

see that Alternative 1 (two hotels) is always more profitable than Alternative 2 (large 

hotel), and Alternative 3 (luxury hotel) is the most profitable when the number of days 

in the high season is small. 

Chart 2.3 shows the impact of changing the percentage of visitors belonging to 

the most cost-sensitive segment. Alternative 3 is the best when few visitors are highly 

cost-sensitive and the worst in the opposite situation. This was to be expected, as 

Alternative 3 consists of building a luxury hotel. Alternative 2, which consists of 

building a large hotel, is the most profitable when the percentage of visitors in the most 

cost-sensitive segment is large. 

Chart 2.4 shows the effect of changing the distribution of customers between 

high and low season. The X-axis of the chart shows the average number of daily visitors 

in the high season, with a change in this number of visitors being accompanied by a 

symmetrical change in the number of daily visitors in the low season (the sum of these 

two values is kept constant at 1600). In the chart we can see that the profit tends to 

increase when visitors are more concentrated in the high season, but the rate of increase 

is higher for intermediate values (in the 1000-1200 range) than for more extreme values. 

We can see that Alternative 3 (luxury hotel) is the most profitable when customers are 

more evenly distributed between high and low season, and Alternative 2 (large hotel) is 

the best when customers are more concentrated in the high season. 

In Chart 2.5 we can see that profits are reduced by an increase in the 

attractiveness of competitor hotels, as was to be expected. In this chart, the X-axis 

shows the value by which the attractiveness of competitor hotels was multiplied. We 

can see that the differences among the profit of the alternatives is always small, with 

Alternative 2 (large hotel) becoming the most profitable when the other hotels are less 

attractive and Alternative 3 (luxury hotel) being the best when they are more attractive. 

Finally, Chart 2.6 shows the impact of changing the cost-sensitivity of the most 

affluent (less cost-sensitive) visitors. For Alternatives 1 and 3, profit decreases when the 

cost-sensitivity of these customers increases, as was expected. For Alternative 2 (large 

hotel), profit starts by increasing and then decreases when cost-sensitivity increases. 

The initial increase is somewhat unexpected, but a detailed analysis showed that, for 

low cost-sensitivity, an increase in sensitivity makes it easier for a large hotel to 

compete with hotel H2 (the highest quality competitor hotel) for the most affluent 

visitors, even allowing it to increase prices in the high season and still fill all the rooms. 
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So, when the cost-sensitivity of the most affluent visitors is lowest, an increase in this 

sensitivity is beneficial for Alternative 2. Comparing the three alternatives, we can see 

that Alternative 2 is the most profitable when the most affluent visitors show higher 

cost-sensitivity, and Alternative 3 (luxury hotel) is the best in the opposite situation. 

In summary we can say that, when we consider changes in the cost-sensitivity or 

distribution of visitors among segments, a luxury hotel (Alternative 3) shows the worst 

performance in the situations in which the profit of all alternatives is lower, and the best 

performance in the opposite situations. However, when we consider changes in all other 

parameters, a luxury hotel is the safest alternative, in the sense that it ensures the higher 

profit in the worst situations, and a large hotel is usually the alternative that achieves a 

higher profit in the best situations. 

 

6. TESTING THE MODEL WITH SIMULATED DATA 

We then analysed the model with simulated data. In this instance, the results 

may be dependent upon the method of simulation. However, simulations over a wide 

range of possible situations will define trends that can be used to obtain generalizable 

consequences of the decisions. More importantly, in the case of a new model, it allows 

us to determine whether the model provides sensible answers for straightforward 

situations (e.g., does the profit increase when the number of visitors increase? Does the 

profit decrease when competition increases?) and also if the model is able to provide 

answers when the analysed cases are not so straightforward. These tests with simulated 

data were also used to gather indications of whether the GA easily converges to an 

optimal solution (or a solution close to the optimal). 

We started by defining 32 types of problems, based on five characteristics: 

number of existing hotels, dispersion of the cost-sensitivity of different customer 

segments, differences of demand in different periods, distribution of customers over the 

different segments and budget size. For each type of problem, five problems were 

generated randomly and each one was solved seven times. By comparing the results 

obtained in successive applications of the GA, we can get an indication of whether it 

seems to be converging: if the dispersion of the results is small, this means that all runs 

are leading to solutions of similar quality, and that is an indication that the GA is 

converging. 

The model was implemented in R language, resorting to the “rootSolve” 

package for solving the problems that allow the determination of equilibrium prices and 
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the “GA” package for the GA (Scrucca, 2013). The codification of solutions was made 

considering that an integer value from zero to Q corresponded to each potential site, 

initially assuming that zero corresponded to the case in which no hotel is built at the site 

and a positive value corresponded to the typology of the hotel to be built. These integers 

were converted to binary values using Gray code and resorting to the minimum of digits 

that were necessary to represent all the values. Gray code was used to avoid the 

situation in which similar typologies could only be reached with very different 

chromosomes (the so called “Hamming cliff” – see, e.g., Schaffer, Caruana, Eshelman 

and Das, 1989). Usually a given number of bits will correspond to the representation of 

more integer numbers than necessary (in these applications we considered four 

typologies plus the case of no construction, so we needed three bits, but three bits allow 

the representation of eight numbers – three more than we wanted). To take this issue 

into account, we considered that the Q higher numbers represented the different 

typologies, and the remaining (lower) values corresponded to the case in which no hotel 

is built at the site. 

We followed the methodology presented in Section 4 and, based in some 

preliminary experiments, we used the following parameters for the GA: population size: 

70; number of generations: 75; crossover probability: 80%; probability of mutation (for 

each parent chromosome): 15%. The 5% best elements of the population were 

automatically included in the following generation (elitism). 

The selection method was linear rank selection. In this method, each individual 

in the population is given a rank, according to its fitness value. If there are N individuals 

in the population (in this application, N=70), the best individual is given rank N, the 

second best is given rank N-1, and so on until the worst is given rank 1. Then, the 

probability of an individual being selected is proportional to its rank in the population. 

For crossover, we used single-point crossover (this method is briefly described in 

Section 4). For mutation, we used uniform random mutation, with the random selection 

of a gene from the individual to be mutated, and the change of that gene (if the gene has 

the value zero, it changes to one and, if it has the value one, if changes to zero). 

 

6.1. Data used in the tests  

We considered a region with eight attractions (A=8), represented by a 20x20 

square. We considered three periods (T=3) with different characteristics: a “high 

season” (period t=1) with 65 days/year; a “middle season” (period t=2) with 100 
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days/year and a “low season” (period t=2) with 200 days/year. We considered there 

were four relevant hotel typologies (Q=4; although other attributes can be incorporated 

in the definition of a typology, in this example we considered that the typologies 

corresponded to two star, three star, four star and five star hotels), numbered from 1 to 4 

from the least attractive typology to the most attractive one.  

Customers are divided into four segments (K=4), numbered from 1 to 4 from the 

more cost-sensitive (these can be seen as the less “wealthy” customers) to the less cost-

sensitive (the more “wealthy” ones). Each customer segment has a pattern of visits to 

attractions with a random number between one and a half and three average visits per 

day. This pattern was assumed to be the same on all time periods, and was generated 

randomly, and independently for all customer segments. 

Both attractions, existing hotels and potential sites for new hotels were 

distributed randomly over the bi-dimensional 20x20 square that represents the region. 

We considered that customers incur a generalized travel cost of one monetary unit per 

unit of Euclidean distance, to travel from the hotels to the attractions. We always 

assumed there were Np=16 potential new locations, but the number of existing hotels 

varied for different problem types. 

Hotel attractiveness and costs depend on the hotel typology. Hotel typology of 

existing hotels is generated randomly, using a discrete uniform distribution. Hotels of 

the lowest typology have a base attractiveness of Wj=1, and base attractiveness increases 

by 0.5 for each increase in hotel typology. Since location-specific factors may have an 

impact on hotel attractiveness, the attractiveness is calculated by perturbing the base 

attractiveness by a random factor in the interval [-20%,+20%]. In the case of new 

hotels, the same random perturbation factor is applied to all typologies.  

Net variable costs incurred by the hotels was assumed to be cjt=5 monetary units 

per day and per occupied room, for the lowest typology, and it was assumed to increase 

by 1.5 monetary units for each increase in typology. Hotel capacity was assumed to be a 

random value drawn from a uniform distribution, between 100 and 200, for existing 

hotels and for all typologies. For new hotels, the capacity corresponding to the lowest 

typology was drawn from a random distribution between 137 and 200. We assumed that 

better typologies would require more space per room, effectively decreasing the hotel 

capacity. Hotel capacity was assumed to decrease by 10% for each increase in typology 

(so, for the highest typology, the minimum possible capacity is 100). Fixed costs 

depend both on the hotel typology and on its capacity. For the lowest typology, there is 
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a base fixed cost of five monetary units per day per room, and this base cost increases 

by one and a half monetary units for each increase in typology. It is assumed that 

specific factors may have an impact on fixed costs, so base fixed costs are perturbed by 

a random factor in the interval [-15%,+15%] (in the case of new hotels, the same 

random perturbation factor is applied to all typologies). The joint attraction exerted by 

other establishments which are not explicitly modelled ( ,k tMO ) was defined as a 

random value, between 50% and 100% of the average attraction exerted by existing 

hotels, for each customer segment and for each period.  

In the initial situation, we consider that hotels define the room prices as the 

equilibrium prices, and demand is divided among the alternatives according to the 

model – that is, demand is split according to (4) and (5).  

Construction costs for new hotels are defined as the sum of two terms: one 

dependent on the typology and the other dependent on both typology and number of 

rooms. The first term has a base value of 2 500 000 monetary units for the lowest 

typology and increases by 50% with each increase in typology. In order to account for 

location-specific costs, this component is multiplied by a random factor in the interval [-

10%,+10%] (for each site, the same random perturbation factor is applied to all 

typologies). The second component has a base value of 20 000 monetary units per room 

for the lowest typology, and increases by 50% with each increase in typology. In order 

to account for the impact of location-specific costs, this component is multiplied by a 

random factor in the interval [-2%,+2%] (once again, for each site, the same random 

perturbation factor is applied to all typologies). A budget of 60 000 000 monetary units 

was defined for the construction costs of new hotels. 

 

6.2. Problem types 

We defined 32 types of problems, based on five characteristics: number of 

existing hotels, dispersion of the cost-sensitivity of different customer segments, 

differences of demand across periods, distribution of customers over the different 

segments and budget size. For each of these characteristics we considered 2 scenarios, 

and we defined a problem type for every possible combination of scenarios. For each 

type of problem, seven problems were generated randomly, leading to a total of 224 

problems. We will now explain the values considered for each one of these 

characteristics. 
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A. Number of existing hotels 

We considered a large number of existing hotels (AL), with a total of 48 hotels 

(40 competitor hotels and eight hotels belonging to the chain) and a small number (AS), 

with a total of 24 hotels (20 competitor hotels and four hotels belonging to the chain). 

B. Cost-sensitivity of customer segments 

We considered two scenarios of cost-sensitivity: cost-sensitivity very different 

for different segments (BD) and cost-sensitivity doesn’t change much across different 

customer segments (BS). In the first scenario we have 0.032, 0.026, 0.020k =  and 

 0.014  for customer segments 1, 2, 3 and 4, respectively. In scenario BS we have 

0.026, 0.024, 0.022k =  and  0.020  for customer segments 1, 2, 3 and 4, respectively. 

C. Differences of demand between periods 

For this characteristic, we considered that the differences might be either large 

(CL) or small (CS). In the first scenario we have a daily demand of 4500, 2500 and 

1000 rooms per day in periods 1, 2 and 3, respectively. In scenario CS we have a daily 

demand of 3500, 2500 and 2000 rooms per day in periods 1, 2 and 3, respectively. 

D. Distribution of customers over different segments 

For this characteristic, we considered that customers may be evenly divided by 

all segments (DE), with 25% of customers belonging to each segment, or concentrated 

on the segments with higher cost-sensitivity (that is, on the least wealthy segments) 

(DL). In the latter scenario, we have 35% of the customers in segments 1 and 2, and 

15% of the customers in segments 3 and 4. 

E. Budget 

For this characteristic, the levels for the budget are a large budget (EL) of 

60 000 000 monetary units or a small budget (ES) of 30 000 000 monetary units. 

 

Each of these 224 problems was solved five times, to check whether the genetic 

algorithm seemed to be converging with the defined parametrization. A small dispersion 

of values of the fitness function (total profit) is a sign that the genetic algorithm seems 

to be converging, while a large dispersion indicates that it is not converging. 
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6.3. Results and discussion 

Tables 5 and 6 present the results of the tests. For each problem type (defined by 

the respective characteristics), we present the profit of the chain after the new hotels are 

opened and the increase in profit due to these new hotels (from the point of view of the 

chain, and in relation to the situation before new hotels are opened), the average number 

of new hotels opened according to the optimal strategy and the percentage of hotels 

belonging to each typology. The presented values are averages for the seven problems 

of each type, and for each individual problem we considered the solution that led to the 

highest value of the fitness function (that is, the highest profit). In the last column of 

these tables we present the average value of the standard deviation of the profit (as a 

percentage of the maximum profit), calculated over the five solutions obtained with the 

genetic algorithm. We can see that this standard deviation is always less than 1.5% (and, 

in all but one case, less than 1%), providing evidence that the values of the fitness 

function are very close for all runs of the genetic algorithm, when it is applied to the 

same problem. So, we have reasons to believe that the parametrization used for the 

genetic algorithm is allowing it to converge to the optimal solution, or a solution very 

close to it, for all types of problems. 
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Table 5 – Results of the tests for instances with a large budget (EL) 

Problem type 
Avg. profit 

with optimal 

strategy 

Increase in 

profit due to 

new hotels 

Average 

number of 

new hotels 

Average percentage of new hotels 

in each typology 

Std. 

dev. 

profit A B C D Typ. 1 Typ. 2 Typ. 3 Typ. 4 

AS BS CS DE 10 151 316 3 979 484 5.9 2% 49% 39% 10% 0.26% 

AS BS CS DL 10 037 015 4 788 430 5.9 2% 32% 66% 0% 0.18% 

AS BS CL DE 17 318 951 7 128 783 4.7 0% 9% 67% 24% 0.63% 

AS BS CL DL 17 176 313 7 432 190 4.9 0% 18% 56% 26% 0.56% 

AS BD CS DE 10 298 887 3 856 547 6.1 2% 49% 49% 0% 0.17% 

AS BD CS DL 8 900 183 2 909 774 5.7 5% 28% 65% 3% 0.13% 

AS BD CL DE 16 730 340 6 973 364 4.7 0% 9% 64% 27% 0.72% 

AS BD CL DL 15 272 252 6 087 234 4.6 0% 9% 56% 34% 0.55% 

AL BS CS DE 5 195 250 1 869 009 5.0 0% 17% 57% 26% 0.24% 

AL BS CS DL 5 001 779 1 688 392 4.9 0% 9% 68% 24% 0.38% 

AL BS CL DE 3 712 622 1 288 195 4.7 0% 12% 45% 42% 0.51% 

AL BS CL DL 3 373 461 1 322 191 4.1 0% 3% 28% 69% 0.54% 

AL BD CS DE 5 472 396 1 983 524 5.1 0% 19% 61% 19% 0.26% 

AL BD CS DL 4 131 809 1 615 695 4.7 3% 12% 45% 39% 0.28% 

AL BD CL DE 3 442 427 1 361 926 4.3 0% 7% 33% 60% 0.79% 

AL BD CL DL 3 430 524 1 200 163 4.0 0% 0% 21% 79% 0.84% 

Characteristics of the problem type: AL – large number of existing hotels; AS – small number of existing 

hotels; BS – cost-sensitivity doesn’t change much across different customer segments; BD – very 

different cost-sensitivity for different customer segments; CS – small differences in demand for different 

periods; CL – large differences in demand for different periods; DE – Demand equally distributed over all 

customer segments; DL – Demand mostly belonging to the most cost-sensitive customer segments. 

Details on these characteristics are presented in Subsection 6.2. Increase in profit due to new hotels 

calculated as the difference between the annual profit after and before the opening of new hotels. 

Increasing typology number indicates more attractive and costlier hotels. The last column shows the 

average standard deviation of the profit corresponding to the best strategy identified in successive runs of 

the genetic algorithm. The standard deviation is calculated over five runs of the genetic algorithm, and the 

average is calculated over seven problems of each type. 
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Table 6 – Results of the tests for instances with a small budget (ES) 

Problem type 
Avg. profit 

with optimal 

strategy 

Increase in 

profit due to 

new hotels 

Average 

number of 

new hotels 

Average percentage of new hotels 

in each typology 

Std. 

dev. 

profit A B C D Typ. 1 Typ. 2 Typ. 3 Typ. 4 

AS BS CS DE 8 565 403 2 442 837 3.7 42% 31% 27% 0% 0.57% 

AS BS CS DL 8 318 377 2 723 092 3.6 16% 60% 24% 0% 1.27% 

AS BS CL DE 15 142 073 5 049 967 3.6 12% 64% 24% 0% 0.80% 

AS BS CL DL 14 732 613 5 258 903 3.7 31% 54% 15% 0% 0.70% 

AS BD CS DE 8 024 801 2 795 102 4.0 54% 32% 14% 0% 0.68% 

AS BD CS DL 7 200 621 2 211 094 3.7 54% 15% 31% 0% 0.63% 

AS BD CL DE 15 524 850 6 082 476 4.0 32% 64% 4% 0% 0.67% 

AS BD CL DL 14 541 163 5 363 188 3.9 22% 74% 4% 0% 0.57% 

AL BS CS DE 4 689 805 1 211 061 3.0 0% 43% 57% 0% 0.67% 

AL BS CS DL 4 636 982 1 148 206 3.1 5% 50% 45% 0% 0.65% 

AL BS CL DE 3 361 517 846 218 2.9 0% 35% 60% 5% 0.89% 

AL BS CL DL 3 074 997 866 741 2.9 0% 35% 60% 5% 0.68% 

AL BD CS DE 4 728 541 1 193 495 3.3 13% 48% 39% 0% 0.70% 

AL BD CS DL 3 634 749 918 913 3.1 9% 41% 50% 0% 0.67% 

AL BD CL DE 3 269 875 822 748 2.4 0% 18% 59% 24% 0.49% 

AL BD CL DL 2 689 396 769 678 2.7 0% 32% 58% 11% 0.93% 

Characteristics of the problem type: AL – large number of existing hotels; AS – small number of existing 

hotels; BS – cost-sensitivity doesn’t change much across different customer segments; BD – very 

different cost-sensitivity for different customer segments; CS – small differences in demand for different 

periods; CL – large differences in demand for different periods; DE – Demand equally distributed over all 

customer segments; DL – Demand mostly belonging to the most cost-sensitive customer segments. 

Details on these characteristics are presented in Subsection 6.2. Increase in profit due to new hotels 

calculated as the difference between the annual profit after and before the opening of new hotels. 

Increasing typology number indicates more attractive and costlier hotels. The last column shows the 

average standard deviation of the profit corresponding to the best strategy identified in successive runs of 

the genetic algorithm. The standard deviation is calculated over five runs of the genetic algorithm, and the 

average is calculated over seven problems of each type. 

 

As expected, the existence of a large number of hotels has a very negative 

influence both on the total annual profit and on the additional profit due to the new 

hotels, since in this case there is more competition. It is interesting to analyse the profit 

in the cases of large and small differences of demand between periods. If the number of 

existing hotels is small, then the largest profit is obtained when demand is concentrated 

in the high season – in this case, hotels are able to charge very high room prices in the 
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high season. On the other hand, if the number of existing hotels is large, the highest 

profits are obtained when there are small differences in demand, since in this case prices 

during the high season are not so high, and the demand is higher during the low season 

(which is longer than the high season). As expected, when customers are evenly 

distributed by all segments, the profit is larger than in the case that most clients belong 

to the more cost-sensitive segments, and when the budget for building new hotels is 

smaller, profits are also decreased (since the investment must be decreased). Finally, we 

notice a slight decrease in the profits when the differences in cost-sensitivity between 

customer segments increase. 

It is also interesting to analyse the average number of hotels belonging to each 

typology, for each problem type.  It is very clear that the typology of new hotels is 

related to the number of existing hotels – higher typology hotels tend to be built 

especially when there are already many hotels. An explanation for this is that, when 

there is intense competition, highly attractive hotels are necessary to entice customers. 

More hotels of the highest typology (typology 4) tend to be built when there are large 

differences in demand among the periods, especially when these are accompanied by 

big differences in cost-sensitivity across customer segments or large budgets – big 

differences in cost-sensitivity make it more worthwhile to attract the wealthiest 

customers to more attractive (higher typology) hotels, with higher room prices, and a 

larger budget makes it easier to accommodate building higher typology hotels. On the 

other hand, hotels of the lowest typology (typology 1) tend to be built more often when 

there are big differences in cost-sensitivity across customer segments. When this 

happens, it is important to attract the less wealthy customers with hotels that provide 

significant capacity and may charge low room prices. Hotels of the lowest typology also 

tend to be built when the budget is smaller, which is explained by the lack of funds to 

build higher typology hotels. 

Finally, we may notice that the number of hotels to be built decreases when the 

number of existing hotels is larger, when the differences in demand among periods 

increase and when the budget is small. In the first two cases it is advantageous to build 

higher typology hotels, leaving money for a smaller number of hotels. In the latter case 

there is less money to invest so it is possible to build less hotels. 

A summary of the main trends found on the empirical tests is presented in 

Tables 7 and 8. Table 7 shows the main impacts found when the analysed characteristics 

are changed, and Table 8 shows some impacts found only in specific scenarios. 
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Table 7 – Summary of the main impacts found when the analysed characteristics 

are changed 

Characteristic 

changed 

Profit 

achieved 

with optimal 

strategy 

Additional 

profit due to 

new hotels 

Number of 

new hotels 

Typology of new 

hotels 

Increase in the 

number of existing 

hotels (AS→AL) 

Decrease Decrease Decrease 

Increase in the 

percentage of hotels 

of highest 

typologies 

Increase in 

differences in cost-

sensitivity among 

different customer 

segments (BS→BD) 

Slight 

decrease 

Slight 

decrease 

No clear 

trend 

Slight increase in 

extreme typologies 

(1 and 4) 

Increase in 

differences of 

demand among 

periods (CS→CL) 

No clear 

trend 

No clear 

trend 
Decrease 

Increase in the 

highest typology (4) 

Increase in number 

of customers 

belonging to the 

least wealthy 

segments (DE→DL) 

Decrease 
Slight 

decrease 

No clear 

trend 
No clear trend 

Increase in budget 

(ES→EL) 
Increase Increase Increase 

Increase in the 

percentage of hotels 

of highest 

typologies 

 

 

Table 8 – Summary of some impacts found only in specific scenarios 

Scenario Characteristic changed Impact 

Small number of 

hotels (AS) 

Increase in differences of 

demand among periods 

(CS→CL) 

Increase both in profit and in 

additional profit due to new 

hotels 

Large number of 

hotels (AL) 

Increase in differences of 

demand among periods 

(CS→CL) 

Decrease both in profit and in 

additional profit due to new 

hotels 
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7. CONCLUSIONS AND MANAGERIAL IMPLICATIONS 

In this paper we proposed a model for hotel pricing under competition and for 

determining the optimal hotel-building decisions. The main goal was to develop a 

model that could be applied to operational decisions in realistic and complex situations. 

We also intended to develop a model that can be used to analyse how the optimal 

decisions are altered by changes in specific aspects – that is, by changes in the model 

parameters. To reach these goals, we could not rely on simplified analytical 

approximations that might lead to attractive closed-form mathematical solutions – 

instead we set out to define a model intended for computational application. 

The model assumes that customers make their choices based on the price, 

attractiveness and proximity to the attractions they intend to visit. The approach 

followed in this model, incorporating game theory within a spatial interaction model 

that may integrate inputs from studies that analyse the determinants of customers’ 

choices, is quite novel. In fact, it goes beyond the operational categories proposed by 

Yang et al. (2014), and the closest work we could find is Arenoe et al. (2015). However, 

with respect to operational aspects, the proposed model is more general that the one 

presented by Arenoe et al.: our model adds a spatial interaction component and it goes 

beyond the simple calculation of equilibrium prices to the definition of hotel building 

strategies. Given the complexity of the model, we proposed the use of a GA for 

obtaining the best solutions. 

We undertook two applications of the model. First, we used a simple setting and 

then we resorted to simulated data. These applications led us to conclude that the model 

is able to reach sensible solutions for straightforward situations and also interesting 

answers for not so straightforward cases.  

The application with simulated data was also able to provide evidence that the 

model and the GA work with reasonably sized problems. Not only do the results make 

sense, but successive runs of the GA in the same problem provide very similar values of 

the profit. This is a strong indication that the GA is converging to the optimal, or a near-

optimal, solution. 

As we said, the goal of the paper is to propose a model and the applications were 

designed to provide evidence that the model works sensibly. However, despite the 

limitations of the analysis, it produced some pleasing ramifications. In the simulation 

analysis we could see that if the number of existing hotels is already large, hotel chains 
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achieve the highest level of profitability when market demand is evenly distributed 

throughout the year; however, if the number of hotels is small, profits are larger when 

demand changes widely among different periods, thus allowing the hotels to raise prices 

in the high season. 

The issue of cost-sensitivity triggers multiple niches. When different customer 

segments have very different cost-sensitivity, hospitality organisations tend to increase 

their profits by building of new hotels either in the upper or lower ends of the market. 

The mini case that was analysed (Section 5) also produced an interesting result 

regarding cost-sensitivity. An increase in the cost-sensitivity of the wealthiest customers 

might indeed benefit a large high quality hotel that, this way, might be able to compete 

with luxury hotels for those customers, even being able to increase prices without losing 

demand. 

In the mini case we were able to find out that, among the alternatives of building 

two small hotels, one large hotel and one medium-sized luxury hotel, this latter option 

seems to be the one that is less sensitive to changes in parameters unrelated to cost-

sensitivity or distribution of customers across segments. This means that, if there is high 

uncertainty concerning, e.g., future number of visitors in the region or the attractiveness 

of existing hotels, building to a high-end hotel may be the safest option. On the other 

side, if uncertainty concerns the cost-sensitivity of customers or the distribution of 

customers across segments, this becomes the riskier option, with the construction of a 

large hotel becoming the safest option. 

All things considered, the use of both game theory and a spatial interaction 

model seems to have a significant impact on the results. The best strategy and the hotel 

profits are clearly influenced by the anticipation of the competitors reaction, as expected 

by the use of game theory (e.g., much lower profits are expected if there are already 

many hotels), and the choices prescribed show that the types of hotels to be built are 

clearly influenced by the situation at the outset, as would be expected when we are 

using a spatial interaction model (e.g., highest typology hotels being mostly built when 

there are big differences in cost-sensitivity across customer segments). 

We believe this model is a step forward in the definition of realistic models for 

hotel pricing and hotel site location. However, there are several ways in which this 

model may be extended. First, generalizing the model in order to consider that hotel 

attractiveness may be different for different client segments would be useful, although 

this may lead to additional complexity. Using an explicit model to determine how the 
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hotel attractiveness may depend on different attributes may be another interesting way 

to extend the model. Finally, we stress the importance of making a real-life application 

of the model for assessing the usefulness of its practical usage by hotel chains. 

 

REFERENCES 

Adam, I., & Amuquandoh, F. E. (2014). Hotel characteristics and location decisions in 

Kumasi Metropolis, Ghana. Tourism Geographies, 16(4), 653-668. 

Arenoe, B., van der Rest, J. P. I., & Kattuman, P. (2015). Game theoretic pricing 

models in hotel revenue management: An equilibrium choice-based conjoint analysis 

approach, Tourism Management, 51, 96-102. 

Awaya, Y., & Krishna, V. (2016). On communication and collusion. American 

Economic Review, 106(2), 285-315. 

Baum, T., & Mudambi, R. (1995). An empirical analysis of oligopolistic hotel pricing. 

Annals of Tourism Research, 22(3), 501-516. 

Brent, R. (1973). Algorithms for Minimization without Derivatives. Englewood Cliffs 

N.J.: Prentice-Hall. 

Broyden, C.G. (1970). The convergence of a class of double-rank minimization 

algorithms. Journal of the Institute of Mathematics and Its Applications, 6, 76–90. 

Cheung, M.W. (2014). Pairwise comparison dynamics for games with continuous 

strategy space. Journal of Economic Theory, 153, 344-375. 

Chou, T. Y., Hsu, C. L., & Chen, M. C. (2008). A fuzzy multi-criteria decision model 

for international tourist hotels location selection. International Journal of Hospitality 

Management, 27(2), 293-301. 

Chung, K. Y. (2000). Hotel room rate pricing strategy for market share in oligopolistic 

competition - eight year longitudinal study of super deluxe hotels in Seoul. Tourism 

Management, 21(1), 135-145. 

Ciliberto, F., & Tamer, E. (2009). Market structure and multiple equilibria in airline 

markets. Econometrica, 77(6), 1791-1828. 

Clarke-Hill, C., Li, H., & Davies, B. (2003). The paradox of co-operation and 

competition in strategic alliances: towards a multi-paradigm approach. Management 

Research News, 26(1), 1-20. 

Coello Coello, C. (2002). Theoretical and numerical constraint-handling techniques 

used with evolutionary algorithms: a survey of the state of the art. Computer Methods in 

Applied Mechanics and Engineering, 191(11-12), 1245-1287. 



35 
 

Friesz, T. L., Mookherjee, R., & Rigdon, M. A. (2005). An evolutionary game-theoretic 

model of network revenue management in oligopolistic competition. Journal of 

Revenue & Pricing Management, 4(2), 156-173. 

Gans, J., & Ryall, M.D. (2017). Value capture theory: A strategic management review. 

Strategic Management Journal, 38(1), 17-41. 

Ghemawat, P. (1986). Wal-Mart stores' discount operations. Harvard Business School 

case No 9-387-018 on Wal-mart).  

Godinho, P., & Dias, J. (2013). Two-player simultaneous location game: Preferential 

rights and overbidding. European Journal of Operational Research, 229(3), 663-672. 

Godinho, P., Silva, M., & Moutinho, L. (2015). Tourism Site Location Based on a 

Genetic Algorithm. Tourism Analysis, 20(2), 159-172. 

Gu, Z. (1997). Proposing a room pricing model for optimizing profitability. 

International Journal of Hospitality Management, 16(3), 273-277. 

Guo, X., Ling, L., Dong, Y., & Lian, L. (2013). Cooperation contract in tourism supply 

chains: the optimal pricing strategy of hotels for cooperative third party strategic 

websites. Annals of Tourism Research, 41(2), 20-41. 

Holland, J. H. (1975). Adaptation in Natural and Artificial Systems. University of 

Michigan Press, Ann Arbor, USA. 

Hung, W. T., Shang, J. K., & Wang, F. C. (2010). Pricing determinants in the hotel 

industry: Quantile regression analysis. International Journal of Hospitality 

Management, 29(3), 378-384. 

Hurley, S., Moutinho, L., & Witt, S. (1998). Genetic algorithms for tourism marketing. 

Annals of Tourism Research, 25(2), 498-514. 

Kimes, S. E., & Fitzsimmons, J. A. (1990). Selecting profitable hotel sites at La Quinta 

motor inns. Interfaces, 20(2), 12-20. 

Kuechle, G. (2014). Regional concentration of entrepreneurial activities. Journal of 

Economic Behavior & Organization, 102, 59-73. 

Laraki, R., Solan, E., & Vieille, N. (2005). Continuous-time games of timing. Journal of 

Economic Theory, 120(2), 206-238. 

Lee, K. W., Kim, H. B., Kim, H. S., & Lee, D. S. (2010). The determinants of factors in 

FIT guests' perception of hotel location. Journal of Hospitality and Tourism 

Management, 17(1), 167-174. 



36 
 

Masiero, L., Heo, C. Y., & Pan, B. (2015). Determining guests’ willingness to pay for 

hotel room attributes with a discrete choice model. International Journal of Hospitality 

Management, 49, 117-124. 

Michalewicz, Z. (1995). Heuristic methods for evolutionary computation techniques. 

Journal of Heuristics, 1(2), 177-206. 

Moutinho, L., & Paton, R. (1991). Site Selection Analysis in Tourism: The LOCAT 

Model. Service Industries Journal, 11(1), 1-10. 

Niou, E., & Ordeshook, P. C. (2015). Strategy and Politics: An Introduction to Game 

Theory. Routledge. 

Penny, N.J. and Broom, D. (1988), “The Tesco Approach to Store Location”, in 

Wrigley, N. (Ed.), Store Choice, Store Location and Market Analysis (pp. 106-119). 

London: Routledge Publishers. 

Phillips, P., & Moutinho, L. (2014). Critical review of strategic planning research in 

hospitality and tourism. Annals of Tourism Research, 48, 96-120. 

Prietula, M.J., & Watson, H.S. (2008). When behavior matters: Games and computation 

in A Behavioral Theory of the Firm. Journal of Economic Behavior & Organization, 

66(1), 74-94. 

Rubinstein, A. (1990). Game theory in economics. Edward Elgar Publishing. 

Saidani, N., Chu, F., & Chen, H. (2012). Competitive facility location and design with 

reactions of competitors already in the market. European Journal of Operational 

Research, 219(1), 9-17. 

Schaffer, J. D., Caruana, R. A., Eshelman, L. J., & Das, R. (1989). A study of control 

parameters affecting online performance of genetic algorithms for function 

optimization. In Schaffer, J. D. (Ed.), Proceedings of the Third International 

Conference on Genetic Algorithms (pp. 51–60). San Mateo, CA: Morgan Kaufmann. 

Scrucca, L. (2013). GA: A Package for Genetic Algorithms in R. Journal of Statistical 

Software, 53(4), 1-37. 

Seim, K. (2006). An empirical model of firm entry with endogenous product‐type 

choices. The RAND Journal of Economics, 37(3), 619-640. 

Song, H., Yang, S., & Huang, G. Q. (2009). Price interactions between theme park and 

tour operator. Tourism Economics, 15(4), 813-824. 

Von Neumann, J., & Morgenstern, O. (1945). Theory of games and economic behavior. 

Princeton, NJ: Princeton University Press. 



37 
 

Williams, A. M., & Baláž, V. (2015). Tourism Risk and Uncertainty Theoretical 

Reflections. Journal of Travel Research, 54(3), 271-287. 

Yang, Y., Luo, H., & Law, R. (2014). Theoretical, empirical, and operational models in 

hotel location research. International Journal of Hospitality Management, 36, 209-220. 

Yang, S., Huang, G. Q., Song, H., & Liang, L. (2008). A game-theoretic approach to 

choice of profit and revenue maximization strategies in tourism supply chains for 

package holidays. Journal of China Tourism Research, 4(1), 45-60. 

 


