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Resumo

Controladores inteligentes são hoje um importante aspecto no controlo de processos indus-

triais e, particularmente, o controlador de lógica difusa com capacidades de aprendizagem é

um caso de estudo muito interessante, devido ao seu formato e características únicas.

Com o intuito de controlar sistemas com múltiplas entradas e uma saída foram estu-

dados algoritmos de controlo difuso com uma componente adaptativa, por outras palavras,

com a capacidade de adaptar a regras e parâmetros existentes no controlador e com uma

componente evolutiva, por outras palavras, com a capacidade de modi�car a estrutura do

controlador com a adição de novas regras, obtidas através do uso de informação da saída e

entradas do sistema. Adicionalmente, o controlador deve ser capaz de alterar a sua estru-

tura ao mesmo tempo que controla o sistema, sem necessidade de treino prévio, e também

controlar sistemas desconhecidos sem conhecimento do modelo e dinâmica do sistema. Após

algumas pesquisas foi escolhido um algoritmo com as características mencionadas que serviu

de base para o algoritmo apresentado nesta dissertação.

Neste trabalho são apresentados os fundamentos de Controladores Difusos, a arquitectura

e funcionamento do algoritmo proposto, sendo mencionado as melhorias às falhas detectadas

do algoritmo original que foi estudado. A importância e in�uência de vários parâmetros do

algoritmo proposto são também analisados em detalhe.

De forma a validar e demonstrar a capacidade do algoritmo proposto, foi testado e ana-

lisado o seu desempenho no controlo de diversos sistemas simulados com múltiplas entradas

e uma saída, assim como num sistema real composto por dois motores DC acoplados. Em

todos os sistemas testados foram induzidas perturbações, tendo sido analisada a resposta do

algoritmo proposto.

Palavras-chave: Controlo Difuso, Aprendizagem Online, Controlo Difuso Adaptativo,

Controlo Difuso Evolutivo, Inteligência Computacional.
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Abstract

Nowadays, intelligent controllers are an important aspect in the control of industrial processes

and the particular Fuzzy Logic Controller with learning capabilities are a specially interesting

subject of study, due to its format and characteristics.

In order to control systems with multiple inputs and one output it was studied fuzzy

control algorithms with an adaptive component, in other words, with the capacity to adapt

the existing controller rules and parameters and with an evolving component, in other words,

with the capacity to modify the controller structure with the addition of new rules, using

the historical data about the controlled system. Furthermore, the control system must be

able to change its structure at the same time is controlling the system, don't need to do

o�ine training and also be able to control unknown systems without previous knowledge

of the model and dynamics of the systems. After some research, an algorithm with the

mentioned characteristics was chosen and served as the basis for the algorithm proposed in

this dissertation.

In this work are presented the concepts of Fuzzy Controllers, the architecture and struc-

ture of the proposed algorithm, being mentioned the improvements to the detected faults of

the original algorithm that was studied. The importance and in�uence of several parameters

of the proposed algorithm are also analysed in detail.

In order to validate and demonstrate the capacity of the proposed algorithm, it was tested

and analysed its performance in the control of several simulated systems with multiple inputs

and one output, as well as in a real non-linear system based on two-coupled DC motors.

All tested system were also subjected to perturbations, being analysed the response of the

proposed algorithm.

Keywords: Fuzzy Control, Online Learning, Adaptive Fuzzy Control, Evolving Fuzzy

Control, Computational Intelligence.
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Chapter 1

Introduction

The necessity of a better e�ciency and autonomy in industrial process management requires

control algorithms that are robust, autonomous and with a considerable performance when

confronted with uncertainties and perturbations. The autonomy is evaluated by the capac-

ity of self-government, in other words, the adaptation of its parameters and evolution of its

structure, without external intervention. The robustness is related with the stability of the

controller when the controlled system is subject to perturbations, and the performance cor-

responds to the quickness in achieving, steadily, the referenced values, even when subjected

to perturbations.

Adaptive fuzzy control algorithms uses Fuzzy Logic (FL), a multi-value logic that uses

the concept of partial truth. Unlike the Boolean Logic (BL), the truth value is a real number

between 0 and 1 and describes the degree of truth of a statement, making the FL excel at

representing human reasoning [Wang, 1999]. Another aspect is the use of linguistic variables,

easily comprehensible to a human operator, to describe inputs and output values. Due to this

characteristics, the FL control algorithms are an important and interesting �eld in the new

industrial revolution, the so called industry 4.0, where one of the objectives is the existence

of intelligent control algorithms which are perceived by human operators [Lasi et al., 2014].

An important aspect of a controller is the capacity to control a system without knowledge

about its model and dynamics, since one of the most exhaustive procedure on the control

design is the study of a system dynamics and model that sometimes aren't accurate enough.

Another important requirement of a control system is its capability of working online, in

other words, the capability of changing its parameters at the same time it's controlling a

system.

With this assumptions this dissertation presents, analyses and deconstructs a fuzzy evolv-

ing control algorithm with learning capabilities.

1



2 CHAPTER 1. INTRODUCTION

1.1 State of the Art

Lot� A. Zadeh introduced the concepts of Fuzzy Logic (FL) and fuzzy sets in 1965 [Zadeh,

1965]. A fuzzy set is a set where values have degrees of membership, making it possible

to elements belong to several sets with di�erent degrees of membership. The degrees are

multi-value, this contrast with the classical set theory that use a bivalent condition, in other

words, an element either belongs or not to a set. Bellman and Zadeh continue the work

using FL, speci�cally in the decision making [Bellman and Zadeh, 1970] and fuzzy ordering

in [Zadeh, 1971].

In 1973, Zadeh published a paper that would become the foundation of fuzzy control,

called �Outline of a new approach to the analysis of complex systems and decision processes�

[Zadeh, 1973]. In this paper, the proposed fuzzy controller can be considered a rule-based

controller because the command value of the controller is obtained by the combination of

fuzzy rules. The format of the fuzzy rules presented in the same paper is composed by two

parts: the antecedent and the consequent. The antecedent, based on the values of the inputs

of a system, assigns strength to the di�erent rules and the consequent contributes to the

�nal value of the command signal. Thus a common used nomenclature for the fuzzy rules is

the IF-THEN rules: IF a antecedent is veri�ed THEN a consequent will contribute to the

command signal.

To de�ne the formats of the antecedents and consequents there are three di�erent Fuzzy

Rule-Based (FRB) methods: Mamdani, Takagi-Sugeno (T-S) and, more recently, the ANYA,

proposed by Plamen Angelov and Ronald Yager.

The Mamdani was the �rst method introduced, in 1975, and the most easily associated to

a conventional fuzzy controller [Mamdani and Assilian, 1975]. It use for both the antecedent

and consequent the same type of format, the fuzzy set, a linguistic variable. The input

variables will have a degree of membership for each fuzzy set, obtained through a Membership

Functions (MFs) using operations describe in Chapter 2, to determine the strength of the

output fuzzy sets. An example of a rule using this method to de�ne the behaviour of an

air conditioner system could be: IF Temperature is Low THEN ACmode = Heating, being

Low and Heating two linguistic variables representing two fuzzy sets, Temperature an input

variable and ACmode an output variable.

The Takagi Sugeno (T-S) is similar to Mamdani, using the same type of format in the

antecedent, a fuzzy set. The di�erence is in the format of the consequent, instead of a fuzzy

set it uses functions. An example of a rule using this method and, again, an air conditioner

system could be: IF Temperature is Low THEN ACfanspeed = a1 ∗ Temperature + a0,

being a1 and a0 two coe�cients, Low a fuzzy set, Temperature an input and ACfanspeed an

output.

The ANYA uses a di�erent concept for the antecedent, instead of using fuzzy sets uses

data clouds that are created by the distribution of variables. This type of antecedent compare

the local density between the input values and the cloud samples, with that value it's possible
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to determine the degree of membership of the variable to the di�erent clouds, this works like

a MF for the fuzzy sets. For the consequent, ANYA can use fuzzy sets, like the Mamdani

method, or Functions, like T-S method. An example of a rule using this method, using

the same example, could be: IF Temperature ∈ Cloud1 THEN ACmode = Heating, being

Cloud1 a cloud of variables of the input Temperature and Heating a possible fuzzy set for

the output ACmode.

The Table 1.1 summarizes the three FRB methods.

Table 1.1: Comparison between the Fuzzy Rule-Based Methods

Fuzzy Rule-Based Method Antecedent format Consequent format

Mamdami Fuzzy set Fuzzy set

Takagi-Sugeno Fuzzy set Function

ANYA Cloud Fuzzy set or Function

The �rst test in a system happen in 1975, where Mamdani and Assilian applied a fuzzy

controller [Mamdani and Assilian, 1975], since then, were made several studies that show

the capacity of fuzzy control in complex non-linear processes. fuzzy controllers also gain

support after their implementation in real world systems, specially by japanese, like washing

machines, automatic transmission in cars and even in large systems like a subway train,

in Japan [Wang, 1999]. These implementations and wide use of Fuzzy Logic Controlers

(FLC) gave credibility to these types of control that, in the beginning were met with some

scepticism by the scienti�c community.

Conventionally, the rules of a fuzzy controller are de�ned a priori using the knowledge

of the dynamic of a plant or the human knowledge about the system, however, when the

dynamics aren't known there is need of a more intelligent method version to design fuzzy

controlers capable to adapt to several unknown systems. In the last decade were researched

and presented several solutions of intelligent FLCs.

The intelligent FLCs can be divided in two main areas, the adaptive controllers, that ba-

sically don't add new rules, but instead adapt the existing ones, and the evolving controllers,

that altered the structure of the controller, through the addition of new rules.

In [Mucientes and Casillas, 2007], [Mingzhi et al., 2009], [Chen et al., 2009], [Lin and Xu,

2006], [Li and Lee, 2003], [Wang et al., 2008a] and [Ho�mann and Nelles, 2001] are presented

adaptive algorithms that allow the users to choose the number of fuzzy sets for each input

and use pre-training to adapt the fuzzy rules to be able to control systems, in other words,

simulated the behaviour of the controller in training sets composed by examples that cover

values of each variable. For this aspect, the algorithm is an o�-line algorithm, i. e., can't

control and adapt at the same time, needing to �rst adapt to possible values and only then

can control e�ciently a system.

In [Phan and Gale, 2008], [Park et al., 2005] and [Gao and Er, 2003] are presented
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algorithms that, apart the adaptive component, also have evolving component, in other

words, they can change the structure of the FLC through the addition of new rules and

adapt the existing rules. However this process is o�-line, needing to pre-test the controller

performance before controlling a system.

In [Wang et al., 2008b], [Rojas et al., 2006] and [Pomares et al., 2002] there was an advance

to the adaptative algorithms because they are online algorithms, i. e., do the adaptation

of the existing controller's structure happens at the same time of the control for a system.

This characteristic was an important improvement to the existing algorithms because the

pre-training needed for the o�-line algorithms some times didn't cover the unpredictable

behaviour of non-linear systems. Is important to refer that the algorithms could adapt but

still could change the structure of the controller with the addition of new rules, so they lack

the evolving component.

Two early algorithms [Lin et al., 1995] and [Angelov, 2004] proposed an online approach to

adapt the FLC rules , as well the modi�cation of the controller structure using information of

every new sample of a system under control, however these algorithms are highly susceptible

to noise and perturbations, creating a problem since corrupted data can originate �wrong�

structures. They also need some learning time, and could only control the plants after that

time.

There are two algorithms of adaptive and evolving fuzzy control: the Self-Evolving

Parameter-Free fuzzy Rule-Based Controller (SPARC) [Sadeghi-Tehran et al., 2012] and

the Online Self-Evolving Fuzzy Controller (OSEFC) [Cara et al., 2010]. Both can works

without any previous knowledge about the plant, can start work without any rule and do

online adaptation and evolution, that means it can change the structure of the control when

controlling the plant. The two algorithms di�er in the Free Rule-Based (FRB) method used,

the SPARC uses the ANYA and the OSEFC uses T-S, due the considerable di�erent format

of the antecedents the algorithms di�er in the addition of new rules, the adaptation process

is similar.

In summary, the SPARC, like the OSEFC, uses the tracking error to adapt the consequent

value, however since it uses the ANYA FRB method the addition of new rules is completely

di�erent, in each iteration is veri�ed if the new values are close to the existing clouds, if a

large number of values are distant enough of the existing clouds and close enough of each

other is creating a new cloud and hence new rules.

The OSEFC has the same adaptation component as the SPARC, as was mentioned

before. However, the evolving component is di�erent and, in summary, uses the memory of

the results of the plant to detect the best positions for the MFs of the new fuzzy sets.

Since the ANYA isn't yet widely used in the scienti�c community, the OSEFC is the

chosen adaptive and evolving FLC algorithm to implement, however the �nal version of

the algorithm present and used in this dissertation has some improvements to the problems

detected in the OSEFC.
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1.2 Motivation

The main motivation for this dissertation was its connection to industry 4.0. The industry 4.0

is a term created in 2011 to describe the 4th industrial revolution, it presents numerous goals,

but the one related to this dissertation is the goal to increase productivity and e�ciency of

the workers using automation and machine learning techniques to complement their work.

The connection of the dissertation to this goal is due to two facts:

� The �rst is the use of a Fuzzy Logic Controller (FLC), a controller which uses logic

similar to human logic and use fuzzy sets that are linguistic values, easily interpreted

by operators;

� The second is the fact that the algorithm create rules to assure an e�cient response to

changes in the reference signal or perturbations. Doing an analogy to a conventional

FLC, which the MFs are obtained using human knowledge and trial error strategy, the

MFs are determinated, in the algorithm, through mathematical methods that detect

which values are causing more errors in the controlling process, this assures that the

chosen MFs will have, probably, a better impact than the MFs chosen using human

knowledge.

Another motivation is the importance and numerous real life applications of control

systems, they are almost everywhere and deepening knowledge in this fascinating area of the

automation branch is a great opportunity for a future engineer. The �nal aspect is the fact

that area of intelligent control is a growing �eld of interested in research.

1.3 Objetives and Developed Work

The main objective of this dissertation is control Multiple Inputs Single Output (MISO)

systems with adaptive and online FLC algorithms with learning capabilities without previous

knowledge of the plant. For that purpose, it was study the state-of-the-art of Self-evolving

fuzzy control algorithms and identi�ed the most advanced.

To analysed the adaptation and scalability of the algorithm were researched plants with

di�erent characteristics, being the only assumption the existence of only one output. The

researched and chosen plants were also subject to perturbations with the purpose of evaluate

the algorithm robustness.

With the goal of analysed the importance of algorithm parameters was evaluated their

in�uence in algorithm performance. The algorithm has two main features, the change of

existing rules, known as Parameter Learning (PL), and the addition of rules, known as

Self-Evolving (SE). It was realized tests with only the PL enabled, and tests with the both

features enabled.
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The results are discussed and is done a detailed analysis of the overall performance of

the proposed algorithm, there also suggested improvements to the detected weaknesses of

the original algorithm, the OSEFC.

1.4 Dissertation Structure

The dissertation is organized in �ve chapter, where in:

� Chapter 1 - introduces the dissertation main subject, motivation, state of the art and

objectives;

� Chapter 2 - presents the main concepts about Fuzzy Control Systems;

� Chapter 3 - analyses in detail the proposed Algorithm;

� Chapter 4 - presents the plants where the algorithms were tested, the respective results

and analyses the in�uence of the algorithm parameters;

� Chapter 5 - presents conclusions and future work.



Chapter 2

Fuzzy Control Systems

A Fuzzy Control System (FCS) can be divided in four phases: fuzzi�er, knowledge base,

fuzzy interference engine) and the defuzzi�er, which they are analysed in more detail in the

next sections. They are connected as Figure 2.1 shows.

Figure 2.1: Structure of a Fuzzy Control System.

Fuzzi�er

Data Base Rule Base

Knowledge Base

Defuzzi�er

Fuzzy Inference 

Engine

Input

Fuzzy Inputs Inferred Fuzzy Output

Output

Controlled System 

(Process)

Fuzzy Control System

The FCS is an excellent alternative to conventional control systems because it doesn't

need a mathematical model of a plant and can be equally applied to linear or non-linear

systems, which some conventional control systems can have performance issues [Ying, 2000].

2.1 Knowledge Base

�Fuzzy systems are Knowledge-based or rule-based systems. (. . . ) A fuzzy system is con-

structed from a collection of fuzzy IF-Then Rules�[Zadeh, 1965]. As mentioned in the previ-

7
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ous chapter, these fuzzy rules are divided in two parts: the antecedent and the consequent.

The idea is IF a condition, described in the antecedent part, is veri�ed THEN a command

signal will be generated. So the rules of a fuzzy system can be represented in the form:

Rj : IF x1 is A
j
1 and ... and xn is Aj

n THEN uj = Qj (2.1)

where j ∈ [1, ..., Nr], Nr is the number of fuzzy rules, xi ∈ [x1, ..., xn] being xi the

i-th input variable of a total number of n input variables, Aj
i ∈ [Aj

1, ..., Aj
n] are the fuzzy

sets for each input variable xi, and uj and Qj are, respectively, the output and consequent

of the j-th rule that can have an di�erent format depending of the chosen Fuzzy Rule-Based

(FRB) method, as mentioned in section 1.1.

The applications of fuzzy control system in consumer products by japanese engineers

was one the most vital aspects for the increasing use and interest of fuzzy control systems

[Wang, 1999]. One of the �rst products was the control of a air conditioner, that could

be represented by a Multi-input Multi-output (MIMO) system with four inputs and four

outputs [Sobhy and Khedr, 2015]. Using a simpli�ed format of this system as example, a

fuzzy rule of this FCS using a Mamdani FRB method could be:

Rj : IF UserTemperature is Low THEN ACmode is Heating (2.2)

where UserTemperature and ACmode are, respectively, the input and output variables

and Low and Heating are possible fuzzy sets.

2.1.1 Membership Function

�A fuzzy set is a class of objects with a continuum of grades of membership. Such a set is

characterized by a membership (characteristic) function which assigns to each object a grade

of membership ranging between zero and one� [Zadeh, 1965].

The most known MFs are the triangular, trapezoidal and gaussian, which are, respec-

tively, represented in the next pairs of �gures and equations.

a m b
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1

Figure 2.2: Triangular Function.

µA(x) =


0, if x ≤ a

x−a
m−a

, if a < x ≤ m
b−x
b−m

, if m < x ≤ b

0, if x ≥ b

(2.3)
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Figure 2.3: Triangular Function.

µA(x) =



0, if x ≤ a
x−a
b−a

, if a < x ≤ m

1, if b < x ≤ c
d−x
d−c

, if m < x ≤ b

0, if x ≥ b

(2.4)
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Figure 2.4: Gaussian Function that uses the

full width at half maximum (FWHM).

µA(x) = e−
x−m
2c2 , c =

FWHM

2
√

2ln(2)
(2.5)

Using the AC example, there are three fuzzy sets for the input variable UserTemperature,

where the corresponding membership functions are represented in Figure 2.5.
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Figure 2.5: Membership Function for three fuzzy sets of UserTemperature variable.
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2.2 Fuzzi�er

In this phase, the real values of a input variable are mapped into fuzzy inputs that are

later associated to the existing fuzzy sets using the membership functions. The most com-

mon fuzzi�er is the singleton fuzzi�er, due to being easily implemented and also because it

�greatly simpli�es the computation involved in the fuzzy inference engine for any type of

membership functions�[Wang, 1999]. For this reasons the singleton fuzzi�er is implemented

in the proposed algorithm of this dissertation.

The singleton fuzi�er maps a real value x∗ ∈ U into a fuzzy singleton as Equation 2.2

shows.

µA(x) =

{
1, if x = x∗

0, otherwise
(2.6)

More fuzi�ers can be consulted in chapter 8 at [Wang, 1999].

2.3 Fuzzy Inference Engine

The Fuzzy Inference Engine (FIE) uses the fuzzy inputs obtained by the fuzzi�er's trans-

formation process and the fuzzy rules to obtain the activated consequent Qj, then they are

combined and it's calculated the inferred fuzzy output. In systems with more than one input

variable it is necessary operations that can process the degree of membership of the di�erent

input variables. In the FIE there are three main operations to conjugate the antecedent

part of the rules: intersection (A1 ∩ A2), union (A1 ∪ A2), and complement (complement of

A1, C = A1), examples of these operations with two di�erent fuzzy sets can be consulted in

Table 2.1.

Table 2.1: Comparison between the Norm Operators.

T norm - AND

Minimum min(µA1(x1), µA2(x2))

Algebraic product µA1(x1).µA2(x2)

Bounded product max(0, µA1(x1) + µA2(x2)− 1)

S norm - OR

Maximum max(µA1(x1), µA2(x2))

Algebraic Sum µA1(x1) + µA2(x2)− µA1(x1).µA2(x2)

Bounded Sum min(1, µA1(x1) + µA2(x2))

C norm

Complement C(µA1(x1)) = 1− µA1(x1)
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After obtain the result of the operators, it is calculated the implication of the result value

(A) in the consequent (B), this process (A → B) uses implication operator (→). The most

common methods of implication are minimum and the product, which can be consulted in

Table 2.2.

Table 2.2: Comparison between the Implication Operators.

Implication norm (→)

Minimum min(µA1(x1), µA2(x2))

Product µA1(x1).µA2(x2)

After apply the implication operator occurs the aggregation of all outputs determined

by the implication operation, using an aggregation operator. The output obtain after this

process is denominated Inferred Fuzzy Output (IFO) and it is used in defuzzi�er process.

The aggregation operator use di�erent methods as Table 2.3.

Table 2.3: Comparison between the Aggregation Operators.

Aggregation norm (▽)

Bounded Sum min(µA1(x1) + µA2(x2), 1)

Maximum max(µA1(x1), µA2(x2))

Normalized Sum
µA1

(x1)+µA2
(x2)

min(µA1
(x1)+µA2

(x2),1)

Using the example of the air conditioner presented in previous sections, if the UserTemperature

is 23.5, as can be seen in Figure 2.6, the fuzzy sets Low and Optimal will be activated by
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Figure 2.6: Three Membership Functions for each fuzzy set of UserTemperature variable.
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0.5, on other hand, fuzzy set High will have the value 0. After this process, the rules are

subjected to the di�erent operations introduced in this section. Since the example only has

an input variable there is no need of a norm operation, so the next step is the implication,

in this case it's used the minimum operator, the result of the operation is observed in Figure

2.7.
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Figure 2.7: E�ects of the minimum implication operator.

It's possible to veri�ed, in Figure 2.7, that the implication process occurs in output fuzzy

sets associated, by the fuzzy rules, to activated input fuzzy sets. For example, the 0.5 degree

of membership of the input fuzzy set Low make the associated output fuzzy set Heating

be activated by a degree of 0.5. After the implication process the resulting of all rules are

combined using an aggregation operator, in this case the maximum, as Figure 2.8 shows.

maximum 

aggregation
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Figure 2.8: Exempli�cation of the aggregation operation in Figure 2.7 results.

2.4 Defuzzi�er

The last piece of the puzzle is the defuzzi�er where the Inferred Fuzzy Output (IFO) obtained

in the FIE is transform in real valued output. The most known defuzi�cation methods are
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the center of gravity, �rst of maxima and last of maxima, as shown in Table 2.4, where

hgt(Y ) =
{
y ∈ v|µY (y) = supy∈vµY (y)

}
.

Table 2.4: Comparison between the defuzi�cation methods.

Defuzi�cation methods

Center of Gravity y∗ =
∫min
max yµY (y)dy∫min
max µY (y)dy

First of Maxima y∗ = inf {y ∈ hgt(Y )}
Last of Maxima y∗ = sup {y ∈ hgt(Y )}

Using the IFO of the example in the Figure 2.8 is possible to see the �nal values in Figure

2.9 using the three defuzzi�cation methods presented in Table 2.4
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Figure 2.9: Application of defuzzi�cation methods in example's Infered Fuzzy Output.





Chapter 3

Adaptive and Evolving Online Fuzzy

Control Algorithm

In this chapter is analysed the algorithm implemented to control unknown MISO systems.

The main properties of the implemented algorithm are the following:

� Online adaptation of control parameters;

� Online modi�cation of control structure;

� Use historical information to adapt the control parameters and modi�ed the control

structure;

� No model of the plant needed;

� No previous knowledge about the control policy, in other words, the algorithm can

start working from an empty set of rules.

The online adaptation and evolving is the capacity of changing, respectively, the control

parameters and structure at the same time it is controlling a system and also means that,

before starting to control a system, there is no need of a training process, using previously

obtained data. The use of historical information, specially in the evolving process when

adding rules, assures the identi�cation of the best new centers for the new MFs. The fact

the algorithm doesn't need the model of the controlled plant makes the algorithm adaptable

to di�erent unknown MISO systems.

However the algorithm requires some information from the controlled system, speci�cally,

the range of its inputs and command signal, because they are needed to determine the

gain parameter and make it adaptable to the controlled system, to initialize new MFs and

the consequents of the newly created rules. The value of this range doesn't need to be

precise, since the adaptation and evolving process will compensate the possible errors in the

estimation of the inputs ranges.

15
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3.1 Architecture

The implemented algorithm is composed by a Fuzzy Control System (FCS) that is altered

by an adaptation mechanism using the system's stored. The FCS is then applied in the

controlled system, as shown in Figure 3.1.

Input

PL - Block

MSE improves?

SE - Block

No
I/O Data

Yes

Adaptation Mechanism

Fuzzy Control System Plant

y

u
Output

Figure 3.1: Representation of the algorithm architecture.

The adaptation mechanism is composed by two main blocks the Parameter Learning

(PL) block and the Self Evolving (SE) block. The PL-block is responsible for the adaptation

process, where the consequents of existing rules are changed, and the SE-block responsible

for the evolving process, where can be added a new MF, and consequently new rules, to the

FCS, using the I/O information of the plant under control.

The algorithm 3.1 represents the pseudo-code of the adaptation mechanism (illustrated

on Figure 3.1), and it is possible to observe the comparison of the actual Mean Square

Error (MSE) with the previous one which decide the activation or not of the SE-block.

Another important aspect is the manipulation of I/O Data, when a MF is added in the SE

is important that the data used previoulsy don't compromise the addition of a new MF, for

that purpose when a new MF is added, for M iterations, the SE-block is never activated,

as the pseudo-code shows. This veri�cation is an improvement to the original algorithm

OSEFC [Cara et al., 2010].
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Algorithm 3.1 Adaptation Mechanism

1: Calculation of MSE and error

2: Activate: PL_Block

3: if (MSE(k) > MSE(k − 1))&&(k > M) then ◃ k represents the iteration and M the

Memory's size

4: Activate: SE_Block

5: if Is created a new MF then

6: k is reset

7: end if

8: end if

3.2 FCS Structure

As the architecture of the algorithm shows in Section 3.1 the adaptation mechanism changes

a FCS, in this section is identi�ed the FCS characteristics.

The knowledge base of the FCS is a special case of a Takagi Sugeno (T-S) fuzzy system,

the zero order T-S fuzzy system, which uses fuzzy sets in the antecedent part, and a scalar

value in consequents part.

Since we are working in a MISO system, there is need of a conjunction operation between

the values of membership degrees of the di�erent inputs, to that purpose is used the T-norm

algebraic product present in Table 2.1.

The chosen defuzzi�cation method is the weighted average that translates in the result

output of the FCS being:

u(k) = G(x(k), ϕ(k)) =

∑Nr

i=1Qi · αi(x(k))∑Nr

i=1 αi(x(k))
, (3.1)

where x(k) is the vector of the input values at time k, ϕ(k) is the set of fuzzy parameters at

time k, Qi is the consequent of the ith rule and αi is the conjugated strength of the activation

degrees of the di�erent MFs of the ith rule, which is calculated using, as mentioned before,

a T-norm algebraic product as shown in the next equation:

αi(x) =
Nv∏
j=1

µi
j(xj), (3.2)

where µi
j(xj) is the activation degree of the j-th input in the related MF of the i-th rule.

3.2.1 MF Structure

The chosen MF is a triangular function normalized, in other words, the frontier points of a

triangular MF will be the centers of consecutive triangular MFs as the examples in Figure 3.2

shows. This aspect �provide better transparency and interpretability to the fuzzy system�
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[Wang et al., 2008a], makes only necessary to save the centers of the triangular functions

and make the sum of all activation degrees of the MFs equal to one, in any iteration. So,

the use of triangular normalized MF gives three advantages:

� The facilitation of new rules creation process, because the frontier points of the existing

and the new rule can easily adapt to the new created centers;

� The reduction of computing complexity, since triangular functions are, relatively, easy

to manage and the normalization guarantee that the maximum number of MFs for

each input activated at any time is only two, the others MFs have all zero activation

degree;

� The simpli�cation of the calculation of the resulting command signal in Equation 3.1,

due to the fact that for any input value the sum of all activation degrees is one, i.e.∑Nr

i=1 αi(x(k)) = 1. So the resulting and formulae used by the algorithm to calculated

the command signal is presented in Equation 3.2.1

u(k) = G(x(k), ϕ(k)) =
Nr∑
i=1

Qi · αi(x(k)) (3.3)

It is also important to refer that are created two initial MFs, which use as center the

limits of the range of the related input variable. Another characteristic of the initial MFs is

that they are trapezoidal to guaranteed that data beyond the range de�ned by the user has

an activation degree equal to one, as the example in Figure 3.2a shows. The added MFs are

located between these two initial MFs and are a triangular function normalized, as shown by

the same example in Figure 3.2b that also shows the change in the location of the frontier

points of the initial MFs.
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Figure 3.2: Examples of a composition of MFs: initial composition (a) and a �nal composition

after using the proposed algorithm (b).
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3.2.2 Consequent values

Since the algorithm initializes with two MFs for each input, there will be 2Nv rules, being Nv

the number of inputs of the system. These rules need an initial consequent value, there are

two main considerations in the initial value, it must be related to the command range and

it should be equal to create balanced rules. To achieve this, the consequents are initialize

with the lowest value possible of the command signal range that also guarantee no troubles

in most controlled systems since, usually, the lowest value corresponds to a stationary and

resting state.

However since there are systems that this doesn't applied is given the liberty to the user

de�ne the initial command value.

3.3 Parameter Learning

The Parameter Learning block occurs in every iteration, and is responsible for changing the

consequents of the activated fuzzy rules, using the tracking error, i.e. the di�erence between a

reference and the value of the system's output variable. It is also analysed the monotonicity

of the system output with respect to the the command signal as well as a gain parameter,

that will counteract the usual di�erence of the magnitude between the command signal and

output, and with that purpose the gain will depend of their ranges. Another key aspect is

the need of only change the activated rules at a k iteration, for that purpose is used the

antecedent value obtained using the Equation 3.2. These assumptions result in Equation

3.4.

∆Qi(k) = G · signM · αi(k − 1) · e(k), (3.4)

where ∆Qi represents the proposed variation for the value of the consequent of the ith

rule, G is the positive learning gain, signM is the signal that represents the monotonicity,

αi(k − 1) represents the strength of the ith rule at the previous iteration, e(k) is the error

obtained by the di�erence between the reference and actual output value(e(k) = r(k − 1)−
y(k)) and k is the current iteration. The equation is equal to the one presented in recent

papers [Cara et al., 2010], [Sadeghi-Tehran et al., 2012].

3.3.1 Gain parameter

The gain parameter is an essential parameter of equation 3.4, and has the important role to

give an appropriate strength to the adaptation of consequents. In some observed plants the

discrepancy of magnitude between command signal and the reference is signi�cant, and if a

gain is not applied the change in the consequents can create problems. In fact, the results

obtained in plants with signi�cant discrepancies between the magnitude of the command
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signal (∆u, where ∆u = |umax − umin|) and the magnitude of the reference (∆r, where

∆r = |rmax − rmin|), and where the gain wasn't applied, showed two main situations:

� When ∆u >> ∆r: the changes in consequent would never be su�cient to make the

variable achieve the referenced value, since without the gain the ∆Qi would be too low

to e�ectively in�uence the consequent value;

� When ∆r >> ∆u: the changes in consequent would be too strong and would create

instability, since the ∆Qi would be too high when compare the normal values of the

consequent;

So with these observations and to make the variation of the consequent adaptable to

di�erent systems is necessary to implement a gain that use in its calculation the ∆u and ∆r.

The proposed equation to calculate the gain is the same as the proposed in some litterature

([Rojas et al., 2006] and [Cara et al., 2010]):

Gain =
∆u

∆r
=

|umax − umin|
|rmax − rmin|

(3.5)

However, in realized tests was observed that the use of equation 3.5 to calculate the gain,

in spite of being theoretically a faster solution to make a variable achieve a reference, can

easily create instability and for that reason that value was softened through a division of the

value of Equation 3.5 by a positive constant (C) as Equation 3.6 shows.

G =
Gain

C
(3.6)

The realized tests showed that a constant between 15−25 would have good performance in

every plant/system tested, though the best performances in the di�erent plants had di�erent

values of C.

The in�uence of this gain in regulating the strength of the ∆Q make it an important

value for a user, if the variation is too fast the user should reduce the gain, increasing the

C, if the adaptation is not being su�ciently fast, the user should decrease C, increasing the

gain.

3.3.2 Monotonicity parameter

In most plants/systems an increasement of the command signal translate in an increase-

ment of the plants output, however there are systems that are the opposite and a adaptive

algorithm must be prepare to either case. To achieve this, is necessary to analyse the

monotonicity of the plant and the command signal, through the controllability condition,

presented in Equation 3.7, which is used to guarantee that the plant output always depend

on the control signal [Phan and Gale, 2008].

∂f(x, u)

∂u
̸= 0 ∀x ∈ Ω, ∀u ∈ R. (3.7)
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Since the equation 3.7 can't be zero, there are two main situations: when it is positive,

which means that an increasement on the command signal translates an increasement on the

plant output; and when it is negative, an increasement in the command signal translates a

decreasement on the plant output.

It is only evaluated the signal of equation 3.7 being this the Monotonicity parameter in

equation 3.4 (signM). In practice, the Monotonicity parameter is calculated by [Cara et al.,

2010]:

signM = signal(
y(k)− y(k − 1)

u(k)− u(k − 1)
). (3.8)

On the tests, two problems about signM (eq. 3.8), were discovered:

� When the tracking error (e(k) = r(k− 1)− y(k) = 0) is zero, the consecutive values of

y(k) and r(k) are constant, so the result of equation 3.8 is unde�ned;

� When plants are subjected to perturbations, even with the change of the command

signal the perturbation can make the output has a result opposite to the expected, and

that induces the monotonicity parameter to has the signal opposed to the pretended,

empowering the perturbation e�ect.

To solve both problems, a solution was developed using the calculation of the monotonic-

ity in the initial iterations and maintain that value through the control process. This solution

presented good results in the tested plants and it was used in the proposed algorithm, though

isn't perfect due to the fact that can exist a plant dynamic where the monotonicity invert,

which make the solution create problems in the rules adaptation process. However in tested

plants, the inversion of monotonicity never happen.

3.3.3 Additional conditions

The PL block adapts the rules to make the output value achieve the reference, however, most

controlled systems are limited in their operation range and some adaptations can make the

controller surpass the permitted values for the command signal, to prevent this it is suggested,

in [Cara et al., 2010], an additional condition to limit the variation of the consequents, as

shown by the Equation 3.9.

∆Qi(k) =


0, if u(k − 1) = umin & ∆Qi(k) < 0

0, if u(k − 1) = umax & ∆Qi(k) > 0

∆Qi(k), otherwise.

(3.9)

However, the applied equation in the proposed algorithm is di�erent, the �rst modi�cation

was change the conditions u(k − 1) = umin and u(k − 1) = umax to u(k − 1) <= umin and

u(k−1) >= umax, respectively. The result of the original conditions (eq. 3.9) could easily be

wrongly checked if in a previous iteration the ∆Qi made u(k) inferior than umin or greater



22CHAPTER 3. ADAPTIVE AND EVOLVINGONLINE FUZZY CONTROL ALGORITHM

than umax. After this small change in the conditions, it was observed that the consequents

of some rules could be uncompensated in some iterations, and it would be better they be

within range of the command signal [umin, umax], so after this observations the �nal format

of the consequents variation condition in the proposed algorithm is given by Equation 3.10.

∆Qi(k) =


Qi(k) = umin, if Qi(k − 1) ≤ umin & ∆Qi(k) < 0

Qi(k) = umax, if Qi(k − 1) ≥ umax & ∆Qi(k) > 0

Qi(k) = Qi(k − 1) + ∆Qi(k), otherwise.

(3.10)

3.3.4 Pseudo-Code

So, in conclusion, the PL-Block can be described by the pseudo-code presented on Algorithm

3.2.

Algorithm 3.2 Parameter Learning Block

1: procedure Initialization

2: Determinate ∆u = |umax − umin|
3: Determinate ∆r = |rmax − rmin|
4: Determinate the Gain = ∆u

∆r

5: G = Gain
C

◃ C is the constant that soften the gain

6: Determinate the Monotonicity Parameter

7: u(1) = umin +∆u · 0.2
8: u(2) = umin +∆u · 0.4
9: y(1) = f(x(k), u1) ◃ f(x(k), u(k)) represents the plant dynamics

10: y(2) = f(x(k), u2)

11: SignM = signal( y(2)−y(1)
u(2)−u(1)

)

12: end procedure

13: procedure Parameter Learning Block

14: Determinate error e(k) = r(k − 1)− y(k)

15: for each rule do

16: ∆Qi(k) = G · signM · αi(k − 1) · e(k)
17: if (Qi(k − 1) ≤ umin)&&(DeltaQi(k) < 0) then

18: Qi(k) = umin

19: else if (Qi(k − 1) ≥ umax)&&(DeltaQi(k) > 0) then

20: Qi(k) = umax

21: else

22: Qi(k) = Qi(k − 1) + ∆Qi(k)

23: end if

24: end for

25: end procedure
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3.4 Self-Evolving

The Self-Evolving Block is responsible for the evolution of the FCS topology, in other words,

the addition of new MFs and fuzzy rules and can be divided in three main elements:

� First, an input variable is selected to add a new MF. It isn't practically adding MF to

all inputs since the number of rules would increase drastically [Pomares et al., 2002],

so it is analysed, using the I/O data collected, which input are contributing more to

the approximation error.

� After the selection of the input variable, it is selected the best location for the center

of the MF to be added, through the analysis of the error distribution.

� To prevent performance drop issues, it is important to initialize the new rules assuring

that the new generated command signal is similar to the previous command signal.

The �owchart that represents the SE-Block is shown in �gure 3.3.

IF MSE doesn't improve 

error < threshold

Selection of input variable

Locate best centre for new MF

Initialize new rules

PL-Block

new centre close to old centres?

Yes

Yes

Self-Evolving Block

No

No

Figure 3.3: Representation of the Self-Evolving Block.

One of the main problems, shown by the tests, it is an uncontrollable growth of MFs and

rules that, consequently, increase the computation time and destabilize the control process.
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To counteract these aspects it was necessary the de�nition of two conditions that prevent the

overgrowth. The �rst condition is a threshold that prevents the creation of new MFs if the

tracking error is too small, basically if the error is smaller than the threshold the SE-block

is bypassed, as the �owchart of Figure 3.3 shows. To make the threshold adaptable to all

plants, it must depend of the operational range of the inputs, as Equation 3.11 shows.

threshold1 = F ∗∆e, with 0 < F < 1. (3.11)

where F works as a percentage and ∆e is the range of the error that is basically equal

to the range of the input. This condition is present in the original algorithm [Cara et al.,

2010].

The second condition occurs after the selection of the input and the location of the

proposed center and its main goal is to prevent the creation of new MFs with centers relatively

close to the existing ones, this condition is analysed in detail in subsection 3.4.3. This second

condition is an improvement to the original algorithm.

3.4.1 Selection of the input variable

The main idea of the selection process is analyse the contribution of each input variable

to the approximation error. So, for each input variable (j) is applied the following process

[Cara et al., 2010]:

� Construction of the set parameters (Φj) of an auxiliary Fuzzy Control System (Gj
aux)

using the MFs of the analysed variable and creating auxiliary MFs for the other inputs:

� The number of auxiliary MFs, created for the other inputs, is determined by the

equation 3.12, as proposed in [Cara et al., 2010]. In the proposed algorithm the

only improvement is the use of the close rounded up integer, since most cases the

result of 3.12 won't be a integer.

� The auxiliary MFs will be created using the range of the inputs to make sure the

centers will be distributed uniformly, being equidistant between themselves.

� To complete the Gj
aux is necessary to calculate the consequent, for that purpose

and since [Cara et al., 2010] doesn't present a clear solution, it was used the

equation 3.14 from [Mendes et al., 2014].

� Determination of the command signal of the auxiliary Fuzzy Control using input data

stored in M.

� Calculation of the Index of Responsibility for input j (IRj) as equation 3.13 shows.

� The input with the largest value of IRj is the selected input to locate a new MF.
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n∗ =
Nv
√
#M

2
(3.12)

where n∗ is the number of auxiliary MFs, Nv the number of inputs, #M the total number

of data stored. This expression is the result of �under the assumption that memory M

provides a uniform distribution of the data in the state-space, (...) the number of data

points along one axis is indeed the n-th root of the total number� [Cara et al., 2010].

IRj =

#M∑
m=1

(um −Gv
aux(xm; Φj))

2 (3.13)

where IRj is the Index of Responsibility for a variable j, um is the stored command

signal and the Gj
aux(xm; Φj) is the command signal created by the auxiliary FCS with the

parameters Φj and value stored of the variables xm . Basically, this equation is a comparison

between the stored command signal and the command signal generated by Gj
aux.

Qi =

∑M
m=1 um · αi(xm)∑M

m=1 αi(xm)
(3.14)

where Qi is the consequent of the ith rule, um is the stored command signal, αi(xm) is

the value of the antecend result of a T-norm alebraic product operation of the activation

degree of the stored input data xm in the MFs for the ith rule. The formulae is presented in

paper [Mendes et al., 2014].

3.4.2 Location of the new membership function

After selecting the input variable is necessary to locate the new center, to that purpose is

analysed the error distribution through the stored data related to the chosen input. [Cara

et al., 2010] proposes the division of the chosen input possible values in K intervals, for that

purpose the input range is divided in K intervals.

For each interval is calculated the mean square error (MSE), using equation 3.16 for each

interval Xs
j de�ned by equation 3.15 .

Xs
l = {x∥xs ∈ [xsmin

+ (l − 1) ·∆xs, xsmin
+ l ·∆xs]} (3.15)

where Xs
j is the interval for the input s, xsmin

is the minimum value possible of the input

s, ∆xs is the width of each interval and l ∈ 1 : K, being K the number of intervals.

ē2(Xs
l ) =

∑M
m=1(um −G(xm,Φ))

2

M
, ∀ m where xm ∈ Xs

l (3.16)

where M is the number of data stored, um is the stored command signal and xm the

stored input values for the m iteration, G(xm,Φ) is the actual fuzzy control applied in the

previous input data stored and Xs
j represents the interval. The condition means that in the
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equation 3.16 is only veri�ed the data where the chosen input data belongs to the de�ned

interval Xs
j .

After this process, the gravity center of the error distribution is calculated through for-

mulae 3.17, and will be the new proposed center.

ϕs =

∑K
l=1 cl · ē2(Xs

l )∑K
l=1 ē

2(Xs
l )

(3.17)

where ϕs is the new center, ē2(Xs
j ) is the MSE from the data belonging to the interval

Xs
l and cl is the center of the l interval.

The �nal proposed algorithm di�ers a little because the computation time and process

of the method present in [Cara et al., 2010] is costly. So instead of divide in intervals is just

analysed the data collected, using the next formulae, which gives the index of the new center

in the data collected:

index =

∑M
m=1m · ē2(um)∑K

l=1 ē
2(um)

(3.18)

where ē2(um) is calculated using formulae 3.16, and m is the index of each datum. This

equation represent a method that gives strength to the index where the MSE is stronger,

since the consecutive results are close to each other, this method will choose the index of

the more troublemaker data. Basically, this formula allows to identi�ed the speci�c data

that is contributing to the error, for example if the data between the 120 and 150 samples

are responsible for a large amount of error the Equation 3.18 will �push� the index towards

the samples of 120 and 150. An interesting aspect of this formulae is that analyses the

contribution for the tracking error of all the samples, if for example were used a method that

only choosed the value with the largest contribution, the algoritm could choose an anomalous

result as a center, using the contribution of all data makes this formulae more reliable and

capable to deal with possible anomalies in the results.

3.4.3 Evaluation of the new center

The original algorithm after the addition of a new center didn't have any veri�cation of the

new center, as proposed by [Cara et al., 2010], and some results showed that the new centers

were sometimes too close to previous ones, creating instability and unnecessary rules. To

prevent this the new center and all existing centers are compared, then the comparison is

veri�ed if is greater than a de�ned threshold, if it is a new MF is created, if not, the SE-

block is bypassed, as Figure 3.3 shows. To make the veri�cation adaptable to any system

the threshold is a percentage of the related input range. The pseudo-code related to this

veri�cation is:

The value of percentage could be adjusted to allow the possibility of more or less rules,

the default value is 10%. This evaluation is a great improvement of the original algorithm
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Algorithm 3.3 Self Evolving Pseudo-code

1: for each rule i do

2: if (newcenter-center(i))<(percentage*InputRange) then

3: The new center is too close to an existing center and the MF won't be created

4: end if

5: end for

proposed by [Cara et al., 2010], since there wasn't any veri�cation of the center proximity.

3.4.4 Initialization of the new Fuzzy Rules

The addition of a new MF results in a new set of rules, if the new rules' consequents are

random the originated command signal can cause a sudden decrease in performance. To

prevent this, it is important make sure that the FLC performance isn't a�ected, in other

words, it is necessary to assure that the new command signal creates a similar response as

the previous command signal.

To achieve this purpose, the consequents of the rules de�ned by the previous MFs are

maintained and the consequents of the rules with the new MF are calculated. In the proposed

algorithm were tested three di�erent options for the the consequents of the rules with the

new MF:

� First, a rudimentary solution was created, the consequents would have the minimum

value of the command signal;

� Second, the consequents would have the value of the previous command signal, as

suggested in [Cara et al., 2010];

� Third, is used the equation 3.14 to determine the new consequents.

The analyse of the results is in chapter 4, and shows that the third option presented the

best results, using the formulae 3.14 present in paper [Mendes et al., 2014].

Since the number of rules resulted from the combination of all MFs for all inputs through

formulae Nrules =
∏Nvar

j=1 N j
MF , when a new MF is added the new number of rules will be the

result of the number of existing MFs related to all the inputs except the selected input.

3.4.5 Pseudo-Code

So, the Self Evolving Block can be described by the pseudo-code 3.4.
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Algorithm 3.4 Self Evolving Pseudo-code

1: procedure Self Evolving Block

2: if error>threshold1 then

3: procedure Select Input Variable

4: for each input variable do

5: Create an auxiliary Fuzzy Control Gv
aux

6: Calculate the index of responsibility IRv summing the comparisons be-

tween the auxiliary Gv
aux for a stored xm to the corresponding original command signal

um

7: end for

8: The variable with the highest IRv is the chosen variable

9: end procedure

10: procedure Calculate the new MF's center

11: Use equation 3.18 to determine the index of the data which contains the new-

center

12: end procedure

13: if (newcenter-oldcenters)>threshold2 then

14: procedure Initialize new Rules

15: Maintain the consequents of rules with previous combinations of MFs

16: Calculate the consequents of rules with the new MFs using formulae 3.14

17: end procedure

18: end if

19: end if

20: end procedure



Chapter 4

Results and Discussion

In this chapter, it is analysed the di�erent systems controlled by the proposed algorithm and

the corresponding results, being divided in three categories:

� First is analysed results when the PL-Block is activated and the SE-Block is deacti-

vated, in other words, only the change of existing rules is activated;

� Second is analysed when both the PL-Block and SE-block are activated, in other words,

there is change in the existing rules and new rules can also be added;

� Third is analysed the perturbations and the proposed algorithm capacity of response,

evaluating in the process its robustness.

In the last segment, is analysed the in�uence of the di�erent parameters like the Gain,

Memory size, value of the di�erent algorithm thresholds and is also evaluated the results of

the di�erent initialization methods presented in 3.4.4. The results sustain the choices and

the vulnerabilities of the proposed algorithm mentioned in chapter 3.

4.1 Continuous-Stirred Tank Reactor (CSTR)

The Continuous-Stirred Tank Reactor (CSTR), is one of the tested plant, and consist in a

process that �consists of an irreversible, exothermic reaction A → B in a constant volume

reactor cooled by a single coolant stream� [Morningred et al., 1992]. The equations that

describe the process are presented in Equation 4.1 and the related variables meaning can be

consulted in Table 4.1

29
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∂CA(t+ dc)

∂t
=

q(t)

V
(CA0(t)− CA(t+ dc))− k0CA(t+ dc)exp

(
− E

RT (t))

)
(4.1)

∂T

∂t
=

q(t)

V
(T0(t)− T (t))− −∆Hk0CA(t+ dc)

ρCp

exp

(
− E

RT (t))

)
+

ρcCpc

ρCp

qc(t)

[
1− exp

(
−hA

qc(t)ρcCpc

)]
(Tc0(t)− T (t)) (4.2)

y = CA(t), u(t) = qc(t). (4.3)

Table 4.1: Nominal CSTR parameter values

Measured product concentration CA 0.1 [mol/l]

Reactor temperature T 438.54 [K]

Coolant �ow rate qc 103.41 [l/min]

Process �ow rate q 100[l/min]

Feed concentration CA0 1 [mol/l]

Feed temperature T0 350 [K]

Inlet coolant temperature Tc0 350 [K]

CSTR Volume V 100

Heat transfer term hA 7× 105 [calmin−1K−1]

Reaction rate constant k0 7.2× 1010 [min−1]

Activation energy term E/R 1× 104 [K]

Heat of reaction ∆H −2× 105 [cal/mol]

Liquid densities ρ, ρc 1× 103 [g/l]

Speci�c heats Cp, Cpc 1 [calg−1K−1]

The results in [Morningred et al., 1992] when changing the command variable, in this

case, the coolant �ow rate show that the CSTR plant have highly nonlinear characteristics

which make it a perfect test subject to our algorithm capabilities, since one of the objectives

was the control of non-linear systems.

As mentioned in Chapter 3 the algorithm only needs the operating range of the inputs

and output wich can be consulted in the next Table 4.2. The Fuzzy Control System used to

control the CSTR plant will be a MISO system, with two inputs, the reference and output

of the CSTR plant which is feedback and works as a input, and one output, the command

signal which works as a input in the plant process, as shown in Figure 3.1, except in the

�gure the output of the plant isn't feedbacked.
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Table 4.2: Nominal CSTR parameter values

Reference minimum value 0.06

Reference maximum value 0.13

Reference Range 0.07

Concentration minimum value 0.06

Concentration maximum value 0.13

Concentration Range 0.07

Command minimum value 95

Command maximum value 120

Command Range 25

4.2 Two coupled DC motors

The chosen Real-world system to test the proposed algorithm was a experimental system

formed by two similar DC Motors coupled by a shaft, as �gure 4.1 shows. The �rst motor

is controlled using Pulse Width Modulation (PWM) generated by the micro-controller (µC)

wich use the command value obtained by the proposed algorithm. The second motor works

a generator, however is conected to a variable load, which can also be controlled by the

user to create pertubations in the system. The goal is to control the velocity of the �rst

motor, which is determinated by the motors encoders both with a encoder of 64 Counts

Per Revolution (CPR) and for the maximum of 12 [V] they can achieve 11000 Rotations

per minute (RPM) [Mendes et al., 2017]. The unit used for the velocity in the controller is

pulses per 100 miliseconds (pp/(100ms)).

The controlled motor receives energy of a motor drive which, in its turn, received the

needed energy from a external power source and the controlled PWM signals used to de�ne

the ammount of energy given to the motor. The encoders of the motor give data to the µC

with the purpose of obtained the velocity of the motor.

The generator motor is conected to a variable load which, in practice, is an electronic

circuit from Arachnid Labs labelled Re:load, this device needs an analog voltage so it was

built an RC �lter and a voltage divider to make the controlled signal using PWM signals of

the µC possible.

The µC is a Texas Instruments Tiva C microcontroller and, as mentioned before, receive

the encoders data and gives the PWM signals for the load and the controlled motor drive,

through serial communication. The µC is also conected to the computer that uses MATLAB

to applied the algorithm to the system and transmits to the computer the velocity obtained

by the encoders and receives an integer command that is transform in a PWM signal.

This Real-World system has noise, electro-magnetic perturbations, friction and other

phenomena, typical in a non-linear system, these aspects are common in real-world systems,

making this sytem perfect to test the proposed algorithm.
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Figure 4.1: Representation of the Self-Evolving Block

The proposed algorithm needs two values the inputs range, the reference and output, the

command range and, being a real world system, is also important de�ne a sampling time

(Ts). The inputs range are equal for the two inputs which are the velocity of the controlled

motor and the reference of that velocity, which range value is between 0 and 1200, they

aren't precise limits but are close to reality. The command signal has a range between 0 and

4096 (since is used the value given to the µC), and has a positive monotonocity, that means

an increase of command signal translates in a increase of the velocity, the load has also the

same range. Speaking of the sampling time, since the velocity is pulses per 100 ms, makes

sense the sampling time (Ts) be 0.1 s. So the used values can be consulted in table 4.3.

Table 4.3: Two coupled DC Motors parameter values

Reference minimum value 0

Reference maximum value 1200

Reference Range 1200

Velocity minimum value 0

Velocity maximum value 1200

Velocity Range 1200

Command minimum value 0

Command maximum value 4096

Command Range 4096

Sampling Time 0.1[s]
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4.3 Additional Plants

The �rst tested plants were more simple than the two previous plants and work as a control

group to evaluate the perfomance of the proposed algorithm. This plants were obtained

through papers mentioned in the state of art and were annalysed their equations, inputs'

range, output range and command range.

The �rst plant shows �nonlinear behaviour with respect to both the control signal and

the variable to be controlled� and a command signal of 0 don't garantee a stationary output

[Cara et al., 2011]. The plant can be de�ned by the equation:

y(k + 1) = −0.075sin(y(k)) +
u+ u3

4
(4.4)

The reference signal (r(k)) and the pant output (y(k)) that works as an input to the

proposed algorithm have a operation range of [-1, 1] and the command signal has a range of

[-1, 1].

The second plant also shows the same tendencies of the �rst one [Cara et al., 2010] and

can be described by the equation:

y(k + 1) =
1.5y(k + 1)y(k)

1 + y2(k − 1) + y2(k)
+ 0.35sin(y(k − 1) + y(k)) + 1.2u(k)) (4.5)

The reference signal (r(k)) and the pant output (y(k)) that works as an input to the

proposed algorithm have a operation range of [-1, 1] and the command signal has a range of

[-1, 1].

4.4 Results with PL only

One strategy of control is create a set of MFs and adapt them along the time. In this section,

it will be analysed the results, perfomance and problems of this strategy. It will be used the

real world plant and the CSTR plant.

The analysed results will be represented by four images and are divided in:

� First image: The inputs value: in all the cases is the reference and the output of the

system to be controlled;

� Second image: The MSE error for each iteration, the MSE error gives a good ideia of

the controller's perfomance;

� Third image: The evolution of the consequents, which shows the e�ects of the adap-

tation mechanism;

� Four image: The control signal evolution;

The MFs created and adapted are two for each input with centers corresponding to the

limits of the inputs range.
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4.4.1 CSTR Plant

Using the data about the plant is created initially two trapezoidal MFs for each input that

are online adapted, with the vertice of the trapezoid used as �center� of the MF corresponding

to the limits of each input. Since the range of the inputs are the same, the centers are 0.06

and 0.13. There are two inputs with two MFs so there will be four rules. The results of the

adaptation of this four rules are presented in �gure 4.2.
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Figure 4.2: Results using only the PL block in the CSTR Plant: the inputs evolution (a),

MSE evolution (b), the consequents evolution (c) and the command signal evolution (d).

The input values evolution show a slow reaction and adaptability using only the PL

block, due to the fact that there were only four rules. However the system was more stable,

as the evolution of the signals shows and also the MSE shows. The MSE has peaks when

the reference change re�ecting the fact that the existing rules are not yet ready for the new

reference value.

The third and four graphics of �gure 4.2 show the results of the consequents and command

signal and is possible to veri�ed the connection between them. Also, due the fact that there

is only four rules and aren't added new rules, all rules are changed through the control

process because in every iteration all rules are activated and adapted.
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4.4.2 Two Coupled DC Motor

For the Two Coupled DC Motor are also created initially two trapezoidal MFs for each

input that are online adapted, with the vertice of the trapezoid used as �center� of the MF

corresponding to he limits of each input which are 0 and 1200. There are two inputs with two

MFs so there will be 4 rules. The results of the adaptation of this four rules are presented

in �gure 4.3.
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Figure 4.3: Results using only the PL block in the Two coupled DC motor: the inputs

evolution (a), MSE evolution (b), the consequents evolution (c) and the command signal

evolution (d).

The same conclusions of the CSTR plant control can be written for the real world plant.

The �gure 4.3 shows that a FCS with only a PL block can control and react to a real world

plant, as the response of the controller to non-linear behaviour shows, for example between

the iteration 700-750.

4.5 Results with the PL and SE blocks

In this section are presented the results with both the PL and SE blocks activated, in other

words, the adaptation and addition of new rules mechanisms activated. The results will be
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structured the same way as the previous section, however there will be a additional �gure

corresponding to the �nal MF distribution.

4.5.1 CSTR Plant

The initial data is the same as the previous section. The iterations corresponding to moments

of the addition of a new rule are signalled by a marker, which also have the value of the new

center's location, as �gure 4.4 shows.
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Figure 4.4: Results using the PL block and the SE Block in the CSTR Plant: the inputs

evolution (a), MSE evolution (b), the consequents evolution (c) and the command signal

evolution (d).

Comparing the results is possible to write two main conclusions related to the inputs and

MSE evolution: The �rst and more important is the comparative quickness of adaptation

specially visualized in the last changes in reference, after the all necessary rules are created.

The second conclusion is related with the susceptibility to unstable behaviour, since the

activated rules are always changing, with the change in the reference values, and they can

be descompensated in the initial iterations that they are activated.

The results related to the consequents evolution are also interesting comparing with only

a PL block activated. Due to the distribution of MFs, when there are more than two MFs

for an input, the consequents in rules with the MFs not activated are constant. Due to
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this aspect, contrary to the PL block only, there isn't need of change all the rules, only a

maximum of 2Nv rules, for each iteration k. Another aspect is the centers of MFs are more

close to the varibales value, this makes a change in the MFs with that centers much more

e�cient and with faster results.

The MFs distribution is possible to see in �gure 4.5 and the iteration and value is present

in table 4.4. Is possible to see that the moments corresponding to the creation of new MFs

are closely connected with the changes in the reference.
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Figure 4.5: MF distribution in the CSTR plan.

Input type Iteration Value

Output 2009 0.1

Output 4009 0.08

Reference 6020 0.1

Reference 12013 0.085

Table 4.4: Location of the new centers in the

CSTR plan.

4.5.2 Two Coupled DC Motor

The initial data is the same as the previous section. The iterations corresponding to moments

of the addition of a new rule are signalled by a marker, which also have the value of the new

center's location, as �gure 4.6 shows.

The results of the real world plant reinforce the conclusions of the CSTR plant and shows

a higher quickness in achieving the established reference signal, however to this quickness is

associated an instability.

The MFs distribution is possible to see in �gure 4.7 and the iteration and value is present

in table 4.5. Is possible to see that the moments corresponding to the creation of new MFs

are closely connected with the changes in the inputs.
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Figure 4.7: MF distribution in the real world

system.

Input type Iteration Value

Output 86 499

Reference 93 500

Output 280 697

Table 4.5: Location of the new centers in the

real world system.

4.6 Results with perturbations

An important aspect to evaluate the perfomance of the algorithm is its ability to respond well

to pertubations. The chosen types of pertubations, for the simulated systems, to evaluate

the algorithm perfomance were an input and output pertubation. The input pertubation
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Figure 4.6: Results using the PL block and the SE Block in the Two coupled DC motor: the

inputs evolution (a), MSE evolution (b), the consequents evolution (c) and the command

signal evolution (d).

corresponds to an addition to the command signal, for that reason is a percentage of the

command signal range. The output pertubation is an addition to the value of the ouput, for

that reason is a percentage of the output range. Both perturbations are a step-type signal.

In the real world system it was induced a load using the generator motor that works as

a pertubation, the range of operation of the load is the same as the command signal given

to the uc.

4.6.1 CSTR Plant

The CSTR is subjected to step input pertubation corresponding to 5%∆u in iterarion 5000

and the symmetrical step input pertubation in iteration 7000. The output pertubation is

also a step function with the value corresponding to 5%∆y in iteration 9000 and the opposite

value in iteration 13000.

The results show that the algorithm can react well to pertubations, however with both

blocks activated the perfomance of the algorithm response is much more e�cient.
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Figure 4.8: Results of the control process when subjected to pertubations using the PL block

and the pert Block in the CSTR Plant: the inputs evolution (a), Mpert evolution (b), the

consequents evolution (c) and the command signal evolution (d).

4.6.2 Two Coupled DC Motor

As mentioned in section 4.2 there is a variable load which can be con�gure by the user to

simulate an pertubation. This is the only type of pertubation used for this plant, the value

used was 700 between the iterations 300 and 500.

The results show the capacity of response of the proposed algorithm and also that with

the two blocks activated the responser is quicker and more e�cient.
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Figure 4.9: Results of the control process when subjected to pertubations using the PL block

and the pert Block in the Two-coupled DC motor: the inputs evolution (a), Mpert evolution

(b), the consequents evolution (c) and the command signal evolution (d).
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4.6.3 Additional plants

As mentioned in section 4.3, there were also tested two additional plants, since the conclu-

sions are similar to the results of the two-coupled DC motor and the CSTR plant, are only

showed the results with both SE-block and PL-block activated and with perturbations that

are originated with the same method as the CSTR plant. So the two plants are subjected to

a step input pertubation corresponding to 5%∆u in iterarion 5000 and the symmetrical step

input pertubation in iteration 7000. The output pertubation is also a step function with the

value corresponding to 5%∆y in iteration 9000 and the opposite value in iteration 13000.

The results of the �rst additional plant can be visualized in Figure 4.10 and the results of

the second additional plant can be visualized in Figure 4.11. The results of both test show

capacity of the algorithm control several di�erent systems.
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Figure 4.10: Results using the PL block and the SE Block in the �rst additional plant: the

inputs evolution (a), MSE evolution (b), the consequents evolution (c) and the command

signal evolution (d).
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Figure 4.11: Results using the PL block and the SE Block in the second additional plant:

the inputs evolution (a), MSE evolution (b), the consequents evolution (c) and the command

signal evolution (d).
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4.7 In�uence of variables

4.7.1 Gain

The Gain is one of the most in�uential parameters, a high gain makes the adaptation faster

at cost of stability has �gure 4.12. In fact higher values creates such instability that makes

impracticable the use of such values. On the other hand, lower values make the controller

slower to react and is also observed instability, specially with both blocks activated.
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Figure 4.12: Results with a high gain using only the PL block (a) and using both blocks (b)

and also with a low gain using only the PL block (c) and using both blocks (d).

Such volatility show one of the main weakness of the algorithm, if the gain is wrongly

calculated can create disastrous outcomes. However, there is no need of a precise gain, results

show that there is a considerable range of gains that work well, for example the CSTR plant

works well with gains from 12 to 50. The default value of the gain is, as mentioned in section

3.3.1, obtained dividing |umax−umin|
|rmax−rmin| for 15, value used in all results presented in the previous

sections.

4.7.2 Memory

The memory parameter is the size of the memory data and in�uence the following aspects:

� The SE block can only be activated after the memory data is full�ll, for example, if

the parameter is 100, the SE block is only activated 100 iterations after the beginning
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or after a new change in the structure.

� When a new MF is created the center is obtained by the error distribution in the

memory, so the memory parameter de�nes the number of possible choices.

� The memory parameter have a large in�uence in the computation cost of the algorithm.

Figure 4.13 shows the mentioned aspects, is possible to see that the MSE evolution is

also di�erent, which makes sense because of the MSE is calculated using the memory data

and with a larger memory the in�uence of iterations with considerable error is extended.
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Figure 4.13: Results with a low value of memory size, speci�cally, the input evolution (a)

and the MSE evolution (c) and with a high value of memory size, speci�cally, the input

evolution (b) and the MSE evolution (d).

The e�ect of the size of memory can be really useful when well manipulated, for example

if the tested plant is subjected to a lot of quick changes, a large value can have bad e�ects,

because the larger this parameter the longer the in�uence of the errors will persist in the

following iterations, on other hand, a small value could make anomalies, resulted by non-

linear behaviour, much more impactful then if it was used a large value for memory, because

a larger value softens the in�uence of this anomalies.

4.7.3 Thresholds

In chapter 3 is mentioned the use of two thresholds in the SE block, the �rst is used in the

entry condition that can activate the block and the second is used in the condition to verify
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the proximity of the new center to existing centers, as �gure 3.3 shows. Both thresholds are

percentages multiply by the range of the variables related.
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Figure 4.14: Results with the default value of the �rst threshold (a) and with an insigni�cant

value of the �rst threshold (b).
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Figure 4.15: Results with the default value of the second threshold (a) and with an insignif-

icant value of the second threshold (b).

The value of the �rst threshold guarantee that when the error is small and the controller

is doing well there isn't need of a new MF. As �gure 4.14 shows, this threshold prevents the
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creation of rules when the error is small. The default value of the threshold used was 5% of

the error range.

The second threshold is one of the most important conditions of the algorithm because

it assures some stability in the structure and prevents the creation of rules close to others.

Is important to remind that with more rules the controller have more computational cost

and a large number of rules creates instability, as Figure 4.15b show. The default threshold

is 10% of each input range.

4.7.4 Initialization of new rules

As mentioned in section 3.2.2 there are three methods to calculated the consequents of the

new rules, the results of each method is presented in �gure 4.16. It's possible to see the

in�uence of a wrong initialization in the �gure 4.16a, where the new rules' consequents are

initialized with the minimum value of the consequent possible and this aspect makes the

controller have a break in performance and consequently creates instability. The other two

methods show similar results, but the initialization using the formulae in [Mendes et al.,

2014] is, comparably, softer, for that reason is the default method.
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Figure 4.16: Results where the initialization of the consequents of the new rules is obtained

using: the minimum consequent (a), the previous iteration command signal (b) and the

equation in [Mendes et al., 2014] (c).
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Conclusion

This dissertation propose an evolving Fuzzy Control algorithm with learning capabilities

that is able to control an industrial process without knowledge of its structure or behaviour.

The algorithm is constituted by two parts, an adaptive, that change existing rules, and

an evolving, that change the structure, creating new rules. The learning process happens

using the I/O data obtained while controlling the system, for this reason the algorithm

is considered an online algorithm. Is possible to say that the objectives proposed in this

dissertation are ful�lled.

In order to validate the adaptation to di�erent type of systems, the algorithm was used

in four di�erent systems, and in all of them was able to adapt and control. It was also

subjected to perturbations and non-linear behaviour, specially in a real-world plant. The

results are satisfying, however it's noticed that some parameters can have a huge impact in

the performance of the algorithm, and in some cases is necessary to regulated this parameters,

specially the gain parameter, responsible, if too high, for creating instability and, if too low,

for a slow adaptation. So if a user is planning to use the proposed algorithm, should be

careful with the choice of the gain parameter and change it if the results are not being

satisfactory.

There also other parameters that the algorithm allow the user to change, however their

impact in the controller performance are not so strong as the gain. The user can change the

Memory size, the in�uence of this parameter is described in section 4.7.2 and, summarizing,

the value determine how long the in�uence of errors persist in the algorithm, for example

if the plant has a lot of changes in the reference values the memory value should be lower

to make sure that the errors don't in�uence the algorithm for too long, another example

is when the plant have some frequent anomalies, due to non-linear behaviour, is advised to

have a higher value of Memory so that the in�uence of the anomalies can be soften.

Other parameter are the thresholds, there are two main thresholds that the user can

manipulated, both are related to conditions that determine the addition of new rules. The

values manipulated by the user are percentages to be adaptable to di�erent systems. The

�rst threshold de�nes the minimum value of error to add new rules, this prevents changes

47
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in the structures when the controller is being already e�cient. The second threshold de�nes

the minimum distance between the centers of the MFs, and basically works as a safeguard

to the creation of a large number of MFs, and subsequently, rules.

For future work is suggested methods to manipulated and study of a better gain for

a speci�c plant, the value used in this dissertation works to all tested plants, however for

each plant the best results are obtained with di�erent gains, so the creation of methods to

calculate the gain for a speci�c plant would improve the proposed algorithm.

It would also be interesting test the algorithm in other type of plants, like plants whose

monotony relation between the command signal and output change along the time, Multiple

Inputs Multiple Outputs (MIMO) systems would also be interesting and, of course, more

real-world plants.

Another interesting work would be the use of the ANYA FRB, that contrary the proposed

algorithm that use fuzzy sets to de�ne the antecedent, the method ANYA uses clouds, and

the inputs values have a degree of membership to each existing cloud. This, relatively, recent

proposed method of Fuzzy Rules as yet to be widely used in the scienti�cally community

and algorithms using it could be a �ne contribution to the research �eld of evolving Fuzzy

Control Algorithms, the implementation of the [Sadeghi-Tehran et al., 2012] algorithm could

be a good start to achieve this goal.
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