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Abstract

It is wise to keep in mind that neither
success nor failure is ever final.
(Roger Babson, American educator)

This work was motivated to develop an autonomous surveillance robot using computer vision.

The context of this master dissertation is to explore algorithms of moving objects detection, the

detection of pedestrians and the pedestrians face detection. The present work has two main

parts, movement detection alone and combined detection of movement, pedestrians and faces.

This dissertation proposes the combination of algorithms to detect movement, humans and

human faces using computer vision. The movement detection uses three consecutive RGB image

frames. Each image is converted to gray scale and after it is filtered using a Gaussian filter. From

the filtered gray scale images is calculated the dense optical flow, applying Gunnar Farneback’s

method. The calculated optical flow from each two consecutive frames is combined, resulting

the horizontal and vertical direction optical flow. The next step is to normalize horizontal

and vertical optical flow. The normalized optical flow is then equalized. At this point, the

equalized optical flow is a gray scale image that represents movement. That gray scale movement

image representation is binarized using Otsu’s adaptive threshold method, thus, differentiating

movement zones from non-movement zones. To distinguish between moving objects, it is applied

a contour method to calculate each movement contour from the binarized image. The human

detection is based in the well known ”Histograms of Oriented Gradients” (HOG) method with

Support Vector Machine (SVM) classification. The face detection follows Viola and Jones object

detection method and implies the integral image, Haar-like features and AdaBoost cascade

classifier. To optimize the performance, it is always selected smaller sub-regions of the original

image to detect pedestrians and faces. The sub-region is selected by means of the movement

detected using optical flow.



The developed work innovative contribution is an algorithm capable of detecting moving

objects accurately and capable of differentiating distinct moving objects, in the same set of

images where is estimated movement, using optical flow.

With the developed algorithm (movement, pedestrian and face detection), it is possible to

directly select a sub-region of the image to make the pedestrian and face detection. The sub-

region selection capability brings great optimizations to the detection (pedestrian and face). By

decreasing the detection area, false positives are eliminated and the detection time is decreased,

due to the reduction of the image area examined/computed.

Keywords: Computer Vision, Movement Detection, Optical Flow, Pedestrian Detection,

Face Detection.
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Resumo

É sábio ter em mente que sucesso e fra-
casso nunca são definitivos.
(Roger Babson, educador Americano)

Este trabalho foi motivado pelo desenvolvimento de um robô autónomo de vigilância que usa

visão por computador. O enquadramento desta dissertação de mestrado é explorar algoritmos

de detecção de objectos em movimento, detecção de pedestres e a detecção facial dos pedestres.

A presente dissertação contém duas partes principais, a detetecção de movimento apenas e a

detecção de movimento, pedestres e faces.

Esta dissertação propõe a combinação de algoritmos para a detecção de movimento, humanos

e faces através de visão por computador. A detecção de movimento utiliza três imagens consecu-

tivas a cores. Cada imagem é convertida para escala de cinzentos e depois filtrada através de um

filtro Gaussiano. Da imagem em escala de cinzentos filtrada é calculado o fluxo óptico, aplicando

o método de Gunnar Farneback. O fluxo óptico calculado para cada dois frames consecutivos é

combinado, resultando no fluxo óptico na direcção horizontal e vertical. O próximo passo é a nor-

malização do fluxo óptico horizontal e vertical. O fluxo óptico normalizado é depois equalizado.

Neste ponto, o fluxo óptico equalizado é uma imagem em escala de cinzentos que representa

movimento. A imagem da representação de movimento em escala de cinzentos é binarizada

através do método de threshold adaptativo de Otsu. Assim, diferenciando zonas de movimento

de zonas onde não ocorre movimento. Para distinguir os objectos em movimento, é aplicado

um método de contornos para calcular cada contorno de movimento da imagem binarizada. A

detecção de pedestres é baseada no bem conhecido método de histograma de gradientes orien-

tados (HOG, do inglês: Histograms of Oriented Gradients) com máquina de vectores de suporte

(SVM, do inglês: Support Vector Machine) para classificação. A detecção facial é baseada na

detecção de objectos de Viola e Jones e implica a imagem integral, Haar-like features e a cascata

de classificadores AdaBoost. De forma a optimizar a performance é sempre seleccionada uma

sub-região mais pequena do que a imagem original, para detectar pedestres e as suas faces.



A sub-região é seleccionada através da detecção de movimento através de fluxo óptico.

O contributo de inovação do trabalho desenvolvido é um algoritmo capaz de detectar objectos

em movimento com precisão e com capacidade de diferenciar objectos em movimento distintos

no mesmo conjunto de imagens pelo qual é estimado o movimento, utilizando o fluxo óptico.

Com o algoritmo desenvolvido (detecção de movimento, pedestres e faces), é posśıvel selec-

cionar directamente a sub-região da imagem para aplicar a detecção de pedestres e faces. A ca-

pacidade da selecção da sub-região resulta numa grande optimização para a detecção (pedestres

e faces). Reduzindo a área de detecção, os falsos positivos são eliminados e a velocidade de

detecção é aumentada, devido à redução de área para calcular/examinar.

Keywords: Visão por Computador, Detecção de Movimento, Fluxo Óptico, Detecção de

Pedestre, Detecção Facial.
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Chapter 1

Introduction

If you have an apple and I have an ap-
ple and we exchange apples then you
and I will still each have one apple. But
if you have an idea and I have one idea
and we exchange these ideas, then each
of us will have two ideas.
(George Bernard Shaw, Irish drama-
tist)

1.1 Motivation

The main goal of the present work is to implement, develop and test a set of algorithms for

surveillance purposes. It is important to highlight that the achieved results can be used in many

different applications. Some examples are:

• autonomous surveillance robot to follow a human;

• autonomous robot to help in some intended action in medical service or transportation;

• surveillance using a static camera or a mobile robot.

Development of intelligent robots is an area of intense and accelerating research. In the present

there are some well developed autonomous robots for surveillance and for medical use. Examples

are the Knightscope K5, GuardBot and REEM (presented in Section .ii).
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1.2 Objectives

The main objectives of this work were:

1. Movement detection using optical flow;

2. pedestrian detection;

3. vigilant monitoring of a moving person;

4. face detection.

Vigilant monitoring were not possible to accomplish due to the reduced time of the disserta-

tion and also compatibility problems with OpenCV library installation in Windows (manufac-

turer’s X80PRO robot code is only developed for Windows Software Development Kits (SDK)).

Furthermore, movement, pedestrian and face detection were applied and some innovations de-

veloped to reach the best algorithm for surveillance purposes.

1.3 State of the art

Considering the careful attention needed by personal security to monitor several live video

feeds, from cameras that are presently observing critical areas, the numerous amount of security

guards needed and the money spent on that, it is easy to see the future development of technology

in this field. There is no room for doubt that the surveillance efficiency obtained with the current

technology is inferior to the results with personal security guards.

With the constant technology evolution, in the future, there will be robots and systems that

make the same work with equal or even better results.

Combining recent research advances in computer vision, robot autonomy, and artificial in-

telligence (AI) there is potential to revolutionize surveillance technology.

1.3.1 Movement, pedestrian and face detection and other algorithms

The evolution of technology goes hand in hand with evolution of new methods available

to human-society. Nowadays, more than ever, it is possible the development and application

of more and more complex algorithms on the same machine to reach an intended point in

engineering. One machine can make faster and more complex calculations, calculations that in

the past where distributed between machines or impossible to apply.
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Optical flow is an important form of movement estimation in images. Optical flow is a 2D

field that represents moving objects in the real world or a moving camera taking frames of a

static environment.

Lucas and Kanade are two well known researchers due to the development of a registration

method cited now as one of the best optical flow computation methods (gradient-based optical

flow [1]). Lucas and Kanade optical flow, made possible the detection of movement in images

with fast computation. Brox [2] estimation based on theory of warping, pyramidal implementa-

tion of Lucas and Kanade [3] method , Gunnar Farnbebäck [4] estimation based on orientation

tensors and parametric motion models and Farnebäck [5, 6] estimation based on polynomial

expansion are other methods to estimate movement in images.

Sengar and Mukhopadhyay [7, 8] have developed excellent methods to detect movement

and moving object area detection. Sengar and Mukhopadhyay show precise results with low

processing time, what is a big step for automatic surveillance and the detection of movement

using computer vision. Chen and Lu [9], object-level motion detection from a moving camera,

shows promising performance in challenging real-world videos.

The pedestrian detection is one of the most challenging detection, due to various positions

that the body can have, occlusions, illumination variations, and many more characteristics. The

Dalal and Triggs [10, 11] pedestrian detection “Histograms of Oriented Gradients” (HOG) using

a Support Vector Machine (SVM) classifier [12, 13] is one of the most known human detectors,

owed to the accuracy and rapid detection. There are developed algorithms [14, 15] following

Dalal and Triggs method reaching better results than the original one, better in some points

(e.g.: precision) losing in others (e.g.: computation time). Pang, Li and Pan [14] have proposed

two methods to speed-up Dalal and Triggs HOG detection. Those methods are in the detection-

window level and block level. The developed algorithm can speed-up the detection and even

increase the detection accuracy.

Viola, Jones and Snow [16] have built an efficient moving person detector. They used Ad-

aBoost (Adaptive Boosting) to train a chain of progressively more complex learning algorithms

to reject the regions of the image known to be detection negatives (there is no people to detect

in those regions). The regions rejected lower the computation need by the machine, only on

some regions of the image is made the detection, to find a pedestrian. Viola, Jones and Snow

algorithm is based on Haar-like wavelets and space-time differences. Some of the principles used

in this method can be seen in the face detection algorithm adopted in this dissertation (Section

4.2). Viola and Jones [16] pedestrian detector, based in patterns of motion and appearance,
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can detect humans from a variety of viewpoints with a low false positive rate. Viola and Jones

original pedestrian detection, only detects people in walking position.

Spinello and Arras [17] introduced a novel person detector for dense depth data, that can

compete with conventional HOG, demonstrating hard detections.

To reach the best performance in surveillance, it was applied face detection, following Viola

and Jones [18] object detection. Viola and Jones face detection, minimizes the computation time

achieving high detection accuracy. The detection can be made in various conditions including

illumination, scale or pose variations.

Wilson and Fernandez [19] tested and developed Viola and Jones face detection. Wilson and

Fernandez concluded that by reducing the detection area to a region, false positives are decreased

and the speed of detection is increased, due to the smaller examined area (that is an important

conclusion to associate with work that is described in Section 5.1 and 5.2). Face detection has

been improved in terms of speed [20], one example is the OpenCV [21] face detector. The face

detection can be done following HOG features [22]. HOG features face detection method is very

efficient detecting faces, however, it has an higher computational cost comparing to the used

method.

Sengar and Mukhopadhyay [7] moving object area detection algorithm, reduces all image

into a fraction of the same. That fraction of the original image represents the moving object

detected. It works well except when there is a diverse number of moving objects scattered trough

all the image, the fraction that represents movement would be all image (see Appendix V).
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1.4 Main contributions

The work developed include two main contributions.

The first contribution is an algorithm capable of detecting movement in images with accuracy,

capable to distinguish different moving objects in the same image set used for the movement

detection. The previous work described in the State of the art could only detect one sub-region

of the movement detection image, without differentiating any moving object (see Appendix V).

The second contribution is a mode to select a sub-region of an image to apply the pedestrian

detection (and face detection). That sub-region selection result from movement detection. Re-

ducing the original image to a region decreases the false positive human detection and decreases

the computation time.

It were also developed a combination of algorithms to detect moving objects, distinguish

different moving objects and select a sub-region to apply pedestrian and face detection.

1.5 Structure of the dissertation

The present dissertation is organized as follows. After the Introduction in Section 1, hardware

and software modules are presented in Section 2. In Section 3 and 4 is described the work done

for movement, pedestrian and face detection. In Section 5 is the combination of used algorithms

and obtained results. Section 6 are the conclusions of this dissertation work. This dissertation

contains five appendixes with supplementary material (Appendix I, II, III, IV and V).

Appendix I contains a list of autonomous robots and autonomous robots for surveillance.

Appendix II is about OpenCV installation, Appendix III is the Gunnar Farnebäck’s optical flow

formulation, Appendix IV is the Otsu’s threshold method and Appendix V is the State of the

art moving object area detection.
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Chapter 2

Experimental setup

2.1 Hardware

Words may inspire, but only action cre-
ates change. Most of us live our lives
by accident, we live life as it happens.
Fulfilment comes when we live our lives
on purpose.
(Simon Sinek, British author)

The work done was developed and tested with a X80Pro robot1, as shown in Figure 2.1. It is

a differential drive vehicle equipped with two driven wheels, each with a DC motor, and a rear

swivel caster wheel, for stability. The robot has a built-in digital video camera, an integrated

WI-FI system (802.11g), and offers the possibility of communication by USB or serial port. For

additional support to obstacle avoidance it has six ultrasound sensors (three facing forward and

three facing back) and seven infra-red sensors.

(a) Front view.

Figure 2.1: X80Pro robot by Dr. Robot Inc.1

1DR. Robot Inc., X80Pro robot information: http://www.drrobot.com/products item.asp?itemNumber=X80Pro

(last checked 16.08.2018).

7



CHAPTER 2. EXPERIMENTAL SETUP

The robot was controlled from a laptop with a 2.40 GHz Intel Core i7 processor, 6 Gb RAM

and a NVIDIA GPU with 2 Gb memory and 96 CUDA cores (ASUS model K55V).

2.2 Software

The science of today is the technology
of tomorrow.
(Edward Teller, Hungarian physicist)

Since computer vision needs high computation power to speed-up the calculations, it was

chosen to code in C/C++ language using OpenCV (Open Source Computer Vision Library) [21]

(see Appendix II). OpenCV, originally developed by Intel, is a software toolkit for processing

real-time image and video, as well as providing analytic tools, and machine learning capabilities.

Since it is totally free for academic and commercial use, it was a big plus for the work.

2.2.1 Main modules

Figure 2.2 shows a block diagram of the main software modules, as well as the interactions

between the different software modules and the robot.

Figure 2.2: Interactions between software modules and the robot.

2.2.2 Software flow chart

The algorithm applied for movement detection is explained by the flow chart present in

Figure 2.4.

The algorithm applied for movement, pedestrian and face detection is explained by the flow

chart present in Figure 2.4.
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Figure 2.3: Steps of the formulated algorithm to detect moving objects.

Figure 2.4: Steps of the formulated algorithm to detect moving objects, pedestrians and faces.
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Chapter 3

Movement detection

An expert is a man who has made all
the mistakes which can be made in a
very narrow field.
(Niels Bohr, Danish physicist)

The main purpose in this dissertation is the surveillance of a space by a mobile robot, to

that purpose it is expected to detect if there is movement or a unwanted human in that space.

The movement estimation in images is made using Gunnar Farnebäck’s optical flow. The

aim is to calculate dense optical flow from images to acquire the most precise detection with the

least time consumption. The movement is estimated and the moving objects are distinguished,

resulting in image sub-regions to which the pedestrian and face detection are made.

In this section the formulation of the algorithm to detect movement in images is explained.

Image movement detection is obtained by computing the optical flow. Optical flow is an

important form to estimate movement. Lucas and Kanade are two well known scientific re-

searchers due to the development of a registration method cited now as one of the best optical

flow computation methods (gradient-based optical flow [1]). Lucas and Kanade optical flow

made possible the detection of movement in images with fast computation.

Optical flow is a 2D field that represents moving objects in the real world or a moving camera

taking frames of a static environment. In computer vision, the principal method to estimate

movement is optical flow, so, it is used in the present dissertation.
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3.1 Set of video frames

The robot camera has a capability of capturing fifteen RGB frames per second with a resolu-

tion of 176×144 pixels in BMP (bitmap image file) format. Three frames are obtained from the

robot camera to accomplish the movement detection. Since the three used frames are sequential

and obtained within a short period of time between frame capture, the movement from the first

frame to the third, theoretically, is reduced.

To accomplish a better understanding in this section, three frames from LASIESTA Database

[23] are used. LASIESTA Database is normally used to test movement detection algorithms in

scientific community. Since it has camera motion, it represents a difficult movement detection set

to test the algorithm. LASIESTA Database is composed of real indoor and outdoor sequences

of images, the sequences have specific characteristics covering different challenges in moving

object detection. The three frames, from LASIESTA Database, used in the development of this

dissertation belong to a sequence with real outdoor images with moving camera and a moving

person. Since the image is outdoor, the brightness is not controlled, resulting in a big variation of

pixels intensity. The moving camera represents a problem to optical flow. “Detecting object-level

motion from moving cameras is a difficult problem to solve due to the dual motion introduced

by the mixture of the camera motion and the object motion” ([9], p. 1). The name of selected

sequence is “O MC 02” (outdoor, moving camera sequence 2) , with a resolution of 352 × 288

pixels in BMP format.

(a) F1 frame (b) F2 frame (c) F3 frame

Figure 3.1: LASIESTA Database RGB image set.

In Figure 3.1 can be seen three RGB frames selected to test the algorithm. From those three

frames, the results of each computation step employed are demonstrated.
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3.2 Conversion to grayscale

The three RGB frames are converted to grayscale. The conversion is made using the next

equation, giving different weights to each color channel 1 .

Grayi(x, y) = 0.299Ri(x, y) + 0.587Gi(x, y) + 0.114Bi(x, y) (3.1)

The Equation 3.1 is proposed by OpenCV (the reason of this choice can be seen in Section 3.10).

In figure 3.2 can be seen the RGB images converted to grayscale applying Equation 3.1.

Table 3.1: Grayscale conversion equation (Equation 3.1) explanation.

abbreviation definition

(x, y) Pixel position in the image frame

Ri Red channel component from RGB frame i

Gi Green channel component from RGB frame i

Bi Blue channel component from RGB frame i

Grayi Grayscale image from RGB frame i

(a) Gray1 frame (b) Gray2 frame (c) Gray3 frame

Figure 3.2: LASIESTA Database set converted to gray, following Equation 3.1.

3.3 Noise smoothing

There is a high probability of occurring noise in the grayscale image. To overcome that

problem, a Gaussian filter is applied in each frame using the two dimensional Gaussian function

(Equation 3.2). The resulting Gaussian distribution from Equation 3.2 resembles a bell.

Gaussian(x, y) =
1

2πσ2
e
−(x2+y2)

2σ2 (3.2)

1Some information about the RGB to gray conversion: https://docs.opencv.org/3.4.1/de/d25/imgproc color

conversions.html#color convert rgb gray (last checked 16.05.2018).
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Standard deviation (σ) of the Gaussian filter distribution can be interpreted as a measure of its

size, controlling the bell aperture.

Smoothi(x, y) = Gaussian(x, y) ~Grayi(x, y) (3.3)

The Gaussian distribution is approximated to a suitable convolution kernel (a matrix composed

of integer values). To obtain the smoothed image it is necessary to convolve the Gaussian filter

with the gray image. The convolution follows Equation 3.3, using the convolution kernel that

results from the chosen σ value.

To result in a fast computation time applying the Gaussian filter, it was used a kernel size

of 3× 3 pixels. Kernel size was chosen to have fast computation applying the filter, since time

consumption increases with kernel size.

The standard deviation, σ, varies from image to image. However, using a constant value to

all frames, σ = 1.5, produced good results in tests performed.

“It is clearly shown that the appropriate σ value varies from image to image” ([24], p. 11).

Reading “Optimal Filter Estimation for Lucas-Kanade Optical Flow” by Nusrat and Remus

[24], it is clear that the filter applied in optical flow calculation is of big importance. Nusrat

and Remus demonstrated a method to calculate the standard deviation (σ) and kernel size

automatically for each image. Since it would take a big amount of time to compute, that

algorithm is not applied in this work, it shall be developed in the future. The Weight given to

each pixel, controlled by σ, and the kernel size of the Gaussian filter have direct relation with

the final accuracy result of the movement detection. Standard deviation value selection was

made by trial and error.

For values of σ < 1.5 the resulting image has high pixel intensities, resulting in optical flow

noise and false movement detection, what is not intended. For values of σ > 1.5 there is a

short improvement (in LASIESTA and X80PRO image set). Since the standard deviation has

distinct optimal values to distinct images, the chosen value is 1.5 (σ = 1.5), being the value

that had good results in the tests made (see Section 3.10.2). In Figure 3.3 can be seen the

Gaussian-blurred images, applying Equation 3.3 with a kernel size of 3×3 pixels and a standard

deviation of 1.5.
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(a) Smooth1 frame (b) Smooth2 frame (c) Smooth3 frame

Figure 3.3: Grayscale frames filtered with Gaussian filter (σ=1.5 and a 3 × 3 kernel size),

following Equation 3.3.

The Gaussian filter blurs the images, removes high pixels intensities and indirectly removes

some detail2. The negative impact image detail is not intended, but, that loss is not big enough

to present a problem. The filtered image will have a lower variation of pixel intensities, which is

useful to the optical flow calculation. Using an optimal Gaussian filter, the movement detection

can achieve even better results [24].

3.4 Optical flow computation

“The movement in space can be described as a motion field” ([7], p. 2). “So, if the motion

field in space is transformed into an image, it will be known as optical flow field” ([7], p. 2).

It is intended to detect movement in the entire image. So, dense optical flow is calculated

between each two consecutive frames, for frame one and two and frame two and three. With

help of OpenCV is applied Gunnar Farnebäck’s [5, 6] algorithm, based on polynomial expansions

(see Appendix III). The calculation of the optical flow is made for first and second filtered frame

and for second and third filtered frame.

The optical flow calculation results in horizontal and vertical direction, representing the hori-

zontal and vertical velocity with a constant time quanta (hi and vi).

Figure 3.4 (a) and (b), represent the horizontal and vertical optical flow from frames one

and two. Figure 3.4 (c) and (d), represent the horizontal and vertical optical flow from frames

two and three. hi and vi are the optical flow in horizontal and vertical direction from each two

2The University of Auckland - Image filtering document with some information about Gaussian

filters: https://www.cs.auckland.ac.nz/courses/compsci373s1c/PatricesLectures/Gaussian%20Filtering 1up.pdf

(last checked 15.05.2018).
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(a) (b)

(c) (d)

Figure 3.4: Optical flow in horizontal and vertical direction from frame one and two and frame

two and three (h1, v1, h2 and v2), respectively.

frames taken from LASIESTA Database.

3.5 Optical flow directions combination

For each two frames we have the horizontal and vertical direction optical flow, in this step,

it is combined both the optical flow in those directions, as given in Equation 3.4 and Equation

3.5.

H(x, y) = h1(x, y) + h2(x, y) (3.4)

h1 and h2 are the optical flow in horizontal direction from frame one and two and frame two

and three, respectively.

V (x, y) = v1(x, y) + v2(x, y) (3.5)

v1 and v2 are the optical flow in vertical direction from frame one and two and frame two and

three, respectively.

H and V will be called horizontal and vertical optical flow, those, can be seen in Figure 3.5.
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(a) (b)

Figure 3.5: Horizontal and vertical optical flow (H and V ), respectively.

3.6 Normalization

Optical flow magnitude is calculated from the two components, horizontal and vertical (H

and V ), as in Equation 3.6.

Flow(x, y) = 2
√
H(x, y)2 + V (x, y)2 (3.6)

The optical flow given by Equation 3.6 resembles a 2-D grayscale image. The resulting values

do not occupy the range of the gray images used (255 for 8− bit grayscale images). For a better

result, it is applied the normalization given by equation 3.7.

Fnorm(x, y) =
Flow(x, y)− Flowmin

Flowmax − Flowmin
× 255 (3.7)

Table 3.2: Normalization equation (Equation 3.7) explanation

abbreviation definition

Flow(x, y) Optical flow module intensity value in pixel position (x, y)

Flowmin Minimum intensity value of the optical flow module

Flowmax Maximum intensity value of the optical flow module

Fnorm(x, y) Normalized optical flow value in pixel position (x, y)

The resulting optical flow module from Equation 3.6 can be seen in Figure 3.6 (a). The

normalized optical flow result can be seen in Figure 3.6 (b).

Equation 3.7 will ease the differentiation in the optical flow intensities, however, couldn’t

necessarily enhance the information content.

Different from Sengar and Mukhopadhyay [8], it is always applied the normalization given by

Equation 3.7. This choice is made to overcome the time computation problem, and essentially

due to the good results obtained at the end.
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(a) Optical flow module (b) Normalized optical flow module

Figure 3.6: Optical flow module following Equation 3.6 and normalized optical flow following

Equation 3.7.

The normalized optical flow is a gray image, 8− bit grayscale image with 255 pixel intensity

range.

3.7 Noise suppression using an adaptive threshold

The overall optical flow contains noise due to the processes involved in the calculations [8].

This noise effect will result in unwanted information, namely regions of “false movement”. There

are zones in the image with high optical flow value that are originated from high pixel intensity

variation in the gray images. Regions in the world with big differentiation in the surface tend

to result in noise (one case can be seen in figure 3.7).

(a)

Figure 3.7: Region that tend to result in optical flow noise.

To overcome this problem it is applied a threshold method, which is Otsu’s [25] threshold (see

Appendix IV). Considering a bimodal image, in simple words, bimodal image is characterized

by the two peaks in his histogram. For that image, we can approximately take a value in the

middle of those peaks as threshold value, that is what Otsu’s method does.
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Xu, Jin and Song [26] mention that thresholding is effective to differentiate the object from

the background when the gray levels are substantially different between them. The normaliza-

tion helped in this task. The threshold value, following Otsu’s method, is calculated from the

normalized optical flow. Calculated Otsu threshold value is represented by λ symbol.

Succinctly the values above the threshold value (λ) are maintained or redefined and the

values below are discarded (set to zero). Simplifying, if pixel intensity is greater than λ, it is

assigned one value (may be white), else, it is assigned another value (may be black).

3.8 Binarization

Following Otsu’s threshold an optimal and adaptive threshold is obtained for each normalized

optical flow, λ. The binarized image (B) is calculated by Equation 3.8.

B(x, y) =

{
1 if F eq(x, y) ≥ λ
0 otherwise

(3.8)

The binarized image shown in Figure 3.8 represent the movement detected. In white are zones

of movement, in black are zones where no movement is detected.

Figure 3.8: Binarized image following Otsu’s threshold, applying Equation 3.8.
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3.9 Moving object area detection - Contour method

“Experimental results show that proposed approach can efficiently handle a variation of the

object size, camera shake problem, slow and fast moving object” ([7], p. 9). “Using the proposed

normalized self adaptive optical flow approach almost all background noises are removed, and

no foreground is lost, so the final object detection result is optimal” ([7], p. 9). Following the

last statements it is a big step to develop the distinction and differentiation between moving

objects.

It is wanted to distinguish moving objects in the image set in which is applied the optical flow

calculation. The difficult task of moving object area detection in complex scenes were approached

by Sengar and Mukhopadhyay [7], but to get a even better detection, an algorithm was developed

to discriminate moving objects in the same world scene. With this simple progression it is

possible to select a wanted person or intended object.

“The contours are a useful tool for shape analysis and object detection and recognition”3.

Essentially the foundation in this part of the work is the developed work by Suzuki and Abe

[27], that created a border following algorithm in binary images that can be used in component

counting, shrinking, and topological structural analysis. The border following algorithm used,

calculates white contours returning a set of points that makes possible the definition of a region

of interest that represent a moving object.

The ROI is defined as follow, in Algorithm 1.

Algorithm 1: Definition of the contour ROI

Calculation of contours in binarized image following Abe’s and Suzuki [27] method;

return a vector of points that define outer contour for each “white zone” in binary

image (see Figure 3.8);

Calculate the minimal upright bounding rectangle for the specified vector of points;

known minimal rectangle defines a region of interest that represents a moving

object;

Cut out the ROI segment from the original image.

3OpenCV border following information: https://docs.opencv.org/3.4.1/d3/dc0/group imgproc shape.html#ga

95f5b48d01abc7c2e0732db24689837b (last checked 18.05.2018).
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Next will be given the result of applying the contour algorithm in Figure 3.9 (a). Following

the movement detection work previously demonstrated, the white zones in the Figure 3.9 (a)

are supposed to be moving objects in real world. In Figure 3.9 (a) (image from Robo Realm4)

(a) Binary image (b) Calculated contours

Figure 3.9: General binary image4 and calculated contours from binary image.

can be seen eleven geometric figures. Since the algorithm is only defined to obtain the outer

contours, theoretically are expected to be found ten contours (the semi-ring and the circle inside

are different contours and the full ring with the circle inside is demarcated as one outer contour).

With help of OpenCV the calculated contours were drawn and the result can be seen in Figure

3.9 (b).

The resulting ROI image segments from the binary image in Figure 3.9 (a) can be seen in

Figure 3.10.

Calculated contours 1, 2, 3, 4 and 5 ROI, cut out from Figure 3.9 (a) (contour 2 has its borders

demarcated in black), are seen in Figure 3.10 (a), (b), (c), (d) and (e). Calculated contours 6,

7, 8, 9 and 10 ROI, cut out from Figure 3.9 (a) (contour 9 has its borders demarcated in black),

are seen in Figure 3.10 (f), (g), (h), (i) and (j). The borders in black were made to differentiate

the white background of this document. The contour calculation was perfect in that geometric

figures.

Next it is demonstrated the result in the regular images used in this dissertation, from

LASIESTA Database set.

It is possible to see in Figure 3.11 (a), in the binary image, a little white point near the

person shape, this is due to noise from the resulting optical flow. This little point results in a

second contour (from contour calculation) that is unwanted (see Figure 3.11 (b)).

4 Robo Realm, Blob label: http://www.roborealm.com/help/Blob Label.php (last checked 24.08.2018).
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(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Figure 3.10: Calculated contours ROI cut out from binary image.

(a) Binarized image (b) Drawn contours

Figure 3.11: Binarized image of the optical flow following Equation 3.8 and drawn contours

calculated from binary image, respectively. The body shape contour in purple has an area of

6342.5 pixels2.

The area contours from the binary image (Figure 3.11) were calculated following Green’s

theorem5, the line integral around a simple closed curve.

There is a high probability that the binarized image obtained from optical flow calculations

has noise distributed in it, as the resulting little white point near the person shape. To overcome

this problem, the contour area calculation was introduced. With the contour area calculation,

it is defined a minimum area value that is meaningful for the context, to count as an object in

the binary image.

5Green’s theorem brief explanation: https://en.wikipedia.org/wiki/Green’s theorem (last checked 16.08.2018).
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For the context of the developed dissertation work, the meaningful area value is the biggest area

contour calculated. The contour ROI from performed tests, with the biggest area contour, can

be seen in Figure 3.12 and Figure 3.13. The biggest area contour ROI cut out from the binary

image can be seen in Figure 3.12. Only in some cases, this assumption is changed to achieve

more interesting results.

Figure 3.12: Cut out contour ROI from Binarized image from LASIESTA Database set.

In Figure 3.13 can be seen the contour ROI cut out from each RGB frame from LASIESTA

Database set.

(a) (b) (c)

Figure 3.13: Cut out contour ROI from RGB frames from LASIESTA Database set.

The introduced algorithm is more complex than the original by Sengar and Mukhopadhyay

[7] (the result of Sengar and Mukhopadhyay [7] algorithm, in this and other set of images,

can be seen in Appendix V). However, this algorithm requires less computation time and have

increased movement area accuracy (with help of OpenCV). Apart the machine capability or

time consumptions, the final result is excellent to apply some kind of control to reach some end,

to select a unique person for example.
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Calculating the computation time, the algorithm from Sengar and Mukhopadhyay [7] (see

Appendix V) takes more than the used algorithm ( from Suzuki and Abe’s with OpenCV). The

two algorithms are based in CPU computation. Using the LASIESTA Database dataset, Tab.

3.3 shows the obtained computation times from three tests.

Table 3.3: CPU computation time (s) comparison.

Method Test 1 Test 2 Test 3

Sengar and Mukhopadhyay method 0.007474 (s) 0.007806 (s) 0.008022(s)

Developed contour method 0.000932 (s) 0.001007 (s) 0.000837 (s)

3.10 Improving results with preprocessing

3.10.1 Grayscale conversion

Sengar and Mukhopadhyay [8] apply the grayscale conversion following Equation 3.9.

Grayi(x, y) = 0.2120Ri(x, y) + 0.7152Gi(x, y) + 0.0722Bi(x, y) (3.9)

The green color component is dominant, the red color has a medium low weight and the blue

color component weight is very low. The resulting gray image has too much white tones with a

lack of darkness, the reason is the blue and red color weight are too low.

That lack of darkness certainly will degrade optical flow calculation and the resulting in-

formation. The choice after that conclusion, was to use MATLAB grayscale conversion weight

values, “rgb2gray()” function. MATLAB uses conversion weights demonstrated by Equation

3.10.

Grayi(x, y) = 0.299Ri(x, y) + 0.587Gi(x, y) + 0.114Bi(x, y) (3.10)

Since OpenCV calculates grayscale image using the same color channel weights as MATLAB

“rgb2gray()” function, to get a better computation time, was used OpenCV optimized function

to convert images to gray (same weights as Equation 3.10).

3.10.2 Gaussian filter

It is documented by Nusrat and Remus [24] that increasing the kernel size, with the same

standard deviation value, doesn’t bring great optimizations to movement detection using Lukas

and Kanade’s optical flow.
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In a first step is shown the difference obtained by the standard deviation (σ) variation, with

a 3× 3 pixels kernel size. To be a fast explanation it will only be shown results from the second

frame of LASIESTA Database set.

(a) (b)

Figure 3.14: Filtered frame following Equation 3.3 (σ = 1.5 and 3 × 3 pixels kernel size) and

resulting binarized movement detected following Equation 3.8.

Using a standard deviation of σ = 1.5 and 3×3 pixels kernel size, the resulting filtered image

can be seen in figure 3.14 (a). The resulting contour area calculated is 6342.5 pixels2 for the

body shape. As cited in Section 3.3, an optimal filter shall bring optimizations to the movement

detection, so, in the present section is important to compare the images and areas calculated with

different Gaussian filter characteristics. In Figure 3.14 (b) is the resulting movement detected.

(a) (b)

Figure 3.15: Filtered frame following Equation 3.3 (σ = 0.5 and 3 × 3 pixels kernel size) and

resulting binarized movement detected following Equation 3.8

Using a standard deviation of σ = 0.5 and σ = 0.1, the resulting filtered image can be seen in

Figure 3.15 (a) and 3.16 (a). In Figure 3.15 (b) and 3.16 (b) is the resulting movement detected.

The calculated contour areas in Figure 3.15 (b) (σ = 0.5 and 3× 3 pixels kernel size) are 6475.0

pixels2 for the body shape, 59 and 3.5 pixels2 for other contours.
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(a) (b)

Figure 3.16: Filtered frame following Equation 3.3 (σ = 0.1 and 3 × 3 pixels kernel size) and

resulting binarized movement detected following Equation 3.8

The calculated contour areas in Figure 3.16 (b) (σ = 0.1 and 3× 3 pixels kernel size) are 6560.0

pixels2 for the body shape, 71 and 7.5 pixels2 for other contours.

Using those values of σ, the movement detection results in a higher level of noise, representing

false movement in image (movement detection in Figure 3.15 (b) and Figure 3.16 (b), shall be

compared with Figure 3.14 (b)).

(a) (b)

Figure 3.17: Filtered frame following Equation 3.3 (σ = 5 and 3 × 3 pixels kernel size) and

resulting binarized movement detected following Equation 3.8.

Using a standard deviation of σ = 5, the resulting filtered image can be seen in figure 3.17

(a). The calculated contour area in Figure 3.17 (b) (σ = 5 and 3 × 3 pixels kernel size) is

6327.0 pixels2. It can be seen that there is almost non optimization in the resulting movement

detection, comparing to the result obtained with standard deviation of σ = 1.5, seen in Figure

3.14 (b). There is an area decrease, in the human shape, but it is insignificant.
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(a) (b)

Figure 3.18: Filtered frame following Equation 3.3 (σ = 10 and 3 × 3 pixels kernel size) and

resulting binarized movement detected following Equation 3.8.

Using a standard deviation of σ = 10, the resulting filtered image can be seen in Figure 3.18

(a). The calculated contour area in Figure 3.18 (b) (σ = 10 and 3 × 3 pixels kernel size) is

6327.0 pixels2. It can be seen that there is no optimization in the resulting movement detection

comparing to the σ = 5 result (Figure 3.17 (b)).

Concluding, the standard deviation value affects in a high level the resulting movement

detection. It should be chosen wisely or automatically from the grayscale image.

(a) (b)

Figure 3.19: Filtered frame following Equation 3.3 (σ = 1.5 and 3 × 3 pixels kernel size) and

resulting binarized movement detection following Equation 3.8.

From Figures 3.19, 3.20, 3.21 and 3.22 is demonstrated the difference obtained by changing

the kernel size of the Gaussian filter, with a standard deviation of σ = 1.5. The calculated

contour area in Figure 3.19 (b) (σ = 1.5 and 3× 3 kernel size) is 6342.5 pixels2. In Figure 3.20

(b) (σ = 1.5 and 5 × 5 kernel size) are 6163.0 and 3 pixels2. In Figure 3.21 (b) (σ = 1.5 and

7 × 7 kernel size) are 6100.0, 5 and 17 pixels2 for the body shape, little white point and point

near the feet shape. In Figure 3.22 (b) (σ = 1.5 and 9 × 9 kernel size) are 6120.5, 6 and 14.5

pixels2 for the body shape, little white point and point near the feet shape.
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(a) (b)

Figure 3.20: Filtered frame following Equation 3.3 (σ = 1.5 and 5 × 5 pixels kernel size) and

resulting binarized movement detection following Equation 3.8.

(a) (b)

Figure 3.21: Filtered frame following Equation 3.3 (σ = 1.5 and 7 × 7 pixels kernel size) and

resulting binarized movement detection following Equation 3.8.

(a) (b)

Figure 3.22: Filtered frame following Equation 3.3 (σ = 1.5 and 9 × 9 pixels kernel size) and

resulting binarized movement detection following Equation 3.8.

From the binarized movement detected can be seen that the human body shape gets more

accurate (easily seen comparing Figure 3.19 (b) with Figure 3.21 (b)). The movement detected

from the moving shadow is decreased. In this set of frames, kernel size values bigger than 9× 9

do not bring enhancement.
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It can be concluded that the standard deviation and kernel size affects the result of movement

detection. Comparing the results from 3× 3 with 7× 7 kernel size, can be seen (and known by

the area calculation) that the area of movement (in white) is reduced and optimized.

Image contrast variations is a problem in optical flow algorithms. The shadow seen near the

person that results from the variation of luminosity in the real world, is reduced with kernel size

increase. In Figure 3.21 (b) there is almost no movement detected of the body shadow. It is

possible to decrease the noise (due to contrast in the image) with the kernel size.

Distinct images have distinct characteristics, each grayscale image need its own optimal

Gaussian filter. Remus and Nusrat [24] instruct how to design an optimal Gaussian filter for

each gray image. Standard deviation and kernel size of the Gaussian filter applied on the

grayscale image has direct relation with movement detection precision. That conclusion is not

only taken on the work developed but also in the work done by Nusrat and Remus.

3.10.3 Horizontal and vertical direction optical flow

Horizontal and vertical direction optical flow (direct result from optical flow calculation)

estimates movement in images in the vertical and horizontal directions. The optical flow under

horizontal and vertical direction, from LASIESTA Database set, can be seen in Figure 3.23 (a)

and (b).

(a) (b)

Figure 3.23: Horizontal and vertical direction optical flow.

Since this image has a high intensity variation it was filtered with the same Gaussian filter

previously used, the result can be seen in Figure 3.24 (a) and (b).
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(a) (b)

Figure 3.24: Horizontal and vertical optical flow Gaussian filtered, following Equation 3.3.

The resulting pixel intensity range is short, so those values were normalized (can be seen in

Section 3.6). The normalization is applied following Equation 3.7. The result can be seen in

Figure 3.25 (a) and (b).

(a) (b)

Figure 3.25: Normalized filtered vertical and horizontal optical flow.

The resulting binary image, from the movement detection, can be seen in Figure 3.26 (a)

and (b).

(a) (b)

Figure 3.26: Binarized, normalized horizontal and vertical optical flow following Equation 3.8.
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It is easy to inquire that solely the optical flow under one direction gives limited information.

Although, those data can be used to solve other problems. The optical flow under each direction

has a higher level of noise. In Figure 3.26 (a) on the right side it can be seen that there is

movement on the upper left corner of the image, that results from a hard surface on the real

world. This zone of false movement is eliminated applying the module of each vertical and

horizontal component (see Figure 3.8). A possibility to make usage of vertical or horizontal

optical flow, is in a stationary camera, in an environment where no movement is expected to

occur. Each component of the optical flow calculation is fast. Since the camera is stationary it

is possible to control noise resulting from surfaces. Noting all that, it is possible to detect the

minimum movement on the environment using computer vision.

3.11 Results achieved in movement detection for other datasets

The aim of this section is to prove the good results reached in other image datasets from “Univer-

sidad Politécnica de Madrid” (LASIESTA Database), INRIA, Freiburg University, Middlebury

University and X80Pro robot. Each set of images represents different movement detection diffi-

culties.

It is only shown the original three frames used to detect movement and the binarized image

that represents the movement detected. Some other images in more complex cases.

(a) F1 frame (b) F2 frame (c) F3 frame

Figure 3.27: LASIESTA Database RGB image set.

Figure 3.27 show three RGB frames from LASIESTA Database, it is an outdoor set in sunny

scenario with hard shadows for computer vision. A person walks in a sunny area and other one

in a shaded area. The camera is static. Figure 3.28 show the result of the movement detection.
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Figure 3.28: Binarized image from movement detection.

(a) F1 frame (b) F2 frame (c) F3 frame

Figure 3.29: Middlebury Database RGB image set.

Figure 3.30: Binarized image from movement detection.

Figure 3.29 are three RGB frames from Middlebury Database [28], the “Evergreen” set. This

set represents a hard task for movement detection since almost all images have the same color

tone, the green. In the three RGB frames the front branch moves with the wind, resulting in a

movement detection of that branch, seen in Figure 3.30.

Figure 3.31 are three RGB frames from Freiburg university [29], Department of Computer

Science, the “Chinese Monkey” set. The “Chinese Monkey” set is a hard one because of the

high movement of the camera. The result of that camera movement are white zones where were

not intended to be detected movement.
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(a) F1 frame (b) F2 frame (c) F3 frame

Figure 3.31: Freiburg Database RGB image set.

(a) (b)

Figure 3.32: Binarized image and region of interest from movement detection (from the contour

with biggest area).

Since the applied algorithm to calculate the movement ROI was the contour with the biggest

area, the resulting ROI can be seen in Figure 3.32 (b). In this case the developed algorithm

to differentiate regions of movement, with that much movement detected on the set of images

(because of the non-static camera), can differentiate moving objects by the contour calculation.

Using the algorithm developed by Sengar and Mukhopadhyay [7] the result would be the same

original image, since there are zones of white (representing movement detected) on all image

(see Appendix V).

(a) F1 frame (b) F2 frame (c) F3 frame

Figure 3.33: INRIA Database RGB image set.
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Figure 3.34: Binarized image from movement detection

Figure 3.33 show the RGB frames from INRIA CAVIAR test case scenario6, the dataset

comes from EC Funded CAVIAR project/IST 2001 375407. This set contains people walking,

with illumination variance and a static camera that takes 25 frames per second.

Figure 3.34 show the detected movement, as seen, there is no noise (or regions of false

movement), only the region of movement where a person is walking. This set gives excellent

results with the developed movement detection algorithm. On these three RGB frames only one

contour is calculated, the contour of the white zone in Figure 3.34.

In this case the movement detection is perfect. In this way of thinking, it can be developed

other algorithms to reach some end, like pedestrian detection or face detection in the ROI that

the contour is located.

(a) F1 frame (b) F2 frame (c) F3 frame

Figure 3.35: INRIA Database RGB image set.

Figure 3.35 show other three RGB frames from INRIA CAVIAR dataset, with a group of

people meeting, with the same conditions as the last one. In this case there are four people

walking in the same environment, the movement detection can be seen in Figure 3.36 (a).

In this case, the biggest area contour represents the movement detected from the two people

walking side by side, the resulting ROI can be seen in Figure 3.36 (b).

6INRIA CAVIAR database: http://homepages.inf.ed.ac.uk/rbf/CAVIARDATA1/ (last checked 16.08.2018).
7CAVIAR project website: http://homepages.inf.ed.ac.uk/rbf/CAVIAR/ (last checked 29.08.2018).
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(a) (b)

Figure 3.36: Binarized image and region of interest from movement detection (from the contour

with biggest area).

If it was intended for the context, it could be selected three regions of interest, the three biggest

areas contour. Making this change to the code, four moving objects/persons would be detected.

(a) F1 frame (b) F2 frame (c) F3 frame

Figure 3.37: Middlebury Database RGB image set.

(a) (b)

Figure 3.38: Binarized image and region of interest from movement detection (from the contour

with biggest area).

Figure 3.37 show the three frames from Midlebury [28], the “Dumptruck” set. The set was

taken with a high-speed camera from a street with four vehicles.
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There are two vehicles moving fast while the other two are moving slowly. In Figure 3.38 (a) can

be seen the detected movement. In this case there were detected eleven contours. The biggest

area contour represents the moving SUV, the ROI of that contour is shown in Figure 3.38 (b).

Figure 3.39 show the three frames from INRIA [30], the “YMB034” set. It is an outdoor set

taken with a moving camera. The principal object moving is the bird’s head. In Figure 3.40 (a)

can be seen the detected movement.

(a) F1 frame (b) F2 frame (c) F3 frame

Figure 3.39: INRIA Database RGB image set.

(a) (b)

Figure 3.40: Binarized image from movement detection and drawn contours calculated from

binary image. The area of the biggest contour is 8669.5 pixels2 representing the central image

purple color contour.

Since the three images chosen from “YMB034” set has almost no movement from camera,

only the bird head, the result of the movement detection is only the region of the head. Applying

the area contour calculation (see Figure 3.40), the resulting moving object contour ROI can be

seen in Figure 3.41.

Figure 3.41: Region of interest from movement detection (from the only contour calculated).
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(a) F1 frame (b) F2 frame (c) F3 frame

Figure 3.42: LASIESTA Database RGB image set.

(a) (b)

Figure 3.43: Binarized image from movement detection and drawn contours calculated from

binary image. The area of the three biggest contours are 24325.5, 5006.0 and 2060.0 pixels2

representing the yellow, cyan and salmon color contours.

Figure 3.42 show three RGB frames from LASIESTA Database, an outdoor set simulating

different types of camera motion. This set has medium camera jitter (motion that has high tem-

poral frequency relative to the integration/exposure time) and low camera rotation intensities.

Figure 3.43 (a) show the binarized image representing the movement, it is clear from this result

that this set is a hard test. Since the camera is non-static, not only the persons are moving but

also objects in the scene. The contour with biggest area results in the ROI seen in Figure 3.44.

If the three biggest area contours where counted for the developed context, it would be made

the distinction between environment objects movement (due to non-static camera) and the two

persons walking.

In this set, ninety seven (97) contours were calculated, those contours drawn can be seen in

Figure 3.43 (b). Following Green’s theorem, the area of the three biggest contours are 24325.5,

5006.0 and 2060.0 pixels2 representing the yellow, cyan and salmon color contours drawn.

These results will be published in a scientific paper that is in preparation for an International
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Figure 3.44: Region of interest from movement detection (from the contour with biggest area).

conference.
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Chapter 4

Pedestrian and Face detection

4.1 Pedestrian detection

“Human detection has become of significant interest in many applications of intelligent trans-

portation systems such as vehicle and industrial safety, video surveillance, automotive systems

and robotics” ([15], p. 1). An autonomous robot that moves in an environment with at least one

person, needs to make some kind of pedestrian detection or, at minimum, movement detection.

In an autonomous robot for surveillance there is the obligation of detecting not only a moving

person but also a stationary one.

A method to detect pedestrians/humans was adopted , the Dalal and Triggs [11] “Histograms

of Oriented Gradients” (HOG), using OpenCV [21], which is currently one of the most popular

and successful human detectors. Dalal and Triggs [11] showed experimentally that grids of

Histograms of Oriented Gradients (HOG) descriptors, outperform existing feature sets for human

detection. The percentage of human detection on those sets of images was higher than 90%.

Actually, in 2005 the results of the detection tests made by Dalal and Triggs on the original

Massachusetts Institute of Technology (MIT) pedestrian database1 were so good, that they made

a more challenging dataset with over one thousand and eight hundred (1800) human images with

a large range of variations in pose and backgrounds.

Furthermore, human detection on images is much harder and slower than the detection of a

frontal face, owing to the variable appearance and wide range of poses that a body can adopt.

The applied algorithm in this dissertation, detects mostly visible people in more or less

1Massachusetts Institute of Technology, pedestrian dataset: http://cbcl.mit.edu/software-

datasets/PedestrianData.html (last checked 27.08.2018).
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upright poses. The detection is made by mostly full body shape and not by human body parts.

Briefly, HOG is a type of feature descriptor. The intent of a feature descriptor is to generalize a

chosen object by some kind of method/approximation (e.g.: color, shape, pixels differentiation,

edges, gradient, ...). The same object should produce the same feature description when viewed

under different conditions. This makes the chosen object classification task easier2. The human

classifier used is a linear Support Vector Machine (SVM). In contrast with past detector methods,

it uses only a single detection window, what results in higher performance.

The initial work of Dalal and Triggs was to extract features of the object, and after knowing

those features, to differentiate between object/non-object. “Our focus is on developing robust

feature extraction algorithms that encode image regions as high-dimensional feature vectors that

support high accuracy object/non-object decisions” ([10], p. 5). In Dalal and Triggs [11] paper

and the Ph.D. dissertation of Navneet Dalal [10] it is possible to see the excellency of the results

of the proposed method. Furthermore, nowadays, HOG using SVM is one of the most used

methods to detect objects on image and video.

(a) Frame 2 (b) Frame 2

Figure 4.1: RGB image from LASIESTA Database and X80Pro robot.

(a) (b)

Figure 4.2: Result of pedestrian detection in LASIESTA and X80Pro robot image (the pedestrian

detected is demarcated in green).

Figure 4.2 show the result of pedestrian detection in the RGB images seen in Figure 4.1.

2Software and research engineer, Chris McCormick, about HOG Detector:

http://mccormickml.com/2013/05/09/hog-person-detector-tutorial/ (last checked 19.08.2018).
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The method will be readily explained as it is in “Histograms of Oriented Gradients for

Human Detection” by Dalal and Triggs [11], on the following sections.

4.1.1 Gamma equalization

“We do use colour information when available. RGB and LAB colour spaces give comparable

results, but restricting to grayscale reduces performance by 1.5%” ([11], p. 4).

As Dalal and Triggs [11] mention, square root gamma compression of each colour channel

improves performance by 1%. To reach the best performance it is applied the power law (gamma)

equalization/compression to the RGB image.

Gamma equalization is calculated by Equation 4.1.

IG(x, y) = 2
√
I(x, y) (4.1)

Table 4.1: Gamma equalization equation (Equation 4.1) explanation.

abbreviation definition

I Input RGB frame

IG Gamma equalized output frame

(x, y) Pixel position

Figure 4.3 show the result of gamma equalization in LASIESTA Database frame.

Figure 4.3: LASIESTA RGB input frame and square root gamma compression output from

input RGB frame.

After colour normalization, the image is analysed/divided in/to grids of cells. Each cell has

8× 8 pixels size. 2× 2 cell form a block. The stride (block overlap) is fixed at half of the block

size. Each block contains four cells of 8× 8 pixels.
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Figure 4.4: Relationship between spatial regions (image from Sangeetha and Deepa work ([15],

p. 2))

4.1.2 HOG feature extraction - Computation of gradients

“Detector performance is sensitive to the way in which gradients are computed, but the

simplest scheme turns out to be the best” ([11], p. 4).

“The gradients are computed by convolving the gradient mask with pixel values” ([15], p.

2). Dalal and Triggs [11] concluded that a simple 1D ([-1 0 1]) mask at, σ = 0 convolution,

work best for the gradient calculation.

Magnitude (G) of the gradient and orientation (θG) at each pixel position (x, y) are calculated

using horizontal gradient (Gx) and vertical gradient (Gy). The horizontal and vertical gradients

are calculated using Equation 4.2 and Equation 4.3.

Gx(x, y) = −f(x− 1, y) + f(x+ 1, y) (4.2)

Gy(x, y) = −f(x, y − 1) + f(x, y + 1) (4.3)

Gradient magnitude is calculated by Equation 4.4.

G(x, y) = 2

√
Gx(x, y)2 +Gy(x, y)2 (4.4)

The orientation, as usually, is calculated using arctangent of the gradients ratio, following Equa-

tion 4.5.

θG(x, y) = arctan

(
Gy(x, y)

Gx(x, y)

)
(4.5)

For each color channel of the RGB image, it is calculated the gradients, and chosen the one gra-

dient with bigger norm as the pixel gradient vector. HOG densely captures gradient information

and is robust to small rotation and translation.

In Figure 4.5 can be seen the LASIESTA Database frame vertical and horizontal gradients

representation, calculated following Equation 4.2 and Equation 4.3.
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Figure 4.5: Vertical and horizontal gradients (gradient with bigger norm as the pixel gradient).

4.1.3 Spatial/orientation binning

Each pixel calculates a weighted vote for an edge orientation histogram channel based on the

orientation of the gradient element centred on it, and the votes are accumulated into orientation

bins over local spatial regions that we call cells ([11], p. 4).

For best performance the orientation bins are spaced uniformly from 0o to 180o (unsigned

gradient orientation) with 9 bins.

“Gradient vote reduces the aliasing. Votes are interpolated bi-linearly between two neighbor-

ing bin centers where vote is a function of gradient magnitude (G)” ([15], p. 2). The vote values

of two neighbourhood bins, at pixel position (x, y), (Gn(x, y), Gnearest(x, y)) are calculated by

Equation 4.6 and Equation 4.7.

Gn = (1− α)×G(x, y) (4.6)

Gnearest = α×G(x, y) (4.7)

α is the weight of each pixel and is calculated by equation 4.8.

α = (n+ 0.5)−
(
b× θG(x, y)

π

)
(4.8)

Where n denotes the bin of θG(x, y) and b is the total number of bins (b = 9).

“For humans, the wide range of clothing and background colours presumably makes the signs

of contrasts uninformative. However note that including sign information does help substantially

in some other object recognition tasks, e.g. cars, motorbikes” ([11], p. 5).
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Each cell contains an histogram of nine bins. Each block contains four cells, so, four his-

tograms of nine bins (36 bin values).

For the LASIESTA Database image, it is demonstrated the orientation histogram for the

first 16× 16 sub-region of the original image (see Figure 4.6 (a) and (b)), in Figure 4.7. Those

results were obtained using MATLAB.

(a) (b)

Figure 4.6: Original RGB frame and cut out up-left most region with 16× 16 pixels (from RGB

frame).

Figure 4.7: Resulting orientation histogram from up-left most region with 16× 16 pixels (from

RGB frame).
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4.1.4 Normalization and descriptor blocks

“Gradient strengths vary over a wide range owing to local variations in illumination and

foreground-background contrast, so effective local contrast normalization turns out to be essen-

tial for good performance” ([11], p. 5). The normalized value, using L2-Norm, of each block

histogram is calculated using Equation 4.9.

vi(norm) =
vi√

|V |22 + ε2
(4.9)

ε is a constant that controls the possible division by zero (should be chosen as 1). Variable i

varies from 1 to 36. Variable vi is the non-normalized single row vector of the block, the value

of each bin at each histogram. L2-Norm performs better than any other normalization tested

by Dalal and Triggs, detecting less false positives (detection of a person where there is none)

per window.

|V |22 =

36∑
i=1

v2
i (4.10)

Dalal and Triggs tests show that omitting normalization reduces performance by 27%, and that

L2-Hys (Lowe-style clipped L2-Norm), L2-Norm and L1-sqrt perform equally well.

For the LASIESTA Database image, it is demonstrated the descriptor blocks for all image

(over the RGB frame), in Figure 4.8.

Figure 4.8: Block descriptors over original RGB frame. The original image has 288× 352 pixels

size that result, using mentioned characteristics for HOG+SVM detection, in 18× 22 descriptor

blocks. Each descriptor block has four cells/histograms.
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The descriptor blocks seen over the original image defines the shapes characteristics of that

image. Each descriptor block in Figure 4.8 is shown as an white histogram with oriented bins.

The pedestrian classification in that image will be made using those descriptor blocks.

“The final descriptor is the vector of all components of the normalized cell responses from

all of the blocks in the detection window” ([11], p. 5).

4.1.5 Detector window and context

The detection window has a size of 64×128 pixels. “Our 64×128 detection window includes

about 16 pixels of margin around the person on all four sides” ([11], p. 7). The pixel margin

border gives a significant amount of context to ease the detection.

For bigger size images, the detection window is called sliding detection window. To make

the detection over all image, the detection window slides, always making the detection in sub-

windows of 64 × 128 pixels size. To achieve the best computation time, it is important for the

applied method the RGB image size, where the pedestrian detection will be made. That RGB

image size should be bigger than the 64 × 128 pixels, however, the bigger the image size the

slower the detection. It was developed work to reduce the detection image to a sub-region of

that same image, that work can be seen in Section 5.1, the small step developed brings great

speed-ups to the pedestrian detection.

4.1.6 Final classification

The classification is made with the final block descriptor, by the Support Vector Machine

(SVM). The result is binary, human/non-human.

4.1.7 Support Vector Machine (SVM)

In this section will be given a brief explanation of SVM and how to train them. A complete

explanation can be seen in the tutorial [12] and book [13]. “In machine learning, support vector

machines (SVM, also support vector networks) are supervised learning models with associated

learning algorithms that analyse data used for classification and regression analysis”3. The

training SVM set is composed of two image categories, the positives and negatives. The positives

(in this case) are RGB images that contain humans, mostly visible, in more or less upright

3Wikipedia, Support vector machine introduction: https://en.wikipedia.org/wiki/Support vector machine

(last checked 19.07.2018).
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poses. Those images need a wide range of environments, persons and objects to maximize the

detector performance. The negatives are RGB images with anything but not humans. To a

best performance the images need a wide range of environments and objects. The images are

marked as belonging to one or the other category, human or non-human. Given a set of training

examples, each marked as belonging to one or the other of two categories. An SVM training

algorithm builds a model that assigns new examples to one category or the other, making it a

binary linear classifier. “An SVM model is a representation of the examples as points in space,

mapped so that the examples of the separate categories are divided by a clear gap that is as

wide as possible. New examples are then mapped into that same space and predicted to belong

to a category based on which side of the gap they fall”3.

After training the SVM, or using a trained SVM, it is possible to use it to classify an object.

In this case the object to detect will be mostly a visible human in upright pose.

If the object detected is not the object intended, then that result is a false positive.

If the object detected is the intended, then it is a true positive.

If there is an intended object to detect in the image and it is not detected, then it is a false

negative.

If there is no intended object to detect and there is nothing detected, then it is a true

negative.

“Elimination of false positives requires high resolution images to extract sufficient and robust

features of each human part” ([15], p. 1). There is always a percentage of false positives

associated to the high percentage of true positives. “... linear SVM minimizes the over fitting

problem of non-linear kernels with high-speed and provides very promising results on human

categories” ([15], p. 1). Deepa and Sangeetha [15] mention that HOG features persisted as a

standard for many years and provide best performance for human detection.
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4.2 Face detection

Viola and Jones [18] method was used to detect faces in images, using OpenCV. “Viola

and Jones devised an algorithm, called Haar Classifiers, to rapidly detect any object, including

human faces, using AdaBoost classifier cascades that are based on Haar-like features and not

pixels” ([31], p. 1). The followed method describes a machine learning approach for visual object

detection, which is capable of processing images extremely rapidly and achieving high detection

rates [18] .

The work developed by Viola and Jones [18] can be explained in four main points.

1. The first one, are the Haar-like features (see Section 4.2.1);

2. The integral image, an image representation that allows fast feature evaluation (see Section

4.2.2);

3. Following, a learning algorithm based on AdaBoost, which selects a small number of critical

visual features from a larger set, resulting in efficient classifier training (see Section 4.2.3);

4. At last, a method for combining increasingly more complex classifiers in a cascade to make

the detection (see Section 4.2.3).

The classifier training is made as mentioned in Section 4.1.7, with two image categories, the

positives and negatives. The combination of more complex classifiers in a cascade structure,

discards background regions, increasing the speed of the detector by focusing on promising

regions of the image.

Face detection in real time is an excellent complement for surveillance purposes. The pro-

posed method was motivated primarily by the problem of face detection but can be used to

detect other features like eyes, mouth or a stop signal.

Briefly, to detect faces the steps are:

1. RGB image conversion to gray-scale;

2. Initialization of trained face cascade classifier (AdaBoost classifier);

3. Calculation of integral image from gray-scale image in image sub-regions;

4. Detect faces on integral image with trained classifier, by means of Haar-like features.
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(a) (b) (c)

Figure 4.9: Face detection marked in green over the images ((a)4, (b)5 and (c)6).

“Initial experiments demonstrated that a frontal face classifier constructed from 200 features

yields a detection rate of 95% with a false positive rate of 1 in 14084” ([18], p. 4).

Figure 4.9 (a)4, (b)5 and (c)6 show the resulting face detection using viola and Jones object

detection.

4.2.1 Haar-like features

A Haar-like feature is defined by two or three adjacent groups with a relative contrast variance,

some examples can be seen in Figure 4.107.

Figure 4.10: Common Haar Features7.

4Image from: https://theprovince.com/news/local-news/7-bad-habits-vancouver-pedestrians-should-drop-

right-now (last checked 01.09.2018).
5Image from: https://www.punknews.org/bands/pinkfloyd (last checked 01.09.2018).
6Image from: https://www.npr.org/2014/10/26/358903514/did-led-zeppelin-plagiarize-stairway-a-penn-

judge-will-decide?t=1536340822171 (last checked 01.09.2018).
7Image from from Wilson and Fernandez paper ([19], p. 2).
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Each feature is a single value. The value of a two-rectangles feature is the difference between

the sum of the pixels within two rectangle regions, by subtracting the sum of pixels under white

rectangle from the sum of pixels under black rectangle. All possible sizes and locations from the

original grayscale image is used to calculate plenty of features. Most of the calculated features

are irrelevant, since they are background or they do not represent the intended object.

An example of Haar-like feature in a face can be seen in Figure 4.118.

Figure 4.11: Resulting Haar-like features from a frontal face image8.

From the original frontal face image, only two good Haar-like features where chosen by the

classifier (top row of Figure 4.11). The first one measures the difference in intensity between

the region of the eyes and the region across the upper cheeks, the eye region is darker than the

cheeks. The second feature compares the intensities in the eye regions to the intensity across

the bridge of the nose (bottom row of Figure 4.11).

A 24×24 pixels window result in over 160, 000 features, what takes too much time to calculate.

To solve the time consumption, Viola and Jones introduced the integral image, enabling the

calculation over image subregions.

4.2.2 Integral mage

The integral image is an array containing the sum of the pixel’s intensity values located

directly to the left of a pixel and directly above the pixel at location (x, y) inclusive ([19], p.

2). Mathematically, integral image is calculated by Equation 4.11 and Equation 4.12, where I

is the original image and Iintegral, Iintegralrotated are respectively the integral image and rotated

integral image.

Iintegral(x, y) =
∑

x′≤x,y′≤y
I(x′, y′) (4.11)

8Image from Viola and Jones paper ([18], p. 4).
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In Figure 4.129 can be seen, on the right side, the integral image rotated by forty-five degrees.

Some of the line features seen on figure 4.10 are rotated forty-five degrees too. Those require

another representation, the rotated integral image, it is calculated using Equation 4.12.

Iintegral rotated(x, y) =
∑

x′≤x,x′≤x−|y−y′|

I(x′, y′) (4.12)

Figure 4.12: Integral image and rotated integral image.9

“Using the appropriate integral image and taking the difference between six to eight array

elements forming two or three connected rectangles, a feature of any scale can be computed”

([19], p. 7). The calculus simplicity gives extremely fast and efficient results. “The detection

of various sizes of the same object requires the same amount of effort and time as objects of

similar sizes since scaling requires no additional effort” ([19], p. 3).

Rectangle features can be computed very rapidly using the integral image, so, with the

integral image it is possible to calculate the Haar-like features at any scale or location.

4.2.3 AdaBoost cascade classifier

Adaptive Boosting, AdaBoost, is a machine learning meta-algorithm defined by a set of

learning algorithms (“weak learners”) resulting in a more complex learning algorithm. Each

learning algorithm (“weak learner”) that characterizes each stage of AdaBoost, is developed to

achieve some problem type resolution. Thinking this way, the cascade of the various learning

algorithms result in optimal performance for the final learner.

“Freund and Schapire proved that the training error of the strong classifier approaches zero

exponentially in the number of rounds” ([18], p. 3). “Given a feature set and a training set

of positive and negative images, any number of machine learning approaches could be used to

learn a classification function” ([18], p. 3).

9Image from Wilson and Fernandez paper ([19], p. 3)
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There are over 160, 000 rectangle features associated with each 24×24 sub-window, a number

far larger than the number of pixels [18]. Easily is concluded that computing each set of features

is computationally expensive. To surpass that problem, Viola and Jones designed a learning

algorithm, weak one, to select the single rectangle feature which best separates the positive

from the negative examples (images with faces from images without faces). Viola and Jones

concluded from the experiments that a very small number of features can be combined to form

an effective classifier. Viola and Jones face detector uses a variant of AdaBoost, both to select

a small set of features and train the classifier.

For each feature, the weak learner determines the optimal threshold classification function,

such that the minimum number of examples are misclassified. A weak classifier hj(x) thus

consists of a feature fj , a threshold Γj and a parity pj indicating the direction of the inequality

sign ([18], p. 3):

hj(x) =

{
1 if pjfj(x) < pjΓj
0 otherwise

(4.13)

Where x represents a 24× 24 pixel sub-window of an image.

Figure 4.13: AdaBoost flow chart10.

Figure 4.1310 show a flow chart from a general AdaBoost cascade of classifiers. There are n

classifiers, if any image sub-window fails the test of any classifier (following Equation 4.13), that

sub-window is discarded and the next sub-window is tested. If the sub-window tested passes for

every “weak-classifier”, then, in that sub-window is detected and classified the intended object

for detection. The combination of more complex classifiers in a cascade structure, discards

background regions, increasing the speed of the detector by focusing on promising regions of the

image.

10AdaBoost flow chart: https://openi.nlm.nih.gov/detailedresult.php?img=PMC4052475 TSWJ2014-

105089.002&req=4 (last checked 01.09.2018).
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Chapter 5

Combination of algorithms and

obtained results

5.1 Combination of algorithms

To accomplish even better optimizations, in pedestrian and face detection, all algorithms were

put to work together. In computer vision, in the resulting computation time, what makes the

most difference is the image size. To reach optimizations on both detections smaller sub-regions

of the original image were used. What was applied on the work done was the selection of a

sub-region of the image with a smaller size, a region of interest (can be compared with Wilson

and Fernandez [19] region detection area approached in State of the art). The ROI is chosen

following the movement detection, after the contours calculation. Since all movement contours

are known, it is possible to select in what contour (that results in a ROI) should be made the

pedestrian and face detection. The sub-region selection is made for the biggest area contour

ROI, however, can be done for any calculated contour ROI.

Dalal and Triggs [11] inform that the detector window and context has a better performance

with a 64×128 detection window including 16 pixels of margin around the person on all sides of

the image, providing a significant amount of context, helping the detection. From the contour

ROI of a person/object moving is possible to know the (x, y) position of the most upper left white

pixel (representing movement). The same way is possible to know the width and height of that

same region. Knowing that parameters, it is possible to apply a redefinition of the sub-region

(movement contour ROI) from the original image (to give more context to the detection).
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The contour ROI is smaller than the original image, making the detection only on that sub-

region of the original image, results in high speed-ups and less false detections. The redefinition

of the contour ROI is made to give more context, to help in the pedestrian detection.

The ROI is redefined as follows, in Algorithm 2.

Algorithm 2: Redefinition of the contour ROI

//pixel margin size depends of the image context

pixel margin = 16;

double pixel margin = pixel margin ∗ 2;

x r = x− pixel margin;

if(xr < 0) xr = 0;

y r = y − pixel margin;

if(yr < 0) yr = 0;

width r = width+ double pixel margin;

while(width r + x r > n cols) width r −−;

height r = height+ double pixel margin;

while(height r + y r > n rows) height r −−;

Where pixel margin is the number of pixels intended for the margin, x r, y r, width r and

height r are the redefined x, y, width and height values, respectively. Variables n cols and

n rows are the number of columns and rows from the original image.

(a) (b)

Figure 5.1: Resulting ROI and redefined ROI from the biggest area contour, cut from the original

LASIESTA Database image (redefined ROI, has defined pixel margin of 30 pixels).

The original ROI from the calculated biggest area contour, from the movement detection

of LASIESTA Database image, can be seen in Figure 5.1 (a). The redefined one cut from the

original image, can be seen in Figure 5.1 (b).
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(a)

Defined

ROI

(b) Redefined

ROI

Figure 5.2: Resulting ROI and redefined ROI from the biggest area contour, cut from the original

X80PRO robot image (redefined ROI, has defined pixel margin of 25 pixels).

In Figure 4.2 (b), can be seen the pedestrian detection, with a false positive detected marked

in green at the left side of the image (X80Pro robot image). The original ROI from the calculated

contour can be seen in Figure 5.2 (a), and the redefined one cut from the original image, can be

seen in Figure 5.2 (b).

(a) (b)

Figure 5.3: Result of the pedestrian detection on the sub-region of the original image (redefined

ROI, with a pixel margin of 25 pixels for X80Pro image and 30 pixels for LASIESTA image).

In Figure 5.3 (b) can be seen the resulting sub-region of the original image (from X80PRO

robot image) after the pedestrian detection (only one true positive marked in green). The false

positive/false human detection were eliminated. In Figure 5.3 (a) can be seen the resulting

sub-region of the original image (from LASIESTA Database) after the pedestrian detection.

For each camera frame size characteristic and for the present context, the pixel margin shall

be redefined to reach an optimal result.
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5.2 Results achieved in movement, pedestrian and face detec-

tion in other datasets

The aim of this section is to prove the good results and some contributions in optical flow

datasets, testing the movement, pedestrian and face detection.

The used sets are from “Universidad Politécnica de Madrid” (LASIESTA Database), INRIA

and X80Pro robot. Each set of images represents different difficulties for the detection. It is

only shown the original three frames used to detect movement and the binarized image that

represents the movement detected. Some other images in more complex cases.

First, it is used a LASIESTA Database set, the “I SM 02” set that simulates different types

and intensities of camera motion. In this case, one person is walking while the camera has a

medium pan intensity motion (camera moves horizontally in a fixed position). The three RGB

frames used are shown in Figure 5.4.

(a) F1 frame (b) F2 frame (c) F3 frame

Figure 5.4: LASIESTA Database RGB image set.

(a) (b)

Figure 5.5: Resulting binarized image representing the movement detected following the formu-

lated method in Section 3 and drawn calculated contours, respectively.
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(a) (b)

Figure 5.6: Resulting ROI and redefined ROI from the biggest area contour, cut from the original

LASIESTA Database image (redefined ROI at right, has defined pixel margin of 16 pixels).

(a) (b)

Figure 5.7: Result of the pedestrian and face detection on the sub-region of the original image

(redefined ROI, with a pixel margin of 16 pixels).

The frames used to accomplish movement, pedestrian and face detection has 352 × 288

pixels size (see Figure 5.4), the biggest area contour ROI, returned from movement detection,

has 113× 281 pixels size (see Figure 5.6 (a)). The redefined ROI has a size of 145× 288 pixels

(see Figure 5.6 (b)). Since the detection area is less (all image into a sub-region of the same) the

achieved speed-up for face and pedestrian detection can be seen in Tab. 5.1 (CPU calculation).

Second, it is used one set from INRIA CAVIAR Test Case Scenario, the “Shop Assistant”

set. The used RGB frames can be seen in Figure 5.8, they have 384 × 288 pixels size. On this

set of images there is no face detected, due to the low quality of the image set used.

These results will be published in another scientific paper that is in preparation for an

International conference.
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Table 5.1: CPU computation time (s) for image detection.

Test Pedestrian detection (s) Face detection (s)

Test 1 - All image 1.152158 0.288339

Test 1 - Redifined ROI 0.685892 0.202940

Test 2 - All image 1.142311 0.300814

Test 2 - Redifined ROI 0.687645 0.194455

Test 3 - All image 1.159306 0.293460

Test 3 - Redifined ROI 0.697516 0.193789

(a) F1 frame (b) F2 frame (c) F3 frame

Figure 5.8: INRIA CAVIAR RGB image set.

(a) (b)

Figure 5.9: Resulting binarized image representing the movement detected following the formu-

lated method in Section 3 and drawn calculated contours, respectively.

5.3 Computation time

In this section are the computation times obtained using the different algorithms applied in

this dissertation work.

5.3.1 ASUS KV55 versus Lenovo ideapad 300-15ISK computation time

It is presented, in Tab. 5.2, the computation times obtained with two different machines,

the ASUS model KV55 and Lenovo ideapad 300-15ISK model.
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(a) (b) (c)

Figure 5.10: Resulting ROI, redefined ROI and result of the pedestrian detection in the redefined

ROI. ROI is calculated from the biggest area contour, cut from the original INRIA image

(redefined ROI, with a pixel margin of 16 pixels).

ASUS laptop have a 2.40 GHz Intel Core i7 processor, 6 Gb RAM and a NVIDIA GPU with

2 Gb memory and 96 CUDA cores.

Lenovo laptop has a 2.40 GHz Intel core i5 processor, 8 Gb RAM and a AMD Radeon R5

M330.

The calculated computation times were made to the Gaussian filter, optical flow calculation

and face and pedestrian detection.

Table 5.2: CPU computation time (s) comparison.

Test Gaussian Filter (s) Optical Flow (s) Face Detection (s) Pedestrian Detection (s)

Test 1 - ASUS 0.000553 0.09739 0.042065 0.026949

Test 1 - Lenovo 0.056761 1.677000 0.384392 0.557492

Test 2 - ASUS 0.000516 0.09189 0.034330 0.034690

Test 2 - Lenovo 0.059900 1.90800 0.391970 0.537700

The tests were made using the same set of images (three frames), using the CPU.

5.3.2 ASUS KV55 CPU versus GPU computation time

It is presented, in in Tab. 5.3, the computation times obtained with the same machine, the

ASUS model KV55. The obtained computation times were made to the Gaussian filter, optical

flow calculation and face and pedestrian detection using laptop GPU and CPU.
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Table 5.3: CPU VS GPU computation time (s) comparison.

Test Gaussian Filter (s) Movement detection (s) Face Detection (s) Pedestrian Detection (s)

Test 1 - GPU 0.003745 0.057273 0.059743 0.005793

Test 1 - CPU 0.000537 0.106804 0.026365 0.004952

Test 2 - GPU 0.003030 0.060231 0.058140 0.006167

Test 2 - CPU 0.000557 0.100404 0.018842 0.006707

For the Gaussian filter and movement detection the set of images size is 352 × 288 pixels.

For the face and pedestrian detection the image used have 176× 144 pixels size.

The biggest difference in the computation times, using the GPU, can be seen in the move-

ment detection algorithm. The face detection algorithm using OpenCV is known for being real

time, additionally, the face detection computation time could be compared with the movement

detection computation time. The smooth image obtained by applying the Gaussian filter (using

the GPU) doesn’t present speed-ups, the reason is the GPU module using OpenCV has an ini-

tiation time associated. The pedestrian and face detection is used as it is developed in OpenCV

optimized functions, furthermore, it is only possible to conclude, since the GPU version used is

deprecated, that there is no speed-up obtained using that functions with present GPU.

5.3.3 Optical flow computation time

In this section it is shown the computation times obtained with different optical flow methods

using the GPU, in distinct image sets. The optical flow computation times shall be compared

for each single set, seen in Tab. 5.4.

Table 5.4: Optical flow computation time (s).

Image set Farneback (s) Brox (s) Pyramidal Lukas and Kanade (s)

X80Pro robot set 0.014740 0.248000 0.034500

“Dumptruck” set 0.154000 1.782000 0.320000

‘Evergreen” set 0.153700 1.756000 0.358000

“INRIA CAVIAR” set 1 0.061000 0.770000 0.120000

“INRIA CAVIAR” set 2 0.057700 0.769000 0.127100

LASIESTA “O SM 07” set 0.060336 0.746460 0.115300

“Chinese Monkey” set 0.144000 1.887000 0.491800

Pyramidal Lukas and Kanade has satisfactory results in the computation time and movement

detection precision. Brox’s optical flow result in a bigger computation time, however, the result

for moving camera sets are the best. Gunnar Farnebäck’s optical flow is the best in computation

time and result in excellent precision for movement detection.
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5.4 Discussion

If you can’t fly, then run. If you can’t
run, then walk. If you can’t walk, then
crawl, but by all means, keep moving.
(Martin Luther King Jr.)

In this section it will be discussed some of the most important results obtained.

The standard deviation and kernel size of the Gaussian filter has direct relation to the

precision of the movement detection algorithm. Hard surfaces in real world, like metal grilles,

return regions of false movement. With an optimal Gaussian filter, it is easy to surpass this

problem. The optimal Gaussian filter shall be calculated (by means of the gray scale image)

and applied to the gray scale image to reach higher precision in the detection [24].

Lukas and Kanade [32, 1], gradient-based optical flow, was tested in MATLAB returning

good results, however it has a satisfactory performance in non-static camera images. Pyramidal

Lukas and Kanade [3] produces better results than the original one, although it is slower than

Gunnar Farnebäck’s [6] method (tested in C/C++ language). Brox [2] optical flow outperform

other methods, however, it is much slower. Since it was wanted to apply the developed algorithm

in X80Pro robot1, near real time, Brox optical flow was discarded (tested in C/C++ language).

Gunnar Farnebäck’s [5, 6] method, based on polynomial expansion, is the best, in precision and

time consumption ratio.

Only the optical flow calculation is poor to achieve a good movement detection in images.

It is necessary pre and post-processing in images to accomplish the best result in movement

detection.

Otsu’s method is a good choice for the calculation of the threshold value, there are several

improvement versions of the same method that could be applied in this work. The threshold

method is very important to surpass resulting false movement (regions of noise due to hard

surfaces in real world or a bigger movement of the camera). Characteristic of Otsu’s thresh-

old and its applications have several improvement versions that can achieve better results to

each concerned case [26]. The more precise the threshold value the more accurate will be the

movement detection.

1X80Pro robot information: http://www.drrobot.com/products item.asp?itemNumber=X80Pro (last checked

16.08.2018).
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Abe’s and Suzuki [27] method to calculate contours in binary images was of great help for

the development of this work. The contours eases the distinction and differentiation of moving

objects and also help solving problems associated with a moving camera.

The movement detection algorithm in this work is one solution to the problem, however, there

are others. For a set of images that have considerable movement between frames is possible to

loose in the computation time to gain in detection precision. More work could be done in the

future following this consideration.

Software tests, making the calculations using the laptop GPU, resulted in outstanding speed-

ups for all algorithms applied in this work.

The experimental results obtained show that the method is effective for moving objects

detection even when the camera is moving (pan, jitter and rotation).

It exists developed work to achieve a better computation time in the HOG pedestrian de-

tection [9, 15], more work could be done to apply those novelties.

Talking about the pedestrian and face detection, the original images sub-regions diminish

the probability of a false detection. This reduction of the analysis area is important for eye

detection (following Viola and Jones object detection) since the error rate is high. Conventional

HOG feature extraction (seen in Section 4.1), is unsuitable for real-time application due to

its computational complexity and speed of detection. The developed region of interest (ROI)

automatic selection help solving the computation time problem, all image detection is reduced

into an image sub-region detection.

The human detection using conventional HOG, provides a loss in performance when the size

of a human image is increased or decreased from the 64× 128 detection window. The resulting

sub-region (from the redefined movement contour ROI) of the original image, could be scaled

to reach the best image size (close to 64× 128 pixels).

When there is no pixel margin, to give context to the detection, HOG human detection

lose performance. Clearly, even when there is some pixel margin in the ROI, it is possible to

conclude that redefining that ROI, applying a bigger pixel margin, gives more context to the

human detection and eases the same.

Pixel margin for the ROI redefinition shall be optimized for respective context of the pedes-

trian detection.
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In the used AdaBoost face classifier, the training set of images used was only for frontal faces,

limiting the results possible to achieve. For surveillance purposes the trained face detector should

have a face orientation range of at least 45 degrees (front, left and right orientation).
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Chapter 6

Conclusions

An expert is a man who has made all
the mistakes which can be made in a
very narrow field.
(Niels Bohr, Danish physicist)

The main results obtained in this work are the capability to detect distinct moving objects

and the selection of an intended one by the contour area calculated. The tests performed show an

excellent result in movement detection, even using moving camera image sets. The calculation

of distinct contours gives many possibilities for post processing of the detected moving objects.

It was developed a sub-region selector using the calculated contours from movement detection.

Only in that sub-region is made the pedestrian and face detection. The sub-region selection,

reduces the computation time problem associated to pedestrian detection (and decreases even

more the face detection computation time).

Future work may include development of an optimal Gaussian filter calculator from gray scale

images, improvements in the threshold method, achieve bigger speed-ups using parallel GPU

computation, develop the ”histogram of oriented gradients” (HOG) human detection to reach

better computation time and finally autonomous navigation of X80Pro for advanced surveillance.

As mentioned in Section 5.4, from the performed tests, it is possible to achieve even better

precision in the movement detection. This improvement of precision comes at a cost of increase

of the computation time.
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[32] A. Faria, “Fluxo Óptico,” ICEx-DCC-Visao Computacional, 1992.

[33] NVIDIA, “NVIDIA, CUDA Toolkit.” https://developer.nvidia.com/cuda-downloads (last

checked 6.08.2018), August 2018.

[34] NVIDIA, “NVIDIA, CUDA GPU, compute capability.” https://developer.nvidia.com/cuda-

gpus (last checked 26.08.2018), August 2018.

[35] Sourceforge, “Sourceforge, OpenCV download.” sourceforge.net/projects/opencvlibrary/files/opencv-

win/ (last checked 6.08.2018), August 2018.
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Appendix I

Robots

.i Autonomous robots

Autonomous robots are in general a subject of big admiration, because of their capability to

take decisions independently. Depending on the environment there is a big amount of difficulties

that are present in the navigation. To surpass those problems many mechanisms can be used to

control the robot.

Some examples are:

1. sensors that help acquire precise information (sonars, lasers, cameras, ...);

2. components with high precision (motors, encoders, decoders, ...);

3. elements with enormous computing power;

4. and many more things that are obtained with the evolution of technology nowadays.

It is impossible for a autonomous robot to obtain good results on navigation without some

aptitudes, to exert the space objectives, some of them are:

1. getting precise information of the environment (paths, obstacles, ground deepness, ...);

2. move from point A to point B without human assistance ;

3. ease to surpass possible danger situations to the robot and/or to people;

4. acquire the pretended knowledge needed for the present task (navigation or for example

getting images from a volcano ).
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Next there will be presented some recent robots that are capable of autonomous navigation, and

that can also be used for surveillance.

NAO

NAO is a well known humanoid robot from SoftBank Robotics. According to the manufac-

turer’s website NAO has continually been evolving since the beginning of his adventure in 2006

and actually is in the 5th version1. There were been sold about 10000 units throughout the

world.

Figure I.1: NAO, the humanoid robot by SoftBank Robotics1.

NAO is an interactive companion robot, and to do his work it has a very evolved navigation

system. It is important do denote that this robot has his own operating system.

Some main features are:

1. 5 degrees of freedom and a humanoid shape that enable him to move and adapt to the

world around him;

2. inertial unit that enables him to maintain his balance and to know whether he is standing

up or lying down;

3. the numerous sensors in their head, hands and feet, as well as their sonars, enable him to

perceive their environment;

4. with his 4 directional microphones and loudspeakers, NAO interacts with humans in a

completely natural manner, by listening and speaking;

1SoftBank Robotics, NAO: https://www.ald.softbankrobotics.com/en/robots/nao (last checked 23.08.2018)
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5. 2 cameras that film his environment in high resolution, helping him to recognise shapes

and objects;

6. able to use a range of different connection modes (WI-FI, Ethernet);

7. designed to be personalised, it is possible to develop new skills.

NAO has already been programmed to perform several actions, like dancing and welcoming

guests in a hotel.

Figure I.2: Experiencing NAO1.

Pepper

According to the manufacturer’s website Pepper is a human-shaped robot (humanoid) from

SoftBank Robotics, it is designed to be a genuine day-to-day companion, whose number one

quality is his ability to perceive emotions2.

Figure I.3: Pepper, the humanoid robot by SoftBank robotics2.

Pepper is capable of recognising the principal human emotions and can adapt his behaviour to

the interlocutor mood.

2SoftBank Robotics, Pepper: https://www.softbankrobotics.com/emea/en/robots/pepper (last checked

21.08.2018)
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It has a 3D camera to perceive what is around him and a ultra-sound system to avoid

obstacles and have a secure capability of movement without disturbing the movement of people

on the actual environment. It has the capacity of feeling touch and act in conformity with help

of some sensors and manage his battery temperature.

Some main features are:

1. Pepper uses his tablet to help you make choices, but also to express his own emotions in

response to the interlocutor;

2. weighs 25 kg and has a height of 120 cm;

3. 3 multi-directional wheels enable him to move around freely through 360 degrees;

4. 3D camera and 2 HD cameras that enable him to identify movements;

5. 4 directional microphones located on Pepper’s head helping hearing and speaking;

6. connection directly to the internet, Pepper can keep up to date with the latest news;

7. anti-collision system, detects both people and obstacles in order to reduce the risk of

unexpected collisions;

8. A network of sensors, Pepper possesses numerous sensors: two ultrasound transmitters

and receivers, six laser sensors and three obstacle detectors placed in his low body part.

Another sensor within the battery indicates its level of charge as well as temperature.

Pepper also possesses tactile sensors in his hands, which are used when he is playing

games or for social interaction.

SpotMini

SpotMini is a four-legged robot that is being developed by Boston Dynamics3.

SpotMini can move from point A to point B autonomously and in that path it can easily cross

obstacles. It is a robot with a very complex control applied to his 17 joints to fulfil a dog/horse

like gait. All electric actuation results in a very silent movement, 3D vision system that help in

the perception of the environment around, it includes stereo cameras, depth cameras, an inertial

measurement unit (IMU), and position/force sensors in the limbs, what results in a perfectly

fluid and silent movement.

3Boston Dynamics, Spot-Mini: https://www.bostondynamics.com/spot-mini (last checked 23.08.2018)

74



Movement, Pedestrian and Face Detection Based on Optical Flow for Surveillance Robot

Figure I.4: SpotMini, the four-legged robot by Boston Dynamics3.

Atlas

Atlas, according to the manufacturer’s website, is one of the world’s most dynamic humanoid

and was developed by Boston Dynamics. According to the manufacturer’s website Atlas coor-

dinates motion of the arms, torso and legs to achieve a whole body mobile manipulation with a

complex control system4. It can work in a large volume while occupying only a normal person

space and has an high strength-to-weight ratio. Stereo vision, range sensing and other sensors

give Atlas the ability to manipulate objects in its environment and to travel on rough terrain.

Atlas keeps its balance when pushed and can get up with arms help if it tips over.

Figure I.5: Atlas, the humanoid robot by Boston Dynamics4.

4Boston Dynamics, Atlas: https://www.bostondynamics.com/atlas (last checked 23.08.2018)
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.ii Autonomous robots for surveillance

REEM

REEM is a full-size humanoid service robot from PAL Robotics5. It can navigate au-

tonomously and is full evolved to make surveillance, minimize hazardous situations and detect

strangers.

Figure I.6: REEM, the humanoid robot by PAL Robotics5.

REEM is one of the most evolved humanoid robots and can accomplish many tasks. Some main

features are:

1. weighs 100 kg, has an height of 170 cm and a width of 60 cm;

2. 3G, Ethernet, WI-FI connection;

3. bumpers in 7 areas around mobile base;

4. speakers and microphones;

5. stereo and back camera with high resolution;

6. base laser, 15 sonars, 3 infrared sensors and 2 inclinometers.

REEM can make a map and navigate autonomously to the provided destination. It will avoid

obstacles and find the shortest path. With all those features it is possible for REEM to be a re-

ceptionist, entertain and greet guests, provide dynamic information and even make presentations

and speeches in many languages.

5PAL Robotics, REEM: https://www.softbankrobotics.com/emea/en/robots/pepper (last checked 21.08.2018)
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Guardbot

Guardbot is a spherical amphibious robotic vehicle and was developed by GuardBot Inc.

According to the manufacturer’s website Guardbot was initially conceived for a planetary mission

on Mars, as it can travel on paved road, off-road, sand, snow, sloped surfaces, and in water,

where it can navigate upstream because of the shapes on the spherical surface6. Their patented

drive-mechanism, “Drive and stabilization system for amphibious robotic ball”7, was made in

2016. Guardbot is designed for mission operations in broadcasting, surveillance, security, and

detection. It is an all-terrain robot because of the drive and stabilization system and geometry

applied.

Figure I.7: Guardbot, the spherical amphibious robotic vehicle by GuardBot Inc.6.

Succinctly the drive is produced by a motorized pendulum that propels the unit by changing

its center of gravity. This design allows it to easily provide forward and backward motion as

well as make 360-degree turns.

Figure I.8: Guardbot, all-terrain spherical amphibious robotic vehicle6.

As one of the world’s only truly amphibious robot, Guardbot is a well known robot in the world.

6GuardBot Inc., GuardBot: http://www.guardbot.org/ (last checked 23.08.2018)
7GuardBot Inc., GuardBot patent: https://patents.justia.com/assignee/guardbot-inc (last checked 23.08.2018)

77



APPENDIX I. ROBOTS

It is scalable from 14 cm to 2.5 m what can be integrated with a great variety of sensors, cameras,

communication and navigation subsystems and processing equipment for surveillance purposes.

In security applications, it can be remotely operated and controlled or programmed to navigate

in a set of points indoor and outdoors.

K5

K5 was made for securing large outdoor spaces, it was developed by Knightscope8. It has 4

cameras with the ability to read license plates, 300 license plates per minute by each camera. Is

a fully autonomous robot and can navigate through an environment with moving objects.

Figure I.9: K5, the surveillance robot by Knightscope8.

The 4 cameras are positioned to attain 360 degrees video and can operate in low light and no

light conditions. This autonomous robot can detect mobile devices (computer and cellphones)

by signal detection, making it even easier to identify potential suspects trying to circumvent

security measures.

To navigate in complex environments it uses:

1. LiDAR, it allows K5 to create a 3D map of the area every 20 ms;

2. sonars;

3. GPS;

4. Wheel odometry;

5. IMU.

As other robots it is possible to communicate via two-way communication, 16 microphone array

allows recording the conversation using pre-recorded messages, text to speech or live audio.

8Knightscope, K5: https://www.knightscope.com/knightscope-k5/ (last checked 21.08.2018)
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An advantage in K5 is the simplicity in the usage, only the internet connection, to access the

online site where is possible to see details of the last two weeks on the area secured by the robot

and get the subtle evidences recorded. It provides in-motion eye-level video surveillance, parking

surveillance and parking security management system (detecting hours of use of a parking lot

by each car). It is possible to create a black-list by license plate and get early alerts for fire

hazards and dangerous levels of CO2.

Knightscope has an identical model, however, for indoor areas, the K39 .

Figure I.10: K3, the surveillance robot by Knightscope8.

K3 has the same characteristics as K5, however, it is smaller making it possible to use

indoors.

Appbot Riley

Appbot Riley is a small robot developed by iPATROL to secure a home or any building10.

It is a simple robot that can be used daily as a surveillance robot.

Appbot Riley isn’t an autonomous robot, it is controlled by a person with a smartphone to

navigate. It has a camera that can be controlled to move horizontally, making visual contact

with far away areas or verify if an elderly is feeling well. With a WI-FI connection it is possible

to see if there is anything wrong in a building trough his live camera, communicate with someone

by the two-way audio, record a thief and even detect motion where it is not intended. After

motion detect alert it is possible to store video. If there is some alert, Riley sends a signal to

the owner smartphone, if there is a need to talk to someone in the building it is possible too.

9Knightscope, K3: https://www.knightscope.com/knightscope-k3/ (last checked 21.08.2018).
10Varram, Appbot Riley: https://www.softbankrobotics.com/emea/en/robots/pepper (last checked 21.08.2018)
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Figure I.11: Appbot Riley by iPATROL10.

This robot is a good example of the evolution in the technology, it is not a fully autonomous

robot but is the proof that it is possible to reach security to our home with some sensors,

actuators and control applied. Riley costs only 190 Euro.
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OpenCV installation

Next, there is the installation guide of OpenCV library under Linux and Windows. It was

thought to be a good help for future work, to give some guidance using this library. In the

development of this dissertation the hardest thing was the installation of OpenCV library in

Windows operating system (OS), to use the CUDA graphic processing unit (GPU) module.

The best way to use specialized modules in OpenCV is to first research the software needed

and only install and associate with the OpenCV installation the software needed.

i OpenCV installation guide [Linux]

To make the installation on Linux the fallowing steps should be fallowed. Administrator rights

are needed.

i.i Graphic Processing Unit - Nvidia Cuda

From the Nvidia website [33] should be downloaded the installation file of CUDA Toolkit, the

deb file and patch files if present, to make manual installation.

The installation instructions to apply in Linux terminal are:

sudo dpkg -i cuda-repo-ubuntu1604-8-0-local-ga2 8.0.61-1 amd64.deb

sudo apt-get update

sudo apt-get install cuda

(In this case the installed version was Cuda Toolkit 8.0)
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For reference, to use OpenCV CUDA functions on Linux, the CUDA toolkits versions require

the following minimum driver versions, seen in Tab. II.1.

Table II.1: CUDA minimum Nvidia drivers
CUDA version Nvidia minimum driver version

9.2 396.xx

9.1 387.xx

9.0 384.xx

8.0 (GA2) 375.xx

8.0 367.4x

7.5 352.xx

7.0 346.xx

6.5 340.xx

6.0 331.xx

5.5 319.xx

5.0 304.xx

CUDA toolkit version requires a minimum compute capability of the GPU to result in a

correct installation, can be seen in Tab. II.2.

Table II.2: CUDA minimum GPU compute capability

CUDA version Minimum compute capability Deprecated c.c.

5.5 (and prior) 1.0 -

6.0 1.0 1.0

6.5 1.1 1.0

7.0 2.0 1.x

7.5 2.0 1.x

8.0 2.0 2.x

9.0 3.0 2.x

9.1/9.2 3.0 2.x

Minimum compute capability can be seen in Nvidia CUDA GPU information website [34].

Deprecated c.c. (compute capability), if it is specified that compute capability in the installation,

deprecated messages will appear, however, the compilation proceeds.
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i.ii OpenCV terminal installation

The fallowing commands should be used to make installation in Ubuntu 16.04 or Ubuntu 17.04.

The commands must fallow that order, there are dependencies between used programs.

# Version to be installed

OPENCV VERSION=’3.4.1’

# 1. Keep Ubuntu or Debian up to date

sudo apt-get -y update

sudo apt-get -y upgrade

sudo apt-get -y dist-upgrade

sudo apt-get -y autoremove

# 2. Install the dependencies

# Build tools:

sudo apt-get install -y build-essential cmake

# GUI (if is wanted to use GTK instead of Qt, ’qt5-default’ is replaced with ’libgtkglext1-

dev’ and changed option in CMake ’-DWITH QT=ON’ to ’-DWITH QT=OFF’):

sudo apt-get install -y qt5-default libvtk6-dev

# Media I/O:

sudo apt-get install -y zlib1g-dev libjpeg-dev libwebp-dev libpng-dev libtiff5-dev libjasper-

dev libopenexr-dev libgdal-dev

# Video I/O:

sudo apt-get install -y libdc1394-22-dev libavcodec-dev libavformat-dev libswscale-dev libtheora-

dev libvorbis-dev libxvidcore-dev libx264-dev yasm libopencore-amrnb-dev libopencore-amrwb-

dev libv4l-dev libxine2-dev

# Parallelism and linear algebra libraries:

sudo apt-get install -y libtbb-dev libeigen3-dev

# Python:

sudo apt-get install -y python-dev python-tk python-numpy python3-dev python3-tk python3-

numpy
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# Java:

sudo apt-get install -y ant default-jdk

# Documentation:

sudo apt-get install -y doxygen # 3. Install the library

sudo apt-get install -y unzip wget

wget https://github.com/opencv/opencv/archive/$OPENCV VERSION.zip

unzip $OPENCV VERSION.zip

rm $OPENCV VERSION.zip

mv opencv-$OPENCV VERSION OpenCV

cd OpenCV

mkdir build

cd build

# Next terminal command defines what is installed with the OpenCV library, as an example,

with Qt (”-DWITH QT=ON”).

cmake -DWITH QT=ON -DWITH OPENGL=ON -DFORCE VTK=ON -DWITH TBB=ON

-DWITH GDAL=ON -DWITH XINE=ON -DBUILD EXAMPLES=ON -DENABLE PRECOMPILED HEADERS=OFF

...

make -j4

# The number of processors is defined using the -j option depends of the machine (this case

are 4).

sudo make install

sudo ldconfig

# 4. Execute OpenCV examples and compile a demonstration

The coding program used was NetBeans.

After some understanding of the underlying system, Ubuntu from Linux is the easier OS to

use OpenCV or external libraries. The ease in software installation is something that in this

work process made a big difference.
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ii OpenCV installation guide [Windows]

To make a easy installation on windows the fallowing steps should be fallowed. Administrator

rights are needed.

1. Using an web browser access the web page of Sourceforge[35];

2. choose a wanted build (OpenCV 3.4.0 or 3.4.1, old builds work better in Windows) and

download it;

3. unpack the self-extracting archive (should be chosen the ”C:” path where windows is

installed, preferable to create the folder ”C:\OpenCV”);

4. check the installation at the chosen path;

5. to finalize the installation is needed to set the OpenCV environment variable and add it

to the systems path.

To set the OpenCV environment variable and add it to the systems path is needed to apply

the fallowing commands in Windows Command Prompt.

setx -m OPENCV DIR C:\OpenCV\Build\x86\vc? (suggested for Visual Studio 20? - 32

bit Windows)

setx -m OPENCV DIR C:\OpenCV\Build\x64\vc? (suggested for Visual Studio 20? - 64

bit Windows)

The OPENCV DIR is the directory where the OpenCV archive was extracted (as said,

should be ”C:\OpenCV”). The symbol ? represent the Visual Studio version (2010, 2012, ...).

It is important to know that there are OpenCV builds incompatible with some Visual Studio

versions.

At this point, shall be possible to code with OpenCV using Visual Studio.
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Appendix III

Gunnar Farneback’s optical flow

formulation

Polynomial expansion

The motion estimation is obtained from two frames. The first step is to approximate each

neighbourhood of both frames by quadratic polynomials. It fallows the optimization problem in

Equation III.1 (quadratic polynomial).

The coefficients are estimated from a weighted least squares fit to the values in the neigh-

bourhood.

f(x) ∼ xTAx+ bTx+ c (III.1)

A is a symmetric matrix, b a vector and c a scalar.

Displacement estimation

Analysing an ideal translation. Considering the exact quadratic polynomial in III.2

f1(x) ∼ xTA1x+ bT1 x+ c1 (III.2)

a new signal f2 results from signal f1 from a displacement by d,

f2(x) = f1(x− d) = (x− d)TA1(x− d) + bT1 (x− d) + c1

= xTA1x+ (b1 − 2A1d)Tx+ dTA1d− bT1 d+ c1

= xTA2x+ bT2 x+ c2.

(III.3)

87



APPENDIX III. GUNNAR FARNEBACK’S OPTICAL FLOW FORMULATION

Solving Equation III.3 result:

A2 = A1 (III.4)

b2 = b1 − 2A1d (III.5)

c2 = dTA1d− bT1 d+ c1 (III.6)

Solving III.5 for the ideal translation d, being A1 non-singular.

d = −1

2
A−1

1 (b2 − b1) (III.7)

The mathematical equation x = A−1b should be interpreted as x being the solution to Ax = b.

Practical considerations

Since the camera is paired to the robot, without perfect conditions, the ideal translation is

unrealistic. The robot locomotion, resulting vibration from the movement and the moving

objects in the world makes it almost impossible. The basic relation can be used for real signals,

but, introducing errors. ”The question is whether these errors can be kept small enough to

give a useful algorithm” ([6], p. 3). The Equation III.1 is replaced with local approximations,

polynomial expansion of both images [36], first and second image (A1(x, y), b1(x, y), c1(x, y) and

A2(x, y), b2(x, y), c2(x, y)) according to III.4 but applying:

A(x, y) =
A1(x, y) +A2(x, y)

2
(III.8)

and

∆b(x, y) = −1

2
(b2(x, y)− b1(x, y)) (III.9)

reaching the primary constraint Equation III.10

A(x, y)d(x, y) = ∆b(x, y) (III.10)

The variable d(x, y) is now a spatially varying displacement field ((x, y)is the pixel position). In

order to improve estimation it is made the assumption that the displacement field is only slowly

varying. Thus it is found d(x, y) satisfying Eq. III.10 as well as possible, over a neighbourhood

I of (x, y) pixel position.

88



Movement, Pedestrian and Face Detection Based on Optical Flow for Surveillance Robot

Estimation over a neighbourhood

Assuming that the motion field is slowly varying, furthermore, integrating information over a

neighbourhood of each pixel. It is found d(x, y) satisfying Eq. III.10 as well as possible, over a

neighbourhood I of (x, y) pixel position, minimizing Equation III.11.∑
{∆x,∆y}∈I

w(∆x,∆y) ‖ A(x+ ∆x, y + ∆y)d(x, y)−∆b(x+ ∆x, y + ∆y) ‖2 (III.11)

w(∆x,∆y) is a Gaussian weight function for the pixels in the neighbourhood. The minimum is

obtained for:

d(x, y) = (
∑

wATA)−1
∑

wAT∆b (III.12)

The minimum value is given by:

e(x) = (
∑

w∆bT∆b)− d(x, y)T
∑

wAT∆b (III.13)

The solution given by Eq. III.12 exists and is unique unless the whole neighbourhood is exposed

to the Gaussian aperture problem.

Parametrized displacement fields

The robustness of motion field increases by parametrizing according to some motion model.

Using eight parameter model, deriving in the 2D, comes:

dx(x, y) = a1 + a2x+ a3y + a7x
2 + a8xy (III.14)

dy(x, y) = a4 + a5x+ a6y + a7xy + a8y
2 (III.15)

On the matrix form:

d(x, y) = S(x, y)p (III.16)

S(x, y) =

(
1 x y 0 0 0 x2 xy

0 0 0 1 x y xy y2

)
(III.17)

p =
(
a1 a2 a3 a4 a5 a6 a7 a8

)T
(III.18)

Inserting to Equation III.11 it is obtained the weighted least squares problem shown in Eq.

III.19. ∑
x,y

w(x, y)‖ A(x, y)d(x, y)−∆b(x, y)) ‖2 (III.19)

Pixel coordinate is defined by (x, y) in a neighbourhood I. The polynomial solution to Eq. III.19

is characterized by Equation III.20.

p =

(∑
wSTATAS

)−1∑
wSTAT∆b (III.20)
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p =

(∑
wSTS

)−1∑
wSTd (III.21)

Equation III.20 and Eq. III.21 are equivalent. There are errors introduced to the constraints,

associated with the assumption that the local polynomials at the same coordinates in two images

are identical, except for a displacement. Fast movement in the world result in large displacements

on the frame, increasing the problem. Knowing that, and to control error propagation, it is

imperative that the displacement is minimum. To minimize displacement on the frame, the

camera capture frequency has to be high (the robot camera has an capture capability of fifteen

frames per second, what could ease the problem).

”... the estimation algorithm can handle larger displacements but at the same time the

accuracy decreases” ([6], p. 5). The higher the capture frequency capability of the camera

higher will be the resulting accuracy of this method.
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Otsu’s threshold method

If a pixel value is greater than a threshold value, it is assigned one value (may be white), else, it

is assigned another value (may be black). In global thresholding, an arbitrary value for threshold

is used, for example the gray pixels intensity median value1. Depending on what is wanted as

a result, this value has to be carefully chosen or surely the final product will hold noise or will

eliminate important information. On that way, the verification of the result has to be trial, error

and definition of the new value, that is not intended in a autonomous robot.

Since each set of images used for movement calculation is different from the other (different

light intensities, shadows, difficult surfaces, ...), the threshold method has to be optimal.

”In image segmentation, thresholding becomes an effective tool to separate the object from

the background when the gray levels are substantially different between them” ([26], p. 1).

Making the equalization 3.6 eases the gray levels/intensities distinction.

Considering a bimodal image (in simple words, bimodal image is characterized by the two

peaks of his histogram). For that image, we can approximately take a value in the middle of

those peaks as threshold value, that is what Otsu’s method does. A gray scale image bimodal

histogram can be seen in Figure IV.12.

In Figure IV.1, T is the optimal threshold value. The equalized optical flow is seen as a gray

scale image that represent movement, so, the threshold value is calculated from that image.

Forward will be represented the method from Otsu to calculate the desired threshold, from

Otsu’s [25] original paper.

1https://docs.opencv.org/3.4/d7/d4d/tutorial py thresholding.html (last checked 16-06-2018).
2Image from: https://www.researchgate.net/figure/Histogram-of-a-sample-gray-level-bimodal-image-T-is-the-

threshold-value fig1 233814424 (last checked 07.09.2018).
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Figure IV.1: General bimodal histogram from a gray scale image.

i Otsu’s threshold Formulation

Let the pixels of a given picture be represented in L gray levels [1, 2, ... ,L]. The number of

pixels at level i is denoted by ni and the total number of pixels by N = n1 + n2 + ... + nL.

In order to simplify the discussion, the gray-level histogram is normalized and regarded as a

probability distribution ([25], p. 2).

pi =
ni
N

(IV.1)

Supposing that the pixels of the gray image are separated into two groups, C0 and C1 (back-

ground and moving objects, or vice-versa) by a threshold value k, C0 denotes pixels with levels [1,

..., k] and C0 denotes pixels with levels [k+1, ..., L]. The probabilities of each group occurrence

and each group mean levels are, respectively, given by:

wo = P (C0) =
k∑
i=1

pi = w(k) (IV.2)

w1 = P (C1) =

L∑
i=k+1

pi = 1− w(k) (IV.3)

and

µ0 =
k∑
i=1

iP (i|C0) =
k∑
i=1

ipi
w0

=
µ(k)

w(k)
(IV.4)

µ1 =

L∑
i=k+1

iP (i|C1) =

L∑
i=k+1

ipi
w1

=
µT − µ(k)

1− w(k)
(IV.5)

where

w(k) =

k∑
i=1

pi (IV.6)

and

µ(k) =
k∑
i=1

ipi (IV.7)
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are the zero-order and first-order cumulative moments of the histogram up to the k’th level,

respectively, and

µT = µ(L) =
L∑
i=1

ipi (IV.8)

is the total mean level of the original gray image. The fallowing relations are easily verified:

w0µ0 + w1µ1 = µT , w0 + w1 = 1 (IV.9)

The variance of each group are:

σ2
0 =

k∑
i=1

(i− µ0)2P (i|C0) =
k∑
i=1

(i− µ0)2 pi
w0

(IV.10)

and

σ2
1 =

L∑
i=k+1

(i− µ1)2P (i|C1) =

L∑
i=k+1

(i− µ1)2 pi
w1

(IV.11)

These require second-order cumulative moments. It is desired a good threshold (at level k), to

evaluate that, was introduced the fallowing discriminant measures of class separability:

ρ =
σ2
B

σ2
W

, k =
σ2
T

σ2
W

, η =
σ2
B

σ2
T

(IV.12)

where

σ2
W = w0σ

2
0 + w1σ

2
1 (IV.13)

σ2
B = w0(µ0 − µT )2 + w1(µ1 − µT )2 = w0w1(µ1 − µ0)2 (IV.14)

and

σ2
T =

L∑
i=1

(i− µT )2pi (IV.15)

are the within-group variance, the between-group variance and the total variance of gray levels,

respectively.

The problem is reduced to an optimization problem to search for a threshold value k that

maximizes one of the object functions (the measures of class separability) in IV.12. The dis-

criminant criteria maximizing ρ, k and η for k is equivalent to one another (e.g: k = ρ+ 1 and

η = ρ
ρ+1 in terms of ρ). The best threshold is the one that gives the best separation of classes

(C0 from C1, background from objects, or vice versa). The following relation is always true.

σ2
W + σ2

B = σ2
T (IV.16)

The adopted criterion measure is maximizing µ to evaluate the separability of classes. The

optimal threshold k∗ that maximizes µ (equivalent to maximize σ2
B), follows the equations:

µ(k) =
σB(k)2

σT (k)2
(IV.17)
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σB(k)2 =
[µTw(k)− µ(k)]2

w(k)[1− w(k)]
(IV.18)

The optimal k∗ value is given by:

σ2
B(k∗) = max

1≤k<L
σ2
B(k) (IV.19)

The range of k over which the maximum is found can be restricted to:

S∗ =
{
k if w0w1 = w(k)[1− w(k)] > 0 or 0 < w(k) < 1 (IV.20)
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Moving object area detection

With the binarized image it is easy to obtain the area of movement in a frame. Sengar and

Mukhopadhyay [7] developed the following algorithm. The binarized image is defined by two

values, black and white, it is possible to acquire the coordinates of the outer white pixels that

result from moving object detection. That is made following the next equations.

Rmin = min(xεB(x, y) = 1)

Rmax = max(xεB(x, y) = 1)

Cmin = min(yεB(x, y) = 1)

Cmax = max(yεB(x, y) = 1)

(V.1)

Here (Rmin,Rmax) and (Cmin,Cmax) are the minimum and maximum coordinates of row and

column of the white area respectively. B(x, y) represents the binary image from the movement

detection at pixel (x, y). The moving object area in the RGB image is selected using the region

of interest obtained from the coordinates calculated by V.1, seen in Eq. V.2.

Imoving object = I(Rmin : Rmax, Cmin : Cmax) (V.2)

The resulting ROI cut from the original LASIESTA Database set, following Sengar and Mukhopad-

hyay algorithm, can be seen in Figure V.1.
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(a) Frame 1

ROI

(b) Frame 2

ROI

(c) Frame 3

ROI

Figure V.1: Cut out ROI from LASIESTA Database RGB frames (following shown algorithm,

defined by Eq. V.1 and Eq. V.2).

It is possible to obtain the area of the moving object in the world. The problem with this

approach is the inability to differentiate moving objects, with a possible event of two or more

objects moving in the world, resulting in a unique area. Applying the same algorithm to Freiburg

University, ”Chinese Monkey” set (see Figure V.2), the resulting ROI cut from one frame can

be seen in Figure V.3.

(a) F1 frame (b) F2 frame (c) F3 frame

Figure V.2: Freiburg Database RGB image set (720× 432 pixels size image).

(a) Frame ROI

Figure V.3: Cut out ROI from Freiburg RGB frame (717 × 402 pixels size image), following

shown algorithm (defined by Eq. V.1 and Eq. V.2).

The binarized image representing the detected movement can be seen in Figure 3.32 (a).
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The resulting ROI (717×402 pixels size image), that represents a moving object, in this set,

is almost all the original image(720× 432 pixels size image). Figure V.3 shall be compared with

the result obtained in Section 3.11 Figure 3.32 (b).

Since it is wanted to acknowledge different moving objects (e.g.: different people walking) it

was developed a preferable algorithm to this task, a contour based algorithm (Section 3.9).
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