
UNIVERSIDADE DE COIMBRA

MASTER THESIS

Concatenative Synthesis Applied to
Rhythm

Author:
Francisco MONTEIRO

Supervisors:
Dr. Amílcar CARDOSO

Dr. Fernando PERDIGÃO
Dr. Pedro MARTINS

A thesis submitted in fulfillment of the requirements
for the degree of Mestrado Integrado em Engenheria Eletrotécnica e Computadores

in the

Departmento de Engenheria Eletrotécnica e Computadores

February 19, 2019

http://www.university.com
http://department.university.com

iii

Declaration of Authorship
I, Francisco MONTEIRO, declare that this thesis titled, “Concatenative Synthesis
Applied to Rhythm” and the work presented in it are my own. I confirm that:

• Where any part of this thesis has previously been submitted for a degree or
any other qualification at this University or any other institution, this has been
clearly stated.

• Where I have consulted the published work of others, this is always clearly
attributed.

• Where I have quoted from the work of others, the source is always given. With
the exception of such quotations, this thesis is entirely my own work.

• I have acknowledged all main sources of help.

• Where the thesis is based on work done by myself jointly with others, I have
made clear exactly what was done by others and what I have contributed my-
self.

Signed:

Date:

v

“When I’m writing, sometimes it gets to that place where I feel like the piece is writing itself
and I’m trying not to get in the way.”

John Zorn

vii

UNIVERSIDADE DE COIMBRA

Abstract
Faculdade de Ciências e Tecnologia

Departmento de Engenheria Eletrotécnica e Computadores

Mestrado Integrado em Engenheria Eletrotécnica e Computadores

Concatenative Synthesis Applied to Rhythm

by Francisco MONTEIRO

Music and Technology have a long symbiotic history together and became even
more related in recent times, when technology is so present in our everyday lives.
Technological breakthroughs have greatly impacted the way many tasks are carried,
including the music composition process. The digital era allowed the access to large
databases of music and sounds on digital format and has changed the way we cre-
ate music. There is an ongoing need to develop new tools and new ways to explore
these new possibilities. Different forms of sound synthesis have surfaced over the
years, including Granular and Concatenative Synthesis, which offered the ability to
use these unlimited sound databases. Alongside with these, developments in the
Music Information Retrieval field opened doors for sound interpretation, improv-
ing the indexing ability of digital files. We have seen Concatenative Synthesis being
applied in the past for speech synthesis and for music composition, but few applica-
tions focused on live generation of rhythms.

We propose a Concatenative Synthesizer oriented towards rhythmic composi-
tion, which has the ability to create its own drum kit by interpreting an input drum
audio signal. The system then recreates the input through different ways, includ-
ing an variation algorithm based on Euclidean Rhythms. It was implemented in
the programming language Max/MSP and the extension Max For Live, in order to
make it usable in the DAW environment. We have also created a basic interface to
interact with the user. In the end, we present a user-based evaluation and discuss
the possible future developments.

HTTP://WWW.UNIVERSITY.COM
http://faculty.university.com
http://department.university.com

ix

Acknowledgements
To my family, the unwavering pillar of my life. To all of them, a big acknowledge-
ment for the unconditional love. Julia for for the comprehension and eternal pa-
tience. Diogo for always being there, even when I’m the worst. Mário for the eternal
support and for being my biggest music influence. Arménio, Graciema, Emília and
Adriano. All my uncles, aunts and cousins. You are everything to me.

To my supervisors, Amílcar Cardoso, Pedro Martins and Fernando Perdigão for
believing in my project, for their constant support, for always leaving the door open
for me and bringing me down to earth when I needed.

To all my friends. Antonio for all the help in this entire project and for the end-
less discussions about music. Filipe for the tips, the design help and the being the
greatest person on the planet. Bicá, Craveiro, Gonçalo, Martins, João, Joana, Ritas,
Maria, Francisco, Bernardo, Miguel, Ivan, Gabriel, António and many many more,
way too many to mention. Seriously, thank you all.

To all my friends, colleagues and mentors from Radio Universidade de Coimbra
who taught and still teach me everyday so much about music. A shoutout to the
Magia Negra crew.

To all those who participated in the tests.

xi

Contents

Declaration of Authorship iii

Abstract vii

Acknowledgements ix

1 Introduction 1
1.1 Context . 1
1.2 Goals . 2
1.3 Motivation . 2
1.4 Structure . 3

2 State of the Art 5
2.1 Automatic Composition . 5

2.1.1 Algorithmic Composition . 6
2.1.2 Computer-Aided Algorithmic Composition 8

2.2 Concatenative Synthesis . 8
2.3 Music Information Retrieval . 11

2.3.1 Drum Transcription . 14
2.4 Conclusion . 16

3 Methodology 17
3.1 Conceptualization . 17
3.2 Objectives . 17
3.3 Process . 18
3.4 Task Planning . 18

4 System Description 21
4.1 Definition . 21
4.2 Tools . 22

4.2.1 Ableton Live . 22
4.2.2 Max/MSP . 23
4.2.3 Max For Live . 24

4.3 Implementation . 25
4.3.1 Unit Definition . 25
4.3.2 The Sampler: chucker~ . 27
4.3.3 Segment Analysis . 29

4.4 Concatenative Synthesizer . 32
4.4.1 Main Sequence . 32
4.4.2 Euclidean Rhythms . 33
4.4.3 Concatenation Process . 35

4.5 Interface . 37
4.6 Conclusion . 38

xii

5 Tests and Evaluation 39
5.1 Testing Method . 39
5.2 Questions . 40
5.3 Answers . 40

6 Conclusions and Future Work 45
6.1 Future Work . 46

Bibliography 49

A Max/MSP Patchers 53
A.1 Chucker Arguments . 53
A.2 Analysis . 54
A.3 Synthesis . 54

B Sequence Database Creation 59
B.1 Matlab Scripts . 59

B.1.1 main.m . 59
B.1.2 ExtractDrum.m . 60
B.1.3 WriteLine.m . 61
B.1.4 LineCount.m . 61

B.2 Drum Articulation . 62

xiii

List of Figures

2.1 Brian Eno’s Scape . 7
2.2 CataRT interface . 9
2.3 Eargram interface . 10
2.4 RhythmCAT interface . 11
2.5 Illustration of traditional drum instrument sounds 15

3.1 Task Planning . 19

4.1 Device Diagram . 21
4.2 Ableton Live 9 interface . 22
4.3 Ableton Temporal Control Bar . 22
4.4 MAX/MSP Final Patch . 23
4.5 Interface Patcher . 24
4.6 Excerpt of a Music Score . 25
4.7 Roland Tr-909 . 26
4.8 Unquantized Drum Break Segmentation 27
4.9 Quantized Drum Break Segmentation 28
4.10 Spectral Representation of a Drum Sound 29
4.11 Diagram representing the Analysis Process 30
4.12 Patcher: AnalysisSegm . 31
4.13 Fixed Segmentation Problem illustration 32
4.14 Euclidean Rhythm Geometric Representation 34
4.15 Patcher: Concatenation Process . 35
4.16 Spectral Analysis of Sample Length Correction 36
4.17 Max For Live Device Interface . 37

5.1 Test Form . 41
5.2 Answers 1, 2, 3 . 42
5.3 Answers 4, 5, 6 . 43

A.1 Patcher: DrumChuckers . 53
A.2 Patcher: LDT kNN . 54
A.6 Patcher: loadfile . 54
A.3 Patcher: FilterOutGhost . 55
A.4 Patcher: FindIsolated . 56
A.5 Patcher: findDrumLength . 57
A.7 Patcher: LengthCorrection . 58

xv

List of Tables

2.1 MIR Subfields . 13
2.2 Drum Transcription Tasks . 13

4.1 Example of chucker~ list based communication 28

B.1 Drum Articulation Example . 62

xvii

List of Abbreviations

ADC Analog (to) Digital Conversion
ADSR Attack Decay Sustain Release
BFCC Bark (-) Frequency Cepstrum Coefficients
BPM Beats Per Minute
CAAC Computer (-) Aided Algorithmic Composition
DAW Digital Audio Workstation
DSP Digital Signal Processing
GUI Graphical User Interface tools
HMM Hidden Markov Model
LVT Live Drum Transcription
MFCC Mel (-) Frequency Cepstrum Coefficients
MIDI Musical Instrument Digital Interface
MIREX Music Information Retrieval Evaluation eXchange
MIR Music Information Retrieval

1

Chapter 1

Introduction

1.1 Context

Throughout times, music served many different purposes. The preliterate cultures
used music in shamanistic rituals as a way to interact with animals and entertain-
ment purposes — practices that remain untouched until these days among aborigi-
nal tribes. These first occurrences were limited to the sound production techniques
available for the prehistoric human, such as the human voice, elementary percus-
sion, using various objects or the human body parts, and archaic instruments (Mor-
ley, 2003).

The ability to describe and register music through notation defines the distinction
between Prehistoric and Ancient Music, with the oldest found composition dating
back to more than 3000 years ago. Parallelly and concurrently, different civilizations
defined different musical notation systems and, as they interacted with each other,
these systems spread and developed.

Along with the ability to describe music, technology allowed the invention of
new ways to produce sound. Different musical instrument families, that exploited
the physical interactions between solid objects and air, were able to produce a con-
trollable array of different frequencies that had underlying mathematical relations
(Benson, 2006) (Xenakis, 1992).

Instruments played very important roles in society, whether it was as accom-
paniment of religious rituals, for aristocratic entertainment or for the diffusion of
folkloric cultures. Each instrument –– and the technique employed to play that in-
strument — is associated with a certain timbre — the perceived characteristic that is
common to every note in the instrument if played in the exact same manner. These
timbres alongside the notes –– and of course, besides the expressiveness that one
could put into playing it —- were the essential parts of a musical composition and
were the central tools for musical creation.

The concept of recycling existing material for the production of new artistic pieces
was already a celebrated art form in visual arts (collage). The conceptualization of
a similar process in the musical domain appeared a few years before the technology
that allowed its realization (Cœuroy, 1928).

Some of the first experiments with music sampling occurred inside the musique
concrète movement that dates back to the early 1940s. The sonic explorations protag-
onized by Pierre Shaeffer and its pupils in Studio D’Essai de la Radiodiffusion nationale
defined the beginning of a new era in music production (Hodgkinson, 1987).

These new techniques, besides opening up the possibility for new methods of
musical creation, also augmented the concept of music beyond the long existing
paradigm focused on the coordination of melody and timbre. Music could now
be expressed as sound in its most abstract form, without the traditional musical
qualities required, inviting the listener to discover new musical values.

2 Chapter 1. Introduction

In the 1980s, when microprocessors were more widely available, more powerful
and more affordable, the digital sampler appeared as an instrument for music cre-
ation. Probably the most common models were the ones with keys and pads, where
each key/pad were associated with a sample stored in the sampler’s memory, or it
could also play one sample at different speeds/pitches and could be played just like
a note from a conventional instrument. This meant a lot for music culture, as it al-
lowed, not only the ability to emulate any recorded instrument, but also the ability
to work with any recording, making it central in the genesis of many musical genres
and styles such as hip-hop, electronic dance music and experimental music. It also
meant one did not need to have formal musical knowledge or to have the capacity
to play and the access to acoustic instruments in order to create music.

Later on, the computational power of personal computers allowed them to host
the most powerful samplers. The convenience of working entirely on the digital
realm made software like Digital Audio Workstations and Virtual Studio Technology
very appealing —- mixing engineers gave this the name in-the-box. The ability to
easily update and to create an internal digital signal that could easily replicate all the
routing configurations that would otherwise require very expensive material, time
and a place to set up a studio, were important factors to the paradigm transition.

Nowadays, there is even the ability to apply DSP techniques and create effects to
use on the fly while making music, like the one we’ll be using in this thesis: Max for
Live.

1.2 Goals

The main goal of this thesis is to create an Audio Effect that seamlessly recreates
a given drum phrase automatically and intelligently, including coherent rhythmic
variations according to the controls of the user. This involves a system that is capable
of translating the sound input into a sequence of meaningful drum units and reuse
those units as a sound source for a rhythmic recreation. It is not intended to create
music on its own, but to compliment the electronic music creative process.

1.3 Motivation

Behind this thesis is a profound passion for music, music production, DSP and Pro-
gramming, powered by a background in Electrical Engineering, Radio broadcasting
and a long-term involvement with electronic music composition.

As an electronic music composer, one of my main interests was the creation of
generative functions that coherently compliment my creative process, in order to
blur the border between music production and music listening/discovering. The
music creation process can become somewhat repetitive if we approach it always
with the same tools and techniques, generating similar results every time. This is
ever more true with electronic dance music. There is nothing wrong with that, but
what if we can make it ever-changing and exciting in every iteration? That’s the main
motivation for this tool: make music production even more exciting and surprising.

Plus, sampling is, for us, a fascinating approach to art: recycling and, sometimes,
even reviving old artistic pieces and include them in a new narratives and new con-
texts. we have a world of sound sources available all the time in this digital era. It
seems like a waste of time and patience to scroll through databases and find good
combinations of samples. Giving the user the sole responsibility to select a database,

1.4. Structure 3

or a source sound, from which the program can rebuild and recreate something new
is also the approach we are interested in.

1.4 Structure

Here is an outline of the remainder of this document::

Chapter 2 State of the Art revision in the relevant areas for the creation of the tool
we propose. We make a small review on the historical context of automatic
composition and include some examples of music that is related to our objec-
tives and proceed to classify the different kinds of algorithmic composition.
We offer an overview on concatenative synthesis and Music Information Re-
trieval.

Chapter 3 Description of the methodology used for the production of this project
and inclusion of a Gantt Diagram.

Chapter 4 Description of all aspects of our Plug-In with as much detail as possible.

Chapter 5 Description of the user-based evaluation.

Chapter 6 Conclusions, final thoughts and discussion of the possible future of the
Plug-In.

5

Chapter 2

State of the Art

In this chapter we will review the state of the art in the following fields: Automatic
Composition, Concatenative Synthesis and Music Information Retrieval. Sometimes
these fields will overlap over the different sections as they have many connection
links. We tried to divide them the best we could, although arguably, some examples
of Concatenative Synthesis could also be considered Algorithmic Composition. We
made an effort to keep a chronological sequence inside each section.

2.1 Automatic Composition

Musical composition as a process of writing an organized set of instruments and
notes to achieve a desirable result, tonal harmonic or not, has an underlying direct
relationship with an algorithm. Music scales, frequency relations and tempo coher-
ence can be interpreted as the set of rules required to aid the composer complete the
piece of music that produces the desired results.

Throughout the history, there has been many occurrences of the use of algorith-
mic concepts to aid the process of music composition even before computers. One
example is the contrapuntal form, popularized and thoroughly developed by the
baroque composer Johann Sebastian Bach, which is a composition technique that
initiates with a melody that will later be imitated by a different voice, aiming to
exactly replicate its predecessor or create some sort of variation.

Another explicit occurrence is the Musikalisches Würfelspiel, a series of dice games
popularized in the late 18th century that allowed even non-musicians to compose
music. The dice rolled numbers were associated with a certain music composition
fragments that were tailored to work in a sequence. To generate new sections the
users just needed to carry on rolling the dice (Edwards, 2011).

We can refer to different examples where a portion of the composition was not
explicitly defined and depended on randomness, such as Marcel Duchamp’s Erra-
tum Musical (1912), John Cage’s indeterminacy music — Music of Changes is a series
of four “books” of music that were inspired in an ancient classic text called I Ching
— or Karlheinz Stockhausen compositions Klavierstücke.

Minimal music pioneers started showing their compositions around the same
time –– the aesthetical results of of minimal music stand far away from the general
minimal movement, meaning although the name remained, it may have not been the
best choice. Terry Riley composed In C (1968), regarded as one of the most important
and influential for the genre which consisted in a composition expressed as a set of
procedures. The piece is meant to be played in a group. It consists of a set of 53 short
musical segments that are supposed to be played repeatedly for as long as each
individual wants as long as it remains close to the group’s “mass center”, creating a
group dynamic that dictates the flow of the performance.

6 Chapter 2. State of the Art

Steve Reich, who was involved in In C premiere, recorded a series of pieces using
tape machines and voice recordings. Two of his most well-known pieces, It’s Gonna
Rain (1965) and Come Out (1966), involved having two tape players playing the same
recording in a loop with a slightly different speed, each in a different side of the
stereo space, slowly generating a phasing effect. He later applied this principle to
conventional/instrument based composition - Piano Phase (1967), Violin Phase (1967)
and Pendulum Music (1968).

Alongside these, Philip Glass is also a landmark composer in the genre. His
music is characterized by very densely populated and intricate note loops which
discretely evolve throughout the music pieces, many times going back and forth be-
tween sections, giving a feeling of constant stationary movement. Music with Chang-
ing Parts (1971) is one of his first works with these techniques. What all these have
in common is the underlying procedural nature of the composition process – in fact,
in the beginning, it used to be called process music.

The advent of computers opened a new world of possibilities for music compo-
sition, including the possibility of transforming it into an entirely automated process
or preserve some decision abilities to the user. In the computer era, it is possible to
distinguish two different branches in this kind of composition (Fernández and Vico,
2013):

Computer-aided algorithmic composition focused on the creation of languages, frame-
works and graphical tools to provide support for the composition process but
still with considerable human intervention.

Algorithmic Composition techniques, languages or tools aiming to compose music
in an entirely automated way, or that foresees minimal human intervention

2.1.1 Algorithmic Composition

Illiac Suite (1957) composed by Lejaren Hiller in collaboration with Leonard Issacson,
is commonly regarded as the first piece of music composed by a computer and is
characterized by the use of random processes and a constraint-based system, using
probability tables to control the distribution of melodic intervals (Sandred, Laurson,
and Kuuskankare, 2009).

Around the same time, the Greek-French composer Iannis Xenakis, motivated by
the relationship between mathematics and music, pioneered and coined the genre
stochastic music. Throughout his compositional work, he applied different math-
ematical concepts to music, like statistical structures in Pithoprakta (1956), Markov
Chains in Analogique A et B (1959) (Di Scipio, 2006), Minimal Constraints in Achor-
ripsis (1957) (Harley, 2004). He even wrote Formalized Music: Thought and Mathemat-
ics in Composition considered a groundbreaking work in the field (Iannis Xennakis,
1963) that included FORTRAN instructions for his music composition algorithm. In
the late 60s he developed his own Stochastic Music Programme (SMC). His passion
with the use of mathematics and computers in the studio was a theme of divergence
between him and Pierre Schaeffer during his involvement with Groupe de Recherches
Musicales projects (Gibson and Solomos, 2013).

Brian Eno, an ambient music pioneer was also experimenting with tape recorders
and developed a tape delay system which he used in collaboration with Robert Fripp
– King Crimson’s guitar player at the time - for their album No Pussyfooting (1973). In
fact, part of his work Music for Airports (1978) included the same phasing technique
of Reich, except this time there were multiple different recordings and the loop du-
rations were also more disparate. He was the one who coined the term Generative

2.1. Automatic Composition 7

MUsic in 1995 while developing SSEYO’s Koan Pro and created one of the first gen-
erative music software products, which he later used to create his album Generative
Music I (1996). To this day he continues to produce music and develop interactive
generative music software products — see Figure 2.1.

“And essentially the idea there is that one is making a kind of music in the way
that one might make a garden. One is carefully constructing seeds, or finding
seeds, carefully planting them and then letting them have their life. And that
life is not necessarily exactly what you’d envisaged for them. It is characteristic
of the kind of work that I do that I’m really not aware of how the final result is
going to look or sound. So in fact, I’m deliberately constructing systems that
will put me in the same position as any other member of the audience. I want to
be surprised by it as well. And indeed, I often am.”

Brian Eno, Composers as Gardeners (2011)

FIGURE 2.1: Brian Eno’s Scape, an interactive music application re-
leased for iPad

Michelle O’Rourke (2014) puts it in words very synthetically: “Generative music
can be broadly defined as a compositional practice which sets a system into motion
with some degree of autonomy which in turn results in a complex musical gener-
ation”. Algorithmic Composition is hard to categorize as there are many different
authors that express this differently. Our taxonomy is very simple and we suggest
(Nierhaus, 2009) or (Fernández and Vico, 2013) for further reading. The categories
overlap frequently in many different projects, making it ever so difficult to associate
one’s work with a single category:

Stochastic Models Compositions that rely on the use of stochastic processes. We
mentioned a few historical examples in 2.1

Grammar Models rule-based systems that respect to the definition of a formal gram-
mar. Further reading about this, particularly about the applications of Linden-
mayer Sytems in music can be done in (Mccormack, 1996).

8 Chapter 2. State of the Art

Machine Learning Models Systems that are not explicitly programmed. Instead
they create their generation processes by the analysis of musical databases,
inferring the rules that make the decisions for the system. They benefit from
computer science procedures based in Machine Learning. We can recommend
(Fernández and Vico, 2013) and (Briot, Hadjeres, and Pachet, 2017) for further
reading on the matter.

Evolutionary models Genetic Algorithms stand as an optimization algorithm that
mimic evolutionary biology natural selection. A population of individual so-
lutions is tested against a fitness function and each individual is rated accord-
ingly. The best performing individuals will be more probable to breed the
next generation, either by selection – the maintenance of a similar solution in
the next generation –, crossover – the creation of a child individual that takes
properties from two fit individuals – and mutation – the creation of a new child
individual that takes random values. An historical example of the application
of Genetic Algorithms to jazz improvisation can be found in (Papadopoulos
and Wiggins, 1999).

2.1.2 Computer-Aided Algorithmic Composition

The origins of CAAC date back to 1950s, when engineer Max Mathews started seeing
the possibilities of computer music while experimenting on digital transmission of
telephone calls. His programme Music I is considered the first computer programme
and he went on to developed a family of software products named Music-N, which
set the blueprint for most modern computer audio synthesis programmes, such as
CSound, SuperCollider and Max/MSP – in fact the latter is named after Max Math-
ews himself as a tribute.

According to Lejaren Hiller (1981) “computer-assisted composition is difficult
to define, difficult to limit, and difficult to systematize”. Cristopher Ariza (2005)
proposes a definition for CAAC: “A CAAC system is software that facilitates the
generation of new music by means other than the manipulation of a direct music
representation.”

2.2 Concatenative Synthesis

By analyzing the sampling ability of the first sequential samplers – late 1980s – we
could infer they were the first concatenative synthesizers. They allowed the possi-
bility to record an audio buffer and store it in the sampler’s memory. The user had to
manually divide the recorded audio into individual units of his choice and only then
use the individual units — samples is the electronic music community denomination
— to create a new piece.

Our interest in Concatenative Synthesis is much more related to algorithmic/itel-
ligent systems rather than the traditional manually controlled sampler. For that rea-
son, we take a leap in time to avoid mentioning the unnecessary.

In the musical domain, there was already a method of synthesis called Granu-
lar Synthesis that inspired Concatenative Synthesis. In granular synthesis, the units
are called grains and their typical length ranges between 1 to 50 ms. The grains
are unlabeled and the corpus is defined by the user by the segmentation of a single
audio file. As a tool for music creation, its main objective is to create evolving and
non-repeating soundscapes that comprise of the layering of multiple grains playing
at different speed, duration, frequency among other controllable parameters. In its

2.2. Concatenative Synthesis 9

FIGURE 2.2: CataRT interface (Schwarz et al., 2006). Source: http:
//imtr.ircam.fr/imtr/CataRT

traditional usage, it is not suitable for rhythmic composition, as the grain size range
does not comply with the typical temporal proportions of conventional music, nei-
ther does the randomness for the selection of units. Concatenative synthesis units
can have a larger range of duration and can also include meta-information that de-
scribes and distinguishes units in a corpus.

One of the first application of concatenative synthesis was actually in the speech
synthesis field (Hunt and Black, 1996). Using a database of labeled prerecorded
speech units, and given a phonetically described target, the algorithm linked the el-
ementary units — phonemes — according to a Hidden Markov Model. Two indica-
tors were selected for the calculation of the transition probabilities: the distance be-
tween the object and the database unit and the concatenation cost. The best possible
solution was always desirable, so the Viterbi algorithm was used — an optimization
algorithm used to find the most likely sequence of Hidden States.

Inspired by the speech synthesis approach, Schwarz (2000) applied the same
principle to music creation in his Caterpillar system. The use of the Viterbi algorithm
was dropped, as it narrows down the output to the best possible solution every time,
which is not beneficial in the artistic perspective. The value of the algorithm is to find
coherent units and transitions but also new and ever-changing solutions, resulting
in a different approach related to his speech synthesis peers, changing the unit selec-
tion paradigm from “ideal” to “acceptable”, thus giving the algorithm more room
for innovation.

This constraint-satisfaction mechanism or music mosaicing is proposed in (Zils
and Pachet, 2001). We can also recommend (Anders and Miranda, 2011) for further
reading on constraint programming in music. Besides the unit constraint, they de-
fined a sequence constraint related to the sequence of units. The algorithm makes an
heuristic search to find a sequence that satisfactorily minimizes the global cost.

Although Markov Models were proved able to produce new musical patterns
given a corpus of patterns of a certain style, the generative power of the algorithms
wasn’t able to have the same effect on the long-term domain of full musical pieces.

http://imtr.ircam.fr/imtr/CataRT
http://imtr.ircam.fr/imtr/CataRT

10 Chapter 2. State of the Art

FIGURE 2.3: EarGram interface (Bernardes, Guedes, and Pennycook,
2013). Source: http://imtr.ircam.fr/imtr/CataRT

In (2003), François Pachet proposed the system The Continuator, an application that
could emulate the style of a performance. He included in that software what he
called Elementary Markov Cosntraints (EMC), a Markov Model system that also in-
cluded concepts from constraint satisfaction.

Most these past approaches lacked real-time user interaction. In order to counter
that, in 2006 Diemo Schwarz (Schwarz et al., 2006) introduced CataRT, which in-
cluded what he named interactive timbre space. The corpus is mapped in a 2-dimension
space according to two user selected parameters. Given a maximum distance of tran-
sition, the sound sequence possibilities are controlled by the user’s mouse.

Bernardes, Guedes, and Pennycook (2013) combined the user interface of Schwarz
with Tristan Jehan’s Skeleton (Jehan, 2005) — a creative system that accounted for the
perceptual listening models of the human hearing system — to create EarGram, a
software designed for PureData which introduced new visualization features along
with clustering possibilities. It included four different playing modes: SpaceMap,
which resembles the interactive timbre space by Schwarz with the ability to control
the concatenation possibilities through mouse positioning; InfiniteLoop endlessly re-
combines a track with respect to its structural properties in a non-repeating way;
StuffMeter groups audio segments from different tracks to allow their manipulation
in real-time and assist mashup creation; soundscapeMap allows the creation of sound-
scapes through the combination of environment recordings and different real-time
controls.

Cárthach Ó Nuanáin (2017) introduced RhythmCAT, a VST Plug-In that uses a
Concatenative Synthesis approach for rhythm generation. Given a seed rhythmic
loop, the plug-in segments up the different individual instruments in the sequence
through host tempo information, extracts features (loudness, spectral centroid, spec-
tral flatness and MFCCs) from each of the seed units and then matches the individual
units to a user selected and previously analyzed corpus of units. The seed sequence

http://imtr.ircam.fr/imtr/CataRT

2.3. Music Information Retrieval 11

FIGURE 2.4: RhythmCAT interface. Source: (Ó Nuanáin, 2017)

is then recreated with the corpus units with respect to a controllable concatenation
cost, calculated by the weighted Euclidean Distance of the extracted features. The
interface also includes the 2-dimentional map of previous examples.

2.3 Music Information Retrieval

Music Information Retrieval is a multidisciplinary field concerned with discovering
meaningful information from audio sources through the extraction of features, in-
dexing of music and develop different search and retrieval schemes (Schedl, Gómez,
and Urbano, 2014). With the development of computational power, problems that
used to be computationally demanding, became viable to process even using per-
sonal computers. In (2002), Vinet, Herrera and Pachet initiated CUIDADO, a frame-
work that made available a large set of feature extraction implementations allowing
the utilization of these concepts in various applications.

The International Society for Music Information Retrieval Conference (ISMIR),
hosts an annual research challenge called MIREX (Music Information Retrieval Eval-
uation eXchange). The objective is to compare and evaluate the accuracy and effieciency
of different approaches to different tasks related to MIR, such as Audio Classifica-
tion, Audio Tempo Estimation, Melody Extraction, Speech Detection and Audio Fin-
gerprinting.

12 Chapter 2. State of the Art

MIR can be, simplistically, split up in the following subfields (Schedl, Gómez,
and Urbano, 2014) — see Table 2.1:

Feature Extraction The subfield concerned with the technical aspects of the creation
of automatic descriptors. Some typical features are time and frequency domain
representations, timbre, pitch content. As we raise the level of description abil-
ity, we can include perceptual models like MFCC and BFCCs — representa-
tions of the power spectrum of a sound filtered by psychoacoustic models that
aim to mimic human hearing — or even multi-pitch estimation, onset detection
and rhythmic properties.

Similarity The ability to find structure and the repetition/propagation of that struc-
ture on the same musical piece — self-similatiry — or to compute distance
between two different pieces.

Classification Extracted descriptors can be combined to retrieve high-level infor-
mation about the audio source.

This can seem like a field whose applications are very specific, however it is
definitely not the case, as it has very tangible applications in contemporary society,
and seem to only increase its relevance in the future as music is tending more and
more to a fully digital paradigm. This is a small list of applications that can benefit
from this field’s findings, although a lot more can be found in (Schedl, Gómez, and
Urbano, 2014):

Music Retrieval Intended to find music in large collections by a particular similar-
ity criterion. Audio fingerprinting is already very present in our daily lives
with applications like Shazam.

Music Recommendation Intended to help users find new music based on their own
music preferences. E.g. Last.fm, Pandora.

Music Playlist Generation Related to Music Recommendation, though it also com-
prises the idea of automatically mix a sequence of tracks with some sensibility
(Bernardes, Davies, and Guedes, 2017).

Music Transcription Translate the pitch or percussive content of an audio file into
annotations meaningful to music theory.

Music Production Assist the process of music creation. Classification/labelling of
sample/instrument databases; creation of new DSP based effects or the de-
velopment of tools that aid the automatic generation of musically coherent
content.

2.3. Music Information Retrieval 13

TABLE 2.1: Typical MIR Subfields and Tasks. Adaptated from
(Schedl, Gómez, and Urbano, 2014)

TABLE 2.2: Individual Task Definition for the different Drum Tran-
scription Modalities. Source: (Wu et al., 2018)

14 Chapter 2. State of the Art

2.3.1 Drum Transcription

The most relevant MIR subfield for this paper is Classification, particularly drum
classification or drum transcription. Equivalently to pitch estimation, which aims to
retrieve the notes present in a piece of audio, drum transcription aims to identify the
drum instrument that is being played.

Although it does not receive as much attention as pitch estimation, Drum Tran-
scription has been the subject of research since the early years of MIR and different
approaches have been proposed to solve the problem. It has recently reappeared as
one of MIREX challenges.

Even inside Drum Transcription, there is different problems — see Table 2.2. Our
main focus will be Drum Sound Classification, which deals with instrument classi-
fication of an isolated drum sound. Ramires (2017) presents a good overview of
this subject and the solutions available while also proposing a system that translates
vocalized percussion.

Drum Classification can be divided in 4 different approaches:

Segment and Classify Dividing the input sound into individual segments, usually
by onset detection, extracting features from each segment and draw conclu-
sions from those features to classify, usually through machine learning algo-
rithms such as Support Vector Machines (SVMs)

Separate and Detect The signal is separated into individual streams associated with
a target class and onsets are detected in each stream. The components can
be computed through Independent Component Analysis (ICA), Independent
Subspace Analysis (ISA) or Prior Subspace Analysis (PSA) (Bader, 2018)

Match and Adapt Relies on temporal or spectral templates of typical drum sounds.
The individual events are matched with the templates and then the templates
are iteratively adapted to the given signal (Yoshii, Goto, and Okuno, 2014)
(Pampalk, Herrera, and Goto, 2008)

HMM-based recognition Use a network of connected HMMs — a particular case
of Markov Models where the states are hidden — in the transcription in order
to locate sound onsets and recognize the content (Jouni and Anssi, 2010)

As every classification problem, one of the key definitions is the classes them-
selves — the different outputs possible by the algorithm. We are going to stick to the
three central elements of Western music drum kits: Kick, Snare and Hi-Hat — see
Figure 2.5.

Since we intend to create a music production tool with live applications, we must
be aware of computational restrictions of online applications.

For event detection, an High Frequency Content onset detector is used, as accord-
ing to (Brossier, 2006) it is the most accurate type of onset detector for percussion.

2.3. Music Information Retrieval 15

00

FIGURE 2.5: Illustration of typical drum sound events of (a) Hi-
Hat, (b) Snare Drum, and (c) Kick Drum, in time-domain signal in
black and the corresponding spectrogram representation, with darker
shades of gray representing higher energy. Source: (Wu et al., 2018)

16 Chapter 2. State of the Art

For the Drum Transcription task we will be using Live Drum Transcription or LDT,
an open-source Max/MSP object (Miron, Davies, and Gouyon, 2013). The object
works with audio signal as input — ideally a sequence of traditional drums: Kick,
Snares or Hi-hats — and outputs impulses out of each of the three channels corre-
sponding to each of the three drum instruments. In order to avoid false positives,
they implemented an Instance-Filtering method in order to create another layer of
sub-band complex onset detectors, each corresponding to the frequency bands as-
sociated to each drum sound. If no onset is detected in a certain sub-band, that
particular instance is excluded from the classifier. Energy in 23 bark bands, 23 bark
frequency cepstrum coefficients, spectral centroid and spectral rolloff were the se-
lected descriptors to feed the k-Nearest Neighbour Classifier, a classification pro-
cedure that assigns the the class of a certain input according to which one has the
majority among k-Nearest Neighbours from the input.

2.4 Conclusion

Our bibliographic revision was an important starting point to understand what we
could achieve with this project. This insight was key in the concept definition of our
project and what tools we would use. It became clear that Max/MSP and the Max
For Live extension was the best platform to create the plug-in. It had all the tools
needed: the capacity to operate live, the DSP possibilities, the compatibility with a
popular DAW — Ableton Live — and the front-end interface objects.

RhythmCAT — see Section 2.2 — was definetely a very big inspiration for our
work, although we weren’t interested in making a 2-dimensional iteractive space
like the ones presented in that section. Mostly we wanted to make a system as au-
tonomous as possible, with very little interaction and, ideally, no interface. We only
wanted to give the user the choice to choose its own database.

We struggled to find a reliable way to classify drums. We made some experiences
with MIR toolboxes — namely MIR toolbox for MATLAB — and pondered building
our own simple classifier in Max environment, until we found LDT — see Section
2.3.1 — and it became clear that this would be included in our plug-in implementa-
tion.

17

Chapter 3

Methodology

3.1 Conceptualization

It is important for us to state that this was never a closed project and it was proposed
by the author to the supervisor. Since the beginning we’ve been adapting our sys-
tem and objectives according to limitations, experiments, discussion and accidents.
This project started with a much more generalist approach, although it never fell of
track from the main idea: the proposal of a composition tool. The first ideas leaned
towards an harmonic generative tool that would recreate new melodic sequences
given a corpus of analyzed and labeled audio samples — similar to EarGram that we
mention in Section 2.2. After diving into the pitch detection state of the art and mak-
ing some experiments with available algorithms, we found the problem much more
complex than expected, particularly with non-isolated sound sources that were our
initial analysis object. We decided to narrow down our spectrum to a simpler field:
percussion generation.

We started doing experiences with concatenative synthesis since the very begin-
ning and applying stochastic processes to generate our outputs, but eventually we
decided it would be important to have some sort of analysis-synthesis system to
confer it some intelligence. We pondered the use of Machine Learning algorithms
to analyze databases of rhythms and translate that into Markov Models to focus on
the synthesis part. Eventually the challenges of creating the analysis system itself
absorbed the major part of the work and the variation algorithm ended up being the
result of some happy accidents.

It was also important that the program would result in a production tool with live
applications and particularly developed for Max For Live. There were some tempta-
tions to leave this platform and focus solely on Max/MSP, but we decided to stick to
the plan.

3.2 Objectives

The Objectives for the thesis are:

1. To explore the State of the Art of the fields related to our system

2. To learn the tools necessary for its development

3. To experiment new approaches to rhythmic generation

4. To create the system using the Max For Live extension

5. To test and evaluate our work

18 Chapter 3. Methodology

3.3 Process

We started this project with brainstorming reunions with the intention of defining
the specifications of what was a excessively ambitious initial idea. A scientific in-
troduction to the fields involved in these brainstorms helped direct our efforts to-
wards a more realistic objective. We also started experimenting with tools that we
would use to complete the project and learn them, particularly the main language
Max/MSP about which the author had no prior knowledge before this project, ex-
cept the use of complete Max For Live devices. These experiments were crucial, as
were the analysis of other Max For Live devices for the definition of the concept and
the early versions of the algorithm. Along started coming new ideas — they still
come everyday — and the whole development phase was based on this method of
experimentation and testing.

3.4 Task Planning

We will break down our work in the following individual tasks:

1. Make brainstorming reunions to define the project objectives.

2. Tool Study and Exploration.

3. Explore the fields of interest for the project. Write the Chapter regarding the
State of the Art.

4. Learn from scratch Max/MSP and achieve the level of proficiency necessary to
make the Plug-In.

5. Define the final concept.

6. Develop the System.

7. Build a reliable audio analyzing system that is capable of identifying units and
label them.

8. Build the synthesis process that aggregates those units into meaningful drum
phrases. Create a way to convert MIDI files into the system’s language.

9. Design a simple but effective interface with minimal controls.

10. Write the thesis.

11. Make user-based tests to evaluate the system performance.

3.4. Task Planning 19

FIGURE 3.1: Task Planning

21

Chapter 4

System Description

We will devote this chapter to the description of our system. The host program
of our application is the Digital Audio Workstation (DAW) Ableton Live 9 and the
application itself will be developed using the Max For Live extension, an application
that coordinates Ableton Live capabilities with the Max/MSP language.

4.1 Definition

Using the Max For Live extension, it is possible to create different kinds of devices
to make different kinds of operations in Ableton Live — see Figure 4.1 —, such as:

Audio Devices Plug-Ins that get involved in the Audio Signal Processing Chain,
like regular sound effects.

MIDI Devices Plug-Ins that get involved in the MIDI Note Processing Chain.

Instrument Devices Plug-Ins that synthesize sound with respect to MIDI input.

MIDI is a protocol introduced in the 1980s with the purpose of standardizing
the communication between electronic music devices. It carries an array of possible
controls for live applications and it also includes a file format with the same name
–– extension .mid.

Our Device is an Audio Device, meaning its input and output will be both audio
signals. The plug-in receives a drum loop and returns a reorganization of the indi-
vidual instruments into a new sequence and introduces algorithmic variations, de-
pendant on the user’s decisions. The communication with the user will be through
the Graphical User Interface tools included in the Max For Live library.

FIGURE 4.1: Diagram describing the different types of devices

22 Chapter 4. System Description

FIGURE 4.2: Ableton Live 9 interface

4.2 Tools

In this section we will make a brief reference to all the software and programming
languages required to create the Plug-In we propose.

4.2.1 Ableton Live

Ableton Live, in its core, like all major DAW, works like a traditional Mixer. Different
tracks that are treated as individual sound sources that get summed and end up as
the output of the Master Track. There are Audio Tracks and MIDI Tracks. MIDI
tracks transform MIDI notes into audio signals. Audio Tracks transform audio input
into an audio output.

Besides being the audio host of the Plug-In, it will be the synchronization Master
to our Slave Max/MSP application, meaning the definition of absolute time lengths
— or clock — will be entirely controlled by Ableton — see Figure 4.3. Max/MSP will
only work with relative time lengths. We will further describe the definition of our
units in 4.3.1.

FIGURE 4.3: Ableton’s Temporal Control. Here we can select the BPM
— beats per minute —, the time signature and track down the actual

arrangement position

4.2. Tools 23

FIGURE 4.4: MAX/MSP final patch

4.2.2 Max/MSP

MAX/MSP is a visual programming language directed towards multimedia appli-
cations. It will be our main environment. Data, which can either be numbers, lists,
signals or pulses — bangs —, flows through the patch chords — see Figure 4.4. Our
system is synchronized with Ableton and uses its clock to generate bang messages
to control the data flow — see 4.4 for an example.

We divided our plug-in back-end into three sections — see Figure 4.4 :

Audio Signal Section that deals with the audio signal flow: input, the mixer section
and the output.

Analysis Section that deals with the Analysis of the audio and the segmentation
process

Concatenative Synthesizer Section that makes the decisions in the concatenation
process and communicates with our sampler.

24 Chapter 4. System Description

FIGURE 4.5: Interface MAX/MSP patcher

4.2.3 Max For Live

Max For Live is the extension that allows the dialog between MAX/MSP and Ableton
Live. It has a series of generic controls available to create the GUI — Figure 4.17. We
will explain the controls in Section 4.5.

4.3. Implementation 25

4.3 Implementation

Throughout this section there will be references to Appendix A where we will in-
clude the most important patchers we made. These may not be illustrative for some-
one who is not familiar with Max/MSP.

4.3.1 Unit Definition

First, it is important to define time signature and bar — or measure in traditional
music composition (we will use the word bar as it is the electronic music community
denomination, although it may not be a universally accepted synonym to measure).
A bar is the total time length defined in the time signature.

FIGURE 4.6: Example of 5 bars of a music score in 4⁄4 signature

Figure 4.6 shows a music composition with 5 bars. In the beginning, just before
the first note, the time signature 4⁄4 is represented, meaning each bar has 4 beats and
the kind of notes that are included in that bar are ¼ notes, or, to put it simply, in each
bar there are 4 1⁄4 notes.

The bar gets represented as the space between two vertical lines, hence the name
bar. It got included in musical notation when music started having more regular
rhythms and it served as a visual queue to ease the reading process.

The 4⁄4 time signature is the most common time signature in popular music, hav-
ing entire genres like hip-hop, techno, house and many others almost entirely com-
posed with it.

The first samplers, drum-machines, synthesizers and sequencers included, at
least the 4⁄4, which further augmented its importance for popular culture, as the tools
that artists used had it hardwired in its system. To maintain the tradition, our Plug-
In also works solely with this time signature. Although it is possible to alter this
with some edition, we decided to keep it simple.

26 Chapter 4. System Description

FIGURE 4.7: Roland TR-909 Rhythm Composer, a landmark tool in
the genesis of house and techno music. Each of the 16 buttons at the
button refer to a 16th note or a step. Source: https://en.wikipedia.

org/wiki/Roland_TR-909

For electronic music, particularly dance music, which has the intention to main-
tain a steady and predictable rhythmic structure, the bar is the core of the structure.
Even when we “zoom out” of the bar temporal dimension and look into the whole
musical structure, every main section transition will happen in 4th multiples of the
bar.

In the same way, if we “zoom into” the bar, and section it into equally sized
segments, using the ratio 4, we will have meaningful units that have been staple in
electronic composition since its early days, widely known as steps — see Figure 4.7.
Of course, this relationship reaches a limit in terms of definition of meaningful units
because if we divide it too much our brain does not have the capacity to process
those small time segments.

Going back to the unit definition in our program, we will maintain the legacy
of the first drum machines and use the bar as our main repetition structure and the
sixteenth note as our smallest division. This list resumes our nomenclature:

Transient or Onset The absolute beginning of a new note/instrument. We will use
the terms interchangeably.

Step Smallest time unit defined and corresponds to the time length of a 16th note.

Bar Largest unit defined and corresponds to the entire length of a drum loop —
Figure 4.8.

Segment Smallest audio unit defined and corresponds to the audio content within
the length of a 16th note.

Phrase Audio content within the length of a bar.

Event - Segment that contains an audio onset — Figure 4.9.

Sample Largest group of Segments in between two consecutive events — Figure
4.13.

https://en.wikipedia.org/wiki/Roland_TR-909
https://en.wikipedia.org/wiki/Roland_TR-909

4.3. Implementation 27

FIGURE 4.8: Time domain visual representation of the first bar of a
drum break in Melvin Bliss – Synthetic Substitution in Ableton Live
environment. The different measurement limits are the vertical lines.
Yellow lines represent bar, red for quarter notes, green for eight notes
and blue for sixteenth notes. The brown circles underline transient

occurrences.

4.3.2 The Sampler: chucker~

A sampler in electronic music, is a device capable of extracting an audio portion of
a bigger audio file and play it back differently according to the users intention. In
this case, our sampler’s objective is to receive an audio signal and chop it into indi-
vidual segments. For that purpose we will use the chucker~, a MAX/MSP object that
given an audio input, a division measurement — 16 in our case — and a synchro-
nization signal — provided by our Master and Host Ableton Live, to translate our
units into absolute temporal lengths —- will divide the phrase into an equal number
of segments.

It operates with a bar of delay because it needs to fill its data buffer with audio
content. After the first bar, chucker~ is fully operational and can receive another
argument: a vector that maps the re-sequencing of the input segments into an output
drum phrase with the same length.

Like the first drum machines, this segmentation process is temporally precise,
meaning if we are trying to segment a real drum break recorded by a human be-
ing it is unlikely to respect this precise measurements —- observable in the third
step in Figure 4.8. In order to avoid that and to achieve proper results, we use the
Quantize function that Ableton Live includes. Analogous to quantization in an ADC
process, except this quantization occurs in the time domain instead of amplitude do-
main: each transient –– the absolute beginning of a new sound event, represented
by the brown circles in 4.8 –– is automatically assigned to its closest quantization
interval, in our case, the closest 16th note — see Figure 4.9. This “assignment” is pos-
sible through complex schemes of audio stretching that can conserve much of the
frequency content — Live itself has different stretching algorithms.

28 Chapter 4. System Description

FIGURE 4.9: The same drum break but now Quantized to every 16th

note. The yellow markers on top are called Warp Markers and denote
transients that were time shifted — in our nomenclature these are the

events of the drum break

We will refer to the input phrase as S(x) — see Figure 4.9 — and the output
phrase as Y(x) and x will refer to the Segment position. An obvious conservation
of the input phrase would be Y(x) = x. Say, we want to loop the first 4 segments
throughout the bar, to create a more representative example — 4.1 illustrates that.

TABLE 4.1: Mapping of a loop of the first 4 steps

x/Step 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Y(x) 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4

To communicate with chucker~ what is the desired output sequence, we send him
a list – the MAX/MSP version of a vector: a message/string composed of spaced
numbers — Patcher A.1. This list has 16 elements, in a range 1-16. The index of the
list states the step, while the actual value of each index corresponds to the segment
itself S(x) — see 4.9. Again, to produce the original phrase:

Y = [1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16]

We dropped the (x) in notation because the index itself states the step value, so
there’s no need for it. And to produce the reverse sequence it would be:

Y = [16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1]

We also need to send a Boolean list with 16 elements, stating witch steps are
supposed to be played and which ones are silent. Although chucker~ also accepts
the value -1 in this list to assign a certain segment to play backwards, we will not
include that feature in our device and will conserve forward playback direction at
all times. We will call this D message. To have a complete example, these would be
our chucker~ arguments if we wanted to reproduce only the first half of the original
phrase:

Y = [1 2 3 4 5 6 7 8 9 0 0 0 0 0 0 0]
D = [1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0]

4.3. Implementation 29

We put the zeros in the 2nd half of the argument, although its content is irrele-
vant because there are 0’s in D, meaning those steps will be silent. There will be 4
distinct chucker~ instances running at the same time in order to make it possible to
have polyphony: one chucker~ for each drum sound and one extra to run a variation
algorithm.

4.3.3 Segment Analysis

FIGURE 4.10: Spectral Representation of a drum solo excerpt from
Aerosmith - Walk This Way. Lighter colors represent a higher ampli-

tude in a particular frequency band.

In this section we will address the whole analysis process. We have created an info-
graph to illustrate it. It was designed using a drum solo excerpt from the song Walk
This Way by Aerosmith — see Figure 4.10 for spectral representation and Figure 4.11
for the info-graph. We also include an illustrative patcher of the process — Patcher
4.12.

Like mentioned in Subsection 2.3.1, we will be using the Live Drum Transcrip-
tion device created by Marcus Miron (2013) to classify events — Patcher A.2. We
sum both stereo channels to create a single mono signal for the analysis — although
we recognize the potential of doing individual analysis on each stereo signal, it dou-
bles the probability of system failures and we found LDT and aubioOnset~ crashing
Ableton with some frequency in the prototyping system. The device receives an in-
put audio signal and outputs bangs out of 3 outlets which state the occurrence of an
event in each of the 3 classes.

The lists with the segments that are associated with each class — events — are
stored in a collection called DrumAnalysis. Whenever Ableton enters Play Mode, the
analysis starts too. LDT is inconsistent and sometimes the output varies, and for that
reason, analysis will run until there are 4 consecutive bars that output the same event
list for each class. When this happens, the program enters Stability mode: analysis
stops and we process DrumAnalysis. We would like to make a continuous analysis
in order to improve the workflow of the user, but to avoid crashes, we made it this
way. It is possible to use the device without the Stability, although it won’t include
all its functionality.

LDT can sometimes output ghost events, particularly in the Hi-hat class. We run
an onset detector called aubioOnset~ (https://aubio.org/) in hfc mode — high fre-
quency content — as it is a very reliable onset detector and we also store a list of seg-
ments that include an onset — Events. We then match DrumEvents lists with Events
list and eliminate the ghost events in DrumEvents — segments that were transcribed
as a drum sound but weren’t detected by audioOnset — and store the remainder in
another collection called EventFiltered — Patcher A.3.

https://aubio.org/

30 Chapter 4. System Description

FIGURE 4.11: Diagram of the whole Analysis Process using the same
file as 4.10. Through this figure, we can see how the program creates

his database/drum kit from the input drum phrase.

4.3. Implementation 31

FIGURE 4.12: AnalysisSegm: Main patcher that deals with classifica-
tion of segments and sample selection

32 Chapter 4. System Description

In drum phrases, it is common to have multiple instruments being played at the
same time, and LDT can classify a segment as multiple instruments. Obviously, it is
beneficial to work with isolated drums if possible, so we created a patcher that tests
which events are only associated with a single class. In case our input drum bar
doesn’t include any isolated drums, we maintain the EventFiltered results — Patcher
A.4.

One of the problems with using chucker~ to segment the phrase is that it seg-
ments in fixed intervals, independently of the sound characteristics. As a conse-
quence it may happen to cut a Sample that lasts longer than the period of a segment
— see Figure 4.13 — and because LDT is mainly based on onset detection, the seg-
ments associated with drum sounds are only the ones that contain an onset. We also
made a patcher — Patcher A.5 — that corrects this by measuring a distance between
consecutive entries of the Events list. This way when we intend to play a sample, we
can play all the segments that are involved in it in sequence.

FIGURE 4.13: First bar of a drum break from Aerosmith - Walk This
Way to illustrate what can go wrong with fixed length segmentation.
Between the first 4 segments, only S1 contains an onset — is an event
—, although the drum lasts at least 3 more steps. We associate the
event with its length. In this case the length is 4 segments because the
next event is located in S5. So, the sample 1 includes the segments S1,

S2, S3, S4.

4.4 Concatenative Synthesizer

4.4.1 Main Sequence

Like stated before, we will be using 4 different chucker~ instances to manage each
of our concatenative voices. The first 3 chucker~ will be associated with the Main
Sequence, a single bar structure that will serve as the base loop over which we will
layer our variation algorithm.

We offer the possibility to reproduce MIDI files. We created a MATLAB script to
convert MIDI files into .txt files stored in the plug-in folder, that can be interpreted
by our system as collections — see Appendix B.1.

4.4. Concatenative Synthesizer 33

A MIDI file is composed by a series of MIDI notes. Each note has, among others,
the following descriptors:

Pitch Numeric value between 1-127. Encodes the value of the pitch associated with
the note — i.e. A4 is encoded as 69. In our case, because we are handling
percussive values only, this pitch value is only related to the association of
each note to a particular drum class, hence our need to define the global arrays
in B.1.1. The array values depend on the Drum Articulation established by the
creator of the MIDI file — see Figure B.1

Velocity Numeric value between 1-127. Encodes the velocity of that particular note.
We will not include the velocity functionality in this version, although there is
room for its inclusion as stated in Section 6.

Note On Relative value that states the temporal beginning of the particular note in
respect to its position according to the time signature. Since we will be using a
fixed 4⁄4 signature and the length of a bar, the extracted values are in the range
1-16.

Note Off Same as the above, except this one states the note’s ending.

We will store a .txt file for each drum class, e.g. KickSeq.txt: after reading the
MIDI file using MATLAB and MIDI, we will search for the occurrence of notes as-
sociated with the kick class, group them, extract the individual Note On values and
store them in a line of the file. This process happens simultaneously for the other
classes and we maintain the line number in every text file as an identifier of a partic-
ular MIDI file conversion — Patcher A.6.

4.4.2 Euclidean Rhythms

The other chucker~ is meant to be layered with the Main Sequence. In order to gen-
erate new notes we will have a random process running with the periodicity of one
bar. This process generates notes according to the Euclidean Rhythms.

Euclidean Rhythms are a family of rhythms computed through the Euclidean al-
gorithm — named after Euclides of Alexandria which described it in the 7th book
of his seminal work Elements — that has been used in mathematics for millenniums
to compute the greatest common divisor given two integers. It’s ability to generate
evenly spaced patterns has seen applications in string theory, computer science and
nuclear physics. This same algorithm can be used to elaborate a series of rhythmical
ostinatos that describe rhythmical patterns found in various traditional music cul-
tures all over the world. Their relationship to music was first discovered by Godfried
Toussaint and is described in (2005).

The formulation of the rhythmical sequences is based on the computer algorithm
invented by Eric Bjorklund (2003). He used a binary representation of the problem
which can also be used in rhythmical description. Each bit describes an equal time
interval, 1’s represent the occurrence of an event — the onset of a note - and 0’s rep-
resent the absence of events — a silence. A common and short way of representing
these binary sequences is E(m, k), with m being the length of that sequence and k the
number of events in it.

http://kenschutte.com/midi

34 Chapter 4. System Description

Let us work through the algorithm of a simple sequence E(10, 4):

1. We start by putting all the events and silences together:
[1 1 1 1 0 0 0 0 0 0 0]

2. Then we pair each 0 with a 1, working from left to right:
[1 0] [1 0] [1 0] [1 0] [0] [0]

3. We are left with two remaining 0’s — the remainder — so we will group them
with each [1 0] pair, again from left to right:
[1 0 0] [1 0 0] [1 0] [1 0]

4. Now, the remaining [1 0] pairs will be grouped with the [1 0 0] trios:
[1 0 0 1 0] [1 0 0 1 0]

5. The process ends when the remainder consists of a single set:
E(10,4) = [1 0 0 1 0 1 0 0 1 0]

Because of the algorithm’s left-to-right approach, we always generate sequences
that begin with an event. We can then include another variable — offset: o in E(m,k,o)
— which will rotate the whole sequence by an integer value. For example:

E(10,4,1) = [0 1 0 0 1 0 1 0 0 1].

A visual representation of this can be achieved using a regular polygon — see Fig-
ure 4.14. To generate these Euclidean sequences we used the Max abstraction 11eu-
clidean.

FIGURE 4.14: Geometric Representation of Euclidean Rhythms E(3,8)
(a) and E(5,8) (b). Each vertex of the polygon represents the onset of
each time division, the black vertexes represent the events and the

white ones the silences. Source: (Toussaint, 2005)

http://www.11olsen.de/code/max-objects/11euclidean
http://www.11olsen.de/code/max-objects/11euclidean

4.4. Concatenative Synthesizer 35

FIGURE 4.15: Patcher illustrating the whole concatenation process.

4.4.3 Concatenation Process

Since we are now working with samples that may contain more than a segment, we
need a new form of sequence representation, we will call it O(x), and its a binary
sequence that states the occurrence of events — not to be confused with D(x) that
states where there is reproduction of audio content and silence. All our values in
this subsection will be based in the analysis example in Figure 4.11.

Besides rhythmic variation we included another type of variation in our concate-
native synthesizer, that deals with unit selection. Given that we already know which
steps will include events, both in the Main Sequences and in the Euclidean Rhythm,
and represent that in the form of a binary sequence, we can now handle the sample
assignment. Our selection is simply aleatory. If we have multiple samples classified
as the same instrument, when we need to reproduce that particular instrument we
will randomly assign one of the classified drum events. Example: if want to repro-
duce the sequence of events of snares with the following binary representation and
use the unit decision variation, one alternative could be:

OSNARE = [0 0 1 0 0 1 0 0 0 1 0 0 1 0 0 0]
YSNARE = [0 0 5 0 0 13 0 0 0 13 0 0 5 0 0 0]

36 Chapter 4. System Description

FIGURE 4.16: Spectral representation of the mentioned Snare se-
quence. The upper spectrum is the sequence containing only the
events associated with the snare sounds. The lower spectrum con-
catenates the event with the remaining segment that is part of the

sample.

But since we now know that the samples associated with events 5 and 13 contain
more than one segment — two segments each — we have to correct the argument
messages in order to make chucker~ reproduce the whole sample lengths. See Figure
4.16 for an illustration of this.

YSNARE = [0 0 5 6 0 13 14 0 0 13 14 0 5 6 0 0]
DSNARE = [0 0 1 1 0 1 1 0 0 1 1 0 1 1 0 0]

Even though we use a single chucker~ for each instrument to achieve polyphony,
a single chucker~ is only capable of reproducing one audio stream. It could happen
that a particular sample would overlap with another, but our system doesn’t allow
it. We do so by prioritizing drum events over full sample playback, because with
percussion the most important part of the sample is always the onset — Patcher A.7.
Going back to our previous sequence as an example. If we have an extra snare event
on step 2 and it gets assigned the sample 13 from unit selection which has a sample
length of 2 steps and overlaps with a posterior event — on step 3 — we cut its length
to the maximum possible length that prevents overlapping:

OSNARE = [0 1 1 0 0 1 0 0 0 1 0 0 1 0 0 0]
YSNARE = [0 5 5 6 0 13 14 0 0 13 14 0 5 6 0 0]

DSNARE = [0 1 1 1 0 1 1 0 0 1 1 0 1 1 0 0]

4.5. Interface 37

4.5 Interface

FIGURE 4.17: Max For Live integrated interface in Ableton environ-
ment.

In Figure 4.17 we present our front-end of our software. We will explain the function
of each control:

Force Analysis Force the analysis stoppage and begin the concatenation process
with the current analysis parameters.

Reset Reset the analysis process from the beginning. Useful in case the plug-in
made a wring analysis or if the user wants to change the input drum phrase.

Original Sequence / MIDI files Button that toggles the Main Sequence option.

Pattern Number Select which MIDI file should be reproduced in the output. The
knob automatically sets its range according to the number of converted MIDI
files in the saved text files.

No Variation / Euclidean Algorithm Button that toggles the Variation option — see
equation below.

Density Minimum value of events in the Euclidean algorithm.

Variation Range of possible events in the Euclidean algorithm.

Randomizer Allow the assignment of unfiltered events in the Variation.

Crossfader Control the crossfader amount in between segments.

Legacy / Prefade / Postfade Assign the crossfade mode of all chucker~ objects.

E(m, k, o) where, m = Density + Rnd

Rnd ∈ [0, Variation]

38 Chapter 4. System Description

4.6 Conclusion

In this section, we presented the System implementation. Throughout its develop-
ment, there were many features included and excluded. In the end we decided to
maintain only what was reliable and what sounded musical.

Our inability to find a drum classifier in the beginning started steering our plug-
in in a purely synthesis-based application, which wasn’t the primary goal. The in-
ability to properly classify segments would limit our work, and we would have to,
either make an entirely aleatory rhythmic generator, give much more importance to
the user and the interface or design our own classifier. Although we feel like those
could also have been interesting implementations, they were not along the lines of
our plans — some unfinished prototypes before the classification was included were
already sounding interesting.

Accidentally, we started working with a subset of the Euclidean Rhythms, and
started applying that particular case to unclassified rhythms phrases When we started
investigating into rhythm generation algorithms, Euclidean Rhythms came up and
we discovered this relationship with our initial sequences. Besides its inherent mu-
sicality, that was a reason why we decided including Euclidean Rhythms in the vari-
ation algorithm,.

The MIDI file conversion was also another adaptation of a different idea. We
wanted to create a HMM for rhythm generation through Machine Learning analysis
of a database of MIDI files. This experiment mostly failed, but we already had the
MATLAB script made to translate the MIDI files, so we decided to include it too.

Finally, our objective to have a non-existent interface didn’t seem like a very
good idea given the particularities of our system, of the chucker~ object and the need
to adapt the crossfader section to different drum loops. We didn’t want to make it
too complex either so a solution in the middle of the way — a reasonable amount of
automation and control — seemed like the best idea.

39

Chapter 5

Tests and Evaluation

In this chapter we will explain how we proceeded to test the Plug-In performance.
Our tests were user-based. Various users with different backgrounds and objectives
experimented the Plug-in and then submitted a response in a Google Forms with a
series of questions.

5.1 Testing Method

One of the main problems this application imposed was to find testing method that
would retrieve meaningful results. Since we designed it as a production tool, it made
sense to have it tested by people who had contact with Ableton Live, as it is the only
DAW capable of running it. This somehow constrained the conditions in which our
tests could be done. Despite the fact that Ableton Live is a very popular application
among musicians, the use of the Max for Live extension is not so popular and part
of our testers had no contact with it. Plus, our software was developed in 32-bit ar-
chitecture, meaning both MAX/MSP and Ableton versions in the testing computer
had to be installed accordingly, which really narrowed down our possibilities. An-
other problem was the impracticability of the MATLAB script to generate the MIDI
sequences for those who weren’t used to MATLAB nor owned the software.

Ultimately, we found that taking the tool to the testers in a computer already set
up properly was the best idea. This meant various things:

• We could personally explain how the system worked. This meant the user had
some understanding of the tool but also meant that it became hard to evaluate
the interface accessibility.

• The user was unaware of the work involved in the MIDI file conversion. Even
though the script is not hard to understand, it does take some time to use the
MATLAB script to convert the MIDI files. It was explained to the users, but
they had already previously converted files to make their experience focused
on the plug-in.

• We could select a series of examples that worked well and a series of examples
that wouldn’t work with the software, although we also gave the opportunity
to the user to experiment his own choices.

• It allowed us to talk with the users about the benefits and the disadvantages of
the Plug-In and discuss some future improvements.

.

40 Chapter 5. Tests and Evaluation

5.2 Questions

The form was created with the Google Forms platform and the questions were writ-
ten in Portuguese, as most the testers dominated the language better than English
— see Figure 5.1. The translation of the questions to English follows:

1. On a scale 1-5, classify the utility of this tool in a music production context:

2. On a scale 1-5, classify the utility of this tool as a percussive accompaniment
for to practice an instrument:

3. On a scale 1-5, classify the usability of the tool:

4. On a scale 1-5, classify the quality of the variation generator:

5. What other functionality would you like to see in the plug-in?

6. What is your relationship with music:

5.3 Answers

We tested 10 different individuals with different relations with music. All of them
had experience with interacting with music, not just listening, but either played
instruments, broadcasted radio shows, played records as DJs or were actually in-
volved in music production/composition. The results were fairly positive in most
questions. The variation generator received a lot of good comments as sounding
"genuine" or "rhythmically coherent" — see Figures 5.2 and 5.3.

There was a couple negative commentaries regarding unit segmentation, which
we had previously diagnosed. That is mostly a problem of chucker~ and its fixed
segmentation grid, even with the time-stretching Quantization — see Figure 4.3.2.
The crossfader options are too limited and even with some tweaks on the crossfader
section, it never really sounds as good as a regular sampler with an ADSR (Attack-
Decay-Sustain-Release) type of envelope.

Another comment we received regarded the length of the loops. Since we only
had a 1 bar loop running, it could be a good addition to be able to use longer drum
loops so it wouldn’t be so repetitive. That is actually just a problem of our imple-
mentation, and again using chucker~ as our main engines complicates a lot of these
ideas, even though we also considered them.

Finally, another criticism we received regarded the inability to pause the program
and maintain the analysis. That was also a problem of our implementation, but
possibly this one could be avoided. It was something we implemented from the very
beginning, as we invested quite some time in the analysis section, and it became
convenient to restart the analysis by pausing and playing in the debugging stage.
Eventually, it became a central part of the program and would take a lot of time
to fix, so we just decided to keep it that way and focus on other, more urgent and
fracturing problems.

5.3. Answers 41

FIGURE 5.1: Google Forms used to evaluate the Plug-In.

42 Chapter 5. Tests and Evaluation

FIGURE 5.2: Answer charts for questions 1, 2 and 3.

5.3. Answers 43

FIGURE 5.3: Answers charts for questions 4 and 6. Written answers
to question 5 in Portuguese.

45

Chapter 6

Conclusions and Future Work

This thesis aimed to create a functional Plug-In that would be useful in the elec-
tronic music creation context. We made a state of the art on algorithmic composition,
concatenative synthesizers and MIR research. We took inspiration from the biblio-
graphic revision and, from that, defined an idea of what we could achieve and what
concepts we could apply to create a system. After experimenting with melodic ma-
terial, we decided to create a concatenative synthesizer focused on rhythmic-centric
loop recreation. The environment chosen was the Max/MSP programming language
for the back-end development, and the extension Max For Live for the DAW Ableton
Live as, respectively, user-interface and host program. Our system is able to receive
a drum phrase — using traditional ocidental drum instruments: Kick, Snare, Hi-hat
—, segment that drum phrase into individual samples and resequence those drum
samples into new drum phrases. These new drum phrases can be selected from the
conversion of MIDI files, for which we provide a MATLAB script. The Plug-In in-
cludes a functional variation algorithm that applies euclidean geometry concepts to,
additively, modify the drum phrases.

Various users were asked to experiment the Plug-In, evaluate it and comment it,
which resulted in positive feedback. Besides having a few fixed questions for every
user, we also had some productive dialogs regarding the utility and the future of the
plug-in. Some of them we will address in the next Section.

We feel we have achieved our initial goal, even though we were not able to im-
plement some of the functions we intended. Maintaining an audio source as the
main creation tool was always a priority, even when it became clear that using just
the MIDI protocol seemed like an easier and much more practical implementation.
It lacked our initial objective: the ability to automatically create the database and
make a system that would work with “anything” the user wanted — of course, we
have restricted it along the way and our database became limited to the buffer size
of our sampler object. Still, the system is competent within its limitations. Possibly
with some future developments we can see it being used in a wider palette.

One of the main objectives that we could not address, was the creation a rhyth-
mic generator through database analysis. Some attempts were made at creating an
Hidden Markov Model. We believe we could have created a solution like that if we
did not propose to create this system and focused on that aspect solely.

Still, we created a system that is unique. We made this sort of implementation
to work in live applications, but this kind of analysis would make sense in a lot of
systems. Ableton Live, for example, when it automatically segments a drum phrase
it does not label each segment like our program does. This can be time-saving for
people who rely on this technology on an everyday basis.

46 Chapter 6. Conclusions and Future Work

Ultimately, it sounds musical. And the individual samples sound good together.
The database is created by the input drum phrase and, most the time, these drum
phrases were recorded in a properly tuned drum kit and played by a professional
drummer. Even if we change the sample sequence, they come from the same source.
That is also a reason why this kind of implementation works.

6.1 Future Work

We recognize that a lot of what was done in Max/MSP is not the best way to im-
plement that particular solution. Like mentioned before, this thesis also involved
learning from scratch the programming language, and that process overlapped with
the creation of the system. In this section we will address some possible improve-
ments to the plug-in. A lot of them weren’t added for lack of time and some of them
just wouldn’t fit the plug-in in its current state, but we’re open to reformulate some
of its features:

chucker~ Our main sampler started being used as a prototyping tool, but soon it
became central to the system as it was so simple to understand and use and
our understanding of Max/MSP was very limited. During the course of the
development stage, we started realizing all its flaws and how we were lim-
ited by it, or, at least, how it made the implementation of new ideas way more
complicated than they should. There was the fixed length segmentation, that
we mentioned many times throughout this thesis, that would be a permanent
problem given the current state of the object. So we would definitely rethink
the segmentation department. This also means opening up the horizons for
expressive simulation, velocity variation, unlimited bar length, multiple en-
velope modes, different time signatures and all other possibilities that most
sequencers already contain.

MATLAB script It is very simple and can be definitely done in JavaScript, which
MAX/MSP supports, meaning everything could be done in the Max For Live
interface. It was done in MATLAB because this is the language which the
author is most proficient.

Classification We have used the LDT classifier, which works good enough for what
we wanted to achieve here, but if it was possible to have even more classes and
more accuracy, we could widen the palette of drum phrases the system could
work with.

Offline MIDI device Taking the ideas implemented here, we could implement a
similar MIDI device that segments audio and automatically labels each seg-
ment.

Velocity MIDI notes also store velocity information and LDT, besides drum classi-
fication, also outputs velocity estimation in every event. We did not include
velocity in this program as chucker~ had no ability to easily handle amplitude.
We considered creating a volume envelope sequencer, but we didn’t imple-
ment it.

6.1. Future Work 47

Rhythm Generation Although we have created a plug-in that is able to create rhyth-
mic variation, we do not consider it to be generative. There are many database-
oriented Machine Learning approaches to rhythmic generation that would make
sense to include in a system of this kind, like analyzing a database of MIDI files
from a genre and create an generate new drum phrases of that genre, or analyz-
ing different drum solos from a particular drummer and create an automatic
improvisation tool that mimics his style.

Melodic Content As we have mentioned before, our first objective was to work
with melodic content. We doubt a system similar to this would be suitable
for melodic content without being extremely limited, given the complexity of
the classification, but another system, with all the experience acquired in the
development of this one may be a possibility.

49

Bibliography

Anders, Torsten and Eduardo R. Miranda (2011). “Constraint programming sys-
tems for modeling music theories and composition”. In: ACM Computing Surveys
43.4, pp. 1–38. ISSN: 03600300. DOI: 10.1145/1978802.1978809. arXiv: 9808040
[quant-ph]. URL: http://dl.acm.org/citation.cfm?doid=1978802.1978809.

Ariza, Christopher (2005). “Navigating the landscape of Computer Aided Algorith-
mic Composition Systems: a definition , seven descriptors , and a lexicon of sys-
tems and research”. In: Proc. Int. Computer Music Conf.

Bader, Rolf (2018). Springer Handbook of Systematic Musicology.

Benson, Dave (2006). Music: A Mathematical Offering. Cambridge University Press.
DOI: 10.1017/CBO9780511811722.

Bernardes, Gilberto, Matthew E. P. Davies, and Carlos Guedes (2017). “A Perceptually-
Motivated Harmonic Compatibility Method for Music Mixing”. In: Proceedings of
the International Symposium on CMMR, pp. 104–115.

Bernardes, Gilberto, Carlos Guedes, and Bruce Pennycook (2013). “EarGram : An
Application for Interactive Exploration of Concatenative Sound Synthesis in Pure
Data EarGram : an Application for Interactive Exploration of Concatenative Sound
Synthesis in Pure Data”. In: March 2016. DOI: 10.1007/978-3-642-41248-6.

Bjorklund, E (2003). “The theory of rep-rate pattern generation in the SNS timing
system”. In:

Briot, Jean-Pierre, Gaëtan Hadjeres, and François Pachet (2017). “Deep Learning
Techniques for Music Generation - A Survey”. In: arXiv: 1709.01620. URL: http:
//arxiv.org/abs/1709.01620.

Brossier, Paul M (2006). “Automatic Annotation of Musical Audio for Interactive
Applications”. In: August.

Cœuroy, André (1928). Panorama of Contemporary Music.

Di Scipio, Agostino (2006). “Formalization and Intuition in Analogique A et B”. In:
Definitive Proceedings of the “International Symposium Iannis Xenakis" May 2005.

Edwards, Michael (2011). “Algorithmic Composition: Computational Thinking in
Music”. In: Commun. ACM 54.7, pp. 58–67. ISSN: 0001-0782. DOI: 10.1145/1965724.
1965742. URL: http://doi.acm.org/10.1145/1965724.1965742.

Fernández, Jose David and Francisco Vico (2013). “AI Methods in Algorithmic Com-
position: A Comprehensive Survey Jose”. In: 33.3, pp. 973–982. ISSN: 10769757.
DOI: 10.1613/jair.3908. arXiv: 1402.0585.

Gibson, Benoit and Markis Solomos (2013). “Research on the First Musique Concrète
: The Case of Xenakis ’ s First Electroacoustic Pieces Benoît Gibson 1 . Research
on Xenakis ’ s musique concrète pieces”. In: June, pp. 1–9.

http://dx.doi.org/10.1145/1978802.1978809
http://arxiv.org/abs/9808040
http://arxiv.org/abs/9808040
http://dl.acm.org/citation.cfm?doid=1978802.1978809
http://dx.doi.org/10.1017/CBO9780511811722
http://dx.doi.org/10.1007/978-3-642-41248-6
http://arxiv.org/abs/1709.01620
http://arxiv.org/abs/1709.01620
http://arxiv.org/abs/1709.01620
http://dx.doi.org/10.1145/1965724.1965742
http://dx.doi.org/10.1145/1965724.1965742
http://doi.acm.org/10.1145/1965724.1965742
http://dx.doi.org/10.1613/jair.3908
http://arxiv.org/abs/1402.0585

50 BIBLIOGRAPHY

Harley, James (2004). Xenakis: His Life in Music.

Hiller, Lejaren (1981). “Composing with computers: A progress report”. In: Computer
Music Journal 5.4, pp. 7–21.

Hodgkinson, Tim (1987). “An interview with Pierre Schaeffer–pioneer of Musique
Concrète”. In: ReR Quarterly 2.1.

Hunt, A. J. and A. W. Black (1996). “Unit selection in a concatenative speech synthe-
sis system using a large speech database”. In: 1996 IEEE International Conference
on Acoustics, Speech, and Signal Processing Conference Proceedings. Vol. 1, 373–376
vol. 1. DOI: 10.1109/ICASSP.1996.541110.

Iannis Xennakis (1963). Formalized Music: Thought and Mathematics in Composition.

Jehan, Tristan (2005). “Creating Music by Listening”. PhD thesis. MIT.

Jouni, P. and K. Anssi (2010). “Drum Sound Detection in Polyphonic Music with Hid-
den Markov Models”. In: EURASIP Journal on Audio, Speech, and Music Processing
2009. URL: http://www.hindawi.com/journals/asmp/2009/497292.

Mccormack, Jon (1996). “Grammar Based Music Composition”. In: Complexity Inter-
national.

Miron, Marius, Matthew E.P. Davies, and Fabien Gouyon (2013). “An open-source
drum transcription system for Pure Data and Max MSP”. In: ICASSP, IEEE Inter-
national Conference on Acoustics, Speech and Signal Processing - Proceedings January
2016, pp. 221–225. ISSN: 15206149. DOI: 10.1109/ICASSP.2013.6637641.

Morley, Iain (2003). “The Evolutionary Origins and Archaeology of Music”. In: Cam-
bridge University 2003.October 2003, p. 265. ISSN: 1749-9194.

Nierhaus, Gerhard (2009). Algorithmic Composition: Paradigms of Automated Music Gen-
eration.

Ó Nuanáin, Cartach (2017). “Connecting Time and Timbre : Computational Methods
for Generative Rhythmic Loops in Symbolic and Signal Domains”. PhD thesis.
UPF.

Pachet, Franois (2003). “The Continuator: Musical Interaction With Style”. In: Journal
of New Music Research 32.3, pp. 333–341. ISSN: 0929-8215. DOI: 10.1076/jnmr.32.
3.333.16861. URL: http://www.tandfonline.com/doi/abs/10.1076/jnmr.32.
3.333.16861.

Pampalk, Elias, Perfecto Herrera, and Masataka Goto (2008). “Computational mod-
els of similarity for drum samples”. In: IEEE Transactions on Audio, Speech and
Language Processing 16.2, pp. 408–423. ISSN: 15587916. DOI: 10.1109/TASL.2007.
910783.

Papadopoulos, George and Geraint Wiggins (1999). “A Genetic Algorithm for the
Generation of Jazz Melodies”. In: June 2000.

Ramires, António (2017). “Automatic transcription of vocalized percussion”. Master
Thesis. Universidade do Porto. URL: https://hdl.handle.net/10216/105309.

Rourke, Michelle O (2014). “The Ontology of Generative Music Listening”. In: Novem-
ber.

http://dx.doi.org/10.1109/ICASSP.1996.541110
http://www.hindawi.com/journals/asmp/2009/497292
http://dx.doi.org/10.1109/ICASSP.2013.6637641
http://dx.doi.org/10.1076/jnmr.32.3.333.16861
http://dx.doi.org/10.1076/jnmr.32.3.333.16861
http://www.tandfonline.com/doi/abs/10.1076/jnmr.32.3.333.16861
http://www.tandfonline.com/doi/abs/10.1076/jnmr.32.3.333.16861
http://dx.doi.org/10.1109/TASL.2007.910783
http://dx.doi.org/10.1109/TASL.2007.910783
https://hdl.handle.net/10216/105309

BIBLIOGRAPHY 51

Sandred, Örjan, Mikael Laurson, and Mika Kuuskankare (2009). “Revisiting the Il-
liac Suite—a rule-based approach to stochastic processes”. In: Sonic Ideas/Ideas
Sonicas, pp. 1–8. URL: http://www.sandred.com/texts/Revisiting{_}the{_
}Illiac{_}Suite.pdf.

Schedl, Markus, Emilia Gómez, and Julián Urbano (2014). Music Information Re-
trieval: Recent Developments and Applications. Vol. 8. 4-5, pp. 263–418. ISBN: 9781601988072.
DOI: 10.1561/1500000045. URL: http://www.nowpublishers.com/articles/
foundations-and-trends-in-information-retrieval/INR-045.

Schwarz, Diemo (2000). “A System for Data-Driven Concatenative Sound Synthe-
sis”. In: Proceedings of the COST G-6 Conference on Digital Audio Effects (DAFX-00)
September, pp. 97–102. ISSN: 0929-8215. DOI: 10.1080/09298210600696691.

Schwarz, Diemo et al. (2006). “Real-Time Corpus-Based Concatenative Synthesis
with CataRT”. In: 9th International Conference on Digital Audio Effects (DAFx). cote
interne IRCAM: Schwarz06c. Montreal, Canada, pp. 279–282. URL: https://hal.
archives-ouvertes.fr/hal-01161358.

Toussaint, Godfried T et al. (2005). “The Euclidean algorithm generates traditional
musical rhythms”. In: Proceedings of BRIDGES: Mathematical Connections in Art,
Music and Science, pp. 47–56.

Vinet, Hugues, Perfecto Herrera, and François Pachet (2002). “The CUIDADO Project”.
In: 3rd International Society for Music Information Retrieval (ISMIR) Conference, pp. 197–
203.

Wu, Chih Wei et al. (2018). “A Review of Automatic Drum Transcription”. In: IEEE/ACM
Transactions on Audio Speech and Language Processing 26.9, pp. 1457–1483. ISSN:
23299290. DOI: 10.1109/TASLP.2018.2830113.

Xenakis, Iannis (1992). Formalized music : thought and mathematics in composition / Ian-
nis Xenakis. English. Rev. ed. Pendragon Press Stuyvesant, NY, xiv, 387 p. : ISBN:
0945193246 1576470792.

Yoshii, Kazuyoshi, Masataka Goto, and Hiroshi Okuno (2014). “Drum Sound Recog-
nition for Polyphonic Audio Signals by Adaptation and Matching of Spectro-
gram Templates With Harmonic Structure Suppression”. In: Journal of Power Sources
256.1, pp. 470–478. ISSN: 03787753. DOI: 10.1016/j.jpowsour.2013.12.100.

Zils, A. and F Pachet (2001). “Musical Mosaicing”. In: Proceedings of the COST G-6
Conference on Digital Audio Effects (DaFx-01), pp. 39–44.

http://www.sandred.com/texts/Revisiting{_}the{_}Illiac{_}Suite.pdf
http://www.sandred.com/texts/Revisiting{_}the{_}Illiac{_}Suite.pdf
http://dx.doi.org/10.1561/1500000045
http://www.nowpublishers.com/articles/foundations-and-trends-in-information-retrieval/INR-045
http://www.nowpublishers.com/articles/foundations-and-trends-in-information-retrieval/INR-045
http://dx.doi.org/10.1080/09298210600696691
https://hal.archives-ouvertes.fr/hal-01161358
https://hal.archives-ouvertes.fr/hal-01161358
http://dx.doi.org/10.1109/TASLP.2018.2830113
http://dx.doi.org/10.1016/j.jpowsour.2013.12.100

53

Appendix A

Max/MSP Patchers

A.1 Chucker Arguments

FIGURE A.1: DrumChuckers: Data flow from each chucker~ argu-
ments to audio outputs

54 Appendix A. Max/MSP Patchers

A.2 Analysis

FIGURE A.2: LDT kNN: Conversion of audio signal into individual
bangs associated with instrument classes. The system is described in

(Miron, Davies, and Gouyon, 2013).

A.3 Synthesis

FIGURE A.6: loadfile: Load MIDI files into individual messages

A.3. Synthesis 55

FIGURE A.3: FilterOutGhost: Elimination of ghost events

56 Appendix A. Max/MSP Patchers

FIGURE A.4: FindIsolated: Test which segments have a single instru-
ment playing

A.3. Synthesis 57

FIGURE A.5: findDrumLength: Determine the length of each sample

58 Appendix A. Max/MSP Patchers

FIGURE A.7: LengthCorrection: Correct the sample length in the final
sequence

59

Appendix B

Sequence Database Creation

B.1 Matlab Scripts

B.1.1 main.m

1 % READING MIDI FILES
2 %
3 % Starting Folder: C:\Users\Francisco Monteiro\Documents\TESE
4 % Set MIDI Files Folder
5

6 folder = '70 s Drummer MIDI Files\Tight Kit\01 Funk\01 Midtime 107BPM';
7

8 % Create Array of file names
9

10 ReadFiles = dir(folder);
11 folder_names=struct2table(ReadFiles);
12 file_list = strcat(folder, '\', ...

string(table2array(folder_names(3:end,1))));
13

14

15 %% MIDI MAPPING // Define Global Variables
16 %
17 % MIDI Notes associated to a each instrument class
18 % Current Midi mapping set to: Native Instruments 70's Drummer ...

TIGHT KIT
19 %
20

21 global Kick_Array Snare_Array Hihat_Array Misc_Array txtKick ...
txtSnare txtHihat txtMisc

22 Kick_Array = [36 60];
23 Snare_Array = [81 33 88 84 86 40 39 37 62 63 64 61 101];
24 Hihat_Array = [87 65 86 92 90 42 97 94 68 44 80 76 77 78 79 80 46];
25 Misc_Array = (1:200);
26 Misc_Array = setdiff(Misc_Array, [Kick_Array Snare_Array ...

Hihat_Array]);
27

28 % Define output text files
29

30 txtKick = 'C:\Users\Francisco Monteiro\Documents\Ableton\User ...
Library\Presets\Audio Effects\Max Audio ...
Effect\Tese\EXP1\KickSeq.txt';

31 txtSnare = 'C:\Users\Francisco Monteiro\Documents\Ableton\User ...
Library\Presets\Audio Effects\Max Audio ...
Effect\Tese\EXP1\SnareSeq.txt';

32 txtHihat = 'C:\Users\Francisco Monteiro\Documents\Ableton\User ...
Library\Presets\Audio Effects\Max Audio ...
Effect\Tese\EXP1\HihatSeq.txt';

60 Appendix B. Sequence Database Creation

33 txtMisc = 'C:\Users\Francisco Monteiro\Documents\Ableton\User ...
Library\Presets\Audio Effects\Max Audio ...
Effect\Tese\EXP1\MiscSeq.txt';

34

35

36 %% Loop through the MIDI Files and write them to individual text files
37

38 numL = LineCount(txtKick);
39 for i=1:length(file_list)
40 ExtractDrum(file_list(i), numL);
41 numL=numL+1;
42 end
43

44 %% Clear
45

46 clear all;

B.1.2 ExtractDrum.m

1 function ExtractDrum(FileName, NumL)
2

3 % Extracting MIDI information from a .mid file and convert it to ...
text format

4

5 global Kick_Array Snare_Array Hihat_Array Misc_Array txtKick ...
txtSnare txtHihat txtMisc

6

7 midi = readmidi(FileName); % Read MIDI information
8 Notes = midiInfo(midi , 0); % Create an array of MIDI notes
9 Notes(:,5) = round(Notes(:,5) * 8); % Quantization

10 Notes16 = Notes(Notes(:, 5) < 16, :); % Extract only 1st Bar
11

12 Kick_Midi = Notes(ismember(Notes16(:,3), Kick_Array), :); % Find ...
the Kicks of the Midi File

13 Snare_Midi = Notes(ismember(Notes16(:,3), Snare_Array), :); % Find ...
the Snares of the Midi File

14 Hihat_Midi = Notes(ismember(Notes16(:,3), Hihat_Array), :); % Find ...
the Hihats of the Midi File

15 Misc_Midi = Notes(ismember(Notes16(:,3), Misc_Array), :); % Find ...
the Miscellanious of the Midi File

16

17 % Correct output in case the file doesn't include one of the classes
18 if(¬isempty(Kick_Midi)) Kick_Bin = Kick_Midi(:,5) +1; else ...

Kick_Bin = 0; end
19 if(¬isempty(Snare_Midi)) Snare_Bin = Snare_Midi(:,5)+1; else ...

Snare_Bin = 0; end
20 if(¬isempty(Hihat_Midi)) Hihat_Bin = Hihat_Midi(:,5)+1; else ...

Hihat_Bin = 0; end
21 if(¬isempty(Misc_Midi)) Misc_Bin = Misc_Midi(:,5)+1; else ...

Misc_Bin = 0; end
22

23 %Write a Line in the respective output text file
24 WriteLine(txtKick, Kick_Bin, NumL);
25 WriteLine(txtSnare, Snare_Bin, NumL);
26 WriteLine(txtHihat, Hihat_Bin, NumL);
27 WriteLine(txtMisc, Misc_Bin, NumL);
28

29 end

B.1. Matlab Scripts 61

B.1.3 WriteLine.m

1 function file = WriteLine (filename, seq, NumL)
2

3 % Write a line in text file
4

5 fileid=fopen(filename,'a');
6 fprintf(fileid, '%i, ', NumL);
7 fprintf(fileid, '%1d ', seq);
8 fprintf(fileid, ';\n');
9 fclose(fileid);

10

11 end

B.1.4 LineCount.m

1 function numLines = LineCount(filename)
2

3 % Count number of lines in a text file
4

5 if(¬isfile(filename)) numLines=1;
6 else
7 fid = fopen(filename, 'rb');
8 % Get file size.
9 fseek(fid, 0, 'eof');

10 fileSize = ftell(fid);
11 frewind(fid);
12 % Read the whole file.
13 data = fread(fid, fileSize, 'uint8');
14 % Count number of line-feeds and increase by one.
15 numLines = sum(data == 10) + 1;
16 fclose(fid);
17

18 end

62 Appendix B. Sequence Database Creation

B.2 Drum Articulation

TABLE B.1: Drum Articulation Example. This one belongs to
Native Instrument’s Abbey Road 70’s Drummer KOMPLETE in-
strument. Source: Manufacturer’s English Manual available in:
https://www.native-instruments.com/en/products/komplete/

drums/abbey-road-70s-drummer/

https://www.native-instruments.com/en/products/komplete/drums/abbey-road-70s-drummer/
https://www.native-instruments.com/en/products/komplete/drums/abbey-road-70s-drummer/

	Declaration of Authorship
	Abstract
	Acknowledgements
	Introduction
	Context
	Goals
	Motivation
	Structure

	State of the Art
	Automatic Composition
	Algorithmic Composition
	Computer-Aided Algorithmic Composition

	Concatenative Synthesis
	Music Information Retrieval
	Drum Transcription

	Conclusion

	Methodology
	Conceptualization
	Objectives
	Process
	Task Planning

	System Description
	Definition
	Tools
	Ableton Live
	Max/MSP
	Max For Live

	Implementation
	Unit Definition
	The Sampler: chucker~
	Segment Analysis

	Concatenative Synthesizer
	Main Sequence
	Euclidean Rhythms
	Concatenation Process

	Interface
	Conclusion

	Tests and Evaluation
	Testing Method
	Questions
	Answers

	Conclusions and Future Work
	Future Work

	Bibliography
	Max/MSP Patchers
	Chucker Arguments
	Analysis
	Synthesis

	Sequence Database Creation
	Matlab Scripts
	main.m
	ExtractDrum.m
	WriteLine.m
	LineCount.m

	Drum Articulation

