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Abstract

Classical cryptographic systems, such as RSA and ElGamal, have been found to be vulnerable in the

presence of a sufficiently powerful quantum computer. In light of this discovery, the scientific community

shifted its attention to the design and study of quantum-immune alternatives. Lattice-based systems are

one type of cryptosystem that was proved to be resilient against attacks from quantum computers. These

cryptosystems base their security on hard mathematical problems, like the Shortest Vector Problem,

Closest Vector Problem, and others. As such, the study of algorithms designed to solve these problems

– also known as attacks – is paramount in order to better understand them, and to better select the

parameters for the construction of these cryptosystems.

This dissertation focuses on a specific type of attack: Voronoi cell-based, which are often mentioned

in the literature as being impractical, but very little research has actually been conducted, especially

when compared to other types. In this dissertation, several optimizations of a Voronoi cell-based algo-

rithm are presented, with the goal of reducing both the execution time and the memory requirements

of the implementations. In order to harness the full computational power available in modern com-

puters, parallel CPU, parallel GPU and heterogeneous CPU + GPU versions are proposed, reporting

linear speedups for the first (and some benefit from Hyper-Threading), and yielding maximum speedups

of 13.37× and 15.03×, for the GPU and heterogeneous versions, respectively, compared to the base-

line, sequential CPU version. Additionally, several heuristic variants with parallel CPU implementations

are proposed to accelerate the computation of the solution of the Shortest Vector Problem, with the

best pruning strategy devised achieving speedups of up to 256.51×, using 8 threads (compared to the

sequential, non-pruned implementation), while computing the correct solution for 99.84% of the tested

lattice bases.

Finally, conducted in the scope of this dissertation, the integration of all work into the Lattice Uni-

fied Set of Algorithms (LUSA) library – a project that aims to provide public access to simple and fast

implementations of lattice-related algorithms.

The results obtained in this dissertation show that, while far from state of the art dimensions, it is still

possible to greatly accelerate Voronoi cell-based algorithms, maintaining very high success rates.

iii



Keywords

Cryptography; Lattice; Voronoi cell; High Performance Computing; Parallelism; Multi-threading; GPU;

Heterogeneous computing

iv



Resumo

Sistemas criptográficos clássicos, como o RSA e o ElGamal, mostraram ser vulneráveis na presença

de um computador quântico suficientemente poderoso. Dada esta descoberta, a comunidade cientı́fica

focou a sua atenção no desenvolvimento e estudo de alternativas imunes a arquiteturas quânticas. Sis-

temas baseados em treliças são um dos criptossistemas que se provou serem resistentes a ataques

por parte de computadores quânticos. Estes criptossistemas baseiam a sua segurança em problemas

matemáticos duros, como o Problema do Vetor mais Curto (Shortest Vector Problem, SVP), Problema

do Vetor mais Próximo (Closest Vector Problem, CVP), e outros. Assim sendo, o estudo de algoritmos

desenhados para resolver estes problemas – também conhecidos como ataques – é de extrema im-

portância, com o objetivo de os entender melhor, e por forma a melhor selecionar os parâmetros de

construção destes criptossistemas.

O foco desta dissertação é um tipo especı́fico de ataque: algoritmos baseados em célula de Voronoi,

que são frequentemente mencionados na literatura como sendo impráticos, mas que têm sido alvo de

muito pouca pesquisa, especialmente quando comparados com outros tipos. Nesta dissertação, várias

otimizações para um algoritmo baseado em célula de Voronoi são propostas, com o objetivo de reduzir

tanto o tempo de execução, como os requisitos de memória das implementações. De modo a aproveitar

todo o poder computacional disponı́vel nos computadores modernos, versões paralelas em CPU, GPU

e heterogénea CPU + GPU são propostas, apresentando ganhos lineares no primeiro caso (e algum

benefı́cio com Hyper-Threading), e reportando ganhos de 13.37× e 15.03×, para as versões GPU e

heterogénea, respetivamente, quando comparadas com a versão sequencial base em CPU. Adicional-

mente, diversas variantes heurı́sticas com implementações paralelas em CPU são propostas, com o

intuito de acelerar a computação da solução do SVP, com a melhor estratégia de “poda” desenvolvida

a alcançar ganhos até 256.51×, usando 8 threads (quando comparada com a versão sequencial base

em CPU), calculando a solução correta para 99.84% das bases testadas.

Finalmente, conduzida no âmbito desta dissertação, a integração de todo o trabalho na biblioteca

Lattice Unified Set of Algorithms (LUSA) – um projeto que ambiciona disponibilizar acesso público a

uma coleção de implementações rápidas e fáceis de utilizar de algoritmos relacionados com treliças.

Os resultados obtidos nesta dissertação mostram, ainda que longe das dimensões do estado da

arte, que é possı́vel acelerar imensamente um algoritmo baseado em célula de Voronoi, mantendo
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taxas de sucesso extremamente elevadas.
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1.1 Pre- and Post-Quantum Cryptography

Cryptography: the art of writing and solving codes.

– Oxford English Dictionary

1.1 Pre- and Post-Quantum Cryptography

Classic cryptographic systems, or cryptosystems (such as RSA and ElGamal), rely their security

on hard math problems, such as the factorization of large numbers and the computation of discrete

logarithms. These problems are easy to solve for the participants of the system, but hard for an outside

attacker.

Recently, it was shown that these problems can be made feasible in the presence of quantum com-

puters, with the use of algorithms specifically designed for this architecture [1–3]. In light of this dis-

covery, the cryptography community shifted its attention to the design and study of “quantum-immune”

solutions, thus marking the beginning of the so-called post-quantum era. One of the most prominent type

is the lattice-based cryptosystem, which is believed to be safe even in the present of quantum comput-

ers [3, 4]. Cryptosystems based on lattices also have other advantages, such as being (relatively) easy

to implement and use in practice, and the fact that they support Fully Homomorphic Encryption (FHE),

which allows for certain operations to the applied directly to the encrypted data, without the need for

decryption [5].

Lattice-based cryptosystems also base their security on hard math problems, such as the Shortest

Vector Problem (SVP), Closest Vector Problem (CVP), their approximate variants, and others. Like their

name suggests, computing the solution to the SVP consists in finding the shortest, non-zero vector that

belongs to the lattice. Similarly, computing the solution to the CVP consists in finding the closest lattice

vector to a given vector. This given vector is usually called the target vector.

Unlike the base problems of classical systems, these problems are believed to remain hard in the

presence of quantum computers, i.e. they cannot be solved exponentially faster on these architectures.

The approximate variants of these problems consist in solving them up to some constant α, i.e. compute

a solution whose norm is, at most, α times bigger than that of the actual, correct solution for the problem

at hand. For example, the α-SVP consists in finding a lattice vector whose norm is up to α times

bigger than that of the shortest lattice vector. In 1981, van Emde Boas proved that solving the CVP

is NP-hard (Non-deterministic Polynomial-time hard), and suggested that the case might be the same

with the SVP [6]. In the following years, it was further proved that not only the SVP is NP-hard (for

randomized reductions [7]), but so too their approximate variants, up to a certain constant. Specifically,

Micciancio showed that the α-SVP is NP-hard, up to α =
√

2 [8], and Khot further studied and improved

this result [9].
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1. Introduction

Given the importance of the SVP, CVP, and others, several types of algorithms have been pro-

posed to compute their solution, most notably enumeration, sieving, and Voronoi cell-based algorithms.

Computing the solution to these problems is fundamental, as it provides an estimate of how secure the

cryptosystems that use them as building blocks are in practice, allowing to safely and correctly select

the parameters for the construction of secure systems.

1.2 Objectives

In this dissertation, several algorithmic simplifications and optimizations to a Voronoi cell-based algo-

rithm are proposed, aimed at accelerating the computation of the solution to the SVP, followed by their

implementation and analysis. Furthermore, parallel multi-core implementations of both the baseline and

optimized algorithms are proposed for CPU, GPU, and heterogeneous (CPU + GPU) architectures.

Additionally, the Voronoi cell-based algorithm implemented for this dissertation and all its optimiza-

tions are integrated into the Lattice Unified Set of Algorithms (LUSA) library.

1.3 Contributions

The main contributions of this dissertation are:

• [EUSIPCO19] Filipe Cabeleira, Artur Mariano and Gabriel Falcão: Optimizing the Memory Usage

of Voronoi Cell-based Parallel Kernels for the Shortest Vector Problem on Lattices (submitted in

February 2019), Annex A

• [IEEE-ESL] Filipe Cabeleira, Artur Mariano and Gabriel Falcão: Energy-efficient lattice-based

cryptanalysis attacks on low-power embedded GPUs (submitted in February 2019), Annex B

1.4 Preliminaries and definitions

Matrices are represented by bold, upper-case letters (A, B, C). Vectors are represented by bold,

lower-case letters (a, b, c). The || · || operator represents the Euclidean norm.

A lattice L in Rn is the set of all linear combinations of a basis B. The basis B is a set of linearly

independent vectors b1, ...,bm. The lattice L is expressed by Equation (1.1):

L(B) =

{
x ∈ Rn : x =

m∑

i=1

vibi, v ∈ Zm, m ≤ n
}
, (1.1)

wherem represents the rank of the lattice and ifm = n, the lattice is of full-rank. Although it is possible to

use non-integers to represent lattice bases, integers are normally used as they don’t affect the hardness

4



1.5 Structure

of the problem, but are significantly easier to handle computationally, given that they avoid the precision

issues associated with floating-point representations. Figure 1.1 shows an example lattice in R2 and its

basis vectors.

0

b1

b2

b3 = b1 − 2× b2

Figure 1.1: Example lattice in R2 and its basis vectors b1,b2 (in red).

The vector b3 is a linear combination of vectors (b1,b2), shorter than b1, and exemplifies a reduced

basis vector. The process of making basis vectors shorter is called lattice basis reduction and will be

further discussed in Chapter 2.1.

1.5 Structure

This thesis is organized as follows: Chapter 2 provides and overview of algorithms that solve the SVP,

with emphasis on Voronoi cell-based algorithms; Chapter 3 shows an optimized version of a Voronoi

cell-based algorithm implementation, implemented for CPU, GPU and heterogeneous (CPU + GPU)

architectures; Chapter 4 presents some algorithmic optimizations to the original algorithm; Chapter 5

gives an analysis of the LUSA library; and finally, Chapter 6 concludes this thesis with a summary of the

conducted work and all conclusions that stemmed from it.
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2.1 Lattice basis reduction

Algorithms to solve lattice-related problems (such as the SVP and CVP) can be split into three main

categories: sieving, enumeration and Voronoi cell-based. While sieving and enumeration have been the

target of academic research in recent years, yielding several variants of each type, Voronoi cell-based

algorithms are not as investigated. This section presents an overview of the state of the art of these

types and of lattice basis reduction algorithms.

2.1 Lattice basis reduction

An important type of algorithms used in lattice-based cryptanalysis are lattice basis reduction al-

gorithms. As the name suggests, their objective is to reduce (i.e. shorten) the lattice basis vectors.

However, they are not guaranteed to compute the shortest lattice vectors, but instead to compute short

lattice vectors, all the while improving their orthogonality – a desirable trait in this context. Note that lat-

tice basis reduction does not alter the lattice itself, merely uses different vectors to represent the same

lattice, i.e. a different basis of the same lattice.

There are several reduction algorithms published in the literature, but the more widely used in the

context of lattice-based cryptanalysis, in practice, are the Lenstra-Lenstra-Lovász (LLL) algorithm [10]

and the Block Korkine-Zolotareff (BKZ) algorithm [11]. Even though it is possible to use integer arithmetic

in the LLL algorithm, the most efficient implementations, in practice, use a floating-point representation.

Notable implementations of the LLL algorithm include Schnorr and Euchner’s LLL-SE [12] and Nguyen

and Stehlé’s L2 [13].

The BKZ algorithm is a generalization of LLL, and allows to control the trade-off between execution

time and basis quality, by means of a parameter β. This parameter defines the size of the block of the

lattice to which several Korkine-Zolotareff reductions are applied, until the algorithm completes. The

most efficient BKZ implementations to date are variants of BKZ, including Chen and Nguyen’s BKZ

2.0 [14], Aono’s et al. progressive BKZ [15] and Micciancio and Walter’s primal-dual BKZ [16].

2.2 Enumeration

Enumeration algorithms have been the most widely researched family of lattice-related solvers. The

name stems from the fact that they work by examining, i.e. enumerating, all the lattice points that can be

found inside an hypersphere (Pohst in [17]) or, later, a parallelepiped (Kannan in [18]). The algorithms

that were proposed afterwards are based on Pohst’s and Kannan’s techniques.

After the initial works of Pohst and Kannan, variants presented in the following years include Fincke

and Pohst’s [19] in 1985, and Kannan’s [20] improvements in 1987.

Schnorr and Euchner published an improved version of Pohst’s method in 1994 [12], that was later

9
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shown (by Agrell et al. in [21]) to be faster than its predecessors. Schnorr and Euchner’s algorithm is

known in the literature as ENUM.

In 2002, Agrell et al. proposed an improved version of the ENUM algorithm, which became known

as SE [21]. Later, Ghasemmehdi and Agrell presented a way to avoid unnecessary (or redundant)

calculations during the enumeration procedure, showing significant gains with their technique. This

algorithm is an improvement of SE and became known as SE++ [22].

In 2010, Gama et al. published the enumeration with extreme pruning algorithm in [23]. Pruning

consists in discarding certain computations at the expense of the certainty of the results. However,

the running time of the algorithm decreases much faster than the probability that the correct solution is

discarded, i.e. the algorithm can be made much faster, while still maintaining a high degree of probability

that the correct result is found.

Micciancio and Walter presented in [24] a low overhead variant of enumeration that matches the best

asymptotic complexities of the class, and delivers practical performance as well.

There have also been proposed parallel versions of enumeration algorithms, such as the one pre-

sented by Dagdelen and Schneider in [25], which is based on the Schnorr and Euchner variant [12].

Parallel versions for GPU architectures have also been proposed, notably the work of Hermans et al.,

achieving speedups of 5× in comparison to a sequential CPU implementation [26]. Kuo et al. presented

a CPU and GPU heterogeneous implementation, based on Hermans’ et al., and were able to find the

solution to the SVP of basis in dimension 114 in less than two days [27].

More recently, in 2016, Correia et al. published in [28] a parallel version of the algorithm proposed by

Ghasemmehdi and Agrell in [22], where they show improvements in scalability and overall throughput

over Dagdelen and Schneider’s version, achieving (almost) linear speedups for 16 threads.

2.3 Sieving

Sieving algorithms work by randomly selecting vectors from the lattice basis, to which a slight pertur-

bation is added. Afterwards, these perturbed vectors are “sieved”, i.e. their length is iteratively reduced,

until all are bound by a certain radius. This means that short lattice vectors and their closest neighbors

are discovered (with a high probability of success), and the solution to the SVP is then found by the

pairwise differences of the previously computed vectors.

The first sieving algorithm was introduced in 2001 by Ajtai, Kumar and Sivakumar, and is known in

the literature as AKS, after its authors [29]. The algorithms that followed were based on the same idea,

and differ mainly on how the reduction is accomplished. Additionally, some of these algorithms are not

proved to solve the SVP, as they rely on heuristics in order to speed up their execution, like the heuristic

version of AKS presented by Nguyen and Vidick in [30].

10
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Following AKS and Nguyen and Vidick’s work, Micciancio and Voulgaris presented two new sieving

algorithms: ListSieve, and its heuristic counterpart, GaussSieve, reporting improved time and space

complexities over AKS [31]. The GaussSieve algorithm briefly dethroned enumeration as the fastest

SVP-solver, until enumeration with extreme pruning (discussed earlier in Section 2.2) was introduced

later in the same year. Given the performance of GaussSieve, several authors presented parallel

implementations of the algorithm, such as Milde and Schneider, with nearly linear speedups up to 5

threads [32]. Ishiguro et al. improved the efficiency for higher thread counts [33]. Mariano et al. also

presented a parallel GaussSieve implementation, achieving linear and almost linear speedups, using up

to 64 threads, and generally improving upon previous work [34]. Bos et al. combine several optimiza-

tions, further reducing execution time and memory usage, when compared against previous work [35].

Another breakthrough in sieving algorithms came when Laarhoven presented its HashSieve algo-

rithm, which replaced a brute-force portion of previous sieving algorithms by Charikar’s angular locality-

sensitive hashing method [36]. Later the same year, Mariano et al. presented a parallel version of

HashSieve [37].

After HashSieve, Becker et al. presented the (eventually known as) LDSieve algorithm that, in com-

parison to the former, improved on the design of a data structure in order to speed up the reduction

process [38]. In the following year, Mariano et al. proposed a parallel variant of the LDSieve algorithm

in [39].

More recently, Ducas et al. presented a “generalized sieve kernel”, that performed significantly better

than the previous first place of the SVP-Challenge – a publicly available hall of fame and contest for

solving the SVP, available at https://www.latticechallenge.org/svp-challenge/ – by computing

the shortest vector of a 155-dimensional lattice in under 15 days [40].

2.4 Voronoi cell-based

The working principle of this type of algorithm, as the name suggests, relies on the computation of

the Voronoi cell of the lattice. This cell contains, by definition, the set of all points closest to zero than any

other lattice point. In practice, this is represented by the set of the smallest lattice vectors. The vectors

that comprise the minimum set required for a complete description of the Voronoi cell are called relevant

vectors. Minkowski proved that the Voronoi cell of an n-dimensional lattice has, at most, 2 × (2n − 1)

facets [41]. However, they are not all necessarily relevant. Figure 2.1 exemplifies both a Voronoi cell,

and its relevant vectors.

This family of SVP-solvers has not been subject to the same amount of research as the previously

mentioned types. This lack of research is mainly due to the fact that they are not as practical as enumer-

ation and sieving types, despite having better time and space complexities in theory. One of the aims
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Figure 2.1: Example of a Voronoi cell in R2 (blue), and its relevant vectors (red).

and contributions of this dissertation is to propose and analyze optimizations to one such algorithm.

One of the first published works of this kind is Viterbo and Biglieri’s, who present an algorithm to

compute the Voronoi cell of a lattice, named the diamond-cutting algorithm [42]. The first step of the

algorithm is to construct the polytope – a bounded region – defined by the basis vectors. This polytope

is guaranteed to contain the Voronoi cell of the lattice, however “short” the basis vectors are (see Figure

2.1; even if the relevant vectors were chosen to construct the polytope, the Voronoi cell of the lattice is

contained inside). Afterwards, the polytope is iteratively cut until a stopping condition is met, i.e. only

the Voronoi cell of the lattice remains.

Following this was the work of Agrell et al., who presented an improvement of the Schnorr-Euchner

enumeration algorithm [12], with the main goal of solving the CVP [21]. Additionally, several variants to

solve other lattice-related problems are proposed, e.g. the computation of the solution to the SVP, the

determination of the kissing number of a lattice (the number of shortest, non-zero lattice vectors), and

the computation of the Voronoi relevant vectors of a lattice. This dissertation is based on the latter, and

makes use of the enumeration-based CVP-solver in order to compute said relevant vectors.

Later, Micciancio and Voulgaris presented an algorithm that uses the Voronoi cell of the lattice as a

hint for a CVP solver, naturally computing said cell as well [43]. They show that the Voronoi cell of a

lattice in a given dimension k can be computed by a series of CVP computations in dimension k, and

the solution to a CVP computation in dimension k can be done by a series of CVP calls in dimension

k − 1. Therefore, the Voronoi cell of a lattice can be iteratively computed, starting on dimension 1 and

working upwards to dimension n.
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The work conducted in this dissertation is based on the algorithm presented by Agrell et al. in [21],

specifically the Relevant Vectors algorithm, which allows to compute the Voronoi relevant vectors of an

arbitrary lattice.

This section presents the chosen algorithm and details its implementation, with emphasis on com-

putational optimizations performed to benefit its execution. Afterwards, both CPU and GPU parallel

implementations of the algorithm are presented and discussed.

The hardware used for all the work conducted in this thesis is depicted in Table 3.1. Hyper-Threading

(HT) is the name given to Intel’s Simultaneous Multi-Threading (SMT) implementation. The clock fre-

quency in parenthesis is attained with Turbo Boost technology.

Table 3.1: Specifications of the Machines used throughout the dissertation.

Machine A B
CPU Intel Core i7 740QM Intel Core i3 6100
Clock frequency 1.73 GHz (2.93 GHz) 3.70 GHz
Cores 4 2

SMT Yes (w/HT, 8 threads) Yes (w/HT, 4 threads)
L1 Cache 32 kB i + 32 kB d 32 kB i + 32 kB d
L2 Cache 256 kB 256 kB
L3 Cache 6 MB 3 MB
RAM 8 GB 8 GB

GPU — NVIDIA GeForce
1060 GTX

GPU Clock rate — 1759 MHz
GPU RAM — 6 GB
CPU/OpenMP
Compiler GCC (g++) 7.2.0 —

OpenACC
Compiler — PGI Compiler

Suite 18.4 (pgcc)
CUDA
Compiler — CUDA Toolkit

9.1 Compiler (nvcc)

Machine A is running Ubuntu 17.10 x86 64, with kernel version 4.13. Machine B is running Ubuntu

16.04 x86 64, with kernel version 4.13. All programs were developed in C/C++ and compiled using the

-O3 optimization flag. When compiled with GCC, the -march=native optimization flag was employed

as well. The OpenACC implementation is compiled with the -acc -Mcuda=9.1 -ta=tesla:cc60 flags,

which instructs the compiler to enable OpenACC directives, use the CUDA toolkit version 9.1 and to

generate code for a GPU with Compute Capability 6, respectively (the Compute Capability of a GPU, as

per the CUDA FAQ, “determines its general specifications and available features”). Similarly, the CUDA

implementation is compiled with the -arch=sm 61, to inform the compiler that a GPU with Compute

Capability 6.1 is to be used.

The lattice bases used were generated with SVP-Challenge’s basis generator (available at https:

//www.latticechallenge.org/svp-challenge/), compiled with NTL version 9.3 (available at https:
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//www.shoup.net/ntl/). Unless otherwise stated, 1000 different bases are used for dimensions 4 to 10,

100 for dimensions 11 to 15, and 10 for dimensions 16 and upwards. A “run” consists in executing the

algorithm for all test bases in the dimensions shown. The run times depicted consist of the arithmetic

average of all bases executed, for each dimension, and represent the full execution time of the program,

with the exception of file input/output. Machine A is used for CPU runs, and Machine B is used for GPU

runs.

3.1 The Voronoi cell-based algorithm

The algorithm used as basis for the work developed on this dissertation is presented by Agrell et al.

in [21], which is an improvement of Schnorr and Euchner’s work published in [12]. This paper proposes

an enumeration-based CVP solver that can be adapted to solve the SVP, compute the Voronoi cell of a

lattice, as well as other problems. Formally, the Voronoi cell V of a lattice L – the set of all lattice points

closest to zero than any other lattice point – is given by Equation 3.1,

V(L) = {x ∈ Rn : ||x|| ≤ ||x− v|| ∀ v ∈ L}, (3.1)

where n is the dimension of the lattice.

As previously mentioned, enumeration algorithms work by examining all possible lattice points inside

a certain radius – an hypersphere or a parallelepiped. The algorithm at hand is based on the former

strategy.

The Relevant Vectors algorithm makes use of this enumeration-based CVP-solver in order to com-

pute the Voronoi cell of an arbitrary lattice. This algorithm can be split into four distinct steps, starting

with the generation of the target vectors, that will be later fed into the enumeration-based CVP-solver.

Afterwards, the lattice basis is converted to a lower triangular form (that exists for all lattice bases),

required by the CVP-solver, so that lattices of any type can be used with this algorithm. This modification

can be thought of as a change in coordinate system. The target vectors are also transformed in an

appropriate fashion into the new coordinate system.

Following these transformations, the modified lattice basis and target vectors are fed into the CVP-

solver, and the same nomenclature that is used by the algorithm’s authors regarding this step will be

used in this dissertation. As such, this will be called the “decode” step, and decoding a target vector

consists of executing the decode function for the given target vector.

Finally, the output of the decode function is converted back to the original coordinate system and

processed. If this result is valid, i.e. it is a relevant vector, then it is added to the list of relevant vectors.

The pseudo-code of the implementation just described is shown in Algorithm 3.1.

Implementation-wise, it is desirable to begin by using a lattice basis reduction algorithm on the input
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Function AllClosestPoints
Input: Matrix M, matrix H, matrix Q, vector s
Output: List of vectors X

Compute x = sQT ; /* conversion of the target vector to the modified coordinate system */

U = Decode(H, x);
Compute γ as the lowest value ||uM− s|| for all u ∈ U;
Compute X as all {uM : u ∈ U, ||uM− s|| = γ}
return X

Algorithm 3.1: Relevant Vectors
Input: Basis matrix B
Output: Relevant Vectors N

M = Reduce(B); /* for example, using the LLL algorithm */

[Q, R] = QR decomposition of M;
G = RT ;
H = G−1; /* lattice basis on modified coordinate system */

N = ∅; /* list of relevant vectors */

forall vectors s ∈ T V do
X = AllClosestPoints(M, H, Q, s);
if |X| = 2 then

N = N
⋃{2x− 2s : x ∈ X};

return N

basis B, resulting in the reduced basis M. This allows to increase the performance and numerical stability

of the algorithm, given that, among other advantages, a lattice basis reduction algorithm shortens the

basis vectors to some extent. This can be accomplished by means of an LLL or BKZ reduction.

In practice, following basis reduction, the necessary computations that allow for the coordinate sys-

tem transformation are performed, given that they are constant for a given lattice, and can be computed

only once. This can be achieved, for example, with a QR decomposition (a matrix A can be decomposed

into the product of an orthonormal matrix Q and an upper triangular matrix R, such that A = QR).

Afterwards, the si, i = 1, ..., 2n − 1 target vectors (where n is the dimension of the lattice) are

generated according to Equation 3.2. Following this, the main loop of the algorithm is started, where

each iteration decodes a target vector.

T V(M) =
{

s = zM : z ∈ {0, 1/2}n − {0}
}

(3.2)

The result U of the execution of the decode procedure is then processed according to Equation 3.3,

resulting in matrix X.

γ = min
{
||uM− s|| for all u ∈ U

}

X =
{

uM : u ∈ U, ||uM− s|| = γ
} (3.3)

If matrix X has two, and only two vectors, then the computed solution is valid, a relevant vector has
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been found, and it is added to the list of relevant vectors N. Furthermore, if this is the case, these vectors

are symmetric to one another and, therefore, have the same norm. Conversely, if only one or more than

two vectors are returned in matrix X, the result is not valid, and is discarded.

Finally, the solution to the SVP is given by the shortest vector of the computed Voronoi relevant

vectors (matrix N).

3.2 Optimizations

Several optimizations and simplifications were used in the implementation of the algorithm, both

general-purpose and algorithm-specific ones. These optimizations serve to reduce the memory footprint

of the implementation and/or reduce its execution time.

One such optimization consists in using larger, single-allocation arrays for both vector and matrix

structures. While matrices made up of arrays of arrays provide a more natural indexing notation, they

require several calls to memory allocation functions and, later, deallocation. This not only increases the

time required to allocate the necessary memory for a matrix, but is also detrimental during execution, as

each “sub-array” (row or column of the matrix, depending on how it is implemented) is not guaranteed

to be continuous in RAM, and reading/writing to such a structure requires two memory accesses – the

first for the address of the “sub-array”, and the second for the value itself. The use of a larger, single-

allocation array allows for faster memory accesses and guarantees that the entire structure is continuous

in RAM, at the expense of slightly inconvenient indexing. However, this indexing can be facilitated by the

use of a compiler macro. The indexing used for the implementations for this dissertation is exemplified

in Listing 3.1.

Listing 3.1: Example of the indexing used for vectors and matrices.

#define ind(a, b) a*NUM COLUMNS+b // NUM COLUMNS represents the number of
columns of the matrices

float *vec, *mat; // vec (pointer to vector) and mat (pointer to matrix)
allocation omitted

// Indexing a vector (standard usage)
vec[i] = 1.0f;

// Indexing a matrix (using the macro)
mat[ind(x, y)] = 1.0f;

Note that this indexing method does require the computation of the index for matrix accesses, but

the benefits outweigh the costs nonetheless.
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In regards to algorithm-specific optimizations, and because we are only interested in the solution to

the SVP, storing the full description of the Voronoi cell is unnecessary. Storing the entire Voronoi cell

would require matrix N to have 2×(2n−1) rows – the maximum number of relevant vectors for dimension

n – thus increasing in size exponentially with the dimension of the lattice (if a given vector is relevant, so

it is its symmetric, resulting in the factor 2 on the equation). As such, matrix N was transformed into a

single vector, and only the shortest relevant vector found up to that point in the execution is stored. This

strategy requires the use of an auxiliary variable (named ShortestNormFound, for example), where the

norm of the aforementioned relevant vector is stored. At the end of each iteration of the main loop of

the algorithm, the norm of the computed vector (if valid) is compared against ShortestNormFound and, if

smaller, both N and ShortestNormFound are updated with the new-found vector. This modification does

not adversely impact the execution time of the implementation given that the shortest vector would need

to be found from among all relevant vectors that would be stored in the full matrix N.

Another simplification was performed for matrix X. Recall that the output of the decode function is

only valid if it returns (through matrix X) two, and only two, vectors. As such, during the computation of

said matrix, if a third vector is found eligible to be part of it, the function can return immediately with the

information that X has, at least, three vectors and, therefore, it is not a valid solution. This simplification

not only potentially saves time due to the (potentially early) interruption of the computation of the X

matrix, but also saves memory by allowing the size of the matrix to be fixed at 2 rows, instead of an

unknown, dynamically-growing number of rows.

The pseudo-code of the implementation with the described algorithm-specific optimizations is shown

in Algorithm 3.2.

Function OptimizedAllClosestPoints
Input: Matrix M, matrix H, matrix Q, vector s
Output: List of vectors X

Compute x = sQT ;
U = Decode(H, x);
Compute γ as the lowest value ||uM− s|| for all u ∈ U;
NumRowsX = 0; /* number of rows of the matrix X */

forall vectors uM : u ∈ U do
if ||uM− s|| = γ then

NumRowsX++;
if NumRowsX ≥ 2 then

break;

X = X
⋃{uM};

return X
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Algorithm 3.2: Optimized Relevant Vectors
Input: Basis matrix B
Output: Relevant Vectors N

M = Reduce(B); /* for example, using the LLL algorithm */

[Q, R] = QR decomposition of M;
G = RT ;
H = G−1;
N = ∅;
ShortestNormFound =∞;

forall vectors s ∈ T V do
X = OptimizedAllClosestPoints(M, H, Q, s);
if |X| = 2 and ||2x− 2s|| < ShortestNormFound then

ShortestNormFound = ||2x− 2s||;
N = {2x− 2s : x ∈ X};

return N

3.3 Parallel CPU implementation

The algorithm can be classified as “embarrassingly parallel”, given that the iterations that comprise

the main loop of the algorithm are independent from each other. Therefore, linear speedups should be

attainable from a parallel implementation. One such implementation was devised, to test this hypothesis

and further accelerate the algorithm, making use of OpenMP – a programming interface based on com-

piler directives that allows developers to express parallelism. These directives were applied to the main

loop of the algorithm, where the heaviest computational work-load is present.

In regards to the implementation, the main difference when compared to the sequential one lies in

memory allocation, where some structures must be made private to each thread. Because the original

implementation uses dynamic memory allocations, this must be done manually. As such, the aforemen-

tioned private structures are now allocated and deallocated at the begin and at the end, respectively,

of each iteration of the loop. The need for private structures causes the memory usage of algorithm to

increase with the number of threads used, but such usage remains low.

Additionally, given the fact that each iteration takes a different amount of time to complete, OpenMP’s

dynamic scheduler is used, in order to prevent work-load imbalances across the threads (dynamic

scheduling works by assigning each thread a new iteration as they finish their current one, contrarily

to the static scheduler, that splits the iterations between the available threads when the loop is started).

Even though this scheduling policy incurs in additional overhead, tests conducted showed no adverse

effects from its use.

Despite the fact that the iterations of the original algorithm are completely independent, our opti-

mization of keeping only the shortest relevant vector found adds the necessity of some communication

between threads. This is achieved by the use of OpenMP’s critical region, that guarantees that only one

thread at a time can enter the region of code where the comparison and, if necessary, the updating of
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the shortest vector is performed. Despite this new-found need for thread communication, the execution

times of the implementation were not affected, possibly due to the fact that it represents a very small part

of each iteration and, given that each decode may take a different amount of time, there is the possibility

that the working threads seldom compete for entry to the critical region.

Algorithm 3.3 shows the pseudo-code of the parallel OpenMP implementation, with the smaller N

matrix simplification of Chapter 3.2.

Algorithm 3.3: OpenMP Parallel Relevant Vectors
Input: Basis matrix B
Output: Relevant Vectors N

M = Reduce(B); /* for example, using the LLL algorithm */

[Q, R] = QR decomposition of M;
G = RT ;
H = G−1;
N = ∅;
ShortestNormFound =∞;

#pragma omp parallel for

forall vectors s ∈M do
X = OptimizedAllClosestPoints(M, H, Q, s);
#pragma omp critical

if |X| = 2 and ||2x− 2s|| < ShortestNormFound then
ShortestNormFound = ||2x− 2s||;
N = {2x− 2s : x ∈ X};

return N

As previously mentioned, the algorithm is expected to scale linearly with the number of cores used.

In order to test this hypothesis, a run of the implementation was performed with Turbo Boost disabled,

due to the fact that this technology affects the clock frequency of the CPU differently with the number

of cores used, i.e. the less cores are being used, the higher the boost. Figure 3.1 shows the execution

times of the implementation of Algorithm 3.3, for lattice dimensions 10 through 20. Table 3.2 shows the

scalability of the parallel implementation.

Table 3.2: Speedup of the parallel CPU implementation, for 2, 4 and 8 threads, on Machine A, with Turbo Boost
disabled, lattice dimensions 16 through 20. Values in bold represent the highest speedup for a given
thread count.

Dimension 16 17 18 19 20
2 Threads 1.9794 1.9784 1.9783 1.9876 1.9874
4 Threads 3.9331 3.9613 3.9662 3.9812 3.9863
8 Threads (HT) 5.3053 5.4100 5.4305 5.4284 5.4382

These results show that the parallel CPU implementations does indeed scale linearly with the num-

ber of cores used, and can benefit from the use of Hyper-Threading, albeit by a smaller degree, thus

achieving a maximum speedup of 5.44×, when compared to the sequential implementation.

21



3. An optimized version of the Voronoi cell algorithm for the SVP

Figure 3.1: Execution times of the parallel CPU implementation on Machine A (Turbo Boost disabled), lattice di-
mensions 10 through 20.

Figure 3.2 shows the execution times of the parallel implementation, in the same conditions as before,

but with Turbo Boost enabled on the CPU.

Figure 3.2: Execution times of the parallel CPU implementation on Machine A (Turbo Boost enabled), lattice di-
mensions 10 through 20.

The speedup in this case is smaller – due to Turbo Boost, as explained previously – but overall

execution time is lower than with Turbo Boost disabled, achieving a maximum speedup of 3.49×, when

compared to the sequential implementation.
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3.4 Parallel GPU implementation

A parallel implementation of the algorithm for GPU architectures was also devised, using both

OpenACC and CUDA. OpenACC is a pragma-based (compiler directives) programming tool, similar

to OpenMP, and it is capable of generating executable code for both multi-core CPUs and GPUs. CUDA

is a programming model, with a C/C++ interface, that allows computational kernels to be run on a GPU.

While OpenACC masks some of the complexity of low-level GPU-oriented languages, e.g. CUDA,

it allows programmers to quickly develop a GPU version of an algorithm with very little effort, all the

while achieving very good results. Because of this, and even if more control is required, an OpenACC

implementation can be regarded as the benchmark for a potential CUDA implementation. Even though

most of the choices can be left to the compiler, there is also the possibility for developers to change

and tweak some settings, most notably the launch configuration of the generated kernels. As such,

OpenACC allows users to modify the number of gangs, number of workers and vector length. These

parameters directly relate to CUDA’s number of blocks, warp size, and threads per block, respectively.

As with the parallel CPU implementation, the compiler directives for the OpenACC implementation

are applied to the main loop of the algorithm, in a similar fashion as the OpenMP version. The main

difference in the OpenACC implementation is the need to explicitly inform the compiler of the size of

the arrays used. This is due to the fact the arrays are dynamically allocated, and because some data

must be copied to the device (GPU), and later back to the host (CPU), their size must be known. This is

not (generally) needed in an OpenMP implementation, as all memory resides on the main RAM, and no

memory transfers are necessary. Algorithm 3.4 shows the pseudo-code of the OpenACC implementa-

tion.

Algorithm 3.4: OpenACC Parallel Relevant Vectors
Input: Basis matrix B
Output: Relevant Vectors N

M = Reduce(B); /* for example, using the LLL algorithm */

[Q, R] = QR decomposition of M;
G = RT ;
H = G−1;
N = ∅;

#pragma acc parallel loop independent

forall vectors s ∈M do
X = OptimizedAllClosestPoints(M, H, Q, s);
if |X| = 2 then

N = N
⋃{2x− 2s : x ∈ X};

return N

The OpenACC compiler automatically parallelizes the code in such a way that each GPU thread

decodes a single target vector, and chose a default vector length L of 128. This choice is empirically
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3. An optimized version of the Voronoi cell algorithm for the SVP

supported by follow-up tests, that confirmed it to be the best value for L. The gang size T (number of

blocks) depends on the number of target vectors, and is given by Equation (3.4), so that each thread

decodes one target vector.

T =

⌈
Number of Target Vectors

L

⌉
(3.4)

Figure 3.3 depicts the execution flow of the GPU implementations.

Figure 3.3: Execution flow of the GPU implementations – the red arrows represent each individual thread.

Since OpenACC does not provide a critical region construct, the smaller target vector list N of the

CPU implementation cannot be used here. However, the original algorithm’s description would lead to

the storage of both a relevant vector and its symmetric, thus requiring 2× (2n − 1) rows for matrix N. As

such, only one of the two vectors is stored, thus decreasing the memory requirements of matrix N by

half, when compared to the original, requiring only 2n − 1 rows.

Due to the fact that some arrays must be private to each executing thread, the memory requirements

of this implementation are largely superior than its CPU counterpart, as the number of threads is also

much higher. Because of this, the memory usage of the OpenACC implementation, for dimension 19,

reaches almost 6 GB – the amount of memory available on the GPU used. In order to be able to run

the implementation in higher dimensions, a trade-off is necessary: executing more than one iteration

per thread, thus decreasing – or maintaining – the memory usage. Therefore, runs in dimension 20

are launched with the same gang size T as dimension 19, resulting in 2 target vectors being decoded

by each thread. Figure 3.4 shows the execution times of the OpenACC implementation, achieving a
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maximum speedup of 12.15×, when compared against the sequential CPU implementation.

Figure 3.4: Execution times of the sequential CPU implementation (Machine A) and parallel GPU OpenACC (Ma-
chine B), lattice dimensions 10 through 20.

In regards to the CUDA implementation, the same strategy was used as in the OpenACC one: L =

128 threads per block and the number of blocks T depending on the dimension of the problem, as given

by (3.4), with each thread decoding a single target vector, except for higher dimensions, when memory

usage hits the limit of the GPU. Additionally, the same strategy regarding matrix N is used as in the

OpenACC implementation – the 1-row simplification of Chapter 3.2 is not used, but only half of the

original algorithm’s required space is needed for this matrix. Figure 3.5 shows the execution times of the

baseline CUDA implementation against the OpenACC version.

Figure 3.5: Execution times of the sequential CPU, baseline CUDA and OpenACC implementations, lattice dimen-
sions 10 through 20.

The baseline CUDA implementation reports a similar performance to the OpenACC one, with a
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gain of 7.23% for dimension 20, therefore achieving a speedup of 13.03×, when compared against the

sequential CPU implementation.

A different configuration for the GPU implementation was also tested, in which thread blocks of n

threads would decode a target vector, i.e. L = n, and T = Number of Target Vectors = 2n−1. However,

this was quickly discarded as it proved to be severely slower than the first described configuration. This

is due to the fact that, even though the iterations of the main loop of the algorithm are independent,

there is no advantage to using several threads to process each target vector, as the decode procedure

is inherently sequential and is executed by a single thread only.

Given the fact that CUDA allows for a finer control over the low-level details of the implementation,

several optimizations were performed, starting with the use of constant memory for matrices M, Q and H,

as they remain unchanged after their computation. Because it is cached, constant memory accesses are

much faster than global memory accesses. Shared memory was tested for this purpose as well, given

that it resides on-chip (contrarily to global or constant memory) but, even though it showed improvement

compared to global memory, constant memory was faster still.

Additionally, the contents of the aforementioned matrices can be transferred to the GPU as soon as

they are computed. This is achieved by using asynchronous memory transfers, that immediately return

control to the CPU while the transfer takes place, allowing for work to be done while data is copied over.

Regarding the private structures necessary for each thread, and in order to avoid several calls to

memory allocation functions – an expensive operation on the GPU – a single, very large array is re-

quested with all the necessary memory for all structures. The various arrays needed are then obtained

by pointing to different zones of this larger array, thus “emulating” several smaller arrays.

These optimizations allow for a 9.43% maximum gain compared to the baseline CUDA implementa-

tion, for the tested dimensions. The execution times of the CUDA implementation with all optimizations

are shown in Figure 3.6, compared against the OpenACC and CPU implementations.

The figure shows that the optimized CUDA implementation is the fastest of all GPU implementations,

achieving a speedup of 13.37×, for dimension 20, when compared against the sequential CPU reference.

Common to all the GPU implementations presented, due to the fact each thread decodes a single

target vector, and this process may take different amounts of time for different target vectors, is the

fact that warp divergence is prominent – different threads following different paths based on conditional

execution, i.e. if statements.

Another important metric for GPU implementations is occupancy, which indicates how many warps

can run concurrently on a Streaming Multiprocessor (SM). The occupancy of the proposed CUDA

implementation is limited by register usage, which was empirically set at 84 registers per thread. Even

though this many registers limits the maximum occupancy of the implementation to 31.2%, it was the

value at which the best performance was attained, showing that a higher occupancy does not necessarily
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Figure 3.6: Execution times of the optimized CUDA and OpenACC implementations, lattice dimensions 10 through
20.

translate into higher performance.

The results obtained show that an optimized CUDA implementation can still outperform OpenACC,

but requires significantly more developer time. However, if fine-grained control over the minute details

of the implementation is not required, or if a benchmark of the performance of a given algorithm is

warranted, OpenACC has proven to be a very effective tool to quickly accelerate code that exhibits

some level of parallelism.

3.5 An heterogeneous implementation of the Voronoi algorithm

In order to harness the full computational power available in modern computer systems, an hetero-

geneous CPU + GPU implementation was devised.

To this end, the StarPU framework was used – a programming library for heterogeneous, multi-core

systems. This framework is based around the concept of “codelets” and “tasks”. As per its documenta-

tion, the former “describes a computational kernel that can possibly be implemented on multiple archi-

tectures such as a CPU, a CUDA device or an OpenCL device”, and the execution of the latter “consists

in applying a codelet on a data set, on one of the architectures on which the codelet is implemented”.

Similarly to CUDA kernels, tasks in StarPU are launched asynchronously. Workers are processing units

(or parts of one) that are capable of executing a given task, e.g. a CPU core or a GPU. By default,

StarPU uses only physical CPU cores and, when a GPU implementation is also present, one of the CPU

cores is reserved to control the GPU.
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3.5.1 CPU + GPU concerns

The main concerns regarding an heterogeneous implementation are workload division and schedul-

ing, and memory management.

The fact that the algorithm itself is comprised of a series of independent decodes, StarPU’s tasks

provide a natural way to deal with the former, by assigning any number of decodes to a task. However,

because CUDA kernels require a certain amount of threads to take advantage of a GPU’s architecture,

the question of how many decodes to perform per task arises. Too few decodes per task, and not only

the GPU is severely underutilized, but the kernel launch overhead becomes a significant part of all kernel

executions; too many decodes per task, and the risk of workload imbalances between the processing

units rises, i.e. having one processing unit still executing a task, and the other simply waiting for a

significant amount of time if no more work is available. Naturally, a compromise is necessary in order to

reduce the workload imbalance, while keeping kernel overhead to a minimum.

Regarding memory management, given that different processing units may have distinct memory

spaces (e.g. the CPU and the GPU), data availability and consistency must be guaranteed. StarPU

provides mechanisms that automatically manage these necessities, freeing the programmer from the

low-level details of memory management.

3.5.2 Implementation and results

As previously mentioned, the implementation of the heterogeneous Voronoi cell was achieved using

the StarPU Application Programming Interface (API).

The task-based structure of StarPU, and the fact that the Voronoi cell algorithm consists of decoding

several, independent target vectors, led to a natural mapping of decoding target vectors in each task.

This allows any number of decodes to be performed per task, from a single one to all of them. However,

given the concerns expressed earlier in regards to the coarseness of this workload distribution, several

decoding procedures must be performed per task. Tests conducted showed that decoding PH = 214 =

16384 target vectors per task resulted in a good compromise between workload balance and overall

overhead. A power of two was selected given that the number of target vectors, for dimension n, is

2n − 1, therefore allowing for a uniform partitioning of the target vectors by the various tasks (with only

the last task decoding one less target vector than all the others). Additionally, the chosen value for PH

leads to a single task for dimensions lower than 15; however, given the relatively low workload for these

dimensions, a single task is actually more efficient. As such, the number of tasks NTH per dimension is

given by (3.5).

NTH(n) =

⌈
2n − 1

PH

⌉
(3.5)
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The CPU implementation was straightforwardly adapted to this scheme, needing only the information

of which task is executing, so as to generate and decode the correct target vectors. A similar situation

was encountered in regards to the CUDA implementation, with the main difference being the launch

configuration of the modified CUDA kernel. The optimal configuration for this modified kernel was found

to be LH = 32 threads per block and TH blocks, given by (3.6).

TH =

⌈
Number of Target Vectors Per Task

LH

⌉
=

⌈
PH

LH

⌉
(3.6)

Note, however, that the same caveat as with the stand-alone CUDA implementation applies here (and is

not shown in the equation): this launch configuration results in a single target vector being decoded by

each thread but, for dimension 20, due to memory constraints, each thread decodes two target vectors.

StarPU also provides a layer of abstraction regarding memory management, by relieving the pro-

grammer of the necessity to manually enforce data consistency and availability. To this effect, there

is only the need to inform StarPU of the relevant data structures, which then manages said structures

between the different memory spaces (even using asynchronous transfers, if possible), and guarantees

data consistency and availability.

Since the decoding process is partitioned across different computational units, the results also origi-

nate from different sources. To address this, StarPU provides a partitioning function, that allows to split

memory structures – in this case, the N matrix where the relevant vectors are stored – into as many

sub-structures as there are tasks. This is useful so that each task only gets the part of the N matrix

it requires, and is also a way to inform StarPU that there are no dependencies involving this matrix.

After all tasks complete their execution, the matrix is un-partitioned, and all of its pieces are gathered.

Note that, as with the stand-alone GPU implementations (OpenACC and CUDA), the smaller N matrix

simplification of Chapter 3.2 was not used here.

In regards to task scheduling, StarPU provides several models to the user, like a basic policy, where

workers draw tasks from a central task queue, to priority-aware policies, to more advanced schedulers

based on performance models. These models can be based on historical data from previous executions

(for problems where data sizes does not vary significantly), or can be made to use regression functions

(for problems where data sizes vary considerably). Given that the Voronoi cell algorithm can be asso-

ciated to the latter, and because the execution times rise exponentially with the dimension, a non-linear

regression-based performance model was used. Naturally, these models require calibration in order to

successfully schedule tasks between workers, so for the purpose of registering the execution times of

the heterogeneous implementation, an initial calibration run is performed on all test bases, followed by

another run on the same bases, using the calibrated model.

Figure 3.7 shows the execution times of the heterogeneous implementation of the Voronoi cell-based

algorithm, on Machine B (GPU + 1 CPU core), using the aforementioned non-linear regression perfor-
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3. An optimized version of the Voronoi cell algorithm for the SVP

mance model.

Figure 3.7: Execution times of the heterogeneous implementation of the algorithm, on Machine B (GPU + 1 CPU
core), compared against the sequential CPU (Machine A) and stand-alone GPU (Machine B) imple-
mentations, lattice dimensions 10 to 20.

The obtained results show that even with the additional overhead from several CUDA kernel launches,

and the overhead from StarPU itself, the heterogeneous implementations of the algorithm, using the

GPU and only 1 CPU core, is capable of achieving a speedup of 15.03× when compared to the sequen-

tial CPU version, an improvement of 9.91% over the stand-alone CUDA implementation.

While the reported speedup is relatively modest, compared to the stand-alone CUDA implementation,

additional overhead is present from the added kernel launches and from StarPU itself, and only one CPU

core is available for actual work – recall that Machine B’s CPU only has 2 cores, and StarPU reserves one

for GPU control. As such, if a CPU with a higher physical core count were to be used, the performance

of the implementation would surely improve.

The obtained results show that the implementation is capable of taking advantage of heterogeneous

architectures, further improving its performance.
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The Voronoi cell 2.0 algorithm consists of a series of optimizations applied to the Voronoi cell-based

implementation described in Chapter 3. This is motivated by the fact that, for the purpose of computing

the SVP, a full description of the Voronoi cell of a lattice is not needed.

Given the importance of the norm as a metric in lattice-based cryptosystems, the first test performed

was to analyze any possible correlation between the norm of a target vector, and its respective relevant

vector (note that the result from the decode procedure may not be a relevant vector; only target vectors

that yielded valid solutions, were taken into consideration in this test). Figure 4.1 shows the correlation

of target vectors and their respective relevant vectors, for three different lattice bases.

(a) Scatter plot for dimension 4,
seed 960.

(b) Scatter plot for dimension 5,
seed 0.

(c) Scatter plot for dimension 8,
seed 456.

Figure 4.1: Correlation between the norm of target vectors and relevant vectors, for three different lattice bases.

The scatter plots of Figure 4.1 exemplify the three distinct cases observed for this test: very strong

correlation (Figure 4.1a), moderate correlation (Figure 4.1b), and somewhat weak correlation (Figure

4.1c). Even though the correlation may not hold strongly for all bases, it still remains very strong for

the shorter norms, where the solution to the SVP (the shortest relevant vector) lies; the shorter target

vectors yield the shorter relevant vectors. Note, however, that this correlation is not guaranteed to hold

for all bases, in all dimensions; this is an empirical observation and, as such, the optimizations based

on this correlation are heuristic. Recall that even approximate variants of the SVP (α-SVP), with an

approximation factor α as high as
√

2 were proven to be hard to solve.

The observed correlation motivated a follow-up test: to check whether or not the absolute shortest

target vector of a lattice is decoded into the solution of the SVP – the shortest relevant vector. In order to

achieve this, the necessity arose to generate all target vectors beforehand, and pick the shortest. While

this greatly decreases the execution time of the algorithm, it failed for 20 of the tested bases, and thus

confirming that the shortest target vector isn’t always decoded into the shortest relevant vector. As such,

less extreme optimizations were devised and applied to the algorithm.
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4.1 The optimizations

As previously mentioned, the rules described in this chapter are norm-based, as this is one of the

most important metrics in lattice algorithms – the base of the mathematical problems that support these

cryptographic systems. Specifically, the majority of these rules are used to decide whether or not to

decode a certain target vector and, as such, are used to “prune” the potential target vectors, while

others are used to decide whether or not to continue the execution of the program.

4.1.1 Gaussian heuristic stopping criterion

The first optimization applied to the algorithm provides a mechanism to abort the execution as soon

as a short relevant vector is found. This is accomplished by means of the Gaussian heuristic, an estimate

of the length of the shortest vector of a lattice, given by Equation (4.1):

α · Γ(n/2 + 1)1/n√
π

· (det L)1/n (4.1)

where α is a safety margin added to the heuristic, Γ(·) is the gamma function (an extension of the

factorial function) and n is the dimension of the lattice.

The motivation for this optimization, as previously mentioned, is to allow the program to termi-

nate early, as soon as the (estimated) shortest vector is found – in fact, some implementations of

enumeration- and sieving-based solvers do exactly this in order to decrease their running time. For

the Gaussian heuristic stopping criterion, a safety added margin of 5% was used (α = 1.05), given that

that is the value used by the SVP-Challenge in order to accept an entry into their database.

Regarding the implementation of Gaussian pruning, due to the fact that both Γ(n/2 + 1) and (det L)

can be very large, native data types may not suffice to store these numbers. As such, the computation

of the Gaussian heuristic is performed using GCC’s quad-math library. It provides the float128 – a

128-bit, quadruple precision floating-point data type – and the usual mathematical functions, extended to

this representation, including the gamma function. The determinant of the lattice is given by the product

of the diagonal entries of the triangular matrix R from the QR decomposition. Afterwards, however, the

result is small enough to be stored in a native data type and is then compared against the norm of the

relevant vectors computed during the main loop of the algorithm. If a relevant vector with norm equal to

or smaller than the heuristic is found, the loop is terminated, and the program finished.

Simply using this optimization without any order to the target vectors, however, led to finding the

shortest vector only for 87.6% of all tested bases, which motivated the strategy that follows.
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4.1.2 Gaussian heuristic stopping criterion with (target vector) pre-sorting

Motivated by the relatively low success rate of the Gaussian heuristic stopping criterion, target vector

pre-sorting was applied to this strategy, i.e. generating all target vectors beforehand – as opposed to

all other implementations, where the target vectors are computed on-the-fly during the main loop of the

algorithm – and then sorting them by increasing norm. A simple struct was implemented to allow the

storage of both a target vector and its norm, to avoid the necessity of computing the latter several times

during the sorting process. As such, the full target vector list is an array of this struct, and is sorted

using C++’s standard library function sort.

This way, due to the observed correlation between the norm of the target vectors and their respective

relevant vectors, the shorter target vectors are decoded first, therefore (potentially) avoiding unnecessary

computations. This is done to maximize the probability of finding short, relevant vectors early on. Note

that because all target vectors must be generated before being sorted, the memory usage of this variant

increases considerably, given that there are 2n − 1 target vectors for dimension n. The term pre-sorting

will be used to refer to the process of generating and sorting the target vectors before the main loop of

the algorithm. The full motivation for target vector pre-sorting is discussed in Chapter 4.1.6.

Figure 4.2 shows the execution times of the Gaussian heuristic stopping criterion strategy with pre-

sorting, compared against the sequential CPU implementation.

Figure 4.2: Execution times of Gaussian heuristic stopping criterion (added margin of 5%), with pre-sorting, on
Machine A, lattice dimensions 10 through 20.

Not only does pre-sorting accelerate this strategy – almost twice as fast, with a maximum improve-

ment of 1.94× over the version without pre-sorting – it also computes the correct solution to the SVP for

all bases tested. This success rate further validates that the shorter target vectors lead to short relevant

vectors.

The maximum speedup attained with the Gaussian heuristic stopping criterion with pre-sorting, com-
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pared to the sequential CPU implementation is of 7.88×, for dimension 18 (the speedup value shown in

the figure is for dimension 20).

4.1.3 Simple pruning

The first form of pruning, henceforth named “simple pruning”, consists in skipping the decode proce-

dure for target vectors whose norm is greater than that of the shortest relevant vector found up to that

point. In theory, this form of pruning may discard a target vector that results in an even shorter rele-

vant vector, given that no analysis was performed regarding the individual relation between the absolute

values of the norms of a target vector and its respective relevant vector.

Implementation wise, this is achieved by storing the value of the shortest relevant vector found (in

a variable named ShortestNormFound, for example, which is already present from the smaller N matrix

modification of Chapter 3.2), and simply comparing the norm of the target vector to be decoded against it.

The ShortestNormFound variable is initialized to infinity and updated every time a shorter relevant vector

is computed. The execution times of simple pruning, compared to the parallel CPU implementation, are

shown in Figure 4.3.

Figure 4.3: Execution times of simple pruning compared to the parallel CPU implementation, on Machine A, lattice
dimensions 10 through 20.

In practice, this has proven to be an effective form of pruning, yielding the correct result in 99.85% of

the bases tested, and attaining a maximum speedup of 78.58×, when compared to the sequential CPU

implementation.
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4.1.4 Gaussian pruning

The second form of pruning – Gaussian pruning – is named after and based on the Gaussian heuris-

tic, which is an estimate of the norm of the shortest vector of a lattice, as previously mentioned, given by

(4.1). Similarly to simple pruning, target vectors are discarded if their norm is greater than the Gaussian

heuristic. This form of pruning retains the concerns of simple pruning in regards to the certainty of the

solution.

Contrarily to the Gaussian heuristic stopping criterion, where the Gaussian heuristic was used to

compare against the norm of the computed relevant vectors, in this strategy it is used to compare

against the norm of the target vectors to be decoded. Note that even though both optimizations use the

Gaussian heuristic, their values are stored in different variables so as to not interfere with one another,

and to allow different safety margins to be used.

After testing, an added margin of 15.5% was chosen, as it provided a good balance between cor-

rectness and performance. Figure 4.4 shows the execution times of the Gaussian heuristic, compared

against the parallel CPU implementation.

Figure 4.4: Execution times of Gaussian pruning (with an added margin of 15.5%) compared to the parallel CPU
implementation, on Machine A, lattice dimensions 10 through 20.

This form of pruning computed the correct result for 99.85% of all bases tested, and achieved a

maximum speedup of 58.20×, when compared against the sequential CPU implementation.

4.1.5 Combined pruning

Given the effectiveness of both simple and Gaussian pruning, a version that combines both forms

was devised, thus potentially increasing the amount of pruning.

In regards to the implementation, because the pruning conditions are checked independently, there
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are two possible orders: either perform simple pruning followed by Gaussian pruning, or the other way

around. As with Gaussian pruning, a safety margin of 15.5% was used, so that the performance of

the various forms of pruning may be directly comparable. Figure 4.5 shows the execution times of the

combined pruning variant, by both orders, compared to the parallel CPU implementation.

Figure 4.5: Execution times of combined pruning (with an added margin of 15.5%, both orders) compared to the
parallel CPU implementation, on Machine A, lattice dimensions 10 through 20.

The results depicted show that there is no meaningful difference to the order by which the individual

pruning strategies are applied, attaining similar performance. The combined pruning strategies com-

puted the correct solution for 99.84% of all bases tested, and achieved a maximum speedup of 80.01×,

compared against the sequential CPU implementation.

4.1.6 Combined pruning with (target vector) pre-sorting

Simple pruning relies on the norm of the computed relevant vectors as a comparison criterion. In

the worst case scenario, this form of pruning may end up taking the same amount of time as no pruning

at all, if the norm of the relevant vectors being computed keeps decreasing and is always larger than

the norm of the target vectors. As shown earlier, there is a strong correlation between the norm of the

target and relevant vectors for the shorter norms, i.e. decoding target vectors with shorter norms will

generally lead to shorter relevant vectors as well. If the algorithm starts by decoding the target vectors

with shorter norms then, due to the observed correlation, the norm of the computed relevant vectors will

be “short” too. Thus, target vector pre-sorting potentially increases the pruning extent given that target

vectors with larger norms would, almost inevitably, be superseded by those of smaller norms, therefore

avoiding unnecessary decodes.

This way, as mentioned previously, the shorter target vectors are decoded first, therefore (potentially)

avoiding unnecessary computations. Note that, as with the Gaussian heuristic stopping criterion with
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(target vector) pre-sorting, the memory usage of this strategy increases considerably, when compared

to the variant without pre-sorting.

Given the fact that the Gaussian heuristic is a constant value for a given lattice basis, pre-sorting

does not change the target vectors that are decoded, merely the order by which they are so. Only

simple and combined pruning may benefit from this.

Figure 4.6 shows the execution times of the combined pruning with pre-sorting, by both orders and

with an added margin of 15.5%, compared against the combined pruning without pre-sorting.

Figure 4.6: Execution times of combined pruning (with an added margin of 15.5%, both orders), with and without
pre-sorting, on Machine A, lattice dimensions 10 through 20.

Pre-sorting the target vectors by increasing norm is indeed beneficial, improving the performance of

the combined pruning strategy by an additional 22.32% in the best case, and maintaining a success rate

of 99.84%. However, and as mentioned previously, the trade-off of this improvement is the increased

memory usage of the implementation.

Common to all forms of pruning presented, is the maximum difference between the norm of the

computed solution and the norm of the correct one, for the bases that failed to yield the correct result, at

4.86%. This value is within the margin of the 1.05-SVP (5% α-SVP), therefore confirming the potential of

these forms of pruning.

Table 4.1 summarizes the results obtained with the various optimizations devised and implemented.

As the table shows, the best result was obtained with the combined pruning with pre-sorting opti-

mization, achieving a maximum speedup of 86.10×, compared to the sequential CPU implementation,

while failing to compute the shortest lattice vector for merely 0.16% of the tested bases. Furthermore,

and as previously mentioned, for the bases that did not yield the shortest vector, the maximum difference

between the norm of the computed solution and the actual shortest vector was of 4.86%. Note that the

maximum speedup was achieved in dimension 20 for all optimizations, except for the Gaussian stopping
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Table 4.1: Maximum speedup factors attained for the various strategies devised.

Optimization Maximum
speedup factor

Success
rate

Gaussian stopping
criterion with pre-sorting 7.88× 100%

Simple
pruning 78.58× 99.85%

Gaussian
pruning 58.20× 99.85%

Combined
pruning 80.01× 99.84%

Combined pruning
with pre-sorting 86.10× 99.84%

criterion with pre-sorting, that yielded the maximum speedup in dimension 18.

4.2 Parallel implementations

Parallel version of these optimizations were implemented as well, although only for the CPU, due

to the fact that OpenACC does not provide a critical region like OpenMP, and CUDA discourages such

constructs as well.

In practice, this parallel version was virtually ready when the optimizations were implemented, given

the fact that its parallelization consists of applying the OpenMP directives to the main loop of the al-

gorithm, like in the parallel CPU implementation of the original algorithm, described in Chapter 3.3.

Furthermore, the only operation that must be done inside a critical region is the computation of the

shortest norm found, which is already performed as part of the smaller N matrix simplification, described

in Chapter 3.2. Additionally, because GCC implements a parallel sort, so can the target vector pre-

sorting process be performed in parallel.

Figure 4.7 shows the performance of the parallel versions of the Gaussian heuristic stopping criterion

with pre-sorting (4.7a), simple pruning (4.7b), Gaussian pruning (4.7c), combined pruning without pre-

sorting (4.7d) and combined pruning with pre-sorting (4.7e), compared against the baseline parallel

CPU implementation. Note that for the combined pruning strategy, only one order is shown, as they

were proven to be virtually identical.

Similarly to the baseline parallel CPU implementation, so do the parallel optimized variants achieve

further speedups, up to 256.51×, compared to the baseline sequential CPU version.
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(a) Parallel Gaussian heuristic stopping criterion (+5%
safety margin) with Pre-Sorting (b) Parallel Simple Pruning

(c) Parallel Gaussian Pruning (+15.5% safety margin)
(d) Parallel Combined Pruning without Pre-Sorting

(+15.5% safety margin)

(e) Parallel Combined Pruning with Pre-Sorting (+15.5% safety margin)

Figure 4.7: Parallel Gaussian heuristic stopping criterion with pre-sorting, simple pruning, Gaussian pruning and
combined (with and without pre-sorting) pruning, compared against the baseline parallel CPU imple-
mentation on Machine A, lattice dimensions 10 to 20.

41



4. Voronoi cell 2.0

42



5
Exploring the limits of the LUSA

library

Contents

5.1 The LUSA library . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

5.2 Testing LUSA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

5.3 Integrating Voronoi cell in LUSA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

43



5. Exploring the limits of the LUSA library

44



5.1 The LUSA library

This chapter is dedicated to the Lattice Unified Set of Algorithms (LUSA), a High Performance Com-

puting (HPC) library for lattice-related problems. Specifically, LUSA’s performance is compared against

other libraries that are usually used in the context of lattice-based cryptography, such as NTL [44] and

fplll [45]. LUSA is available at http://alfa.di.uminho.pt/~ammm/lusa.html.

The main contribution to the LUSA library was the integration of the work presented in this disserta-

tion, the integration of an enumeration with extreme pruning routine, the writing of the documentation,

the standardization of the function interfaces, and the preparation of the code as a ready-to-use library.

5.1 The LUSA library

The main goals of LUSA are performance and simplicity: not only it aims to offer comparable or

better performance than similar libraries and parallel implementations of most routines, but also to be

simple to both install and use, depending upon no other external library, and having clear methods for

the functions it provides.

Lattice bases are often represented by large numbers, i.e. numbers that can have dozens, if not

hundreds of digits. This means that the native data types of C/C++ (the computer language LUSA is

implemented in) are not capable of handling such numbers. As such, LUSA provides a custom multi-

precision data type for integers, and an extended exponent, double precision data type for real numbers

(same precision as the native double data type, but with a larger exponent). These “big numbers” are

usually handled with a third-party library, such as the GNU Multiple Precision (GMP) library, but for ease

of installation – part of LUSA’s second goal – custom data types are built-in.

5.2 Testing LUSA

This section shows the performance of LUSA compared against similar libraries – NTL and fplll.

The testing procedure in this chapter is identical to the one described in Chapter 3, differing only in

the number of bases tested in each dimension that, unless otherwise stated, is set at 10 bases per

dimension.

5.2.1 Basis reduction

All of LUSA’s routines expect the basis to have been LLL-reduced and converted to C/C++’s native

data types, so this is the most computationally-intensive step of the library. LUSA provides methods for

both LLL and BKZ reductions, using both exact and approximate arithmetic. The fastest available LLL

method is an heuristic, floating-point variant, based on Schnorr and Euchner’s work [12]. Figure 5.1a

shows the performance of LUSA’s LLL reduction against NTL and fplll.
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As mentioned previously, all LUSA’s routines expect the basis to be LLL-reduced, and that is the case

for the BKZ reduction as well. Figure 5.1b shows the performance of LUSA’s BKZ reduction against NTL

and fplll.

(a) Comparison of the performance of the LLL reduction
method in LUSA, NTL and fplll, lattice dimensions 45
to 60.

(b) Comparison of the performance of the BKZ reduction
method in LUSA, NTL and fplll, using block size 20,
lattice dimensions 45 to 60.

Figure 5.1: Comparison of various reduction routines present in LUSA, NTL and fplll, on Machine A.

The gap in the execution times of NTL’s implementations is due to the fact that, up to dimension

50, double precision versions of the reductions are used but, for dimensions 51 and higher, due to the

recommendation of the library, extended exponent double precision variants are utilized instead in order

to handle the large numbers involved. The figures show that while LUSA’s LLL implementation is slightly

slower than both fplll’s and NTL’s, LUSA’s BKZ implementation is faster than the others. This can be

attributed to the fact that LUSA’s BKZ implementation assumes that the basis is already LLL-reduced,

therefore starting with an advantage over the other libraries.

5.2.2 Enumeration functions

Currently, LUSA implements a non-pruned variant of enumeration, based on the algorithm proposed

in [12], with a parallel version also available. Figure 5.2 shows the execution times of the enumeration

function, compared with fplll’s enumeration.

The figure shows that LUSA’s enumeration is slightly slower than fplll’s, when using a single thread,

but that can be attributed to the necessary changes of LUSA’s implementation to support multi-threading.

However, the multi-threaded performance of LUSA scales well with the number of threads used, sur-

passing fplll’s single-threaded implementation. Note that even though it is beneficial, Hyper-Threading

provides a more modest speedup than an actual physical core.

LUSA also provides an enumeration with extreme pruning routine, based on [23]. Because fplll

does not provide an enumeration with extreme pruning implementation – at least directly, from the pre-
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Figure 5.2: Comparison of the performance of the non-pruned enumeration routines present in LUSA using 1, 2, 4
and 8 threads, and fplll using 1 thread, on Machine A, lattice dimensions 35 to 50.

compiled executable – an alternative is used to showcase the performance of LUSA’s implementation.

The plll library [46] (distinct from the fplll library) offers lattice-related implementations of several al-

gorithms, notably enumeration with extreme pruning based on [23]. The execution times of LUSA’s

implementation, compared against plll’s, are shown in Figure 5.3.

Figure 5.3: LUSA’s enumeration with extreme pruning routine using 1, 2, 4 and 8 threads, compared against plll’s
implementation using 1 thread, on Machine A, lattice dimensions 35 to 50.

The figure shows a better overall performance of LUSA’s implementation, for all dimensions tested.

Further speedups are attained from the use of multiple cores, achieving a maximum speedup of 2.37×,

when compared to the sequential implementation.
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5.2.3 Sieving functions

Regarding sieving algorithms, LUSA currently provides a multi-threaded HashSieve implementation,

based on the work by Mariano et al. [37,47]. Figure 5.4 shows the execution times of this routine using

a variable number of threads, compared to a reference implementation.

Figure 5.4: LUSA’s HashSieve routine using 1, 2, 4 and 8 threads, compared to the reference HashSieve imple-
mentation using 1 thread, on Machine A, lattice dimensions 35 to 50.

Due to the fact that fplll does not implement an HashSieve function, LUSA’s performance is compared

against Laarhoven’s publicly available sequential HashSieve implementation [48]. Even though multi-

threading does not appear to be beneficial in lower dimensions, the execution times start to diverge

in higher dimensions, showing the multi-threaded approach to be advantageous as the dimension of

the lattice increases. Similarly to enumeration, and despite still improving upon performance, Hyper-

Threading provides a more modest speedup than an actual physical core.

5.3 Integrating Voronoi cell in LUSA

Integrating the Voronoi cell algorithm (and the enumeration with extreme pruning one, as well) in

LUSA meant that several functions had to be changed or implemented from scratch. The basis reduction

step, previously used the NTL, is now performed by LUSA’s own routines. At one point, the Voronoi cell

algorithm requires the computation of the inverse of a matrix; this had to be performed from scratch, as

LUSA did not have such a function implemented yet.

The Gaussian heuristic (Equation 4.1, necessary for the Gaussian pruning, as described in Chapter

4) depends upon the computation of the determinant of the basis matrix (which may overflow native data

types), followed by a power operation with real exponent, neither of which were implemented in LUSA.
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One way of computing the determinant of a matrix is through its QR decomposition, specifically through

the product of the diagonal entries of the triangular matrix R, as mentioned in Chapter 4.1.4. Since

the QR decomposition was already necessary for the algorithm, the computation of the determinant

was straightforwardly implemented, with the potential overflow avoided using LUSA’s extended-exponent

double precision data type. Regarding the power function (with real exponent), it can be computed using

the square root function, the latter of which is already present in LUSA. The results of the implementation

were validated after the integration, to guarantee that no errors were introduced during the process.

Figure 5.5 shows the execution times of the integrated Voronoi cell-based implementation. The only

known public implementation of a Voronoi cell-based algorithm is in the plll library, which implements

Micciancio and Voulgaris’ algorithm, presented in [43]. Due to the higher execution times of plll’s imple-

mentation, only results up to dimension 18 are shown and, for dimensions 15 and up, only one lattice

basis is tested per dimension.

Figure 5.5: LUSA’s Voronoi cell-based routine using 1, 2, 4 and 8 threads, compared against plll’s Voronoi cell-
based implementation using 1 thread, on Machine A, lattice dimensions 10 to 20.

The figure shows a virtually identical scalability as the stand-alone Voronoi cell-based implementa-

tion, presented in Chapter 3.3, reporting a maximum speedup of 3.57×, for 8 threads.

The results presented in this chapter show that LUSA’s implementations are generally faster than the

usual alternatives, aim to be simpler to use and, above all, offer parallel versions that are not available

on the other major libraries.
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The work conducted for this dissertation showed that is indeed possible to accelerate a Voronoi cell-

based algorithm for the SVP. Furthermore, the various implementations described in this dissertation

feature general-purpose programming optimizations, aimed at improving the performance of the appli-

cations, such as the use of larger, single-dimension arrays for the storage of matrices, thus accelerating

memory accesses. Additionally, algorithm-specific optimizations were employed, such as the N matrix

simplification, that allowed to severely decrease the memory requirements of the CPU implementations.

Parallel implementations of the algorithm were also devised for the CPU, GPU, and heterogeneous

(CPU + GPU) architectures. As expected, due to the independent nature of the iterations of the main

loop of the algorithm, the parallel CPU version, implemented using OpenMP, achieves linear speedups

when using physical cores, and also benefits from the use of Hyper-Threading, although by a smaller

degree. As such, this version yields a maximum speedup of 5.44× using 8 threads (HT, Turbo Boost

disabled). Concerning the GPU, both OpenACC and CUDA versions were implemented, with the former

achieving a maximum speedup of 12.15×, despite the fact that the enumeration-based CVP-solver, upon

which the algorithm is based, is essentially divergent in execution. Regarding the CUDA implementation,

several architecture-specific optimizations were employed, such as the use of asynchronous memory

transfers (when possible), the use of constant memory for applicable data, and a single, larger memory

allocation for all required private structures (later partitioned using pointer arithmetic), all contributing to a

further improvement over the OpenACC version, with a reported speedup of 13.37× over the sequential

CPU version. An heterogeneous CPU + GPU variant was also devised, in order to take advantage of

both processing units simultaneously, by making use of performance models in order to better suit the

computational needs of the implementation to the available hardware. Despite the added overhead from

more finely-grained partitioning of work, compared to the standalone CUDA implementation, the help of

a single CPU thread results in a maximum improvement of 9.91% over the standalone CUDA version.

As such, the heterogeneous implementation outperformed the standalone CUDA implementation, and

attained a maximum speedup of 15.03× using the GPU and a single CPU thread, when compared to the

baseline CPU implementation.

A stopping criterion for the algorithm was also implemented, based on the Gaussian heuristic – an

estimate of the length of the shortest vector of a lattice – stopping the execution of the program as

soon as a relevant vector whose norm is less than or equal to the Gaussian heuristic (with an added

safety margin). This stopping criterion was implemented both with and without target vector pre-sorting

but, given the relatively low success rate of the latter (87.6%), only the former is of practical interest.

As such, the Gaussian heuristic stopping criterion with (target vector) pre-sorting achieved a maximum

speedup of 7.88×, while computing the correct solution for the SVP for all tested bases. Simple pruning,

the first norm-based pruning strategy devised, allowed for the pruning of the target vectors by using

information that was readily available on the original algorithm – the norm of the relevant vectors. This
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form of pruning achieved a maximum speedup of 78.58×, with a success rate of 99.85%, confirming the

potential of norm-based pruning. The second form of pruning implemented, Gaussian pruning, relies on

the computation of the Gaussian heuristic and uses this heuristic to prune the target vectors, achieving a

maximum speedup of 58.20×, with the same 99.85% success rate. Motivated by the effectiveness of both

optimizations, a combined form was implemented that, intuitively, should further increase the amount of

pruning to be made. This was proved to be true, with the combined pruning achieving a maximum

speedup of 80.01×, better than any of the individual strategies, while the success rate was virtually

unchanged at 99.84%. Given the observed correlation between the norm of the target vectors and their

respective relevant vectors, and also due to the characteristics of simple pruning, generating and sorting

the target vectors (by increasing norm) before the main loop of the algorithm could, theoretically, prove

to be advantageous. This was indeed the case, with the last form of pruning – combined pruning with

(target vector) pre-sorting – further improving upon the performance of combined pruning, despite having

to spend time sorting the target vectors, yielding a maximum speedup of 86.10×, while maintaining the

success rate of combined pruning, at 99.84%, thus becoming the fastest pruning strategy developed.

Furthermore, the norm of the solution of all the bases that did not yield the correct shortest vector were,

at most, 4.86% larger than that of the actual solution for the SVP, for the given lattice. As such, even

when the correct, shortest vector was not found, a short vector was computed, still within the bounds of

the approximate 5% α-SVP.

Additionally, parallel versions of the pruned variants were devised for the CPU, implemented using

OpenMP. Similarly to the non-pruned implementation, further speedups are achieved through paralleliza-

tion. The parallel CPU implementation of the combined pruning strategy with (target vector) pre-sorting

– the fastest pruning strategy devised – achieves a maximum speedup of 256.51× when using 8 threads

(HT), compared against the sequential, non-pruned CPU implementation.

Despite still being far from current state-of-the-art dimensions, this work proves that there are still

improvements to be made in Voronoi cell-based algorithms, and that this family of algorithms should not

yet be discarded.
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Abstract—In this paper, we also propose a parallel implemen-
tation of a Voronoi cell-based algorithm for the Shortest Vector
Problem for both CPU and GPU architectures. Additionally, we
present an algorithmic simplification with particular emphasis
on significantly reducing the memory usage of the implemen-
tation. According to our tests, the parallel multi-core CPU
implementation scales linearly with the number of cores used,
and also benefits from simultaneous multi-threading, achieving
a maximum speedup of 5.56× for 8 threads. The parallel
GPU implementation obtains speedups of 13.08×, compared
with the sequential CPU implementation. The acceleration of
this class of signal processing algorithms is a fundamental step
in the evolution of post-quantum cryptanalysis. Currently, the
best algorithms can take months to process for moderately low
dimensions.

Index Terms—Cryptography, Voronoi, Accelerators

I. INTRODUCTION

MODERN cryptographic systems (such as RSA [1], El-
Gamal [2] and others) are based on hard mathematical

problems, such as the factorization of large numbers and the
computation of discrete logarithms. However, these systems
were shown to be vulnerable, as they are feasible in the
presence of quantum computers [3], [4], [5].

Given this vulnerability, new types of cryptosystems have
been proposed since then, withstanding attacks even in the
presence of quantum adversaries. Lattice-based cryptosystems
are a very prominent type of cryptosystem for the so-called
post-quantum era. They support advanced primitives, such as
Fully Homomorphic Encryption, which allows for operations
to be implemented on encrypted data, without having to
decrypt it [6], [7]. They are also relatively efficient and easy
to implement, and are believed to be secure in the presence
of adversaries with quantum computers [5].

Lattice-based cryptosystems rely on problems such as the
Shortest Vector Problem (SVP), the Closest Vector Problem
(CVP) and their variants, as they cannot be solved exponen-
tially faster on a quantum computer than on a traditional one.

A lattice L in Rn is the subgroup formed by all integer
linear combinations of a basis B, a set of linearly independent
vectors b1, ...,bm. It can be expressed by (1):

L(B) =
{

x ∈ Rn : x =

m∑

i=1

vibi, v ∈ Zm

}
, (1)

where m ≤ n is the rank of the lattice and if m = n, the
lattice is of full rank.

Even though non-integer lattices are possible, integer lattices
are normally used, which does not affect the hardness of
problems and integers are easier to handle computationally.

Figure 1a shows an example of a lattice in R2, with its
basis vectors (b1, b2) shown in red. Vector b3 is a linear
combination of the basis vectors, and its Euclidean norm is
smaller than b1. In this context, we will refer to this as a
shorter vector, i.e. b3 is shorter than b1. The process of making
lattice basis vectors shorter is called lattice basis reduction and
is used in a multitude of lattice-based algorithms.

0

b1

b2

b3 = b1 − 2b2

(a) A lattice in R2 and its
basis (b1,b2) in red.

0

v1

v2

v3
v4

v5

v6

(b) A Voronoi cell in R2 (blue) and
its relevant vectors (red).

Figure 1: Example of a lattice and a Voronoi cell.

The SVP consists in computing the shortest vector of a
lattice in terms of its Euclidean norm. Similarly, the CVP
consists in finding the lattice vector closest to a given arbitrary



vector (we will call these target vectors, and the closest lattice
point to it, its solution vector).

II. PRIOR WORK

Voronoi cell-based algorithms received considerable less
attention than other classes of SVP-solvers. To the best of our
knowledge, there are no known Voronoi cell-based parallel
GPU implementations. There is, however, substantial work on
the parallelization of other types of lattice-related solvers, such
as enumeration and sieving.

In regards to enumeration, Correia et al. proposed a parallel
CPU implementation of the Schnorr-Euchner SE++ algorithm,
achieving speedups up to 14× for 16 threads [8]. Hermans et
al. presented a parallel GPU (CUDA) implementation of the
same enumeration algorithm, obtaining a speedup of 5× on
a GTX 280, compared to a sequential CPU implementation
[9]. Kuo et al. proposed a CPU + GPU version of Hermans’
et al. work, and were able to find the solution to the SVP
for a lattice in dimension 114 in less than two days, using 8
NVIDIA GPUs [10].

Milde and Schneider’s parallelized sieving algorithms,
which scale (almost) linearly for small thread counts (up
to 5) [11]. Ishiguro’s et al. work is based on Milde and
Schneider’s, improving the efficiency of the algorithm for high
thread counts [12]. Mariano et al. also proposed a parallel
implementation of GaussSieve, achieving linear speedups up
to 64 threads and generally improving upon the performance
of previously published works [13]. Recently, Bos et al. [14]
presented a parallel GaussSieve implementation, obtaining a
speedup factor of 2 compared to Mariano’s et al. work [13].

Mariano et al. also parallelized versions of the HashSieve
and LDSieve algorithms, in [15] and in [16], respectively. The
former reports speedups of up to 12× with 16 threads, and the
latter linear speedups for the same number of threads.

Our contribution is twofold: we decrease the memory usage
of the CPU implementation, by reducing the list of relevant
vectors from 2× (2n − 1) to 1 (the shortest relevant vector);
and we also propose parallel implementations of a Voronoi
cell-based algorithm, for both CPU and GPU architectures,
achieving linear speedups for the former, and further speedups
(compared to the CPU version) for the latter.

III. VORONOI CELL ALGORITHM FOR THE SVP

The Voronoi cell V of a lattice is, by definition, the set of
all points closer to zero than any other lattice point (see (2)).

V(L) = {x ∈ Rn : ||x|| ≤ ||x− v|| ∀ v ∈ L}. (2)

The vectors of the minimum set required to fully describe the
Voronoi cell of a lattice are called Voronoi relevant vectors and
this set has 2× (2n− 1) vectors, at most. Figure 1b shows an
example Voronoi cell of a lattice in R2, and its relevant vectors.
The solution to the SVP is given by the shortest relevant vector.

The “Relevant Vectors” algorithm, by Agrell et al., is used
to compute the relevant vectors of an arbitrary lattice, and runs
on exponential time. The algorithm can be split into four steps,
which we now describe briefly. For more detail, we refer the

Function AllClosestPoints
Input: Matrix M, matrix H, matrix Q, vector s
Output: List of vectors X

1 Compute x = sQT ;
2 U = Decode(H, x);
3 Compute γ as the lowest value ||uM− s|| for all u ∈ U;
4 Compute X as all {uM : u ∈ U, ||uM− s|| = γ}
5 return X

reader to [17]. First, the target vectors that will be later used by
a CVP solver are generated. Second, the coordinate system of
the input data is modified (we refer the reader to [17] for more
details on the reasoning behind this step). Third, the lattice
basis and the target vectors are fed into an enumeration-based
CVP solver. This enumeration algorithm is based on Schnorr
and Euchner’s algorithm, and gets its name from the fact that
it enumerates all lattice points inside a certain radius [18]. In
this paper we adopt the nomenclature of [17], and refer to this
step as the decode procedure. Finally, the output of the decode
step is converted back to the original coordinate system and,
if the result is valid, i.e. if it is indeed a relevant vector, stored
in a list.

Practically, it is desirable to start by reducing the ba-
sis, in order to increase performance and the numerical
stability of the algorithm. This is accomplished by means
of a Lenstra-Lenstra-Lovász (LLL) [19] or Block Korkine-
Zolotareff (BKZ) [18], [20] reduction. The si, i = 1, ..., (2n−
1) target vectors of the basis M are then generated and stored
in list T V , according to (3).

T V(M) =
{

s = zM : z ∈ {0, 1/2}n − {0}
}

(3)

After the target vector generation and input data pre-
processing stages, the decode procedure is then executed,
resulting on the list of vectors U, which is then processed
according to (4), resulting in the list of vectors X.

γ = min
{
||uM− s|| for all u ∈ U

}

X =
{

uM : u ∈ U, ||uM− s|| = γ
} (4)

If the list X contains 2, and only 2 vectors, then the result
of the decode procedure is valid, and the vectors are added to
the list of Voronoi relevant vectors N (a valid result yields 2
vectors that are symmetric to each other and, therefore, have
the same norm). In practice, because the vectors are symmetric
and of equal norm, we store only one of them, thus requiring
half the memory space for this list.

The pseudo-code of our baseline (CPU sequential) imple-
mentation of the algorithm is shown in Algorithm 1.

Next we describe the main strategies used to perform the
parallelization of the algorithm.

IV. VORONOI CELL PARALLELIZATION

We parallelized Algorithm 1 with OpenMP compiler direc-
tives for the CPU, and OpenACC compiler directives for the



Algorithm 1: Relevant Vectors
Input: Basis matrix B
Output: Relevant Vectors N

1 M = Reduce(B); /* for example, using the LLL
algorithm */

2 [Q, R] = QR decomposition of M;
3 G = RT ;
4 H = G−1;
5 N = ∅;
6 forall vectors s ∈ T V do
7 X = AllClosestPoints(M, H, Q, s);
8 if |X| = 2 then
9 N = N

⋃{2x− 2s : x ∈ X};

10 return N

CPU and GPU. These directives were applied to the main loop
of the algorithm (line 6 of Algorithm 1). Each iteration of the
main loop, where target vector generation and decoding take
place, is completely independent from one another, allowing
threads to run concurrently without data races and, therefore,
the need for synchronization. Due to the fact that the workload
may be unbalanced, i.e. not every decode takes the same
amount of time, we used OpenMP’s dynamic scheduler.

The memory usage of the Voronoi algorithm is very low,
with the exception of the matrix that holds the relevant vectors.
This structure grows exponentially with the dimension of the
lattice basis. Given the fact that we are merely interested in
the solution to the SVP, we implemented a mechanism to
store only the shortest relevant vector found. This introduces
the need for some synchronization between threads but, in
our tests, it had a negligible effect on the performance of
the algorithm, but with the benefit of decreasing the memory
footprint. This was achieved with OpenMP’s critical region
and is shown in Algorithm 2 (note that the data management
clauses – shared, private, etc – are not shown for legibility
purposes). This memory optimization could not be applied to
the GPU implementation due to the fact that, so far, OpenACC
does not provide a critical construct. The memory savings
achieved with this approach can be quantified by (5).

Memory Savings =
8× 2n × n

4× n = 2× 2n (5)

OpenACC is similar to CUDA in regards to GPU thread
management. The control is provided to the user by means
of the number of gangs, workers and vector length, which are
equivalent to CUDA’s number of blocks, warp size and threads
per block, respectively. In our implementation, addressed in
Algorithm 3, we used a vector length L (threads per block) of
128 and the number of gangs T (number of blocks) depends
on the size of the problem, given by (6).

T =

⌈
Number of Target Vectors

L

⌉
(6)

This launch configuration results in a kernel where each thread
decodes a single target vector (see Figure 2). However, this

Figure 2: Execution flow of the OpenACC kernel for blocks
processing L threads in parallel.

Algorithm 2: OpenMP Parallel Relevant Vectors
Input: Basis matrix B
Output: Relevant Vectors N

1 M = Reduce(B); /* for example, using the LLL
algorithm */

2 [Q, R] = QR decomposition of M;
3 G = RT ;
4 H = G−1;
5 N = ∅;
6 min norm = ∞;

7 #pragma omp parallel for
8 forall vectors s ∈M do
9 X = AllClosestPoints(M, H, Q, s);

10 #pragma omp critical
11 if ||2x− 2s|| < min norm then
12 min norm = ||2x− 2s||;
13 N = {2x− 2s : x ∈ X};

14 return N

also means that some structures must be private to each thread,
thus increasing the memory usage of the OpenACC implemen-
tation. Note that, although the list that holding the relevant
vectors is not as small as in the OpenMP implementation,
it did not mean much, memory-wise, for the dimensions we
tested.

Besides the parallelization of the algorithm, and in regards
to memory management, we use a single large array instead
of an array of arrays for storing each matrix. This requires the
use of special indexing notation, but decreases allocation and
deallocation time, and improves memory locality.

V. EXPERIMENTAL RESULTS

The tests shown in this section were carried out in the
machines detailed in Table I. Machine A is running Ubuntu
16.04 x86 64, with kernel 4.13. Machine B is running Ubuntu
17.10 x86 64, with kernel 4.13. The clock frequency in paren-
thesis represents the maximum attainable frequency using
Turbo Boost technology. SMT stands for simultaneous multi-
threading and HT stands for hyper-threading. L1 cache is split
between instruction (i) and data (d) cache. All programs were
compiled with the -O3 and -march=native optimization



Algorithm 3: OpenACC Parallel Relevant Vectors
Input: Basis matrix B
Output: Relevant Vectors N

1 M = Reduce(B); /* for example, using the LLL
algorithm */

2 [Q, R] = QR decomposition of M;
3 G = RT ;
4 H = G−1;
5 N = ∅;
6 min norm = ∞;

7 #pragma acc parallel loop independent
8 forall vectors s ∈M do
9 X = AllClosestPoints(M, H, Q, s);

10 if |X| = 2 then
11 N = N

⋃{2x− 2s : x ∈ X};

12 return N

Table I: Apparatus: Machine A was used for the GPU and
Machine B was used for the CPU runs.

Machine A (GPU) B (CPU)
CPU Intel Core i3 6100 Intel Core i7 740QM
Clock frequency 3.70 GHz 1.73 GHz (2.93 GHz)
Cores 2 4
SMT Yes (w/HT, 4 threads) Yes (w/HT, 8 threads)
L1 Cache 32 kB i + 32 kB d 32 kB i + 32 kB d
L2 Cache 256 kB 256 kB
L3 Cache 3 MB 6 MB
RAM 8 GB 8 GB

GPU NVIDIA GeForce
1060 GTX —

GPU Clock rate 1759 MHz —
GPU RAM 6 GB —
OpenMP
Compiler — g++ 7.2.0

OpenACC
Compiler

PGI Compiler
Suite 18.4

PGI Compiler
Suite 18.4

flag. The OpenACC GPU program was compiled with the
-acc flag, in order to enable OpenACC directives, and
the -ta=tesla:cc60 flag, to generate code for a GPU
with compute capability 6.0. The compilation of the CPU
implementation using OpenACC is similar, with exception of
the -ta=multicore flag, to generate code for a multi-core
CPU instead.

The bases used in our tests were generated using
the SVP-Challenge’s lattice basis generator (https://www.
latticechallenge.org/svp-challenge/), compiled with NTL ver-
sion 9.3 (https://www.shoup.net/ntl/). Unless otherwise stated,
we carried out 10 runs per dimension (seeds 0 through 9),
and the results shown correspond to the arithmetic average of
those 10 runs. The bases were all reduced with NTL’s LLL
algorithm.

As previously mentioned, the OpenACC implementation
uses more memory than OpenMP’s, and it would be infeasible
to run a single thread per target vector for dimensions 20
or higher. Instead, each thread decodes two target vectors.
Moreover, the memory usage of the original implementation,
for dimension n = 20, is 168 MBytes for the structure that

Figure 3: OpenMP and OpenACC CPU implementation using
1, 2, 4 and 8 threads on Machine B (Turbo Boost On),
and OpenACC GPU implementation on Machine A, lattice
dimensions 10 to 20.

holds the target vectors, while the optimized version drops this
usage to 80 Bytes.

Regarding scalability, and due to the fact that the effect
of Turbo Boost varies with the number of threads used, we
also tested our implementations with Turbo Boost turned off,
achieving linear speedups for higher dimensions (i.e. higher
workloads, where the overhead of thread creation is several
orders of magnitude lower than actual computation time), for
both OpenMP and OpenACC CPU implementations. Figure
3 shows the execution times of the OpenMP and OpenACC
implementations, with Turbo Boost enabled for all CPU runs.

The GPU implementation is able to outperform both the
OpenMP and OpenACC CPU ones for all dimensions shown,
with a maximum speedup of 13.08× for dimension 20, when
compared against the sequential CPU run. The execution times
of the OpenMP and OpenACC CPU implementations are
virtually identical for higher dimensions.

VI. CONCLUSIONS

The proposed parallel Voronoi cell-based approach with
an algorithmic simplification that reduces the memory usage
scales linearly with the number of CPU and GPU cores used.

The reported speedups and the quick learning curve of
the proposed OpenACC-based solution show that high-level
parallelization targeted for GPUs is easily within reach of the
signal processing community to engage in the world of HPC
for dealing with relevant compute-intensive problems.
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Abstract—Post-quantum cryptography, that is the cryptosys-
tems that will withstand attacks with quantum computers,
require a complete re-design of the current systems we know. At
the same time, the energetic cost of developing new systems can be
leveraged by the support of low-power embedded GPU platforms.
Lattice-based algorithms have gained special interest for several
reasons, including their simplicity and capability to perform
operations on encrypted data (Fully Homomorphic Encryption).
In this paper we exploit massive thread-level parallelism on
embedded CPUs and GPUs from Nvidia, in one algorithm
used in lattice-based cryptography. The developed OpenMP and
CUDA-based kernels allow exploiting parallel regions of the
code more conveniently on either the ARM CPU or the GPU,
respectively. We report 3.7 to 5.3W of processing power for the
Nvidia embedded processors, while achieving a relatively high
throughput, with considerably higher energy efficiency, compared
to the other processors used.

Index Terms—Cryptography, Voronoi cell, Embedded proces-
sors, Parallel processing, Low-power, Energy saving

I. INTRODUCTION

ALGORITHMS tailored for quantum architectures have
shown vulnerabilities in modern cryptographic systems,

such as RSA [1], ElGamal [2] and others. Specifically, in 1994
Shor proposed an algorithm designed for quantum computers
that made the factorization of large numbers and computation
of discrete logarithms feasible, thus rendering insecure the
cryptosystems that base their security on these types of hard
mathematical problem [3], [4].

Motivated by this discovery, the scientific community en-
deavored to design and study quantum-immune alternatives
to current cryptographic systems. Lattice-based cryptosystems
are especially interesting in this context, not only because
they are believed to remain secure in the presence of quantum
attacker, but also due to the fact that they are relatively simple
to implement and efficient to use, and also support advanced
cryptographic primitives, such as Fully Homomorphic Encryp-
tion, which allows some operations to be applied directly to
the encrypted data [5], [6].

Lattices are all the integer linear combinations of a given
lattice basis. A basis in Rn consists of the set of linearly
independent vectors b1, ...,bm, formalized in (1).

L(B) =
{

x ∈ Rn : x =
m∑

i=1

vibi, v ∈ Zm

}
, (1)

where m ≤ n is the rank of the lattice. If m = n, the lattice
is of full rank. Even though non-integer lattices are possible,

Thanks

integer lattices are normally used given that they are easier
to handle computationally, while the hardness of the problem
remains unchanged.

Lattice-based cryptosystems also base their security on hard
mathematical problems, such as the Shortest Vector Problem
(SVP), the Closest Vector Problem (CVP) and others. As the
name suggests, the former consists in finding the shortest, non-
zero lattice vector and the latter in finding the lattice point
closest to a given vector, usually called a target vector.

In this paper, we show that some lattice-based cryptography
algorithms are tailored to massively parallel architectures,
while we provide hints that low-power processors are of
extreme importance as they exhibit better energy efficiency
for the same input data.

II. RELATED WORK

There are several types of algorithms to solve lattice-related
problems, like enumeration, sieving and Voronoi cell-based.
The first two have been extensively studied in recent years,
and several variants of each have been proposed.

In regards to enumeration, various improvements of the
early methods proposed by Pohst [7] and Kannan [8] have
been proposed, such as the work of Schnorr and Euchner [9],
improved upon by Agrell et al. [10]. Ghasemmehdi and Agrell
further improved the latter [11]. Gama et al. published, in
2010, the enumeration with extreme pruning, greatly improv-
ing the execution time of the algorithm at the expense of a
small degree of uncertainty of the result. In addition, parallel
versions have also been published, such as the one presented
by Dagdelen and Schneider, based on Schnorr and Euchner’s
work [12].

Sieving has also been subject to a similar level of attention,
following the first published sieving algorithm by Ajtai, Kumar
and Sivakumar, in 2001 [13], know as AKS, after its authors.
Nguyen and Vidick proposed an heuristic version of AKS,
further improving the algorithm [14]. Other variants of sieving
were proposed, such as ListSieve and its heuristic variant,
GaussSieve, by Micciancio and Voulgaris [15], Laarhoven’s
HashSieve [16] and Becker’s et al. LDSieve [17]. Similarly to
enumeration, parallel versions of the various sieving variants
were published.

Voronoi cell-based algorithms, however, have not been stud-
ied as much, and the only relevant contributions are those of
Agrell et al. [10] and, later in 2010, Micciancio and Voulgaris
[18]. The former uses the enumeration routine presented in
the same paper to compute the Voronoi relevant vectors of a
lattice.
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III. OVERVIEW OF THE VORONOI CELL-BASED
ALGORITHM

The work carried out in this paper is based upon the
“Relevant Vectors” algorithm, presented by Agrell et al. in [10]
that, as mentioned previously, is used to compute the Voronoi
relevant vectors of a lattice. The set of all points closer to zero
than any other lattice point forms the Voronoi cell of a lattice
(see (2)).

V(L) = {x ∈ Rn : ||x||≤ ||x− v|| ∀ v ∈ L}. (2)

The Voronoi relevant vectors consist of the minimum set of
vectors necessary to completely describe the Voronoi cell of
a lattice. This set has, at most, 2× (2n − 1) vectors.

A brief description of the “Relevant Vectors” algorithm is
now presented, given that its working principle is not the main
focus of this work. For more details, we refer the reader to
[10].

This algorithm can be split into four main steps, starting
with the generation of the target vectors, that will later be
passed on to the enumeration-based CVP solver. Next, the
coordinate system of the input data is modified into the format
required by the enumeration-based solver, followed by the
execution of said solver on the modified data – the “decode”
stage, following the nomenclature of [10]. Finally, the results
are converted back into the original coordinate system and
stored in a list if its valid.

In practice, we start by applying a reduction algorithm to
the lattice basis, in order to improve the performance and
numerical stability of the algorithm. This can be done with
a Lenstra-Lenstra-Lovász (LLL) [19] or a Block Korkine-
Zolotareff (BKZ) [20] reduction, for example. The list T V
holds the si, i = 1, ..., (2n − 1) target vectors of the lattice
basis M, given by (3).

T V(M) =
{

s = zM : z ∈ {0, 1/2}n − {0}
}

(3)

Afterwards, the decode procedure is executed, generating the
list of vectors U, that are then processed according to (4),
yielding the list of vectors X.

γ = min
{
||uM− s|| for all u ∈ U

}

X =
{

uM : u ∈ U, ||uM− s||= γ
} (4)

If this result is valid, i.e. list X holds 2, and only 2 vectors,
the result is stored in the relevant vector list N. Given that a
valid result consists in 2 vectors that are symmetric to each
other – and, therefore, have the same norm – we only store
one of them, thus decreasing the memory required for this list
by half.

The pseudo-code of our baseline (CPU sequential) imple-
mentation of the algorithm is shown in Algorithm 1.

IV. PARALLEL DECODING APPROACH

Given the independence of the iterations that make up the
main loop of the algorithm (line 6 of Algorithm 1), where
the generation and decoding of target vectors takes place,
the various threads can execute the iterations of the loop

Function AllClosestPoints
Input: Matrix M, matrix H, matrix Q, vector s
Output: List of vectors X

1 Compute x = sQT ;
2 U = Decode(H, x);
3 Compute γ as the lowest value ||uM− s|| for all u ∈ U;
4 Compute X as all {uM : u ∈ U, ||uM− s||= γ}
5 return X

Algorithm 1: Relevant Vectors
Input: Basis matrix B
Output: Relevant Vectors N

1 M = Reduce(B); /* for example, using the LLL
algorithm */

2 [Q, R] = QR decomposition of M;
3 G = RT ;
4 H = G−1;
5 N = ∅;
6 forall vectors s ∈ T V do
7 X = AllClosestPoints(M, H, Q, s);
8 if |X|= 2 then
9 N = N

⋃{2x− 2s : x ∈ X};

10 return N

in a completely concurrent fashion, without the need for
synchronization.

Implementation-wise, OpenMP compiler directives are used
to generate parallel code suitable for the CPU and CUDA is
used for the GPU. Because each decode may take different
amounts of time to complete, OpenMP’s dynamic scheduler
is used so that each thread gets assigned a new iteration as
soon as they finish their current one. Regarding the GPU, since
the decode procedure itself is sequential in nature (despite
the various parallel enumeration algorithms available, the one
described in [10] is sequential), each GPU thread is assigned
a target vector to decode.

In order to better utilize the GPU’s resources, several
CUDA-specific optimizations were implemented, starting with
asynchronous data transfers for the matrices whose values
remain unchanged after their initial computation. Furthermore,
and for the same reason, these matrices are stored in constant
memory. For all other structures (including auxiliary ones,
private to each thread), a single, large memory allocation is
made prior to the kernel launch, in order to avoid several,
expensive memory requests. Afterwards, pointer arithmetic is
used to properly utilize this memory.

CUDA provides GPU thread management control to the user
by means of the number of blocks, warp size and threads
per block. Empirically, we selected L = 128 threads per
block, as that was the value that performed best. As mentioned
previously, each thread decodes a single target vector and, as
such, the number of blocks T depends on the dimension n of
the problem, and is given by (5).

T =

⌈
Number of Target Vectors

L

⌉
(5)

Common to both the CPU and GPU implementations is the
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use of a single large array for storing each matrix, as opposed
to using an array of arrays. While this requires the use of
special indexing notation, memory operations are optimized,
by decreasing allocation and deallocation time, and improving
memory locality, as each matrix is that way guaranteed to be
continuous in RAM.

V. EXPERIMENTAL RESULTS

Table I presents the apparatus regarding the different parallel
computing platforms used under the context of this work.

TABLE I: Apparatus: Machine A was used for the GPU and
Machine B was used for the CPU runs. Machine C (Jetson
TX2) was used for both CPU and GPU runs.

Machine A (GPU) B (CPU) C
Sockets 1 2 1

CPU Intel Core
i3 6100

Intel Xeon
E5-2660v4

ARM
Cortex-A57

Clock
frequency 3.70 GHz 2.00 GHz 2.00 GHz

Cores
per Socket 2 14 4

SMT Yes (w/HT,
4 threads)

Yes (w/HT,
28 threads) No

L1 Cache 32 kB i +
32 kB d

448 kB i +
448 kB d

48 kB i +
32 kB d

L2 Cache 256 kB 3.5 MB 2 MB
L3 Cache 3 MB 35 MB —
RAM 8 GB 128 GB 8 GB1

GPU NVIDIA GeForce
1060 GTX — Pascal GPU

GPU Clock rate 1759 MHz — 1300 MHz
GPU RAM 6 GB — 8 GB1

OpenMP
Compiler — g++ 7.2.0 —

CUDA
Compiler

CUDA Toolkit
v9.1 — JetPack

v3.3
1 Memory shared between the CPU and the GPU.

Although Machine B’s CPU supports Turbo Boost tech-
nology, providing higher frequencies of operation (up to 3.2
GHz), in order for the results to be directly comparable with
the other machines, all tests were conducted with this technol-
ogy disabled. For the same reason, even though Machine B’s
CPU also provides hyper-threading (HT) – Intel’s proprietary
simultaneous multi-threading (SMT) implementation – only
physical cores are used (Machine A is only used for GPU
tests). L1 cache consists of instruction (i) and data (d) cache.
All applications used in this paper were compiled with the
-O3 and -march=native optimization flags. The CUDA
application was compiled with the -arch=sm_61 flag, for
Machine A’s GPU and with the -arch=sm_62 flag, for
Machine C’s GPU, in order to generate code for a GPU with
compute capability 6.1 and 6.2, respectively.

The lattice basis used in this paper were obtained us-
ing the SVP-Challenge’s generator, available at https://www.
latticechallenge.org/svp-challenge/. The results shown in this
work correspond to the arithmetic average of 10 bases per
dimension. Basis reduction was accomplished by means of
NTL’s LLL algorithm. The power measurements are obtained,
in the case of Machine A, by means of the nvidia-smi util-
ity. Regarding Machine C, those measurements are recorded
using the power monitor built-in to the Jetson TX2.

The goal of this work is to analyze not only the execution
of the implementations on the different architectures, but also
their energy consumption. Figure 1 compares the execution
times of the parallel CPU implementation of the algorithm
(Machines B and C).

Fig. 1: Execution times of the Jetson ARM CPU (using 1, 2
and 4 threads), Intel CPU (using 1, 2, 4, 8, 16 and 28 threads),
Jetson GPU and the GeForce GPU, lattice dimensions 10 to
18.

Given the independence of the iterations that make up the
loop of the algorithm, both CPUs show a linear scalability of
the algorithm, with the Intel CPU being roughly 53% faster
than the ARM CPU, for an equivalent thread count. The
Jetson GPU surpasses both the sequential ARM CPU and the
sequential Intel CPU, reporting speedups of 2.3× and 1.5×,
respectively. Similarly, the GeForce GPU shows a speedup of
17× and 11.1×, compared to the sequential Intel CPU and
sequential ARM CPU, respectively. Naturally, the GeForce
GPU outperforms the Jetson GPU with a speedup of 7.4×.
However, while the CUDA implementation fares better than
the sequential CPU implementation, regardless of the GPU
used, the results obtained show that, for the algorithm at hand,
a high-thread count CPU provides the best performance in
regards the execution time.

Figure 2 compares the execution times of the parallel GPU
implementation (Machines A and C), against the sequential
CPU one (Machines B and C), and presents the measured
power draw for both GPUs. Table II summarizes all the results
obtained, and presents the power and energy statistics of the
various processors used in this work.

The table shows that execution times of the high-power
processors is lower than that of the equivalent low-power one.
However, the gap between the power requirements of those
processors is greater than the difference in execution times.
As previously mentioned, the speedup of the GeForce GPU vs
the Jetson GPU is 7.4× but the measured power required by
the former is 13.2× greater than that of the latter, thus making
the Jetson GPU to consume less energy to perform the same
calculations. Similarly, the sequential CPU implementation on
the Intel CPU is 1.53× faster than the ARM CPU, but also
requires 5.68× more power, resulting in a much higher energy
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Fig. 2: Execution times and measured power draw of GPU
implementations of the algorithm, compared against the se-
quential CPU one, lattice dimensions 10 to 18.

TABLE II: Comparison of the performance of Machine A’s
GPU, Machine B’s CPU and Machine C’s CPU and GPU.
Results for dimension 18.

Average
results

Execution
Time (s)

Measured
Power

Draw (W)

Peak Power
Draw (W)

Energy
Used (J)

Jetson
ARM CPU
(1 thread)

14.247 3.695 7.5* 52.643

Jetson
ARM CPU
(4 threads)

3.759 5.329 7.5* 20.032

Jetson
GPU 6.206 4.884 7.5* 30.310

Intel
CPU

(1 thread)
9.311 21# 105 195.531

Intel
CPU

(28 threads)
0.375 210# 210† 78.750

GeForce
1060 GTX 0.840 64.505 120 54.184

* Peak power of the entire Jetson TX2 board.
# Power measurements not available for the processor. Assuming 20% of
peak power draw (taken from [21]) for 1 thread and 100% of peak power
draw for 28 threads.
† Recall that Machine B is a two socket computer, 28 threads correspond
to 14 cores running on each CPU.

consumption. As with previous cases, fully utilizing the CPUs
causes the Intel CPU to be 10× faster than the ARM CPU but
with a significantly higher power draw.

Of all the processors used, the ARM CPU running 4 threads
is the most efficient, consuming the least amount of energy,
while still being the third best in regards to execution time.

VI. CONCLUSIONS

The proposed parallel CPU implementation of the Voronoi
cell-based algorithm scales linearly with the number of threads
used. The GPU implementation provides a significant im-
provement to the sequential CPU implementation, but a high-
thread count CPU still manages to outperform the GPU.

The low-power board used in this work reported slower
execution times than the high-power processors but, given its
significantly lower power draw, proved to be the most efficient
of the tested machines in regards to energy consumption. As
such, this result shows that low-power embedded systems are
capable of efficiently providing the necessary performance
even to the most compute-intensive problems.
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