Júlio José Martins Coutinho Cabral e Lopes

Fevereiro de 2019
Júlio José Martins Coutinho Cabral e Lopes

Fevereiro 2019
DECLARAÇÃO DE AUTORIA

Eu, Júlio José Martins Coutinho Cabral e Lopes, estudante do Mestrado Integrado em Ciências Farmacêuticas, com o nº 2013136555, declaro assumir toda a responsabilidade pelo conteúdo do Documento Relatório de Estágio e Monografia intitulada "Potencial profilático e terapêutico de plantas e cogumelos em Oncologia – Leucemia e Linfoma" apresentados à Faculdade de Farmácia da Universidade de Coimbra, no âmbito da unidade de Estágio Curricular.

Mais declaro que este Documento é um trabalho original e que toda e qualquer afirmação ou expressão, por mim utilizada, está referenciada na Bibliografia, segundo os critérios bibliográficos legalmente estabelecidos, salvaguardando sempre os Direitos de Autor, à exceção das minhas opiniões pessoais.

Coimbra, 8 de fevereiro de 2019.

[Assinatura]

(Júlio José Martins Coutinho Cabral e Lopes)
AGRADECIMENTOS

À minha família, pais e irmãos, por me terem permitido estudar em Coimbra e me terem dado a força, apoio e liberdade de correr atrás dos meus sonhos.

Aos amigos de longa data e a todos os que surgiram no decorrer do meu percurso académico, pelos momentos partilhados e pelas memórias eternas.

À minha orientadora de monografia pela disponibilidade e pela partilha de conhecimento.

Às equipas da Farmácia Luciano & Matos e da Farmácia Rua por tudo aquilo que me ensinaram e, sobretudo, pela amizade.

À minha saudosa tia Dores, cuja história de vida inspira a presente Monografia.

Obrigado!
ÍNDICE

RESUMO ... 7
PALAVRAS-CHAVE .. 7
ABSTRACT .. 8
KEYWORDS .. 8

- MONOGRAFIA -
POTENCIAL PROFILÁTICO E TERAPÊUTICO DE PLANTAS E COGUMELOS
EM ONCOLOGIA - LEUCEMIA E LINFOMA

ABREVIATURAS ... 10
1. INTRODUÇÃO ... 12
2. ONCOLOGIA ... 14
 2.1. Neoplasia, tumor e cancro ... 14
 2.2. Estatísticas em Portugal e no mundo .. 16
 2.3. Tratamento ... 18
3. QUIMIOTERAPIA .. 19
 3.1. Em que consiste? ... 19
 3.2. Fármacos ... 21
 3.3. Efeitos adversos ... 23
4. CANCROS HEMATOLÓGICOS ... 24
 4.1. LEUCEMIA ... 24
 4.2. LINFOMA .. 26
 4.2.1. Linfoma de Hodgkin ... 27
 4.2.2. Linfoma não Hodgkin .. 27
5. SÍNDROME MIELODISPLÁSICA ... 29
6. POTENCIAIS ANTITUMORAL, IMUNOESTIMULADOR E IMUNOMODULADOR
 DE PLANTAS E COGUMELOS .. 30
 6.1. PLANTAS .. 31
 6.1.1. CURCUMA LONGA .. 31
 6.1.2. CAMELLIA SINENSIS .. 33
 6.1.3. ECHINACEA SP ... 34
 6.2. FITOCONSTITUINTEES ... 34
 6.2.1. GENISTEÍNA ... 35
 6.2.2. RESVERATROL ... 37
6.3. COGUMELOS .. 40
 6.3.1. GRIFOLA FRONDOSA ... 42
 6.3.2. CORIOLUS VERSICOLOR ... 43
 6.3.3. HERICium ERINACEUS .. 45

7. INTERAÇÃO ENTRE PLANTAS E ANTITUMORAIS .. 46

8. LIMITAÇÕES DA TERAPÊUTICA COM RECURSO A PLANTAS E FUNGOS 48

9. CONCLUSÕES ... 49

RELATÓRIO DE ESTÁGIO EM FARMÁCIA COMUNITÁRIA
 - FARMÁCIA LUCIANO & MATOS -

ABREVIATURAS ... 51

INTRODUÇÃO .. 52

2. ANÁLISE SWOT .. 52

 2.1. PONTOS FORTES .. 53
 2.1.1. Localização da farmácia .. 53
 2.1.2. Instalações .. 53
 2.1.3. Perfil demográfico dos utentes ... 54
 2.1.4. Sifarma 2000® .. 54
 2.1.5. Preparação prévia à realização das tarefas ... 55
 2.1.6. Integração na equipa e autonomia no desempenho ... 55
 2.1.7. Rastreios .. 56
 2.1.8. Metodologia Kaizen ... 57
 2.1.9. Diversidade de conhecimentos no aconselhamento ... 57
 2.1.10. Participação no Inventário .. 58
 2.1.11. Preparação de medicamento manipulado ... 58
 2.1.12. Desenvolvimento de projetos propostos ... 58
 2.1.13. Evolução do desempenho ... 59

 2.2. PONTOS FRACOS .. 59
 2.2.1. Inexperiência no atendimento .. 59
 2.2.2. Nomes comerciais dos medicamentos ... 59
 2.2.3. Nível de preparação em determinadas áreas .. 60

 2.3. OPORTUNIDADES ... 61
 2.3.1. Participação em formações ... 61
 2.3.2. Contacto com profissionais de saúde ... 61
2.3.3. Integração no grupo Holon...61

2.4. AMEAÇAS..62
 2.4.1. Desconfiança relativa ao aconselhamento do estagiário62
 2.4.2. Desvalorização dos conhecimentos do farmacêutico62

3. CONCLUSÃO...63

BIBLIOGRAFIA..64

ANEXOS..76
 ANEXO I - INCIDÊNCIA E PREVALÊNCIA EM PORTUGAL E NO MUNDO76
 ANEXO II - TABELA RESUMO DA ANÁLISE SWOT77
 ANEXO III - CASOS CLÍNICOS..78
 Caso I ...78
 Caso II ...79
 ANEXO IV – FICHA DE PREPARAÇÃO DE MANIPULADO..............................80
 ANEXO V – FICHA DE PROJETO - NOVO LINEAR......................................85
 ANEXO VI – INSTAGRAM DA FARMÁCIA LUCIANO & MATOS86
RESUMO

A quimioterapia é o método terapêutico mais usado no tratamento do cancro, havendo dezenas de substâncias ativas com mecanismos de atuação distintos. Em Oncologia, condições malignas como leucemia, linfoma e síndrome mielodisplásica apresentam prognósticos muito negativos, sendo um dos fatores o facto de os doentes estarem imunocomprometidos mesmo antes de iniciarem os tratamentos.

É fundamental a obtenção de novas alternativas terapêuticas que permitam alcançar a cura e, simultaneamente, minimizar os sinais e sintomas a curto e longo prazo, permitindo aumentar a qualidade e a esperança média de vida a quem tem um diagnóstico de cancro.

Verifica-se que os constituintes bioativos derivados de plantas apresentam propriedades protetoras pela sua capacidade em modular uma série de processos fisiológicos. Uma vez que o sistema imunitário é a primeira barreira que o organismo apresenta na prevenção da doença, é importante a sua supressão, estimulação ou modulação. O largo espetro de atuação dos cogumelos e plantas medicinais é indicativo de que estes contêm diferentes bioativos que conduzem às múltiplas indicações que lhes podem ser atribuídas.

Plantas como *Curcuma longa*, *Camellia sinensis* e *Echinacea sp.* e fitoconstituintes como a genisteína e o resveratrol demonstram ter propriedades antitumorais e uma ação potenciadora da resposta imunológica. Também os cogumelos *Grifola frondosa*, *Hericium erinaceus* e *Coriolus versicolor* têm demonstrado possuir essas propriedades.

Apesar de os produtos naturais constituírem uma área de interesse crescente na descoberta de novas moléculas com ação quer a nível do sistema imunitário, quer diretamente nas patologias alvo existem, ainda, uma série de limitações que devem ser ultrapassadas de modo a que seja possível beneficiar das suas potencialidades.

PALAVRAS-CHAVE

Cancro; leucemia; linfoma; plantas; fitoconstituintes; cogumelos.
ABSTRACT

Chemotherapy is the most common cancer treatment and it includes several active substances with distinct mechanisms of action. In Oncology, malignancies like leukemia, lymphoma and myelodysplastic syndrome have very negative prognostics because the immune system is already suppressed even before the patient initiates the treatment.

It is extremely important to find new therapeutical alternatives that can help to achieve the cure, while simultaneously minimizing the signs and symptoms at short and long term in order to provide a long life expectancy to those who have a cancer diagnose.

Bioactive compounds derived from plants have protective properties because of their ability to change several physiological processes. Since the immune system is the first barrier humans have to prevent any pathology, it is important to be able to suppress, stimulate or modulate its response. The large spectrum of properties mushrooms and medicinal plants have, suggests they have several bioactive compounds which are the reason for their multiple therapeutical indications.

Plants like Curcuma longa, Camellia sinensis and Echinacea sp. and phytocompounds like genistein and resveratrol have demonstrated antitumoral properties and a potential action in the immunological response. Mushrooms like Grifola frondosa, Hericium erinaceus and Coriolus versicolor shown those same properties as well.

Despite the fact that these natural products are a subject of growing interest in the discovery of new molecules with action on the immune system or fighting directly the cancer, there are some barriers which should be transcended in order to benefitate from their potentialities.

KEYWORDS
Cancer; leukemia; lymphoma; plants; phytocompounds; mushrooms.
MONOGRAFIA

POTENCIAL PROFILÁTICO E TERAPÊUTICO DE PLANTAS E COGUMELOS EM ONCOLOGIA
- LEUCEMIA E LINFOMA -
ABREVIATURAS

8-OHdG 8-OHdG-8-oxo-2'-desoxiguanosina
ABCB1 ATP-binding cassette sub-family B member 1
ABCC1 ATP-binding cassette sub-family C member 1
ABL abelson murine leukemia viral oncogene
ATF-6 α activating transcription factor 6
BiP binding immunoglobulin protein
Bcl-2 B-cell lymphoma 2
BCR breakpoint cluster region
CB2 cannabinoid receptor type 2
CD cluster of differentiation
cIAP-1 cellular inhibitor of apoptosis protein 1
CPT-11 camptothecin-11
DNA deoxyribonucleic acid
EGCG epigalocatequina-3-galato
FADD Fas associated via death domain
FasL Fas ligand
FasR Fas receptor
FIP proteínas fúngicas imunomoduladoras
GADD153 growth arrest and DNA damage 153
HL-60 human leukemia 60 cell line
ICAM-1 intracelular adhesion molecule 1
IFN interferão
IGF-1 insuline-like growth factor 1
IGFBP-3 Insulin-like growth factor-binding protein 3
IkBα nuclear factor of kappa light polypeptide gene enhancer in b-cells inhibitor
IL interleucina
IRE-1 α inositol-requiring enzyme 1 α
LH linfoma de Hodgkin
LNH linfoma não Hodgkin
LLA leucemia linfoide aguda
LLC leucemia linfoide crônica
LMA leucemia mieloide aguda
<table>
<thead>
<tr>
<th>Acronym</th>
<th>Full Form</th>
</tr>
</thead>
<tbody>
<tr>
<td>LMC</td>
<td>leucemia mieloide crónica</td>
</tr>
<tr>
<td>TNF-α</td>
<td>tumor necrosis factor α</td>
</tr>
<tr>
<td>MHC II</td>
<td>major histocompatibility complex</td>
</tr>
<tr>
<td>mTOR</td>
<td>mammalian target of rapamycin</td>
</tr>
<tr>
<td>NF-kB</td>
<td>nuclear factor kappa B</td>
</tr>
<tr>
<td>NK</td>
<td>natural killers</td>
</tr>
<tr>
<td>NO</td>
<td>óxido nítrico</td>
</tr>
<tr>
<td>PAFr</td>
<td>platelet-activating factor receptor</td>
</tr>
<tr>
<td>PEL</td>
<td>primary effusion lymphoma</td>
</tr>
<tr>
<td>PSK</td>
<td>polissacaropeptídeo Krestin</td>
</tr>
<tr>
<td>PSP</td>
<td>polissacaropeptídeo</td>
</tr>
<tr>
<td>PXR</td>
<td>pregnan X receptor</td>
</tr>
<tr>
<td>RE</td>
<td>retículo endoplasmático</td>
</tr>
<tr>
<td>RNA</td>
<td>ribonucleic acid</td>
</tr>
<tr>
<td>ROS</td>
<td>reactive oxygen species</td>
</tr>
<tr>
<td>RSV</td>
<td>resveratrol</td>
</tr>
<tr>
<td>SMD</td>
<td>síndrome mielodisplásica</td>
</tr>
<tr>
<td>SUDHL-1</td>
<td>stanford university-diffuse histiocytic lymphoma</td>
</tr>
<tr>
<td>TLR2</td>
<td>toll-like receptor 2</td>
</tr>
<tr>
<td>VIH</td>
<td>virus da imunodeficiência humana</td>
</tr>
</tbody>
</table>
I. INTRODUÇÃO

A Oncologia é uma área que tem sido alvo de uma preocupação crescente a nível global, atendendo à elevada incidência de diagnósticos de cancro que têm surgido nos últimos tempos. Estima-se que o aparecimento de novos casos venha a aumentar progressivamente, muito devido à maior esperança média de vida, à exposição a variados agentes tóxicos promotores de mutações genéticas, às alterações ambientais, entre outras causas. Esta preocupação aumenta quando pensamos na etiologia da doença, na forma como se desenvolve, no impacto que tem na vida do doente, nas armas e recursos acessíveis para a combater e nas consequências que decorrem dos tratamentos.

Fundamentalmente, os dois maiores obstáculos ao sucesso da terapêutica oncológica são a toxicidade dos antitumorais e o desenvolvimento de resistência aos fármacos por parte das células do cancro durante o tratamento com recurso a quimioterapia. Estima-se que a resistência aos fármacos, intrínseca ou adquirida, seja responsável por quase 90% da ineficácia do tratamento. Deste modo, é fundamental a obtenção de novas alternativas terapêuticas que permitam obter uma eficácia elevada na eliminação das células do cancro e, simultaneamente, apresentem toxicidade mínima nas células saudáveis.

Verifica-se que um elevado número de doentes que sobrevive a uma patologia oncológica, para além do risco de ressurgimento do tumor, fica muito mais fragilizado após os tratamentos, atendendo ao impacto negativo ao nível do sistema imunitário nomeadamente, a nível medular, pelo comprometimento da produção de células sanguíneas. Em sequência do tratamento, ocorre uma maior suscetibilidade ao desenvolvimento de síndromes e outros tipos de cancro como leucemia.

Tendo como preocupação crescente os danos causados em células normais devido aos antitumorais, têm sido desenvolvidos estudos e ensaios numa tentativa de encontrar opções na natureza que permitam reduzir esses efeitos negativos e indesejáveis que tantas vezes levam a que o doente perca a vida não só devido à doença mas também pelos danos a curto ou longo prazo que o método usado para alcançar a cura implicam.

Verifica-se que os constituintes bioativos derivados de plantas apresentam propriedades protetoras não só para as próprias, mas também para o organismo de quem as consome pela capacidade que apresentam em modular uma série de processos fisiológicos. Deste modo, vários produtos de origem natural, têm demonstrado múltiplos benefícios para a saúde devido à sua interação com mecanismos de sinalização molecular subjacentes a funções essenciais como crescimento e diferenciação celulares, apoptose, inflamação, regulação do volume celular, homeostase metabólica e balanço energético. O isolamento, caracterização e
modificação estrutural de muitos bioativos tem, assim, demonstrado que estes assumem uma fonte natural de novas moléculas passíveis de serem usadas na prevenção, retardamento e/ou cura de múltiplas patologias humanas.²

Como exemplos que demonstram o sucesso de constituintes naturais derivados de plantas no combate ao cancro, refere-se os alcaloides da vinca, taxanos e antraciclinas.³

Nas últimas décadas, uma perspetiva voltada para o sistema imunitário tem demonstrado grandes desenvolvimentos, tendo sido procuradas alternativas aos tratamentos convencionais para a prevenção e cura de muitas patologias. Uma vez que o sistema imunitário é a primeira barreira que o organismo apresenta na prevenção da doença procura-se, então, a sua supressão, estimulação ou modulação de resposta.

O principal contributo para a imunomodulação provém de compostos sintetizados quimicamente e anticorpos monoclonais de fármacos antiproliferativos e antimetabólicos.⁴ No entanto, tem havido um interesse crescente na pesquisada de produtos de origem natural que possam ser alternativa aos anteriormente referidos, de modo a minimizar os efeitos indesejáveis verificados. Como exemplo de fonte natural de interesse nesta área, refira-se alguns cogumelos e seus constituintes.⁴

O objetivo principal da evolução científica em Oncologia passa, então, pela atuação eficaz no tratamento da patologia, alcançando a sua cura, bem como pela minimização dos sinais e sintomas a curto e longo prazo permitindo, a quem tem um diagnóstico de cancro, aumentar a qualidade e a esperança média de vida.

Ao longo desta monografia, pretende-se apresentar um enquadramento geral na área da Oncologia e, particularmente, dar ênfase aos tumores hematológicos assim como, destacar o papel de plantas, cogumelos e respetivos constituintes pela sua relevância terapêutica e pelas suas ações imunomoduladora e imunoestimuladora fundamentais perante a imunossupressão. Pretende-se abordar o panorama atual da incidência e prevalência do cancro em geral e das leucemias e linfomas, em particular, fazendo um paralelo com as potencialidades dos produtos de origem natural nesta área, abordando questões relativas à sua constituição, os seus mecanismos de ação, bem como avaliação dos riscos e análise das limitações na sua aplicação.
2. ONCOLOGIA

2.1. Neoplasia, tumor e cancro

Uma neoplasia é uma condição caracterizada por alterações genéticas que comprometem o controlo da divisão e do crescimento celulares. Deste modo, uma neoplasia ou tumor traduz-se num aumento de volume tecidual que ocorre devido a proliferação celular descontrolada. Estas alterações na sequenciação genética podem ser herdadas (5 a 10%) ou surgirem ao longo da vida (90 a 95%), enquanto resultado de erros que ocorrem na divisão celular, devido à exposição a determinados agentes tais como tabaco, radiação, consumo de álcool, entre outros causadores de danos no DNA.\(^5\)

Numa situação normal, as células crescem, dividem-se e dão origem a novas unidades celulares essenciais à estrutura e função do organismo. Quando se encontram danificadas ou envelhecidas, morrem e novas células ocupam o seu lugar. No entanto, quando surge uma neoplasia, esse processo não se verifica. As células tornam-se progressivamente anómalas por aquisição de novas mutações e as envelhecidas ou danificadas sobrevivem, formando-se novas células não necessárias ao organismo. Estas, por sua vez, irão continuar a dividir-se indefinidamente, ocorrendo a sua acumulação.\(^6\)

Um tumor benigno caracteriza-se por não lhe ser atribuída capacidade destrutiva, ou seja, há proliferação celular localizada que não se irá alastrar a outras regiões do corpo para além de não conduzir a nenhuma anomalia significativa no funcionamento dos sistemas de órgãos. Outra particularidade, é o facto de após remoção cirúrgica não haver ressurgimento do tumor. No entanto, efeitos negativos resultantes desta formação tumoral podem existir, como é exemplo a pressão exercida sobre vasos sanguíneos ou nervos.\(^6\) Um tumor benigno pode, ainda, corresponder a uma produção hormonal excessiva num tecido endócrino (adenoma), hiperplasia de tecido fibroso (fibroma), crescimento anormal de vasos sanguíneos (hemangioma) ou acumulação de adipócitos (lipoma).\(^7\)

A classificação de tumor maligno, neoplasia maligna ou cancro, surge devido à sua capacidade de divisão indefinida com eventual invasão de outros tecidos. Com o crescimento desses tumores, algumas células anómalas podem destacar-se e dirigir-se para outras regiões do corpo através do sangue ou da linfa, dando origem a novos tumores, distantes do local de origem – tumor metastático.\(^6\)

As células cancerígenas diferem das células normais em vários aspectos que lhes permitem crescer fora de controlo e tornarem-se invasivas. Estas células são menos especializadas do que as normais, isto significa que enquanto as células saudáveis se diferenciam
em tipos celulares muito distintos, com funções específicas, as células tumorais, não. Para além disso, as células cancerígenas conseguem ignorar sinais que em condições normais induzem paragem do ciclo celular ou ativam o programa de morte celular - apoptose.⁶

No microambiente tumoral, as células anómalas em desenvolvimento necessitam que ocorra angiogênese, de modo a que novos vasos sanguíneos garantam o suprimento de nutrientes e oxigénio necessários ao crescimento tumoral, bem como à remoção de produtos de degradação.

Alguns exemplos de tumores malignos correspondem a: carcinoma - formado a partir de células epiteliais, pode desenvolver-se em vários órgãos tais como estômago, pâncreas ou fígado, representando o grupo mais comum de cancros em adultos; sarcoma - formado a partir de tecido conectivo, pode desenvolver-se em cartilagem ou no osso; tumor de células germinativas - ocorre nos testículos ou ovários com origem nos espermatozoides ou nos oócitos, respetivamente e blastoma - formado a partir de células indiferenciadas, os blastócitos, sendo mais comum em crianças.⁷

Quando a origem do tumor maligno ocorre em regiões de formação e diferenciação das células sanguíneas, como na medula óssea, baço ou gânglios linfáticos, atribui-se a designação de cancro hematológico, como é o caso da leucemia, linfoma e mieloma múltiplo.⁸ Em todos os casos, para além de haver aglomerados celulares em divisão indefinida que se acumulam no sangue, órgãos e medula óssea, há produção de células sanguíneas não funcionais e uma diminuição das funcionais. Ocorre, assim, o comprometimento do correto funcionamento dos sistemas circulatório e linfático com consequências dramáticas no funcionamento de todos os órgãos que deles dependem.⁸
2.2. Estatísticas em Portugal e no mundo

Estudos indicam que se tem verificado um aumento da taxa de sobrevivência ao cancro em todo o mundo. Isto deve-se tanto ao desenvolvimento tecnológico e científico que permite uma deteção mais precoce e um combate mais eficaz à doença, quanto à maior consciencialização e preocupação do ser humano para com o seu estado de saúde.

Na figura 1, é possível observar que o leste europeu e o continente asiático são as regiões do globo com maiores taxas de mortalidade no mundo.

Figura 1 | Estimativa da taxa de mortalidade em Oncologia - 2018 (Os dados incluem todos os tipos de cancro em todas as idades e géneros).

Os tumores malignos mais frequentes em Portugal são relativos ao pulmão, cólon e reto, mama, próstata e estômago. No total, em 2018, morreram 28 960 portugueses vítimas de cancro, dos quais 17 607 eram doentes do sexo masculino e 11 353 do sexo feminino.

Em 2018, o cancro do pulmão foi aquele que registou o maior número de vítimas em todo o mundo, enquanto o cancro da mama foi aquele que registou maior número novos casos. A maior prevalência verifica-se no cancro colorretal (avaliação num período de 5 anos). O cancro do pâncreas continua a ser um dos mais letais em todo o mundo.

Numa visão mais alargada sobre a Europa, Finlândia, Suíça, Malta, Suécia e Albânia são os países onde se verificaram menores taxas de mortalidade em 2018, lista na qual Portugal aparece apenas na 14ª posição.
Em países mais desfavorecidos e carenciados de um sistema de saúde estruturado e sustentado pelo desenvolvimento científico, constata-se que a luta contra o cancro ocorre, ainda, com barreiras adicionais, tanto pela dificuldade de acesso, como pelo abandono aos tratamentos. A título de exemplo, a taxa de sobrevivência ao cancro da mama, na Índia, é bastante inferior à verificada em países da Europa. Estas diferenças refletem-se, também, nos números da leucemia infantil, em que, países como a China, México e Equador apresentam taxas abaixo dos 60%. Na figura 2, verifica-se uma menor taxa de incidência de cancro no continente africano.

Figura 2 | Estimativa da taxa de incidência em Oncologia - 2018 (Os dados incluem todos os tipos de cancro em todas as idades e géneros).

Assim, apesar das maiores dificuldades relativas à obtenção de meios e conhecimentos que levam a que os países menos desenvolvidos tenham menor capacidade de intervenção terapêutica no doente oncológico, verifica-se que os maiores valores das taxas de incidência e mortalidade ocorrem, sobretudo, nos países mais industrializados, nomeadamente em regiões como o norte da América, Europa e Austrália (Figura 2). Este facto pode ser interpretado de diversas formas sendo que, deverão ser consideradas diferenças na predisposição genética ao desenvolvimento de cancro, longevidade, assim como os diferentes níveis de exposição a fatores mutagénicos nas diferentes partes do globo.

Ainda que a taxa de sobrevivência ao cancro esteja a aumentar, o surgimento de novos casos tem evoluído da mesma forma (Anexo I).
2.3. Tratamento

O tipo de cancro, fase de desenvolvimento no momento do diagnóstico, comorbilidades existentes e o estado de saúde do doente são alguns dos fatores a ter em conta na decisão médica relativa ao momento e ao método terapêutico a aplicar. Entre as opções disponíveis atualmente encontram-se:

- **Cirurgia** – o procedimento corresponde à remoção do tumor, assim como alguma porção de tecido adjacente, afim de evitar o ressurgimento tumoral posterior ou, pelo menos, diminuir essa probabilidade. Dependendo do tipo de cancro e fase de desenvolvimento, pode, ainda, haver necessidade de retirar gânglios linfáticos da região onde se localizava o tumor.\(^{11}\)

- **Radioterapia** – afim de proceder à eliminação das células cancerígenas, efetua-se o recurso a radiação de elevada energia:
 - Radiação externa: a radiação (Raios-X), provém de um aparelho emissor.
 - Radiação interna (por implante ou braquiterapia): a fonte de radiação provém de material radioativo contido em fios de metal, sementes ou tubos que são colocados diretamente no local do tumor ou próximo dele.
 - Radiação sistémica: a radiação provém de um líquido que é administrado pelo doente, por via oral ou intravenosa. Este tipo de radiação, pode ser usada para tratar o tumor ou, por outro lado, para controlar a dor provocada pela metastização do cancro.\(^{12}\)

- **Quimioterapia** – a morte das células cancerígenas é obtida através da administração de um fármaco ou vários em associação. Estes, por sua vez, podem ser administrados por várias vias. Em todas as situações, os fármacos entram na corrente sanguínea e circulam por todo o organismo - terapêutica sistémica.\(^{13}\)

- **Terapêutica Hormonal** – os fármacos desta categoria são hormonas sexuais ou análogos, usados para abrandar o crescimento de cancros mamários, prostáticos e endometriais que, normalmente, crescem em resposta às hormonas sexuais naturais do corpo. A sua atuação passa pelo impedimento da utilização hormonal por parte das células cancerígenas ou, prevenindo que o próprio corpo as produza. A terapêutica hormonal pode processar-se através da administração de um fármaco que bloqueie a produção ou atuação da hormona natural do corpo ou, através de cirurgia de remoção do órgão produtor da(s) hormona(s).\(^{14}\)
• **Imunoterapia** – recorre à capacidade natural do organismo em combater o cancro, recorrendo às potencialidades do sistema imunitário. A imunoterapia engloba diversas estratégias, nomeadamente:
 - Vacinas contra o cancro - imunização contra proteínas apenas expressas em células do cancro.
 - Imunoestimuladores e Imunomoduladores - ativadores do sistema imunológico que estimulam as células do sistema imunitário e modificam a sua resposta.
 - Terapias alvo com anticorpos - têm como alvo direto as células do cancro. (administrados simultaneamente com a quimioterapia, ajudam no reconhecimento das células tumorais, promovendo a ação citostática dos fármacos).
 - Vírus oncolíticos - vírus modificados estrategicamente para infetar células cancerígenas, causando a sua morte.¹⁵

• **Transplante de células estaminais (indiferenciadas)** – De modo a compensar os danos causados pelo tratamento quimio/radioterapêutico, o doente recebe células precursoras das células do sangue saudáveis, permitindo que novas células do sangue se desenvolvam a partir das transplantadas. Esta intervenção, permite que o doente adquira maior resistência aos tratamentos, dada a toxicidade induzida nas células normais do sangue e da medula óssea. As células estaminais podem ter como origem o próprio doente, sendo feita uma colheita prévia ao tratamento ou, em alternativa, podem provir de outra pessoa.¹⁶

3. QUIMIOTERAPIA

3.1. Em que consiste?

O termo corresponde à terapia recorrendo a químico(s), ocorrendo a sua administração com vista ao alcance de determinado efeito terapêutico no organismo. Quimioterapia é uma designação aplicada em Oncologia, sendo um dos métodos de tratamento mais utilizados no combate ao cancro.¹⁷

Em pacientes nos quais há proliferação de células cancerígenas, são aplicados regimes de quimioterapia com o objetivo de destruir essas células em qualquer que seja a sua localização no corpo. Deste modo, a quimioterapia atua não só no local de origem do tumor, mas também noutros locais onde tenha ocorrido metastização, por disseminação através dos sistemas circulatório e/ou linfático.¹⁸
Em alguns casos, o objetivo da terapêutica pode passar apenas pela diminuição do ritmo de crescimento tumoral ou evitar que o cancro se alastre. Quando um tumor maligno é removido através de cirurgia, a quimioterapia pode ser usada de modo a evitar que o tumor ressurja (terapia adjuvante). Este método de tratamento pode, também, ser usado de modo a agilizar os sintomas provocados pelo cancro em situações nas quais já não há nenhuma perspetiva de cura, ajudando os pacientes a ter melhor qualidade de vida - quimioterapia paliativa. Nesta situação o cancro encontra-se num estado avançado, fora do controlo e está já alastrado por muitas regiões do corpo.18

A quimioterapia é, geralmente, administrada por ciclos de tratamento, repetidos de acordo com uma regularidade específica, adaptados a cada situação. Existe um período de descanso para recuperação do organismo que pode ser de vários dias ou mesmo semanas, antes de sessão de tratamento seguinte, caso haja essa necessidade.18

A maioria dos doentes realiza o tratamento em regime de ambulatório, no entanto, pode haver necessidade de internamento hospitalar parcial ou durante todo o processo - é o que acontece, por exemplo, quando o doente se encontra imunocomprometido.

Os cenários possíveis após realização de quimioterapia são19:

- Remissão completa - o cancro é totalmente eliminado, o tratamento está concluído e há apenas necessidade de vigiar periodicamente se existe ressurgimento do tumor.
- Remissão parcial - o cancro diminui em tamanho, mas não desaparece. O tratamento deve continuar ou iniciar uma nova associação de antitumorais.
- Estabilização - situação pela qual o cancro não aumenta nem diminui. Outras opções terapêuticas podem ser testadas, na incerteza de por quanto tempo o cancro ficará estabilizado (pode ser dias ou anos).
- Progressão - o cancro continua a aumentar. Há a necessidade expressa de procurar alternativas ao tratamento.
- Desenvolvimento de uma malignidade secundária ao tratamento - nestas condições, um segundo cancro poderá necessitar de quimioterapia adicional ou outro tratamento complementar.

Relativamente à via de administração dos fármacos em quimioterapia, várias são as alternativas. A melhor opção irá depender do estado de saúde do doente, do tipo de tumor, do estádio de desenvolvimento, da frequência de administrações necessária, entre outros fatores. Assim, as diferentes vias englobam: Oral, Intravenosa, intramuscular, subcutânea, intralesional, intraperitoneal ou intratecal.17
3.2. Fármacos

Existem, atualmente, dezenas de fármacos utilizados no tratamento do cancro e muitos estão, neste momento, a ser sujeitos a ensaios clínicos nas suas diversas fases.

Segundo o seu mecanismo de ação, as substâncias ativas aplicadas na terapêutica do cancro podem ser agrupadas da seguinte forma:

- **Agentes alquilantes** – Promovem danos na estrutura do DNA, inibindo a divisão celular. Estes fármacos atuam em todas as fases do ciclo celular e são usados na terapêutica de diferentes cancros tais como: leucemia, linfoma, cancro do pulmão, mama, ovário, entre outros.

 Uma vez que estes químicos danificam o DNA, a viabilidade das células da medula óssea pode ficar comprometida, havendo o risco dose-dependente de desenvolvimento de leucemia no futuro (ainda que não seja muito frequente).

 Exemplos: cisplatina, ciclofosfamida e busulfan.

- **Antimetabolitos** – Interferem com as cadeias de DNA e RNA por substituição do nucleotídio normal a integrar na cadeia, promovendo dano celular durante a transcrição. O uso destes químicos ocorre, sobretudo, no tratamento de leucemia, cancro da mama, ovário e tumores malignos do trato gastro-intestinal.

 Exemplos: 5-Fluoruracilo, 6-mercaptopurina e citarabina.

- **Antibióticos antitumorais** – Atuam ao nível do DNA por intercalação específica, nas células cancerígenas, impedindo a sua divisão.

 A maior preocupação no recurso a este tipo de fármacos é o possível dano permanentemente do miocárdio, quando administradas doses elevadas.

 Exemplos: doxorribicina (antraciclina) e bleomicina.

- **Inibidores mitóticos** – Estabelecem ligação com a tubulina, inviabilizando a função dos microtúbulos. O seu mecanismo de ação resulta no bloqueio da divisão celular. São usados no cancro da mama, pulmão, linfoma e leucemia. Estes fármacos podem provocar danos no sistema nervoso, o que limita a dose máxima a administrar. Derivam de produtos naturais como os alcaloides da Vinca.

 Exemplos: paclitaxel, vincristina e vimblastina.
• Hormonas esteróides – Impedem o crescimento do tumor através do bloqueio de receptores hormonais, inviabilizando o acesso das células tumorais às hormonas naturais do corpo, das quais dependem para se desenvolver.

 Exemplo – tamoxifeno (usado no tratamento de câncer da mama, cujo crescimento depende de estrogéniros), prednisona, metilprednisona e dexametasona.

• Inibidores das topoisomerases – Comprometem a separação das cadeias de DNA na etapa de transcrição. São usados em alguns tipos de leucemia, assim como no câncer do pulmão, ovário, tumores malignos do trato gastro-intestinal, entre outros. Estes fármacos aumentam o risco de desenvolvimento de leucemia mieloide aguda.

 Exemplos:

 Inibidores da topoisomerase I – topotecano e irinotecano.
 Inibidores da topoisomerase II – etoposido e teniposido.

 Existem, ainda, alguns fármacos que atuam segundo mecanismos diferentes dos mencionados, não se enquadando em nenhuma das classificações anteriores.
3.3. Efeitos adversos

Os efeitos adversos da quimioterapia dependem, principalmente, dos tipos de fármacos selecionados, das doses necessárias a administrar, do número de ciclos a realizar, bem como da capacidade de resistência do organismo do doente ao tratamento.

Como referido anteriormente, os fármacos usados são tóxicos tanto para as células do câncer quanto para as células saudáveis, assim, uma dose capaz de destruir células anómalas, terá elevada probabilidade de destruir ou danificar células normais. No entanto, nem todos os fármacos apresentam os mesmos efeitos adversos nem na mesma intensidade.

Os fármacos antitumorais afetam, essencialmente, células que se dividem a um ritmo elevado, tais como as células sanguíneas, os foliculos pilosos e as células do aparelho digestivo. Assim, é frequente que o doente apresente efeitos adversos como infeções recorrentes, petequias, hemorragias espontâneas, perda de cabelo e pêlos em variadas regiões do corpo e, ainda, falta de apetite, diarreia, feridas na boca e/ou lábios, náuseas e vômitos. Alguns fármacos antitumorais podem, também, comprometer a fertilidade, implicar o desenvolvimento de neuropatias ou outras alterações no sistema nervoso e danos renais.

Quando há um decréscimo no valor total relativo ao número de glóbulos vermelhos (anemia), há a necessidade de recorrer a transfusões sanguíneas. Para além disso, também o número total de plaquetas pode diminuir dramaticamente (trombocitopenia), o que pode implicar a necessidade de haver recurso a transfusão das mesmas.

Alguns pacientes têm efeitos adversos com menor intensidade, enquanto outros acabam por ter sinais e sintomas de dimensão incalculável. Em alguns casos, um ajuste de dose é suficiente para reduzir ou eliminar determinados efeitos negativos. No entanto, em casos mais complicados, a solução não é tão simples e há que avaliar se o benefício do tratamento supera os riscos relativos aos efeitos adversos dele decorrentes.

O doente oncológico que supera a doença pode, a longo prazo, vir a sofrer outros efeitos indesejáveis. Verificam-se casos em que há diminuição da resistência cardíaca, desenvolvimento de síndromes que comprometem a integridade do sistema imunitário com aumento da propensão ao desenvolvimento de infeções havendo, ainda, a possibilidade de surgirem cancros secundários, como é o caso das leucemias.

Para além das consequências do próprio tumor maligno, os efeitos secundários da quimioterapia a curto e longo prazo, demonstram a razão pela qual, muitas vezes, é difícil limitar o sofrimento do doente oncológico.
4. CANCROS HEMATOLÓGICOS

Tal como referido anteriormente, um tumor maligno surge quando ocorre proliferação não controlada de células anómalas, designando-se por tumor sólido quando se trata de uma acumulação de células constituintes de órgãos e tecidos. O mesmo fundamento descreve o que ocorre em cancros hematológicos, no entanto, neste caso ocorre proliferação celular anormal e disfuncional ao nível da medula óssea e sistemas circulatório e linfático.\(^\text{23}\)

Como se pode observar na Figura 3, na medula óssea, após diferenciação das células estaminais, há formação de:

- Leucócitos – Envolvidos no combate a infeções.
- Eritrócitos – Responsáveis pelo transporte de oxigénio para os tecidos.
- Plaquetas – Essenciais à coagulação.

![Figura 3 | Células Sanguíneas [Adaptado de Terese Winslow]^{24}](image)

4.1. LEUCEMIA

Neoplasia maligna caracterizada por células morfologicamente maduras, mas imunologicamente imaturas que se vão acumulando progressivamente em várias zonas do corpo, nomeadamente na medula óssea, nódulos linfáticos, baço, fígado, entre outros.
Em doentes com leucemia, ocorre produção de glóbulos brancos disfuncionais na medula óssea. Inicialmente, as células funcionam de forma semelhante às saudáveis, no entanto, ao longo do tempo, ultrapassam em número, os leucócitos, eritrócitos e plaquetas normais. Os blastos (linfoblastos ou mieloblastos) são células sanguíneas imaturas que, para além de nunca chegarem a maturar, proliferam rapidamente.

Fundamentalmente, atendendo ao período de tempo que decorre desde o início do desenvolvimento da patologia, ao aparecimento dos sinais e sintomas decorrentes da mesma, bem como a intensidade associada aos mesmos, pode tratar-se de uma leucemia crónica ou aguda. No primeiro caso a doença apresenta um ritmo de desenvolvimento lento. Durante algum tempo, as células sanguíneas anómalas conseguem desempenhar a sua função corretamente e o doente pode não apresentar qualquer sintoma. Posteriormente, de forma gradual, vão surgindo manifestações da doença devido ao aumento do número de células tumorais. Quando se trata de leucemia aguda, ocorre uma progressão da doença muito rápida. As células sanguíneas ficam inviabilizadas de desempenhar as suas funções, atendendo às alterações morfológicas e funcionais num curto espaço de tempo.

Os tipos de leucemia são, também, agrupados segundo o tipo de leucócitos afetados. Assim, quando os danos ocorrem em células linfoides, corresponde a uma situação de leucemia linfóide, linfoblástica ou linfocítica. Quando as anomalias são respeitantes às células mieloides, corresponde uma situação de leucemia mieloide, mieloblástica ou mielocítica.

Deste modo, os quatro principais tipos de leucemia podem ser classificados como:

- **Leucemia linfóide aguda LLA**: É um tumor agressivo com rápida velocidade de disseminação caracterizado pela presença considerável de linfoblastos. É o cancro mais comum em crianças (25% dos diagnósticos de cancro entre crianças com idade inferior a 15 anos).
- **Leucemia mieloide aguda LMA**: É o tipo de leucemia que atinge maior número de doentes enquanto tumor maligno secundário a quimioterapia.
- **Leucemia linfóide crónica LLC**: Na maioria das vezes é assintomática (frequente após os 55 anos e quase nunca afeta crianças).
- **Leucemia mieloide crónica LMC**: Afeta, principalmente, adultos.

A leucemia corresponde a 30% de todos os cancros diagnosticados em crianças com idade inferior a 15 anos, sendo o tumor maligno mais comum neste grupo etário. Infeções recorrentes devido ao comprometimento do sistema imunitário e implicações hemorrágicas estão, muitas vezes, na origem da morte destes doentes.
4.2. LINFOMA

O sistema linfático é constituído por uma rede de vasos que se ramificam, à semelhança dos vasos sanguíneos, de modo a alcançar todos os tecidos do corpo. A linfa (circulante e intersticial) corresponde a um líquido incolor derivado do líquido intersticial e do sangue, não apresentando eritrócitos mas, sobretudo, leucócitos. Entre as suas principais funções, encontra-se o combate a agentes estranhos ao sistema imunitário e a recolha de produtos de degradação do metabolismo celular.29

Ao longo do sistema linfático (Figura 4) existem dilatações, designadas por gânglios ou nódulos linfáticos, que se localizam nas axilas, virilhas, pescoço, tórax e abdômen, sendo comum a primeira manifestação da patologia ser detetada pelo aumento do seu volume.

Figura 4 | Sistema Linfático [Adaptado de Terese Winslow]^24

Um linfoma é um cancro hematológico cuja origem ocorre no sistema linfático e que se subdivide num conjunto de doenças linfoproliferativas malignas com significativa heterogeneidade clínica. Todos os linfomas têm origem nos linfócitos e seus percursores, ou seja, ocorre em linfoblastos, células B, T ou NK, nas suas diferentes fases de maturação. Cada subtipo de linfoma, geralmente, é caracterizado por um estádio específico de diferenciação, ritmo de desenvolvimento, diferenças morfológicas, ambiente tumoral, capacidade de disseminação e intensidade dos sinais e sintomas que promove.30
4.2.1. Linfoma de Hodgkin

É o linfoma menos comum. Na categoria de neoplasia maligna, são as células do sistema linfático que se tornam anômalas e se dividem de forma descontrolada. O Linfoma de Hodgkin resulta da transformação de precursores dos linfócitos B, em células de Reed-Sternberg binucleadas, as únicas verdadeiramente neoplásicas. Normalmente, têm dimensão superior às células normais e encontram-se em número reduzido, (habitualmente diagnosticado em fase inicial), inseridas num microambiente inflamatório.

Do ponto de vista clínico, os doentes com linfoma de Hodgkin, geralmente, apresentam nódulos linfáticos aumentados, particularmente na região cervical, de origem unicêntrica, e sem patologias associadas a outros sistemas de órgãos. O linfoma de Hodgkin tem um padrão de progressão previsível, isto é, a disseminação celular ocorre por invasão de gânglios linfáticos adjacentes.

O motivo desencadeador da patologia é desconhecido, no entanto, a predisposição genética, exposição a agentes externos e infeções pelo vírus Epstein-Barr, *Mycobacterium tuberculosis*, herpes-vírus 6 e VIH, poderão estar na origem. Atualmente, a taxa de sobrevivência após tratamento com quimioterapia e/ou radioterapia é bastante elevada. No entanto, doentes que concluam com sucesso os tratamentos têm elevado risco de desenvolver efeitos secundários a longo prazo, desde danos diretos na função de órgãos, até cancros secundários. Existe o risco de desenvolvimento de leucemia mieloide aguda após tratamento com recurso a quimioterapia. Esse risco aumenta, sobretudo, com a administração de agentes alquilantes.

Efeitos adversos posteriores ao tratamento a curto e longo prazo envolvem fadiga, comprometimento pulmonar, hipotiroidismo, doenças cardiovasculares e infertilidade.

O Linfoma de Hodgkin é mais frequente nos homens, sobretudo em idade compreendida entre os 15 e os 40 anos e, posteriormente, após os 50.

4.2.2. Linfoma não Hodgkin

O Linfoma não Hodgkin é desencadeado quando ocorre uma alteração num linfócito ao nível do nódulo linfático que o torna disfuncional, multiplicando-se indefinidamente. O LNH é, predominantemente, derivado de linfócitos B podendo, também, ter origem em linfócitos T ou NK. Deste modo contrário do linfoma de Hodgkin, os linfomas não Hodgkin não têm um tipo celular exclusivo, apresentando elevada heterogeneidade de características. As células resultantes, não só não protegem o organismo de infeções nem de qualquer patologia, como também se podem disseminar por todo o organismo.
Outra diferença a realçar, é o facto de no LNH a presença de células inflamatórias ser bastante inferior relativamente ao que acontece no LH, sendo a grande maioria das células presentes, no aglomerado tumoral, derivadas do precursor linfóide comum que sofreu mutação.

Embora muitos doentes com Linfoma não Hodgkin possam apresentar sinais e sintomas semelhantes aos que ocorrem no Linfoma de Hodgkin, o quadro clínico é muito mais heterogéneo. No Linfoma difuso de grandes células B, por exemplo, o subtipo mais comum de Linfoma não Hodgkin, a formação da massa tumoral ocorre num curto período de tempo e cerca de 40% dos doentes podem apresentar invasão extranodal, inclusivamente, ao nível da medula óssea. A evolução clínica do LNH é mais agressiva e muito menos previsível do que no LH.

O Linfoma não Hodgkin corresponde a um grupo heterogéneo de malignidades linfoproliferativas, isto é, existem vários subtipos desta patologia, tendo em conta o padrão de desenvolvimento e resposta aos tratamentos. O LNH pode ser dividido em dois grupos consoante o prognóstico: linfomas indolentes e linfomas agressivos.31

LNH indolentes têm um prognóstico relativamente positivo com uma esperança média de sobrevivência de cerca de 20 anos, no entanto, não são curáveis em fases clínicas avançadas. A maioria dos LNH indolentes estão restritos aos nódulos linfáticos. Quando há necessidade de recorrer a tratamento, este é quase sempre eficaz, levando à redução ou desaparecimento do tumor. No entanto, é frequente a ocorrência de recidiva, havendo necessidade de novo tratamento.31

O LNH agressivo pode ser curado através de combinações fortes de quimioterapia. Mais de 50% dos doentes sobrevive, sendo que a maioria das recorrências acontece apenas 2 anos após o tratamento. Apesar de os sintomas serem muito mais intensos, o tratamento destes linfomas tem tendência à obtenção de bons prognósticos, recorrendo a imunoterapia, radioterapia e/ou quimioterapia. A ocorrência de recidiva é, geralmente, observada em fases já avançadas, havendo necessidade de novo tratamento.31

A incidência de LNH tem vindo a aumentar nos últimos anos, sobretudo em idosos e em pessoas infetadas por VIH.
5. SÍNDROME MIELODISPLÁSICA

A Síndrome Mielodisplásica (SMD) é caracterizada pela proliferação clonal de células hematopoieticas associada a disformidades celulares na medula óssea e no sangue podendo, também, conduzir a hepato e esplenomegalia.

Existem vários tipos de SMD atendendo ao tipo de células envolvidas, assumindo gravidade variável, necessidades terapêuticas diversas e esperanças de vida diferentes. De um modo geral, enquadram-se no contexto hemato-oncológico e caracterizam-se pela incapacidade da medula óssea em produzir células funcionais, processo que se agrava gradualmente. Uma vez que não há produção normal dos vários elementos constituintes do sangue, clinicamente, observam-se citopenias, estando os sinais e sintomas diretamente associados à linhagem celular específica mais afetada: fadiga, fraqueza e palidez (anemia); infecções recorrentes e febre (neutropenia) e ocorrência de hematomas e hemorragias (trombocitopenia).\(^{32,33}\)

A SMD pode ser primária, sem atribuição clara da sua causa ou surgir 1 a 15 anos após regime de quimioterapia ou radioterapia. O risco de desenvolvimento desta síndrome aumenta com a exposição a benzeno, radiação e fármacos imunossupressores (especialmente administrados por períodos de tempo prolongados e/ou em regimes intensos).\(^{32}\)

Dependendo da severidade da SMD, o doente pode não necessitar de terapêutica durante vários anos ou ter de iniciá-la de imediato. As opções terapêuticas consistem no controlo dos sintomas e no atraso da sua progressão traduzidos na melhoria da qualidade de vida, o que pode passar por: transfusões de sangue ou de plaquetas; antibióticos no combate a infecções; fatores de crescimento que estimulam a produção de células sanguíneas (eritropoietina recombinante) e/ou quelantes de ferro para remoção do seu excesso que se deposita e acumula em vários órgãos, levando à sua insuficiência (a sobrecarga de ferro é provocada pela própria doença e pelas múltiplas transfusões de concentrados eritrocitários).\(^{34}\)

Os doentes com SMD de alto risco, para além de apresentarem menor expectativa de sobrevida, têm maior probabilidade de progressão para leucemia mieloide aguda. Deste modo, é enfatizada a importância da terapêutica destes doentes no atraso da evolução da síndrome. Nestes casos, estão indicados hipometilantes (azacitidina ou decitabina) que devem ser administrados até ocorrência de toxicidade ou progressão da doença não controlável.\(^{34}\)

O único método que pode constituir cura da SMD é o transplante alogénico de progenitores hematopoieticos.\(^{34}\) No entanto, para além da dificuldade em encontrar um dador compatível, este procedimento não está indicado na maioria dos doentes, devido à idade avançada e co-morbilidades existentes.
6. POTENCIAIS ANTITUMORAL, IMUNOESTIMULADOR E IMUNOMODULADOR DE PLANTAS E COGUMELOS

O sistema imunitário constitui uma rede integrada de células, tecidos, órgãos e mediadores envolvidos na defesa do organismo contra agressões externas e internas que possam ameaçar a sua integridade. Células fagocíticas como monócitos, macrófagos e neutrófilos têm a capacidade de alcançar e neutralizar patógenos e outras moléculas. Os linfócitos têm um papel importante na resposta imune, nomeadamente na produção de anticorpos. No entanto, nem sempre a resposta imune é favorável, podendo resultar em rejeição após realização de transplante ou, estar na origem de patologias auto-imunes.35

A imunidade inata permite uma resposta rápida, mas incompleta na defesa contra agressões externas. Por outro lado, a imunidade adaptativa responde a antigénios de forma especializada, pela atuação de linfócitos de memória.36

Os imunoestimulantes são substâncias capazes de estimular o sistema imunitário, induzindo a atividade de um ou mais dos seus constituintes. Estas substâncias têm a capacidade de originar estímulo na ausência de um antigénio específico, ou seja, o processo ocorre através de uma ação inespecífica. A imunoestimulação permite desencadear respostas a um largo espectro de antigénios, em contraste com um método terapêutico específico como uma vacina ou um antibiótico. Este processo ocorre, assim, através da produção e ativação da atividade de células mediadoras de fatores imunológicos tais como macrófagos, linfócitos e células NK.4

Os imunomoduladores, também designados por modificadores da resposta biológica, promovem a adaptação da resposta imune de modo a reforçar a resistência do organismo a agressões. Consistem em substâncias capazes de exercer a sua influência tanto na imunidade inata como na adaptativa. A alteração da resposta imune pode ocorrer tanto pela estimulação das células do sistema imunitário como pela supressão da sua atuação.4

A descoberta e desenvolvimento de agentes imunomoduladores e imunoestimuladores provenientes de plantas e cogumelos que possam ser administrados por períodos de tempo que resultem numa ativação ideal do sistema imunitário, ou que sejam vantajosos em terapêutica complementar, constitui uma área bastante promissora.

A modificação, estimulação e supressão da atuação dos constituintes do sistema imunitário permitem conferir ao organismo maior resistência perante infeções, alergias, neoplasias malignas e patologias auto-imunes. A imunoestimulação tem, deste modo, um elevado potencial profilático e terapêutico.37
6.1. PLANTAS

O largo espetro de atuação das plantas medicinais é indicativo de que estas contêm na sua composição diferentes bioativos que, dependendo do tipo de preparação e da parte da planta usada, conduzem às múltiplas indicações que lhes podem ser atribuídas. Plantas medicinais habitualmente usadas no quotidiano, tanto na alimentação como na suplementação revelam ter propriedades promissoras em Oncologia. Refira-se a Echinacea sp., devido à sua atuação em complicações derivadas da imunossupressão, Curcuma longa pelos vários constituintes ativos, em particular a curcumina e Camellia sinensis pelas potencialidades do seu extrato e da EGCG. Assim, torna-se interessante analisar até que ponto a influência de produtos naturais acessíveis podem assumir vantagens profiláticas e terapêuticas. São a seguir apresentadas essas três plantas medicinais atendendo aos seus constituintes, propriedades e mecanismos de ação, bem como destacando algumas evidências obtidas in vitro e in vivo.

6.1.1. CURCUMA LONGA

Também designada açafrão-da-índia, a Curcuma longa é nativa da região peninsular do sul da Ásia. Fazem parte da sua constituição óleos voláteis e não voláteis, proteínas, lípidos, minerais, curcuminóides, sesquiterpenos, diterpenos e triterpenos, entre outros.

Os curcuminóides correspondem: 60-70% a curcumina; 20-27% a demetoxicurcumina e 10-15% a bisdemetoxicurcumina. Vários ensaios pré-clínicos e clínicos mostraram efetividade da curcumina na prevenção e tratamento de várias patologias humanas incluindo cancro, doenças cardiovasculares, doenças de pele, problemas metabólicos, neurológicos, entre outros.

Relativamente ao seu papel imunomodulador, dois compostos isolados da fração lipídica de curcuma longa, α-turmerona e ar-turmerona, demonstraram induzir proliferação de células mononucleares do sangue periférico e aumento na produção das citocinas IL-2 e TNF-α.

O fitoconstituente da Curcuma longa que tem merecido maior destaque na terapêutica, tem sido a curcumina.

No tratamento da LLA com recurso a imatinib verifica-se um aumento na atividade da via AKT/mTOR que interfere com a eficácia desse mesmo fármaco. Verificou-se que a
curcumina inibe essa via, tanto isoladamente como em associação com o imatinib. Para além disso, este constituinte promove uma diminuição da razão Bcl-2/Bax. Neste estudo, a curcumina não só revelou efeito sinergístico antitumoral com o imatinib em linhas celulares SUP-B15 como também inibiu o crescimento celular em amostras de pacientes recentemente diagnosticados com LLA, assim como de pacientes com resistência ao imatinib.41

Estudos in vivo revelaram os efeitos terapêuticos da curcumina, não só atuando diretamente sobre o cancro, mas também pela estimulação do sistema imunitário. Alguns ensaios:

1. Administração oral de 200 mg/kg durante 23 dias a ratos com LMA revelou um aumento da contagem total de granulócitos e uma diminuição de promielócitos em células da medula óssea. Neste estudo foi, ainda, verificado que quando associada a curcumina a etoposido, há um aumento da promoção da apoptose via indução de ROS.42

2. Injeção intraperitoneal de 40 mg/kg durante 14 dias a ratos com LLA revelou um aumento da contagem total de leucócitos, resultando no aumento da sobrevida.43

3. Injeção intraperitoneal de 25 mg/kg durante 14 dias a ratos com LLA revelou diminuição na expressão de BCR/ABL (oncogene) em células da medula óssea e diminuiu a infiltração de células leucêmicas no baço.41

Na sequência da observação in vitro e in vivo das potencialidades da curcumina, vários ensaios clínicos têm sido promovidos, afim de avaliar a farmacocinética, a segurança e a eficácia da sua aplicação em diferentes tipos de cancro.

Ensaio clínico: Iniciado em 2014, este ensaio incluiu 30 doentes com idade média de 60 anos, portadores de leucemia linfóide crónica (97% dos doentes) e linfoma em fases iniciais de desenvolvimento das doenças. Os participantes no ensaio não foram sujeitos a qualquer terapêutica prévia, passando a administrar 8 g de curcumina/dia durante uma semana e 10 000 UI de vitamina D3, mas três semanas seguintes. Foram realizados 6 ciclos de 4 semanas de tratamento. Em média, os doentes completaram 5 ciclos.

Após 29 meses de acompanhamento, apesar de não haver resultado respeitante à remissão da doença, 28 dos 30 doentes apresentaram estabilização da mesma. Verificou-se que 74,1% dos doentes não recorreram a qualquer tratamento posterior. O efeito secundário manifestado foi diarreia/perturbações gastrointestinais, sem qualquer outro efeito de maior gravidade. Assim, o ensaio permitiu concluir que a combinação de curcumina com vitamina D se revela segura e bem tolerada na manutenção da estabilização da doença.44
6.1.2. **CAMELLIA SINENSIS**

Plantae – Tracheophyta – Magnoliopsida – Ericales – Theaceae – Camellia

Contém polifenóis, alcalóides, minerais, compostos voláteis, entre outros constituintes. A epigallocatequina-3-galato (EGCG) é um dos seus principais polifenóis, sendo o seu constituinte ativo que tem revelado maior interesse no desenvolvimento de estudos enquanto potencial agente terapêutico.\(^{45}\)

Aos extratos de *Camellia sinensis*, como é o caso do chá verde, são atribuídas propriedades anti-angiogénicas, antiproliferativas, anti-inflamatórias e antioxidantes.\(^{45}\)

O seu papel antioxidante previne a ocorrência de danos no DNA de células saudáveis, desencadeado por espécies reativas de oxigénio, prevenindo o desenvolvimento tumoral. Em ensaios pré-clínicos, os polifenóis do chá verde mostraram inibir diretamente o crescimento celular ao induzir apoptose segundo múltiplas vias.

No linfoma de Hodgkin, o gene que codifica a proteína IκBα encontra-se alterado. Verifica-se que quando essa proteína se encontra disfuncional, o fator de transcrição NF-κB está permanentemente ativo em células anómalas, contribuindo para a sua proliferação.\(^{46}\) Laboratorialmente, constatou-se que a EGCG bloqueia a ativação de NF-κB, ao prevenir a degradação de IκBα. Para além dessa via, este polifenol demonstrou induzir apoptose em células HL-60 e NB4. Este efeito foi associado à diminuição da expressão de proteínas de resistência como ABCB1 e ABCC1, assim como ao aumento da expressão de mediadores pró-apoptóticos como caspases 3 e 8, p21 e aumento da razão Bax/Bcl-2.\(^{47}\)

A EGCG induz morte de células B do linfoma ao ativar os mecanismos de apoptose tanto intrínseco (mitocondrial), como extrínseco (pela interação FasL-FasR).\(^{48}\)

Ensaios clínicos: Os níveis urinários de 8-OHdG, um biomarcador de dano oxidativo do DNA, aparecem aumentados em doentes com cancro do pulmão, fígado, rim, cérebro e ovário. Ensaios clínicos revelaram que a ingestão de chá verde diminui, significativamente, os níveis urinários desse marcador. Este resultado vai de acordo com as propriedades antioxidantes protetoras de stress oxidativo celular.\(^{49}\)
6.1.3. **ECHINACEA SP.**

Plantae – Tracheophyta – Magnoliopsida – Asterales – Asteraceae – Echinacea

Fazem parte da sua constituição alquilamidas, polifenóis, polissacáridos, entre outros.\(^{37}\)

As alquilamidas são detentoras de propriedades imunomoduladoras e anti-inflamatórias. Estas moléculas são canabinomiméticas, ou seja, possuem uma ação imunomoduladora ao nível dos receptores canabinóides tipo 2 (CB2) encontrados em células do sistema imunitário.\(^{37}\) As substâncias canabinomiméticas têm a capacidade de regular a função de células como os mastócitos, nomeadamente, no controlo da produção de mediadores inflamatórios.\(^{50}\)

Existem vários suplementos no mercado à base de equinácia, inclusivamente, associada a outros componentes como vitamina C (ekicê®), com eficácia demonstrada na prevenção e redução tanto da incidência como da duração das constipações e outras afeções do trato respiratório superior, devido ao seu papel imunoestimulador.

Para além das propriedades já referidas, o extrato de *Echinacea purpurea* reduz o risco de complicações respiratórias ao prevenir a adesão viral e bacteriana pela diminuição da expressão de ICAM-1 e ativação do PAFr.\(^{37}\)

Está demonstrado, tanto em modelos animais como em humanos, que o tratamento com equinácia promove o aumento da produção de citocinas TNF-α, IL-1 e IFN, favorece a fagocitose por macrófagos e promove a ativação de células NK.\(^{51}\) Para além disso, extratos de equinácia aumentam significativamente a expressão de CD80, CD60 e moléculas MHC II, induzindo, assim, a produção de IL-6, IL-12p70 e NO.

A prevenção de infeções virais e bacterianas constitui um aspeto de importância extrema em doentes com síndrome mielodisplásica, leucemia e linfoma, atendendo a que estes doentes desenvolvem imunossupressão, apresentando maior dificuldade mesmo no combate a afeções de simples resolução numa pessoa saudável. Deste modo, a equinácia possui potencial na terapêutica adjuvante ao cancro, ao atuar nas principais complicações derivadas dos tratamentos.

6.2. **FITOCONSTITUINTE**

O recurso a constituintes de plantas tem representado uma alternativa de elevado interesse na pesquisa de novas moléculas eficazes na prevenção, atraso ou cura do cancro. Neste sentido, a atividade antitumoral de variados bioativos tem sido demonstrada ao longo dos últimos anos.\(^{52}\) Vários fitoconstituintes são, atualmente, aplicados na terapêutica
oncológica, nomeadamente, o paclitaxel (proveniente de *Taxus brevifolia*), os alcalóides vincristina e vimblastina (provenientes de *Catharanthus roseus*) e os derivados da podofilotoxina (proveniente de *Podophyllum peltatum*), a título de exemplo.\(^3\)

A atividade dos alcalóides da vinca (vincristina e vimblastina) deve-se à sua ligação à tubulina, bloqueando a divisão celular com paragem em metáfase. O sulfato de vincristina e o sulfato de vimblastina foram os primeiros antitumorais derivados de plantas aceites pela FDA em 1963 e 1965, respectivamente. O sulfato de Vimblastina é usado no tratamento de linfomas, assim como nos cancros da bexiga e da mama. O sulfato de vincristina é aplicado em leucemias linfoblásticas agudas e linfomas em terapêutica combinada com outros antitumorais.\(^3\)

O etoposido e teniposido são derivados semissintéticos da podofilotoxina, isolada inicialmente de *Podophyllum peltatum*. Apesar da sua atividade antineoplásica em células tumorais transplantadas em ratos, o uso clínico da podofilotoxina não era praticável devido à sua elevada toxicidade. Por essa razão, foram desenvolvidos o etoposido e o teniposido. Estes atuam como inibidores da topoisomerase II ao nível do processo de abertura e encerramento da dupla cadeia de DNA durante a transcrição. Ensaios clínicos destes fármacos nos anos 70 do século XX revelaram a sua potencialidade no tratamento da leucemia mieloide aguda, linfoma de Hodgkin e linfoma não Hodgkin. Atualmente, apesar de o etoposido ser usado, sobretudo, no tratamento de câncro do pulmão e testículo é, também eficaz em diversos tipos de leucemias e linfomas.\(^3\)

A título de exemplo, são apresentados alguns mecanismos que demonstram as potencialidades terapêuticas de fitoconstituintes de outras plantas no câncro em geral, e na Hemato-Oncologia em particular.

6.2.1. GENISTEÍNA

É uma isoflavona encontrada em várias plantas, nomeadamente, em *Glycine max* (Soja), *Vicia faba* (fava-comum) e *Lupinus perennis* (tremoceiro).\(^52\)

Possui propriedades estrogénicas, antioxidantes, antiproliferativas e promove a inibição da angiogénese.\(^53,54\)

Na área da Hematologia, devido à sua acção promotora de apoptose, foram demonstradas propriedades antitumorais da genisteína em células de leucemia e linfoma: NB4 e HL-60 da leucemia mieloide aguda; Molt-4 da leucemia linfóide aguda e SUDHL-1 e Karpas 229 do linfoma.\(^55\)
A genisteína induz alterações morfológicas e reduz a viabilidade das células HL-60 resultando em danos a nível do DNA e fragmentação celular. Este fitoconstituente, induz a paragem do ciclo celular em G2/M pela indução de apoptose através de:

- **Morte celular induzida por espécies reativas de oxigénio**
 Ocorre segundo um mecanismo de stress ao nível do retículo endoplasmático (RE) devido à formação de espécies reativas de oxigénio (ROS) e aumento da libertação intracelular de Ca²⁺. Isto conduz ao aumento da expressão das proteínas IRE-1 α, calpain I, BiP, GADD153, caspase 7, caspase 4 e ATF-6 α, envolvidas na morte celular (Figura 5).⁵⁶

- **Ativação da via apoptótica intrínseca**
 Ocorre diminuição da diferença de potencial da membrana mitocondrial (ΔΨm) simultânea ao aumento da expressão da proteína pró-apotótica Bax e diminuição da anti-apotótica Bcl-2. A libertação de citocromo C é seguido de ativação da caspase-9 e caspase-3, que conduzem à morte das células tumorais (Figura 5).⁵⁶

![Figura 5 | Mecanismos de atuação celular da genisteína em células HL-60, características da leucemia mieloide aguda.](image)

- **Inibição da via NF-kB**
 A genisteína induz apoptose caspase-indipendente através da inibição da via NF-kB em células leucémicas.⁵⁷ A via do fator de transcrição nuclear NF-kB está envolvida no processo oncológico uma vez que, após ativação, o NF-kB é translocado do citoplasma para o núcleo, ativando a transcrição de fatores antia apoptóticos que evitam a morte das células tumorais. A inibição deste mecanismo parece também ter interesse no tratamento do linfoma.⁵⁷
• **Supressão da expressão de proteínas anti-apoptóticas**

As proteínas cIAP-1, têm como função o bloqueio de mecanismos apoptóticos, apresentando-se sobre expressas em tumores hematológicos. In vitro, a ginesteína atua sobre células derivadas de doentes com LMA favorecendo uma diminuição significativa da expressão das cIAP-1 em todas as linhas celulares. Assim, a inibição da cIAP-1, permite uma promoção da ativação das caspases, conduzindo à apoptose das células leucémicas.55

Para além de diminuir significativamente o número total de células in vitro, a genisteína suprimiu o crescimento de tumor induzido em murganhos através de injeção de células HL-60 (provenientes de uma doente do sexo feminino diagnosticada com leucemia mieloide aguda), havendo, deste modo, evidências in vivo da sua eficácia antitumoral.56

6.2.2. RESVERATROL

![Resveratrol](image)

É um polifenol presente em plantas como *Vitis sp.* (uvas) e *Arachis hypogaea* L. (amendoins).

O resveratrol tem propriedades anti-inflamatórias, antioxidantes, anti-angiogênicas, hipoglicemiantes e atua como agente anti-envelhecimento.58 Este bioativo tem, ainda, potencial antitumoral, sobretudo nos cancros da pele e colorretal, no cancro da mama, linfoma, leucemia, entre outros. A sua atividade antiproliferativa, foi demonstrada em células linfoblásticas leucémicas, assim como em modelos celulares de linfoma.55,59

Enquanto agente antitumoral, o resveratrol altera uma série de vias de sinalização que conduzem à supressão da proliferação, adesão, invasão e metastização do tumor. Para além disso, reduz os sinais de inflamação, e induz a apoptose celular.60,61

Assim, este fitoconstituínte pode atuar segundo diferentes mecanismos:

• **Via apoptótica intrínseca**

A administração crónica de resveratrol (RSV) resulta na inibição do crescimento de diferentes linhas celulares tumorais.62

O RSV aumenta a expressão mediada pela p53 de proteínas pró-apoptóticas como Bax, Bak, Bim. Simultaneamente, conduz à libertação de proteínas mitocondriais específicas como o citocromo c para o citosol, desencadeando a supressão dos inibidores apoptóticos, como Bcl-2 e Bcl-XL, conduzindo à ativação das caspases 9 e 3 em vários cancros, o que se traduz na morte celular.20
Deste modo, o resveratrol reduz a proliferação celular ao induzir apoptose nas células HL-60 da Leucemia e PEL do linfoma, pela ativação da caspase-3 e sobre-expressão de Bax.62

- **Ativação da via apoptótica extrínseca**

 O tratamento com RSV promove um aumento da expressão do ligando FasL na superfície dos linfócitos T citotóxicos e nas células HL-60 e ALCL aumenta a expressão do recetor de superfície desse mesmo ligando, o FasR.63

 Da interação FasR-FasL, há recrutamento de proteínas adaptadoras intercelulares, FADD, que conduzem à ativação da caspase-8 e, posteriormente, da caspase-3 e outros efetores que conduzem à morte celular.

 Os linfócitos normais do sangue periférico não são significativamente afetados pela mesma concentração de RSV, não se verificando, neste caso, o aumento da expressão de FasR, ao contrário do que acontece com as células tumorais.63

 Assim, nas células normais do sangue periférico, o RSV não induz apoptose porque não promove a sinalização FasR-FasL.

- **Ações Anti e Pró Oxidante**

 Enquanto as propriedades antioxidantes do RSV protegem as células de danos oxidativos, promovendo a proliferação celular normal, a atividade pró-oxidante é responsável por desencadear morte celular. Estudos demonstram que é exercido efeito pró-oxidante para concentrações mais elevadas de RSV, enquanto para concentrações mais reduzidas, esta molécula atua como antioxidante.64

 Enquanto pró-oxidante, o RSV promove a ativação da cascata apoptótica ao perturbar o balanço entre a sinalização celular de sobrevivência e morte.59 Esta ativação é acompanhada pela geração de stress oxidativo, diminuição dos níveis de glutatonia intracelular e perda de superóxido dismutase (SOD).

 A citotoxicidade está associada não só à molécula de RSV, mas também aos seus metabolitos hidroxilados que possuem atividade pró-oxidativa.65

 Doses mais elevadas de RSV induzem apoptose via ativação da cascata da caspase-3, tanto nas células normais (60 \(\mu\)M) como em células hematopoiéticas leucêmicas (5–43 \(\mu\)M).62

 Assim, pretende-se uma concentração suficientemente elevada para promoção da ação pró-oxidante do RSV em células HL-60, mas não demasiado elevada, de modo a evitar apoptose das células saudáveis.
O facto de o intervalo de concentração de RSV necessária à promoção de apoptose em células normais estar acima dos valores que exercem a mesma ação em células tumorais, constitui uma boa estratégia na minimização de efeitos adversos na terapêutica em Oncologia.

- **Modulação imunológica**

 Antigénios de superfície celular do linfoma podem ser reconhecidos por células T.

 As catepsinas acídicas, são enzimas responsáveis pelo processamento de antigénios e moléculas MHC classe II nos compartimentos endolisisossomais das células B. O processamento de antigénios é um passo relevante no reconhecimento da célula B do linfoma pelo sistema imunitário.\(^{66}\)

 O tratamento com RSV promove o aumento das catepsinas B e D, assim como das moléculas MHC classe II. Deste modo, verifica-se que ocorre um aumento da apresentação antigénica, com ativação da resposta imune em linhas celulares B testadas.\(^{62}\)

 O pterostilbeno (di-metilado) e o piceatanol, análogos naturais do resveratrol, constituem os estilbenos com origem em plantas mais efetivos na indução de stress no RE, induzindo morte celular mediada pela produção de ROS.\(^{67}\)

 Ensaios clínicos: A eficácia e, sobretudo, os parâmetros farmacocinéticos do resveratrol têm vindo a ser analisados. In vivo, o resveratrol apresenta baixa biodisponibilidade devido a rápida e extensa metabolização bem como a baixa absorção intestinal.

 • Os resultados de um ensaio clínico executado com doentes que apresentavam cancro colorretal com metástases hepáticas comprovou que a micronização do resveratrol aumenta significativamente a sua concentração plasmática, ultrapassando a barreira da biodisponibilidade reduzida. Por outro lado, este ensaio revelou eficácia do RSV ao promover um aumento de 39% na expressão da caspase-3, nas amostras recolhidas. Finalmente, a sua administração revelou-se segura uma vez que os únicos efeitos adversos relatados foram distúrbios gastro-intestinais leves.\(^{68}\)

 • Ainda no cancro colorretal, o resveratrol manifestou efetividade na potenciação da apoptose de células tumorais mediada pela caspase-3 e redução da proliferação celular observada pela redução da expressão da proteína ki-67 (proteína associada à proliferação celular cuja inibição impede a síntese de RNA ribossomal).\(^{69}\)
- Verificou-se que a administração diária, durante 29 dias, de uma cápsula de libertação prolongada contendo 2,5g de resveratrol por indivíduos saudáveis diminuiu, significativamente, os níveis de IGF-1 e IGFBP-3 (fatores de crescimento) no plasma, sugerindo o seu potencial na terapêutica oncológica.70

- Ensaios pré-clínicos, revelaram a capacidade do resveratrol em induzir a expressão de ligandos NKG2D em células leucêmicas.71 A administração de 1g de resveratrol por dia, durante 14 dias, por indivíduos saudáveis, revelou um aumento da expressão do recetor NKG2D nas células NK do sangue periférico.45 Assim, pressupõe-se a ação das células NK sobre células tumorais, através da interação entre ligando e recetor, levando à sua destruição. Este ensaio revela a potencialidade do resveratrol na sua atuação ao nível da imunidade inata.

6.3. COGUMELOS

Várias culturas tiram partido das potencialidades dos cogumelos, não só através da alimentação, mas também noutras áreas como a saúde. Exemplo disso, é a sua aplicação na medicina tradicional chinesa e, no fundo, cada vez mais a nível global atendendo às evidências que têm comprovado as suas vantagens no reforço do sistema imunitário e na terapêutica adjuvante do cancro, bem como de outras patologias.

Vários estudos atribuem aos cogumelos propriedades imunomoduladoras, antitumorais, anti-inflamatórias, hipoglicemiantes, antialérgicas, antivirais, antioxidantes e, ainda, preventivas de doenças cardiovasculares pela sua capacidade anti-aterosclerótica.72

Os cogumelos correspondem a estruturas de reprodução de alguns fungos. Do ponto de vista taxonómico, esses fungos pertencem, principalmente, à divisão Basidiomycota sendo que, algumas espécies fazem parte da divisão Ascomycota.72

Na sua composição é possível encontrar proteínas, polissacáridos (predominantemente β-glucanos), lípidos, fibras, vitaminas, minerais, polifenóis, terpenóides, entre outros metabolitos secundários.

Vários cogumelos potenciam a ativação do sistema imune inato, nomeadamente, das células NK, neutrófilos, macrófagos, assim como promovem a secreção de citocinas. Estas, por sua vez, ativam a imunidade adaptativa ao promoverem a produção de anticorpos por parte das células B e através da estimulação da diferenciação das células T em TH\textsubscript{1} e TH\textsubscript{2}.73

Exemplificam-se alguns destes constituintes em vários cogumelos:
• **POLISSACÁRIDOS** – estabelecem ligação com linfócitos B e T, células NK e macrófagos, aumentando a sua proliferação e maturação. Apresentam propriedades antioxidantes, imunoestimulantes e anti-virais.

Exemplo: *Ganoderma lucidum* possui β-glucanos, glicoproteínas e heteropolissacáridos. Os extratos aquosos deste cogumelo revelam ter a capacidade de estimular a proliferação celular e potenciar a ação dos linfócitos NK, dos macrófagos e dos linfócitos T, conduzindo ao aumento da síntese de citocinas como a IL-6 e o INF-γ.⁷⁴

O lentinano foi o primeiro polissacárido proveniente de um cogumelo aprovado para uso clínico como adjuvante na terapêutica do cancro do estômago no Japão, em 1985, pela sua ação potenciadora da resposta imunitária.⁷⁵

• **TERPENOS E TERPENÓIDES** – encontrados na natureza em plantas e fungos, possuem propriedades antimicrobianas, hipoglicemiantes, anti-inflamatórias e imunomoduladoras.⁷⁶

Exemplo: *Ganoderma lucidum* contém um largo espetro de terpenos e derivados como ácido ganodérico, ácido ganodérmico, ácido ganolucídico, ganoderal e ganoderol.

Exibem atividade imunológica, nomeadamente ao nível da estimulação do mecanismo do fator nuclear NF-kB. Aos terpenóides são atribuídas, principalmente, propriedades antitumorais diretas ao promoverem citotoxicidade e apoptose das células tumorais.⁷⁷

• **PROTEÍNAS FÚNGICAS IMUNOMODULADORAS – FIPs** – Induzem a expressão de citocinas específicas.

Exemplos:
- FIP-gsi, encontrada em *Ganoderma sinensis*, induz a produção de IL-2, IL-3, IL-4, INF-γ e TNF-α.⁷⁸
- FIP-fve encontrada em *Flammulina velutipes* estimula a proliferação de linfócitos, suprime a ocorrência de reação anafilática e aumenta a produção de IL-3 e INF-γ.⁷⁹

A primeira a ser descoberta foi a FIP-LZ-8, proveniente de *Ganoderma lucidum*. Induz imunossupressão em reações auto-imunes na diabetes em modelo animal e aumenta a sobrevivência após transplante cutâneo em murganhos, com menores efeitos nefrotóxicos quando comparado a outros agentes imunosupressores como ciclosporina.⁴
• **LECTINAS** – proteínas resistentes à digestão que chegam intactas à circulação sanguínea. Têm a capacidade de reconhecer glicanos na superfície das células, estabelecendo ligação com eles. Como resultado da interação das lectinas com os glicanos celulares, ocorrem eventos como a modulação da função.80

Exemplo: As lectinas isoladas de *Volvariella volvacea* exibem ação imunomoduladora muito superior a outras lectinas conhecidas. A sua ação passa pela ativação dos linfócitos T através do influxo de cálcio intracelular e ativação de marcadores CD25 e CD69, induzindo a proliferação celular.81

Grifola frondosa é um cogumelo que tem um forte papel imunomodulador, apresentando evidências em ensaios clínicos. *Coriolus versicolor* é, também um potente indutor da resposta imunológica sendo feita, inclusivamente, a sua dispensa em farmácia, sob a forma de suplemento. *Hericium erinaceus* constitui um cogumelo que, apesar de estar numa fase inicial de investigação em relação aos anteriores, tem permitido obter resultados positivos laboratorialmente que se têm revelado promissores.

É, a seguir, feita uma breve descrição da composição, propriedades e mecanismos de ação dos cogumelos acima mencionados.

6.3.1. GRIFOLA FRONDOSA

[Fungi – Basidiomycota – Agaricomycetes – Polyporales – Grifolaceae – Grifola]

Grifola frondosa, também conhecido como Maitake, é um cogumelo comestível originário do Japão que contém polissacáridos, proteínas, vitaminas, minerais, entre outros constituintes.82

Este cogumelo apresenta propriedades antimicrobianas, antioxidantes e citotóxicas.82

In vivo, este constituinte demonstrou inibir o desenvolvimento de metástases de cancro do pulmão, mediante administração por via intraperitoneal a ratos, que se traduziu no aumento da produção de IL-2 e ativação de células NK.83

In vitro, extratos deste cogumelo revelaram ter efeito dose-dependente em células da medula óssea de ratos, protegendo células percussoras hematopoieticas da toxicidade da doxorubicina.84
Ensaio clínico: Deste estudo fizeram parte doentes portadores de síndrome mielodisplásica (idade média de 70 anos) de risco baixo a intermédio que nunca tinham efetuado nenhum tipo de tratamento prévio. Procedeu-se à administração de 3mg/kg de extrato do cogumelo, contendo o β-glucano do Maitake, duas vezes por dia, durante 12 semanas.

Dos 21 doentes iniciais, 18 (7 mulheres e 11 homens) completaram o ensaio. Um dos doentes abandonou o estudo devido a perturbações gastro-intestinais decorrentes do tratamento e os outros dois retiraram-se devido a progressão da doença.

Um ensaio prévio, in vitro, havia demonstrado que o mesmo β-glucano estimula a hematopoiese em células provenientes de cordão umbilical humano, isto é, estimula a diferenciação em células sanguíneas, nomeadamente monócitos. Este ensaio de fase II permitiu constatar que in vivo, à semelhança do observado in vitro, o β-glucano de Grifola frondosa estimula a diferenciação de células progenitoras hematopoieticas traduzida na recuperação do número de neutrófilos basal e aumento daatividade dos monócitos após dano quimio-tóxico na medula óssea, o que demonstra o potencial imunoestimulador na síndrome mielodisplásica.

6.3.2. *CORIOLUS VERSICOLOR*

[Fungi – Basidiomycota – Agaricomycetes – Polyporales – Polyporaceae – Coriolus]

Este cogumelo possui propriedades citotóxicas, citostáticas e pró-apoptóticas em várias linhas celulares.

Extratos aquosos demonstram inibição da proliferação em três linhas celulares humanas de cancro da mama (T-47D, ZR75-30 e MCF-7), células de cancro do colo do útero (Bcap37), células B de linfoma, células humanas de leucemia promielocítica (HL-60, NB-4), e células da linhagem 7703 de cancro do fígado.

Os polissacáridos mais relevantes clinicamente são o PSP e o PSK (também designado com Krestin).

O PSP ativa as células do sistema imunitário, aumenta a produção de citocinas e quimiocinas como TNF-α, interleucinas (IL-1β e IL-6), histamina, e prostaglandina E. Para além disso, estimula a infiltração de células dendríticas e células T localmente nos tumores, reduzindo os efeitos negativos da quimioterapia.

O modelo de estudo mais usado para avaliar os efeitos antitumorais de PSP in vitro é a cultura celular HL-60 de leucemia promielocítica humana. Foi demonstrada a redução da proliferação através de paragem do ciclo celular, indução da apoptose e sensibilização das células anómalas a vários fármacos antitumorais como doxorrubicina e etoposido. Estes efeitos
estão associados com a diminuição da expressão de proteínas anti-apoptóticas Bcl-2 e aumento de Bax e citocromo c, assim como diminuição de vários genes fosfatase e cinase e a ativação das caspases 3, 8 e 9.88

O PSK tem a capacidade de estimular células dendríticas através do recetor TLR2 in vitro e inibir o crescimento do cancro da mama em murganhos com efeito antitumoral dependente de linfócitos T CD8 e células NK.

Constatou-se, ainda, que o PSK potencia o efeito de trastuzumab no tratamento do cancro da mama quando administrado oralmente, ao ativar células NK.89

O PSP modula a resposta imunitária ao regular a resposta ao stress oxidativo, o que é relevante, especialmente, após regime de quimioterapia. A administração do extrato de Coriolus versicolor em ratos, durante 3 dias, aumentou a produção de superóxido dismutase nos linfócitos de forma dose-dependente, promovendo a recuperação da atividade dessa enzima nos linfócitos T. Este efeito favoreceu a manutenção da viabilidade celular.87

Mecanismos potenciais de imunoestimulação de Coriolus versicolor:

- A ligação do PSP aos recetores TLR de superfície de linfócitos T inicia cascatas como a via MAPK p38 conduzindo à proliferação de células T e libertação em larga escala de citocinas pró-inflamatórias como IL-2 e INF-γ.
- A ligação de PSP a recetores Dectin-1, CR3 ou TLRs nos macrófagos conduz à ativação da atividade fagocítica que induz a produção de radicais oxidativos e citocinas como TNF-α.
- O reconhecimento de PSP pelo BCR leva à ativação de células B, proliferação clonal, e diferenciação em IgM ou IgG plasmáticas e células de memória.87

Este cogumelo revelou citotoxicidade seletiva em vários tipos de cancro, manifestando segurança em células saudáveis.90
6.3.3 HERICIUM ERINACEUS

[Fungi – Basidiomycota – Agaricomycetes – Russulales – Hericiaceae – Hericium]

É um cogumelo comestível, encontrado em árvores como o carvalho (Quercus sp) e faia (Fagus sp) na Europa, norte da América, Japão, Rússia e China.

Tem sido demonstrado que os extratos, frações e constituintes isolados deste cogumelo exibem atividades imunoestimuladora, antioxidante, pró-apotótica, inibidora da angiogénese, anti-metastática e, ainda, ação protetora ao nível do intestino e estômago. Este espectro de propriedades anti-tumorais resulta da presença de vários constituintes, nomeadamente, polissacáridos, lípidos, terpenóides e proteínas.91

Os extratos aquosos de Hericium erinaceus apresentam, por um lado, propriedades imunoestimuladoras dada a indução da atividade de células NK e macrófagos e, por outro, propriedades antitumorais através da indução da apoptose, tal como avaliado laboratorialmente em células monocíticas leucémicas humanas U937. O mecanismo de ação subjacente está associado à supressão da atividade de proteínas anti-apoptóticas (Bcl-2, BclXL, XIAP, e cIAPs), e não à estimulação das pró-apoptóticas.91

O potencial imunomodulador de Hericium erinaceus deve-se, em grande parte, aos polissacáridos que induzem a maturação das células dendríticas e a produção de citocinas mediada pelas mesmas, a proliferação de células T, bem como a ativação de macrófagos e aumento da produção de TNF-α.92

Outro exemplo de molécula bioativa deste cogumelo é a glicoproteína HEG-5 que é capaz de induzir apoptose em células de cancro do estômago, SCG-7901, estimulando a expressão de fatores pró-apoptóticos como a p53, Bax, caspase-8 e caspase-3.93

A proteína HEO3 tem a capacidade de reduzir, significativamente, o crescimento de células tumorais CC531 em modelos animais, transplantados por injeção intraperitoneal.

O efeito imunomodulador foi verificado pela proliferação e diferenciação de células T e estimulação de células apresentadoras de antígeno.94

Hericium erinaceus possui o diterpenóide erinacine A, proveniente do micélio que demonstra atividade inibitória em tumores associados ao aparelho digestivo ao promover a paragem do ciclo celular através da resposta ao stress oxidativo mediado pela formação de ROS.95
Os extratos, administrados oralmente, demonstram propriedades supressoras tumorais semelhantes ao 5-fluorouracilo, fármaco usado clinicamente no tratamento de cancros gastrointestinais revelando, este cogumelo, toxicidade muito inferior.96

7. INTERAÇÃO ENTRE PLANTAS E ANTITUMORAIS

É, da opinião geral, que os produtos à base de plantas são seguros dada a sua proveniência da natureza. Outros fatores que têm contribuído para um aumento da procura de produtos à base de plantas estão relacionados com a acessibilidade dos locais de venda, o preço atrativo, informação disseminada nas diversas plataformas ou por conselho de amigos ou familiares.

Contudo, o recurso à Fitoterapia é, frequentemente, feito de forma pouco informada, o que pode ser perigoso atendendo aos diversos efeitos adversos que têm sido descritos relacionados com a sua inconsciente utilização, nomeadamente, devido a interações com medicamentos. Estas interações ganham especial relevância quando se trata de fármacos que têm uma janela terapêutica estreita e, particularmente, em Oncologia, atendendo à fragilidade em que o organismo do doente já se encontra, devido à patologia e aos tratamentos que possa estar a realizar.

Apesar de muitas vezes estar longe do foco de atenção dos profissionais de saúde, a avaliação de eventuais interações entre fármacos prescritos e plantas usadas pelos doentes, deve atribuir-se especial cuidado para essa possibilidade, afim de evitar o comprometimento da eficácia da terapêutica.

É importante realçar que as plantas medicinais apresentam uma associação de vários constituintes, tornando-se difícil, muitas vezes, avaliar a contribuição individual de cada constituinte na ação resultante dessa mistura e, consequentemente, esclarecer e definir concretamente os mecanismos subjacentes às interações farmacocinéticas e/ou farmacodinâmicas com os medicamentos.

Alguns suplementos participam em potenciais interações farmacocinéticas com antitumoraís, sendo a CYP3A4 considerada a isoforma no fígado e intestino com a qual esses eventos ocorrem com maior frequência.97 Mais de metade dos fármacos lançados no mercado e quase todos os antitumoraís, tais como docetaxel, erlotinib, imatinib, irinotecano, paclitaxel e vincristina têm alguma forma de metabolização pela CYP3A4.98

O uso concomitante de determinados alimentos e suplementos tais como o Allium sativum (alho), Ginkgo biloba, Echinacea sp. (equinácia), Glycine max (soja), Panax ginseng e
Hypericum perforatum (erva de S. João) podem ter uma maior probabilidade de implicações clínicas e toxicológicas.99

Alguns exemplos de interações entre plantas e fármacos estão associados a produtos usados frequentemente no quotidiano. Deste modo, destaco duas plantas usadas na preparação de infusões que merecem atenção devido às reações adversas em doentes que estejam a fazer terapêutica antitumoral/imunossupressora:

A infusão de hipericão (*Hypericum perforatum*) tem propriedades antidepressivas, entrando na sua composição hipericina, hiperforina, flavonóides (quercetina), entre outros. A hiperforina de *Hypericum perforatum* induz fortemente a metabolização pela CYP3A4, bem como o efluixo pela glicoproteína-P de fármacos, através da ativação de PXR. Assim, o hipericão (flores e folhas) pode diminuir a concentração plasmática de vários fármacos, diminuindo a sua eficácia e comprometendo o seu efeito terapêutico.100 Deste modo, como reação adversa, pode ocorrer rejeição de órgãos transplantados em pacientes devido à diminuição da concentração plasmática de ciclosporina.101

Camellia sinensis é a planta da qual provém o chá verde. Da sua composição fazem parte catequinas e outros polifenóis, cafeína, entre outros compostos. São-lhe atribuídas propriedades como ações anti-inflamatória e antioxidante.

A epigallocatequina-3-galato do chá verde, uma inibidora da glicoproteína-P, promove o impedimento do transporte de irinotecano e dos seus metabolitos CPT-11 e SN-38 na eliminação biliar, resultando num aumento do tempo de semi-vida.102 Deste modo, pode haver um aumento da toxicidade do fármaco pelo tempo de exposição aumentado.103

Um estudo in vitro, revelou que a EGCG proveniente de *Camellia sinensis* impede a ação terapêutica do bortezomib, ao inibir a sua ação no nível do proteassoma. Usado no tratamento de mieloma múltiplo e linfoma, os doentes que administrarem bortezomib devem evitar ingerir infusões desta planta.104
8. LIMITAÇÕES DA TERAPÊUTICA COM RECURSO A PLANTAS E FUNGOS

Apesar de os produtos naturais constituírem, cada vez mais, uma área de interesse na descoberta de novas moléculas com ação quer a nível do sistema imunitário, quer diretamente nas patologias alvo existem, ainda, uma série de limitações que devem ser ultrapassadas de modo a que os sistemas de saúde possam usufruir dos seus benefícios.

Questões do ponto de vista de produção, variabilidade de composição química, barreiras farmacodinâmicas e farmacocinéticas afetam a aplicabilidade de produtos de origem natural na obtenção de produtos farmacêuticos.

Para além disso, o crescimento lento e a produção de bioativos em baixas concentrações em cogumelos e plantas, constituem uma limitação à produção em escala. Plantas e, sobretudo, cogumelos, nem sempre são facilmente cultivados em estufa e a viabilidade terapêutica dos constituintes é sazonal, dependendo das condições meteorológicas e do procedimento adotado no cultivo.

Outro problema associado aos fitoconstituintes é a reduzida biodisponibilidade dos mesmos em ensaios in vivo, ou seja, apesar de os resultados obtidos in vitro serem promissores, muitas vezes in vivo traduzem-se em concentrações plasmáticas reduzidas, o que ocorre tanto por barreiras na absorção como pela rápida metabolização. A realização de ensaios clínicos torna-se essencial.

A seleção de genes relevantes à produção de determinados constituintes expressos noutros hospedeiros de elevado ritmo de crescimento, avaliação das diferentes vias de administração e diferentes formulações farmacêuticas são algumas estratégias a desenvolver afim de ultrapassar as limitações anteriormente referidas.

Tanto nas plantas como nos cogumelos, é necessário isolar e identificar os constituintes ativos para melhor compreender os mecanismos particulares de cada um, ainda que possa ser vantajosa a sua aplicação em associação na terapêutica.

Assim, é necessária uma padronização dos meios e procedimentos a adotar nesta área, de modo a que possam ser seguidas as boas práticas de produção na obtenção de formulações exigentes, mediante ensaios clínicos adequados, favorecendo a obtenção de produtos farmacêuticos seguros e eficazes que garantam composições constantes dos pontos de vista qualitativo e quantitativo.
9. CONCLUSÕES

O aumento da esperança média de vida implica uma maior necessidade de manter a integridade do sistema imunitário, de modo a viver com a máxima qualidade e sem complicações. No entanto, o organismo está cada vez mais suscetível ao impacto negativo proveniente da exposição a agressões externas como problemas emocionais, alimentares, sedentarismo, entre outros fatores. Os agentes imunoestimuladores e imunomoduladores constituem uma arma fundamental na manutenção do equilíbrio das defesas do organismo como inibidoras do desenvolvimento de uma série de condições malignas.

Na terapêutica oncológica, a toxicidade dos antitumorais convencionais reforça a ideia de que há a necessidade de encontrar moléculas complementares ou alternativas que possam reduzir os efeitos secundários e aumentar a efetividade da terapêutica.

Apesar da resistência tumoral e da dificuldade que existe em travar o seu desenvolvimento, existe uma série de vias a partir das quais pode ser definido o tratamento a realizar. Os produtos de origem natural revelam atuar em várias dessas vias ao ter ação direta nas células tumorais, na estimulação do sistema imunitário e/ou na sensibilização do cancro às várias estratégias terapêuticas. A particularidade das plantas e cogumelos é que sendo produtores de centenas de compostos, podem atuar em múltiplos processos associados ao cancro de um modo sinergístico quando usados na terapêutica.

O risco de desenvolvimento da doença e de menor probabilidade de resistência aos tratamentos é superior em doentes imunocomprometidos. Em Hemato-Oncologia, a imunoestimulação e imunomodulação representam uma importância particularmente superior. Doentes com síndrome mielodisplásica, algum tipo de leucemia ou linfoma, mesmo antes de iniciarem terapêutica anti-tumoral e imunossupressora, pela etiologia das patologias referidas, já se encontram em estado de imunossupressão. Na realidade, a terapêutica promove como efeito secundário uma potenciação da maior consequência da própria doença. Esta adversidade adicional em relação a outros quadros oncológicos é refletida nas estatísticas em Portugal e no mundo. Os cancro hematológicos estão entre aqueles que apresentam uma menor esperança de sobrevida após diagnóstico.

Estratégias futuras podem ser adotadas na terapêutica sustentada em produtos de origem natural. O investimento em estudos relativos às potencialidades de plantas e cogumelos e a investigação detalhada dos mecanismos de ação de constituintes isolados pode conduzir à obtenção de opções seguras na profilaxia e terapêutica antitumoral personalizada.

Apesar dos resultados promissores obtidos até então, há um grande caminho a percorrer no desenvolvimento de terapêuticas seguras e eficazes à base de produtos de origem natural que perspetivem melhores prognósticos.
RELATÓRIO DE ESTÁGIO EM FARMÁCIA COMUNITÁRIA

- FARMÁCIA LUCIANO & MATOS -
ABREVIATURAS

SWOT *Strengths, Weaknesses, Opportunities, Threats* (Pontos Fortes, Fracos, Oportunidades e Ameaças)

SAMS Serviços de Assistência Médico-Social

MICF Mestrado Integrado em Ciências Farmacêuticas

PCHC Produto Cosmético e de Higiene Corporal

CATI Centro de Apoio à Terceira Idade

PIM Preparação Individualizada da Medicação

MSRM Medicamento Sujeito a Receita Médica

MNSRM Medicamento Não Sujeito a Receita Médica

DCI Denominação Comum Internacional

E. Coli *Escherichia Coli*
INTRODUÇÃO

O estágio curricular em Farmácia Comunitária previsto no plano de estudos do Mestrado Integrado em Ciências Farmacêuticas (MICF), lecionado na Faculdade de Farmácia da Universidade de Coimbra, prevê que conceitos teóricos lecionados em ambiente académico possam ser aplicados na vida real. Deste modo, enquanto última unidade curricular para aquisição do mestrado, o estágio constitui uma experiência que se revela marcante na vida do estudante e futuro profissional, ao ser a primeira oportunidade de aplicação do conhecimento adquirido em prol da saúde e do bem-estar da comunidade.

O setor farmacêutico está marcadamente representado pela Farmácia comunitária, não só por ser a área na qual existe maior número de farmacêuticos a exercer, mas também porque o farmacêutico comunitário é, desde logo, a imagem mais nitidamente presente na visão da população que tantas vezes recorre à farmácia como primeira opção enquanto instituição de saúde capacitada para esclarecer as suas dúvidas e solucionar variados problemas relativos ao seu estado de saúde.

O farmacêutico comunitário tem uma posição privilegiada na sociedade no que diz respeito ao impacto da sua influência na contribuição para a melhoria do estado de saúde de cada um, ao atuar em áreas como gestão da terapêutica, administração de medicamentos, determinação de parâmetros, promoção de estilos de vida saudáveis, entre tantas outras.105

O presente relatório incide sobre o estágio curricular em Farmácia Comunitária que iniciei no dia 10 de setembro de 2018 e terminei no dia 11 de janeiro de 2019 na Farmácia Luciano & Matos, sob a orientação da Dra. Maria Helena Amado.

2. ANÁLISE SWOT

Através da análise SWOT (Strenghts, Weaknesses, Opportunities, Threats)106, são a seguir apresentados os pontos fortes e fracos relativos ao estágio numa perspetiva interna ao meu desempenho, bem como a influência das oportunidades e ameaças numa perspetiva externa (Anexo II). Para realização desta análise foi considerada a minha prestação enquanto estagiário integrado na Farmácia Luciano & Matos, na qual pude desenvolver atividades e projetos no âmbito da farmácia comunitária, atendendo a toda a experiência que daí resultou.
2.1. PONTOS FORTES

2.1.1. Localização da farmácia

A Farmácia Luciano & Matos localiza-se na Praça 8 de Maio, em frente à Câmara Municipal de Coimbra. O edifício encontra-se, assim, numa zona histórica da cidade que, para além de possuir uma grande densidade populacional, é frequentada por centenas de turistas de variados países. Situada numa zona próxima do Polo 1 da universidade, muitos são os estudantes, portugueses e em regime de ERASMUS que se dirigem à farmácia.

Nas proximidades da Farmácia Luciano & Matos é possível encontrar muitos pontos de atração tais como escolas, espaços comerciais, instituições bancárias e há, também, paragens de autocarro e uma praça de táxis, que permitem a muitas pessoas que vivem noutras zonas da cidade ou fora de Coimbra, dirigir-se até lá.

É, ainda, de realçar a presença de instituições públicas e privadas de saúde, assim como consultórios médicos particulares próximas da farmácia. A título de exemplo, pode ser encontrado o edifício da instituição SAMS, a Casa de Saúde de Coimbra, entre outros. Assim, a variedade de especialidades médicas prestadas nestes locais, permitiram contactar com receitas que continham prescrita medicação para variadas patologias assim como produtos de cosmética variados na área da dermatologia.

Apesar de existir um elevado número de farmácias na mesma rua da Farmácia Luciano & Matos, por todos os motivos referidos e mais alguns mencionados mais adiante, a afluência populacional verifica-se em grande escala.

2.1.2. Instalações

A Farmácia Luciano & Matos transferiu-se para a atual localização em 2009, na sequência do projeto do Metro Mondego. Deste modo, as instalações são relativamente recentes, revelando uma enorme qualidade no que diz respeito a todas as divisões e instrumentos de que a farmácia dispõe.

Destaco o espaço de atendimento que, para além de ser visualmente atrativo, é amplo permitindo a livre circulação dos utentes e colaboradores. A existência de várias cadeiras permite ao utente esperar confortavelmente, caso haja necessidade disso ou, simplesmente, repousar o que é muitas vezes fundamental especialmente para utentes com mobilidade condicionada. Para além disso, existe uma variedade de produtos enorme, o que permite oferecer um aconselhamento diversificado e imediato. Existem seis balcões de atendimento, um dos quais possui mesa e cadeiras tanto para o utente como para o colaborador da farmácia.
(ou o estagiário), possibilitando um atendimento mais focado no utente e nas suas necessidades, de forma mais personalizada e distanciada de outros atendimentos a decorrer.

Para além da zona de atendimento ao público, a farmácia inclui uma zona de receção e armazenamento de medicamentos, dois gabinetes de atendimento (cada um com valências específicas não só para os farmacêuticos, mas também para os colaboradores externos – nutricionista, enfermeiro e podologista), um laboratório, dois armazéns, duas instalações sanitárias (uma para utentes e outra para colaboradores), gabinetes de contabilidade e de direção técnica e uma sala de reuniões. A modernidade e funcionalidade das instalações contribuem, não só para a satisfação dos colaboradores que diariamente ali trabalham, mas também para opinião positiva que os utentes têm da farmácia e, deste modo, para o bom funcionamento da mesma.

Assim, enquanto estagiário, as instalações da farmácia contribuíram para que me tenha sentido confortável no desempenho de todas as funções que me foram propostas e, sobretudo, para que as tenha realizado da melhor forma atendendo às valências estruturais existentes.

2.1.3. Perfil demográfico dos utentes

Em sequência de vários fatores mencionados relativamente à localização, a distribuição da população que frequenta a Farmácia Luciano & Matos é bastante diversificada permitindo-me, enquanto estagiário, contactar com diferentes necessidades e, principalmente, realidades.

A população residente, bem como as pessoas cujo local de trabalho se situa próximo da farmácia, correspondem a muitas famílias com crianças, adultos e idosos, resultando numa ampla distribuição etária dos utentes da farmácia. À semelhança da maioria das farmácias, é na população idosa que encontramos o grupo social mais assíduo, tendo em conta as necessidades inerentes ao envelhecimento.

Para além da medicação habitual e/ou pontual, verifiquei ao longo do estágio que a aquisição de produtos para além de medicamentos, como PCHCs (produtos cosméticos e de higiene corporal), dispositivos médicos e suplementos alimentares, era bastante frequente por clientes habituais e, sobretudo, pelas dezenas de turistas que lá se dirigiam semanalmente. Desta forma, foi possível contactar com situações de aconselhamento muito distintas.

2.1.4. Sifarma 2000®

O software utilizado na Farmácia Luciano & Matos na organização, gestão e registo de tarefas é o Sifarma 2000®. Assim, todo o processamento do trabalho diário passa pelo recurso a esta ferramenta, nomeadamente no atendimento aos utentes, na criação e atualização das
suas fichas, na encomenda e receção de produtos, na criação e regularização de devoluções, entre outras tarefas.

Apesar de inicialmente o programa parecer confuso pela multiplicidade de atalhos e páginas que apresenta, acaba por ser um ponto forte dado que de forma perfeitamente organizada, o sistema permite um rigoroso controlo de tudo o que nele é processado. Para além disso, uma vez que é o software mais utilizado pelas farmácias em Portugal, a experiência que adquiri tornou-me perfeitamente apto à sua utilização em qualquer lugar.

2.1.5. Preparação prévia à realização das tarefas

Na Farmácia Luciano & Matos, os estagiários são gradualmente introduzidos nas diferentes tarefas através de uma preparação prévia que inclui uma abordagem teórica detalhada. Para além disso, é-nos dada a oportunidade de simular o desempenho prático entre estagiários ou com elementos da equipa, previamente ao contexto real.

Iniciei o estágio na zona de receção e armazenamento de medicamentos onde aprendi a dar entrada de encomendas e a arrumar devidamente os vários tipos de produtos tanto no robot como nas prateleiras e gavetas existentes na zona de atendimento ao público. Posteriormente, foram-me transmitidos os conhecimentos necessários à realização de rastreios no gabinete de atendimento ao utente, preparação essa que passou por uma revisão das regras de execução prática e leitura sobre os fundamentos teóricos relativos aos práticos para medir e à sua importância clínica. Após algumas semanas, fui familiarizado com o painel de atendimento do Sifarma 2000®, avindo várias receitas de instituições como o CATI (Centro de Apoio à Terceira Idade) e a Casa dos Pobres. A etapa seguinte foi a observação de alguns atendimentos por parte dos colaboradores da farmácia, iniciando essa tarefa de forma autónoma alguns dias depois.

Para além destas tarefas, fui recebendo instruções e documentação relativa a gestão de psicotrópicos e benzodiazepinas, conferência do receituário, execução de PIMs (preparação individualizada da medicação), entre outras. Esta organização gradual permite que o estagiário consolide a aprendizagem da realização de uma determinada tarefa antes de iniciar a seguinte, tornando-se capaz, posteriormente, de desempenhar de forma autónoma essa multiplicidade de atividades relativas ao trabalho na farmácia comunitária.

2.1.6. Integração na equipa e autonomia no desempenho

A equipa da farmácia inclui sete farmacêuticos (incluindo a Diretora Técnica, Dra. Helena Amado), dois técnicos auxiliares de farmácia, um gestor, um ajudante de backoffice e uma funcionária encarregue pela limpeza.
No primeiro dia, as instalações da farmácia foram-nos apresentadas e, simultaneamente, fomos conhecendo os membros da equipa. A Diretora Técnica que nos havia recebido na semana anterior teve, já em contexto de estágio, uma reunião connosco na qual abordou a evolução da Farmácia Luciano & Matos e do setor farmacêutico em Portugal, falou-nos um pouco da organização da farmácia apresentando-nos a metodologia Kaizen e falou ainda dos desafios atuais e futuros da farmácia comunitária.

A Farmácia Luciano & Matos tem uma longa história respeitante à receção de estagiários, demonstrando muito gosto no seu acolhimento. Deste modo, o meu relacionamento com os colaboradores foi sempre pautado não só pela partilha de conhecimento, mas também pelo respeito, simpatia e boa disposição. A equipa mostrou-se muito disponível e receitiva a todas as questões que eu colocava procurando, sempre que possível, ajudar-me da melhor maneira.

Para além de verificar que a equipa me deu liberdade para trabalhar de forma autónoma (quando consideraram ser a altura certa), senti uma grande confiança depositada em mim por parte de todos que me encorajou, desde cedo, a realizar as mais diversas tarefas. Esta atitude em muito contribuiu para a determinação e o à vontade refletidos no meu desempenho.

A inclusão dos estagiários nas reuniões de equipa foi, também, um aspeto positivo porque nos fazia sentir integrados nas exposições e debates de assuntos relacionados com a organização e gestão da farmácia.

2.1.7. Rastreios

Ao longo destes meses na Farmácia Luciano & Matos, os serviços farmacêuticos que pude realizar em contexto de gabinete foram os rastreios relativos à pressão arterial, glicémia, colesterol total e triglicéridos.

O facto de ter iniciado os rastreios autonomamente poucas semanas após o início do estágio, mesmo antes de iniciar o atendimento, permitiu-me ter um primeiro contacto com os utentes da farmácia. Desta forma, foi possível estabelecer ligações profissionais de proximidade com os utentes e gerar confiança no trabalho por mim desempenhado.

A realização destes rastreios foi importante não só no aspeto referido mas, também, na transmissão de esclarecimentos aos utentes e na prestação um aconselhamento adequado atendendo aos valores obtidos em cada medição. O trabalho de gabinete foi, assim, a primeira oportunidade de aplicar conhecimentos teóricos adquiridos no MICF, em contexto real, tendo por base a história clínica do doente, a sua medicação habitual, assim como o seu grau de esclarecimento relativo à terapêutica e ao seu estado de saúde.
2.1.8. Metodologia Kaizen

Ao longo do estágio, a Dra. Helena Amado, procurou sempre transmitir a toda a equipa e estagiários o sentido de melhoria contínua através de diversas iniciativas.

O sistema Kaizen assenta, precisamente, nesse princípio. Surgido no Japão, tem como objetivo alcançar vantagens competitivas através do aumento de produtividade, rentabilização de tempo e motivação de toda a equipa, tendo como objetivo a otimização de processos.107

Através de pequenas reuniões de aproximadamente 15 minutos de duração, era feita uma análise de atividades e projetos em decurso e outras(os) em fase de conclusão. Dentro da equipa a responsabilidade por cada tarefa era atribuída a uma pessoa específica e procedia-se ao registo das tarefas já cumpridas bem como sugestões de melhoria. Estas reuniões permitiam uma atualização constante da equipa relativamente a uma série de aspetos, nomeadamente metas a cumprir, novas campanhas, formações, colaborações, entre outras. Desta forma, era promovido o desempenho de um papel ativo em conjunto na melhoria dos resultados da farmácia.

Enquanto estagiário, considero esta metodologia indispensável ao dia-a-dia de uma organização e realço a importância que este sistema tem ao permitir à farmácia um funcionamento muito bem estruturado, com objetivos bem definidos na promoção do envolvimento total da equipa.

2.1.9. Diversidade de conhecimentos no aconselhamento

Os conhecimentos adquiridos ao longo dos cinco anos de formação académica permitiram-me proceder não só a esclarecimentos relativos a medicamentos sujeitos a receita médica (MSRMs), mas também à indicação de medicamentos não sujeitos a receita médica (MNSRM), dispositivos médicos, produtos de dermocosmética, entre outros (Anexo III).

A abrangência de três estações do ano no decorrer do estágio em muito contribuiu para a diversidade de solicitações por parte dos utentes. No final do verão havia ainda procura de protetores solares, águas termais e hidratantes corporais. Entretanto, com o Outono e o início do Inverno, houve muita procura de produtos para a queda de cabelo, decorreu a época de vacinação contra a gripe, seguindo-se o período das constipações e estados gripais, com a procura disparada de analgésicos, anti-inflamatórios, suplementos de reforço ao sistema imunitário, entre outros.
2.1.10. Participação no Inventário

Todos os anos a Farmácia Luciano & Matos procede à realização de inventário de todos os produtos que possui nas suas instalações. A convite da Dra. Helena Amado, também os estagiários puderam participar nesta atividade.

Destaco como um ponto positivo porque se trata de algo fundamental a realizar em qualquer farmácia (e não só) uma vez que permite ter uma ideia clara de tudo aquilo que se tem disponível, minimizar o desperdício de produtos que estejam a expirar o seu prazo de validade e evitar acumulação desnecessária.

Da realização do inventário destaco os sentidos de responsabilidade, organização e boa gestão de uma empresa que constituem boas práticas a adotar por qualquer profissional das mais diversas áreas.

2.1.11. Preparação de medicamento manipulado

Um medicamento manipulado corresponde a “qualquer fórmula magistral ou preparado oficinal preparado e dispensado sob a responsabilidade de um farmacêutico” (Decreto-Lei n.º 95/2004 de 22 de abril)\(^{108}\). Com a evolução da indústria farmacêutica e do trabalho desenvolvido nos laboratórios, dada a alargada oferta de medicamentos e respetivas formulações no mercado, constata-se um decréscimo na preparação de manipulados nas farmácias comunitárias. No entanto, formulações individualizadas e tratamentos específicos continuam a ser necessários e prescritos e a Farmácias Luciano & Matos prepara uma quantidade considerável de formas magistrais, dispondo de um farmacêutico diariamente, a tempo integral, dedicado a essa tarefa.

Na fase final do meu estágio, tive a possibilidade de preparar uma solução de Minoxidil 5% e 17-α-estradiol 0,025% em TrichoSol\(^{®}\), uma solução de uso tópico com indicação no tratamento da alopecíia androgenética (Anexo IV). Esta execução permitiu-me conciliar conhecimentos já adquiridos em unidades curriculares como Farmácia Galénica, num contexto real.

2.1.12. Desenvolvimento de projetos propostos

Pude, ao longo dos 4 meses de estágio, verificar que havia um grande dinamismo por toda a equipa e, sobretudo, por parte da Dra. Helena Amado. Para além de nos ser transmitida toda a criatividade e procura pela inovação, encontrei, na Farmácia Luciano & Matos uma grande receptividade às iniciativas por mim propostas. Os projetos que tive oportunidade de desenvolver foram: criação e gestão da página de Instagram da farmácia; projeção de um novo
linear de produtos na área de atendimento ao público; renovação do design no topo do linear de produtos para homem e colaboração na elaboração do espaço para óculos.

Esta confiança e reconhecimento foram gratificantes e permitiram-me pôr em prática os ideais de que devemos dar o nosso melhor em tudo o que fazemos e devemos deixar sempre um pouco de nós por onde passamos.

2.1.13. Evolução do desempenho

Como referido anteriormente, toda a equipa se mostrou muito disponível à formação e ao encorajamento na realização das diferentes tarefas. Assim, com o passar do tempo o contacto com a própria equipa, os produtos e os utentes, permitiu-me progredir de uma forma extremamente positiva, ao longo dos 4 meses, com todos os conhecimentos que me foram transmitidos e oportunidades de aplicação daqueles que já possuía.

2.2. PONTOS FRACOS

2.2.1. Inexperiência no atendimento

Inicialmente, como é natural, houve alguma dificuldade no atendimento, sobretudo quando se tratava de situações que exigiam maior número de procedimentos, por exemplo, quando era necessário introduzir um plano de comparticipação especial, quando se tratava de receitas manuais no respeitante a toda a logística a ter com impressões no verso das mesmas, procedimentos a ter com cartões relativos a complementaridades adicionais ao SNS, entre outras situações. Esta necessidade de concentração acrescida refletia-se, por vezes, num tempo de atendimento mais prolongado, como tal, a comunicação e o aconselhamento inicialmente não eram tão postos em prática, dada a preocupação em executar todos os procedimentos de registo corretamente.

Com o decorrer do estágio, os procedimentos necessários ao processamento das vendas rapidamente foram sistematizados, passando a desempenhar essa tarefa com maior rapidez e com uma menor necessidade de reflexão sobre cada passo a executar, privilegiando os outros aspetos importantes do atendimento.

2.2.2. Nomes comerciais dos medicamentos

 Ao longo do MICF contactamos em várias unidades curriculares com a designação dos medicamentos segundo denominação comum internacional (DCI).

Apesar de as linhas de prescrição das receitas médicas conterem essa mesma denominação, no contexto real na farmácia comunitária, várias são as ocasiões em que o
utente se refere aos medicamentos pelo seu nome comercial. Naturalmente, surgem algumas dificuldades na comunicação porque, perante uma solicitação/questão do utente relacionada com um medicamento específico mencionado pelo nome comercial, caso não seja feita uma associação, interiormente. do(s) princípio(s) ativo(s) a essa designação, há necessidade de fazer uma rápida pesquisa no sistema, o que limita a prontidão na resposta ao utente.

Com a aquisição de prática, esta questão foi deixando de se tornar um problema pelo contacto frequente com os medicamentos tanto na cedência como, previamente, no ato de receção de encomendas.

2.2.3. Nível de preparação em determinadas áreas

O estágio em farmácia comunitária tem dois propósitos fundamentais: aplicação de conhecimentos adquiridos e a aquisição de novos. Deste modo, não se espera que o estagiário, quando chega à farmácia, saiba tudo sobre todas as áreas. No entanto, há formação em algumas delas cujas bases não são suficientemente sólidas, ou poderiam ser mais. Destaco dois domínios onde, inicialmente, me deparei com frequentes interrogações.

A Dermofarmácia e Cosmética foi uma dessas áreas. Inicialmente, pela imensa variedade de opções com lineares extensos para muitas indicações distintas. O MICF dá-nos bases para que tenhamos conhecimento sobre uma série de constituintes, as suas funções e indicações, no entanto, tal como referi, existem muitas formulações e torna-se complicado num primeiro contacto com os lineares, em contexto real, entender qual a melhor opção para cada situação e dar a resposta mais apropriada a cada caso. Ao longo do tempo, pelo contacto com os produtos e as respetivas marcas, bem como através do estudo de materiais informativos e catálogos disponíveis para consulta na farmácia, este aconselhamento tornou-se mais objetivo e deu-se uma desmistificação desta área em constante inovação. Ainda assim, a seleção das características do produto mais adequadas a cada utente, atendendo a formulações existentes, poderia ter sido mais explorada em unidades curriculares do MICF, até porque falamos de uma área que tem um público cada vez maior e mais abrangente.

O exposto anteriormente aplica-se, também, ao domínio dos produtos de uso veterinário. Neste caso, propor soluções concretas para as solicitações dos utentes, inicialmente, não era tarefa fácil pelas variadas especificações a ter em conta como a indicação dos produtos, os pesos dos animais, as quantidades a administrar, a periodicidade (por exemplo de pílulas e desparasitantes), entre outras.

Apesar de toda a experiência que se adquire em contexto real permitir clarificar e tornar-nos mais aptos nestas áreas, acredito que seja possível haver um melhor investimento no MICF na preparação dos seus alunos.
2.3. OPORTUNIDADES

2.3.1. Participação em formações

No decorrer do estágio tive a oportunidade de participar numa formação organizada pelo laboratório Pharma Nord, no hotel Tryp, cujo tema foi: Envelhecimento Saudável. Para além desta, foram realizadas três formações por colaboradores Holon, cujos temas foram: Ajudas técnicas, Rigidez Arterial e Nutrição. Tive, ainda, oportunidade de assistir a duas formações junto de delegados sobre produtos/gamas de produtos específicos, nomeadamente uma formação relativa ao Ben-u-Ron® Direct e outra sobre produtos Silfarma.

A presença nestas formações revelou-se bastante útil não só para o aconselhamento nos mais diversos atendimentos, mas também para consolidação de conteúdos já adquiridos no MICF.

2.3.2. Contacto com profissionais de saúde

Para além da comunicação estabelecida com a equipa da farmácia, tive oportunidade de contactar com outros profissionais de saúde. Nesse contexto, contactei com médicos, enfermeiros, nutricionistas, farmacêuticas cuja área profissional se encontra focada na consulta de dermofarmácia, um podologista e, ainda, outros farmacêuticos e técnicos de farmácia, sempre que havia solicitações entre farmácias.

Este contacto acaba por representar uma mais valia no que diz respeito à partilha de visões, troca de conhecimentos e experiências, bem como uma forma de pôr em prática o trabalho em equipa conciliando diversas áreas da saúde, em prol da melhoria da qualidade de vida daqueles que recorrem aos nossos serviços.

2.3.3. Integração no grupo Holon

Em sequência do ponto anterior, realço como oportunidade o facto de a Farmácia Luciano & Matos estar integrada no grupo Holon, uma vez que me permitiu perceber em que consiste uma parceria entre farmácias, laboratórios, distribuidores e vários profissionais de saúde que, juntos, trabalham tendo como foco principal a pessoa que procura um produto, um serviço ou um aconselhamento em contexto de farmácia comunitária.

As farmácias Holon disponibilizam, para além de serviços farmacêuticos, serviços especializados tais como nutrição, podologia, pé diabético, dermofarmácia, entre outros. Trata-se, assim, de uma rede de farmácias e serviços presente em vários pontos do país que representa, para o estagiário, uma fonte de oportunidades.

2.4. AMEAÇAS

2.4.1. Desconfiança relativa ao aconselhamento do estagiário

Apesar de não ter sido algo frequente e das poucas vezes que ocorreu, ter sido em fases mais iniciais do estágio, alguns utentes mostravam clara reticência em ser atendidos pelos estagiários. Muitas vezes, o que acontecia era os utentes afirmarem que éramos jovens, mesmo antes de sequer tentarem fazer alguma questão e, por vezes, quando eles próprios tinham dúvida sobre algum tema, acabavam por considerar que o estagiário não iria saber esclarecer, pela pouca experiência. Tentei, ao máximo, contornar esta opinião que, na realidade, muitos utentes têm de todos os estagiários em qualquer local, mostrando sempre a maior confiança e determinação nas informações que transmitia, o que se traduziu numa atitude positiva por parte dos utentes que se mostraram recetivos ao que eu lhes transmitia. Ainda assim, houve situações nas quais utentes habituais preferiram, com toda a legitimidade, ser atendidos por alguém da equipa pelo grau de proximidade com os mesmos.

Curiosamente, com o decorrer do estágio, vários foram os utentes que solicitaram ser atendidos por mim, o que acabou por ser gratificante pelo reconhecimento do meu trabalho.

2.4.2. Desvalorização dos conhecimentos do farmacêutico

Atualmente, saúde e bem-estar são temas que cada vez mais ocupam o topo das preocupações da maioria das pessoas. Por si só, a constatação deste facto é bastante positiva. No entanto, os utentes procuram toda a informação que conseguem através dos mais diversos meios e, muitas vezes, confiam naquela que está mais acessível. Isto acaba por ser um risco, na medida em que nem sempre se trata dos recursos mais adequados, uma vez que nem tudo o que está descrito nas mais diversas fontes se aplica a todas as pessoas e, muitas vezes, há difusão de uma multiplicidade de informação incorreta. Esta situação leva a que alguns utentes sobrestimem os seus conhecimentos sobre diversas áreas o que, por vezes, leva à desvalorização dos conhecimentos do farmacêutico.

Para além do que foi referido, a população mostra-se, por vezes, reticente ao aconselhamento prestado na farmácia, revelando maior confiança e segurança no seu médico. Este facto constitui, também, um cenário de desvalorização do conhecimento farmacêutico.

Enquanto profissional de saúde dotado de um vasto conjunto de conhecimentos científica e cientificamente sustentados pela formação e actualização constantes, o farmacêutico e, da mesma forma, o estagiário, deve adotar uma postura atenta às características e preocupações de cada utente, com vista a um aconselhamento preciso e adaptado que seja suficientemente esclarecedor e gerador de confiança perante o trabalho desenvolvido.
3. CONCLUSÃO

Mediante tudo aquilo que é descrito neste relatório, considero que a realização do estágio em farmácia comunitária foi uma experiência extremamente enriquecedora. Realçoo valor desta aprendizagem sob os pontos de vista académico e profissional pela aplicação prática do conhecimento científico, assim como, pela sua importância do ponto de vista social.

A Farmácia Luciano & Matos é pautada por valores que são transmitidos aos estagiários e que, no fundo, constituem os princípios pelos quais se deve reger a atividade farmacêutica. Nesse sentido, destaco a responsabilidade, a organização, o profissionalismo, a competência e a dedicação ao bem-estar da comunidade.

A farmácia comunitária é um dos primeiros locais ao qual muitas pessoas recorrem quando não se sentem bem ou procuram alguma resposta às suas dúvidas relacionadas com o seu estado de saúde, e não só. A farmácia comunitária é um espaço de partilha e não há dúvida de que há quem procure (e encontre) soluções não só para o corpo, mas também para a alma.

A realização do estágio permitiu-me, enquanto estagiário, vivenciar o enquadramento real da profissão farmacêutica num dos seus múltiplos setores, aumentando a minha consciencialização para o facto de o papel do farmacêutico ser pautado pela inovação e pela aprendizagem diária e constante. Este desenvolvimento profissional contínuo é demonstrativo da responsabilidade dos farmacêuticos no seu compromisso pela valorização não só da profissão, mas também da comunidade.109

27. PANDA, Abir Kumar; CHAKRABORTY, Dwaipayan; SARKAR, Irene; KHAN, Tila; SA, Gaurisankar - New insights into therapeutic activity and anticancer properties of curcumin. 2017) 31–45.

35. NEWMAN, Tim - How the immune system works [Consultado a 1 de fevereiro de

38. ABDEL-LATEEF, Ezzat; MAHMOUD, Faten; HAMMAM, Olfat; EL-AHWANY, Eman; EL-WAKIL, Eman; KANDIL, Sherihan; ABU TALEB, Hoda; EL-SAYED, Mortada; HASSENEIN, Hanaa - Bioactive chemical constituents of Curcuma longa L. rhizomes extract inhibit the growth of human hepatoma cell line (HepG2). Acta Pharmaceutica. 66:3 (2016) 387–398.

39. SERAFINI, Melania Maria; CATANZARO, Michele; ROSINI, Michela; RACCHI, Marco; LANNI, Cristina - Curcumin in Alzheimer's disease: Can we think to new strategies and perspectives for this molecule? Pharmacological Research. 124:2017) 146–155.

41. GUO, Yong; LI, Yi; SHAN, Qingqing; HE, Guangcui; LIN, Juan; GONG, Yuping - Curcumin potentiates the anti-leukemia effects of imatinib by downregulation of the AKT/mTOR pathway and BCR/ABL gene expression in Ph+ acute lymphoblastic leukemia. International Journal of Biochemistry and Cell Biology. 65:2015) 1–11.

42. PAPIEŻ, Monika A.; KRZYŚCIAK, Wirginia; SZADE, Krzysztof; BUKOWSKA-STRAKOVÁ, Karolina; KOZAKOWSKA, Magdalena; HAJDUK, Karolina; BYSTROWSKA, Beata; DULAK, Jozef; JOZKOWICZ, Alicja - Curcumin enhances the cytogenotoxic effect of etoposide in leukemia cells through induction of reactive oxygen species. Drug Design, Development and Therapy. 10:February (2016) 557–570.

44. SKARZYNSKI, JESSICA - Curcumin and Vitamin D Treatment May Stabilize Disease in Patients with CLL and SLL [Consultado a 4 de fevereiro de 2019]. Disponível

54. MARKOVITS, Judith; LINASSIER, Claude; FOSSÉ, Philippe; COUPRIE, Jeanine; PIERRE, Josiane; JACQUEMIN-SABLON, Alain; SAUCIER, Jean Marie; PECQ, Jean Bernard LE; LARSEN, Annette K. - Inhibitory Effects of the Tyrosine Kinase Inhibitor Genistein

56. HSIAO, Yin-Chen; PENG, Shu-Fen; LAI, Kuang-Chi; LIAO, Ching-Lung; HUANG, Yi-Ping; LIN, Chin-Chung; LIN, Meng-Liang; LIU, Kuo-Ching; TSAI, Chin-Chuan; MA, Yi-Shih; CHUNG, Jing-Gung - Genistein induces apoptosis in vitro and has antitumor activity against human leukemia HL-60 cancer cell xenograft growth in vivo. Environmental Toxicology. December 2018 (2019) 1–14.

57. YAMASAKI, Masao; MINE, Yoshihiro; NISHIMURA, Misato; FUJITA, Satoshi; SAKAKIBARA, Yoichi; SUIKO, Masahito; MORISHITA, Kazuhiro; NISHIYAMA, Kazuo - Genistein induces apoptotic cell death associated with inhibition of the NF-κB pathway in adult T-cell leukemia cells. Cell Biology International. 37:7 (2013) 742–747.

59. URBANIAK, Alicja; DELGADO, Magdalena; KACPRZAK, Karol; CHAMBERS, Timothy C.; OPYDO-CHANEK, Malgorzata; RAK, Agnieszka; CIERNIAK, Agnieszka; MAZUR, Lidia; DIRECTIONS, Future; NABAVI, Seyed Mohammad Fazel; DEVI, Kasi Pandima; LOIZZO, Monica Rosa; TUNDIS, Rosa; ... NABAVI, Seyed Mohammad Fazel - Cellular and molecular targets of resveratrol on lymphoma and leukemia cells. Molecules. 747:6 (2017) 1–15.

63. FAN, Yingying; CHIU, Jen-Fu; LIU, Jing; DENG, Yan; XU, Cheng; ZHANG, Jun; LI, Guanwu - Resveratrol induces autophagy-dependent apoptosis in HL-60 cells. BMC Cancer.

66. HARDING, Clifford V. - Pathways of antigen processing. ISBN 0732-0582.

78. LI, Qizhang; WANG, Xuefei; CHEN, Yiying; LIN, Juan; ZHOU, Xuanwei - Cytokines expression induced by Ganoderma sinensis fungal immunomodulatory proteins (FIP-gsi) in mouse spleen cells. Applied Biochemistry and Biotechnology. 162:5 (2010) 1403–1413.

79. WANG, Po Hui; HSU, Chyong Ing; TANG, Sheau Chung; HUANG, Yu Lu; LIN, Jung Yaw; KO, Jiunn Liang - Fungal Immunomodulatory Protein from Flammulina velutipes Induces Interferon-γ Production through p38 Mitogen-Activated Protein Kinase Signaling Pathway. Journal of Agricultural and Food Chemistry. 52:9 (2004) 2721–2725.

82. KLAUS, Anita; KOZARSKI, Maja; VUNDUK, Jovana; TODOROVIC, Nina; JAKOVLJEVIC, Dragica; ZIZAK, Zeljko; PAVLOVIC, Vladimir; LEVIC, Steva; NIKSIC, Miomir; GRIENSVEN, Leo J. L. D. VAN - Biological potential of extracts of the wild edible basidiomycete mushroom grifola frondosa. Food Research International. 67:2015) 272–283.

83. MASUDA, Yuki; MURATA, Yukihito; HAYASHI, Masahiko; NANBA, Hiroaki; ASUDA, Yuki M.; URATA, Yukihito M.; AYASHI, Masahiko H.; ANBA, Hiroaki N. - Inhibitory effect

86. ZHOU, Xuanwei; JIANG, Hua; LIN, Juan; TANG, Kexuan - Cytotoxic activities of Coriolus versicolor (Yunzhi) extracts on human liver cancer and breast cancer cell line. Journal of Biotechnology. 6:August (2007) 1740–1743.

89. LU, Hailing; YANG, Yi; GAD, Ekram; INATSUKA, Carol; WENNER, Cynthia A.; DISIS, Mary L.; STANDISH, Leanna J. - TLR2 agonist PSK activates human NK cells and enhances the antitumor effect of HER2-targeted monoclonal antibody therapy. Clinical Cancer Research. 17:21 (2011) 6742–6753.

90. BLAGODATSKI, Artem; YATSUNSKAYA, Margarita; MIKHAILOVA, Valeriia; TIASTO, Vladlena; KAGANSKY, Alexander; KATANAEV, Vladimir L. - Medicinal mushrooms as an attractive new source of natural compounds for future cancer therapy. Oncotarget. 9:49 (2018) 29259–29274.

91. KIM, Sung Phil; KANG, Mi Young; CHOI, Yong Hee; KIM, Jae Ho; NAM, Seok Hyun; FRIEDMAN, Mendel - Mechanism of Hericium erinaceus (Yamabushitake) mushroom-induced apoptosis of U937 human monocytic leukemia cells. Food and Function. 2:6 (2011) 348–356.

92. REN, Zhe; QIN, Tao; QIU, Fuan; SONG, Yulong; LIN, Dandan; MA, Yufang; LI, Jian;

94. DILING, Chen; CHAOQUN, Zheng; JIAN, Yang; JIAN, Li; JIYAN, Su; YIZHEN, Xie; GUOXIAO, Lai - Immunomodulatory activities of a fungal protein extracted from Hericium erinaceus through regulating the gut microbiota. Frontiers in Immunology. 8:JUN (2017).

95. LU, Chien Chang; HUANG, Wen Shih; LEE, Kam Fai; LEE, Ko Chao; HSIEH, Meng Chiao; HUANG, Cheng Yi; LEE, Li Ya; LEE, Bih O.; TENG, Chih Chuan; SHEN, Chien Heng; TUNG, Shui Yi; KUO, Hsing Chun - Inhibitory effect of Erinacines A on the growth of DLD-colorectal cancer cells is induced by generation of reactive oxygen species and activation of p70S6K and p21. Journal of Functional Foods. 21:2016) 474–484.

98. HE, Shu-Ming; YANG, An-Kui; LI, Xiao-Tian; DU, Yao-Min; ZHOU, Shu-Feng - Effects of herbal products on the metabolism and transport of anticancer agents. Expert Opinion on Drug Metabolism & Toxicology. 6:10 (2010) 1195–1213.

100. CHANDRA PRAKASH, BALTAZAR ZUNIGA, CHUNG SEOG SONG1, SHOULEI JIANG1, JODIE CROPPER1, SULGI PARK1, Bandana Chatterjee - Nuclear Receptors in Drug Metabolism, Drug Response and Drug Interactions. 2016).

101. LÜSCHER, Thomas F.; NOLL, Georg - Acute heart transplant rejection due to Saint John ’s wort School-based hepatitis B vaccination programme and. The

103. SAEED, Muhammad; NAVEED, Muhammad; ARIF, Muhammad; KAKAR, Mohib Ullah; MANZOOR, Robina; ABD EL-HACK, Mohamed Ezzat; ALAGAWANY, Mahmoud; TIWARI, Ruchi; KHANDIA, Rekha; MUNJAL, Ashok; KARTHIK, Kumaragurubaran; DHAMA, Kuldeep; IQBAL, Hafiz M. N.; ... SUN, Chao - Green tea (Camellia sinensis) and L-theanine: Medicinal values and beneficial applications in humans—A comprehensive review. Biomedicine and Pharmacotherapy. 95:July (2017) 1260–1275.

110. LAVIGNE, J. P.; BOURG, G.; COMBESCURE, C.; BOTTO, H.; SOTTO, Albert - In-vitro and in-vivo evidence of dose-dependent decrease of uropathogenic Escherichia coli virulence after consumption of commercial Vaccinium macrocarpon...

ANEXOS

ANEXO 1 - INCIDÊNCIA E PREVALÊNCIA EM PORTUGAL E NO MUNDO

Atualmente, o doente oncológico tem uma maior probabilidade de sobreviver ao cancro, atendendo ao desenvolvimento científico, prevendo-se uma ligeira diminuição na incidência e taxa de mortalidade nas faixas etárias abaixo dos 70 anos. No entanto, com o aumento da esperança média de vida, e com todas as fragilidades associadas ao envelhecimento, prevê-se um aumento destes indicadores na população idosa.10

Assim, de uma forma global, considerando doentes de ambos os sexos e de todas as idades, verifica-se uma tendência para o aumento do número de mortes devido ao cancro em todo o mundo.

Tabela 1 | Incidência e número de óbitos em Portugal relativamente a cada cancro hematológico - 2018.10 (São considerados ambos os sexos e todas as idades. O valor de \% resulta do quociente do número de sobreviventes pelo número de novos casos).

<table>
<thead>
<tr>
<th>CANCRO</th>
<th>Novos casos</th>
<th>Óbitos</th>
<th>Sobreviventes</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Linfoma não Hodgkin</td>
<td>2 084</td>
<td>991</td>
<td>1 093</td>
<td>52,4</td>
</tr>
<tr>
<td>Leucemia</td>
<td>1 187</td>
<td>955</td>
<td>232</td>
<td>19,5</td>
</tr>
<tr>
<td>Mieloma múltiplo</td>
<td>1034</td>
<td>708</td>
<td>326</td>
<td>26,4</td>
</tr>
<tr>
<td>Linfoma de Hodgkin</td>
<td>230</td>
<td>51</td>
<td>179</td>
<td>77,8</td>
</tr>
</tbody>
</table>

Portugal é um dos países da Europa com menor incidência e prevalência de leucemia e está entre os países com maior taxa de mortalidade tanto devido a leucemia, como a linfoma de Hodgkin, linfoma não Hodgkin e mieloma múltiplo.10

Tendo em conta todos os tipos de cancro, em 2018, a leucemia foi o 9º cancro que mais mortes causou em Portugal, o mieloma múltiplo o 15º e o Linfoma não Hodgkin o 30º.10

Numa visão global, o Linfoma não Hodgkin foi, de todos os cancros, o que vitimou mais doentes do sexo masculino na Eritreia. Da mesma forma, a Leucemia foi a principal causa de morte oncológica, no Sudão, no sexo masculino.10

Relativamente à SMD, a sua incidência é de 5 em cada 100 000 habitantes/ano. Contudo, acima dos 60 anos, a incidência aumenta para 20 a 50 em cada 100 000 habitantes/ano.34

Eslováquia, Chipre, Croácia, Eslovénia e Portugal são os países da Europa com maior taxa de mortalidade devido a cancros Hematológicos.10
ANEXO II - TABELA RESUMO DA ANÁLISE SWOT

<table>
<thead>
<tr>
<th>ANÁLISE SWOT</th>
<th>ASPETOS POSITIVOS</th>
<th>ASPETOS NEGATIVOS</th>
</tr>
</thead>
<tbody>
<tr>
<td>FATORES INTERNOS</td>
<td>PONTOS FORTES</td>
<td>PONTOS FRACOS</td>
</tr>
<tr>
<td></td>
<td>- Localização da farmácia</td>
<td>- Inexperiência no atendimento</td>
</tr>
<tr>
<td></td>
<td>- Instalações</td>
<td>- Nomes comerciais dos medicamentos</td>
</tr>
<tr>
<td></td>
<td>- Perfil demográfico dos utentes</td>
<td>- Nível de preparação em determinadas áreas</td>
</tr>
<tr>
<td></td>
<td>- Sifarma 2000®</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Preparação prévia à realização das tarefas</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Integração na equipa e autonomia no desempenho</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Rastreios</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Metodologia Kaizen</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Diversidade de conhecimentos no aconselhamento</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Participação no inventário</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Preparação de medicamento manipulado</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Desenvolvimento de projetos propostos</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Evolução do desempenho</td>
<td></td>
</tr>
<tr>
<td>FATORES EXTERNOS</td>
<td>OPORTUNIDADES</td>
<td>AMEAÇAS</td>
</tr>
<tr>
<td></td>
<td>- Participação em formações</td>
<td>- Desconfiança relativa ao aconselhamento do estagiário</td>
</tr>
<tr>
<td></td>
<td>- Contacto com profissionais de saúde</td>
<td>- Desvalorização dos conhecimentos do farmacêutico</td>
</tr>
<tr>
<td></td>
<td>- Integração no grupo Holon</td>
<td></td>
</tr>
</tbody>
</table>
Caso 1

Solicitação de fosfomicina | Utente do sexo feminino, 55 anos |

A utente apresentava uma prescrição médica antiga de fosfomicina, (já tendo efetuado o tratamento há algum tempo) e solicitava nova embalagem. Quando questionada sobre os sintomas, refere desconforto ao urinar e ligeiro ardor, sintomas que considerava semelhantes aos que havia tido aquando da prescrição da fosfomicina. Apesar de haver grande probabilidade de se tratar de uma situação de infeção urinária em situação inicial, não cabe ao farmacêutico fazer diagnóstico, muito menos ceder um antibiótico sem nova prescrição médica passada após análise da situação corrente.

Desta forma, o procedimento que efetuei, foi salientar a necessidade de confirmação do diagnóstico e explicar a impossibilidade ética e legal de ceder um antibiótico sem receita médica devido aos problemas de saúde pública que o abuso ao seu recurso podem vir a desencadear. Assim, indiquei à senhora que se dirigisse ao centro de saúde ou hospital de modo a que pudesse ser feita uma avaliação rigorosa pelo médico e que este procedesse à prescrição adequada, caso confirmada a necessidade.

Aproveitei, ainda, para dar a conhecer um suplemento com extrato de arando e uva-ursina isto porque, há evidência demostrada em Fitoterapia relativa à aplicação destas plantas em ocorrências associadas a infeções urinárias. O arando (Vaccinium macrocarpon L.), apesar de não apresentar atividade antibacteriana, possui proantocianidinas do tipo A que permitem a inibição da adesão da bactéria E. Coli às células uroepiteliais da bexiga. A uva-ursina (Arctostaphylos uva-ursi L.) possui arbutina, uma hidroquinona glicosilada que, assim como os taninos, são responsáveis pela sua ação antimicrobiana. Para além disso, os flavonóides, também presentes nas folhas desta planta, possuem ação anti-inflamatória e diurética que auxiliam no alívio dos sintomas da infeção urinária.

Esclareci a senhora para o facto de este produto ser uma grande ajuda no tratamento da situação em causa, mas que poderia não ser garantia da resolução da infeção (no caso de se confirmar), atendendo à impossibilidade de avaliar o estádio de desenvolvimento da mesma, naquele contexto. No entanto, no mínimo, iria ajudar a aliviar os sintomas, sendo que o uso deste tipo de suplementos é importante, sobretudo, na prevenção da recorrência de infeções urinárias.
Caso 11

Pernas cansadas | Utente do sexo feminino, 30 anos |

A utente dirigiu-se à farmácia afirmando que sentia fadiga muscular recorrente nos membros inferiores. Acrescentou que tinha um emprego no qual estava muito tempo sentada e tinha o hábito de cruzar as pernas.

Aconselhei a utente a aplicar um Bálsamo massajando os membros inferiores uma a duas vezes por dia. Na composição desse produto encontram-se extratos de plantas como *Ginkgo biloba* e *Vitis vinifera* que possuem propriedades vasodilatadoras. De facto, a estimulação mecânica obtida pela massagem, assim como a ação natural dos extratos de plantas do bálsamo, promovem um favorecimento da circulação venosa dos membros inferiores, o que é essencial para transporte de oxigénio e outras substâncias até às células do tecido muscular, minimizando a sensação de fadiga.

Para além disso, de modo a complementar a ação estimuladora da massagem, indiquei à utente tomar um suplemento contendo extrato seco de *Vitis vinifera*, 1 comprimido por dia, e aguardar melhoria da condição durante os três meses seguintes.

Como medidas não farmacológicas, aconselhei a utente a evitar cruzar as pernas, a elevar ligeiramente os membros inferiores quando estivesse em repouso, a praticar exercício físico (caminhar, pelo menos, 30 minutos por dia) e sugerir, ainda, a utilização de meias de descanso.
ANEXO IV – FICHA DE PREPARAÇÃO DE MANIPULADO

FICHA DE PREPARAÇÃO DE MEDICAMENTOS MANIPULADOS

farmácia Luciano & Matos
FARMÁCIAS D.O.U.

Medicamento: Minoxidil 5% e 17-α estradiol 0.025% em TrichoSol®

Teor em substância(s) activa(s); 100g (ml ou unidades) contêm 5 g (ml) de minoxidil e 0.025 g (ml) de 17-α estradiol.

Forma farmacêutica: solução

Número de lote: 0319

Data de preparação: 03/01/2019

Quantidade a preparar: 100ml

<table>
<thead>
<tr>
<th>Matérias-primas</th>
<th>Nº de lote</th>
<th>Origem</th>
<th>Farmacopeia</th>
<th>Quantidade para 100ml</th>
<th>Quantidade calculada</th>
<th>Quantidade pesada</th>
<th>Rubrica do operador</th>
<th>Rubrica do supervisor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Minoxidil</td>
<td>170251-J-2</td>
<td>Acofarma</td>
<td>Ph. Eur. 9.0</td>
<td>5 g</td>
<td>5 g</td>
<td>5,000g</td>
<td></td>
<td></td>
</tr>
<tr>
<td>17-α estradiol</td>
<td>18C23-B05-351578</td>
<td>Fagron</td>
<td>DAC 2011</td>
<td>0,025 g</td>
<td>0,025 g</td>
<td>0,025g</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TrichoSol®</td>
<td>1675/17</td>
<td>Fagron</td>
<td></td>
<td>q.b. p. 100 ml</td>
<td>q.b. p. 100 ml</td>
<td>97,44g</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Preparação

1. Verificar o estado de limpeza do material.

2. Dissolver o minoxidil em cerca de 90 ml de TrichoSol® sob agitação.

3. Pesar o 17 alfa-estradiol, adicionar à solução obtida em 2 e agitar até completa dissolução.

4. Transferir a solução obtida em 3 para uma proveta de vidro e perfazer o volume final de 100 ml com TrichoSol®.

5. Transferir a solução final para 1 frasco com spray doseador.

6. Lavar e secar o material utilizado.
Aparelhagem usada: Balança BL.01
Agitador magnético

Embalagem

Tipo de embalagem: frasco PET com pulverizador
Capacidade do recipiente: 125 ml

<table>
<thead>
<tr>
<th>Material de embalagem</th>
<th>Nº de lote</th>
<th>Origem</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frasco PET com pulverizador</td>
<td>011113</td>
<td>Acofarma</td>
</tr>
</tbody>
</table>

Operador: [Assinatura]

Prazo de utilização e Condições de conservação

Condições de conservação: Conservar à temperatura ambiente, no recipiente bem fechado e ao abrigo da luz.

Operador: [Assinatura]

Prazo de utilização: 90 dias

Operador: [Assinatura]

Rotulagem

1. Proceder à elaboração do rótulo de acordo com o modelo descrito em seguida.
2. Anexar a esta ficha de preparação uma cópia, rubricada e datada, do rótulo da embalagem dispensada.

Modelo de rótulo

<table>
<thead>
<tr>
<th>Identificação da Farmácia</th>
<th>Identificação do Médico prescrito</th>
</tr>
</thead>
<tbody>
<tr>
<td>Identificação do Diretor Técnico</td>
<td>Identificação do doente</td>
</tr>
<tr>
<td>Endereço e telefone da Farmácia</td>
<td></td>
</tr>
</tbody>
</table>

DENOMINAÇÃO DO MEDICAMENTO

<table>
<thead>
<tr>
<th>Tensão substância(s) activa(s)</th>
<th>Data de preparação</th>
</tr>
</thead>
<tbody>
<tr>
<td>Quantidade dispensada</td>
<td>Prazo de utilização</td>
</tr>
<tr>
<td>Referência a matérias-primas cujo conhecimento seja eventualmente necessário para a utilização conveniente do medicamento</td>
<td>Condições de conservação</td>
</tr>
<tr>
<td>Posologia</td>
<td>Nº de lote</td>
</tr>
<tr>
<td>Via de administração</td>
<td>Mantê-lo fora do alcance das crianças</td>
</tr>
<tr>
<td>Advertências (precauções de manuseamento, etc.)</td>
<td>Uso externo (caso se aplique) (em fundo vermelho)</td>
</tr>
</tbody>
</table>

Operador: [Assinatura]
Verificação

<table>
<thead>
<tr>
<th>ENSAIO</th>
<th>ESPECIFICAÇÃO</th>
<th>RESULTADO</th>
<th>Rubrica do operador</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cor</td>
<td>Incolor a esbranquiçado</td>
<td>Conforme</td>
<td></td>
</tr>
<tr>
<td>Odor</td>
<td>Característico do TrichoSol<sup>®</sup></td>
<td>Conforme</td>
<td></td>
</tr>
<tr>
<td>Aspecto</td>
<td>Homogêneo</td>
<td>Conforme</td>
<td></td>
</tr>
<tr>
<td>Quantidade</td>
<td>100 ml ± 5%</td>
<td>Conforme</td>
<td></td>
</tr>
<tr>
<td>pH</td>
<td>Entre 4 e 5</td>
<td>Conforme<sup>(pH = 4)</sup></td>
<td></td>
</tr>
</tbody>
</table>

Aprovado ✓ Rejeitado □

Supervisor: [Assinatura] 03/01/2019

Nome e morada do doente

<Blank>

Nome do prescrito

<Blank>

Anotações

Uma vez que a diferença entre o sulfato de minoxidil (prescrito) e o minoxidil base é relativa à sua solubilidade, optámos pela utilização do minoxidil base por ser o componente utilizado nos estudos de estabilidade realizados com Trichosol.
Cálculo do preço de venda

MATÉRIAS-PRIMAS:

<table>
<thead>
<tr>
<th>Matérias-primas</th>
<th>Embalagem existente em armazém</th>
<th>Preço de aquisição de uma dada quantidade unitária (sem IVA)</th>
<th>Quantidade a usar</th>
<th>Factor multiplicativo</th>
<th>Preço da matéria-prima utilizada na preparação</th>
</tr>
</thead>
<tbody>
<tr>
<td>Minoxidil</td>
<td>100g</td>
<td>22,23 €</td>
<td>1g</td>
<td>0,2233 € x 5g x 2,2</td>
<td>2,46 €</td>
</tr>
<tr>
<td>17-α estradiol</td>
<td>0,5g</td>
<td>39,81 €</td>
<td>1g</td>
<td>79,62 € x 0,025g x 2,8</td>
<td>5,57 €</td>
</tr>
<tr>
<td>TrichoSol®</td>
<td>1015g</td>
<td>39,78 €</td>
<td>1g</td>
<td>0,039 € x 97,44g x 1,9</td>
<td>7,26 €</td>
</tr>
<tr>
<td>Total Matéria-Prima (A)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>15,29 €</td>
</tr>
</tbody>
</table>

HONORÁRIOS DE MANIPULAÇÃO:

<table>
<thead>
<tr>
<th>Valor referente à quantidade base</th>
<th>Forma Farmacêutica</th>
<th>Quantidade</th>
<th>F (€)</th>
<th>Factor multiplicativo</th>
<th>Valor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Valor referente à quantidade base</td>
<td>Solução obtida por incorporação de mat.-primas em sist. pré-prepar. industrialmente</td>
<td>100ml</td>
<td>4,98 €</td>
<td>x 3</td>
<td>14,94 €</td>
</tr>
<tr>
<td>Valor adicional</td>
<td></td>
<td></td>
<td>x 4,98 €</td>
<td>x 0,903</td>
<td>€</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total da Manipulação (B)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>14,94 €</td>
</tr>
</tbody>
</table>

MATERIAL DE EMBALAGEM:

<table>
<thead>
<tr>
<th>Material de embalagem</th>
<th>Preço de aquisição</th>
<th>Quantidade</th>
<th>Factor multiplicativo</th>
<th>Valor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frasco PET 125ml</td>
<td>1,46 €</td>
<td>x 1</td>
<td>x 1,2</td>
<td>1,75 €</td>
</tr>
<tr>
<td></td>
<td></td>
<td>x</td>
<td>x 1,2</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1,75 €</td>
</tr>
</tbody>
</table>

P. V. P. DO MEDICAMENTO MANIPULADO:

<table>
<thead>
<tr>
<th>Soma de (A) + (B) + (C)</th>
<th>Factor multiplicativo</th>
<th>Valor</th>
</tr>
</thead>
<tbody>
<tr>
<td>31,98 €</td>
<td>x 1,3</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>I. V. A. (6%)</th>
<th>PVP</th>
</tr>
</thead>
<tbody>
<tr>
<td>2,49 €</td>
<td></td>
</tr>
<tr>
<td>44,06 €</td>
<td></td>
</tr>
</tbody>
</table>

Operador: [Sua assinatura]
Supervisor: [Sua assinatura]
farmácia Luciano & Matos

Direção Técnica de
Maria Helena Costa Neves Castro Amado
Praça 8 de Maio, 40 - 42 - 0000-300 Lisboa
Telf. 239 8211470 - Fax 239 824112

Lote nº 0319
Data: 03/01/2019
Preço: 44,86€

Utente:

<table>
<thead>
<tr>
<th>Medicamento</th>
<th>Quantidade</th>
</tr>
</thead>
<tbody>
<tr>
<td>Minoxidil 5%</td>
<td>100ml</td>
</tr>
<tr>
<td>Estradiol 17-alfa 0,025%</td>
<td></td>
</tr>
<tr>
<td>Loção capilar (TrichoSoft®) q.d.p. 100 ml</td>
<td></td>
</tr>
</tbody>
</table>

Posologia:
Aplicar 1 ml (4 pulverizações) sobre o couro cabeludo seco com uma ligeira massagem, até completa absorção.
1 vez ao dia.
Segunda indicação médica.
Lavar as mãos após a aplicação.

Agitar antes de usar.

Manter fora do alcance das crianças.

Conservar à temperatura ambiente, em local seco e fresco.

Pode ser lido até: 03/04/2019

03/01/2019

Juc
ANEXO V – FICHA DE PROJETO - NOVO LINEAR

AÇÃO: Criação de novo linear
DATA: 12/12/2018
LOCAL: Farmácia Luciano & Matos
PÚBLICO ALVO: Utentes da farmácia

COLABORADOR RESPONSÁVEL: Júlio Martins Lopes
INTERVENIENTES: Toda a equipa da farmácia

OBJETIVO GERAL DA AÇÃO: Dinamização do espaço de atendimento e promoção do aumento do número de vendas.

OBJETIVOS ESPECÍFICOS: Aumentar o número de compras por impulso, através da exposição de produtos de necessidade básica em pontos estratégicos.

FORMAS DE DIVULGAÇÃO: Páginas do Facebook e Instagram.
NECESSIDADES E RECURSOS: Expositor e produtos.

OBSERVAÇÕES: Exposição de produtos como águas micelares, pensos rápidos, pastas de dentes, suplementos alimentares, hidratantes de corpo, mãos e lábios, entre outros.

AVALIAÇÃO DA AÇÃO: [Planeamento da ação ainda em decurso]

DATA: [Planeamento da ação ainda em decurso]
ANEXO VI – INSTAGRAM DA FARMÁCIA LUCIANO & MATOS

Farmácia Luciano & Matos
Saúde/Beleza
Praça 8 de Maio, Coimbra, Portugal