José Carlos Baptista Pereira Mendes Direito

Probabilistic Computing Using OpenCL
on an FPGA Mini-cluster

Dissertation submitted to the Electrical and Computer Engineering De-
partment of the Faculty of Science and Technology of the University of
Coimbra in partial fulfillment of the requirements for the Degree of Master

of Computer Science.

May 2018

UNIVERSIDADE DE COIMBRA

Probabilistic Computing Using OpenCL
on an FPGA Mini-cluster

José Carlos Baptista Pereira Mendes Direito

Department of Electrical and Computer Engineering
Faculty of Sciences and Technology

University of Coimbra

Supervisor: Prof. Doctor Jorge Nuno de Almeida e Sousa Almada Lobo

Jury:
Prof. Doctor Vitor Manuel Mendes da Silva
Prof. Doctor Fernando Manuel dos Santos Perdigao
Prof. Doctor Jorge Nuno de Almeida e Sousa Almada Lobo

Dissertation submitted to the Electrical and Computer Engineering Department of the
Faculty of Science and Technology of the University of Coimbra in partial fulfillment of the

requirements for the Degree of Master of Computer Science.

May 2018

Acknowledgements

First, I wish to thank my supervisor, Prof. Doctor Jorge Lobo, at the University of Coimbra,
for his steady guidance throughout this work. Second, would like to thank Fernando, Gongalo,
Bruno, Miguel and Hugo for their companionship during the long hours spent at the Mobile

Robotics Laboratory. Finally, I would like to thank my family and my girlfriend for their
never ending support and patience.

Obrigado,

Zé

Abstract

This thesis studies the implementation of Bayesian Inference on Re-configurable Hardware
(FPGAs) using a Top Down approach. We started from a generic implementation targeting a
CPU and, using the general purpose parallel programming language OpenCL, offloaded the
computation bottlenecks to FPGAs installed on accelerator boards. A generic localization
problem was implemented on an heterogeneous computing platform containing two Intel
Xeon E5 CPUs and four Intel (formerly Altera) Stratix V FPGAs. The full capabilities of
such a platform were extracted by the careful division of workload between the CPUs and
FPGAs. Furthermore, various optimization techniques were used and precision, speed and
energy consumption performance metrics were gathered. The results were compared with
two previous implementations of the same localization problem using Exact Inference: A
ProBT implementation (COTS software for Bayesian Programming and Inference) on a
conventional CPU and a generic toolchain developed under the EU FET project BAMBI
(Bottom-up Approaches to Machines dedicated to Bayesian Inference) using an unconven-
tional computing approach on re-configurable hardware. In addition, we describe the impacts
of OpenCL overhead on FPGA resource usage. The limitations on the official support of
OpenCL from manufacturers and vendors encountered during implementation are analyzed.

Finally, further work opportunities on this topic are proposed.

Keywords: Bayesian Inference, OpenCL, Heterogeneous Computing, Top Down
Approach, Re-configurable Logic, FPGAs

vii

Resumo

Nesta tese € analisada a implementacdo de Inferéncia Bayesiana em l6gica reconfiguravel
(FPGASs) utilizando uma abordagem “Top Down". A partir de uma implementa¢do genérica
num CPU, e utilizando a linguagem de programagdo paralela OpenCL, implementamos
as componentes de limitadas pela capacidade de processamento em FPGAs instaladas em
aceleradores discretos. Um problema de localizacdo genérico foi implementado numa
plataforma de computacio heterogénea contendo dois CPUs Intel Xeon ES e quatro FPGAs
Intel Stratix V. O sistema foi optimizado de forma a extrair a sua maxima capacidade
de processamento através de um cuidadoso balanceamento de carga entre os CPUs e as
FPGAs. Foram ainda implementadas varias técnicas de optimizacdo e adquiridas métricas
de velocidade, precisdao e consumo de energia. Os resultados foram comparados com
duas implementacdes prévias do mesmo problema de localizac@o utilizando Inferéncia
exacta: Uma implementacao em ProBT (software comercial para Programaciao Bayesiana e
Inferéncia) num CPU convencional e uma “toolchain™ genérica desenvolvida no ambito do
projecto Europeu FET BAMBI (Bottom-up Approaches to Machines dedicated to Bayesian
Inference) utilizando hardware dedicado nao-convencional. Foram ainda analisados os
impactos do OpenCL na utilizagdo de recursos da FPGA. As varias limitagdes no suporte
oficial a OpenCL dos fabricantes e comercializadores encontradas durante a implmentagao

foram analizadas. Por dltimo, sdo propostas oportunidades de trabalho futuro sob este tépico.

Palavras-chave: Inferéncia Bayesiana, OpenCL, Computacao Heterogénea, Abor-
dagem “"Top Down", Légica Reconfiguravel, FPGA

Table of contents

Acknowledgements

Abstract

List of figures

List of tables

Nomenclature

1 Introduction

1.1 Motivation o o e e e e e e
1.2 Objectives o o e e e e e e e
1.3 Related Work
14 KeyContributions L L
1.5 Dissertation Overviewo

2 Background

2.1 BayesianInference
2.1.1 Bottom-up Approach - BAMBI project
2.1.2 Top-downapproach.,
2.1.3 Bayesian Programming oL
2.1.4 ProBT® programming tool
2.1.5 BayesianNetworkso oL
2.1.6 FPGAvsCPU e
2.2 Open Computing Language (OpenCL)
221 Origins
222 Architecture.
2.2.3 Re-configurable Systems Support

iii

xi

xiii

XV

N DN B W =

X Table of contents

2.3 FPGA Reconfiguration Protocols 20
2.3.1 Configuration Via Protocol (CvP) 20

2.3.2 JTAG (Joint Test Action Group) 20

3 Implementation 23
3.1 Experimental Setup 23
3.1.1 BasePlatform., 24

3.1.2 FPGA Mini-cluster 25

3.2 Preliminary Approaches 27
32.1 AlteraDE1SocBoard 27

3.2.2 Hardwareconstraints oL 28

3.3 Case Study: Boat Localization 29
3.3.1 Model Generator 31

3.3.2 Sensor Data Acquisition, 32

3.33 OpenCL Host-BoatFusion 32

334 OpenCLKernels 33

4 Results and Analysis 35
5 Conclusions and Future Work 41
5.1 Conclusions L 41

52 FutureWork 42

References 43

List of figures

1.1

2.2
2.3
24
2.5
2.6
2.7
2.8
2.9
2.10

3.1
3.2

3.4

3.5

3.6

3.7

3.8

System OVerview. o v v v i e e e e e e e 4
ProBT Compilation Toolchain 12
Bayesian Network of Boat Localization Example 12
OpenCL Platform Model. [1] 16
NDRange kernel index space. [1] 16
OpenCL Device Memory Architecture [2]. 17
Altera OpenCL SDK Software Architecture. 18
Altera OpenCL Design Flow. 19
Block Diagram - Device Reconfiguration Mode. 20
Block Diagram - Multiple Endpoint Configuration Via Protocol. 21
Physical System Diagram. 23

Heterogeneous Computing Platform - Visible four Gidel ProceV boards
connected in a 3D torus using fiber-optical cables. Beneath the top coolers,

two Intel Xeon E5-2620 v3 CPUs. L. 24
Altera USB Blaster - Used to reconfigure the FPGAs through JTAG. 26
Four Gidel ProceV boards connected to four Terasic USB Blasters through

JTAG. . . . e 27

Boat Localization problem - Three beacons are visible from the boat. The
boat is able to detect its distance (D1,D;,D3) and bearing (By,B;,B3) to
eachbeacon.. L 29
System Architecture - From the Computation Tree generated by ProBT, the
OpenCL host and kernels are compiled offline. During runtime, the OpenCL
host program initializes the Compute Devices, loadsd the necessary memory
buffers and enqueues the kernels for processing. 30

Kernels Block Diagram. 33

xii List of figures

4.1 Heatmap representing the probability distribution of the boat position in a

discrete map of 64x64 cells. Distribution calculated through exact inference

on the FPGA mini-cluster. 36
4.2 Altera OpenCL SDK Profiling Report - Exact Bayesian Inference Kernels

for Boat Example on a single device. 37
4.3 Stratix V Resource Utilization of Exact Bayesian Inference Kernels for Boat

Example on single device. 38

List of tables

2.1

4.1
4.2
4.3

OpenCL - Memory Allocation and Memory Access by Device 17
Clock Frequency Performance 37
Energy Consumption 37

FPGA Resource Usage 38

Nomenclature

Acronyms / Abbreviations

BAMBI Bottom-up Approaches to Machines dedicated to Bayesian Inference
COTS Commercial Off The Shelf Software

CPU Central Processing Unit

FPGA Field Programmable Gate Array

GPU Graphical Processing Unit

HDL Hardware Description Language

ITRS International Technology Roadmap for Semiconductors

OpenCL Open Computing Language

RICH Ring-imaging Cherenkov detector

Chapter 1

Introduction

1.1 Motivation

From its beginning, the field of robotics has shifted from an automatic to an autonomous
perspective. In its early days, the focus was the development automatic tools capable of
reliably performing simple and repetitive tasks at high speeds. However, with advances in
computing power, data acquisition, computer vision, hardware reliability and other related
fields the objective slowly evolved into a quest to achieve autonomous operation. This
autonomy now allowed for the appearance of autonomous vehicles, industrial and social

robots.

One of the main challenges in the path for full robotic autonomy is perception. Early
robots and computer-based devices were in a state of sensory deprivation [3]. With advances
in sensory technologies, autonomous agents became overloaded with information. This led to
the necessity to efficiently transform this raw data from an autonomous agent data acquisition
systems into a useful and correct representation of its surroundings. In order to achieve this,

agents must be able to efficiently deal with uncertainty.

To include the degree of belief into the computations, probabilistic alternatives to the
traditional symbolic logic (commonly known as Boolean Algebra) have been successfully
used. In the field of robotic perception Bayesian Inference is widely accepted and used.
However, due to the cardinality of Bayesian Inference computations, even simple perception

problems can easily become intractable, overloading traditional CPU based implementations.

It is a widely held belief among the scientific community that the miniaturization of

processors is reaching its limit. According to the International Technology Roadmap for

2 Introduction

Semiconductors (ITRS) [4], current generation manufacturing processes are able to reliably
mass produce 14nm processors, with some foundries beginning pre-production runs of 10nm
technology. It is is expected for this trend to reach its limit with the Snm transistor, which will
have a gate only 25 atoms wide. At this scale quantum effects and Strong and Weak forces
assume a significant role which compromises the transistor operation. Despite this limitations,
the introduction of some innovative manufacturing processes have allowed Moore’s Law to
maintain its relevance. For example, the exploration of a third dimension of the silicon wafer
called FinFET.

Current workloads both in scientific and enterprise computing markets require a great
deal of perception. This requirement applies not only to large-scale high-performance servers
but also to low-power domains due to the growing interest in cyber-physical systems includ-
ing autonomously operating smart devices [5]. This growth in demand as created what is
known as the Compute Gap. This is the difference between the future global necessities in

computational power and the predicted availability.

In this context the European BAMBI project [6](Bottom-up Approaches to Machines
dedicated to Bayesian Inference) was conceived. It aimed at tackling current technologies
limitations by developing unconventional architectures to tackle Bayesian Inference prob-
lems. It aimed to create generic Bayesian Machines, based on stochastic computing, able
to perform exact and approximate inference using less power, resources and still achieving
satisfactory computing speed and precision. The original roadmap included the design
and manufacturing of an easy-to-deploy Bayesian Application-Specific Integrated Circuit
((B)ASIC). However, due to the high non-recurring costs involved in ASIC production and
the proposed architectures necessity to develop an entirely new chip for every change in
the probabilistic model, this objective was abandoned in favor of implementation on Re-
configurable Hardware (FPGAs)[7].

Throughout the implementation of a real world perception scenario using Inference
architectures developed under BAMBI [8][9][7], some of the challenges commonly associ-
ated with Re-configurable Hardware development using Hardware Description Languages
(HDL) were encountered. These challenges include the necessity of specialized developers,
knowledgeable in low level development, hardware logic design and Register Transfer Level
to design and verify complex designs and long compilation times. Furthermore, due to the
lack of development standards across different Re-configurable Hardware platforms HDL

design and optimizations are not fully platform/vendor independent, this implies maintenance

1.2 Objectives 3

costs for every change or upgrade in accelerator boards/FPGA chips[10]. In addition, inte-
gration with existing systems creates another set of challenges, requiring the development of

the low level communication and control interfaces with peripheral devices or host processors.

To address the challenges in parallel programming on GPUs, the OpenCL (Open Com-
puting Language) standard was created. Initially targeting GPUs, quickly evolved into a
framework for writing programs that execute across CPUs, GPUs, FPGAs, DSPs and other
processors, being best suited for computing in heterogeneous processing platforms. The
standard includes a set of programming languages and APIs to control and execute parallel

computations across the devices[1].

1.2 Objectives

In this work, we propose a different path in order to accomplish the same task - Fusion of six
noisy sensors in order to determine the location of a boat in a grid. This task was proposed
as a case study in [11] to measure the performance of the BM1 architecture developed under
BAMBI. In [8] a PCle interface with an host computer and a ROSBridge were developed.

We take a Top Down approach, implementing exact inference on conventional hardware
(CPUs and FPGAs) using OpenCL.

Firstly, we expect to demonstrate the feasibility and efficiency of an OpenCL implemen-

tation of Bayesian Inference on FPGAs.

Secondly, we intend to explore the capabilities of the heterogeneous system, by optimiz-
ing the distribution of the computations across the available CPUs and FPGAs.

Finally, using the Boat Localization case study, we intend to compare the development
burden and the final product efficiency of our approach with the ProBT implementation
(COTS software for Bayesian Programming and Inference) on a conventional CPU [11] and
with the BM1 architecture developed under BAMBI project running on the same FPGAs

mini-cluster [8][11].

4 Introduction

Heterogeneous Computing Platform 00064
| 0.0056

0.0048

0.0040

0.0032

Posterior
Distribution

0.0024

0.0016

0.0008

P
R gp—
x
L
g

0.0000

Fig. 1.1 System Overview.

1.3 Related Work

Zohouri et al. optimized OpenCL kernels for High Performance Computing with FPGAs.
They analyzed FPGA and vendor specific optimizations. Furthermore, they compared

OpenCL direct ports from GPU implementations with FPGA optimized versions[12].

At CERN a similar study is being conducted in preparation for the 2018 upgrade of the
current LHC readout system [13]. A two socket platform from Intel with a Xeon CPU and
a Stratix V FPGA communicating over QPI is being proposed as an experimental hetero-
geneous computing platform for computing the Cherenkov angle reconstruction of LHCb
RICH particle identification algorithm. As part of the analysis, the current implementation in
a Xeon processor is being compared with two heterogeneous CPU+FPGA implementations
in both Verilog and OpenCL[14].

Wang et al. designed Melia - an OpenCL implementation of the MapReduce algorithm on
FPGAs [15]. THey further developed a series of FPGA optimization techniques to improve
the algorithm efficiency. Melia was benchmarked on Altera Stratix V GX FPGAs, both
on single-FPGA and cluster settings, demonstrating the efficiency of the optimizations in

comparison with equivalent implmentations on CPUs/GPUs.

Alves et al. perform a survey on computationalsolutions for Bayesian Inference [16].
Morales et al. compared GPU and FPGA implmentations of Binomial Option Pricing Using
OpenCL[17].

At CHREC, development on OpenCL was compared with traditional HDLs for three
image-processing algorithms[10] (Canny edge detector, Sobel filter, and SURF feature-

extractor). Tests were performed on three different FPGA accelerator boards, one of which

1.4 Key Contributions 5

coincides with the ones used in our study.

At Karlsruhe, Weller et al. implemented and optimized partial differential equations
(PDEs) solvers for scientific computation on accelerator FPGAs, achieving higher energy
efficiencies than CPU only or CPU + GPU implementations [5].

Ferreira et al. demonstrate tractable implementation of exact Bayesian Inferece with a
real-time OpenCL vision-based model to estimate gaze direction in a human-robot interaction
(HRI) using GPUs [18].

On the other hand, on a Bottoms-Up Approach[7], unconventional hardware architectures
are explored to perform the required inference. This was the course of action of BAMBI
project: a generic toolchain was developed to generate unconventional hardware for proba-
bilistic inference from stochastic building blocks, allowing bit level parallelism [7]. During
this project, a Boat Location problem was used as a case study [11]. Later, Mira continued
the work, integrating ROS and adding a PCle interface to extract the full capabilities of the
FPGA mini-cluster [8].

1.4 Key Contributions

* OpenCL implementation of Bayesian Inference on an heterogeneous computing system
(CPU and FPGA) using a Top-down approach;

* Optimization of the inference kernel;

* Comparison of energy consumption, resources usage, computation speed and devel-
opment effort with previous implementations using the Boat Location problem as

benchmark;

* Trade-offs analysis for a Top-down approach using OpenCL.

1.5 Dissertation Overview

* chapter 1 describes the motivation and objectives of this work. Furthermore, a
summary review of related work in the field is given, and the key contributions of this

work listed.

Introduction

chapter 2 describes the theoretical foundations of this work, split twofold: Bayesian

Inference mathematics and OpenCL framework.
In chapter 3 the implementation is described.

chapter 4 analyzes the results and compares them with two previous implementations
of the same localization problem using Exact Inference: A ProBT implementation on a
conventional CPU and an implementation produced by the generic toolchain developed

under BAMBI project using the same Stratix V FPGA mini-cluster.

In chapter S, conclusions are drawn from the work under scrutiny and further research

opportunities are proposed.

Chapter 2

Background

2.1 Bayesian Inference

Scientists have often turned to nature for inspiration. This is specially relevant in the field of
perception applied to robotics, where the ability to capture and extract useful information
from the environment is of paramount importance. Animals have always had the ability to
perform decisions using incomplete and uncertain information regarding its surroundings.
This probabilistic behaviour as long captured the interest of the scientific community in order
to further improve perception algorithms. In the last couple of decades, Bayesian inference
has permeated into most fields of scientific research. From social sciences and humanities all
the way to medicine and biology, Bayesian inference is viewed as an alternative to conven-

tional frequentist inference techniques statistical data analysis [3].

Bayesian Inference has become an important tool for modeling cognition and reasoning
of both living organisms in fields such as Neuroscience and to perform artificial perception in
fields such as Artificial Intelligence or robotics. However, Bayesian inference in these fields
has always been limited by the computational requirements for real time implementations.
Bayesian programs generally include a large number of inter-dependent random variables.
Even considering that all variables have been discretized (analog to digital conversion
of sensor input, for example), the complexity of the Bayesian program, specifically the
cardinality of each random variable, produces a tractability issue. In other words, the
computations are exceedingly resource and time consuming in conventional computing units
for the inference to be performed in a reasonable amount of time.

Bayesian inference can be formally defined as the process of answering the question
P(Searched | Known), or in other words, determining the posterior, by computing:

8 Background

P(Searched|Known) o< Z P(Searched \ Known A Free) (2.1)

Free

Exact Inference

Theoretically, the intuitive method of performing inference is by computing the posterior
distribution as accurately as allowed by the precision of the underlying hardware, reaching
the exact values of the probabilities involved. When the computation of the posterior is
feasible using a closed-form method, inference is said to be exact. Such an exhaustive method
is not feasible for for the majority of cases, in fact it is only applicable in two scenarios:
when all free variables are discrete (hidden Markov models) or when all distributions are
linear and normal (Kalman filters). Event then, inference may be theoretically possible, but
not computationally tractable. Due to the curse of dimensionality, if the cardinality of each
random variable is too high, the computation may be excessively long for any real world
application. In addition, if the program is exceedingly complex, an analytic solution may
not even exist. Therefore, exact inference algorithms simplify the model computational tree
using tree-based and graphical methods,in order to reduce the computational burden of the

exhaustive computation of the posterior distribution probabilities.

Approximate Inference

When exact inference is not feasible, scientists trade computational precision and exhaustive-
ness for tractability. Using various methods and algorithms, the model is simplified and an
approximate description of the posterior distribution is used, enabling the execution of the

required inference. This is known as approximate inference.

2.1.1 Bottom-up Approach - BAMBI project

In order to circumvent current limitations of real world implementations of Bayesian In-
ference, the European BAMBI project (Bottom-up Approaches to Machines dedicated to
Bayesian Inference) was conceived. It followed a bottom-up approach, attempting to design
unconventional hardware for probabilistic computation from new stochastic building blocks,
effectively reshaping current inference models on a deep level. The project took the Bayesian
paradigm to the hardware level - instead of attempting to perform Bayesian inference on con-
ventional Boolean logic gates, it developed its Bayesian counterpart - the Generic Bayesian

Gate, also known as GUT. Using this generic gate as a building block, various computing

2.1 Bayesian Inference 9

architectures were developed, that harnessed the power of stochastic computing to efficiently
compute exact samples at the bit level. This successfully reduced the complexity of the
required inference, increased the computation speed, and increased the energy efficiency,
while maintaining the same level of accuracy as conventional methods. The original roadmap
included the design and manufacturing of an easy-to-deploy Bayesian Application-Specific
Integrated Circuit ((B)ASIC). However, due to the high non-recurring costs involved in ASIC
production and the proposed architectures necessity to develop an entirely new chip for every
change in the probabilistic model, this objective was abandoned in favor of implementation
on Re-configurable Hardware (FPGAs)[7].

During the project, a compilation toolchain was developed to implement various com-
puting architectures in re-configurable logic. The generic architecture that performed exact
inference is called the Bayesian Machine 1 (BM1). The BM1 is a massively parallel Bayesian
fusion machine, which requires all known variables to be considered conditionally indepen-
dent between each other for any searched variable. It computes the posterior probability
distribution on the searched variable S, using the knowledge of the prior distribution P(S)
and the set of conditional distributions P(K;|S), where Z is a normalization constant:

N N
P(S|K,) H (k;i|S) o< P(S H (k;|S) (2.2)

From a Bayesian Program defined in ProBT®, the computation tree is extracted and a
set of probability distribution Look-up Tables (LUTSs) are computed. Using this input, the
toolchain synthesizes the necessary components for the FPGAs, reconfigured them using
the previously generated bit-stream. Additionally the memory is preloaded with the prior
distribution P(S) vector and with the LUTs containing the set of conditional distributions

P(K;|S). The inference is performed and the results stored on the host machine.

K, K

Sﬂ bj-l,i-Z OP(j-1,i-1) bj-l,/'-l ; OP(j-1,i) bj.l,i ; OP(j-1,i+1) ~>b]_1'H

5/ bj,i-2 2] OP(j,i-1) bj,_l = OP(j,i) b” K< OP(j,i+1) *»bj,iu b3 b
S/+1 bj+1,i-2 e OP(j+1,i-1) b ; OP(j+1,i) b _; OP(j+1,i+1) 4>bj+1,i p,J—*

J+1,i-1 j+1,i

(a) BAMBI’s BM1 architecture. (b) BAMBI's BM1 element.

10 Background

2.1.2 Top-down approach

In this work a top-down approach was followed, by implementing an exact inference compu-
tation tree on an FPGA mini-cluster, using the OpenCL framework. In a top-down approach,
the inference computations are implemented on the underlying hardware using standard
components, performing regular mathematical and logical operations. These mathematical
operations are evaluated using either LUTs (Lookup Tables) computed in advance, or using

low precision representations of the probabilities.

The model is defined using the ProBT ProBT® generic inference programming tool from
the Bayesian programming formalism [19]. Using the Successive Reduction Algorithm
(SRA), ProBT produces a simplified computation tree, which is then implemented on the

FPGA mini-cluster using OpenCL.

2.1.3 Bayesian Programming

In order to define and compare Bayesian inference problems, a common language was needed.
The required formalism appeared with the definition of the Bayesian Program (BP). This
generic language allows researchers to build probabilistic models and later compute decision

and inference problems on those same models. A Bayesian Program consists of two parts:
Description - Probabilistic model of the physical occurrence or behaviour being modelled;

Specification - Exhaustive enumeration of the programmer’s formal knowledge of the

model;

Identification - Learning procedure to estimate the model’s free parameters from an

experimental data set;
Question - specifies the inference problem to be computed using this model.

All available knowledge of the physical occurrence being modelled is encoded in the
joint probability distribution. However, as described in section 2.1, this joint distribution
usually causes tractability issues due to its complexity. Therefore, the specification is used to
detail a tractable method to compute the joint distribution. The Identification provides the
learning methods to estimate the values of the model’s free parameters from the observed
data set. Finally, the Question is obtained by dividing the relevant variables into three sets:
the searched variables, the known variables and the free variables. The variables Searched,

Known and Free denote the conjunction of variables belonging to the aforementioned sets.

2.1 Bayesian Inference 11

For each value of the variable Known, a question is defined as P(Searched|Known A 1).

Variables
o Specification ¢ Decomposition
Description
BN()= Parametric Form (2.3)
\ Identification
Question

2.1.4 ProBT® programming tool

Various probabilistic programming languages are currently available to the scientific com-
munity, both as Commercial Off The Shelf Software(COTS) or as Open-Source source
software. These generally include and Application Programming Interface (API) to allow the
specification of the model and an inference engine that implements various algorithms in

order to solve the inference problems proposed.

In this work, ProBT® was used to define the case study model and to generate the com-
putational tree. This COTS was selected for compatibility reasons, given that it was the
software used throughout BAMBI project.

ProBT®, developed and maintained by ProBAYES is a generic inference programming
tool that facilitates the creation of Bayesian models and their re-usability using the Bayesian
programming formalism [19]. This library is a powerful programming tool for low-to-

medium complexity models consisting of two layers:
ProBT Engine - set of high-performance inference algorithm modules developed in C++;

ProBT API - an Application Programming Interface available in C++ and Python for

accessing the ProBT Engine functions.

After model specification, ProBT® generates a computation tree which is simplified using
the Successive Reduction Algorithm (SRA)[20]. The simplified computation tree is then
stored in a file to be later retrieved by the OpenCL host for implementation on the FPGA

mini-cluster.

12 Background

@
(®
Bayesian .
ProBT Computation
Program :> Tree

specification symbolic
simplification
&
compilation

Fig. 2.2 ProBT Compilation Toolchain

2.1.5 Bayesian Networks

Bayesian inference usually requires complex formalizations and algebraic manipulations,
decreasing the readability of the Bayesian model. To address this issue, graphical repre-
sentations were developed, improving the readability and clarity of the models. One of the
most popular graphical representations are Bayesian Networks (BNs). Those directed acyclic
graphs (DAGs) represent variables as nodes and the dependencies between variables as arcs.
The completed network fully characterizes the Bayesian model, allowing the extraction of all

necessary information in order to perform Bayesian inference.

b1)

Fig. 2.3 Bayesian Network of Boat Localization Example

2.1.6 FPGA vs CPU

Nowadays, the de facto technology for re-configurable logic in the computing world are Field
Programmable Gate Arrays(FPGAs). Over the last decade, advances on both the hardware
and software side have increased the adoption rate of this technology and introduced it to new
applications and workloads. With the slowdown in CPU scaling and the ending of Moore’s
Law [4], alternatives to CPUs have become more attractive. Following a path similar to
that of GPUs, FPGAs are being increasingly deployed in novel configurations, as part of
heterogeneous computing systems. In the next paragraphs we proceed to review some of the

advantages and disadvantages of FPGAs for computationally intensive tasks.

On the one hand, due to its re-configurability, FPGAs are highly flexible. On FPGAs
only the necessary hardware is instantiated, reducing the design critical path and therefore

2.1 Bayesian Inference 13

increasing the processing speed by increasing the clock frequency[21]. In addition, unused
hardware doesn’t consume energy, contrary to CPUs, leading to higher energy efficiency[22].
This flexible implementation also allows gains with massive paralelization, by enabling
a denser instantiation of computing blocks. On the other hand, the most attractive point
for FPGAs is also their biggest hurdle. Development at such a low level is tremendously
complex, requiring specialized Hardware Developers and slowing the development cycle. In
order to unleash the full potential of the hardware platform without exposing the software
developers to all of the gritty details of the underlying hardware, an effort as been made by
manufacturers to move from low level Hardware Description Languages such as Verilog and
VHDL to higher level abstractions, such as OpenCL. With these High level Synthesis (HLS)

tools hardware can be built with fewer lines of code.

There is an inherent tradeoff when using FPGAs. The flexibility and re-configurability,

come at the expense of the higher efficiency of Dedicated Circuits such as ASICs.

For FPGAs, recently there have been major efforts from technology leaders to better
integrate FPGA accelerators within data center servers (e.g., Microsoft Catapult, IBM CAPI,
Intel Xeon+FPGA project) [23] for both commercial and scientific High Performance Com-
puting (HPC) workloads.

Microsoft Catapult took a leap forward by installing over 100.000 FPGAs on their data
centers since 2015 using a novel architecture. Each conventional server has an FPGA in-
stalled on an accelerator board. The board is connected to the server through PCle and
through the Network Interface Card (NIC), effectively bypassing the network traffic between
the Top Of Rack Switch and the NIC. PCle is used for traditional compute offload tasks and
for FPGA reconfiguration. However, as the FPGAs are directly connected to the network, can
share the workload with underused neighbouring FPGAs bypassing the server altogether[24].

In Germany’s Paderborn University the first phase of the Euro Noctua cluster project is
underway [25]. This cluster dedicated to scientific research will contain 32 Intel Stratix 10
FPGAs for early experiments porting, programming, scaling, and understanding how some
traditional (and non-traditional including K means, image processing, machine learning)

HPC applications respond to an FPGA boost.

14 Background

Some workloads ready for FPGA acceleration are specific solvers for computational
chemistry, nanostructure materials and electromagnetics as well as analysis of electron

structure where most of the operations are performed on large matrices.

2.2 Open Computing Language (OpenCL)

”OpenCL (Open Computing Language) is an open royalty-free standard for general purpose
parallel programming across CPUs, GPUs and other processors, giving software developers
portable and efficient access to the power of these heterogeneous processing platforms.
OpenCL supports a wide range of applications, ranging from embedded and consumer
software to HPC solutions, through a low-level, high-performance, portable abstraction.
By creating an efficient, close-to-the-metal programming interface, OpenCL will form the
foundation layer of a parallel computing ecosystem of platform-independent tools, middle-
ware and applications. OpenCL is particularly suited to play an increasingly significant
role in emerging interactive graphics applications that combine general parallel compute

algorithms with graphics rendering pipelines.”

A. Munshi, “OpenCL 1.2 Specification”, 2012

2.2.1 Origins

OpenCL was initially developed by Apple in order to provide an open interface for any
application to massively parallel computing power of GPUs. Before its development GPUs
were only accessible to graphics applications or through limited proprietary interfaces. The
initial version of the specification was released in August 2009 and as of May 2017 the

current version is 2.2.

The specification is currently maintained by the Khronos Group - a not for profit, member-
funded consortium. The consortium develops and maintains free open standards for 3D
graphics, Virtual and Augmented Reality, Parallel Computing, Neural Networks, and Vision
Processing on a wide variety of platforms and devices from the desktop to embedded and
safety critical devices. The list of consortium members dedicated to the development of the
OpenCL standard include some of the biggest manufacturers of computing hardware in the
world, such as: Qualcomm, ARM, Apple, Intel (which has bought Altera), Xilinx, NVIDIA
Corporation,STMicroelectronics, IBM Corporation, Samsung Electronics, IBM and AMD.

2.2 Open Computing Language (OpenCL) 15

2.2.2 Architecture

Initially targeted to GPUs, OpenCL is currently a framework for writing programs that exe-
cute across heterogeneous platforms consisting of central processing units (CPUs), graphics
processing units (GPUs), digital signal processors (DSPs), field-programmable gate arrays
(FPGAs) and other processors or hardware accelerators.

The OpenCL specification includes programming languages based on C99 and C++11
for programming the devices, an application programming interface (API), libraries and a

runtime system to control the platform and execute programs on the compute devices.

The target of OpenCL are expert programmers wanting to write portable yet efficient
code. Therefore OpenCL provides a low-level hardware abstraction plus a framework to

support programming. Many details of the underlying hardware are exposed to the developer.

The OpenCL framework can be described using a hierarchy of models:
* Platform Model

* Memory Model

» Execution Model

* Programming Model

Platform Model

The OpenCL heterogeneous computing platform is divided in a host (CPU), connected to one
or more OpenCL Compute Devices (CPUs, GPUs, DSPs, FPGA:s,...). Each device is divided
into one or more Compute Units (CUs), which in turn are divided into multiple Processing
Elements (PEs).

The developed program runs on the host, which in turn issues commands to the Processing
Elements within each device to control the execution. Instructions within a compute unit can
be executed in a Single Instruction Multiple Data (SIMD) or in a Single Program Multiple
Data (SPMD).

Execution Model

During runtime, execution is divided in two: a host program running on the host and kernels

executing on the OpenCL devices. The host program controls the kernels context and man-

16 Background

1nnn
onn
ann [l |:| 7
Processing Host
Element
Computt;Unit Compute Device

Fig. 2.4 OpenCL Platform Model. [1]

ages their execution.

When a kernel is queued for execution by the host, its context is created and an instance
is created on the OpenCL device. Each instance is called a work-item and is a completely
independent instance of the kernel code and is identified by a global ID. Work-items are
organized into work-groups. Each work-group has a work-group ID and each work-item is
assigned a unique local identifier within each work-group. The global identifiers index space

is called an NDRange. The NDRange can have one, two or three dimensions .

NDRange

local_id{0,0) local_id{0,0) local_id(0,0)
Floaloolea| gleojnolea| §leo|oo|zo
1 1,1 2,1 0,1 1,1 2,1 1 1,1 2,1
gl(ﬂ.)[.](,) gll.](,)[.] g‘(ﬂ,)[.lt.)
Eloa|oa|en| Floa|anjes| Eloa|na|ea
local_work_sizex local_wark_sizex local_work_sizex
> I . . .
a local_id(0,0) local_id(0,0) local_id(0,0)
M = £ =
" gleojoolen| Flooloaen §lool 00| o
Ag N N 2
5 nlon|e G| on]on| e 5 nion|e
2 gltﬂ.). gll.](.)[.l g‘m,)r.n(,)
= gloa|oa|en| Eloan|aajen| Eloa|n2|e2
[=]
™ local_work_sizex local_waorlk_sizex local_work_sizex
local_id{0,0) local_id{0,0) local_id(0,0)
Fleojnoleo| Floolnojen| §leol oo o
1 1,1 2,1 0,1 1.1 2,1 1 1,1 2,1
gl(ﬂ,)[.](,) glt.l(,)[.l glenfonien
Blea|on|ea| Blea|oa|en| Blea|on|en
local_work_sizex local_work_size.x local_work_sizex

global_work_sizex —»

Fig. 2.5 NDRange kernel index space. [1]

2.2 Open Computing Language (OpenCL)

17

Memory Model

Work-items executing a kernel have access to four distinct memory regions:

* Global Memory - allows read/write access to all work-items in all work-groups;

* Constant Memory - A subset of global memory that remains constant during kernel

execution. Only the host can allocate and initialize constant memory;

* Local Memory - Memory region local to a work-group. It allows sharing of variables

across all work-items of the same work-group;

* Private Memory - Memory private to each work-item.

Global Constant Local Private
Host | Dynamic allocation | Dynamic allocation | Dynamic allocation No allocation
Read / Write access | Read / Write access No access No access
Kernel No allocation Static allocation Static allocation Static allocation
Read / Write access | Read-only access | Read / Write access | Read / Write access

Table 2.1 OpenCL - Memory Allocation and Memory Access by Device

Compute Davice

Compute Unit 1 Computs Unit N

‘ PE 1 H PEM ‘l PE1 | PEM

—..
Private
Wemery 1

—
Privata
WMemory 1

Private Global
Memory M Memory

Privale
Memary

‘Lﬂus.iMunuryfl |Lm:ﬂMsmc-yN|

| Global/Constant Memery Data Cache |-——>- C“W“‘?zym

Fig. 2.6 OpenCL Device Memory Architecture [2].

Programming Model

OpenCL explicitly supports two programming models: the data parallel and the task parallel
programming model. The primary model for the OpenCL framework is the data parallel

model.

In the data parallel programming model, the computation is defined as a sequence o
instructions performed to multiple data elements from a memory object. In the task parallel
model each kernel instance is independent of of its surroundings. This is equivalent to

executing a the kernel on a work-group with a single work-item.

18 Background

2.2.3 Re-configurable Systems Support

OpenCL support for FPGAs was major step in FPGA ease of deployment. The OpenCL
framework provides a kind of a modular and parameterizable soft multicore processor
architecture, simplifying workload acceleration using FPGAs.

The two major manufacturers of FPGAs, Intel FPGA (former Altera) and Xilinx are
currently active members of the consortium developing the OpenCL specification. In addition,
both Intel and Xilinx, currently provide OpenCL development support for FPGAs through
Altera OpenCL Software Development Kit (SDK) and through Xilinx SDAccel Development
Environment [26] [27].

Host Software FPGA Board Hardware
User Open(L

<o)
host application

OpenCL DDR3/ QDR-1l

Lib
[WAL d
d DDR3 / QDRI DDR3 / QDR-II .

User-Provided Altera-Provided

User Applicati
. PR Custom Platform Components

Fig. 2.7 Altera OpenCL SDK Software Architecture.

Intel FPGA OpenCL SDK is divided in two components: the Offline Compiler and the
OpenCL Runtime Environment.
The offline compiler is controlled through a command line interface. It is responsible for
the compilation of the OpenCL kernels. In addition it provides a variety of tools to help the
developer produce more efficient kernels. The intermediate compilation provides syntactic
error checks and resource usage estimation, without building the hardware. This accelerates
development iterations, as this intermediate step only takes a couple of minutes. In addition,
the offline compiler supports emulation, allowing functionality testing before building the
hardware. Finally, it contains a powerful profiler, capable of automatically deploying per-
formance probes and counters into the kernel program. During execution on the FPGA, the
profiler collects performance data which is then automatically compiled into a user friendly

interactive report.

The Intel OpenCL Runtime Environment is the software responsible to interface with
the accelerator devices. To achieve this task, the user generated host program is run on
top of the OpenCL API libraries. This libraries interface with the Intel FPGA Hardware

2.2 Open Computing Language (OpenCL)

200 <your_termel_ename> A [-separ]
Duration of compilation: minwies

""’ <yoar_bernel_flename>.avco
o
ESAITCE UEIgE SUMMATY —
Dptimization Repat in
|<yome_kernel_filename=>.aoco| -mﬂ.ﬂ-mmm-:-y <pour_bemmel flename:Jog
o n

avc -march—emulter <pour_kernel Mename 0
Duraton of compilticn: secceds

work-item
sernel]

Estimated demel
perfomance data
acceptable?

a0t -grefle <y o flenamez.
Daration of ompilatizn: haurs

ancl repert <your_kernel_filer
<pour_kemel_ ey

O bermet enscution
Do
at Singe wark sem bemel step Cl
o Full Deplayment

L performane ™, VB e <your_kerne]_ffiename> o
satisfacnry, Duation of compkation: hoers

Fig. 2.8 Altera OpenCL Design Flow.

20 Background

Abstraction layer (HAL). This layer provides the interface with third party Memory Mapped
Device (MMD) layer. This last layer is part of the Board Support Package(BSP) provided by
accelerator boards manufacturers. The BSP contains all of the board information and drivers
required for kernel compilation and host interfacing. The MMD layer interfaces directly with

the communication drivers, such as PCle, in order to control the accelerator board.

2.3 FPGA Reconfiguration Protocols

Download Cable
USB Port

Flash Loader
and Parallel
Flash Programming

Direct EPCS or
EPCQ Flash
Programming

) Parallel Max
Serial, o oramiRead CPLD
Quad, T (parallel
Host or Parallel T

CcPU Flash Flash

Loader)

a. AS, AP Device
Configuration

b. Passive Serial/
Quad/Parallel
Configuration

c. JTAG
Configuration

FPGA

DR Core Fabric

Fig. 2.9 Block Diagram - Device Reconfiguration Mode.

2.3.1 Configuration Via Protocol (CvP)

A CvP system consists of an FPGA and a PCle host. The FPGA contains at least one PCle
Hard IP block for CvP and other PCle applications. In CvP the design is partitioned into
two images: core image and periphery image. The periphery image is static and cannot be
reconfigured. The core image consists of a reconfigurable region that can be programmed
during runtime. CvP supports a multiple endpoints topology, providing the flexibility of
selectively programming any number of FPGAs connected to the host through PCle.

2.3.2 JTAG (Joint Test Action Group)

JTAG (Joint Test Action Group) is the industry standard protocol for debugging and verifica-
tion of hardware designs. It specifies the use of a dedicated debug port implementing a serial
communications interface. Throught this serial interface, FPGAs can be reprogrammed.

2.3 FPGA Reconfiguration Protocols

21

Host

Veoon

Configuration Device
orConfiguration Host
and Flash

Confiquration
Interface

Vagew

Vggy M
0k

First FPGA
nSTATUS

nCONFIG

PCle Link I%I

nCE

(CONF_DONE
(wP_CONFDONE

e Ve
10k

Plle
Switch
Veon

Configuration Device
or Configuration Host
and Flash

7'y

Configuration
Interface

Vecpan

Voo 1040
10k

o

PCle Link m

nthFPGA
nSTATUS

nCONFIG

nCE

CONF_DONE
P_(ONFDONE

ok Voo
10k

Fig. 2.10 Block Diagram - Multiple Endpoint Configuration Via Protocol.

Chapter 3

Implementation

3.1 Experimental Setup

Heterogeneous Computing Platform
FPGA Mini-cluster

aclo

PCle3.0 x8

Bl stratix v GS D8
16 GB RAM

acll

Qrl
2x9.6GT/s

acl2

32 GBRAM PCle3.0 x8

acl3

Fig. 3.1 Physical System Diagram.

In order to develop the work presented in this dissertation, an heterogeneous computing
platform was used. This platform was acquired under BAMBI project in 2015. The rationale
behind its hardware specifications was to replicate Florida’s NSF-CHREC recently deployed
Novo-G# High Performance Computer (HPC)[28]. This would enable the integration into

the Novo-G# Forum. The system comprises two Intel Xeon CPUs, each with 12 cores and

24 Implementation

four Intel Stratix V GS D8 FPGAs s installed in Gidel’s ProceV accelerator boards.

Due to incompatible libraries versions between the ProBT software and the operating
system version (CentOS 6.9) required by the older ProceV boards, a conventional laptop with

Ubuntu 16.04 was used to generate the inference model and to simplify the computation tree.

In the early stages of development, a Terasic DE1-Soc development kit was used with the
expectation to provide faster development cycles. However, the combined dimension of the

inference computations and the overhead of OpenCL easily exceeded this FPGA size.

3.1.1 Base Platform

A Supermicro 4U server case was used. The requirements in terms of power, airflow and
size for the FPGA accelerator boards installation are identical to those of server grade GPUs,
for which the case was designed. The system was initially built with only 16GB of RAM,
which proved insufficient for hardware synthesis tasks 3.2.2. During this dissertation, it was
upgraded to the currently installed 64GB. The system has two Intel Xeon E5-2620 CPUs
running at 2.6 GHz, each with 12 cores. The CPUs are tightly interconnected through two
Intel QuickPath Interconnect (QPI) interfaces, supporting 9.6GT/s transfer speeds each.

Fig. 3.2 Heterogeneous Computing Platform - Visible four Gidel ProceV boards connected
in a 3D torus using fiber-optical cables. Beneath the top coolers, two Intel Xeon E5-2620 v3
CPUs.

The most relevant platform specifications for the proposed workload are:

3.1 Experimental Setup 25

* SuperMicro SC747TQ-R1620B Server Chassis

* CentOS 6.9 64bits

* 64 GB RDIMM ECCR DDR4 2133MHz (16x4GB)

e 2x Intel Xeon CPU E5-2620 v3 @ 2.40GHz (Total: 24 CPU cores)

* 256 SSD

* 4TB HDD

* 11x Full-Height, Full-Length PCle, 8 lanes Expansion Slots Optimized for 4x Double
Width Accelerator boards

* 4x 9cm PWM Cooling Fans & 2x 8cm Rear PWM Fans

* 4U Full Tower Chassis

* 1620W Redundant Power Supply

* 8x 3.5" Hot-Swappable HDD Drives

 IPMI interface for remote control

3.1.2 FPGA Mini-cluster

The FPGA cluster comprises four high-end Intel Stratix V GS D8 FPGAs installed on four
Gidel ProceV accelerator cards. As per the manufacturer requirements, each card has two
SODIMM slots fully populated with 16GB of RAM. In addition, four PHS_3QSFP daughter-
boards are installed. The combined bandwith of the three QSFP+ and the CXP connectors
amounts to 2400Gbit/s full duplex for each of the four cards.

The cards are divided in two pairs, each connected to a different CPU through a PCle 3.0
bus. However, due to the CPUs QPI interconnects, the four boards are able to communicate
with each other. In addition, a 3D torus network is installed to connect the four boards. This
topology is able to fully use the 2400Gbit/s full duplex bandwidth available in each FPGA.
Therefore, bandwidth available between any two boards in the cluster is 800Gbit/s full duplex.

Stratix V FPGAs fully support OpenCL. However, ProceV boards did not support OpenCL
natively. This feature as only added in the end of 2014.

In order to reconfigure the FPGAs two protocols can be used: Configuration Via Protocol
(CvP) or JTAG. The CvP method uses Stratix V Hard IP to reconfigure over PCle while the
JTAG method requires an Intel USB Blaster connected to the JTAG port on the board.

Each ProceV board contains:
* Intel Statix V GS D8 (5SGSMD8K2F40)

26

Implementation

RS
(optional)
SFP+
(optional)

SFP+
(optional)

CXP 12

(optional)

up to 8GB
(1600 MHz)

Up to 1 Gbis.

Up to 12.5/14.1 Gbls Stratix v

Up to 12.5/14.1 Gbis

Up to 12X12.5(14.1 Gbls

Upto 8 X12.5/14.1 Gbis

Upto 4 X12.5/14.1 Gbis

FPGA

J

« !

CoaXPress,
3XQSFP, and
SAS/SATA

i | board extension)

!

x| or .
8xPCle Gen 3 24Tx, 28 Rx, 2cks LVDS lines [RSiaAelild
DI, DVI, etc.

(c) Gidel’s ProceV Board block diagram.

Fig. 3.4 Altera USB Blaster - Used to reconfigure the FPGAs through JTAG.

USB Blaster

(b) Gidel’s ProceV board with PHS_3QSFP

daughterboard.

PHS_eXpéxd

sl

o Emzabe K, 2teceivers |

GIDELProceV
Board 8GB 8GB
SODIMM SODIMM
I HsC Hs_B
Connector Connector

Stratix V
CoaXPress Protocol

+User Logic

H upto150GbIN |
| +upto150GbOUT | SRAM SRAM ———
i (Opioral) | 36/144Mb 36/144Mb |
"""""""" (optional) (optional) ashioell
PCle x8 12GpI0s
Gen3or Gen2

Up to
additional
8x clp-6

= or

Another PHS
daughterboard

Camera Link
In, Out

> oter

interfaces

(d) Proc High Speed (PHS_3QSFP) daughter-
board block diagram.

3.2 Preliminary Approaches 27

695K Logic Elements (LE)
262400 Adaptive Logic Module (ALMs)

1050 registers

36x 14.10Gbit/s transceivers

28 Fractional (PLLs)

— 2567 M20K Memory Blocks

— 3926 Variable Precision Multipliers (18x18)
— 1963 Variable Precision Multipliers (27x27)
— 6 DDR3 SDRAM x72 DIMM interfaces

* 1 CXP connector compatible with 100Gbit/s or 3x40Gbit/s Full Duplex

2 SFP+ suitable for 10GBit/s Full Duplex

1 Gidel Proc High Speed (PHS_3QSFP) daughterboard with 3x QSFP+ connectors,
each supporting 40Gbit/s Full Duplex

2 DDR3 ECC SODIMMs RAM Banks with 16GB installed

¢ Terasic USB Blaster Cable P0302

Fig. 3.5 Four Gidel ProceV boards connected to four Terasic USB Blasters through JTAG.

3.2 Preliminary Approaches

3.2.1 Altera DE1Soc Board

In the early stages of development, a DE1Soc kit was tested. The kit combined a Cyclone
V and a ARM Cortex A9 processor in a system-on-chip (SOC). This board allowed fast

28 Implementation

iterations, with the compilation of kernels with under 50% resource usage taking an average
of 45 minutes. However, the Cyclone V fabric proved too small for the proposed work. Due
to OpenCL overhead, the largest boat localization kernel that we were able to fit on this
FPGA had a cardinality of 16, which corresponds to a grid of 4x4. This board was abandoned
in favor of the FPGA Mini-cluster.

3.2.2 Hardware constraints

Throughout development, various software and hardware limitations and incompatibilities
were discovered. The diagnostics, resolution or mitigation of this problems severely delayed

the dissertation timeline. Some of the most severe limitations are listed below:

Gidel’s Board Support Package only supported version 14.1 of the Intel FPGA OpenCL
SDK. However, version 14.1 of the SDK Offline Compiler doesn’t support the —high-effort
flag. Without the use of this flag, the compilation of large designs fails during the hardware

generation stage because it fails to meet fitting constraints.

Gidel s BSP is poorly documented and includes various bugs. In addition, being a com-
mercial product, the source code is not available for inspection or correction, leading to the
impossibility to correct the problems encountered. The biggest limitation is the fact that the
PCle drivers are unstable. It was repeatedly observed that whenever an attempt to reconfigure
any of the FPGAs after more than a couple of hours since the previous reconfiguration, the
PCle driver generates an error, freezes the server and forces it to restart. After this reboot,
each FPGA has to be reconfigured through JTAG and the server rebooted again. This process

took approximately 25 minutes, severely delaying the development.

It was also discovered that the selection of the device being programmed in a JTAG
chain was hard coded in the Board Support Package. This required the acquisition of three
additional USB Blasters in order to be able to reprogram the for boards through JTAG without

having to phisically disconnect and reconnect the USB Blaster.

As the boards support CvP (reconfiguration through PCle), JTAG should only be required
for the first reconfiguration after a system failure or after a hardware change. However,
random fallbacks from CvP to JTAG were observed regularly, increasing the reprogramming

time significantly.

3.3 Case Study: Boat Localization 29

The initial hardware configuration did not comply with Intel OpenCL SDK minimum
RAM requirements for Stratix V development. Attempts to compile low complexity kernels
with only 16GB of RAM resulted in aborted compilations. An upgrade was made to 64GB.

3.3 Case Study: Boat Localization

5
7, <
2
/ A
/
« &
/ v
) Z >
Zz Zz X

Fig. 3.6 Boat Localization problem - Three beacons are visible from the boat. The boat is
able to detect its distance (Dy, D;, D3) and bearing (B1, B, B3) to each beacon.

One of this thesis objectives is the comparison of the OpenCL Bayesian Inference
implementation of a well known Boat Localization problem with a conventional CPU
approach and with the Bayesian Machines previously developed during BAMBI [11, 7].

The problem consists in determining the position of a boat in a discrete grid of 64x64

cells (4096 possible positions). We consider the existence of three landmarks at the edge of
the grid, according to figure 3.6.

Aboard the boat, three distance sensors and three bearing sensors capture the dis-
tance and bearing of the boat to each of the three landmarks. We consider that the sen-
sors signal is affected by noise that obeys to a normal distribution: Distance Sensors:
A (distance, (5+ ‘ﬁsﬁ%)z) and Bearing Sensors: .4 (angleo fview, 14.0625°)

30

Implementation

. Runtime

Sensor

Data

Acquisition

FPGA
Mini-cluster

Host I

Boat ”
Fusion |
wi [wi |] wi
wi | wi |] wi |
1 Normalization Work-item

Offline Compilation

@

’l: ProBT

specification

Model Generator

=

Computation
Tree

symbolic
simplification
&
compilation

Intel FPGA
OpenCL SDK
Offline
Compiler

Fig. 3.7 System Architecture - From the Computation Tree generated by ProBT, the OpenCL
host and kernels are compiled offline. During runtime, the OpenCL host program initializes
the Compute Devices, loadsd the necessary memory buffers and enqueues the kernels for

processing.

3.3 Case Study: Boat Localization 31

3.3.1 Model Generator

The Inference problem corresponds to computing the probability distribution over the X and
Y coordinates, knowing the outputs of the six sensors. Therefore, considering:

* M,, = Position cell of index m

e E; = Value of Sensor k

* P(M,,) = Set of prior probabilities for each cell of index m

* Posterior = LikelhoodxPrior .,

P(model|data) _ P(datalmodel) x P(model) o

P(data)
From Bayes Theorem, we gather that: P(M|E) = %. As the partition M,, is

finite, we can use the Law of Total Probability to define P(E) = Y. P(E|M,,) x P(M,,). From
m

the above, we can define our new Posterior Ratio as:

P(E|M) x P(M)
Y P(E|My) x P(My,)

m

P(M|E) =

Considering that E is in fact a set of k£ multiple independent sensors Ey, we have:

[1P(Ex[M) x P(M)

K
& PIMIE) = EITP(EdM,) < P(M,) G-h

X X A
Ym =

with:

* vy : Posterior Ratio

* a,, : Prior Ratio

* x,, : Likelihood

* z: Normalization factor, scalar independent of of both m and k

We can formalize this problem as a Bayesian Program in the ProBT language. The
ProBT API is then used to generate a simplified computation tree. In addition, the probability

distribution across all variables is calculated offline and stored in Lookup Tables (LUTs).

32 Implementation

Variables
Dy,Dy,D3,B1,B>, B3
Decomposition
£ | P(D1D2DsB BBy XY) =
g g = P(D1|XY)P(D,|XY)P(D3|XY)P(B{|XY)P(B2|XY)P(B3|XY)
§ % ;Ef Parametric Form:
S|E] | Py =rian 5+ 42
- P(Ds|XY) = A (o, (5+%)?)
2 P(D3|XY) = A (ds, (5+ %))
P(B{|XY) = A4 (b1, 14.0625)
P(B|XY) = A (by, 14.0625)
P(B3|XY) = A (b3, 14.0625)
Identification
\Alltablesprovidedbytheuser

Question:
P(X AY|[D1 = di] N\ [Dy = dy]
/\[D3 = d3] VAN [B[= b]] VAN [Bz = bz] VAN [33 = b3]

(3.2)

3.3.2 Sensor Data Acquisition

The user provides the boat coordinates (x,y) as input to the OpenCL host program, this data
is pre-processed by a routine and mathematically converted into sensor values. These new

data is fed to the inference engine fro processing.

3.3.3 OpenCL Host - Boat Fusion

The OpenCL C++ host program effectively manages the inference computation. This pro-
gram detects and initializes the available Compute Devices (FPGAs), creates the context and
queues for each device, creates the buffers and loads them with the Lookup Tables and sensor
data to be passed to the computing kernels. In addition, partitions the inference problem and

distributes it through the queues of each Compute Device. It also passes the necessary control

3.3 Case Study: Boat Localization 33

variables to each kernel. After the normalization kernel is finished, it stores and display the

computed posterior probability distribution as a heatmap.

3.3.4 OpenCL Kernels

In order to optimize the inference performance, the computation was split in two separate
kernels: The Compute kernel and the Normalize kernel.

kv e ComplbeFos berlar Unommal | e

Biocki

s
&

Globd Memary

kerred Mol |zl ol

x ® &

Bod? h‘--d\ laop and

2

Fig. 3.8 Kernels Block Diagram.

The Compute kernel is massively paralelized, as OpenCL work-items. Each kernel
instance performs the inference computation corresponding to one of the n € [0,4096] grid
cells. It loads the prior ratio from global memory, then it computes the indexes of the
LUTs corresponding to the known sensor inputs and loads them from global memory. The

computation is performed and the resulting ratio is stored to global memory.

After all instances of the compute kernel finish, The normalization kernel is launched. It

normalizes the results and returns the posterior probability distribution.

34 Implementation

As proposed in section 1.2, a Bayesian inference problem was successfully implemented
on an Heterogeneous Computing Platform using OpenCL. Throughout development, atten-
tion was given to maintain the implementation as generic as possible. No vendor specific
OpenCL optimizations were used, in order to allow seamless migration to platforms using
different accelerator boards and FPGAs. In addition, the problem cardinality is controlled
solely by pre-processor instructions and global variables, simplifying the scaling of the
inference problem. The conversion from the ProBT computation tree to the OpenCL host was
not fully automated, therefore, the implementation of different Bayesian Inference problems

should require limited alterations to the developed code.

The work developed under this dissertation is generic enough to allow a seamless migra-
tion to GPUs. Scalability issues and energy efficiency degradation are expected due to the
fixed hardware nature of the GPU. However, this limitations can be minimized by exploring
the full potential of an Heterogenous Computing Platform with CPU, GPU and FPGA co-
processors. The workloads can be partitioned during development in order to distribute the
each computation to the fastest and more efficient Compute Device. A tradeoff is expected to
arise between the computation gains and the memory speed bottlenecks between Compute
Devices.

Chapter 4
Results and Analysis

The main objective of this work was to demonstrate the feasibility of an OpenCL imple-
mentation of Bayesian Inference on FPGAs. In order to achieve this goal, a generic Boat
Localization problem was implemented. In this chapter the obtained results are presented
and compared with data from previous work under the BAMBI project [11, 7, 8], .

The problem presented is to determine the position of a boat in a discrete grid of 64x64
cells, therefore with a total number of possible positions N = 4096. In this demonstration,
after the user manually introduces the boat coordinates, the readings of six noisy sensors are
calculated and fed into the inference engine. Exact inference is performed and the resulting

normalized posterior distribution is stored.

The resource usage, power consumption and processing speed are compared with a boat
localization problem with the same size, implemented on the same FPGA mini-cluster using
BAMBI's BM1 and running for 10*iterations.

The computed probability distribution for four different boat positions are shown in 4.1,

alongside the "real" boat position.

The results demonstrate that the Bayesian inference problem was successfully computed.

The inference problem was divided in two kernels. One computed the posterior ratio,
while the other normalized the result. Due to its characteristics the first kernel was massively
paralelized, performing the computations for all of the 4096 cells simultaneously. The

normalization kernel, required a sequential access to memory, therefore became the bottle-

36 Results and Analysis

0.0135 0.0064
00120 0.0056
00105 0.0048
0.0090

0.0040
0.0075

0.0032
0.0060

0.0024
0.0045
00030 0.0016
0.0015 0.0008
0.0000 0.0000

0 10 20 30 40 50 60 0 10 20 30 4 50 60

(a) Boat Position: (X,Y) = (10,20) (b) Boat Position: (X,Y) =(32,32)

0.0064 0.0054
0.0056 0.0048
0.0048 0.0042
0.0040 0.0036

0.0030
0.0032

0.0024
0.0024

0.0018
0.0016

0.0012
0.0008 0.0006
0.0000 0.0000

0 10 20 30 40 50 60 0 10 20 30 40 50 60

(c) Boat Position: (X,Y) = (15,50) (d) Boat Position: (X,Y) = (60,60)

Fig. 4.1 Heatmap representing the probability distribution of the boat position in a discrete
map of 64x64 cells. Distribution calculated through exact inference on the FPGA mini-
cluster.

37

Clock Frequency | Computation time | Sampling Frequency
OpenCL Exact Inference 249.6 MHz 1.28 ms 781 Hz
BAMBI BM1 Stochastic Exact Inference 50 MHz 0.2 ms 5 KHz
ProBT Exact Inference N/A 1.127 s 0.89 Hz

Table 4.1 Clock Frequency Performance

Peak Power | Energy Consumption
OpenCL Exact Inference 0.0391 W 6.26 mJ
BAMBI BM1 Stochastic Exact Inference 1.15W 2.30 mJ
ProBT Exact Inference 39W 44017

Table 4.2 Energy Consumption

neck of the system. The normalization kernel executed in 0,08ms, while the normalization
took 1.2ms, resulting in a total of 1,28ms for the full inference computation. As expected,
our implementation is slower than the original BAMBI BM1 (4.1), but significantly faster
than a CPU implementation. Despite this fact, the frequency at we are able to process data
(781 Hz), is fast enough to process the majority of similar robotic perception tasks in real time.

We were able to use a clock frequency five times higher than the BM1 implementation,

at 249.6Hz, without stability issues. This stems from the smaller critical path in OpenCL

implementation.
Statistic | Measured [
Worse Case Stall (__global) % 57.46%
Kernel Clock Frequency
Global BW (DDR:bankl) 5656,3 MB/s
Average Write Burst NS
fverage Read Burst 1

Fig. 4.2 Altera OpenCL SDK Profiling Report - Exact Bayesian Inference Kernels for Boat
Example on a single device.

A smaller peak power usage4.2 was observed in comparison with BAMBI BM1, due
to the reduced amount of hardware resources instantiated 4.3. However, as the OpenCL
computation is is slower, the total energy usage is smaller in BAMBI s implementation. In
any case, the FPGA consumes significantly less energy than equivalent computation on a
CPU.

The most unexpected result was the reduced hardware footprint. The hardware required
for the complete inference, a fully paralelized compute kernel and normalization kernel

38 Results and Analysis

Logic Elements
OpenCL Exact Inference 95715 (18%)
BAMBI BM1 Stochastic Exact Inference | 178157 (68%)

Table 4.3 FPGA Resource Usage

occupy only 18% of a Stratix V FPGA. BAMBIs BM1 on the other hand occupied 68% 4.3.
In addition, the majority of the real-estate was used by OpenCL communication and control
overhead, with the compute kernel only using 2% and the Normalization kernel 1%. This
result greatly reduces BM1 scalability constraint. In our implementation, the boat’s grid size
can be considerably increased, maintaining the same precision and similar processing speed
without exceeding a single FPGA capacity.

ALUTs FFs RAMs D5Ps

Board interface 62076 55847 259]

Global interconnect 14572 19618 184]

Fig. 4.3 Stratix V Resource Utilization of Exact Bayesian Inference Kernels for Boat Example
on single device.

Further tests demonstrated that in OpenCL the distribution of the processing across
multiple compute devices (FPGA mini-cluster) is a trivial problem. It was implemented by
partitioning the map space in four identical subsets and instantiating identical kernels in each
FPGA. The results showed through this approach, it is possible to significantly scale the
cardinality of the problem without exhausting the FPGAs mini-cluster capacity.

Due to the computation speed achieved (781Hz), the possibility of time multiplexing
the inference problem arises. For real world applications the refresh rate can be decreased,

and therefore greatly increasing the cardinality of admissible inference. The combined use

39

of time multiplexing and multiple Compute Devices reduces the tractability limitations of

Bayesian Inference.

Chapter 5

Conclusions and Future Work

5.1 Conclusions

Throughout this work, an exact Bayesian inference task was implemented on an heteroge-
neous computing platform (2CPUs and 4 FPGAs) using OpenCL.

* Feasibility of OpenCL implementation of Bayesian Inference on FPGA mini-cluster

demonstrated;
* Speed gains of an order of magnitude over exact inference implemented on CPU;
* Increased energy efficiency over exact inference implemented on CPU;

» Slower computational speed and increased energy consumption compared with exact

inference on the same FPGA mini-cluster using Bambi’s Bayesian Machine 1;

* Significantly higher FPGA resource usage compared with exact inference on the same
FPGA mini-cluster using Bambi’s Bayesian Machine 1 due to OpenCL overhead;

* Faster development cycle than using BAMBI toolchain and Hardware Description
Languages (HDL);

* Less specialized development work, accessible to majority of programmers after some

initial training. Specialized hardware engineers not required;

* Flexibility: the optimizations applied to the program are vendor independent, which
should allow migration to different FPGAs and even GPUs with limited adaptations;

* OpenCL framework support by vendors still very limited;

42 Conclusions and Future Work

» Several critical bugs encountered on the Gidel’s ProceV Board Support Package
(Drivers and peripherals information for OpenCL compiler), without resolution to this
date;

* Various limitations discovered on the Inte]l FPGA OpenCL SDK due to compatibility
issues with the older hardware in use. Most of the limitations are known bugs, that
have been corrected in more recent versions of the software (but incompatible with
Gidel ProceV boards);

* Intel FPGA OpenCl SDK is a resource intensive software during high level synthesis
of the FPGA bitstream. The compilation of a kernel that occupies around 50% of
Stratix V lasts in excess of 12 hours and is able to use all of the 64GB of available
RAM.

This work has shown that even if the architectures pursued in BAMBI provide faster and
more efficient circuits, the solution with OpenCL targeting FPGAs provides a very interesting

intermediate solution, easier to deploy and potentially more scalable.

5.2 Future Work

The work produced during this thesis calls for further expansion and testing, specifically, we

propose:

* Addition of a GPU to the system, in order to fully explore OpenCL load balancing
capabilities, effectively dividing the workloads across Compute Devices according to

its characteristics;

* Generalize and automate the toolchain in order to accept a broader range of Bayesian

Inference problems;

* Integrate the toolchain with ROS (Robotic Operating System) to allow testing in real

world conditions;

References

[1]
(2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

A. Munshi, “OpenCL 1.2 Specification,” Version 1.2, p. 380, 2012.

J. Shen, J. Fang, H. Sips, and A. L. Varbanescu, “An application-centric evaluation of
OpenCL on multi-core CPUs,” Parallel Computing, 2013.

J. F. Ferreira and J. Miranda Dias, “Probabilistic Approaches to Robotic Perception,”
Springer, vol. 91, pp. 1 — 259, 2014.

International Technology Roadmap for Semiconductors (ITRS), “More Moore,” Itrs,
pp. 1-52, 2015.

D. Weller, F. Oboril, D. Lukarski, J. Becker, and M. Tahoori, “Energy Efficient Scientific
Computing on FPGAs using OpenCL,” Proceedings of the 2017 ACM/SIGDA Inter-

national Symposium on Field-Programmable Gate Arrays - FPGA 17, pp. 247-256,
2017.

P. BAMBI, “BAMBI Project website .” https://www.bambi-fet.eu/, 2015. [Online;
accessed 1-May-2018].

P. BAMBI, “BAMBI D3.10 : Emulation of a probabilistic computer on current recon-
figurable logic,” tech. rep., 2017.

M. G. D. Mira, “Using an FPGA Mini-Cluster to Implement Bayesian Application-
Specific Integrated Circuits for Robotic Applications,” 2017.

H. Fernandes, M. A. Aslam, J. Lobo, J. F. Ferreira, and J. Dias, “Bayesian inference
implemented on FPGA with stochastic bitstreams for an autonomous robot,” FPL 2016
- 26th International Conference on Field-Programmable Logic and Applications, 2016.

K. Hill, S. Craciun, A. George, and H. Lam, “Comparative analysis of OpenCL vs. HDL
with image-processing kernels on Stratix-V FPGA,” in Proceedings of the International
Conference on Application-Specific Systems, Architectures and Processors, vol. 2015-

Septe, 2015.

A. Coninx, P. Bessiere, E. Mazer, J. Droulez, R. Laurent, M. A. Aslam, and J. Lobo,
“Bayesian sensor fusion with fast and low power stochastic circuits,” 2016 IEEE Inter-

national Conference on Rebooting Computing, ICRC 2016 - Conference Proceedings,
2016.

https://www.bambi-fet.eu/

44 References

[12] H. R. Zohouri, N. Maruyamay, A. Smith, M. Matsuda, and S. Matsuoka, “Evaluating
and Optimizing OpenCL Kernels for High Performance Computing with FPGAs,”
International Conference for High Performance Computing, Networking, Storage and

Analysis, SC, pp. 409—420, 2017.

[13] C. Farber, R. Schwemmer, J. Machen, and N. Neufeld, “Particle identification on a
FPGA accelerated compute platform for the LHCb Upgrade,” 2017.

[14] C. Férber, “Experience with Hybrid Intel Xeon FPGA System.” 2016.

[15] Z. Wang, S. Zhang, B. He, and W. Zhang, “Melia: A MapReduce Framework on FPGAs,
OpenCL-based FPGAs,” IEEE Transactions on Parallel and Distributed Systems,
vol. 9219, no. c, pp. 1-14, 2016.

[16] J. D. Alves, J. F. Ferreira, J. Lobo, and J. Dias, “Brief Survey on Computational Solu-
tions for Bayesian Inference,” Workshop on Unconventional computing for Bayesian
inference at IROS2015, no. October, 2015.

[17] V. M. Morales, P.-H. Horrein, A. Baghdadi, E. Hochapfel, and S. Vaton, “Energy-
efficient FPGA implementation for binomial option pricing using OpenCL,” Design,
Automation & Test in Europe Conference & Exhibition (DATE), 2014, pp. 1-6, 2014.

[18] J. F. Ferreira, P. Lanillos, and J. Dias, “Fast Exact Bayesian Inference for High-
Dimensional Models,” 2015.

)

[19] P. Bessiere, E. Mazer, J.-M. Ahuactzin, and K. Mekhnacha, “Bayesian Programming,’
CRC Press, no. 1, p. 380, 2014.

[20] M. Faix, J. Lobo, R. Laurent, D. Vaufreydaz, and E. Mazer, “Stochastic Bayesian Com-
putation for Autonomous Robot Sensorimotor Systems,” Proceedings of the IROS2015
workshop on Unconventional computing for Bayesian inference, pp. 27-32, 2015.

[21] Altera, “A New FPGA Architecture and Leading-Edge FinFET Process Technology
Promise to Meet Next-Generation System Requirements,” pp. 1-28, 2015.

[22] NVIDIA, “Tesla K8 GPU Active Accelerator,” no. September, 2014.

[23] E. Nurvitadhi, J. Sim, D. Sheffield, A. Mishra, S. Krishnan, and D. Marr, “Accelerating
recurrent neural networks in analytics servers: Comparison of FPGA, CPU, GPU, and
ASIC,” FPL 2016 - 26th International Conference on Field-Programmable Logic and
Applications, no. c, 2016.

[24] A. Caulfield, E. Chung, A. Putnam, H. Angepat, J. Fowers, S. Heil, J. Y. Kim, D. Lo,
M. Papamichael, T. Massengill, D. Chiou, and D. Burger, “A Cloud-Scale Acceleration
Architecture,” IEEE Micro, 2017.

[25] C. Plessl, “Cray Commissioned to Deliver FPGA-Accelerated
Supercomputer to Paderborn University 7 https://pc2.
uni-paderborn.de/about-pc2/announcements/news-events/article/news/

cray-commissioned-to-deliver-fpga-accelerated-supercomputer-to-paderborn-university/j]
2018. [Online; accessed 1-May-2018].

https://pc2.uni-paderborn.de/about-pc2/announcements/news-events/article/news/cray-commissioned-to-deliver-fpga-accelerated-supercomputer-to-paderborn-university/
https://pc2.uni-paderborn.de/about-pc2/announcements/news-events/article/news/cray-commissioned-to-deliver-fpga-accelerated-supercomputer-to-paderborn-university/
https://pc2.uni-paderborn.de/about-pc2/announcements/news-events/article/news/cray-commissioned-to-deliver-fpga-accelerated-supercomputer-to-paderborn-university/

References 45

[26] I. FPGA, “Intel FPGA OpenCL SDK.” https://www.altera.com/products/
design-software/embedded-software-developers/opencl/overview.html, 2017.
[Online; accessed 1-May-2018].

[27] Xilinx, “SDAccel - Xilinx OpenCL SDK.” https://www.xilinx.com/products/
design-tools/software-zone/sdaccel.html, 2017. [Online; accessed 1-May-2018].

[28] A. D. George, M. C. Herbordt, H. Lam, A. G. Lawande, J. Sheng, and C. Yang,
“Novo-G#: Large-Scale Reconfigurable Computing with Direct and Programmable
Interconnects,” 2016.

https://www.altera.com/products/design-software/embedded-software-developers/opencl/overview.html
https://www.altera.com/products/design-software/embedded-software-developers/opencl/overview.html
https://www.xilinx.com/products/design-tools/software-zone/sdaccel.html
https://www.xilinx.com/products/design-tools/software-zone/sdaccel.html

	Acknowledgements
	Abstract
	Table of contents
	List of figures
	List of tables
	Nomenclature
	1 Introduction
	1.1 Motivation
	1.2 Objectives
	1.3 Related Work
	1.4 Key Contributions
	1.5 Dissertation Overview

	2 Background
	2.1 Bayesian Inference
	2.1.1 Bottom-up Approach - BAMBI project
	2.1.2 Top-down approach
	2.1.3 Bayesian Programming
	2.1.4 ProBT® programming tool
	2.1.5 Bayesian Networks
	2.1.6 FPGA vs CPU

	2.2 Open Computing Language (OpenCL)
	2.2.1 Origins
	2.2.2 Architecture
	2.2.3 Re-configurable Systems Support

	2.3 FPGA Reconfiguration Protocols
	2.3.1 Configuration Via Protocol (CvP)
	2.3.2 JTAG (Joint Test Action Group)

	3 Implementation
	3.1 Experimental Setup
	3.1.1 Base Platform
	3.1.2 FPGA Mini-cluster

	3.2 Preliminary Approaches
	3.2.1 Altera DE1Soc Board
	3.2.2 Hardware constraints

	3.3 Case Study: Boat Localization
	3.3.1 Model Generator
	3.3.2 Sensor Data Acquisition
	3.3.3 OpenCL Host - Boat Fusion
	3.3.4 OpenCL Kernels

	4 Results and Analysis
	5 Conclusions and Future Work
	5.1 Conclusions
	5.2 Future Work

	References

