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Resumo

Paradigmas, tais como as cidades inteligentes, ambientes inteligentes e a Internet das

Coisas têm sido, nos últimos anos, muito debatidos e usados. Muitos investigadores, em

ambientes inteligentes, focam-se na deteção, localização e identi�cação de pessoas, de modo

a adaptarem diferentes ambientes consoante as necessidades e preferências dos cidadãos. Para

a sua realização é necessário combinar diferentes sensores, atuadores, modelos matemáticos

e técnicas de aprendizagem automática. Apesar de já haverem estudos nesta direção, ainda

há espaço para contribuição e este trabalho foca-se nisso.

O objetivo desta dissertação é melhorar a experiência por parte dos utilizadores em

ambientes inteligentes baseado na informação obtida em espaços internos, seguindo uma

monitorização ocupacional não intrusiva. Assim, o objetivo principal é saber se existe alguém

numa determinada divisão e quantos ocupantes se encontram na mesma, informação essa

obtida através de sensores.

Numa primeira fase do projeto, o objetivo é desenvolver um dispositivo que adquira infor-

mação ambiental usando diferentes sensores, tais como sensores de temperatura, intensidade

da luz, ruído e monitorização do dióxido de carbono. Numa segunda fase, aprendizagem

automática e mecanismos de reconhecimento de padrões serão usados para a avaliação do

desempenho da solução proposta.

Os resultados obtidos durante a investigação demonstram que com sistema criado, através

dum Raspberry Pi e da seleção de sensores, é possível obter, processar e armazenar infor-

mação ambiente. Adicionalmente, a análise obtida através dos dados adquiridos usando

aprendizagem automática e mecanismos de reconhecimento de padrões, descreve que é pos-

sível determinar a ocupação em ambientes internos. Portanto, esta informação pode ser

tomada em consideração por aplicações de terceiros, de modo, a ajustar o nível de conforto,

como por exemplo, numa sala.

Palavras-Chave: Ambientes Inteligentes, Posicionamento Interno, Análise de Dados, Apren-

dizagem Automática, RaspberryPi.
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Abstract

Paradigms such as Smart Cities, Smart Environments, and Internet of Things have been

highly debated and used in the last few years. Many researches in smart environments

are focused on detection, location, and identi�cation of people, to make di�erent environ-

ments adapt to the needs and preferences of citizens. To make this possible, it is necessary

to combine di�erent sensors, actuators, mathematical models, and machine learning tech-

niques. Although some works have been performed in this direction, there is still room for

contribution, and this research is focused on that.

The objective of this thesis is to improve users' experience in smart environments based

on information gathered from indoor spaces following a non-intrusive occupancy monitoring

approach. Thus, the main objective is to know if someone is in a room and how many

occupants are there, using information gathered from sensors.

In the �rst stage of the project, the objective is to design and build a device to measure

environmental data using di�erent sensors, such as temperature, light intensity, noise, and

carbon dioxide monitoring, to estimate the presence of occupants through these environ-

mental features. In the second stage, machine learning and pattern recognition mechanisms

should be used to evaluate the performance of the proposed solution.

The results obtained during this research show that the system designed using a Rasp-

berry Pi and a selection of sensors is able to collect, process, and store environmental data.

Additionally, the analysis performed over the gathered data using machine learning and pat-

tern recognition mechanisms depicts that it is possible to determine the occupancy of indoor

environments. Thus this information could be taken into consideration by a third-party

application to adjust the level of comfort, for example, in a room.

Keywords: Data Analysis, Indoor Occupancy, Smart Environments, Machine Learning,

Raspberry Pi
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�The greatest enemy of knowledge is not ignorance. It is the illusion of

knowledge.�

Daniel J. Boorstin
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1 Introduction

This document contains the description of the work developed and validated to partial

ful�lment for the degree of Master of Science in Electrical and Computer Engineering.

The thesis title is �Context-Aware Improved Experiences in Smart Environ-

ments� , the research for which is conducted under the guidance of Prof. Dr. Marília

Pascoal Curado and Prof. Dr. Hélder de Jesus Araújo, starting in September 2017 on the

Laboratory of Communications and Telematics (LCT) - Center for Informatics and Systems

of the University of Coimbra (CISUC).

This work is framed in Mobiwise project. The main objective of the Mobiwise is

to connect any sensor, person, and vehicle; and use all possible information to improve

the user mobility, through a complete network and services platform for an Internet of

Things (IoT) real deployment in a smart city [29]. Within this context, this work aims to

research mechanism for occupancy detection.

The �rst chapter is organised as follows: the �rst section presents the motivation for this

work, followed by the identi�cation of the main objectives to be achieved. The contributions

are provided next, and �nally, the last section presents the thesis structure and what will be

covered in the next chapters.

1.1 Motivation

The amount and diversity of devices connected to the Internet are increasing apace. In

the last decades, the use of the Internet has changed from military purposes to domestic

purposes. Today, around 40% of the world population has an Internet connection [81]. In

2016, it approached 3.5 billion people worldwide and 7 million in Portugal, which represents

around 68% of country's the population [81]. This number only tends to increase.

After connecting people, we are moving now into connecting objects, and estimates indi-

cate that in a not-too-distant period all devices will be connected to the Internet. �Anything

1



that can be connected will be connected.� [10]; that is the new rule for the future. Network

devices connected to the Internet range from Personal Computer (PC), smartphones, and

tablets to pratically almost anything with a sensor on it, such as cars, wearable devices,

and houses. The possibilities are tremendous. The IoT is the inter-networking of items

embedded with electronic sensors and actuators with network connectivity which enables

these `things' to collect and exchange data between them. The IoT allows objects to be

sensed or controlled remotely across existing network infrastructure, creating opportunities

for more direct integration of the physical world into computer-based systems and resulting

in improved e�ciency, accuracy, and economic bene�t in addition to reduced human inter-

vention [10, 85]. The projections vary about the evolution of the IoT, but looking at Cisco's

calculations it is expected that by 2020 the number of connected devices would reach 50-100

billion [84].

A speci�c research topic framed in the context of a smart environment is referred to

as looking at people, focused on detecting, tracking and identifying to interpret human

behaviour. Although some contributions have been performed in this direction, there is still

room for contribution, and this research proposal is focused on that [69].

Increasingly, for safety concerns, for health reasons, or only for providing an environment

that meets the occupant's preferences, it is necessary to know the presence of people in indoor

environments. Although there are already good solutions, such as cameras or wearables

devices, issues are often faced, such as privacy (what are you willing to expose for your

safety?) and the costs of implementing and deploying these devices.

The main purpose of this thesis is design and built a non-intrusive and low-cost solution

to improve user experience in smart environments with ML support through system that

monitors temperature, light intensity, noise, and Carbon Dioxide (CO2), to estimate the

presence of occupants through this environmental features. Sometimes the sensors to acquire

this type of data already exist in these places. First, the data will be collected and analysed,

and next it will be applied to ML techniques to conclude if they can be used; in the �rst

stage to detect the presence and in the second stage the number of occupants. As additional

work a hardware device was implemented to collect di�erent environmental data.

1.2 Objectives and Contributions

The work presented in this thesis has as main goal the research on occupancy detection

using cheap and non-intrusive sensors such as temperature, noise, CO2, and light with

2



pattern recognition techniques. The �rst stage is a literature review followed by the study

hypothesis and a strategy for data acquisition, building a prototype on the analysis of existing

approaches for indoor monitoring. The third stage is applying and analysing ML algorithms

to select the most suitable algorithm to identify the occupancy. As additional work, an

environmental board was developed to carry out the further work.

The expected outcomes of this work are the following:

� a prototype containing the most appropriate sensors to determine the number of people

in indoor environments;

� a dataset of the human density on at least one room at the LCT-CISUC;

� a mechanism to approximate the occupancy in indoor environments based on ML

techniques; and

� an environmental board to analyse the room quality and provide some outputs.

The main contribution of this thesis is the research activities using ML techniques with

a Non-Intrusive Occupancy Monitoring (NIOM) in an indoor environment. This document

supports the reader who is willing to replicate this research and carry out further develop-

ment.

Last, but not the least, the environmental board produced can provide a complete en-

vironmental gathering system that can be used by other LCT researchers. All the sensors

are well documented with libraries on the Internet. Some of them were ported to C/C++

language on the course of this work.

1.3 Thesis Structure

This thesis is structured into three parts. The �rst part presents a brief overview of

literature and related work, while the second part describes the hypothesis which supports

this research. Regarding the last part, it describes the developments and the results obtained.

A brief description of each chapter is presented below.

Chapter 2 (Related Work) presents the main techniques used to detect people and de-

scribes the theoretical ML principles of the methods used in this research. These aspects are

essential for the understanding of the content of this research, providing the knowledge and

tools that form the basis of this work.

3



Chapter 3 (Methodology for People Density Assessment) discusses the hypothesis for

detecting people. Also, it presents the main objectives and the approach to accomplish

them.

Chapter 4 (Experience Evaluation) concerns the steps taken for data acquisition and

presents the results obtained through the analysis of this data by applying ML techniques

of the hypothesis presented in Chapter 3.

Chapter 5 (Additional Contributions) presents some additional contributions that this

thesis reached, namely, a sensor board to acquire environmental indoor data.

Chapter 6 (Conclusions and Future Work) concludes this report with a personal opinion

of the developed work, the results obtained, and a brief suggestion about possible future

work.
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2 Related Work

It can be said that computer science is a relatively new branch of science. However, it

had a rapid and exponential increment in the last decades. The �rst human who went to

the moon had less computational processing power than the most basic smartphone today.

The extraordinary growth of the technology and how the computer science is important can

be clearly seen.

Today, our homes were considered smart by the 1960s standards [26]. The computer

science is not necessarily only about the PC but also about all devices that have embedded

computing power as everyday objects like cell phones, cars, and even washing machines. IoT

paradigm thus emerged.

This chapter presents the de�nition of some concepts and paradigms used during this

research. The concepts of Smart Cities and IoT are presented in Section 2.1. Section 2.2

presents the concepts of Smart Environment and Ambient Intelligence (AmI). Section 2.3

addresses the main principles of people detection. Finally, Section 2.4 describes techniques

and concepts of ML.

2.1 Internet of Things and Smart Cities

�The `Thing' in the IoT is the starting point for an IoT solution� [36].

The Internet of Things (IoT) enables physical objects to have smart characteristics such

as seeing, hearing, thinking and performing jobs. They communicate together, share infor-

mation, and coordinate decisions. IoT transforms these objects exploiting their underlying

technologies such as ubiquitous and pervasive computing, embedded devices, communica-

tion technologies. It can play an important role in improving the quality of our lives. Some

applications include home automation, industrial automation, medical aids, mobile health-

care, elderly assistance, intelligent energy management and smart grids, and automotive and

tra�c management [7, 87].
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The emerging paradigm of Smart Cities uses a variety of cheap sensors embedded on tra-

ditional things to improve the quality of life. Smart Cities include di�erent service sectors,

such as Smart Governance, Smart Mobility, Smart Utilities, Smart Buildings, and Smart

Environment where some applications can be structural health of buildings, air quality mon-

itoring, waste management, noise detection, tra�c congestion, city energy consumption,

smart parking, smart lighting, automation of buildings, and many others [31, 87].

2.2 Smart Environment and Ambient Intelligence

This research focuses on the Smart Environment sector. Designing a Smart Environment

is a goal in a variety of disciplines, including pervasive and mobile computing, sensor net-

works, Arti�cial Intelligence (AI), robotics, multimedia computing, middleware, and agent-

based software. One possible de�nition of Smart Environment is that �it is able to acquire

and apply knowledge about the environment and its inhabitants to improve their experience in

that environment� [27]. Sensors are used to monitor the environment, sending this informa-

tion through the communication layer. The databases store the collected information that

will be processed into more useful formats. This information is often used by algorithms to

make decisions. The decided action is communicated to the application layer, which records

the action and enforces it on the physical components [27].

Technically, the Smart Environment can be divided into three categories as follows:

1. Controllable environment: A user can control di�erent devices in more advanced and

more e�cient ways than it is done in the normal environment. For this, an integrated

remote control is used. It can be controlled through physical adjustment, by gesture,

or by voice.

2. Programmable environment: A user programmes the environment so it would switch

on, switch o� or adjust some devices in particular conditions. It can be activated by

reacting to time, providing a simple sensor input or assessing and recognizing situations.

3. Intelligent environment: This group is very similar to the previous one, with one

exception. The environment would take the decisions and actions without previous

user programmes. The system searches for repeated actions. After a pattern has

been identi�ed, the environment will programme itself so that, in the next phase, the

scenario is recognised.

6



Using learning mechanisms, to analyse patterns, predict situations, and take decisions

and actions, creating new terms such as AmI. AmI brings intelligence to our everyday

environments, making it sensitive to us. The main goal is to introduce technology into the

environment so that the system embodies users and their surroundings, accumulating data

and selecting actions [30]. Large-scale heterogeneous environments encompass human beings

(e.g. wearables and physiological sensing environments), real environments (e.g. smart

homes/o�ce/cars), and virtual environments (e.g. second life, Google earth) [65].

AmI technology is expected to be: sensitive, adaptive, transparent, ubiquitous, and

intelligent. It incorporates contributions from ML, agent-based software, and robotics. It

makes use of the AI �eld, but it should not be considered synonymous with AI [26].

2.3 Approaches to Detect People Density

In Smart Environments and AmI, particular attention has been given to location-based

services as a way to o�er high-quality intelligent services, while considering human factors

such as life patterns, health, and mood of a person [27].

Detecting people is important in many areas such as surveillance, group behaviour mod-

elling, or crowd disaster prevention. For example, we want to provide a safe route for a

person to go from place A to place B. For this, we need to know how many people are inside

a building and in the safe zones. Because of the impossibility of having users instructing

each of the computers in these environments, the computers must know enough about peo-

ple and their environment so that they can act appropriately with the minimum of explicit

instructions (see Figure 2.1) [27].

Figure 2.1: Turning on the lights only on safe routes. Adapted from: [45, 52].
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Over recent years, the detection of individual objects and persons has improved sig-

ni�cantly, but crowd scenes remain particularly challenging for the detection and tracking

tasks due to heavy occlusions, high person densities, and signi�cant variation in people's

appearance [73].

Various forms of indoor location-aware systems have been developed to recognise people

location in smart environments.

Typically, indoor location-aware systems are classi�ed into three types according to the

measurement technology: triangulation, proximity, and scene analysis methods (see Fig-

ure 2.2) [8, 53].

The triangulation principle uses the geometric properties of triangles to estimate the

target location. It has two derivations: lateration and angulation. Lateration estimates the

position of a target by measuring its distance from multiple reference points. It is also called

range measurement technique. Angulation estimates the location of the desired target by

the intersection of several pairs of angle direction lines, each formed by the circular radius

from a base station or a beacon station to the mobile target [8, 53].

The proximity principle provides symbolic relative location information. Usually, it uses a

dense grid of antennas, each having a well-known position. When a mobile target is detected

by a single antenna, it is considered close to it [8, 53].

The scene analysis principle collects features of a scene and then estimates the location

of a target. The analysis can be of a static scene or a di�erential scene. The analysis from

a static scene deals with the acquired data or datasets to estimate, and the analysis from

a di�erential scene tracks or looks to the di�erences between successive scenes. It can be

implemented with pattern recognition techniques [8, 53].

Table 2.1 lists the main advantages and disadvantages of triangulation, proximity, and

scene analysis principle. Triangulation methods are very simple to implement but the accu-

racy depends on the hardware and the propagation model, which will increase the cost and

the complexity.

Proximity methods are considered as simple techniques, but their accuracy is limited.

For enhancing their accuracy, hardware-based solutions are required. This results in higher

cost for the development and maintenance of the positioning system.

Scene analysis methods do not rely on any theoretical model, or speci�c hardware, which

is an advantage. But it requires a pre-phase for capturing features and it is in�uenced by

environmental changes [66].
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(a)

(b)
(c)

Figure 2.2: (a) Triangulation based on lateration (left) and angulation (right) [53]. (b)

Proximity method with a RFID technique [83]. (c) Scene analysis method used for crowd

density estimation [73].

Table 2.1: Main advantages and disadvantages of indoor location-aware principles. (Source:

research and summarisation of the following references: [8, 39, 53, 66])

Triangulation Proximity Scene Analysis

Advantages

- Easy to deploy

- Usually implemented by a

Wireless technology

- Accuracy of a proximity

principle is very high if the

person is near an antenna

- Simple technique, only

needs an antenna and a

physical device

- Does not rely on any the-

oretical model or speci�c

hardware

- The location can be in-

ferred using passive obser-

vation and features

- There is no need for geo-

metric angles or distances

Disadvantages

- Very poor performances if

beacon does not have direct

sight

- A propagation model is re-

quired which correlates the

corresponding signal prop-

erties with distance

- Dependency on advanced

hardware and transmission

techniques, increasing the

cost and complexity

- Cost to improve its accu-

racy

- The physical device must

stay with the person

- Needs many antennas for

an accurate positioning sys-

tem

- Needs to access the fea-

tures of the environment to

compare datasets or scenes

- Change of environment

has to create a new dataset

- Usually, requires more pro-

cessing time

- Large databases
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2.4 Machine Learning

�Learning is more like farming, which lets nature do most of the work. Farmers com-

bine seeds with nutrients to grow crops. Learners combine knowledge with data to grow

programmes� [32].

Machine Learning (ML) can be de�ned as the �eld of study that capacitates computer

programmes to learn without being explicitly programmed for that. They can learn from

the available data, but no matter how much data they have, the fundamental goal of ML is

to generalise beyond the examples in the training set, because it is very unlikely we will see

those exact examples again on running time [32].

In ML books and papers, two de�nitions are widely used. The �rst is from Arthur Samuel

that described it as �the �eld of study that gives computers the ability to learn without being

explicitly programmed� [13, 55]. The second is from Tom Mitchell who provided a more

modern de�nition that: �A computer program is said to learn from experience E with respect

to some class of tasks T and performance measure P, if its performance at tasks in T, as

measured by P, improves with experience E� [13, 55]. For example, in a game like checkers E

is the experience of playing many games as possible, T is the task of playing the game, and

P is the probability that the programme will win the next game [70, 74].

ML problems can be classi�ed in two broad categories [20, 57]:

1. Supervised learning: a series of examples are provided and then generalised to develop

an algorithm that applies to new cases (e.g. learning to recognise a person handwriting

or voice).

2. Unsupervised learning: the correct responses are not provided, but instead it tries to

identify similarities between the inputs that have something in common that will be

categorised together (e.g. recommendation of some products from last searches).

The most common cases are supervised and unsupervised learning but in recent years,

new categories have appeared. Some are derived from the previous ones, like reinforce-

ment learning and evolutionary learning [48, 3]. Others use hybrid techniques, combining

supervised techniques with unsupervised techniques [70].

This work will use supervised learning techniques. This requires that the data used to

train the algorithm are already labelled with correct answers. The unsupervised learning is

prohibitively complex for some simpler enterprise use cases.
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2.4.1 Supervised Learning

As it was said in Section 2.4, in supervised learning the agent gives an input for which

it already knows which is the correct output. Relative to the output the problem can be

categorised into two main groups [20, 57]:

1. Regression problem: it tries to predict a continuous function from some continuous

input (e.g. predict a house price as a function of the number of rooms).

2. Classi�cation problem: it tries to predict a discrete function from some discrete input

(e.g. predict which is the number of an image).

To attain the objective of this work, i.e. to identify the people occupancy, a classi�cation

problem was used because the dataset has a discrete data and the output can only assume

integer values.

In this work, Logistic Regression (LR), Support Vector Machine (SVM) and Neural

Network (NN) classi�ers were used. These classi�ers are largely used in some classi�cation

problems [33, 40]. The objective of using these three classi�ers is to test the performance

of each one and conclude if with this dataset a simple classi�er like LR can provide an

accuracy similar to a more powerful methods like SVM and NN. �A more powerful learner

is not necessarily better than a less powerful one� [32].

The next subsections describe the mentioned classi�ers.

2.4.2 Logistic Regression

Logistic Regression (LR) is a direct probabilistic interpretation that provides the user

with explicit probabilities of classi�cation apart from the class label information. It can be

easily extended to the multi-class classi�cation problem [77].

Next subsections present some theoretical concepts about LR. Some of these concepts

are also being used in the other classi�ers.

Hypothesis function

The hypothesis function, hθ(x), is trying to predict the output from the input x with the

more accurate �t (Equation 2.1):

ŷ = hθ(x) = θ0x0 + θ1x1 + ...+ θnxn (2.1)

where ŷ is the predicted output y and θ is the function parameters [14, 58].
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x0 is set to 1 to deal with the intercept term θ0, called the `bias term'. This makes that

x and θ have the same number of elements, i.e. n+ 1 terms, so x0 can be treated as another

feature [59].

Equation 2.1 can be represented on a matrix format as shown in Equation 2.2:

hθ(x) = [θ0 θ1 ... θn] ∗


x0

x1

...

xn

 = θTx (2.2)

where θT is the transpose of the matrix θ [14, 60].

In a classi�cation problem, the output vector does not have a continuous range of values,

so y ∈ {0, 1, ..., n}, i.e. discrete values, where the values of y represent the number of classes.

The Logistic Function, also called the Sigmoid Function [59], is used in Equation 2.3:

g(z) =
1

1 + e−z
(2.3)

where function g(z) maps any real number to a discrete value. It is useful for transforming

an arbitrary-valued function into a function better adapted for classi�cation.

With Equation 2.3, the hypothesis function can be rewritten as Equation 2.4 [14, 59]:

hθ(x) = g(θTx) (2.4)

This equation gives the probability that output is 1 if it is a binary classi�cation problem

(this type of problem has two classes, i.e. y = {0, 1}) [14, 59]. For it, the output of the

hypothesis must be processed as Equation 2.5:

hθ(x) ≥ threshold→ y = 1

hθ(x) ≤ threshold→ y = 0
(2.5)

Typically, the threshold is 0.5. It indicates when y = 1 and represents a con�dence factor.

In practice, it is quite useful when we want to predict y = 1 only when is absolutely sure

(e.g. health cases) [42].

Beyond binary classi�cation problems, there are also multiclass classi�cation problems

(where y ∈ {0, 1, ..., n}). In this problem, it was predicted which class that y is member:

h
(0)
θ (x) = P (y = 0|x; θ), h

(1)
θ (x) = P (y = 1|x; θ), ..., h

(k)
θ = P (y = k|x; θ)

prediction = maxk(h
(k)
θ (x))

(2.6)

Equation 2.6 is used to pick the class for which the corresponding LR classi�er outputs the

highest probability and returns the class label (1, 2, ..., k) as the prediction for the input

example. It is called the One-vs-All classi�cation method [14, 59].
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Cost Function

The accuracy of the hypothesis function can be measured by using a cost function (see

Equation 2.7). The cost function takes a fancier version of an average of all the results of

the hypothesis with inputs compared to the actual outputs:

J(θ) =
1

m

m∑
i=1

Cost(ŷ(i), y(i)) =
1

m

m∑
i=1

Cost(hθ(x
(i)), y(i)) (2.7)

where the Cost(hθ(x
(i)), y(i)) = −y(i)log(hθ(x

(i))) − (1 − y(i))log(1 − hθ(x(i))). When y = 1

then the second term of the Cost(hθ(x
(i)), y(i)) will be zero and when y = 0 then the �rst term

will be zero. The farther the hypothesis from y, the larger the cost function's output [14, 59].

In Equation 2.7, x(i) is the column vector of all feature inputs of the ith training example.

A pair (x(i), y(i)) is called a training example and the dataset that it will be used to learn is

called a training set. x
(i)
j is the value of feature j in the ith training example. The variable m

is the number of training examples on the training set and n is the number of features [60].

To summarise: (i) if the correct output is 0, then the cost function will be 0 if the

hypothesis function also outputs 0; (ii) if the correct output is 1 then the cost function will

be 0 if the hypothesis function also outputs 1; (iii) if the hypothesis is equal to y, then the

cost is 0.

Theta (θ) Parameters

With the previous equations, it is possible to calculate the hypothesis function and to

measure how well it �ts into the data. The next step is to estimate the parameters θ of the

hypothesis function.

The way for doing this is to calculate the derivative (the tangential line to a function)

of cost function. The slope of the tangent is the derivative at that point and it will give

the correct direction to moving. With this, it makes steps down the cost function in the

direction of the minimum value. This is where the cost value is the minimum and where the

parameters of the hypothesis function will �t better [14, 58].

The algorithm described above is the Gradient Descent algorithm [15]. However, there are

more advanced techniques for calculating these parameters like Broyden�Fletcher�Goldfarb-

Shanno (BFGS) algorithm, Conjugate gradient, or L-BFGS. This algorithm is from the

family of quasi-Newton methods and has faster ways to optimise the parameters θ [14].
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Over�tting, Under�tting, and Regularisation

In some cases, the hypothesis function can over�t or under�t the data. High bias or

under�tting happens when the hypothesis function maps the data poorly. It can be caused

by a function too simple or with few features. On the other hand, it can su�er from high

variance or over�tting when the hypothesis function �ts the available data but can not

predict well the new incoming data [32, 59].

Under�tting can be resolved with the addition of new features. Two possible techniques

are applying polynomial regression and combining previous features into a new feature, i.e.

x3 = x1 ∗ x2. Polynomial regression changes the line behaviour of hypothesis. The solution

does not need to be a straight line if that did not �t the data well. It is possible to create

additional features from a previous feature to get quadratic, cubic, or other function types.

For example, if the hypothesis function is like hθ(x) = θ0 + θ1x1 it is possible to elevate to

an exponent power like hθ(x) = θ0 + θ1x1 + θ2x
2
1 to have better results [14, 60].

In cases like Polynomial regression, where input values have di�erent ranges, it is useful to

perform feature standardisation (see Equation 2.8). Feature standardisation ensures that the

dataset has zero-mean and unit variance. This helps to make the gradient descent converging

faster [28]:

xj :=
xj − µj
σj

(2.8)

where µj is the average of the values for feature j and σj is the standard deviation.

The over�tting problem can be solved reducing the number of features or using regulari-

sation. The regularisation reduces the heaviness of parameters θj. For this, a new term must

be added at the end of Equation 2.7.

J(θ) =
1

m

m∑
i=1

Cost(hθ(x
(i)), y(i)) +

λ

2m

n∑
i=1

θ2
j (2.9)

where λ is the regularisation parameter. The bias term θ0 must be excluded to avoid penal-

izing θ0. Adding this extra summation, it can smooth the output of the hypothesis function

to reduce over�tting [14, 60].

2.4.3 Support Vector Machine

Support Vector Machine (SVM) is based on quadratic optimisation of convex function

proposed by Boser in 1992 and modi�ed by Cortes and Vapnik in 1995 [18]. The goal of

SVM is to map data into a high dimensional space and �nd a separating hyperplane with

the maximal margin [18, 61].
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Equation 2.10 de�nes the decision surface separating the classes [61].

ΘTx+ b = 0 (2.10)

where Θ is a weight vector, x is an input vector and b is bias.

The separation between the hyperplane and the closest data point for a given weight

vector and bias is called margin of separation, d. If ΘTx+b ≥ 0 then di = +1. If ΘTx+b < 0

then di = −1. The particular hyperplane for which the margin of separation d is maximised

is called optimal hyperplane [12].

The cost function has to su�er some modi�cations for SVM (see Equation 2.11) [61].

J(θ) =
m∑
i=1

y(i)cost1(ΘTx(i)) + (1− y(i))cost0(ΘTx(i)) +
λ

2

n∑
j=1

Θ2
j (2.11)

where cost0(z) = max(0, k(1 + ΘTx)) is the classi�cation cost when y = 0 and cost1(z) =

max(0, k(1−ΘTx)) is the classi�cation cost when y = 1. k is an arbitrary constant de�ning

the magnitude of the slope of the line.

The convention dictates that the C parameter is used to regularise instead of λ. So

Equation 2.11 can be rearranged into Equation 2.12. This is equivalent to C = 1
λ
. If C

decreases, the regularisation is greater and if C increases the regularisation is less [61].

J(θ) = C
m∑
i=1

y(i)cost1(ΘTx(i)) + (1− y(i))cost0(ΘTx(i)) +
1

2

n∑
j=1

Θ2
j (2.12)

This model can be easily switched from linear to nonlinear functions through nonlinear

mapping called kernel functions [61, 80].

2.4.4 Neural Network

The term Neural Network (NN) in computer science was proposed by Warren McCulloch

and Walter Pitts in 1943 to describe a computational model inspired in how the human brain

works [22]. In this classi�er, the electrical inputs (that a neuron processes in a human brain)

are represented as input features, X, that must be processed to obtain a result known as

hypothesis function (i.e. axons in a human brain) [14, 62].

The NN logistic function uses the sigmoid activation function to process the input features

via a set of activation units (see Equation 2.3 and Equation 2.4). These activation units are

grouped in hidden layers between the input features or �rst layer and the �nal hypothesis
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or the output layer. The NN hypothesis function is depicted in Equation 2.13 [14, 62]:
x0

...

xn

→

a

(2)
0

...

a
(2)
i

→

a

(3)
0

...

a
(3)
i

→ ...→


hθ(x)1

...

hθ(x)k

 (2.13)

In the NN, the θ parameters from LR are instead called weights, Θ. hθ(x)k is the resulting

hypothesis for one set of inputs where the k parameter is the number of classes (e.g. for

k = 1, the result is hθ(x) = [1 0 ... 0]T ). The hidden layer nodes alj are called activation

units and represent the activation of node h in layer l. Each row of the parameters will be

applied in the inputs to obtain the value for one activation node.

Each layer has its own matrix of weights, Θ(l). The dimension of these matrices of weights

is determined as: if the network has sj units in layer l and sj+1 units in layer l+ 1, then the

dimension of Θ(l) will be sj+1 ∗ (sj + 1). The +1 comes from the addition of the bias nodes,

x0 and Θ
(l)
0 (E.g. layer 1 has three input nodes and layer 2 has �ve activation nodes, so the

dimension of Θ(1) will be 5 ∗ 4 where sj = 3, sj+1 = 5 therefore sj+1 ∗ (sj + 1) = 5 ∗ 4).

In NN classi�er, the Feed-Forward Propagation (FFP) algorithm computes all the acti-

vations throughout the network, including the hypothesis hΘ(x) and the back-propagation

algorithm computes an error term δ
(l)
j that measures how much a node is `responsible' for

any errors in the output [14, 63].

Feed-Forward Propagation

The Feed-Forward Propagation (FFP) algorithm starts to set x = a(1) and de�nes a

new variable z
(l)
j that encompasses the parameters inside the sigmoid function (see Equa-

tion 2.14) [14, 62].

z
(l)
j = Θ

(l−1)
j,0 x0 + ...+ Θ

(l−1)
j,n xj (2.14)

Equation 2.15 presents the activation node vector for layer l [14, 62].

a(l) = g(z(l)) (2.15)

It is necessary to add the bias unit to layer l after computing a(l). This element is a
(l)
0

and it is equal to 1.

The last step is to determine the hypothesis function (see Equation 2.16) [14, 62].

hθ(x) = a(l+1) = g(z(l+1)) (2.16)

In NN, the prediction is like the one-vs-all classi�cation strategy (see Equation 2.6).
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Back-Propagation Algorithm

Back-Propagation (BP) is the terminology to minimise the cost function in NN. It is like

gradient descent to LR [14, 63].

In NN, the cost function can be de�ned as Equation 2.17 [14, 63].

J(Θ) = − 1

m

m∑
t=1

K∑
k=1

[y
(t)
k log(hΘ(x(t))k)+(1−y(t)

k )log(1− (hΘ(x(t))k)]+
λ

2m

L−1∑
l=1

sl∑
i=1

s(l+1)∑
j=1

(Θ
(l)
j,i)

2

(2.17)

where L is the total number of layers in the network, sl is the number of units in layer l

(without counting the bias unit) and K is the number of output classes. The i , in triple

sum, does not refer to training example i. The variable t represents the index of a training

example.

To minimise J(Θ), the partial derivate must be computed. BP computes it for every

node. So, the error of node j in layer l has to be calculated. In the last layer, it can be

calculated directly by measuring the di�erence between the network activation and the true

output (see Equation 2.18) [14, 63].

δ(L) = a(L) − y (2.18)

In the hidden layers, the δ(L) can be computed based on a weighted average of the error

terms of the nodes in layer (l + 1) (see Equation 2.19) [14, 63].

δ(L) = ((Θ(l))T δ(l+1)). ∗ g′(z(l)) (2.19)

The δ values of layer l are obtained by multiplying the δ values in the next layer with the Θ

from this layer. The '.*' represent element-wise, if working with vectors and matrices, with

this it is possible to multiply element by element with the derivate g′(z(l)).

Equation 2.20 presents the full BP equation:

δ(L) = ((Θ(l))T δ(l+1)). ∗ a(l). ∗ (1− a(l)) (2.20)

The partial derivate terms can be computed by multiplying the activation values and the

error values for each training example t (see Equation 2.21) [14, 63]:

∂J(Θ)

∂Θ
(l)
i,j

=
1

m

m∑
t=1

a
(t)(l)
j δ(t)(l+1) (2.21)

In Algorithm 1, in Appendix D, the pseudo-code of BP algorithm is presented. The D
(l)
i,j

is used as an accumulator of the partial derivates, i.e. ∂J(Θ)

∂Θ
(l)
i,j

= D
(l)
i,j [14, 63]. Contrary to
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LR classi�er, in the NN classi�er, the values of Θ is not initialised with zeros. These values

must random initialise because when applies back-propagate, all nodes will update to the

same value repeatedly (symmetry-breaking) [14, 62].

Let us summarise all the steps in NN classi�er. First, choose the layout of NN, i.e. choose

the number of hidden layers, the number of outputs units, and the number of hidden units

per layer. With this, it can train NN with the following steps:

� Random initialise the weights;

� Use FFP to obtain hΘ(x);

� Use BP to compute partial derivatives;

� Use gradient descent or a built-in optimisation function to minimise the cost function

with the weights.

2.5 Summary of Chapter 2

This chapter presented the basic concepts to understand this work.

IoT enables physical objects to observe, monitor, and interact with the physical world. In

Smart Cities, these `intelligent' devices, deployed over an area, will generate di�erent types

of data that will be transferred to a database, stored and processed.

The Smart Environment is able to probabilistically predict the occupant's location and

activities with the best accuracy using pattern recognition techniques. Detecting people

density has a larger area of interest such as tracking people.

Indoor location-aware systems can be classi�ed into three types. Triangulation uses

geometric properties of the triangle to compute object locations. Proximity determines if

an object is near a known location. Scene analysis uses features of a scene observed from a

certain reference point.

The most common techniques in ML are Supervised and Unsupervised. LR is a direct

probabilistic interpretation. SVM �nds a hyperplane with the maximal margin to separate

the data with similarities. NN is a classi�er inspired by how the human brain works and the

hypothesis function is obtained processing the input features via a set of activation units.

In this work, a scene analysis architecture is used to gathering environmental data to

apply and analyse the best ML classi�er. This architecture, methodology, and the environ-

mental features analyzed are presented in next chapter.
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3 Methodology for People Density As-

sessment

This chapter presents the main architecture and methodology of this work. The Core-

Features analyse how the humans in�uence the environment, more speci�cally in the indoor

environments. It is presented in Section 3.1. Section 3.2 presents IoT architecture model

followed in this work with an explanation of the major layers and descriptions of equipment

used and the communications between them. Lastly, Section 3.3 presents the methodology

with the characterisation of the main the input functions to detect and measuring people

occupancy, the local where the sensors were placed, the description how the data were

collected, and the metric used to evaluate the ML classi�ers.

3.1 Core-Features

This work analysed features such as temperature, CO2, noise, and light. These charac-

teristics are also related to some of today's health concerns caused by noise pollution, gas

pollution, and light pollution.

3.1.1 Temperature

The �rst law of thermodynamics states that energy can be transformed from one form

to another but it is impossible to create energy out of nowhere. The second law states that

a hot body transfers its energy to a cold one. Also, the human body is subject to these

laws [68].

A human body constantly generates heat. It is a side e�ect of metabolism. This heat

is dissipated into the ambient as heat �ow and infrared radiation; the rest is rejected in

a form of water vapour [50]. At ambient temperature (about 25°C), the skin temperature

approaches closely to the in-body temperature (about 36.8°C) [49].
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There are seven fundamental factors that can change the heat generated by a human.

They are air temperature, radiant temperature, relative humidity, air movement, metabolic

rate, and clothing insulation level and moisture permeability. The characteristics of the

human body (e.g. weight) and psychological state may also in�uence the generation of

heat [68].

A healthy adult human releases approximately between 100 Watts (resting situation) and

1000 Watts or more (e�ort situation) [67]. This energy produces heat equivalent to the heat

dissipated by a few laptops [50].

The heat transfers can take place by conduction, convection, and radiation. The con-

duction is driven by temperature di�erence and the rate of �ow. Dependings on the thermal

resistance of material, generally, it is ignored between the body and the environment. The

convection involves conduction of heat from a solid surface to a moving �uid. A major part

of heat transfer is by it. The radiation is a part of electromagnetic spectrum. All bodies

above an absolute zero temperature emit and absorb radiation. These three forms of heat

transfer are called sensible heat transfer. The heat can also be lost or gained by a change of

states such as evaporation and condensation. They are called latent heat [68].

The environment temperature in�uences the body heat and the body heat in�uences

the environment. �In a `cold' environment there will be a layer of `warmer' air surrounding

the body� [68]. This heat exchanges between bodies is a continuous process. Depending on

the size of a room and the number of persons in it, these exchanges can be more or less

accentuated.

3.1.2 Carbon Dioxide

Nowadays people spend a large amount of time in an indoor environment. Some studies

which show how the air quality a�ects an occupant's health and comfort are being done [54].

Indoor Air Quality (IAQ) is a term related to the air quality within and around buildings

related with the health and comfort of building occupants. IAQ can be a�ected by gases

(including carbon monoxide, radon, carbon dioxide and volatile organic compounds), par-

ticulates, microbial contaminants (mould, bacteria), or any mass or energy stressor that can

induce adverse health conditions [54].

Carbon Dioxide (CO2) is one of the gases present in the atmosphere. This is one of the

�nal products of cell metabolism. CO2 is also a gas produced from the burning complete

combustion of organic material. It is essential for the photosynthesis by plants and other
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organisms, which will be consumed by animals, making possible the existence of life.

CO2 is an important gas for the existence of life but at very high concentrations (e.g.

greater than 5000 parts per million (ppm)) it can pose a health risk [6]. CO2 concentrations

commonly found in buildings are not a direct health risk, but this concentration can be

used as an indicator of occupants [6]. Typically, in outdoor environments this concentration

is between 300 and 500 ppm. In fact, occupants are the principal indoor source of CO2,

increasing the levels compared with outdoor environments [86].

Equation 3.1 gives the rate of change in the concentration of the monitored gas in a

room [86]:

V
dC

dt
= QinCin −QoutCout + S − kC (3.1)

where V is room volume in cubic meter (m)3, Cin, Cout, and C are concentrarions of the

monitored gas in the in�ow, indoor air, and out�ow, respectively, in mg/m3, Qin and Qout

ws into/out of the space in m3/h, S is the indoor emission source of the monitored gas in

mg/h and k is the �rst-order degradation constant in m3/h.

3.1.3 Noise

Noise pollution is a big problem in urban environments. In outdoor environments, the

persons are exposed to many noise sources such as vehicle noise. According to the green EU

paper, �Environmental noise, caused by tra�c, industrial and recreational activities is one

of the main local environmental problems in Europe and the source of an increasing number

of complaints from the public.� [21].

Indoor environments have background noise produced by loud crowds or household ap-

pliances. Excessive noise a�ects the human behaviour, well-being, productivity, and health.

The audio range by a human ear is between 20 hertz (Hz) and 20 kilohertz (kHz) [25].

Sounds outside this range are considered infrasound (below 20 Hz) or ultrasound (above 20

kHz) [25].

One of the sources of noise is the human being. The human being is a communicative

being by nature. The human being uses the language to maintain relationships with another

human being. From one person to two, from two persons to three, from three persons to a

crowd also the noise level increases. Sound levels in o�ces are relatively low but it is probably

the most annoying source in the o�ces and can lead to increased stress for occupants [46].
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3.1.4 Light

Light is an electromagnetic radiation within a certain portion of the electromagnetic

spectrum. The visible spectrum is a part of the radiation that is visible to the human eye

and is responsible for the sense of sight. The light can be from natural (e.g. sun) or arti�cial

(e.g. lamps) sources [23].

Illuminance is the amount of luminous �ux per unit area. It is measured in lux and it

is related to brightness as perceived by human vision. In a full sunlight day, the levels of

illuminance are 103000 lux, in a cloudy day between 1000 and 10000 lux, in a full moon

night is between 0.1 and 0.3 lux and in an overcast night sky is between 3E5 and 1E4 lux. In

indoor situations, such as inside a bright o�ce building, the levels of illuminance are between

400 and 600 lux and between 100 and 300 lux in most homes [37].

The era of electric light began in 1879 when Thomas Edison has illuminated the �rst

light bulbs in a New York street [19]. In the next years, light pollution has rapidly increased

by the introduction of arti�cial light in alteration of natural light levels [35]. However, the

arti�cial light has bene�ted the society, extending the length of the productive day.

�Overillumination refers to the use of arti�cial light well beyond what is required for a

speci�c activity, such as keeping the lights on all night in an empty o�ce building� [19].

However, by day, it is also normal for arti�cial lights to be on because it is impossible to

place all occupants near natural sources of light.

3.2 Architecture

Several concepts of IoT were introduced in Section 2.1. The IoT architecture model

followed in this work has four major layers [10]:

1. Objects Layer: This layer deals with the physical sensors that aim to collect raw data

information. It includes sensors and actuators.

2. Communication Layer: This layer deals with the data coming from the sensors to

the next layers. It includes an embedded Operating System (OS), signal processors,

microcontrollers, and gateway nodes.

3. Analysis Layer: This layer provides data management that is required to extract the

necessary information from the amount of raw data collected. It includes data mining,

analytics services, and device management.
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4. Application Layer: This layer deals with the utilisation of the processed data. It

includes services and applications.

Figure 3.1 represents the architecture used in this work. The next subsections exhibit

each layer in more detail.

Figure 3.1: IoT Architecture used in this work.

3.2.1 Objects Layer

In this work, four features were analyzed, namely temperature, CO2, noise, and light.

The sensors used are described in the next subsections.

Temperature

A thermistor module (Figure A.3 in Appendix A) was used to record the ambient temper-

ature. A thermistor is a resistor whose resistance varies with temperature. This variation,

when measured, can be used to calculate the temperature around the resistance. This sensor

is used as inrush current limiters, temperature sensors, self-resetting overcurrent protectors,

and self-regulating heating of elements.

There are two types of thermistors depending if the resistance increases or decreases with

temperature. In this case a thermistor NTC was used. With NTC thermistors, resistance

decreases as temperature rises.

A voltage divider with a known resistance is used to measure the thermistor resistance.
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The value of it is given by Equation 3.2.

R2 = R1

(
Vout

Vin − Vout

)
(3.2)

where R2 [Ohm(Ω)] is the thermistor resitance, R1 [Ω] is a known resistance, Vout [V olt(V )]

is the output voltage and Vin [V ] is the input voltage.

Steinhart-Hart equation is a model of the resistance of a semiconductor at di�erent tem-

peratures [82]. The Beta (β) parameter equation, which is essentially the Steinhart�Hart

equation, is used when Steinhart�Hart coe�cients are not published by the thermistor man-

ufacturers (see Equation 3.3).

1

T
=

1

β
ln

(
R

RT0

)
+

1

T0

(3.3)

where T is the temperature in Kelvin, R[Ω] is the resistance of the thermistor, β is a coe�-

cient of the thermistor (usually between 3000 and 4000), RT0 is the thermistor resistance at

25ºC and T0 is the temperature for nominal resistance (always 25ºC) [1].

Carbon Dioxide

The CCS811 Sensor Breakout by Adafruit (Figure A.5 in Appendix A) was used to collect

CO2 raw data. This sensor is produced by AMS. It has a metal oxide (MOX) sensor and a

microcontroller that controls power to the plate, reads the analogue voltage, and provides

an Inter-Integrated Circuit (I2C) interface to read from (Subsection 3.2.2). It will measure

eCO2 (equivalent calculated carbon-dioxide) concentration between 400 and 8192 ppm, and

Total Volatile Organic Compounds (TVOC) concentration between 0 and 1187 ppm [4].

Noise

The SparkFun Sound Detector by SparkFun (Figure A.7 in Appendix A) was used to

collect the noise raw data. This board is a small audio sensing board with three di�erent

outputs. It provides an audio output, a binary indication of the presence of sound and an

analogue representation of its amplitude [78].

In this work, only the amplitude is collected to avoid privacy issues. The amplitude

was given in Volts (V) but with Equation 3.4 can easily be converted to Decibel (dB). In

that equation, VdB is the voltage in dB, Vout is the output voltage in volts, and Vref is the

reference voltage in volts.

VdB = 20log10

(
Vout
Vref

)
(3.4)

24



Light

The TSL2591 Breakout by Adafruit (Figure A.6 in Appendix A) was used to collect light

intensity raw data. This sensor is produced by AMS.

The TSL2591 sensor transforms light intensity into a digital signal output. This sensor

combines one broadband photodiode and one infrared-responding photodiode on a CMOS

integrated circuit. It has two integrating ADC to convert the photodiode currents into a

digital output that represents the irradiance measured on each channel. That means the

infrared, full-spectrum, or human-visible-light can be measured. These values are provided

by I2C where illuminance (ambient light level) is given in lux [5]. This value was derived

using an empirical formula to approximate the human eye response (for more details see [38]).

3.2.2 Communication Layer

In the thermistor sensor case, the communication is stabilised by 8 bits Analogue-to-

Digital Converter (ADC) (it is a system that converts an analogue signal to digital signal)

between the 10kΩ resistor and the thermistor. Once the ADC value is obtained, Equation 3.5

gives the output voltage Vout [1].

Vout =
ADCreading
ADCresolution

.Vin (3.5)

where Vout is the output voltage in volt (V), ADCreading is the value obtained in the ADC in

bits, ADCresolution is the maximum value that can be obtained by ADC in bits (in this case

255), and Vin is the input voltage in V.

The ADC (Figure A.4 in Appendix A) and the other sensors described in Subsection

3.2.1 communicate with Arduino Yun (a microcontroller board based on the ATmega32u4

and the Atheros AR9331) through the I2C and the Arduino Yun (Figure A.2 in Appendix A)

communicates with RPi (Figure A.1 in Appendix A) by Serial Communication.

The data collected were stored in a database (in this case another RPi) connected through

an Ethernet cable.

Inter-Integrated Circuit

The Inter-Integrated Circuit (I2C) protocol was developed by Philips in 1982 and was

intended to allow multiple slaves to communicate with one or more masters. This interface

only requires two signal wires to exchange information, namely Serial Data (SDA), and Serial

Clock (SCL). Those two wires can support up to 1024 slave devices and both signals are
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bidirectional and require a positive supply voltage via pull-up resistors. It supports devices

communications from 0kHz to 5MHz (for more information see [79]).

RPi and Arduino Yun

The Raspberry Pi (RPi) is a small single-board computer developed by the RPi Founda-

tion. This board allows the execution of a wide variety of tasks and it has a large popularity

because of its low cost and large community support.

RPi is used when one computer is necessary but the processing power required is not

high. It can deal with applications that involve hardware logic but its potential is better

explored in applications that need an optimised software solution because it runs a Linux

OS and it allows several programming languages. The main di�erence in a microprocessor,

like RPi and microcontroller, like Arduino, is that in the microcontroller, the code is written

to control the hardware directly and in a microprocessor, programmes have been written to

run in OS. The main rule for using microprocessor instead of the microcontroller is �If you

can describe it with less than two and's, get a microcontroller. If you need more than two

and's, get a microprocessor� [47].

RPis support the I2C communication protocol to access sensors; however the libraries to

enable this communication are not available on the Internet. For this reason and taking into

consideration the time constraints, the available libraries for these modules to Arduino, in

this case by Adafruit, were used.

Serial Communication

The communication between the RPi and Arduino is carried out by Serial Communication

performed by the Universal Serial Bus (USB) port.

To do this communication, the core-library `Serial' of Arduino and the library `wiringPi'

were used [9, 71].

3.2.3 Analysis Layer

The data collected by the RPis were stored in a MySQL database server (an open-source

relational database management system). The quantity of data does not justify another type

of database but in big data cases it is recommended to use a non-relational database [51].

Raw data processing was done using Matlab Software (a multi-paradigm numerical com-

puting environment). The Matlab Software is a powerful programme when it is necessary to
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deal with matrix manipulations. It is possible to optimise the operations involving matrices

and vectors by vectorisation. Also, the Matlab software is great for plotting data.

3.2.4 Application Layer

This last layer uses the previous layers to acquire raw data by sensors, storing and

processing them to apply ML techniques to perform the main goal of this work: to detect

people through non-intrusive sensors. The ML algorithms were developed in Matlab Software

with the equations in Section 2.4. To SVMmodel was used the libsvm (an open source library

that implements a sequential minimal optimisation algorithm for kernelised SVM supporting

classi�cation and regression problems developed by National Taiwan University [17]).

3.3 Methodology and Implementation

The main purpose is to detect occupants in a room with cheap and non-intrusive sensors.

The methodology is based on three stages: (i) feature selection and pre-processing, i.e.

the data that is used to build the model; (ii) the nature of the model-building algorithm; (iii)

the type of model that is trained. The type of collected data was presented in Section 3.1.

The model-building algorithm and the type of models were presented in Section 2.4. In this

work, supervised learning was used as model-building technique and LR, SVM and NN as

the type of models.

The experiments were conducted in a LCT-CISUC room which is located in the middle of

the G Tower of the Department of Informatics Engineering. It has a �oor area of 8.5x5.5 m2

and 4.15 m of height (see Appendix B and Figure 3.3). This room has a small occupancy

change (the maximum number of occupants is �ve and the minimum number of occupants is

zero) and a very low ventilation. The only ventilation in the room is the door and windows

cracks. Most of the time, the door is closed and the windows are always closed. The

Heating, Ventilation, and Air Conditioning (HVAC) equipment was o� during the time of

tests to prevent any in�uence on the data collected.

The following subsections present the input functions that measuring the people density

with the presented non-intrusive sensors and how the data were collected.
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3.3.1 Input Functions

The inputs to detect people occupancy is presented in this subsection. The sensor data

were studied separately, with the correlation between them outside the scope. A binary

classi�cation problem and a multi-class classi�cation problem were tested. The �rst pretends

to detect the presence of occupants and the second the number of occupants.

Temperature Input

There is a sensor in the hallway and a sensor inside the room close to the door. The

di�erence between the two temperatures at these two places is small considering the prox-

imity between them. This di�erence is caused by the presence or absence of occupants. This

di�erence in value will be greater when there are occupants and less, zero, or negative, when

the room is empty. It was veri�ed whether it is possible with this temperature to determine

if occupants were present or not. Afterwards, two more sensors were placed in the room to

reduce the �uctuations. Equation 3.6 gives the input function tested for this type of data.

num[n] =
t1[n] + t2[n] + t3[n]

3
− tout[n] (3.6)

where num is the number of occupants, t1,2,3 is the indoor temperature in Celsius of the

three sensors, tout is the outdoor temperature in Celsius, and n is the instant of time.

Carbon Dioxide Input

How the occupants can change the CO2 levels in a room was described in Subsection 3.1.2.

Two CO2 sensors were placed in the room to collect this data. Equation 3.7 gives the input

function tested for this type of data.

num[n] =
eco1[n] + eco2[n]

2
(3.7)

where num is the number of occupants, eco1,2 is the indoor Carbon Dioxide (CO2) in ppm

of the two sensors, and n is the instant of time.

Noise Input

Three sensors were placed in the room, close to the occupants, to collect this data. In

working environments, where occupants are working for the most of time, it was expected

that this feature would not be able to detect the presence of the occupants. Equation 3.8
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gives the input function tested for this type of data.

num[n] = sd1[n] + sd2[n] + sd3[n] (3.8)

where num is 1 if an occupant is detected and 0 if not, sd1,2,3 is the sound detector in dB of

the three sensors, and n is the instant of time.

Light Input

One sensor was placed in the room to collect this data. The sensor was placed as far from

the window as possible so that the main light source incident on it was one of the lamps.

Because not every desk in the room receives direct natural light, the room lights are always

on when someone is there. Only the binary case was tested, i.e. whether the presence of

occupants was detected or not. Equation 3.9 gives the input function tested for this type of

data.

num[n] = lg[n] (3.9)

where num is 1 if an occupant is detected and 0 if not, lg is the light intensity in lux of the

light sensor, and n is the instant of time.

3.3.2 Nodes Placement

Three Nodes (RPi+Arduino) were placed in the room (see Figure 3.2 and Figure 3.3).

Node1 has two temperature sensors and one sound detector, and it works as the database.

All the nodes communicate with it to exchange data and storing. This node is also responsible

to control the number of occupants (explained in the next subsection). Node2 has one

temperature sensor, one CO2 sensor, and one sound detector. Node3 has one temperature

sensor, one CO2 sensor, one light sensor, and one sound detector. With this disposition

every occupant in this room is covered.

In Figure 3.4, the yellow icon is the outdoor temperature sensor, the red icons are the

indoor temperature sensor, the blue icons are the CO2 sensor, the green icon is the sound

detector sensor, and the pink icon is the light sensor.

3.3.3 Ground Truth

In supervised learning techniques, the agent must give the output set to train the classi�er

(see Section 2.4). The Ground Truth expresses the notion of data that is known to be correct.

In this work, a simple mechanism with two buttons (blue to enter and red to leave) was
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Figure 3.2: Figure of the actual placement of nodes and sensors. Above is Node1 (left indoor

sensors and right outdoor temperature sensor). Below are Node2 (on the left) and Node3

(on the right).

Figure 3.3: Room of proof concept.
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Figure 3.4: Sensors placement.

developed to create the ground truth (see Figure 3.5). Every time that an occupant presses

one of these buttons, the counter is increased or decreased, respectively. To visualise if the

number of occupants is correct, three Light-Emitting Diodes (LEDs) were introduced as a

binary counter (2n− 1 occupants in the room). The left LED is the most signi�cant and the

right LED is the least signi�cant. The number of total occupant's by minute is the average

of samples acquired every 10 seconds.

Figure 3.5: Mechanism developed to obtain the ground truth.
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3.3.4 Data Collection and Storage Strategy

The sensors used in this work are presented in Section 3.2.1 and the equipment to acquire

the raw data is presented in Section 3.2.2.

Every time that Arduino Yun received a signal by the RPi, it gets ten samples with a

100 microseconds delay to eliminate some noise in the data. Then an average is done and

this averaged data is sent to RPi.

The RPi make this request six times (60 seconds). Finally, a new average is performed

of these six values and the new value is stored in a MySQL database (a MySQL Application

Programming Interface (API) was used [56]). With this average, it is possible to decrease

the �uctuations in the data. The previous method was used in all sensors to have a timeline

between the heterogeneous sensors. The MySQL database stores this average data with

the time and data acquisition. In Algorithm 2, in Appendix D, it is possible to see the

pseudo-code related to collecting.

3.3.5 Classi�er Performance Evaluation

To analyse the performance of a classi�er, a judging criterion is necessary. True Positives

(TPs) and True Negatives (TNs) represent the correct classi�cation/prediction if the entry

belongs to the positive class or negative class, respectively. False Negatives (FNs) and False

Positives (FPs) represent the incorrect classi�cation/prediction if the entry does not belong

to the negative and positive classes, respectively [70, 72].

Accuracy measures the percentage of entries that were correctly classi�ed (see Equa-

tion 3.10), and the miss rate measures the percentage of entries that were incorrectly classi-

�ed (see Equation 3.11) [70, 72].

Accuracy =
TP + TN

N
∗ 100 (3.10)

where N is the total size of training data set.

Missrate = (100− Accuracy) (3.11)

To evaluate a classi�er, it is necessary to verify the accuracy to new entries. The classi�er

can have a high accuracy when tested with the training dataset but can have a low accuracy

with a new dataset. So, it is recommended to split the data into training dataset and testing

data set [14, 64]. The training data are suitable to train the classi�er and the testing data are

suitable to measure their performance to new entries. Typically, the data set is divided into
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three datasets: training data set to train the classi�er, cross-validation data set to adjust

the parameters and testing data set to verify the performance of the classi�er [14, 64]. In

this work, the dataset was split into training data set and testing data set.

In certain cases, the data set can have skewed classes, i.e. one class has a low set of data.

For example, assuming that the training data set contains 0 positive and 100 negative entries,

and if all instances are predicted correctly, the accuracy will be 100% but the classi�er had

no chance of learning the hidden patterns. With the previous example, it can be said that

the accuracy does not work well when the dataset is unbalanced, i.e. it has more data in

one class than in the other.

In this work, the room was occupied on average eight hours per working day, so the

positive classes are skewed classes. The F-Score was used to predict the performance of

classi�ers. It is a technique that measures the discrimination of classes, through a harmonic

mean of two metrics, recall and precision (see Equation 3.14) [14, 64]. Recall measures the

percentage of entries that belong to the positive class and was classi�ed/predicted correctly

(see Equation 3.12) [70, 72]. Precision measures the percentage of proportion over the entries

of the predicted positive class that really belong to positive class (see Equation 3.13) [70, 72].

To have a high F-Score, both precision and recall must be high.

Recall =
TP

TP + FN
∗ 100 (3.12)

Precision =
TP

TP + FP
∗ 100 (3.13)

FScore = 2 ∗ Precision ∗Recall
Precision+Recall

(3.14)

Equation 3.14 can only be applied to binary classi�cation problem, but it can be extrap-

olated to a multi-class classi�cation problem. Micro-Average Method and the Macro-average

method are de�ned to measure the performance.

The Micro-average method sums up the individual TP, FN and FP contribution of each

class label (see Equation 3.15 and 3.16) [11, 75].

Recall =
TP1 + TP2 + ...+ TPk

TP1 + TP2 + ...TPk + FN1 + FN2 + ...FNk

∗ 100 (3.15)

where k is the class label.

Precision =
TP1 + TP2 + ...+ TPk

TP1 + TP2 + ...TPk + FP1 + FP2 + ...FPk
∗ 100 (3.16)
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The Macro-average method takes the average of precision and recall of each class label

(see Equation 3.17 and 3.18) [11, 75].

Recall =
Recall1 +Recall2 + ...+Recallk

k
∗ 100 (3.17)

where k is the class label.

Precision =
Precision1 + Precision2 + ...+ Precisionk

k
∗ 100 (3.18)

Micro and macro average behaving are quite di�erent and may give di�erent results. It

is hard to decide between one of these two methods to choose the classi�er. �There is no

complete agreement among authors on which is better. Some believe that �microaveraged

performance is somewhat misleading (...) because more frequent topics are weighted heavier

in the average� [Wiener et al. 1995, page 327] and thus favour macroaveraging. Others

(actually, the majority of researchers) believe that topics should indeed count proportion-

ally to their frequence, and thus lean towards microaveraging.� [75]. Finally, the F-Score is

calculated, similar to Equation 3.14, for the two methods.

3.4 Summary of Chapter 3

This chapter presented the architecture and methodology used in this work. The features

used were temperature, CO2, noise, and light. The environment temperature in�uences the

human body heat, and the human body heat in�uences the environment. Depending on the

room size and the number of occupants, the environment temperature can change slowly or

quickly. In indoor environments, another thing that changes with the presence of occupants

is the level of CO2. Depending on the air�ow exchanges this change can also be slow or

quick. Human noise can be a feature to detect the presence of occupants in a room. In

working environments, it is impossible to deliver natural light source to all occupants so the

arti�cial light is on, most of the time.

The IoT architecture implemented has four major layers: objects layer, communication

layer, analysis layer, and application layer.

Three nodes were placed in the room to test the hypothesis to detect people density

presented in this chapter. Each node has some sensors connected. The ground truth is given

by a mechanism of two buttons that the occupant presses when arriving or leaving. Every

60 seconds, the data of all nodes are saved in a MySQL Database server, leading to a short

system latency. This data will be pre-processed and the ML models will be applied.
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The F-Score will be used to judge the classi�er performance. This technique measures the

discrimination of classes using recall and precision. In the multiclass problem, the F-Scores

are used with micro and macro averaging.

Next chapter presents the data analysis and the results and discussion of ML algorithms

application.
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4 Experience Evaluation

In the previous chapter, the equipment and the strategy adopted to acquire data were

described. This chapter presents the analysis of data in Section 4.1, the results of applying

the ML Algorithms in Section 4.2 and a discussion of the previous two sections in Section 4.3

First, the data were analysed and it was thought the best strategy to use this data. It

was assumed that everyday occupants always kept the doors and windows closed, pressed

the button when arriving and leaving. Every time an occupant was in the room, the light

was on otherwise the light was o�. The data was changed manually in cases that these

assumptions didn't occur and was veri�ed.

4.1 Data Analysis

Data acquisition did not occur on the same period because some sensors were already

in the laboratory but the others had to be ordered. So, a consensus was reached that it

was preferable to start acquiring data and test with it the ML algorithms. When the other

sensor arrive, a new acquisition system would be implemented to acquire the new data.

Figure 4.1 represents 2880 samples of temperature raw data. The blue data were ac-

quired on November 11, 2017, and represent the di�erence between indoor temperature and

outdoor temperature without occupants. The red data were acquired on November 10, 2017,

and represent the di�erence between indoor temperature and outdoor temperature with oc-

cupants. The graph is in Celsius degrees by hours. In this �gure, it is possible to conclude

that the di�erence is higher with occupants than without occupants. The �rst occupant

arrived around 9 AM and the last occupant left around 6 PM. The exceptions are around 10

AM and around 12 AM. The �rst exception happens because the incidence of the sun in the

room which on this period of test occurs at this hour, increasing the indoor temperature.

The second happens because the occupants left the room to have lunch.

Figure 4.2 represents 4320 samples of CO2 raw data. The blue data were acquired on
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December 17, 2017, the red data were acquired on December 26, 2017, and the yellow data

were acquired on December 18, 2017. They represent the indoor CO2 levels during a day

without any occupant, with one occupant and with more than one occupant in the room,

respectively. The graph is in ppm by hours. Through the analysis of the red line, it is

possible to see that when an occupant arrived the CO2 levels increased to around 500 ppm.

This increase was more noticeable in the yellow line when more than one occupant was in

the room, increasing to around 2000 ppm. In days without occupants, as shown by the blue

line, the levels were between 400 and 450 ppm.

Figure 4.3 represents 2880 samples of sound amplitude raw data. The blue data were

acquired on December 17, 2017, and the red data were acquired on December 18, 2017.

They represent the sound amplitude during a day without and with occupants in the room,

respectively. The data are in dB by the hour. In this �gure, it is possible to see that the

di�erences are not very large, having the same maximum with and without people.

Figure 4.4 represents 2880 samples of light intensity raw data. The blue data were

acquired on December 17, 2017, and the red data were acquired on December 26, 2017.

They represent the light intensity during a day without and with occupants in the room,

respectively. The data are in lux by the hour. In this �gure, it is possible to see that when

an occupant arrived, close to 10 AM, the lux increased to around 110 and when he left,

close to 6 PM, the lux decreased to zero on the red line. In the blue line, the same problem

caused by solar incidence around 10 AM occurs like in the temperature graph. This proves

the increase of temperature when there are no occupants around this hour.

Analysing the data from other days, it was possible to see that some data have outliers

(an observation point that is distant from other observations) and some noise (data with a

large amount of additional meaningless information).

4.1.1 Outlier Filtering

The approach to deal with outliers is in Algorithm 3, in Appendix D [41]. Given an array,

x of length m, creates a new array y with m length, and sets the �rst element equal to the

�rst element of array x. Then, each element of the array x is veri�ed and if the division of

the new element by the previous is in a threshold range de�ned by the user. If the answer

is positive, the element in position i of the new array is equal to the element in position i

of the old array. If the answer is negative, the new element in position i of the new array is

equal to the previous element in the new array.
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Figure 4.1: Raw data of temperature sensor by Node1 acquired on November 10 and 11,

2017.

Figure 4.2: Raw data of CO2 sensor by Node3 acquired on December 17, 18, and 26, 2017.
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Figure 4.3: Raw data of amplitude collected from sound sensor of Node2 acquired on De-

cember 17 and 18, 2017.

Figure 4.4: Raw data of light sensor of Node3 acquired on November 17 and 26, 2017.
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4.1.2 Noise Filtering

A Low-Pass Filter (LPF) was applied to deal with noisy data. By de�nition, a LPF

is a circuit that o�ers easy passage to low-frequency signals and di�cult passage to high-

frequency signals. This type of �lters is commonly used for removing noise from a signal

using simple Resistor-Capacitor (RC) architecture, i.e. the circuit consists of a resistor in

series with a load and a capacitor in parallel with the load. This type of �lter is known

commonly as a �rst-order �lter because it has only one reactive component, the capacitor,

in the circuit. Equation 4.1 gives the discrete implementation of the �rst order LPF [24].

y[n] = αx[n] + (1− α)y[n− 1] (4.1)

where α = ∆T

RC+∆T
is the smoothing factor, y is the �ltered output, x is the input, n is the

sample index and ∆T is the sampling period. R and C are the value of resistor and capacitor,

respectively. Because the solution sought was via software, the RC had to be changed. In

a LPF, signals with a frequency lower than a certain cuto� frequency pass and signals with

frequencies higher than the cuto� frequency are attenuated. With a cuto� frequency (fc)

it is possible to calculate the smoothing factor, α. Equation 4.2 gives this relation between

them.

fc =
1

2πRC
=

α

(1− α)2π∆T

(4.2)

where RC = ∆T
(1−α)
α

. Calculating the next value through this smoothing factor and the

previous value, it was possible to reduce the data noise, making the transitions between

samples slower and pleasant.

4.1.3 Results of Filtering

Figure 4.5 illustrates the �ltering (blue line) and the raw data of temperature (red line).

This solution was applied with the other data too. The smoothing factor used was 0.15.

This value and the outlier threshold was obtained experimentally verifying what value gave

the best �ltering. With this, the data are cleaner with less noise and without outliers.
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Figure 4.5: Outlier �lter and Low-Pass Filter in the temperature data.

4.2 Machine Learning Algorithms Application

In the �rst stage, data are pre-processed, the outliers were removed, and a �lter was

applied to remove the noisy data. Next, the ML techniques were applied to this new data.

The main purpose of using ML is to �nd patterns in the data to arrive at a classi�er that can

perform a correct prediction of the room occupants. First, binary case was analysed and, if

applicable, the multi-class case was analysed.

4.2.1 Dataset

The dataset used was acquired in 10 consecutive days. As previously said, the temper-

ature data and data from the other sensors had di�erent collected days. The temperature

data started on November 10, 2017, at 00h00min and end on November 19, 2017, 23h59min.

The other data used started on December 14, and end on December 23, 2017. The datasets

have 14400 training examples. This dataset was divided, 60% to train the classi�er and 40%

to test. Tables 4.1, 4.2, and 4.3 present the number of samples in each class. It is possible to

see that the dataset has skewed classes, having more examples in one classe than anothers.

In Appendix C, it is possible to see the dataset plot.
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Table 4.1: Number of samples in the temperature dataset for the binary problem.

Training set Testing set Total examples

Positive examples 2444 1108 3552 ('25%)

Negative examples 6196 4652 10848 ('75%)

Total dataset 8640 (60%) 5760 (40%) 14400 (100%)

Table 4.2: Number of samples in other datasets for the binary problem.

Training set Testing set Total examples

Positive examples 2273 1089 3362 ('23%)

Negative examples 6367 4671 11038 ('77%)

Total dataset 8640 (60%) 5760 (40%) 14400 (100%)

Table 4.3: Number of samples in temperature dataset for the multi-class problem.

Training set Testing set Total examples

Class 1 (y=1) 279 176 455 ('3%)

Class 2 (y=2) 476 289 765 ('5%)

Class 3 (y=3) 928 341 1269 ('10%)

Class 4 (y=4) 446 302 748 ('5%)

Class 5 (y=5) 315 0 315 ('2%)

Class 6 (y=0) 6196 4652 10848 ('75%)

Total dataset 8640 (60%) 5760 (40%) 14400 (100%)

4.2.2 Approach to Classi�cation

The LR classi�er was trained with λ = 0 and the threshold = 0.5. The SVM classi�er was

used with Radial-Basis Function (RBF) Kernel. This Kernel (Equation 4.3) only needs two

parameters, C is a penalty cost parameter and γ is the inverse of the standard deviation [18].

k(x, y) = e(−γ||x−y||2) (4.3)

This classi�er was trained with C = 1 and γ = 0. The NN classi�er was trained with λ = 0,

hiddenunits = 1 (number of hidden layers units), and three layers (input layer, hidden layer,

and output layer).

To obtain the highest F-Score some parameters could be changed. It is possible to
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add polynomial features in LR and NN to increase the complexity of the classi�er and

in some cases to improve the performance. Algorithm 4, in Appendix D, presents how

these parameters were calculated. For LR, a represents the λ parameter (λvec = [0 0.001

0.003 0.01 0.03 0.1 0.3 1 3 10 30 100]), b represents the polynomial degree (polyd = 1 : 10),

and c represents the threshold = 0.5. For the SVM, a represents the γ parameter (γ equal to

previous λ), b represents the polynomial degree polyd = 1, and c represents the C parameter

(C = [0.1 0.3 1 3 10]). For the NN, a represents the λ parameter (λ = [0 0.01 0.1 1 10]),

b represents the polynomial degree (polyd = 1 : 5), and c represents the number of hidden

layer units (hiddenunits = [1 2 3 5]).

Algorithm 4 calculates the classi�ers with all the possible combinations with this param-

eters and returns the parameters with the best F-Score.

4.2.3 Results of Classi�ers

Binary Problem Results

The binary problem aims to determine whether an occupant was in room (y = 1) or not

(y = 0). Table 4.4 presents the results by applying the classi�ers with the dataset without

changing the parameters.

Table 4.4: F-Score results of applying ML algorithms into data to a binary problem.

LR SVM NN

Temperature 85.35% 87.05% 86.60%

Carbon Dioxide 12.40% 31.62% 0%

Noise 1.81% 2.48% 0%

Light 95.40% 93.59% 93.11%

Analysing the results of the binary problem without changing the parameters the classi�er

that give the best F-Score was the SVM classi�er for all the features except light sensor.

The NN classi�er had the lowest f-score in almost the cases. With one feature and with this

dataset, the NN classi�ers have the lowest F-Score. In some cases the result was 0%.

In the PC on which the tests occurred, on average, training with a NN takes 4.79 seconds,

compared to LR that was 0.16 seconds and SVM that was 1.80 seconds.

It was expected that the F-Score result of noise data will be low to detect people. The

occupants passed most of the time in silence. In future works, it is advisable to change the
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acquired sample interval to 1 second to detect e�ectively the noise of occupants in cases that

it applies.

The expected F-Score of the light data was high. But it can only detect whether the

occupants are present or not.

As a larger number of occupants in the room usually results in higher CO2 concentrations,

this data can detect the number of occupants, as can be seen in Figure C.7. However, because

the room does not have a good air �ow rate, this concentration reduces slowly and can take

hours to stabilise. So the approach did not perform well. One possible approach is to

calculate the derivative and then check whether if it has a certain slope so as to determine

if an occupant arrived or left. To do this, another type of data would have to be collected.

The problem is that there are not su�cient and suitable days with exactly one occupant,

two, and so on in a room, at the same time and the same amount of time to have a large

dataset to train the classi�er.

The temperature data su�ers from the same problem that the CO2 data. It is impossible

to have a �xed number of occupants in the room. So it was important to have a dataset

with more data for calculating the time taken for temperature to stabilise to improve the

results. However, even without this knowledge, the results were satisfactory, around 87%,

to detect the presence of occupants.

Tables 4.5, 4.6 and 4.7 present the parameters and results that give the highest F-Score

by applying a LR, SVM, and NN classi�er with the dataset, respectively.

When performing a new F-Score and changing the parameters and the polynomial degree,

some features show a signi�cant improvement like CO2. Light reached 99%. The temperature

and noise did not show a signi�cant growth.

Table 4.5: F-Score results of parameters that perform the highest score for LR binary clas-

si�ers.

λ Polyd F-Score

Temperature 3 2 87.42% (↑2.07%)

Carbon Dioxide 0.01 8 33.42% (↑21.02%)

Noise 0.003 3 2.72% (↑0.91%)

Light 0.001 5 99.22% (↑3.82%)
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Table 4.6: F-Score results of parameters that perform the highest score for SVM binary

classi�ers.

γ C F-Score

Temperature 0.3 3 87.43% (↑0.38%)

Carbon Dioxide 10 1 49.36% (↑17.74%)

Noise 30 10 4.87% (↑2.39%)

Light 100 0.3 99.22% (↑5.63%)

Table 4.7: F-Score results of parameters that perform the highest score for NN binary

classi�ers.

λ Polyd hunits F-Score

Temperature 0 1 5 87.43% (↑0.83%)

CO2 0.1 4 5 46.03% (↑46.03%)

Noise 0.01 5 5 4.65% (↑4.65%)

Light 0 4 1 99.22% (↑6.11%)

Despite the fact that the CO2 levels can tell the number of occupants, the data analyse

has to su�er changes before applying a ML technique. The noise had a low F-Score and

the light indicated only the presence or absence of occupants. For these reasons, only the

temperature was analysed in a multi-class problem.

Multi-class Problem Results

The multi-class problem aims to determine the number of occupants in a room. During

this work, there were �ve occupants in the room mostly but sometimes there were more. In

these cases, it was assumed �ve occupants because this occurs in one-o� situations. Analysing

Table 4.4, it is possible to verify that only the temperature data can have good results in a

multi-class problem. The F-Score (micro) gives the accuracy, so it was decided to use the

F-Score (macro) to evaluate the classi�er. Table 4.8 presents the results. From Tables 4.9,

4.10 and 4.11, it is possible to verify the best parameters and the F-Score (macro) results

for the LR, SVM, and NN classi�ers, respectively.

Unfortunately, it was not possible to count the number of occupants using the tempera-

ture data (around 25% without changing the parameters). In this case, all the classi�ers give
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almost the same value. Changing the parameters, LR gives the best results for this dataset,

around 34%. It was also assumed that the human body surface had a uniform temperature

and a uniform heat production, but it is not true. The human body has a distinct physi-

cal shape and also has complex thermo-physiological properties. However, it is di�cult to

include those factors into a numerical constant in an indoor climate.

Table 4.8: F-Score (macro) results by applying ML Algorithms with the dataset to a multi-

class problem.

Temperature

LR 24.39%

SVM 24.90%

NN 24.80%

Table 4.9: F-Score (macro) results of parameters that perform the highest score for LR

multi-class classi�ers.

λ Polyd F-Score (macro)

Temperature 0.01 8 34.34% (↑9.95%)

Table 4.10: F-Score (macro) results of parameters that perform the highest score for SVM

multi-class classi�ers.

γ C F-Score (macro)

Temperature 100 1 28.65% (↑3.75%)

Table 4.11: F-Score (macro) results of parameters that perform the highest score for NN

multi-class classi�ers.

λ Polyd hunits F-Score (macro)

Temperature 0.1 5 5 28.65% (↑3.85%)
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4.3 Summary of Chapter 4

The data acquisition occurred in some weeks between November and December. First,

the data were analysed and the best strategy to use this data was studied. It was veri�ed

that some data had outliers and noise. Two �lters were applied to reduce this problem, an

outlier �lter, and a LPF.

Next, ten consecutive days were selected to a total of 14400 data to each dataset and the

ML techniques were applied. The dataset was divided into two, a training set and a testing

set. The �rst was to train the classi�er and the second was to test its performance with a

ratio of 0.6/0.4, respectively.

Despite the fact that the LR was training more quickly, the choice goes to SVM. The

time di�erence between them is not signi�cant with this amount of data, and the results

were slightly better. The NN does not become a choice because this classi�er has a large

training time compared to the others because it needs a huge computing load, which increase

the calculation time. With more number of hidden layer units and polynomial features it

has, more time it will need.

As features, light and temperature presented good results to detect the presence of oc-

cupants. CO2 has to undergo another type of analyses to be used with ML techniques. In

this case of test, the noise did not present good results because the occupants passed most

of the time in silence.

Temperature was the only feature that was applied a multi-class classi�er. The results

was not satis�ed in order to detect the number of occupants.

The F-Score can be improved by changing the parameters or the polynomial degree,

making more complex functions. In some cases, this improvement was notorious, while in

other cases it was not.

48



5 Additional Contributions

This chapter presents additional work resulting from this thesis. The LCT-Envboard is

presented in Section 5.1 with an overview, a pinout description, the built-in sensors, and the

design. Section 5.2 describes some tests that were done.

5.1 LCT - EnvBoard

This thesis has identi�ed the need to develop a prototype board to collect environmental

data in the LCT-CISUC.

The main requirements for this board were:

� Raspberry compatibility: The RPi and the Arduino boards are widely used in academic

and home environments. There is a large community support and the cost is low. The

RPi has been selected because of the fact that it contains a microprocessor that can

be used as if it was a computer (see Section 3.2.2).

� Use of digital sensors: Digital sensors have been selected instead of analogue sensors

because they have a controller that makes the calculations and gives the �nal user the

correct measurement value. Analogue devices require this processing and conversion

on the part of the developer. Analogue devices also need ADC converters that RPi

does not contain. These sensors are also more prone to noise.

� Types of data: The types of data that sensors must collect are temperature, humidity,

light, and air quality monitoring.

� Output alert: There is the need to have a device to emit an alert in certain cases. The

choice was a led and a buzzer.

� Low power consumption: A board with low power consumption to continually gather

data.

The LCT-EnvBoard emerged to address these requirements.
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5.1.1 Overview

The LCT-EnvBoard, in Figure 5.1, allows to acquire environmental data such as temper-

ature, humidity, barometric pressure, Volatile Organic Compounds (VOC), TVOC, equiva-

lent CO2, and the infrared and full spectrum light. Some of the main pollutants of today,

described in Section 3.1, can be monitored by this board. It only allows a maximum con-

sumption of 150mA and it has two outputs to emit alerts. The board can be used like a RPi

Hat (an add-on board for the RPi GPIO pins) in every model B or as a breakout board (a

simple Printed Circuit Board (PCB) containing one or more Integrated Circuit (IC) required

to use this device with other devices) via I2C communication. The board head pins on top

allow the use of the GPIO pins of RPi.

Figure 5.1: LCT-EnvBoard in RPi2 and RPiZero

5.1.2 Pinouts

In Figure 5.2, it is possible to see the sensors and the pinouts of the header board:

� VCC - It can be used to output (RPi Hat) or input (Breakout board). If the board

was used like a hat, it does not connect other voltage sources on it. The voltage input

and voltage output are 5V.

� 3.3V - This is the 3.3V output from the voltage regulator. Maximum current output

from this is 150mA.

� GND - Common ground for power and logic.

� SCL - I2C clock pin.

� SDA - I2C data pin.

� MCP9808Interrupt - This is the interrupt/alert pin from the MCP9808.
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� CCS811Wake - This is the wake-up pin for the sensor.

� CCS811Reset - This is the reset pin. When it is pulled to ground the sensor resets

itself.

� CCS811Interrupt - This is the interrupt-output pin from CCS811. It is 3V logic and

can be used to detect when a new reading is ready or when a reading gets too high or

too low.

� TSL2591Interrupt - This is the interrupt pin from the TSL2591.

� LED, Buzzer, and Button - Connect to any RPi GPIO pin.

Figure 5.2: Pinout of LCT-EnvBoard.

5.1.3 Hardware

The sensors used in this thesis provided precise measurements. During pre-research, they

presented highly accurate data and low power consumption. So, some of them were incorpo-

rated on this board. Another reason for this choice is that sensors are well documented and

have APIs for Python and AVCr language that can be ported to another software. In this

work, some of these libraries were ported to C/C++. The choice of sensors fell on BME680

by Bosch, TSL2591 by AMS, CCS811 by AMS, and MCP9808 by Microchip.

The TSL2591 and the CCS811 sensor have already been presented in Section 3.2.1. The

BME680 is an Integrated Environmental Unit (IEU) that allows measuring temperature,
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humidity, barometric pressure, and VOC gas. It contains a small MOX sensor that heats

and changes resistance based on the VOC in the air [76]. The MCP9808 is an I2C digital

temperature sensor. It is highly accurate with a typical accuracy of ±0.25°C over the sensors

-40°C to +125°C range and precision of +0.0625°C [44]. The choice of two sensors that can

measure the temperature was because the MCP9808 is more accurate and can be used to

calibrate the CCS811 sensor with more precise results. Another reason for the choice of these

sensors choice was that all allow clock-stretching [16]. Basically, the clock stretching occurs

when a slave device forces the clock to slow down at times to delay the master sending more

data. The CCS811 on the RPi only works if the I2C speed is decreased.

The MIC5225 is a linear regulator by Microchip. All sensors picked work with 3.3V, so

this regulator is suitable to give a clean and stable 3.3V source [43].

As a input, the board has a button switch. As output a LED and an active buzzer (audio

signalling device with an internal oscillator) are there.

5.1.4 Board Design

The board layout was produced in EasyEDA. EasyEDA is a web platform that enables

hardware engineers to design schematics, simulate, and print circuit boards [34]. The circuit

schematics and the PCB are shown in Appendix E.

5.2 Preliminary Tests and Troubleshooting

To test if all components work as expected, the following tests were performed:

Test 1 � Power on, voltage measuring, and I2C detect. The �rst test was power

on the board on RPi. On the board, there is a LED that turns on if it receives the correct

voltage. Next, the outputs of VCC and 3.3V were tested. The results were 4.70 and 3.27V,

respectively. Finally, in Linux Console was typed `i2cdetect -y 1' to verify if every sensor

was detected. This test was successful.

Test 2 � Button, LED and buzzer. Next, a wire was connected to the buzzer and LED

and another in the switch to the RPi. A script was run to test to check whether the buzzer

makes a sound and the LED turns on when the button is pressed. This test was successful.
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Test 3 � MCP9808 Sensor. The third test was to use the MCP9808 sensor. A room

was heated and cooled to test if the measurement was following its variation. This test was

successful.

Test 4 � CCS811 Sensor. The fourth test was to use the CCS811 sensor. It was breathed

up in the sensor to verify if the CO2 concentration is increasing. This test was successful.

Test 5 � TSL2591 Sensor. The �fth test was to use the TSL2591 sensor. A lamp was

directed to the sensor and the light was turned on and o�. This test was successful.

Test 6 � BME680. The �nal test was to use the BME680 sensor. The sensor gets values

but this value was not true. The temperature returned was -138ºC, which is not correct.

This test failed.

It was veri�ed that the heat in board increased because of the RPi2. This increase was

because the sensor was on top of the heat sink of the RPi2 tested. The RPizero tested had

an acrylic box, so this was not veri�ed. It is possible to use the board like a breakboard and

to resolve the problem in RPi2.

The CCS811 sensor uses I2C clock stretching. The RPi cannot do this without drastically

reducing the I2C speed. (for more information see Ref. [2]).

The sensors with a Metal Oxide (MOX), CCS811, and BME680 need to be run for 48

hours during the �rst time use to `burn it in', and then for 30 minutes in the desired mode

every time the sensor is in use. The reason is that the sensitivity levels of the sensor will

change during early use and the resistance will slowly rise over time as the MOX warms up

to its baseline reading.

Temperature and humidity in BME680 sensor did not give the correct results. The

problem can arise from the library or from the sensor. The other values, like a gas resistor,

vary but it is di�cult to say that the values are correct when the temperature is not correct.

This board only permits direct connection with 3.3V. However, with a bi-directional

logic level converter (a small device that safely steps down 5V signals to 3.3V and steps up

3.3 to 5V at the same time) can be used by 5V devices.
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5.3 Summary of Chapter 5

This chapter presented the LCT-EnvBoard. It provides a complete environmental gath-

ering device, which is composed of a LED, a buzzer, a switch, and four sensors that can

acquire the temperature, humidity, barometric pressure, altitude, eCO2, TVOC, VOC, and

the infrared and full spectrum light. It has a low power consumption limit of less than

150mA. This board can be connected to any device with the I2C protocol. The purpose of

this board is to �ll a gap that exists in LCT-CISUC.
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6 Conclusions and Future Work

Nowadays, companies and researchers are working on enhancing the quality of life of

citizens, using the IoT paradigm to reach the idea of building smart environments. In this

context, it would be bene�cial to have mechanisms to predict or estimate the occupancy of

indoor environments to make smart decisions about how to self-adapt to the environmental

conditions. Some researches have been done in this area; however, there are some open issues,

such as privacy, cost, and data storage. In this work, research was performed to accomplish

occupancy detection with non-intrusive devices using sensors such as temperature, noise,

CO2, and light.

A functional system, made up of a device to gather and process environmental data and

to analyse the data patterns over the collected data regarding people occupancy in indoor

environments using ML techniques, was tested in this research. The analysis allows to a�rm

that with features like noise data in working environments the performance of the recognition

system might be degraded. However, with features like temperature, CO2, and light data, it

will be possible to improve the detection of occupants. Thus, the objectives de�ned at the

beginning of this research were ful�lled.

The main contributions of this research are: (i) a low-cost prototype to collect and process

environmental data for indoor scenarios, which could be used by the upcoming researchers

to easily acquire data; (ii) an analysis of occupancy for indoor environments using a ML

approach; and (iii) a study of the most suitable sensors to determine occupancy in indoor

environments.

For future works, it is necessary to further study about the full correlation between the

environmental data used in this research. A starting point could be the analysis of features

and their impact on the model using principal component analysis (PCA). Additionally, an

analysis of the performance and accuracy of other classi�ers, such as unsupervised learning,

in ML mechanism could be performed. Regarding the prototype, it is recommended to test

the sensor SGP30 over the CCS811, because for a theoretical perspective the former is more
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stable and does not need clock stretching.

On a personal level, this work has given me the capacity to carry out research work with

autonomy, integrating knowledge acquired along the course besides to gain new knowledge

(such as IoT, prototyping, ML, and pattern recognition techniques) and promoting the

development of my capacity for critical analysis, synthesis, and creativity.

�An interesting direction that researchers in the future may consider is

not only the ability to adjust an environment to �t an individual's

preferences, but to use the environment as a mechanism for in�uencing

change in the individual.�

� Cook, Diane J., and Sajal K. Das.
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Appendix A

Pictures of Equipment Used
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Figure A.1: Raspberry Pi 2.

Figure A.2: Arduino Yun.

Figure A.3: Thermistor module.
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Figure A.4: ADC PCF8591 module.

Figure A.5: AMS CCS811 Breakoutboard by Adafruit.

Figure A.6: AMS TSL2591 Breakoutboard by Adafruit.
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Figure A.7: Sparkfun Sound Detector.
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Appendix B

Plant of 6º �oor of Department of Infor-

matics Engineering
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Appendix C

Dataset
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Figure C.1: Training Dataset of Temperature Ground Truth.

Figure C.2: Testing Dataset of Temperature Ground Truth.
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Figure C.3: Training Dataset of Temperature in Celsius per sample.

Figure C.4: Testing Dataset of Temperature in Celsius per sample.
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Figure C.5: Training Dataset of Ground Truth except for Temperature Data.

Figure C.6: Testing Dataset of Ground Truth except for Temperature Data.
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Figure C.7: Training Dataset of CO2 in ppm per sample.

Figure C.8: Testing Dataset of CO2 in ppm per sample.
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Figure C.9: Training Dataset of Noise in dB per sample.

Figure C.10: Testing Dataset of Noise in dB per sample.
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Figure C.11: Training Dataset of Light in lux per sample.

Figure C.12: Testing Dataset of Light in lux per sample.
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Figure C.13: Dataset of Temperature in Celsius per sample with the classes/labels.
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Appendix D

Algorithms described in the document
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Algorithm 1 Back-propagation algorithm

procedure

Given training set (x(1), y(1)), ..., (x(l), y(l)):

Set ∆
(l)
i,j := 0

For training example t = 1 to m:

Set a(1) := x(t)

Perform forward propagation to compute a(l) for l = 2, 3, ..., L

Using y(t) compute δ(L) − y(t)

Compute δ(L−1), δ(L−2), ..., δ(2) using equation 2.20

∆i,j := ∆i,j + a
(l)
j δ

(l+1)

if j 6= 0 then

D
(l)
i,j := 1

m
(∆

(l)
i,j + λΘ

(l)
i,j)

else

D := 1
m

∆
(l)
i,j
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Algorithm 2 Collecting and storage the data

procedure Arduino

Start the Serial Communication with 9600 bps

Initialize the sensors

loop:

if Received any message of RPi then

Collect and average ten samples with a 100 microseconds delay from sensors

Send the averaged samples to the RPi

procedure RaspberryPi

Initialize the GPIO pins

Activate the GPIO to the buttons

Start the Serial Communication with 9600 bps

Initialize the communication with MySQL Database

loop:

Update with the actual number of occupants

Every 10 seconds, ask and receive samples from Arduino

Every 1 minute, make a average to the samples received and send to the database

Algorithm 3 Outliers �ltering algorithm.

procedure

Given an array (x(1), ..., x(m)) and a threshold:

Create a new array y with the length of x

Set y(1) := x(1)

For i = 2 to m:

if (1− threshold < x(i)
y(i−1)

) and ( x(i)
y(i−1)

< 1 + threshold) then

y(i) = x(i)

else

y(i) = y(i− 1)

Return the new array y
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Algorithm 4 Parameters to Highest F-score Algorithm.

procedure

Given training set (x
(1)
0 , y(1)), ..., (x

(l)
0 , y

(l)) testing set (x
(1)
cv0, y

(1)
cv ), ..., (x

(l)
cv0, y

(l)
cv ) and a, b

and c parameters:

for i=1:length(b) do:

x = polyFeatures(x0, b(i))

xcv = polyFeatures(xcv0, b(i))

x = featureNormalize(x)

xcv = featureNormalize(x)

for j=1:length(a) do:

for k=1:length(c) do:

Training the classi�er with b(i), a(j), c(k), x and y

Predict the classi�er with xcv, ycv and the parameters calculated earlier

Calculate the f-score value of classi�er and save them to a array(j,i,k)

Calculate the maximum f-score classi�er

Returns the parameters with the highest value
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Appendix E

Circuit Schematics and Printed Circuit

Board Design
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