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Abstract 

 This article presents a novel multi-criteria decision analysis (MCDA) model for 

performing robust indicator weighting in Life Cycle Assessment (LCA) and Social Life Cycle 

Assessment (S-LCA). This model integrates stochastic weights analysis with preference 

information that utilizes the value judgements of decision makers, benefitting from the diversity 

of interests and familiarities of decision makers regarding each indicator. The model considers 

all decision makers on an equal basis but does not assume they have the same importance. The 

MCDA model was applied to support the evaluation of the overall environmental and social 

impacts of manual and mechanical sugarcane harvesting in Brazil based on LCA and S-LCA. 

Brazilian experts were surveyed on the weights of relevant environmental and social indicators. 

The novel MCDA approach explores all the possible convex combinations of the weights 

provided by the surveyed group. The results of the MCDA model show that mechanical 

harvesting compared to manual harvesting had lower environmental life cycle impacts at the 

end-point level and better social impacts for all these convex combinations. Decision-making 

based on environmental impacts at the mid-point level is less clear: manual harvesting is more 

likely (67% of the convex combinations of the weights) to be considered better than mechanical 

harvesting; but the advantage of mechanical harvesting over manual harvesting can be greater 

than the reverse (almost twice as large). This article recommends presenting both mid-point and 

end-point LCIA results for a thoroughly informed decision-making. The MCDA model 

developed in this article can also be used to support weighting in future comparative LCA or S-

LCA studies.  
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1. Introduction 

 Brazil, the world’s largest sugarcane producer, has seen a rapid expansion of its 

sugarcane planted area over the past decade, with an annual growth rate of 6.5% (UNICA, 

2017). The center-south states of Brazil were responsible for 93% of total production in the 

2016/2017 harvest, producing 652 million tons of sugarcane and feeding the production of 38.7 

million tons of sugar and 27.3 billion liters of ethanol (UNICA, 2017). The operations of 

Brazilian sugarcane production have also evolved, with increased use of mechanical harvesting. 

This change is largely driven by government incentives; for instance, the Green Protocol, a 

voluntary agreement between the Government of São Paulo and the Sugarcane Agro-industrial 

Sector, was established to phase out pre-harvest burning, resulting in an increase in mechanical 

harvesting (UNICA, 2010). The adoption of mechanical harvesting is expected to reduce 

environmental impacts and public health risks, but concerns regarding its social impacts have 

been raised, namely, job loss among sugarcane cutters (Arbex et al., 2007; Cançado et al., 2006; 

Duarte et al., 2013; Galdos et al., 2013; Viana and Perez, 2013).  

 Life cycle assessment (LCA) is a widely applied method for assessing the 

environmental impacts associated with the life cycle of a product (or service), from cradle to 

grave. According to ISO standards (ISO, 2006a), LCA is organized into four phases: i) goal and 

scope definition, where the system boundary and functional unit are defined; ii) life cycle 

inventory analysis (LCI), where the input/output data of the product system are quantified; iii) 

life cycle impact assessment (LCIA), which associates LCI data with specific environmental 

impact categories and category indicators; and iv) interpretation, where results are summarized 

and discussed as a basis for conclusions. LCIA methods can be organized as midpoint (also 

known as problem-oriented) or endpoint methods (also known as damage-oriented), according 

to the level of the cause-effect chain. Adopting a life cycle perspective avoids the shifting of 

burdens among life cycle phases, impact categories, regions or generations (Guinée et al., 2011). 

Derived from LCA, social life cycle assessment (SLCA) is an emerging method to evaluate 

social impacts of supply chains (Du et al., 2014). Compared to other social impact assessment 

tools, SLCA focuses on a product (or service) level and considers the entire life cycle and a 

broader range of stakeholders (UNEP/SETAC, 2009).  

Several LCA and SLCA studies have assessed the environmental and the social impacts 

of the mechanization of Brazil’s sugarcane sector (Chagas et al., 2016; Du et al., 2017; Galdos 

et al., 2013; Macedo et al., 2008; Souza et al., 2016). None of these studies considers both 

environmental and social impacts in the same study. Moreover, their results are presented 

following characterization based on a set of environmental or social indicators, with no further 

analysis with regard to supporting decision-making. A notable exception in this panorama is the 
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recent work of Cardoso et al (2018), which uses a computer-based simulator to assess 

environmental, social, and other indicators to demonstrate how multi-criteria decision analysis 

could inform decision-making. 

 LCA or S-LCA results provide information on the environmental and social impacts of 

alternative scenarios, but analyzing trade-offs among multiple indicators to determine which 

alternative is preferable can be difficult for decision makers. Normalization, weighting and 

aggregation are optional steps in LCIA, where characterized results are converted to comparable 

measures and then aggregated into a single score based on the weights allocated to each 

indicator (Guinee, 2002). Weighting is subjective and implies a value judgement which may 

influence the results of an LCA. As stated in ISO14044 (ISO 2006b), “weighting shall not be 

used in LCA studies intended to be used in comparative assertions intended to be disclosed to 

the public”. However, weighting is commonly used in studies due to its practicality for 

comparing the impacts of different products or scenarios, supporting decision-making and 

results communication (Pizzol et al., 2017). 

Giving equal weights to all indicators is a common workaround in LCA (Huppes and 

van Oers, 2011; Pizzol et al., 2017); however, this arbitrary choice ignores the preferences and 

knowledge of decision makers or experts. Multi-criteria decision analysis (MCDA) has been 

considered a promising tool to aid weighting in LCIA and/or interpretation of LCA or S-LCA 

results. MCDA methods using outranking approaches (Domingues et al., 2015; Prado-Lopez et 

al., 2014; Rogers and Seager, 2009) or additive aggregation approaches (Dias et al., 2016; 

Miettinen and Hamalainen, 1997; Myllyviita et al., 2012) have been applied to LCA and S-LCA 

studies to rank, select or categorize products based on their environmental and/or social impacts. 

Dias et al. (2016) adopted stochastic weights in an additive aggregation model with partial 

preference information. This approach allows identifying robust conclusions, but it does not 

utilize the preferences and knowledge of decision makers and experts. Other studies based on 

additive aggregation often elicit weights through a survey, with the final weight of an indicator 

usually being calculated by averaging the weights given to that indicator by all respondents 

(Doderer and Kleynhans, 2014; Lipuscek et al., 2010; Narayanan et al., 2007; Pastare et al., 

2014). This approach ignores the different levels of interest in and familiarity with the topic of 

each indicator among decision makers. According to a recent survey conducted among LCA 

practitioners (Pizzol et al., 2017), further development is needed to improve uncertainty and 

robustness of weighting in life cycle studies. Ideally, the knowledge of decision makers or 

experts would be considered, but weights allocated to decision makers in group decision-

making are often unknown (Sarabando et al. 2017). A robust aggregation approach of group 

decision-making based on LCA and/or S-LCA results is lacking. 
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 This article describes a novel approach to support decision-making based on 

comparative LCA and S-LCA results using an additive MCDA group decision-making model 

(Dyer and Sarin, 1979; Keeney et al., 1975). The approach developed in this article is 

distinguished from previous studies by its adoption of stochastic weights accounting for the 

value choices of a group of decision makers. Instead of assigning equal weights to all decision 

makers, the stochastic weights analysis explores all possible combinations, making no 

distinctions among the weights assigned their opinions. The advantage of this approach is to 

generate robust results that aggregate the preference information of all the decision makers. This 

approach was applied to support the comparison between manual and mechanical sugarcane 

harvesting in Brazil in terms of environmental and social impacts. The results of this study shed 

light on the advantages of including both mid-point and end-point categories in an LCA.  

2. Methods 

2.1. Life cycle assessment and social life cycle assessment of manual vs. mechanical harvesting 

of sugarcane 

 We compared life cycle environmental and social impacts of manual and mechanical 

harvesting of sugarcane by applying LCA and SLCA, respectively, described hereafter (Du et 

al. 2017, Du et al. 2018). Based on the results of these studies, manual harvesting has shown to 

have higher impacts on three out of eight mid-point impact categories assessed, namely Climate 

change, Photochemical oxidant formation and Particulate matter formation. At the end-point 

level, manual harvesting shows worse performance on Human health and Ecosystem diversity, 

but better performance on Resource availability. Regarding social impacts, mechanical 

harvesting is expected to have lower impacts on all social themes except for Local employment 

and Access to material resources.  

2.1.1. Life cycle assessment 

 An attributional LCA of sugarcane in Brazil was performed considering the functional 

unit of one tonne of sugarcane at the distillery, encompassing cultivation, harvesting and 

transportation. Two product systems were compared, one using manual harvesting (including 

pre-harvest burning) and the other using mechanical harvesting (without pre-harvest burning). 

The life cycle inventory was based on average conditions of the center-south region of Brazil 

and extracted from the database of Brazilian Bioethanol Science and Technology Laboratory 

(CTBE) (Bonomi et al., 2016). Production and field emissions of raw materials (i.e., organic 

and inorganic fertilizers, agrochemicals, diesel), transport of raw materials and final products 

(i.e. transporting harvested sugarcane to the distillery), and production of capital goods 

including harvesters, tractors and agricultural machineries were included in the system 
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boundary. Details of the applied assumptions and emission factors can be found in Du et al. 

(2017).  

 The LCIA method ReCiPe (Goedkoop et al., 2013) was adopted to characterize 

environmental impacts at the mid-point and end-point. The mid-point categories of Climate 

change, Ozone depletion, Terrestrial acidification, Freshwater eutrophication, Human toxicity, 

Photochemical oxidant formation, Particulate matter formation and Fossil depletion were 

assessed. These mid-point categories were selected following previous LCA studies (e.g., 

Cavalett et al., 2013; Luo et al., 2019; Seabra et al., 2011) and considering the importance of 

environmental issues surrounding sugarcane production and agricultural practices in Brazil; for 

instance, water depletion was not included because the water needed for sugarcane crops in 

Brazil is mostly supplied by rainfall. LCA results were also calculated for the end-point 

categories of Human health, Ecosystem and Resources. 

2.1.2. Social life cycle assessment 

 A screening S-LCA was conducted to identify the social hotspots of sugarcane in Brazil 

and to compare the social impacts of manual and mechanical harvesting. A novel approach 

integrating the generic Social Hotspots Database (SHDB) and content analysis was developed. 

The social impacts of the sugarcane life cycle were firstly modelled in SHDB; in this step, three 

country-sector pairs were included in the system boundary after applying the cut-off criterion of 

only considering country-sectors contributing more than 1.5% of total worker hours, namely 

sugarcane, commerce and business services sectors of Brazil. The sugarcane sector dominated 

the social impacts in all indicators due to its large share in overall worker hours (85%). SHDB 

mostly includes data at the country level; as a result, it has a limited ability to distinguish 

between the social impacts of different operations in the same sector, such as manual and 

mechanical harvesting of sugarcane. Content analysis was subsequently applied to 

systematically analyze relevant publications regarding the social impacts of sugarcane 

production in Brazil. In total, 38 publications published in English between 2000 and 2016 were 

included in the final analysis. The social impacts of manual and mechanical sugarcane 

harvesting were compared according to eight social themes based on the qualitative data 

extracted from the literature, including health and safety, local employment, fair salary, access 

to material resources, delocalization and migration, public commitment to sustainability issues, 

safe and healthy living conditions and equal opportunity and discrimination. These social 

themes were selected because they are the most relevant social issues surrounding the sugarcane 

sector in Brazil; moreover, social impacts on these issues differ between manual and mechanical 

harvesting. Please refer to Du et al. (2018) for details regarding the methods and materials of 

this screening S-LCA.  
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2.2. Normalization of LCA and S-LCA results 

 Normalization is an optional step in LCA applied after the characterization of 

environmental impacts as mid-point and/or end-point indicators. Because characterized LCIA 

results are expressed in various units for various indicators, normalization can convert the 

results into commensurable measures or reveal the magnitude of impacts (Dias et al., 2016; 

Myllyvitta et al., 2014). Normalization can be conducted externally or internally. External 

normalization relates the characterized scores of a product system to a reference value, e.g., 

indicator results for a reference area or a reference scenario (Domingues et al., 2015; Myllyvitta 

et al., 2014). In internal normalization, characterized values are not related to external 

references but values of a baseline scenario such as a given alternative product system. Two 

extreme values, i.e. minimum and maximum values are often considered in internal 

normalization. When applying MCDA approaches, internal normalization is more commonly 

used, for instance in multi-attribute value theory (MAVT) (Keeney and Raiffa, 1993) and 

Analytic Hierarchy Process (AHP) (Saaty, 2008). This article deploys internal normalization 

following Equation 1 in order to match the way that indicator weights are elicited (comparing 

the magnitude of the difference between manual and mechanical systems). Because only two 

alternatives are compared in this article, the normalized values of two alternatives on all the 

indicators are either 0 (best impact level) or 1 (worst impact level).  

𝐼𝑗 (𝑎𝑖) =  
𝐼𝑗

𝑜 (𝑎𝑖)− 𝐼𝑗,𝑚𝑖𝑛
𝑜  

𝐼𝑗,𝑚𝑎𝑥
𝑜  − 𝐼𝑗,𝑚𝑖𝑛

𝑜  
     (1) 

𝐼𝑗
𝑜 (𝑎𝑖) : characterized value of alternative ai on indicator j, in the original units (before normalization); 

𝐼𝑗,𝑚𝑖𝑛
𝑜 = min𝑖{𝐼𝑗

𝑜 (𝑎𝑖)}: the best performance on indicator j; 

𝐼𝑗,𝑚𝑎𝑥
𝑜 = max𝑖{𝐼𝑗

𝑜 (𝑎𝑖)}: the worst performance on indicator j. 

 It should be noted that if an impact indicator is to be maximized (the more, the better) 

keeping value 0 assigned to the best impact level and value 1 to the worst impact level, then the 

difference 𝐼𝑗
𝑜 (𝑎𝑖) − 𝐼𝑗,𝑚𝑖𝑛

𝑜   should be replaced by the difference 𝐼𝑗,𝑚𝑎𝑥
𝑜  −  𝐼𝑗

𝑜 (𝑎𝑖)  in the 

numerator of Equation (1). Although internal normalization is the most relevant approach to this 

study, it is worth mentioning that adding a new alternative may result in changes to the relative 

positions of original alternatives (Dias and Domingues, 2014; Norris, 2001). If a new alternative 

were added where any of its impacts were higher than the previous maximum or lower than the 

previous minimum, then the survey would have to be repeated considering the new (wider) 

difference between the best and worst impact levels. 

 For social impacts, the assessment of this study is based on qualitative data. For 

comparative purposes, the qualitative results of each indicator are quantified by a binary scoring 

rule: the best performance is assigned 0 and the worst performance is assigned 1. 
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2.3. Multi-criteria decision analysis approach: an additive model with stochastic weights 

 A novel multi-criteria decision analysis approach based on additive aggregation has 

been developed and applied to compare the overall environmental and social impacts of manual 

and mechanical sugarcane harvesting in Brazil. The overall impact of an alternative (a product 

system) ai, denoted 𝐼 (𝑎𝑖  , 𝑤), is calculated by Equation 2, which is a weighted sum of its impact 

on indicator j (i.e. Ij(ai)) considering the corresponding weight wj. All the weights are non-

negative and the sum of all weights is equal to 1 (Equation 3).  

𝐼 (𝑎𝑖 , 𝑤) =  ∑ 𝑤𝑗 𝐼𝑗 (𝑎𝑖) =  𝑤1 𝐼1 (𝑎𝑖) 𝑛
𝑗=1 + ⋯ + 𝑤𝑗 𝐼𝑗 (𝑎𝑖) + ⋯ + 𝑤𝑛 𝐼𝑛 (𝑎𝑖)   (2) 

𝑤1, 𝑤2 … . 𝑤𝑛 ≥ 0 𝑎𝑛𝑑  ∑ 𝑤𝑗 = 1 𝑛
𝑗=1             (3) 

w: a vector of weights for all the indicators, (w1, w2, …., wn); 

ai: an alternative; in this case, the sugarcane product system with manual or mechanical harvesting; 

wj: the weight of indicator j; in this case, mid-point impact category, end-point damage category or social 

theme, respectively; 

Ij (ai): the normalized value of alternative ai on indicator j; 

n: the number of indicators used in the assessment. 

 The weight of indicator j, wj, is calculated by Eq. 4 and 5, in which µ𝑝 represents the 

weight assigned to the preference of decision maker p when calculating the weight of the 

indicators. Decision maker weights µ1,…, µm  are computed based on Monte Carlo simulation 

using the software @Risk 7.5, considering a uniform distribution over the unit simplex, 

according to the process described in Butler et al. (1997). All weights assigned to decision 

makers are non-negative and the sum of all weights equals 1.  

 𝑤𝑗 =  ∑  µ𝑝 𝑤𝑗𝑝  𝑚
𝑝=1 =  µ1 𝑤𝑗1 + µ2 𝑤𝑗2 + ⋯ +  µ𝑚 𝑤𝑗𝑚      (4) 

µ1,…, µm ≥ 0 and ∑  µ𝑝 = 1  𝑚
𝑝=1  (5) 

p: decision maker; 

m: the total number of decision makers; 

wjp: the weight of indicator j assigned by decision maker p; 

µp: the stochastic weight assigned to decision maker p. 

 It is worth mentioning that each vector of weights assigned to decision makers, (µ1,…, 

µm), will correspond to a vector of indicator weights (w1, w2, … ,wn) that is a convex 

combination of the indicator weights provided by the decision makers. The resulting vector of 

indicator weights can then be seen as a mix of the inputs provided by different decision makers. 

When all the individual weight vectors satisfy Equation 3, then Equation 4 and 5 guarantee that 

the resulting vector (w1, w2, … ,wn) will also satisfy Equation 3.  
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 In order to collect preference information from relevant decision makers, a survey was 

conducted to gather experts’ opinions on their value choices for eight mid-point environmental 

indicators, three end-point environmental indicators and eight social indicators. The survey 

material can be found in Supplementary Material. To obtain survey responses that represent the 

values of informed decision makers, only experienced Brazilian LCA researchers and 

practitioners (over 5 years of experience in LCA) with knowledge of the sugarcane sector in 

Brazil were invited to answer the survey. In total, 26 surveys were sent out with 7 responses 

received (response rate 27%). These responses are sufficient to illustrate the methodology 

proposed in this work, but do not warrant any claims that they represent the entire universe of 

Brazilian LCA researchers. 

The survey participants were asked to give a weight (between 0 and 100) to each 

environmental or social indicator, considering both the context of sugarcane production in 

Brazil and the magnitude and significance of the impact of changing from manual to mechanical 

harvesting (information provided with the questionnaire). The characterized values of mid-point 

and end-point environmental impacts and a summary of social performances for each social 

indicator in regard to manual and mechanical harvesting were provided to participants. One 

example of survey instruction regarding mid-point environmental impacts reads: “Considering 

i) the context of sugarcane production in Brazil, and ii) the importance of impacts due to 

changing from manual to mechanical harvesting (e.g., on climate change, reducing emissions 

from 38 kgCO2 eq/t of sugarcane to 29 kgCO2 eq/t of sugarcane), please assign weights (0-100 

points) to the mid-point indicators below. All assigned weights should have a total sum of 100 

points.”  

 It is worth noting that wj represents the importance of the impact change on indicator j 

comparing mechanical harvesting to manual harvesting rather than the importance of the 

indicator j itself. On the other hand, µp simulates the weight assigned to decision maker p when 

setting the weights for each indicator.  

2.4. VIP Analysis 

 VIP (Variable Interdependent Parameter) Analysis is based on the additive aggregation 

model of value functions. It does not require decision makers to indicate precise values as 

criteria weights, and it can be used to generate robust conclusions using every accepted 

combination of weights. VIP Analysis has the ability to find the most extreme values with 

respect to the differences between the overall results of two alternatives (Dias and Climaco 

2000). The value difference between two alternatives ai and aj can be defined by Equation 6, 

where Dmax(ai,aj) and Dmin (ai,aj)  indicate the highest and lowest values of D(ai,aj), respectively.  
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D (ai,aj)   = { I(ai, w) - I(aj, w) : w  W}        (6) 

 In the above equation, w  W represents the set of all indicator weights corresponding 

to the convex combinations of weights assigned by different decision makers (Fig. 1). This 

figure illustrates a situation with four decision makers. The shaded area corresponds to all 

possible convex combinations of weights w(1),…, w(4) provided by the decision makers. Each 

point in this figure corresponds to a weighted sum (using positive coefficients µ1,…, µm adding 

up to 1) of the extreme points defining this set. As an example, the point highlighted in blue 

corresponds to the convex combination 0.50w(1)+0.25w(2)+0.15 w(3)+0.10 w(4).  

When D(ai, aj) is negative, it means that ai has lower impacts than aj, since only 

negative impacts are considered in the LCA and the objective is to minimize them. Likewise, ai 

presents higher impacts than aj when D(ai, aj) is positive. Applying the additive model with both 

stochastic weights (described in Section 2.4) and VIP Analysis can provide complementary 

outputs: the former can indicate the probability that one alternative is better than the other, while 

the latter reveals how much better or worse can one alternative can be over the other.                              

2.5. Sensitivity analysis 

 In order to test the robustness of the results concerning the choice of decision makers, a 

sensitivity analysis adopting the one-at-a-time (OAT) approach (Czitrom, 1999) is conducted. 

The answers of one decision maker are removed at a time, and the results are then compared to 

evaluate the effect of this decision maker’s preferences on the overall output. This approach can 

effectively identify outliers, although it has been criticized for its limitation in detecting 

interactions between input variables (Czitrom, 1999). As the survey is conducted independently 

for each decision maker, this limitation is not relevant to this article.  

3. Results and discussion 

3.1. Mid-point environmental impacts 

3.1.1. Comparing environmental impacts on mid-point impact categories 

 The characterized values of mid-point impacts of manual and mechanical harvesting are 

normalized by Equation 1. Characterized and normalized mid-point LCA results are presented 

in Table 1. Because the goal concerning environmental impacts is to minimize them, a 

normalized value 0 represents a better performance between the two alternatives, while 1 

represents a worse performance. Mechanical harvesting is better according to the indicators 

Climate change, Photochemical oxidant formation and Particulate matter formation, whereas 

manual harvesting is better according to the indicators Fossil depletion, Ozone depletion, 

Terrestrial acidification, Freshwater eutrophication and Human toxicity. 
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Table 1  

Mid-point LCA results of manual and mechanical harvesting. 

Impact category 

Characterized LCA results Normalized LCA results 

Unit 
Manual 
harvesting 

Mechanical 
harvesting 

Manual 
harvesting 

Mechanical 
harvesting 

Climate change kg CO2 eq 38.32 28.85 1 0 

Fossil depletion kg oil eq 6.66 7.80 0 1 

Ozone depletion kg CFC-11 eq  1.47E-06 1.75E-06 0 1 

Terrestrial acidification kg SO2 eq 1.34 1.57 0 1 

Freshwater eutrophication kg P eq 1.90E-03 1.99E-03 0 1 

Human toxicity kg 1,4-DB eq 4.22 4.38 0 1 

Photochemical oxidant 
formation 

kg NMVOC 6.83E-01 8.05E-02 1 0 

Particulate matter formation kg PM10 eq 5.76E-01 2.24E-01 1 0 

 

Table 2 

Survey results of weights of mid-point indicators. 

  

The survey results of weights of mid-point indicators are shown in Table 2. The values 

are divided by 100 in the final analysis so that all weights add up to 1. The weight vector 

representing the weights assigned to decision makers for each indicator (µ1, µ2, … µ7) is 

simulated for 100,000 iterations. Since the objective is to compare manual and mechanical 

harvesting systems, the results of interest are the differences between the overall results of the 

two alternatives. As shown in Fig. 2, obtained by performing a Monte Carlo simulation, the 

overall impact of the manual system is more likely to be lower than the overall impact of the 

mechanical system. The manual system is preferred to the mechanical system in 67% of cases. 

Following the VIP Analysis approach, the minimum and the maximum values, -0.26 and 0.50, 

respectively, indicate that, despite the manual system having a higher possibility of winning, the 

advantage at best of the manual system (0.26, i.e., the symmetric value of the minimum) is less 

Impact category Expert 1 Expert 2 Expert 3 Expert 4 Expert 5 Expert 6 Expert 7 

Climate change 25 40 50 15.1 23 25 15 

Fossil depletion 20 20 20 13.2 20 22.5 13 

Ozone depletion 2.5 10 5 9.4 1 17.5 8 

Terrestrial acidification 10 5 0 11.3 20 5 11 

Freshwater 
eutrophication 

2.5 10 0 9.4 4 5 11 

Human toxicity 20 0 0 14.2 18 5 15 

Photochemical oxidant 
formation 

5 10 5 13.2 8 5 12 

Particulate matter 

formation 
15 5 20 14.2 6 15 15 
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than the advantage at best of the mechanical system (0.50) (these are exact values, which 

constitute a wider interval than the interval estimated by the simulation).   

 Based on these results, there is no clear conclusion about which system is preferable: for 

some weight vectors, it is the manual system, while for other weight vectors it is the mechanical 

system. The manual system is preferred for a fairly large majority (67%) of the weight vectors, 

but the mechanical system, on the other hand, can potentially beat the manual system by a larger 

margin than the reverse.  

3.1.2. Sensitivity analysis 

 The robustness of the previous results is assessed in terms of whether a single 

participant might have a large influence on the results. One expert (decision maker) is removed 

at a time, reducing the number of experts to 6. Table 3 shows the results of the sensitivity 

analysis of mid-point indicators based on Monte Carlo simulation and VIP analysis. Regardless 

of which expert is removed, the manual system is more likely to be preferred to the mechanical 

system (all differences are negative for more than 50% of the simulated weights). However, 

when removing expert 3, the result is overwhelmingly in favor of the manual system (in 99% of 

the cases), winning by a margin of 0.26 at best, and losing by a relatively small margin of 0.10 

at worst. This is because expert 3 provides the highest weights on Climate change (50%) and 

Particulate matter formation (20%) out of all the experts, and the manual harvesting system has 

worse performance in these indicators. When removing expert 5, the probability of the 

mechanical system being preferred increases to 49.7% (nearly 50%), and the advantage at best 

of the mechanical system is almost three times larger than the advantage of the manual system 

at best. In the cases of removing other experts (i.e. expert 1, 2, 4, 6 or 7), the probability of the 

manual system winning over the mechanical system ranges between 56.8% and 73.2%, and the 

margins in the manual system’s worst cases are always larger than the margins of its best cases.  

Table 3  

Sensitivity analysis of mid-point impacts considering the influence of a single expert. 

 Without 
Expert1 

Without 
Expert2 

Without 
Expert3 

Without 
Expert4 

Without 
Expert5 

Without 
Expert6 

Without 
Expert7 

Original 

Overall 

Minimum 

(VIP analysis) 

-0.26 -0.26 -0.26 -0.26 -0.16 -0.26 -0.26 -0.26 

Maximum 

(VIP analysis) 

0.50 0.50 0.10 0.50 0.50 0.50 0.50 0.50 

Mean -0.01 -0.04 -0.11 -0.00 0.02 -0.01 -0.00 -0.02 

Std Dev 0.09 0.09 0.04 0.09 0.09 0.09 0.09 0.08 

% of cases with 

I(manual) -
I(mechanical)<0 60.6 73.2 98.9 57.4 50.3 60.6 56.8 67 
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3.2. End-point environmental impacts 

3.2.1. Comparing environmental impacts on end-point damage categories 

 Table 4 presents the characterized and normalized end-point LCA results of the manual 

and mechanical systems, in which 0 once again indicates better indicator performance. 

Mechanical harvesting is better in terms of damage to Human health and to Ecosystem 

diversity, while manual harvesting is better in terms of damage to Resource availability. 

 Table 5 shows the weights of end-point indicators given by seven experts. The values 

are also divided by 100 in the final analysis and the weight vectors indicating decision maker 

weights (µ1, µ2, …, µ7) are simulated for 100 000 iterations. Results of differences between the 

manual and the mechanical systems at the end-point are presented in Fig. 3. It is clear that, in 

regard to end-point indicators, the manual system is always less preferred than the mechanical 

system, with the smallest margin of 0.20 (putting all the weight in expert 3), and the largest 

margin of 0.80 (putting all the weight in expert 5). The manual system might have been 

preferred in some instances, had a decision maker assigned a weight of 50 or more to the single 

category where this system was better (Damage to resource availability), but this did not occur 

in this survey. 

 

Table 4  

End-point LCA results of manual and mechanical harvesting. 

Damage category 

Characterized LCA results Normalized LCA results 

Unit 
Manual 
harvesting 

Mechanical 
harvesting 

Manual 
harvesting 

Mechanical 
harvesting 

Damage to human 
health 

DALY 2.06E-04 1.02E-04 1 0 

Damage to 

ecosystem diversity 
Species*year 3.11E-07 2.38E-07 1 0 

Damage to resource 

availability 
$ 1.1 1.3 0 1 

 

Table 5  

Survey results of weights of end-point damage categories. 

Damage category Expert 1 Expert 2 Expert 3 Expert 4 Expert 5 Expert 6 Expert 7 

Damage to human 
health 

30 30 40 35 50 40 40 

Damage to ecosystem 

diversity 
50 40 20 33 40 30 30 

Damage to resource 
availability 

20 30 40 33 10 30 30 
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Table 6  

Sensitivity analysis of end-point impacts considering the influence of a single expert. 

 

3.2.2. Sensitivity analysis 

 Table 6 presents the results of the sensitivity analysis of end-point impacts of manual 

and mechanical harvesting systems. The mechanical system always has lower impacts than the 

manual system, regardless of which expert is removed. The mechanical system possesses the 

smallest advantages in the range of [0.20, 0.35], and the largest advantages of [0.60, 0.80]. No 

particular expert has a large influence on the overall conclusions.  

 When compared to the LCA results at the mid-point, the results at the end-point are 

more robust (concerning decision maker preferences) and favor the mechanical system, which 

appears to contradict the conclusions that can be drawn based on mid-point indicators. It is even 

possible to note that removing expert 3 benefits the manual system and removing expert 5 

benefits the mechanical system when considering the mid-point analysis. However, in 

considering the end-point analysis, the contrary occurs (without calling into question the robust 

conclusion of the mechanical system’s superiority in the latter case). 

The results of this article are consistent with the general perception that aggregating 

LCA results at the end-point may ease the process of resolving trade-offs across indicators for 

decision makers (Bare et al., 2000); however, it is also important to bear in mind the higher 

uncertainties of end-point impacts compared to the mid-point. The apparent differences we find 

in this study when performing multi-criteria decision analysis using mid-point and end-point 

indicators suggest including both mid-point and end-point indicators in LCA is beneficial for 

informing decision-making. However, more research is needed to understand how mid-point 

 Without 

Expert1 

Without 

Expert2 

Without 

Expert3 

Without 

Expert4 

Without 

Expert5 

Without 

Expert6 

Without 

Expert7 

Original 

Overall 

Minimum 

(VIP analysis) 0.20 0.20 0.35 0.20 0.20 0.20 0.20 0.20 

Maximum 

(VIP analysis) 0.80 0.80 0.80 0.80 0.60 0.80 0.80 0.80 

Mean 0.43 0.46 0.49 0.47 0.39 0.46 0.46 0.45 

Std Dev 0.07 0.07 0.06 0.07 0.04 0.07 0.07 0.06 

% of cases with 

I(manual) -

I(mechanical)<0 0 0 0 0 0 0 0 0 
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and end-point can be included in a framework in a consistent manner, and how results at two 

levels can be integrated to support decision-making.   

3.3. Social impacts 

3.3.1. Comparing social impacts by social themes 

 Quantification of the social impacts of the manual and mechanical systems by social 

themes is presented in Table 7 (0 is better and 1 is worse). A summary of the qualitative 

comparison of social impacts of manual and mechanical harvesting can be found in Table 3 in 

Supplementary Material. Mechanical harvesting is better according to most indicators: Health 

and safety, Fair salary, Delocalization and migration, Public commitment to sustainability 

issues, Safe and healthy living conditions and Equal opportunity and discrimination. On the 

other hand, manual harvesting is better according to the indicators of Local employment and 

Access to material resources (for details, see Du et al., 2018). 

Table 7  

Quantitative S-LCA results of the manual and mechanical systems by social themes 

Subcategory Manual harvesting Mechanical harvesting 

Health and safety 1 0 

Local employment 0 1 

Fair salary 1 0 

Access to material resources 0 1 

Delocalization and migration 1 0 

Public commitment to 
sustainability issues 1 0 

Safe and healthy living 
conditions 1 0 

Equal opportunity and 
discrimination 1 0 

 

 Table 8 presents the weights provided by experts on eight social indicators (divided by 

100 in the final analysis). The weight vectors of the weights assigned to decision makers are 

simulated for 100,000 iterations and the simulated results for overall social impacts are 

presented in Fig. 4. The differences between the social impacts of the manual and mechanical 

systems (subtracting mechanical from manual) are always positive, suggesting that the 

mechanical system clearly has better overall impacts than the manual system. The advantages of 

the mechanical system are quite large, falling in the range of [0.40, 0.80].  
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Table 8  

Survey results of weights of relevant social subcategories 

Social issues Expert 1 Expert 2 Expert 3 Expert 4 Expert 5 Expert 6 Expert 7 

Health and safety 15 20 20 14.5 30 25 16 

Local employment 5 20 20 13.5 5 22.5 16 

Fair salary 25 20 20 10 20 17.5 14 

Access to material 

resources 5 5 10 10 5 2.5 8 

Delocalization and 

migration 25 10 0 10 0 12.5 12 

Public commitment of 

sustainability issues 5 10 0 12 25 7.5 10 

Safe and healthy living 

conditions 10 5 20 15 10 7.5 16 

Equal opportunity and 

discrimination 10 10 10 15 5 5 8 

 

3.3.2. Sensitivity analysis 

 Table 9 summarizes the results of the sensitivity analysis of the social impacts of the 

manual and mechanical systems by removing one expert at a time. The conclusions are 

consistently and overwhelmingly in favor of the mechanical system regardless of which expert 

is removed. The margins of advantage in all the cases are very close to each other, with 

differences of less than 0.1.  

Table 9  

Sensitivity analysis of social impacts considering the influence of a single expert. 

 Without 

Expert1 

Without 

Expert2 

Without 

Expert3 

Without 

Expert4 

Without 

Expert5 

Without 

Expert6 

Without 

Expert7 

Original 

Overall 

Minimum 

(VIP analysis) 0.40 0.40 0.50 0.40 0.40 0.40 0.40 0.40 

Maximum 

(VIP analysis) 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.80 

Mean 0.541 0.591 0.608 0.587 0.541 0.591 0.588 0.578 

Std Dev 0.0466 0.0579 0.0516 0.0590 0.0464 0.0582 0.0587 0.0517 

% of cases with 

I(manual) -

I(mechanical)<0 0 0 0 0 0 0 0 0 

  

4. Conclusions 

 This article presented a novel MCDA model in the LCIA phase to support group 

decision making, based on comparative LCA and S-LCA results, applied to a study of 

sugarcane production with manual and mechanical harvesting in Brazil. It followed a different 

methodology from the recent work concurrently carried out by Cardoso et al (2018), wherein a 

different set of indicators (including technical and economic ones) and a different MCDA 
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approach were used, thus rendering the results not comparable. Cardoso et al. (2018) obtained 

three different MCDA results by using three different vectors of weights (used as examples) and 

considering all indicators simultaneously, whereas the present study analyzed the environmental 

(both mid-point and end-point) and social dimensions separately and obtained weights 

representing the views of a sample of decision-makers.   

This article utilized value choices of specific decision-makers, but it adopted stochastic 

weights to explore all the possible combinations of the weights they provided. Sensitivity 

analysis is conducted to test the robustness of the results, which consistently show that 

mechanical harvesting has lower environmental impacts at the end-point and lower social 

impacts. However, the results of the environmental impacts at the mid-point were less robust 

and clear: manual harvesting appears more likely (67% of the convex combinations of the 

weights) to have lower impacts than mechanical harvesting, but the advantage of mechanical 

harvesting over manual harvesting can be greater than the reverse (almost twice as large). These 

findings suggest that mechanical harvesting of sugarcane should be accelerated, especially in 

areas with lower mechanization levels such as Brazil’s North-Northeast since it can reduce 

environmental impacts and also generate positive social impacts by increasing average income, 

improving social equality and fair salary. Despite the methodological differences between this 

study and Cardoso et al (2018), the conclusions of both are well aligned.  

At the methodological level, this work emphasizes the relevance of providing to 

decision-makers both mid-point and end-point when comparing the environmental impacts of 

different product life cycles. It also shows a possible way of applying MCDA when multiple 

decision makers indicate different weighting vectors. The MCDA approach developed in this 

article can be adopted in future comparative LCA and/or S-LCA studies to support decision-

making by utilizing expert or stakeholder preference information while improving comparative 

robustness.  
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