Faculty of Sciences and Technology
Department of Informatics Engineering

loT Student Advisor and Best Lifestyle
Analyzer (ISABELA)

loT Management

Inés Pereira de Azevedo Mota

Dissertation in the context of the Master in Informatics Engineering, Specialization in
Software Engineering advised by Professor Jorge Sa Silva and Professor Fernando Boavida and
presented to the
Faculty of Sciences and Technology / Department of Informatics Engineering.

January 2019

UNIVERSIDADE b

COIMBRA

This work was developed in colaboration with:

Center of Informatics and Systems

CISU

Department of Informatics Engineering
University of Coimbra

DEPARTAMENTO _
ENGEMHARIA INFORMATICA

Agradecimentos

Comego por agradecer ao Prof. Dr. Jorge Sa Silva e ao Prof. Dr. Fernando Boavida
pela orientacdo, compreensao e disponibilidade demonstradas ao longo destes meses de
trabalho.

Aos meus pais, pelo amor, preocupagido e ajuda. Por me acompanharem sempre e me
darem colo quando preciso.

A minha irma, pela companhia e apoio. Por me dar a méao e prescindir de si para primeiro
garantir que estou bem.

A minha avo, por rezar sempre pelo meu sucesso. Aos meus tios, primos e padrinhos pelo
interesse e apoio que sempre me demonstram. Ao meu afilhado, pela sua chegada que
alegrou este processo. Aos meus avos e tio, que, apesar de ja nao estarem, estdo sempre
comigo.

A Carolina, a Cris, a Joana, a Maria, a Melanie e a Paula, por compreenderem a minha
auséncia e por me receberem de volta com palavras encorajadoras e carinho.

Ao André, ao Anténio e ao Carlos, por todas as horas de trabalho e de lazer que passamos
juntos. Levo-vos comigo para a vida.

As deusas do “Concilio” e ao Wilson, pela amizade.

Finalmente, ao Armando, ao Duarte, ao Jorge, ao Marcelo, ao Oswaldo e & Soraya por
me terem recebido e acolhido e por despenderem do seu tempo para se preocuparem por
mim e me ajudarem sempre que precisei.

Abstract

This report is focused on the work made throughout the internship. The work
carried consisted on the study of the technologies and protocols underlying
the project, the study of IoT Student Advisor and Best Lifestyle Analyzer
(ISABELA) and some similar case studies, the implementation of a proximity
module through bluetooth operations and the study of Network Management
Protocols and integration of the Lightweight machine-to-machine (LWM2M)
protocol, that manages the various devices that are part of the project.

The objective of this thesis is to continue and expand the work done on IS-
ABELA so far. Therefore, one of the focal points of this thesis is the de-
velopment of a proximity module developed to infer about sociability. The
module is based on bluetooth operations to discover nearby devices, at all
times, and know the amount of time a participant spends with the same peo-
ple, amongst random people or alone. The platform was tested in a real-life
context, with students at Department of Engineering Informatics (DEI), In-
stituto Superior de Contabilidade e Administragao de Coimbra (ISCAC) and
Escuela Politécnica Nacional (EPN), in Ecuador. One of the main objectives
was achieved, as the system informs the participant when it detects “bad be-
havior”, through messages from the ChatBot. This module, also, served to
better understand the platform and learn to work with its components. The
other focal point of this thesis is the incorporation of a network management
protocol to manage all the heterogeneous devices that complete ISABELA.
The chosen protocol was LWM2M, a protocol design by Open Mobile Alliance
SpecWorks for managing sensor networks and remote machine-to-machine de-
vices. The integration of the protocol was made through two approaches: 1)
Eclipse’s Leshan, where the management protocol is parallel to the ISABELA
system and 2) FIWARE’s LWM2M IoT Agent, where the server is integrated
on the project’s Internet of Things (IoT) middleware (FIWARE).

Performances tests were made to evaluate the impact that the addition of the
management protocol could provoke on the smartphone’s battery use. The
results were favorable, culminating in that the battery use is not significantly
higher for the application running ISABELA and the LWM2M client compared
to the application only running ISABELA.

Keywords

Internet of Things, Cyber-physical Systems, Human-in-the-Loop, Context In-
formation, Lightweight machine-to-machine, Constrained Application Proto-
col (CoAP), IoT Agent.

i

This page is intentionally left blank.

Resumo

O presente relatoério é focado no trabalho feito durante o estagio. Esse trabalho
consistiu no estudo das tecnologias e protocolos subjacentes ao projeto, no
estudo do ISABELA e alguns casos de estudo similares, na implementacao de
um modulo de proximidade através de operacoes de bluetooth e o estudo de
alguns Protocolos de Gestao de Redes e a integracao do protocolo LWM2M,
que gere os diversos dispositivos que fazem parte do projeto.

O objetivo desta tese é continuar e expandir o trabalho feito, até agora, no
ISABELA. Por isso, um dos pontos focais desta tese é um médulo de proximi-
dade desenvolvido para inferir sobre sociabilidade. O mddulo foi desenvolvido
com base em operacoes de bluetooth, de modo a descobrir dispositivos nas
proximidades e ficar a saber a quantidade de tempo que um estudante passa
acompanhado das mesmas pessoas, no meio de multidoes que nao conhece ou
sozinho. Esta plataforma foi testada num contexto real, por alunos do DEI,
do ISCAC e de EPN, uma escola do Equador. Um dos principais objetivos foi
alcancado, uma vez que o sistema avisa o estudante quando deteta comporta-
mentos prejudicias, através de mensagens do ChatBot. Este modulo, também,
serviu para conhecer melhor a plataforma e aprender a trabalhar com os seus
componentes. O outro ponto focal desta tese é a integragao de um protocolo
de gestao de redes para gerir os dispositivos heterogéneos que compoem o sis-
tema. O protocolo escolhido foi LWM2M, desenhado pela companhia Open
Mobile Alliance Spec Works para gerir redes de sensores e dispositivos remotos.
Essa integracao foi feita segundo duas abordagens: 1) através do projecto Le-
shan do Eclipse, na qual o protocolo de gestao é paralelo ao sistema ISABELA
e 2) através do Agente IoT para LWM2M do FIWARE, na qual o servidor é
integrado diretamente num maédulo do FIWARE do nosso projeto.

Foram realizados testes de desempenho para avaliar o impacto que teria a
adicao do protocolo de gestdo no consumo de bateria do smartphone. Os
resultados foram favoraveis, culminando em que o consumo de bateria nao é
significativamente mais elevado para a aplicagdo que corre o ISABELA e o
cliente LWM2M comparada com a aplicagdo que s6 corre o ISABELA.

Palavras-Chave

Internet das Coisas, Sistemas ciber-fisicos, Human-in-the-Loop, Informacao
do Contexto, Lightweight machine-to-machine, CoAP, Agente IoT.

This page is intentionally left blank.

Contents

Acronyms
List of Figures
List of Tables

1 Introduction

1.1 Context e
1.2 Objectives e
1.3 Report Structure
1.4 Work Planning and Methodology
1.5 Concepts e
1.5.1 Internet of Things
1.5.2 Cyber-physical Systems,
1.5.3 Human-in-the-Loop
1.6 Used Technologies

1.6.1 Android
1.6.2 FIWARE

1.6.3 Raspberry Pi and Arduino
2 Network Management Protocols

2.1 Protocols
2.1.1 Network Configuration Protocol (NETCONF).
2.1.2 RESTCONF e
2.1.3 Lightweight machine-to-machine

2.2 Comparative Analysis

3 ISABELA

3.1 General Overview L
3.1.1 Description L e
3.1.2 Similar Projects
3.1.2.1 StudentLife L

3.1.2.2 Smart Kindergarten,

3.1.2.3 ISABELA vs Similar Projects

3.1.3 User Interface

3.2 System Architecture and Components
3.2.1 Owerall System
3.2.2 FIWARE Architecture and Modules
3221 ORION

3222 COMET e

3223 IDAS

3.2.2.4 Other Modules

vii

ix

xi

xiii

Chapter 0

4 Development 21
4.1 Requirements L 21
4.1.1 Proximity Module 21

4.1.2 Device Management L L L oo 22

4.2 Proximity Module 23
4.2.1 Data Acquisition 23

4.2.2 Communication 27

4.2.3 Android Applicationo 28

424 Trial Tests 30

4.2.4.1 Participants L o 31

4242 Results 31

4.2.4.3 Positive Points oo 34

4244 Drawbacks 34

4.3 Lightweight machine-to-machine Protocol 35
4.3.1 Overview 35

4.3.2 Leshan Solution 36

4.3.2.1 Server e 37

4.3.2.2 Clients e e 37

4.3.3 IoT Agent Solution 43

4.3.3.1 LWM2M IoT Agent 45

4.3.3.2 SEIVEr e 46

4333 Client e 46

5 Performance Tests and Results 47
5.1 Battery Life 47
5.2 Tests e 48
5.3 Results. e e e e e e 48

6 Conclusions and Future Work 51
6.1 Challenges e 51
6.2 Conclusions e e 52
6.3 Future Work e 53
References 55
Appendices 61

A Configuration of the Virtual Machine for the Leshan LWM2M Server 63
B Configuration of the FIWARE Environment for the LWM2M IoT Agent 65

C Article 67

viii

Acronyms

API Application Programming Interface.

CoAP Constrained Application Protocol.

CPS Cyber-physical Systems.

DEI Department of Engineering Informatics.

DTLS Datagram Transport Layer Security.

EPN Escuela Politécnica Nacional.

FI-PPP Future Internet Public Private Partnership.

GE Generic Enablers.

HiTL Human-in-the-Loop.

IETF Internet Engineering Task Force.

IoT Internet of Things.

ISABELA IoT Student Advisor and Best Lifestyle Analyzer.
ISCAC Instituto Superior de Contabilidade e Administracao de Coimbra.
LWM2M Lightweight machine-to-machine.

NETCONF Network Configuration Protocol.

OS Operating System.

REST Representational State Transfer.

RFID Radio-Frequency Identification.

TCP Transmission Control Protocol.

TLS Transport Layer Security.

YANG Yet Another Next Generation.

ix

This page is intentionally left blank.

List of Figures

1.1
1.2
1.3
14

21

2.2

3.1
3.2
3.3
3.4
3.5
3.6

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9
4.10
4.11
4.12
4.13
4.14
4.15
4.16
4.17
4.18
4.19
4.20
4.21
4.22
4.23
4.24
4.25
4.26

Work Plan. e 3
GitLab project’s issues. Lo o 4
Number of connected devices worldwide from 2015 to 2025 [2]. 5
The process of Human-in-the-Loop (HiTL) [4]. 7
RESTCONF with the Network Configuration Protocol (NETCONF) Server

[21]. . 10
RESTCONF without the NETCONF Server [21]. 10
Login Screen. L 15
Activity Screen. 16
Location Screen. 16
ChatBot. e 16
System architecture. L Lo 17
FIWARE architecture. 17
Funtion “bt_devices.scan”. 24
Bluetooth Broadcast Receiver., 25
Timer for Bluetooth scan., 26
Bluetooth Permissions on AndroidManifest.xml. 26
Smartphone_Data object with the data acquired from the bluetooth sensors. 26
Bluetooth field of the JSON object student. 27
Request bluetooth information. 27
COMET response to the information request. 28
Data Treatment and Display | Part 1. 29
Data Treatment and Display | Part 2. 29
List Adapter. e 30
Navigation Drawer. 30
Friends Screen. 30
Total participation by week.o oo 32
Mean participation by week. L oo 32
Total number of hours spent alone. 33
Percentage of hours spent alone. 33
Architecture of the Lightweight machine-to-machine (LWM2M) Enabler [56]. 35
Architecture of the Leshan solution. 36
Server Page. 37
Part of DHT11Class.java. v v it 38
Server parameter for the LWM2M client initializer. 39
Constructor and Read functions. 40
Start, Stop and ID functions. 40
Function where the values areread. 41
Creating the Sensors and adding them to SmartObjects. 41

xi

Chapter 0

4.27 Loading the .xml Models. 41
4.28 Building the client with the Models and the SmartObjects. 42
4.29 Instance of a LWMZ2MClient being called on the Main_Service. 42
4.30 List of Devices connected to the Server. 43
4.31 Device’s Properties | Part 1. oo o oL 43
4.32 Device’s Properties | Part 2.o Lo 0oL 43
4.33 Architecture of the IoT Agent solution. 45
5.1 Battery Use only with the LWM2M Protocol. 49

xii

List of Tables

21

4.1
4.2
4.3
4.4

5.1

Summarized Protocols [30]. oo 11
Bluetooth Discovery Requirement. 21
Friend’s Top Screen Requirement. 22
LWM2M Protocol Requirement. 22
Number of Participants by Institution. 31
Battery use for each system. L oL 48

xiii

This page is intentionally left blank.

Chapter 1

Introduction

In this chapter, the context of this Master thesis and its objectives are provided; some im-
portant concepts and some of the technologies that enabled the realization of the project
are detailed and a brief explanation of the work planning and the methodology are pre-
sented.

1.1 Context

The term Internet of Things (IoT) emerged in 1999 and was proposed by Kevin Ashton. At
first, it was about monitoring commercial products using Radio-Frequency Identification
(RFID) tags, with minimal human intervention [1]. Nowadays, the core is the same but
the technology evolved.

In 2018, there are, approximately, 23.14 billion connected devices and this number is
expected to grow to, approximately, 75.44 billions, by 2025 [2]. We are surrounded by
“smart” things that are, constantly, being equipped with new capabilities. They are
connected to the Internet, are capable of sensing and can communicate between them and
share the sensing data [3].

However, raw data is not enough to impact the way of life. We need to understand it.
There is where Cyber-physical Systems (CPS) enter. CPS are systems that rely on working
together in order to control the physical environment around them. They include sensors
and actuators and when their finality is to be useful to the users, by considering their
actions and emotions, we enter the realm of Human-in-the-Loop (HiTL) CPS. This kind
of CPS are used to contribute for the betterment of the quality of life, as they acquire
context information, process it and give advice on how to proceed [4].

In 2016, Portugal registered the 4th highest rate of college dropouts in the Furopean
Union, at 14%, among students between the ages of 18 and 24 [5]. Two of the most
common causes for this rate are the difficulty of having to balance work and school and
stress and depression [6]. Students are feeling overwhelmed by schoolwork and other
commitments, therefore, are studying more and socializing less.

With the help of IoT and HiTL CPS, we can create more innovative teaching methods
centered in understanding students realities and giving them feedback, by using their
smartphones as a mean to collect information about their day-to-day activities and giving
them informed advice on how to act.

Chapter 1

1.2 Objectives

This thesis is inserted in a Fundag¢ao para a Ciéncia e a Tecnologia [7] project, which
started in July of 2016. The project, IoT Student Advisor and Best Lifestyle Analyzer
(ISABELA), is a case study and aims to infer about the impact on the academic perfor-
mance of its participants and give advice to prevent negative outcomes, based on data
collected through sensors. In order to accomplish that, a system able to collect data from
the students habits, actions and emotions, process it and give feedback based on the results
was created.

ISABELA’s objectives were the creation of an IoT platform to communicate with different
devices, store the information collected and protect that information, and the development
of an Android application to retrieve data through the smartphone’s sensors and send it to
the aforementioned platform. It is through this application that we can provide relevant
information and advice to the user.

The objective of this thesis is to continue and expand the work done on ISABELA so far.
For that, this thesis is focused on:

1. The development of a sociability module based on proximity. Sociability is consid-
ered to have a great impact on students’ lives and their academic performances. This
new module was developed through bluetooth operations that enable the discovery
of other devices nearby and allow us to infer on the sociability of the participant,
because through it we can discover the amount of time the participant spends alone,
with the same people or amongst random people. The module also served to better
understand the platform and learn to work with its components.

2. The integration of a network management protocol that manages the heterogeneous
devices that are part of the ISABELA system. A study of various protocols was
made and the chosen one was Lightweight machine-to-machine (LWM2M), a protocol
design by Open Mobile Alliance SpecWorks for managing sensor networks and remote
machine-to-machine devices. Its integration was made through two approaches: 1)
Eclipse’s Leshan, where the management protocol is parallel to the ISABELA system
and 2) FIWARE’s LWM2M IoT Agent, where the server is integrated on the IoT
middleware (FIWARE).

These two components, its development and specific functions will be explained in greater
detail in chapter 4.

1.3 Report Structure

This report is divided in 6 major chapters: 1 Introduction, 2 Network Management Pro-
tocols, 3 ISABELA, 4 Development, 5 Performance Tests and Results and 6 Conclusions
and Future Work.

The first chapter serves as an introduction to the project, where the context and objectives
are explained. In this chapter, there is also a brief explanation of the work planning, the
methodology and the technologies used throughout the project.

In the second chapter, there is a presentation and evaluation of the various network man-
agement protocols considered to manage the several devices that form part of the system.

Introduction

In the third chapter, there is an overview of the ISABELA project, in which this thesis
is inserted. A brief description is presented and some of its components are addressed in
more depth because they are vital to the work of this thesis.

The fourth chapter presents the process of development of the components that make it
possible to fulfill the two objectives of this thesis.

The fifth chapter is focused on the tests made to the application and consequent results.

The sixth chapter is dedicated to the conclusions taken from the development and the
challenges that were found along the way. The potential future work is also presented in
this chapter.

At the end of the document, there are Appendices where some specific configurations are
explained and a scientific paper that I was a co-author of is presented.

1.4 Work Planning and Methodology

In this section, a timeline for the work developed and the followed methodology are pre-
sented.

Work Plan 06/02/2018

Figure 1.1: Work Plan.

As we can see, in Fig. 1.1, the first week was reserved for a familiarization with the
ISABELA system that had already been developed and for a review of the similar projects,
that will be presented in chapter 3.

The following month was spent developing an Android module for ISABELA. The Prox-
imity Module helps measure sociability. It does it with the help of bluetooth, that starts a
discovery every 5 minutes and by comparing the MAC address of all the devices discovered
we can infer about the amount of time the participant spends alone, with the same group
of people or surrounded by random people.

The following week served to document the module and all the procedure of development.
The development of the proximity module is explained in chapter 4.

Then, it was two weeks to learn about the LWM2M protocol and other network manage-
ment protocols. This study makes up the state-of-the-art, presented in chapter 2 and was
followed by a month for an early implementation of the Leshan project, an Eclipse project

Chapter 1

that helps implement the LWM2M protocol.
The rest of the intermediate report was written during the month of June.

Most of July and August were occupied studying ways in which we could integrate the
LWM2M protocol in ISABELA.

In September, the integration of the Leshan client in the Android application started.
That took about a month and after that came the study of a new approach for integrating
the LWM2M protocol in the system - the IoT Agent solution. Its documentation appears
in chapter 4.

Then, it was two weeks for the integration of the agent with FIWARE and three weeks
after that for the integration of the Node.js client in the ISABELA Android application.

Finally, from the 15th of December through January of this year occurred the writing and
revising of this document.

In this project, we used Scrum methodology [8]. Scrum is an agile methodology, which
means that it works on the basis of small increments that, eventually, make up a final
product fully functional and up-to-date. This makes us work with Sprints. Sprints are
iterations of the project and have a duration of 2 to 3 weeks. For example, the development
of the Proximity Module was a sprint, in which we started by planning the requirements
for this implementation, then we built the module and tested it and, finally, we reviewed
the changes made. At the end of every Sprint, there should be a smaller product, ready
for deployment.

Through the development of the project, every week on Thursday, there was an individual
meeting with the supervisor in order to decide what needed to be done that week and to
expose difficulties and a group meeting in which each member presented briefly the work
they had been doing.

The use of GitLab was very useful as a team management tool.

< [in] (=7 103.2.91 ¢ o h g

i iCloud RESEARCHv TESEv SNLv Sspatihasv Desportov Sacarv Google Facebook Twitter YouTube Instagram Tumblr InforEstud@nte EmailDEl Outiook inesmota Pinterest Vimeo — >>

[§] Issues - Socialite / Isabela - GitLab i

= Socialite / Isabela v v P -

Project Activity Repository Pipelines Graphs Issues 14 MergeRequests 0 Wik & -
Issues Boarc Labels Milestones
Author Assignee Milestone Labels Last created ¥

Fix readme file in repo
#42 - opened 2 months ago by Duarte Raposo @ v0.76 updated 2 months ago
Add label to the y axis in history
#41 - opened 2 months ago by Duarte Raposo @ v0.76 Low Priority updated 2 months ago
Merge the two activities (Student with University and Room)
#40 - opened 2 months ago by Duarte Raposo @ v0.76 Low Priority updated 2 months ago
Fix the Menu in the last activity
#39 - opened 2 months ago by Duarte Raposo @ v0.76 updated 2 months ago
Install the Isabela Boxes in the bar and in the classes
#38 - opened 2 months ago by Duarte Raposo @ v0.76 updated 2 months ago
Saving the current event in the calendar; 0
#37- opened 3 months ago by Marcelo £ Apr 6,2018 updated 3 months ago
Put the main_service in the Foreground 0
#36 - anened R manthe aon hy Marcaln [VRSERRER undated 2 manths aon

Figure 1.2: GitLab project’s issues.

As we can see, in Fig. 1.2., every member of the team had access to all the projects that

Introduction

the group was working on. This tool allowed us to coordinate work, as every issue could
represent work to be done, it could be assigned to a specific user and it could have a
deadline to follow.

As a form of communication, we used Slack [9] and Email. However, Slack allowed us to
create specific channels for specific problems, thus, obtaining faster answers.

1.5 Concepts

In this section, a brief summary of some concepts that help contextualize the project is
presented.

1.5.1 Internet of Things

Generically, the term “Internet of Things” refers to scenarios where everyday devices (not
normally considered computers) are able to connect and generate, exchange and consume
data, with minimal human intervention [1].

This term was coined by Kevin Ashton, in 1999. Ashton used the term to reference the
linkage of RFID tags used in corporate supply chains to the Internet for tracking purposes.
However, that concept evolved and other techniques to connect everyday devices emerged.
The first IoT applications appeared from health-care, transportation and automotive in-
dustries and recently are moving towards smart-cities [3].

Presently, there are billions of connected IoT devices and the tendency is for that number
to grow (Fig. 1.3), as new techniques for implementation of IoT applications arise.

100

80 75.44

62.12
60
51.11

42.62

40 35.82

30.73

Connected devices in billions

26.66
23.14
20.35

20 yggy 1768

2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025

© Statista 2018 Im

Figure 1.3: Number of connected devices worldwide from 2015 to 2025 [2].

IoT devices are no longer, only, computers or phones. Many more everyday devices are

Chapter 1

empowered with communication abilities, such as fridges, TVs and fireplaces.

1.5.2 Cyber-physical Systems

CPS aim to determine the way we interact with the physical world around us [10]. The
concept of CPS rises from a junction of several elements (which include sensor networks and
IoT devices) that work together in order to control and monitor the physical environment
around them [4].

CPS are already used in various industries. They are mostly used to help with the better-
ment of processes in place, by sensing the environment in which that processes are inserted
into. These systems must include sensors and actuators and use the computational capa-
bilities of the devices to reach desirable results [4].

If these systems are made to be useful for the users, we enter the realm of HiTL CPS,
which take into account human actions and emotions.

1.5.3 Human-in-the-Loop

Most of the CPS are applications centered in humans, however, still consider them to be
external actors. In the future, if we want to create technology to better serve humans, these
systems will need to take into consideration human dependent factors, such as emotions
and actions [4].

The process of HiTL control (Fig. 1.4) has humans in the center of the system and works
in four phases:

1. The data acquisition is made by gathering information through the available sensors.
This phase is made easier by the gadgets that humans carry with them on a daily
basis, which are full of sensors.

2. The data acquired is processed and is used to infer the user’s state. This step helps
improve the performance and accuracy of the control’s loop.

3. Some procedures try to predict future states based on information previously gath-
ered and the current state.

4. Finally, the systems use the information gathered, processed and the user’s state to
determine if a certain action may be performed.

Introduction

.
-

Figure 1.4: The process of HiTL [4].

1.6 Used Technologies

In this section, the technologies used during the first phase of the project are going to be
presented.

1.6.1 Android

Android is a mobile Operating System (OS) developed by Google and based on the Linux
Kernel. Initially, it was created by Android Inc. for digital cameras, but then Google
acquired the company, in order to enter the mobile market [11].

It was primarily designed for smartphones and tablets, but, over the years, Google devel-
oped new versions of the OS for smart TVs (Android TV), for cars (Android Auto) and
for smartwatches (Android Wear). Other variants may also be found on game consoles
and digital cameras.

Android benefits from the fact that several smartphones manufacturers build devices
specifically designed for the Android system. This greatly helps Google in gaining market
share, making them accountable for 87,7% of the shares of the global mobile operating
system market [12]. This reflects in 2 billion monthly active users and 3.6 million apps
available in the Google Play Store [13].

As the Android OS is an open-source technology, the main language used in the develop-
ment of Android applications is Java, through the Java Development Kit (JDK), and it is
so used and so well documented, it was the chosen platform for our application.

1.6.2 FIWARE

FIWARE is an IoT platform created in Europe by the Future Internet Public Private
Partnership (FI-PPP) with the objectives of [14]:

e accelerating the development and adoption Future Internet technologies in Europe;

Chapter 1

e advancing the European market for smart infrastructures;

e increasing the effectiveness of business processes through the Internet.

FIWARE, which means Future Internet Ware, is public, open-source and free of royalty [15]
and one of its objectives is helping developing smart applications from various domains.
Smart applications need to be constantly gathering information that may be important for
the application (context information), then that information will be processed and ana-
lyzed and the results shown. FIWARE aims to standardize the way to collect, manage and
publish context information and to solve the heterogeneity in IoT protocols and translate
the information to a common language [16].

FIWARE core platform is based on Generic Enablers (GE), which implement Application
Programming Interface (API) to make easier the development of smart applications [17].
GE are divided into seven categories:

e Data/Context Management: Easing access, gathering, processing, publication
and analysis of context information at large scale.

e IoT Services Enablement: Make connected things available, searchable, accessi-
ble and usable.

e Advanced Web-based User Interface: 3D and AR capabilities for web-based
UL

e Security: Make delivery and usage of services trustworthy by meeting security and
privacy requirements.

e Interface to Networks and Devices (I2ND): Build communication-efficient
distributed applications, exploit advanced network capabilities and easily manage
robotic devices.

e Architecture of Applications/Services Ecosystem and Delivery Frame-
work: Co-create, publish, cross-sell and consume applications/services, addressing
all business aspects.

e Cloud Hosting: Provides computation, storage and network resources to manage
services.

1.6.3 Raspberry Pi and Arduino

Two types of embedded circuits are used in this project: Raspberry Pi [18] and Arduino
[19]. Their integration in ISABELA serves as a way to obtain information regarding the
environment where the participant is inserted in and provide more founded tips.

Raspberry Pi is a microprocessor, therefore, is a smaller general-purpose computer with
an OS and the ability to run various programs at once. Arduino is a micro-controller and
for this reason is a simpler computer only able to run one program at a time, repeatedly.

However, both are valuable to ISABELA. As the Raspberry Pi is more powerful, better
at multitasking and able to process larger volumes of data, Arduino is better for simple
repetitive tasks, such as turning something on and off [20].

Chapter 2

Network Management Protocols

ISABELA uses various sensors, not only physical but also virtual, present in different
devices. We were looking for a generic way to deal and manage these devices. There are
various Network Management Protocols able to handle IoT devices. We started studying
some of the available ones and decided which would be more appropriate for the ISABELA
System.

In this chapter, there is an overview of the considered protocols and a comparative analysis
of them.

2.1 Protocols

The number of active devices is rising and their complexity is increasing. This resulted in
the creation of various tools and technologies specialized in IoT management.

Management functionalities require data exchanges between the manager and the managed
systems. The managed systems are often different from each other in terms of computing
capabilities, storage and energy consumption.

The heterogeneity of the devices that make up the system must be considered when a way
to manage them is being chosen. Several organizations developed standards able to handle
heterogeneous devices and some of those were considered for this work and are going to
be presented in the next subsections.

2.1.1 Network Configuration Protocol (NETCONF)

Network Configuration Protocol (NETCONF) is a network management protocol proposed
by the Internet Engineering Task Force (IETF). It was created so that it was possible
to configure networks of devices, implementing functions to install, edit and delete its
parameters [21]. It uses XML encoding for the configuration data as well as the protocol
messages. The transport protocol is Transmission Control Protocol (TCP), generally. Its
operations are performed as remote procedure calls. NETCONF establishes SSH sessions
between its server and its client [22] and defines the configuration of data stores and a set
of operations - Create, Read, Update and Delete (CRUD) - that can be used to access the
aforementioned data stores [23][24].

Chapter 2

2.1.2 RESTCONF

RESTCONF is a protocol based on HTML that provides an interface for accessing data
defined in Yet Another Next Generation (YANG)!, using datastores defined in NETCONF.
Its operations are the HT'TP operations GET, POST, PUT, PATCH and DELETE and
the transport protocol is HT'TP. It uses HT'TP methods as equivalents for NETCONF
operations. This protocol was also designed by the IETF [25] and does not intend to
replace NETCONF. In fact, they can coexist (Fig. 2.1), so that RESTCONF can offer an
additional interface with REST-like functionalities to the NETCONEF protocol, or it can
be used alone (Fig. 2.2) [21].

RESTCONF

Web App

NETCONF

NETCONF Client Data Store

Figure 2.1: RESTCONF with the NETCONF Server [21].

RESTCONF

Web App

Figure 2.2: RESTCONF without the NETCONF Server [21].

2.1.3 Lightweight machine-to-machine

LWM2M is a protocol for IoT device management from Open Mobile Alliance SpecWorks
[26]. It was designed for sensor networks and remote management of machine-to-machine
devices. Its architectural design is based on Representational State Transfer (REST),
defines an extensible resource and data model and builds on an efficient secure data transfer
standard called the Constrained Application Protocol (CoAP)?. The target devices are
mainly resource constrained, so the protocol is light and compact.

'Data modeling language for the definition of data sent over the NETCONF protocol.
2CoAP is a specialized Internet Application Protocol for constrained devices, defined in RFC 7252 [29].

10

Network Management Protocols

2.2 Comparative Analysis

NETCONF was the first real solution for the integration of a network management protocol
as one of its strengths is its support for robust configuration change involving multiple
devices. These transactions are done for multiple devices and are mostly important when
configuring services across network elements [27]. But for networks of constrained devices
the operations tested were only get, get-config, copy-config, lock and unlock. NETCONF
does not require necessarily a security mechanism but some authors tested a light version
of the protocol with some mechanisms in constrained devices and concluded that it is
inefficient in terms of memory usage [28].

RESTCONTF is a more recent bet from the IETF and, as said before, does not intend
to replace NETCONF. Unlike NETCONF, RESTCONF allows for XML and JSON to
be used and does not have the concept of distributed transactions, only device-by-device
configuration. Also, a call from this protocol is a transaction by itself as it uses HT'TP
operations to edit data resources [27] and it requires a security mechanism - Transport
Layer Security (TLS).

LWM2M is a client-server model and requires end-to-end IP connectivity. Sometimes this
poses as a challenge but some enhancing strategies are being proposed in recent works.
Despite this, LWM2M is a widely implemented and used protocol and is considered a very
good solution for the management of constrained IoT devices [21].

The characteristics of each protocol analyzed are summarized in table 2.1.

Protocol NETCONF RESTCONF LWM2M
Standard IETF IETF OMA
Definition Lan- | YANG YANG LWM2M Language,
guage YANG Extended
Information YANG Modules YANG Modules LWM2M Objects
Model
Instantiated XML XML or JSON Plain Text, JSON
Informa- or TLV
tion/Transfer
Syntax (payload)
Transfer Proto- | SSH, SSL, HTTP | HTTP, TLS, | CoAP, DTLS, UDP
col TLS HTTPS with

X.509v3
Security Yes Yes Yes
Used on Con- | Yes, reducing some | Yes, reducing some | Yes
strained Devices | operations operations

Table 2.1: Summarized Protocols [30].

In conclusion, we wanted a generic mapping for heterogeneous devices. For these purposes,
the best options are RESTCONF and LWM2M. As LWM2M was designed specifically for
sensor networks and the remote management of machine-to-machine IoT devices, we chose
to implement this protocol.

11

This page is intentionally left blank.

Chapter 3

ISABELA

The objectives of my work go through, as exposed in 1.2, the implementation of a func-
tionality for the ISABELA application and the incorporation of a network management
protocol that will make use of some of the modules that the system already had. This
chapter is used to give a general overview of ISABELA and briefly explain its most relevant
components for this thesis.

3.1 General Overview

ISABELA mobile application was developed to collect data from students and evaluate it
in order to assess the state of the participants and help them, by providing feedback and
advices to try to prevent poor academic results.

Depression, caused by stress and feelings of overwhelm, is one of the principal causes of
dropout amongst students between the ages of 18 and 24. If we can monitor the day-by-
day of the students, like the amount of sleep they take, the amount of exercise and their
sociability, maybe we can give advice on how to prevent these factors from interfering with
their work-life and achieve better outcomes.

3.1.1 Description

ISABELA is a HiTL CPS application that uses smartphones’ sensors, other physical sen-
sors and some virtual ones too to collect information of the participants’ day-to-day life, in
order to detect behavior that is potentially bad for good academic results. This application
is meant to be used by college students.

The application monitors the students continuously. The sensors retrieve information
that is sent to FIWARE through an Internet connection. Then, the data is retrieved from
FIWARE, it is processed and shown to the user. When behavior that is not deemed helpful
to achieve academic success is detected, a ChatBot sends a notification and a message and
if the user wants to know more about how to prevent that type of behavior, they can ask
the ChatBot and it gives back a well-founded answer.

To assess the students’ behavior, ISABELA collects information about their activity, sleep,
sociability, social media presence and location.

13

Chapter 3

3.1.2 Similar Projects

StudentLife and Smart Kindergarten are two projects with similar objectives to ISABELA.
They are based on HiTL CPS and centered on smartphones applications.

3.1.2.1 StudentLife

StudentLife is a case study developed by a research team from Dartmouth College. They
developed an Android application in order to assess the impact of workload on day-to-day
activities [31].

The data was collected through the accelerometer, microphone, light sensor, GPS and
Bluetooth sensors of the mobile phones to assess the user activity, conversation patterns,
sleep cycles and location. Then, they added information obtained through some surveys
to gauge the levels of stress, the mood, the sociability and the behavior of the participants.
The outcomes of the study emerge of the correlation between the gathered data and the
students’ mental health, their academic performances and the Dartmouth term lifecycle.

This study was conducted over a period of 10 weeks, with 48 participants. The results
show a significant correlation between the state of mind of a student and its own academic
success. The students start the term with healthy levels of activity, sociability and sleep
and as the term progresses and the number of assignments increases these levels drop.

3.1.2.2 Smart Kindergarten

Smart Kindergarten is a case study developed by the Networked & Embedded Systems
Laboratory at the University of California Los Angeles. The intention of the study was to
provide tools to the educators for them to comprehend a students learning process. This
tools are obtained by evaluating the students progress, considering where the student
spends their time, and sociability, by evaluating the time a student spends alone. In order
to do that, it needs to collect and interpret information that come from sensors and present
it in a logical and easy-to-understand way.

In this study, the location of sensor nodes is calculated using an algorithm that utilizes
known locations and distance measurements over multiple hops, by making use of the
sensors to gauge the distance between them and the next nodes and interchange that
information to estimate their location. They suggest the term collaborative multilateration
(or n-hop multilateration primitive) which consists of the process explained before and
locations are obtained with high accuracy [32].

3.1.2.3 ISABELA vs Similar Projects

There are several differences between these two case studies and ISABELA. The main
difference is the HiTL element that our project has and the others do not. Smart Kinder-
garten’s intention is to provide tools of evaluation to educators, it does not include giving
advice to students based on their detected behavior. StudentLife, although closer to IS-
ABELA, does not give feedback to the students to ease their stress and help them perform
better.

In ISABELA, we close the loop by gathering behavioral information through the sensors
on the participants’ phones, environment information through the Arduino and Raspberry

14

ISABELA

Pi and emotional information through virtual sensors (for example, social media presence).
This information is then processed through a variety of analytical algorithms and trans-
formed into quantitative data. With this data, we provide feedback and advice to the
user, through ChatBot messages.

Another difference is that in Smart Kindergarten they created an algorithm that uses
known locations and, then, calculations of distance measurements to estimate precise
locations for sensor nodes, in order to know the location of a student. In ISABELA,
we use the SSID of the Wi-Fi hotspots to know whether the user is at Department of
Engineering Informatics (DEI) (if yes, the specific location within the building) or at
home.

The sociability part of the Smart Kindergarten study gave us the idea for the proximity
module on ISABELA, in order to know if the students have a group of friends and if
they spend time with them. But, again, the method is different. In Smart Kindergarten,
they obtain this information based on location and, in ISABELA, we use bluetooth to
discover nearby devices and see if the participant spends considerable time with the same
“devices”.

We, also, did not implement a simple server-application architecture as it is common
in projects with mobile applications. We implemented an IoT architecture with an IoT
middleware platform, that handles the communication protocols needed to establish con-
nections with different kinds of embedded devices, making it easier if we want to add other
types of devices, in the future.

3.1.3 User Interface

Usability is a very important quality of a piece of software because it is the most visible
to the user and, nowadays, they are easily influenced by what they see (and like).

In this section, some screens of the ISABELA mobile application are going to be presented.

The first screen that the user sees, after clicking on the application icon, is a loading image
that has the name of the application (ISABELA), with an animation that says “Made by
University of Coimbra”.

After the introductory screen, comes the “Login” screen (Fig. 3.1). Login is made through
Facebook and only after that does the user have access to the application.

Figure 3.1: Login Screen.

15

Chapter 3

The information screens are the most important. In them, the user can see their behavior
and receive messages if the application thinks that they need to change.

= ISABELA

Location

= ISABELA

Activity in the last 5 days

!

stil

Figure 3.2: Activity Screen. Figure 3.3: Location Screen.

In Fig. 3.2, the user sees the percentage of their physical activity and, in Fig. 3.3, the
user sees their location. If the application believes that some percentages are very high
and that that behavior is prejudicial the color on the charts changes to red and it sends a
message through the ChatBot (Fig. 3.4).

= ISABELA

You should sleep

more if you
want to be healthier.

Figure 3.4: ChatBot.

The application has many other functionalities, such as a Sleep Form, which each user
fills with information about the quality and quantity of their sleep or a History in which
the user can see the evolution of the values of activity, location, sociability and amount of
sleep.

3.2 System Architecture and Components

In this section, we aim to expose the architecture of the system and explain with greater
detail some of its components. For that, the system architecture and the FIWARE archi-
tecture and modules used in the system are going to be presented.

16

ISABELA

3.2.1 Overall System

ISABELA is an HiTL CPS, whose goal is to prevent bad academic performances. As
said before, this type of systems work in four phases: data acquisition, inference, future
inference and actuation. With that in mind, the architecture, represented in Fig. 3.5,
emerged.

Student
University @ @ Student Room

XY q
y % -
DM @ Comet &,

2

® o™

Figure 3.5: System architecture.

We use the smartphone and all the sensors to acquire the data. FIWARE provides the
storage capabilities and allows the communication between the devices. State inference is
made in the smartphone and the actuation is performed through messages and notifica-
tions, based on the previous inferences.

3.2.2 FIWARE Architecture and Modules

FIWARE has the objective of standardize the way we collect, manage and publish context
information and to solve the heterogeneity in IoT protocols. Therefore, it is used as the
backend of the ISABELA system. In Fig. 3.6, its architecture is represented.

- ——— —— - —

] SENSOR'2 THINGS lI
_____________ h

yiny @ Wai

\

1

1

1

1

1

— |

CONTEXT BROKER CKAN |
e |
1

1

1

1

1

1

1

II

Figure 3.6: FIWARE architecture.

17

Chapter 3

As we can see, the ISABELA system uses many FIWARE modules. These modules are
going to be explained in the following sections.

3.2.2.1 ORION

ORION is the context broker. This broker is capable of representing several IoT contexts
using a new representation standard — FIWARE NGSIv2 API. This API implements a
REST API, therefore, is capable of performing updates, queries or react to changes. This
is a must have capability, as we want to create connections between the sensors and the
applications that consume the information.

ORION only holds information about the last instance of an entity and/or an attribute.
To save the context history, created by the evolution of context information overtime, we

need to accompany ORION with COMET and CYGNUS [33].

3.2.2.2 COMET

COMET or FIWARE Short Time Historic is a component capable of storing and retrieving
historical context information [34]. As said before, it communicates with ORION and lets
external clients, like ISABELA, query the stored information, through REST APIL.

COMET is very useful because it allows us to query specific time intervals and aggregate
information by time, sums and occurrences.

COMET is a very important component of this system, as it is from it that it gets most
of the data in the application.

3.2.2.3 IDAS

IDAS is the module that handles the communications with the devices that make up the
system, as it offers a wide range of IoT agents [35].

This module is needed to connect objects to gather data. While the smartphone connects
directly with ORION, the embedded devices connect to IDAS. Its IoT agents translate
ToT-specific protocols into FIWARE standard data exchange model. By using an IoT
agent, the devices can subscribe entities and can query and be updated if a value of that
entity is changed [36].

3.2.2.4 Other Modules

e CYGNUS

CYGNUS is a connector in charge of coordinating the data, creating a historical view
of such data. We can introduce this data into third-party storage systems, such as
MongoDB or MySQL. It also connects the ORION to many FIWARE storages, like
CKAN and COMET [37].

e CKAN

CKAN is not a FIWARE module. It is an open data platform that makes it easy
to publish, share and work with data. This platform allows us to store the retrieved

18

ISABELA

data, with the advantage that it has a rich front-end and visualization tools, that
we can use to see the data [38].

CKAN provides a powerful way for cataloging and accessing datasets. If the data
retrieved during this project is available on this platform, it can be used by other
investigators.

In conclusion, in order to fulfill the objectives of my work, I had to work with FIWARE,
especially in close detail with the ORION and IDAS modules, and the ISABELA Android

application. It is important for this chapter to be present in order to contextualize the
scope of the work I have done.

19

This page is intentionally left blank.

Chapter 4

Development

In this chapter, the development of the work done is exposed. First, the requirements for
each of the objectives presented in 1.2 are stated, then all the steps taken to produce the
Proximity Module are detailed and finally the incorporation of the LWM2M protocol in
the ISABELA system is explained.

4.1 Requirements

In this section, the requirements for the two components developed throughout this thesis
are presented.

4.1.1 Proximity Module

e Functional Requirements

Requirement Bluetooth Discovery.

Priority Must be implemented.

Description The application must have a bluetooth sensing func-
tion in order to gather information.

Actors The system.

Pre-conditions The device must have a bluetooth sensor and the user
must give permission for the application to use blue-
tooth.

Events Flow The phone starts sensing right after the application
is turned on.

Expected Outcome If the sensing is successful, the application must show
the results to the user.

Table 4.1: Bluetooth Discovery Requirement.

21

Chapter 4

Requirement Friend’s Top Screen.
Priority Must be implemented.
Description The application must have a module that tells the

user the amount of time he spends alone, with friends
or amongst random people.

Actors The user.

Pre-conditions The application must have access to an Internet con-
nection.

Events Flow From the navigation drawer, the user presses the

“Friends” button, then he can see the amount of time
he spent alone and a list with the names of the de-
vices and the amount of time he spent with those
“devices”.

Expected Outcome When the button is pressed, the screen changes and
the list should be populated with the list of devices
and the amount of time, in a few seconds. If there are
no devices, the only thing that appears is the alone
time.

Table 4.2: Friend’s Top Screen Requirement.

e Other

Privacy and Security are not focal points of this thesis. Nonetheless, they are covered
by the encryption of the Entity User’s ID, which was the only thing that could
breach the participants privacy, and the secure channel that the information passes
by, implemented by my colleagues. Even so, all the participants signed a term in
which they consented the use of their information for academic purposes.

4.1.2 Device Management

¢ Functional Requirements

Requirement LWM2M Protocol.

Priority Must be implemented.

Description The system must have a protocol to help manage all
the heterogeneous devices.

Actors The system.

Pre-conditions The system must have access to an Internet connec-
tion.

Events Flow A device connects to the server and it appears on its

page. If we press the name of the device, we can see
more detailed information

Expected Outcome When a new device tries to connect to the server of
the ISABELA system and is successful, it appears on
the server page and we can see its detailed informa-
tion. If not, the device does not appear.

Table 4.3: LWM2M Protocol Requirement.

22

Development

e Other

Security is covered by the LWM2M protocol which has its own protocol to ensure
it, as it is going to be explained in a later section.

4.2 Proximity Module

In the StudentLife study [31], sociability was considered to be affected by the students’
workload and, consequently, to have an impact on the student’s life and academic perfor-
mance. S0, in that study, in order to determine the “amount” of sociability, conversations
were recorded, through the smartphone’s microphone, and the measure was considered to
be the frequency and duration of conversations around a student.

In ISABELA, although the impact of sociability is also considered, that was not the used
approach. In a first approach, 5 factors were defined to calculate the sociability: SMSs’
frequency, Calls’ frequency, SMSs’ ratio, Calls’ ratio and the diversity [39]. Now, the
factors considered are the number of SMSs’ and Calls’ frequency and with the addition of
a virtual sensor - the bluetooth - with which the proximity module was implemented.

The proximity module aims to bring to light the amount of time a participant spends
with the same people, amongst random people or alone. This provides data that will make
it possible to infer about the sociability of the participants, if they have a group of friends
he likes to spend time with or if we are dealing with a lonely person.

The objective of this module is only to gather data about the amount of time the par-
ticipants spends with the same “devices”. In this work we do not propose a way to infer
about sociability based on the gathered data.

Nevertheless, in order to measure this data, the ISABELA application uses bluetooth
functionalities provided by the Android application framework. In the next subsections,
it is going to be explained how the data is acquired, stored, managed and displayed.

4.2.1 Data Acquisition

The acquisition of data, for this module, is made through the smartphone’s bluetooth
sensors. As it was said before, the Android application framework provides access to
Bluetooth functionalities through the Android Bluetooth APT [40]. This APT allow wireless
connections between applications and other Bluetooth devices.

By using the Bluetooth API, an Android application can perform various activities, such
as:

Scan for other Bluetooth devices;

Query the local Bluetooth adapter for paired Bluetooth devices;

Establish RFCOMM channels;

Connect to other devices through service discovery;

Transfer data to and from other devices;

e Manage multiple connections.

23

Chapter 4

Our focus will be on the first activity listed. Each device will be performing scans, through-
out the day, and collecting the name and MAC address of the discoverable devices around
the participant. In order for that to happen, the ISABELA application has to have a
service that is always running so that the scans are performed automatically.

The service was implemented in a class named “Main_Service.java”’. Four parts make up
this service:

A function where the discovery of nearby devices is enabled (and disabled) through
a Bluetooth Adapter [41];

A Broadcast Receiver that receives and handles broadcast intents [42];

A timer that controls the amount of scans that are performed;

Storage of the information.

First, in the function “bt_devices_scan” (Fig. 4.1), a Bluetooth Adapter is declared to get
a handle of the default local Bluetooth adapter. This returns the default local adapter or
null, if the device does not support Bluetooth [43].

Then, through the adapter, we enable the Bluetooth sensor on the device (in case it was
not enabled already) and start the discovery. After 12 seconds!, if a discovery is taking
place, we cancel it. Otherwise, it would be discovering throughout the entire time the
service is running and that is too battery consuming.

bt_devices_scan() {
= BluetoothAdapter.getDefaultAdapter()

)
.isEnabled()) {

.isDiscovering()) {
.cancelDiscovery()

—)
.enable()

.startDiscovery()

Handler handler = Handler()
handler.postDelayed(Runnable() {
run()
(.isDiscovering()){
.cancelDiscovery()
}
}
} 12000)
(Exception e) {
e.printStackTrace()

Figure 4.1: Funtion “bt_devices_scan”.

The second part of this service, the Broadcast Receiver (Fig. 4.2), handles two actions:

e BluetoothDevice. ACTION_FOUND;

e BluetoothAdapter. ACTION_DISCOVERY_FINISHED.

!The amount of time that a discovery of nearby devices takes, as per the Android Bluetooth APT [44].

24

Development

These two actions are added to the Intent Filter, through the method addAction. This
means that these two actions are the intent values to be matched, that will be received by
the bluetooth broadcast receiver [45]. With the help of the Intent method getAction, the
received action can be retrieved to perform operations, accordingly [46].

If the intent action matches with BluetoothDevice. ACTION_-FOUND?, then, with the
help of the Intent method getParcelableFExtra and the Bluetooth Device constant FX-
TRA_DEVICE, the device found can be obtained. Once we have the device, we retrieve
its name and MAC address through the methods getName and getAddress, respectively,
and put it into a JSON Object. After that, we search the array of JSON objects for objects
with equal MAC addresses. If there is none, we add the current device to the array.

If the intent action matches with BluetoothDevice. ACTION_DISCOVERY_FINISHED?,
we verify if the bluetooth sensor was turned off before the start of the discovery process
and disable it, if it were.

Finally, we have to register the Broadcast Receiver for it to be run in the main activity
thread. The receiver will be called with any broadcast Intent that matches the Intent filter,
in the main application thread [49]. In order to do this, we use the method registerReceiver,
which receives the broadcast receiver and the intent filter, as parameters.

IntentFilter filter = IntentFilter()
filter.addAction(BluetoothDevice.
filter.addAction(BluetoothAdapter
= BroadcastReceiver() {
@0verride
onReceive(Context context, Intent intent) {
String action = intent.getAction()

(action.equals (BluetoothDevice.)) {
BluetoothDevice device = intent.getParcelableExtra(BluetoothDevice.

JSONObject btobj = JSONObject()
igual =

{

btobj.put(device.getAddress())

(device.getName() = Mo
btobj . put()
}
{
btobj . put(device.getName())

(is= i< .length(); i++) {
(.getJSONObject(i).get().equals(device.getAddress())) {

b
}

(!igual)
.put(btobj)
(JSONException e) {
e.printStackTrace()

(action.equals(BluetoothAdapter.

= M
.disable()

registerReceiver(filter)

Figure 4.2: Bluetooth Broadcast Receiver.

Then, there is a timer (Fig. 4.3) that is set with an interval of 5 minutes. In this timer,
the array of JSON objects is initialized and the function “bt_devices_scan” (Fig. 4.1), that
handles the start and finish of the discovery process, as previously mentioned, is called.

2This means that a remote device was found during the discovery process [47].
3This means that the discovery process of adjacent devices has finished [48].

25

Chapter 4

= CountDownTimer(
@verride

onTick(1) {
= JSONArray()

bt_devices_scan()

}

@0verride
onFinish()

Figure 4.3: Timer for Bluetooth scan.

NOTE: So that we can use bluetooth and its methods, the application has to have per-
missions. So, the following lines (Fig. 4.4) were added to the AndroidManifest.zml file.

<uses—permission
<uses—-permission

<uses—-permission

Figure 4.4: Bluetooth Permissions on AndroidManifest.xml.

Lastly, the data acquired from the bluetooth sensors is a field of a Smartphone_Data*
object. This field is added in the form of a String and obtained from the JSONArray,
which contains the JSON objects composed by the devices discovered, as it is shown in
Fig. 4.5. This object is then stored into the database, in the “Main_service.java” method
named “sendBroadcast”.

.toString()

Smartphone_Data smart_data = Smartphone_Data(.toString(), timestamp

.toString() .toString()

Figure 4.5: Smartphone_Data object with the data acquired from the bluetooth sensors.

To be stored in FIWARE [50], the Smartphone _Data objects have to be transformed into
JSON objects. So, a class named “Entity_To_JSON” was created.

In Fig. 4.6, part of an Entity_To_JSON method named getJSON is represented. A blue-
tooth field is being composed by the JSON array with the information gathered from the
sensors and being put into a JSON object named student.

The information contained in the JSON object obtained in this method is made available
in FIWARE, in the form of an Entity named “Student”, so we can request its attributes
in the way we want to display them on the screen.

4Smartphone_Data is a database entity.

26

Development

bluetooth.put(JSONArray (.getBtdata()))

bluetooth.put()
student.put(bluetooth)

Figure 4.6: Bluetooth field of the JSON object student.

4.2.2 Communication

The communication for this module is made through COMET, presented in 3.2.2.2. As
explained in the previous section, the information we want to display is already in FI-
WARE. So, now, we want to retrieve it and, in order to do that, we have to query the
COMET module.

The query is made in the “TopBTActivity.java” method named “requestBTInfo” (Fig.
4.7), with the aid of an intent that is used to start a service: “Comet_Get.java”.

As what is wanted is the bluetooth information of the participant that has requested
it through this Activity, in the intent, we put an action, that will identify what type
of response we want from the “Comet_Get” service, and specific strings, that will tell
COMET where to get this information from. In this case, we want the values of the occur
method, of the bluetooth attribute, of the student entity with id equal to the Access Token,
from a period of a day stated by the variable date.

requestBTInfo(){
TimeZone tz = TimeZone.getTimeZone()
DateFormat df = SimpleDateFormat (
df.setTimeZone(tz)

Calendar cal = Calendar.getInstance()
cal.set(Calendar.)
cal.set(Calendar.)
cal.set(Calendar.)

String = df.format(cal.getTime())

cal.add(Calendar. =1)

String date = df.format(cal.getTime())

Intent activity_info = Intent(Comet_Get.)

activity_info.setAction(.getResources().getString(R.string.))
activity_info.putExtra(getResources().getString(R.string.), AccessToken.getCurrentAccessToken().getUserId())
activity_info.putExtra(getResources().getString(R.string.

activity_info.putExtra(getResources().getString(R.string.

activity_info.putExtra(getResources().getString(R.string.

activity_info.putExtra(getResources().getString(R.string.

activity_info.putExtra(getResources().getString(R.string.

startService(activity_info)

Figure 4.7: Request bluetooth information.

After the request, in the “Comet_Get.java” service side, an url is constructed with the
specific strings that came in the intent from “TopBTActivity” and the connection to
COMET is made on a method called “onHandleIntent”. After that, through a verification
of the action (also sent in the intent) (Fig. 4.8), a new intent is created with a specific
string and the values obtained from the request. The new intent is sent to a Broadcast
Receiver, registered with a string equal to the specific string contained in the intent, with
the help of the LocalBroadcastManager’s method sendBroadcast(Intent) [51].

27

Chapter 4

(.equals(getResources().getString(R.string.
Intent resposta = Intent(getResources().getString(R.string.
resposta.putExtral(values.toString())

LocalBroadcastManager.getInstance() .sendBroadcast(resposta)

Figure 4.8: COMET response to the information request.

4.2.3 Android Application

Back in “TopBTActivity”, a Broadcast Receiver is registered with the same string (Figs.
4.9 & 4.10), in order to receive the information from the COMET module. Therefore, we
can retrieve the data and treat it, in this function.

First, if the received intent is not null, we initialize an ArrayList of BluetoothObject (which
has two string fields: name and address; and an integer field: count) and then we retrieve
the data from the intent into a JSONArray (Fig. 4.9).

Then, if that JSON array is not empty, we iterate its length and get another JSON array
of points, which is a more specific attribute of the COMET object. However, it is not
specific enough, yet. Therefore, we have to go through its length and get a JSONObject
of its attribute occur, which is the attribute that has the information we want.

The occur object is composed by keys and values. The keys are the information that was
read by the sensors and the values are the number of times that that information was
read. So, in order to obtain the data, we iterate the occur object’s keys.

In a cycle, while there are still keys to be read, we get the corresponding value and a
JSONArray with the data of the key. If the JSONArray is empty, it means that the
participant was alone, that is why the value is added to the variable sozinho®. Otherwise,
we go through the array’s length and get each MAC address and name. But, before
we build a new object with the information retrieved and add it to the Array List of
bluetooth objects, we verify if there is already an object on that array list with an equal
MAC address. If that is true we only add the new value to the count of that object. If it
is not true we built a new BluetoothObject object with the name, MAC address and value
retrieved and add it to the Array List.

After we have all the information in the Array List, there is only one thing left to do.
As what we want is a top of the “friends” that the participant spent the most time with,
we have to order the array list in descending order of “count”. For that, we sort the
Array List as can be seen in Fig. 4.10. This sort method receives the List to be sorted
and a Comparator to determine the order of the list [52]. The Comparator has a method
compare that receives two BluetoothObject’s objects and compares their “count” fields.

With the information all gathered and treated we can go to the display.

First of all, this activity is a screen with the alone time and a list composed by the name
and MAC address of bluetooth devices and the time spent with “them”. So, we have to
calculate the alone time, using the equation in 4.1:

inho * 5
alonetime = 22202 (4.1)

60

5Variable of type integer that will serve to count the alone time.

28

Development

The variable sozinho is the number of empty JSONArrays that were read by the sensors.
As each scan is made every 5 minutes, if we multiply the number of empty arrays by 5 we
obtain the amount of time that the participant was alone, in minutes. Lastly, diving that
by 60, we obtain the alone time in hours. The obtained result is transformed into a string
and put in a TextView to appear on the screen.

LocalBroadcastManager.getInstance(getApplicationContext()).registerReceiver(BroadcastReceiver() {

@Override

onReceive(Context context, Intent intent) {

sozinho =

(intent !=) {
{

ArraylList<BluetoothObject> bluetoothObjects = ArraylList (
JSONArray jsonArray = JSONArray(intent.getStringExtra(
(jsonArray !=) {
(jsonArray.length() > 8) {
(i=0; i<jsonArray. length();i++) {
JSONArray points = jsonArray.getJSONObject(i).getJSONArray(
(j = j < points.length(); j++) {
JSONObject occur = points.getJSONObject(j).getISONObject(
Iterator<String> it = occur.keys()
(it.hasNext()) {

String key = it.next()
value = occur.getInt(key)
JSONArray data = JSONArray (key)

(data.length() == @){
sozinho += value
check =
(1=0; l<data.length();1++){

String mac = data.get Object(1).getString(
String name = data.ge INObject(1).getString(

(n=0;n<bluetoothObjects.size();n++){
(bluetoothObjects.get(n).getMac().equals(mac)){

bluetoothObjects.get(n).setCount(bluetoothObjects.get(n).getCount()+value)

check =

(check == 8){

BluetoothObject btebj = BluetoothObject(name,mac,value)

bluetoothObjects.add(btobj)

Figure 4.9: Data Treatment and Display | Part 1.

Collections.sort(bluetoothObjects Comparator<BluetoothObject>(){

compare(BluetoothObject 01, BluetoothObject 02)

02.getCount() - ol.getCount()

= {) findViewById(R.id.
= (sozinho * 5) /

.setText(+5tring.valueOf(
BTTopListAdapter(getApplicationContext()
.setAdapter()
.notifyDataSetChanged()

(JSONException e) {
e.printStackTrace()

}

IntentFilter(getResources().getString(R.string.

)+"h")

bluetoothObjects)

Figure 4.10: Data Treatment and Display | Part 2.

29

Chapter 4

Each item, that is going to appear on the screen, is composed by three parallel TeztViews
with the name, MAC address and count (in hours) of an object of the ordered list, respec-
tively. They are displayed through a RecyclerView.Adapter. The adapter has a method
named onBindViewHolder (Fig. 4.11), to update the contents with the item at the given
position [53]. The name and the MAC address are soon put in the respective TeztViews.
The count has to be put through the same calculation as the alone time (Eq. 4.1). This
time, instead of the variable sozinho, the calculation is made with each object’s “count”
attribute. Then, the string value of this result is also put in its respective TextView.

@0verride
onBindViewHolder(ViewHolder holder position) {
holder. .setText(.get(position).getName())
holder.mac.setText(.get(position).getMac())

count = .get(position).getCount()

count *
count/

count
count

holder. .setText(String.valueOf(count)+"h")

holder. .setTextColor(.getResources().getColor(R.color.
holder.mac.setTextColor(.getResources().getColor(R.color.
holder. .setTextColor(.getResources().getColor(R.color.

Figure 4.11: List Adapter.

Finally, by clicking on the option “Friends” in the navigation drawer (Fig. 4.12), the final
result of the gathering and treatment of the data is displayed on the screen (Fig. 4.13)
and a top of devices, around which the participant spent the most time, is obtained.

ISABELA

L

Alone Time: 4h

X

Home

ChatBot
38:A4:ED:6A:0C:18
Events
72:0A:77:5D:1D:73

History AC:BC:32:B7:64:E0

null 6C:0A:B4:42:D3:50
Settings

MacBook Pro de Inés 3C:15:C2:E4:36:38

Logout

LeaderBoard

Sleep Form

Friends

ISABELA V0.7.5

Figure 4.12: Navigation Drawer. Figure 4.13: Friends Screen.

4.2.4 Trial Tests

The next step was to test the system with real users. Consequently, we started by ap-
proaching some classes from DEI, from the Polytechnic Institute of Coimbra (Instituto

30

Development

Superior de Contabilidade e Administracao de Coimbra (ISCAC)) and from the Polytech-
nic School of Ecuador (Escuela Politécnica Nacional (EPN)) and presented the potential
users with the idea of participating in the study.

This chapter serves to present the tests made using ISABELA in a real context, the
participants and the obtained results.

4.2.4.1 Participants

Our aim was to have students from different realities and a big number of participants,
therefore, the participants are from three different institutions and from various courses:

e 4 courses from DEI;

e 1 course from ISCAC;

e 1 course from EPN.

In Table 4.4, the number of participants are specified by institution.

Girls Boys Total
DEI 3 4 7
ISCAC 1 4 5
EPN 8 22 30

Table 4.4: Number of Participants by Institution.

It was very difficult to recruit students at DEI and ISCAC, as it is evident by the numbers
presented in the table.

All participants had to sign a consent form, in which they agreed to the terms and con-
ditions of the project, after they read the objectives and the purpose of the collected
data.

4.2.4.2 Results

While this period of tests was only supposed to be two weeks, the deadline was increased,
in order to overlap with Finals Week at EPN and because, after two weeks, the amount
of data collected was short. So, the period of tests began on the 13th of May and ended
on the 6th of June.

The results were compiled into graphs to compare the participation of the students at each
institution.

31

Chapter 4

Total participation by week

250000

150000

100000

13/05 to 20/05 20/05 to 27/05 27/05 to 03/06 03/06 to 06/06

W DElI WISCAC NEPN

Figure 4.14: Total participation by week.

In Fig. 4.14, it is very clear that students from EPN had more participations, but this
was expected, as the total number of students from EPN participating in the study is
much higher than of students from DEI and ISCAC. There is also a clear reduction in
participations from DEI students in the final week, as it is the week the finals started.

Mean participation by week

8000
7000
6000
5000
4000
3000

2000

13/05 to 20/05 20/05 to 27/05 27/05 to 03/06 03/06 to 06/06

EDEl WISCAC EMEPN

Figure 4.15: Mean participation by week.

In Fig. 4.15, the mean participation results support the total participations results, al-
though the numbers are much closer.

32

Development

Total number of hours spent alone

13/05-20/05 20/05-27/05 27/05-03/06 03/06-06/06

W DEl mISCAC WEPN

Figure 4.16: Total number of hours spent alone.

In Fig. 4.16, the tendency continues and the students from EPN have the highest total
numbers of hours alone in all weeks, but that might just be a reflexion of the difference in
the number of participants. Yet, contrary to the total number of participations per week,
it was not on the third week that the highest numbers were achieved.

Percentage of hours spent alone

13/05-20/05 20/05-27/05 27/05-03/06 03/06-06/06

W DEl mISCAC WEPN

Figure 4.17: Percentage of hours spent alone.

In Fig. 4.17, it is presented the percentage of hours the participants from the various
institutions spent alone, by week. This percentage is calculated through the equation in

33

Chapter 4

4.2:

percentage =

AHP 100 (4.2)

AH means total number of alone hours.
H means total number of hours of the trial tests.
P means total number of participants.

As we can see in the graph, in no week and in no institution the participants spent all
their time alone. But we can see that students from EPN, during the first 3 weeks of the
trials tests, spent more than half of their time alone, on average.

Another thing we can take from these graphs is that the number of participations may
influence the other results, as with a higher number of participations the data tends to
be closer to what happen in the life of the student. Therefore, we cannot say for sure
that students from DEI and ISCAC are better at socializing, because their samples of
participants are much smaller than the sample of participants from EPN.

4.2.4.3 Positive Points

We can take some positive points from these early tests. For example, they lead to the
finding and consequent resolution of various bugs. Thus, the application and the system
became more stable and robust. These tests also helped us to the conclusion that the
platform can handle these numbers of users.

Another positive point that we can take is the volume of data for analysis. With the
added time to the trial, the volume of data grew and it helped us with the positive points
previously mentioned.

Finally, these testes helped notice that the communication between the components of our
system sometimes stopped, so my peers were able to resolve this problem.

4.2.4.4 Drawbacks

We also found some drawbacks. We can see in the participants table (Table 4.4) that few
Portuguese students participated in the study. That may affect the quality and veracity
of the results. Since the sample was small the results may be misleading and the impact
on the academic performance on this population may not reflect the real impact.

Also, the participants had no social media presence. That means the system does not
have information needed to assess the emotions of the users.

Finally, the students not always filled the sleep forms. As the sleep forms are our way to
know the sleep cycles, we have no way to infer on the tiredness or good habits of sleep
of the participants and, consequently, the feedback given by the platform may not be
accurate.

34

Development

4.3 Lightweight machine-to-machine Protocol

LWM2M is a protocol created by Open Mobile Alliance, a standards development organi-
zation.

This protocol was chosen for this project to help with device management as it was de-
signed to mainly deal with constrained machine-to-machine devices, such as sensors. The
reasons why were further explained in section 2.1.

In this section, the LWM2M protocol will be presented as it will be its setup and the
integration with the existing ISABELA system.

4.3.1 Overview

LWM2M is a protocol which implements a client-server architecture and uses CoAP as
the underlying transfer protocol over UDP and SMS bearers (optional). It also includes
a secure channel through which the messages between the server and the client are in-
terchanged. This level of security is provided by the Datagram Transport Layer Security
(DTLS)® protocol [55].

The LWM2M Enabler” has two components: a server and a client. The server is typi-
cally located in a data center and can be hosted by the M2M, Network or Application
Service Provider. The client resides in the device. It also has four interfaces between its
two components: 1) Bootstrap; 2) Client Registration; 3) Device management and Ser-
vice Enablement; 4) Information Reporting. The architecture of the LWM2M Enabler is
represented in Fig. 4.18.

LWM2M Server

Device management and Client Information
Service Enablement Resgistration Reporting

Bootstrap LWM2M Bootstrap

Server (optional)

LWM2M Client

Bootstrap

SmartCard (optional)

Figure 4.18: Architecture of the LWM2M Enabler [56].

The LWM2M model demmands the use of end-to-end IP connectivity between the client
and the server. However, a gateway can be used when non-IP endpoints are needed,
although LWM2M poses great challenges in respect to remote gateway management [21].

SDTLS is a protocol that secures communications between a client and sever, defined in RFC 6347 [54].
“"Name given to the standard produced by OMA for the LWM2M solution.

35

Chapter 4

Nonetheless, this protocol is widely implemented and used, thus becoming the solution
for the management of constrained device with the highest acceptance of the scientific
community [21]. Therefore, it was selected to be incorporated into the ISABELA project,
to help manage all the physical sensors and, hopefully later, also manage the virtual
sensors.

We tried two approaches to apply this protocol to our system: through the Eclipse’s
Leshan project and through an IoT Agent. They are going to be explained in the next
sections.

4.3.2 Leshan Solution

This solution was implemented with the help of an Eclipse project called Leshan. Leshan
provides libraries that help with what we wanted to do [57]. The project also provides
a server and a client demonstration as an example of the Leshan API and for testing
purposes.

The server of the LWM2M protocol was lodged in a virtual machine, running Ubuntu
16.04. The clients were a Raspberry Pi with a digital temperature and humidity sensor
and a smartphone running Android. The server and the Raspberry Pi were connected
through a switch via LAN connection and the digital sensor to the GPIO pins of the
Raspberry Pi. The server and the smartphone were connected via the Wi-Fi network.
The architecture of the Leshan solution is represented in Fig. 4.19.

Caption:
LWM2M Client LWM2M Server Management Center

] Commands/Responses Management Operations Cloudable
— & A — Hosts
LESHAN
Registration/Reporting
Local Hosts

Registration/Reporting

loT Middleware

Smartphone

loT Box

Data Request

Ultralight
20107

roent |/

Registration/Reporting

Registration/Reporting

Figure 4.19: Architecture of the Leshan solution.

The configuration of the virtual machine where the server is lodged is explained in Ap-
pendix A.

36

Development

4.3.2.1 Server

To launch the server, we just need to run, in Eclipse, the leshan-server-demo project as a
Java Application and then select LeshanServerDemo.class.

Then, we need to open Morzilla Firefox and go to https://localhost:8080 to open the
server page (Fig. 4.20). Whenever a client device connects to the server, it appears listed
on this page.

<« C o @ localhost - O W arct N o =

LESHAN SECURITY

ent

Figure 4.20: Server Page.

For the sensor’s parameters and its values to appear on the device’s page the server has
to have files, written in .xml format, in which they are defined. For the more generic and
used sensors, such as the accelerometer, these files are available in a LWM2M registry
provided by OMA [58] and for the other sensors that are not so common, like the physical
activity, they had to be created.

4.3.2.2 Clients

The client also needs to declare the same .xml models that the server has so that the
parameters and the values sensed appear on the device’s page.

e Raspberry Pi:

In order to adapt the demos to our system, some changes were made to the code
provided by the Leshan project that we downloaded from its GitHub repository [59].

First of all, the original client only had a (random) temperature sensor, so we had to
prepare our client to read values of temperature and humidity and create classes for
these sensors (TemperatureSensor and HumiditySensor). Then, we needed to create
a class to deal with the DHT11 sensor® - DHT11Class. All sensor classes receive an
object of type DHT11Class as parameter.

8Digital sensor used for temperature and humidity readings.

37

Chapter 4

In DHT11Class (Fig. 4.21), the values from the sensors are read through the
Python script sensorsleshan.py. The results returned from this script are put into a
buffer and parsed into the respective variables.

wiviz = $0 QU iG G D AP @ IO RR vl v a = |#Java EE
= | zLeshanClientDemo.java i TemperatureSensorjava =HumiditySensorjava »DHT11Classjava= =l
= public DHT11Class() { a
this.scheduler = Executors.newSingleThreadScheduledExecutor(new NamedThreadFactory("DHT11")); A
scheduler.scheduleAtFixedRate(new Runnable() { .

@Override \:

public void run() { w

try { w
readTemperatureAndHumidity(); B

} catch (Exception e) { e

System.out.println("Error reading sensor");
e.printStackTrace();

}
}
}, 2, 10, TimeUnit.SECONDS);

private synchronized void readTemperatureAndHumidity() throws Exception {

a // Auto-generated method stub

Runtime rt = Runtime.getRuntime();
Process p = rt.exec("python sensorsleshan.py");
BufferedReader bri = new BufferedReader(new InputStreamReader(p.getInputStream()));
// line = bri.readLine();
if ((line = bri.readLine()) != null) {
// System.out.println("valor del buffer :" + line); // solo para pruebas
if (!(line.contains("ERR_CRC") || line.contains("ERR_RNG"))) {
data = line.split(" ");
temperature = Double.parseDouble(data[0]);
humidity = Double.parseDouble(data[1]);
sound = Double.parseDouble(data[2]); // add
light = Double.parseDouble(data[3]); // add

// System.out.printf("valor de temperatura :" + temperature); // solo para pruebas

} else {
System.out.println("Error reading sensor value");
}

bri.close();

Writable Smart Insert 92 : 50

Figure 4.21: Part of DHT'11Class.java.

In each sensor’s class, there are variables for maximum, minimum and current values,
of the parameter that is being read. We will need them to appear in the device’s
information page when that device connects to the server.

There are many operations that can be done through these classes. We can update
the values read and we can reset and adjust the maximum and minimum measured
values.

In order to update the values read, we need to declare a DHT11Class object.
Through this object we can obtain a value, for example by invoking the function
getTemperature.

In order to adjust the minimum and maximum measured values, a comparison be-
tween the values previously read and the current one is performed.

In order to reset the minimum and maximum measured values, these are made equal
to the current values.

After the update of the code to match our system, we needed to run the client, so
we used a .jar file of the leshan-client-demo project, with all the changes made. It
was exported, in Eclipse, as a JAVA App and, then, a runnable JAR file. The .jar
file was then put into the Raspberry Pi.

We needed a tool to help get the temperature and humidity values from the DHT11
sensor. We chose to install the Adafruit Python DHT Sensor Library, which is a
Python library used to read the DHT series of humidity and temperature sensors on
a Raspberry Pi [68].

First, we downloaded the library to the Raspberry Pi:

git clone https://github.com/adafruit/Adafruit Python DHT.git

38

Development

Then, we made sure that our system was ready to compile Python extensions. So,
we run the following commands:

sudo apt-get upgrade
sudo apt-get install build-essential python-dev

Eventually, we installed the library by running the following command, inside its
folder:

sudo python setup.py install

Finally, we connected the server and the client. First we launched the server, as said
in section 4.3.2.1, and, then, we opened a terminal tab inside the Raspberry Pi and
run the command:

java -jar leshan-client-demo.jar -u <server’s ip address>:5683

(5683 is the Leshan port.)

Android:

This part of the implementation presented some challenges. They are explained in
section 6.1.

For this part we found a demo application in a GitHub repository [60] that im-
plemented a LWM2M Leshan client in Android. The demo included some Sensor
Classes, where the values were read and sent to the server, and the Main Activity,
where the LWM2M client was built with its objects and it connected to the server.

To integrate the client in the ISABELA application, we started with the creation
of a class called LWM2MClient that does the same that the Main Activity did in
the demo application. The first change in this class was the server to which the
clients were going to connect to. The demo application came with a connection to
the Bootstrap Server? and the client needed to connect to the server we adapted for
ISABELA and had running in the local machine. For this to happen, we needed
to give the IP address and ID of the our server and a constructor of a Server with
the same ID to the initializer of the LWM2M client, as it can be seen in Fig. 4.22,
instead of passing the IP and constructor of the Bootstrap Server.

// Initialize object list
LwM2mModel model = new LwM2mModel(models);

ObjectsI
if(ident
init
init
} else {
init
init

nitializer initializer = new ObjectsInitializer(model);

ity == null) {

ializer.setInstancesForObject(SECURITY, noSec(serverURI, shortServerld: 123));

ializer.setInstancesForObject(SERVER, new Server(shortServerld: 123, lifetime: 3600, BindingMode.U, notifyWhenDisable: false))

ializer.setInstancesForObject(SECURITY, psk(serverURI, shortServerld: 123, identity.getBytes(), Hex.decodeHex(psk.toCharArray())));
ializer.setInstancesForObject(SERVER, new Server(shortServerld: 123, lifetime: 3600, BindingMode.U, notifyWhenDisable: false));

List<Integer> enablerIds = new Vector<Integer>();
enablerIds.add(SECURITY);
enablerIds.add(SERVER);

Figure 4.22: Server parameter for the LWM2M client initializer.

After that, we needed to create the classes for the sensors and the services that
permitted reading the values.

Fundamentally, every Sensor class has a constructor and is divided in a start function,
where the parameters that start the sensor are initialized, a stop function, where the
same parameters are stopped, an id, where the id of that sensor is defined and has

9Implementation offered by the project.

39

Chapter 4

to correspond to the one defined in the .xml model, a function where the values
are read and a read function that returns the values that are read and essentially
updates the values in the device’s page. These functions for the Proximity Sensor
are represented in figs. 4.23, 4.24 and 4.25.

public Proximity(int instanceld, SensorManager sensorManager) {
super(instanceld);
this.sensorManager = sensorManager;
handler = new Handler();

}

@0verride
public ReadResponse read(int resourceid) {
switch (resourceid) {
case 5601: //min measured value
return ReadResponse.success(resourceid, getMinMeasuredValue());
case 5602: //max measured value
return ReadResponse.success(resourceid, getMaxMeasuredValue());
case 5603: //min range value
return ReadResponse.success(resourceid, getMinRangeValue());
case 5604: //max range value
return ReadResponse.success(resourceid, getMaxRangeValue());
case 5700: //sensor value
return ReadResponse.success(resourceid, getSensorValue());
case 5701: //units
return ReadResponse.success(resourceid, getUnits());
case 5702:
return ReadResponse.success(resourceid, getStringProximity());
default:
return super.read(resourceid);

Figure 4.23: Constructor and Read functions.

@Override
public void start() {
final Sensor proximity = sensorManager.getDefaultSensor(Sensor.TYPE_PROXIMITY);
if(proximity != null) {
sensorManager. registerListener(listener: this, proximity, SensorManager.SENSOR_DELAY NORMAL);
maxRangeValue = proximity.getMaximumRange();

handler.post(() - {
main_service.setProximityMax(proximity.getMaximumRange());
main_service.setProximityMin(0);

H;
} else {
Log.d(TAG, msg: "No proximity sensor found.");
H
@Override

public void stop() { sensorManager.unregisterListener(this); }

@Override
public int getObjectId() { return ID; }

Figure 4.24: Start, Stop and ID functions.

40

Development

@Override
public void onSensorChanged(SensorEvent sensorEvent) {
List<Integer> resourcesChanged = new Vector<~>();

if (System.currentTimeMillis() - latestMeasurement > 30000) { // 30 segundos
Log.v(TAG, msg: "Proximity value: " + sensorEvent.values[0]);

if(sensorEvent.values[@] != sensorValue) {
sensorValue = sensorEvent.values[0];

if(sensorValue == 8){
stringProximity = "Far";

1
else{

stringProximity = "Near";
}

handler.post(() -+ {
main_service.setProximitySensor(sensorValue);
1
resourcesChanged.add(5700);
resourcesChanged.add(5702);
}

if(sensorValue > maxMeasuredValue) {
maxMeasuredValue = sensorValue;
resourcesChanged.add(5602);

}

else if(sensorValue < minMeasuredValue) {
minMeasuredValue = sensorValue;
resourcesChanged.add(5601);

fireResourcesChange(resourcesChanged);

latestMeasurement = System.currentTimeMillis();

Figure 4.25: Function where the values are read.

Each one of these sensors are started in the LWM2MClient and added to the ini-
tializer of the LWM2M client along with its .xml models (Figs. 4.26, 4.27 & 4.28).
That is why their parameters appear on the device’s page on the server side.

Device device = new Device(instanceld: @, activityManager);
addSmartObject (device);

Accelerometer accelerometer = new Accelerometer(instanceld: @, sensorManager);
addSmartObject(accelerometer) ;

Gyroscope gyroscope = new Gyroscope(instanceld: @, sensorManager);
addSmartObject(gyroscope) ;

Illuminance illuminance = new Illuminance(instanceld: @, sensorManager);
addSmartObject(illuminance);

Proximity proximity = new Proximity(instanceld: @, sensorManager);
addSmartObject (proximity);

ActivityRecognition activityRecognition = new ActivityRecognition(instanceld: @, main_service.getContext(), appContext);
addSmartObject (activityRecognition);

Figure 4.26: Creating the Sensors and adding them to SmartObjects.

List<ObjectModel> models = ObjectLoader.loadDefault();

for(InputStream inputStream : is){
ObjectModel oModel = ObjectLoader.loadDdfFile(inputStream, streamName: "modelstream"); //input stream cannot be null
models.add(oModel);

Figure 4.27: Loading the .xml Models.

41

Chapter 4

for(SmartObject smartObject : smartObjects) {
initializer.setInstancesForObject(smartObject.getObjectId(), (BaseInstanceEnabler)smartObject);
enablerIds.add(smartObject.getObjectId());

¥

int[] enablerIdsArray = new intl[enablerIds.size()];
int index = 0;
for(Integer r : enablerIds) {
enablerIdsArray[index] = r;
Log.d(TAG, msg: "Enabler: " + r);
index++;

}

List<LwM2mObjectEnabler> enablers = initializer.create(enablerIdsArray);
// Create client

LeshanClientBuilder builder = new LeshanClientBuilder(endpoint);
builder.setLocalAddress(localAddress, localPort);
builder.setLocalSecureAddress(secureLocalAddress, secureLocalPort);
builder.setObjects(enablers);

client = builder.build();

Figure 4.28: Building the client with the Models and the SmartObjects.

An instance of the LWM2MClient is created in the Main_Service so that it creates
the client, connects to the server and starts sensing as soon as the application starts.

Log.i(tag: "onStartCommand”, msg: "Here.");

ActivityManager activityManager = (ActivityManager) getSystemService(Context.ACTIVITY_ SERVICE);
InputStream isAccelerometer = getResources().openRawResource(R.raw.accelerometer);

InputStream isGyroscope = getResources().openRawResource(R. raw.gyroscope);

InputStream isIlluminance = getResources().openRawResource(R.raw.illuminance);

InputStream isProximity = getResources().openRawResource(R. raw.proximity);

InputStream isActRec = getResources().openRawResource(R.raw.activityrecognition);
is.add(isAccelerometer);

is.add(isGyroscope);

is.add(isIlluminance);

is.add(isProximity);

is.add(isActRec);

sensorManager = (SensorManager) getApplicationContext().getSystemService(Context.SENSOR_SERVICE);
lwm2mClient = new LWM2MClient(activityManager, is, sensorManager, getApplicationContext());

lwm2mClient.Register();

Figure 4.29: Instance of a LWM2M Client being called on the Main_Service.

Disclaimer: Before applying the changes directly in ISABELA, I adapted the demo
application to connect to the server we had and created the classes of the sensors we
needed and tested from that.

When the connection is established, the device appears on the server page (Fig. 4.30).

42

Development

& Cc ® @ localhost:8(ents - O W Search m o =
LESHAN SECURITY
Connected clients
Client Endpoint Registration ID Registration Date Last Update
raspberrypi KEPGXNIIGP May 24, 2018 5:50:59 AM May 24, 2018 5:50:59 AM e

Powered by - - Version

Figure 4.30: List of Devices connected to the Server.

Finally, by clicking on the device, we have access to its information (Figs. 4.31 & 4.32).

LwM2M Server

Figure 4.31: Device’s Properties | Part 1. Figure 4.32: Device’s Properties | Part 2.

4.3.3 IoT Agent Solution

This approach consisted on integrating an LWM2M IoT agent in FIWARE to serve as
a bridge of communication between the devices that use the LWM2M protocol and the
Context Broker (ORION module) [61].

The Lightweight M2M IoT Agent is a standard FIWARE IoT Agent based in the public
Node.js TIoT Agent Library. The Agent described in that library is a component that
facilitates the management and control of the information of a group of devices from a
FIWARE NGSI Context Broker using their own native protocols.

These agents support various types of features [62]. They are:

43

Chapter 4

e Device Registration: all the devices connected to the agent are mapped to a
Context Broker entity.

e Device Information Update: when there are new values for an attribute, the
devices should send the information to the agent and the agent should send a request
to the Context Broker to update the devices entity.

e Device Management: the agent should offer a repository where the devices are
registered and that holds information needed for the connection to the Context
Broker.

e Device Provisioning: the agent should offer an external way for the user to be
able to customize the device’s entity name, type and information.

e Type Configuration: the agent should provide default values to the device at-
tributes based on its type.

Devices measures can have three different behaviors:

e Commands: an attribute is set on the Context Broker entity and the agent will
be responsible of contacting the device to perform the command itself, updating as
soon as it has the information.

e Lazy Attributes: the sensors will wait for the agent to request data.

e Active Attributes: the sensed values are pushed from the device to the agent,
that will request an update to the Context Broker with that information.

An implementation of this agent is given by Telefénica Investigacion y Desarrollo'® and
is available in a GitHub repository [63]. Telefonica also offers a library that aims to be a
simple way to build LWM2M servers and clients with Node.js [64] and we adapted it to
fit the devices of our system.

Here, the server and the smartphone were also connected via the Wi-Fi network. The
architecture of the IoT Agent solution is represented in Fig. 4.33.

108panish telecommunications company.

44

Development

Caption:

LWM2M Client LWM2M Server

Cloudable
Hosts

Registration

NGSI — OMALWM2M Interface ‘

Lightweightm2m-
iotagnet

l | [

Reporting

Smartphone
Data Request

g loT Middleware

Figure 4.33: Architecture of the IoT Agent solution.

The configuration of the FIWARE environment is explained in Appendix B.

4.3.3.1 LWM2M IoT Agent

As previously said, the IDAS module is the one that handles communications with the de-
vices through its IoT agents. So, its configuration was made to implement the Lightweight M2M
IoT Agent.

This agent uses the features provided by the Node.js IoT Agent Library with some adap-
tations to the LWM2M protocol, as is the case of the Mappings. For LWM2M mapping
can be:

1. OMA Registry objects and resources from their URIs to their common names.

2. Custom device objects to the names defined by the user.

To accomplish that, the agent supports:

o lwm2mResourceMapping: an additional property that lets the user costumize the
names for particular resources.

e omaRegistry.json: contains the OMA Registry previously mentioned and is used for
automatic mappings in case there are not custom ones.

No alterations were made to the agent files for our work.

The server and the client are going to be explained in the next sections.

45

Chapter 4

4.3.3.2 Server

The implementation of this server was based on the one provided by Telefénica [64] and
the only changes we made were to add the customized models of the sensors that are not
part of the OMA Registry.

The agent calls up the server in its implementation so it starts running when the FIWARE
containers are started.

4.3.3.3 Client

As was the case for the Leshan client, this client had to be adapted to run on Android
[64], as it was written in a different language.

For this, I made use of one of the agent’s features - the provisioning - and created a script
were I defined an Entity, its type and attributes. Then, in the same file, I mapped the
LWM2M resources according to the .xml models of the sensors.

In the class LWMZ2M Client, the endpoint name was made to correspond to the one I had
given to the Entity in the provisioning and the connection was made to the IP and port
of the server, running in the Docker.

Disclaimer: This approach was not fully implemented. Although the server received
connections from the client, it was not being registered in ORION and the readings did
not appear. The challenges that appeared during this part of the work are explained in
section 6.1.

In conclusion, the implementation of the Proximity Module served its purpose, as I got
to know the system I was working with a little better, and the implementation of the
ToT Agent solution posed more challenges than the Leshan solution, as it is going to be
explained with greater detail in another section. Nevertheless, it can be said that the two
main objectives defined for this thesis were accomplished.

46

Chapter 5

Performance Tests and Results

The majority of the work was focused on the enrichment of the ISABELA system. As
part of that, a way to manage all the heterogeneous devices that make up the system
was implemented. With the incorporation of a new protocol some questions about the
performance of the system were raised, therefore some tests in respect to the performance
of the system were performed and are presented in this chapter.

5.1 Battery Life

Battery life is a very important aspect that concerns and, potentially, limits a software’s
performance. So, when creating new software or integrating new functionalities, we must
be sure that this does not affect the consume of battery of the devices that run the software.
Also because if an application drains the battery of a phone too quickly, the user is probably
going to uninstall said application. Therefore, in this project, we performed tests on the
battery life of the devices that run our application.

For that we used a tool, developed by Google, named Battery Historian. This tool creates
reports from the usage of a smartphone while it is not plugged in and allows the visual-
ization of system events and statistics. It also allows the selection of a specific application
and subsequent inspection of the metrics that affect the battery life of said application
[69].

To use it, we had to install Battery Historian in a computer via Docker', as it is the easiest
and fastest way, download the latest stable image and run it on a computer terminal with
the following command:

docker run -p <port_number>:9999 gcr.io/android-battery-historian:3.0 --port
9999

On the browser we can see if it is running by typing http://localhost:<port_number>.
The port_number is specified by the user.

Now that a way to visualize the data is installed and running, we needed a way to collect
relevant data, so we used Batterystats®>. For this, we had to connect the smartphone
to a computer and do a reset of its battery stats, so that later we could have only the

'Docker is a tool, created by Docker Inc., that uses containers to make it easier to deploy and run
applications [70].

?Batterystats is a file found on Android phones that contains states and information regarding the
usage of battery by applications or the hardware [71].

47

Chapter 5

information of the time interval that we wanted. After the reset, we disconnected the
phone from the power source and left it to run the application. When the time intervals
were fulfilled, we connect the smartphone to the computer again so we could create the
files to be read with Battery Historian. To create the reports from raw data, we run the
following line on the terminal:

adb bugreport > [path/]bugreport.zip

Then, we just had to go to the browser in which the Battery Historian was running and
upload the report file and visualize the results.

The tests and results obtained from the data gathered are going to be presented and
analyzed in the next sections.

5.2 Tests

The tests were focused on the impact of the LWM2M protocol on the battery performance
of the Android ISABELA application. For these tests, we let the ISABELA application
run for two days, using it normally to fill the sleep forms and view some information, and
used the Batterystats, as explained before. T'wo situations were tested:

1. Only running the ISABELA application.

2. Running the ISABELA application with the LWM2M client (Leshan solution).

Additionally, other tests were performed to evaluate the impact of the interval of time
between readings on the battery use. For these, we used the demo application that imple-
mented the LWM2M client in Android with the changes I made before applying them to
ISABELA.

These tests were made for 10, 20, 30, 40, 50 and 60 seconds in time periods of 6 hours
each.

5.3 Results

After running the tests and analyzing the data that resulted with Battery Historian, the
percentage of battery use for each of the systems previously mentioned is shown in the
following table:

TESTED SYSTEM | BATTERY USE
1. ISABELA (only) 1,33%
2. ISABELA + LWM2M 7,50%

Table 5.1: Battery use for each system.

As expected, system 1 consumes less energy than system 2, as system 2 spends energy
with the ISABELA parts and on top of it has the LWM2M client parts too. Because there

48

Performance Tests and Results

is a duplication of information in the Leshan solution, it does not go through the same
route, as it does in the IoT Agent solution. Therefore, we thought it was best to test the
system with the worst case scenario in terms of performance, because if the results were
favorable for that one, they would be favorable for the best one.

Finally, as we can see on the table, the percentage of battery use of system 2 is not
significantly higher than the percentage of battery use of system 1.

Furthermore, in terms of other important performance metrics, for example the CPU
Usage, the values are the same or, at least, less different between them than the battery
use ones.

As a result, we can conclude that by adding the LWM2M component to the ISABELA
Android application we are not sacrificing its performance.

For the application running only the LWM2M client the results are shown in the following
graph:

Battery Use only with the LWM2M Protocol

16,96

17
16,8
16,6
16,4
16,2

16
15,8

15,6

Percentage of Battery Use (%)

15,4

15,2

15
10 20 30 40 50 60
Duration of Sensor Reading (s)

Figure 5.1: Battery Use only with the LWM2M Protocol.

As it was expected, the value of the percentage of battery use decreases as the time
interval increases. The system has to perform less actions in the same amount of total
time. Furthermore, as we can see, the values of the percentage of battery use are very close,
not having a difference bigger than, approximately, 2% between the outermost values.

The ISABELA application collects data in a time interval of 30 seconds. As the values
do not vary much, we can state that this time interval is not significantly more battery
consuming than the bigger intervals considered, so it can be deemed appropriate.

In conclusion, the results were what it was expected and we became one step closer to
conclude that the addition of this new feature is not prejudicial in terms of performance.

49

This page is intentionally left blank.

Chapter 6

Conclusions and Future Work

This semester the work carried out was a continuation of the work started last semester.
Since July I continued studying the ISABELA system in order to find the best way to
integrate the LWM2M protocol, which was the work I did this semester.

Some of the challenges faced through the development of this thesis, the conclusions
reached at the end and the work left to be done are going to be the focus of this chapter.

6.1 Challenges

The integration of the LWM2M protocol with ISABELA posed some great and time con-
suming challenges.

The first challenge that 1 faced was the implementation of a Leshan LWM2M client for
Android. The LWM2M client that we had for our system was implemented in Java and we
needed it to run on Android. The first idea was to run the .jar file from the Main Service
of the ISABELA application, as the Raspberry Pi, but after some research I realized that
that was not the path and started searching for some applications that implemented a
LWM2M client for Android.

After awhile of not finding what we were looking for, we finally found one that implemented
a version of a LWM2M client for Leshan. With that, I started adapting it and creating
objects of the sensors we needed values from. In this part I run into some trouble. First
I could not connect the client to the server that we had running in the local machine,
because the demo application was not configured to work with a server like ours. After
some research, I figured it out and understood how to solve it and the solution was very
simple, so I could move on to creating the classes for the sensors. I took the ones that
were implemented in the demo and started emulating that approach, but when I run it
the values were being sensed, because they appeared in the logs, but were not passing
through to the server. Once again I had to do some research to see what I was doing
wrong in sending the values. The problem was that I was not sending them through the
right parameters ID that were defined in the .xml models. After solving this, I created
the rest of the sensor classes and moved on to the next part of the project.

The next challenge came with having to work with FIWARE. The integration of different
protocols with FIWARE comes through specific agents in the IDAS module. But I had
never worked with it, so I had to spend some time doing a tutorial, prepared by a colleague,

o1

Chapter 6

and studying the technology.

After this, I did some research about the LWM2M protocol and FIWARE and ways of
integrating it. An LWM2M IoT Agent came up, FIWARE offers its implementation and
also the implementations of a server and a client in Node.js. The different language posed
another challenge, I had never worked with Node.js and in the other approach of integration
of the LWM2M protocol that we tried for this project the server and the client were written
in Java or similar. Even so, we configured the agent with our FIWARE modules and I
tried to take advantage of the provisioning functionality and created a script to register
an Entity in the ORION module so that the values read from the smartphone once it
connected could be stored there. Another challenge appeared because when I tried to
connect them the device could not be registered. After awhile I tried to connect the client
with a non-existing entity name and it worked - the entity appeared in ORION but it
had no values. For this reason, the next challenge was to adapt, once again, the LWM2M
client on Android to work with the Node.js implementation instead of the Leshan one.
Because these challenges were so time consuming, I could not finish the adaptation of the
client and, therefore, the integration of the LWM2M protocol through this approach.

All in all, the errors were very hard to surpass and they took time to understand as I had
never worked with this protocol or a similar one and had to study its implementation and
configuration at the same time that I did it.

6.2 Conclusions

As the basis of this project is the monitorization of the surroundings of students in favor
of improving their academic performances, we are dealing with a system that is composed
by a lot of different sensors that are incorporated in different physical devices. With this
in mind, we tried to explore the concept of management of a network of heterogeneous
devices and evaluate the path to follow taking into account the components that already
existed in the system.

For this, we researched and studied the protocols that might fit what we were aiming
to accomplish and, although some of the options were recent and there was not a lot of
information of its use in cyber-physical systems, we thought they were the best suited
regarding the scope of the project and the type of technology and devices used, including
their limitations. Therefore, we were able to adapt and incorporate a network management
protocol with clients for Android and Raspberry Pi.

However, we can conclude that there is a long way to go and that each approach that we
took for the integration of the LWM2M protocol has its limitations.

As a matter of fact, the Leshan implementation has reading management capabilities for
both Android and stationary devices [72], but as it is:

There is a duplication of the information. The same information that is sent to the
LWM2M server is sent through another route to the FIWARE’s context broker.

e There is absence of execute-write-delete capabilities.

The values in the LWM2M server are only stored until there is a new reading that
replaces the older one.

There is no capability of automatic group device provisioning.

52

Conclusions and Future Work

Even so this approach offers a simple way to see the each device that is connected, their
attributes and sensed values through its interface.

The IoT Agent implementation was considered to be the solution to some of the limita-
tions that the Leshan implementation offers. For example, it is a way of implementing
a bridge between the LWM2M protocol and the system’s components (FIWARE). So, it
obliterates the duplication of information, as the information passes through the IoT agent
to the server and the context broker directly. It also offers the capability of group device
provisioning through running a script and the storage of information in a database.

On one hand, the existence of a tool, developed by the same corporation that developed
the data center that we chose for our project, which gave answers to some of the limitations
of other existent tools was of great help because the integration was a smoother process.

But, on the other hand, the fact that it implemented the server and the client in a complete
different way and language posed as a very hard challenge in and of itself. Because the
challenges that appeared were so time consuming, I could not finish the incorporation
through this approach.

As I could learn, the time that I had to work with the protocol was not sufficient to benefit
from its capabilities to the fullest. In retrospect, I could have saved time if I had started
with the integration of the server in FIWARE, as I proposed on the midterm report, but
this way I learned another implementation of this protocol and different technologies.

Even so, we could conclude that the incorporation of a protocol like this did not affect
significantly the performance of this system. So, systems like this that are composed by
heterogeneous devices and depend on them working to give accurate and real advice only
have to gain if they can have a protocol that manages and controls them.

Finally, the two main objectives for this thesis were accomplished. Learning the system
and the technologies and components that were used on it through the implementation of
a module and the integration of a protocol was very valuable for me. It helped me emerge
in the world of Technologies of Information and gain new skills that I did not have during
my academic course. It, also, permitted me to be a co-author of the scientific paper that
appears in Appendix C.

6.3 Future Work

Throughout this thesis I mentioned that this work could improve in many ways. Whether
it was the better use of some technology’s functionalities, an approach that still does not
quite reach what we want from it or even work that is meant to be done in the future.

The proximity module is a good tool to infer sociability, but raises its limitations when
we think about the fact that it gives values of the devices the smartphone is around more
often and we are assuming it is always a person, but not always. Nowadays, a lot of
everyday devices have bluetooth connections, such as car radios. So, this module is not
100% accurate and can be a point of betterment.

The previous point leads me to the need to correlate the results that we gather with the
actual academic performance of the students to see until which degree we are doing a fair
assessment, what needs improvement and what other factors that we may not be taking
into account we should examine.

Another point of focus for some future work may be the addition of write-execute-delete

93

Chapter 6

fucntionalities to the management protocol. With these abilities implemented we may be
capable of fully controlling a sensor or, at least, see if they are working correctly without
having to touch them directly.

For now, the management protocol only has the physical sensors in its realm, even though
this project is also made up of another class of sensors as are the social ones. A step
further would be to open up the managing capabilities to the social sensors.

As T said, there were some major challenges throughout the project and I could not
complete the adaptation of the LWM2M client for the IoT Agent approach. Therefore,
finishing this approach is also future work.

Another point that might be interesting to focus on is the performance tests that were
left to do. For this work, I only had time to test and compare results obtained from the
smartphone application. In the future, it might be interesting to test the LWM2M server
and the Raspberry Pi in other points of performance such as memory and CPU usage.

In conclusion, the work left to do described above represent good opportunities for new
research work.

54

References

1]

2]

[11]

[12]

Rose, Karen and Eldridge, Scott and Chapin, Lyman. The internet of things: An
overview. In The Internet Society (ISOC), pages 1-50. 2015.

“Internet of Things (IoT) connected devices installed base
worldwide from 2015 to 2025 (in billions)”. Available Online:
https://www.statista.com/statistics/471264/iot-number-of-connected-
devices-worldwide/. Accessed in June 26th, 2018.

Li, Shancang and Xu, Li Da and Zhao, Shanshan. The internet of things: a survey.
In Information Systems Frontiers, vol. 27, pages 243-259. 2015.

D. S. Sousa Nunes, P. Zhang, and J. Sa Silva. A Survey on human-in-The- loop appli-
cations towards an internet of all. In IEEE Communications Surveys and Tutorials.
2015.

“Portugal tem a quarta taxa de abandono es-
colar mais elevada da UE”. Available Online:
https://www.dn.pt/sociedade/interior/portugal-tem-a-quarta-taxa-de-

abandono-escolar-mais-elevada-da-ue---eurostat-6244999.html. Accessed in

June 26th, 2018.

“Seven Reasons Freshmen Drop Out Of College”. Available online:
https://www.allianztuitioninsurance.com/resources/college-adjustment
/seven-reasons-freshmen-drop-out-of-college. Accessed in June 26th, 2018.

“Fundacao para a Ciéncia e a Tecnologia”. Available online: https://www.fct.pt.
Accessed in June, 2018.

“Scrum Methodology”. Available online: http://scrummethodology.com. Accessed
in June 27th, 2018.

Slack, “Slack”. Available online: https://slack.com. Accessed in June 27th, 2018.

Rajkumar, Ragunathan Raj and Lee, Insup and Sha, Lui and Stankovic, John. Cyber-
physical systems: the next computing revolution. In Proceedings of the 47th design
automation conference, pages 731-736. AMC, 2010.

Statista, “Android - Statistics & Facts”. Available online:
https://www.statista.com/topics/876/android/. Accessed in June 18th,
2018.

“75 Amazing Android = Statistics and Facts”. Available online:
https://expandedramblings.com/index.php/android-statistics/. Accessed in
June 18th, 2018.

95

https://www.statista.com/statistics/471264/iot-number-of-connected-devices-worldwide/
https://www.statista.com/statistics/471264/iot-number-of-connected-devices-worldwide/
https://www.dn.pt/sociedade/interior/portugal-tem-a-quarta-taxa-de-abandono-escolar-mais-elevada-da-ue---eurostat-6244999.html
https://www.dn.pt/sociedade/interior/portugal-tem-a-quarta-taxa-de-abandono-escolar-mais-elevada-da-ue---eurostat-6244999.html
https://www.allianztuitioninsurance.com/resources/college-adjustment/seven-reasons-freshmen-drop-out-of-college
https://www.allianztuitioninsurance.com/resources/college-adjustment/seven-reasons-freshmen-drop-out-of-college
https://www.fct.pt
http://scrummethodology.com
https://slack.com
https://www.statista.com/topics/876/android/
https://expandedramblings.com/index.php/android-statistics/

Chapter 6

[13] “Number of available applications in the Google Play Store
from December 2009 to March 2018”. Available online:
https://www.statista.com/statistics/266210/number-of-available-
applications-in-the-google-play-store/. Accessed in June 19th, 2018.

[14] “The Future Internet platform FIWARE”. Available online:
https://ec.europa.eu/digital-single-market/en/future-internet-public-
private-partnership. Accessed in June 24th, 2018.

[15] FIWARE, “What is FIWARE?”. Available online:
https://www.fiware.org/about-us/. Accessed on June 24th, 2018.

[16] Telefénica, “FIWARE, the standard that the IoT mneeds”. Available on-
line: https://iot.telefonica.com/blog/2016/09/en-fiwvare-standard-iot. Ac-
cessed in June 24th, 2018.

[17] FIWARE, “FIWARE GENERIC ENABLERS”. Available online:
https://catalogue-server.fiware.org. Accessed in June 24th, 2018.

[18] Raspberry Pi Foundation, “Raspberry Pi”. Available online:
https://www.raspberrypi.org. Accessed in June 21st, 2018.

[19] Arduino, “Arduino”. Available online: https://www.arduino.cc. Accessed in June
21st, 2018.

[20] “Raspberry Pi or Arduino Uno? One Simple
Rule to Choose the Right Board”. Available online:
https://makezine.com/2015/12/04/admittedly-simplistic-guide-raspberry-
pi-vs-arduino/. Accessed in June 21st, 2018.

[21] Sinche Soraya and Jorge S& Silva and Raposo, D. and Rodrigues, A. and Vasco
Pereira and Boavida, F. , ?Towards Effective IoT Management”, in IEEE Sensors
2018 international conference, New Delhi, India, 28-31 October 2018., 2018.

[22] Hedstrom, Brian and Watwe, Akshay and Sakthidharan, Siddharth. Protocol Effi-
ciencies of NETCONF versus SNMP for Configuration Management Functions. In
University of Colorado, Master Thesis, 2011.

[23] R.Enns, “NETCONF Configuration Protocol RFC 4741”7, RFC Editor, 2006.

[24] R. Enns, M. Bjorklund, J. Schoenwaelder, and A. Bierman, “Network Configuration
Protocol (NETCONF) RFC 62417, RFC Editor, 2011.

[25] A.Bierman, M.Bjorklund, and K.Watsen, “RESTCONF Protocol - RFC 8040,” no.
8040. RFC Editor, 2017.

[26] Open Mobile Alliance, “OMA SpecWorks”. Available online:
https://www.omaspecworks.org/what-is-oma-specworks/iot/lightweight
-m2m-1wm2m/. Accessed in May, 2018.

[27] “NETCONF Versus RESTCONEF: Capabilitity Compar-
isons for Data Model-driven Management”. Available online:
https://www.claise.be/2017/10/netconf-versus-restconf-capabilitity-
comparisons-for-data-model-driven-management-2/. Accessed in June, 2018.

[28] A. Sehgal, V. Perelman, S. Kuryla, J. Schonwalder, and O. In, “Management of
resource constrained devices in the internet of things,” Commun. Mag. IEEE, vol. 50,
no. 12, pp. 144-149, 2012.

56

https://www.statista.com/statistics/266210/number-of-available-applications-in-the-google-play-store/
https://www.statista.com/statistics/266210/number-of-available-applications-in-the-google-play-store/
https://ec.europa.eu/digital-single-market/en/future-internet-public-private-partnership
https://ec.europa.eu/digital-single-market/en/future-internet-public-private-partnership
https://www.fiware.org/about-us/
https://iot.telefonica.com/blog/2016/09/en-fiware-standard-iot
https://catalogue-server.fiware.org
https://www.raspberrypi.org
https://www.arduino.cc
https://makezine.com/2015/12/04/admittedly-simplistic-guide-raspberry-pi-vs-arduino/
https://makezine.com/2015/12/04/admittedly-simplistic-guide-raspberry-pi-vs-arduino/
https://www.omaspecworks.org/what-is-oma-specworks/iot/lightweight-m2m-lwm2m/
https://www.omaspecworks.org/what-is-oma-specworks/iot/lightweight-m2m-lwm2m/
https://www.claise.be/2017/10/netconf-versus-restconf-capabilitity-comparisons-for-data-model-driven-management-2/
https://www.claise.be/2017/10/netconf-versus-restconf-capabilitity-comparisons-for-data-model-driven-management-2/

References

[29]

[30]

[31]

[41]

[42]

[43]

Bormann, C., K. Hartke, and Z. Shelby. ”The Constrained Application Protocol
(CoAP).” RFC 7252 (2015).

S. Sinche. “IoT Management System.ppt”, FCTUC/CISUC/LCT, October 2017.

Rui Wang, Fanglin Chen, Zhenyu Chen, Tianxing Li, Gabriella Harari, Stefanie Tig-
nor, Xia Zhou, Dror Ben-Zeev and Andrew T. Campbell. StudentLife: assessing
mental health, academic performance and behavioral trends of college students us-
ing smartphones. In Proceedings of the 2014 ACM International Joint Conference on
Pervasive and Ubiquitous Computing, pages 3—14. AMC, 2014.

Savvides, Andreas and Park, Heemin and Srivastava, Mani B. The bits and flops of
the n-hop multilateration primitive for node localization problems. In Proceedings of
the 1st ACM international workshop on Wireless sensor networks and applications,
pages 112-121. ACM, 2002.

FIWARE, “CORE CONTEXT MANAGEMENT CHAPTER”. Available online:
https://www.fiware.org/developers/catalogue/. Accessed in June 28th, 2018.

Telefénica I+D, “FIWARE Short Time Historic (STH) - Comet”. Available online:
https://github.com/telefonicaid/fiware-sth-comet. Accessed in June 28th,
2018.

FIWARE, “INTERFACE WITH 10T, ROBOTS AND
THIRD-PARTY SYSTEMS CHAPTER”. Available online:

https://www.fiware.org/developers/catalogue/. Accessed in June 28th,
2018.

FIWARE, “Backend Device Management - IDAS”. Available online:
https://catalogue-server.fiware.org/enablers/backend-device-management
-idas. Accessed in June 28th, 2018.

Telefénica I4+D, “Cygnus”. Available online: https://github.com/telefonicaid/
fiware-cygnus. Accessed in June 28th, 2018.

ckan, “CKAN: The Open Source Data Portal Software”. Available online:
https://github.com/ckan/ckan. Accessed in June 28th, 2018.

J. M. S. L. Fernandes, “ISABELA - IoT Student Advisor and BEst Lifestyle Ana-
lyzer”, Master Thesis in Biomedical Engineering, Coimbra, 2017.

Android Developer, “Android Bluetooth APIs”. Available online:
https://developer.android.com/guide/topics/connectivity/bluetooth.html.
Accessed in April, 2018.

Android Developer, “BluetoothAdapter”. Available online:
https://developer.android.com/reference/android/bluetooth/
BluetoothAdapter.html. Accessed in April, 2018.

Android Developer, “BroadcastReceiver”. Available online:
https://developer.android.com/reference/android/content/Broadcast
Receiver.html. Accessed in April, 2018.

Android Developer, “BluetoothAdapter.getDefaultAdapter()”. Available online:
https://developer.android.com/reference/android/bluetooth/Bluetooth
Adapter.html#getDefaultAdapter (). Accessed in April, 2018.

o7

https://www.fiware.org/developers/catalogue/
https://github.com/telefonicaid/fiware-sth-comet
https://www.fiware.org/developers/catalogue/
https://catalogue-server.fiware.org/enablers/backend-device-management-idas
https://catalogue-server.fiware.org/enablers/backend-device-management-idas
https://github.com/telefonicaid/fiware-cygnus
https://github.com/telefonicaid/fiware-cygnus
https://github.com/ckan/ckan
https://developer.android.com/guide/topics/connectivity/bluetooth.html
https://developer.android.com/reference/android/bluetooth/BluetoothAdapter.html
https://developer.android.com/reference/android/bluetooth/BluetoothAdapter.html
https://developer.android.com/reference/android/content/BroadcastReceiver.html
https://developer.android.com/reference/android/content/BroadcastReceiver.html
https://developer.android.com/reference/android/bluetooth/BluetoothAdapter.html\#getDefaultAdapter()
https://developer.android.com/reference/android/bluetooth/BluetoothAdapter.html\#getDefaultAdapter()

Chapter 6

[44]

[45]

[52]

Android Developer, “Android Bluetooth API - Discovering Devices”. Available online:
https://developer.android.com/guide/topics/connectivity/bluetooth.html
#DiscoveringDevices. Accessed in April, 2018.

Android Developer, “IntentFilter”. Available online:
https://developer.android.com/reference/android/content/IntentFilter.
html. Accessed in April, 2018.

Android Developer, “Intent.get Action()”. Available online:
https://developer.android.com/reference/android/content/Intent.html
#getAction(). Accessed in April, 2018.

Android Developer, “BluetoothDevice. ACTION_FOUND”. Available online:
https://developer.android.com/reference/android/bluetooth/Bluetooth
Device.html#ACTION_FOUND. Accessed in April, 2018.

Android Developer, “BluetoothAdapter. ACTION_DISCOVERY_FINISHED”. Avail-
able online: https://developer.android.com/reference/android/bluetooth/
BluetoothAdapter.html#ACTION_DISCOVERY_FINISHED. Accessed in April, 2018.

Android Developer, “registerReceiver(BroadcastReceiver, IntentFilter)”. Available
online: https://developer.android.com/reference/android/content/Context
.html#registerReceiver(android.content.BroadcastReceiver,android.
content.IntentFilter). Accessed in April, 2018.

FIWARE, “Fiware”. Available online: https://www.fiware.org. Accessed in April,
2018.

Android Developer, “LocalBroadcastManager.sendBroadcast(Intent)”. Available on-
line: https://developer.android.com/reference/android/support/v4/content
/LocalBroadcastManager .html#sendBroadcast (android.content.Intent). Ac-
cessed in April, 2018.

Android Developer, “Collections.sort(List, Comparator)”. Available online:
https://developer.android.com/reference/java/util/Collections.html
#sort(java.util.List<T>,java.util.Comparator<? super T>). Accessed in
April, 2018.

Android Developer, “RecyclerView.Adapter.onBindViewHolder(ViewHolder, int)”.
Available in: https://developer.android.com/reference/android/support/v7/
widget/RecyclerView.Adapter.html#bindViewHolder (VH,int). Accessed in
April, 2018.

Rescorla, Eric and Modadugu, Nagendra, “Datagram transport layer security version
1.27, 2012.

Klas, Guenter and Rodermund, Friedhelm and Shelby, Zach and Akhouri, Sandeep
and Holler, J. Lightweight M2M: enabling device management and applications for
the internet of things. In White Paper from Vodafone, Ericsson and ARM, vol. 26.
2014.

Alliance, Open Mobile. Lightweight Machine to Machine Requirements, pages 1-12,
2017.

Eclipse, “Eclipse Leshan”. Available online: https://www.eclipse.org/leshan/.
Accessed in June, 2018.

o8

https://developer.android.com/guide/topics/connectivity/bluetooth.html#DiscoveringDevices
https://developer.android.com/guide/topics/connectivity/bluetooth.html#DiscoveringDevices
https://developer.android.com/reference/android/content/IntentFilter.html
https://developer.android.com/reference/android/content/IntentFilter.html
https://developer.android.com/reference/android/content/Intent.html#getAction()
https://developer.android.com/reference/android/content/Intent.html#getAction()
https://developer.android.com/reference/android/bluetooth/BluetoothDevice.html#ACTION_FOUND
https://developer.android.com/reference/android/bluetooth/BluetoothDevice.html#ACTION_FOUND
https://developer.android.com/reference/android/bluetooth/BluetoothAdapter.html#ACTION_DISCOVERY_FINISHED
https://developer.android.com/reference/android/bluetooth/BluetoothAdapter.html#ACTION_DISCOVERY_FINISHED
https://developer.android.com/reference/android/content/Context.html\#registerReceiver(android.content.BroadcastReceiver,android.content.IntentFilter)
https://developer.android.com/reference/android/content/Context.html\#registerReceiver(android.content.BroadcastReceiver,android.content.IntentFilter)
https://developer.android.com/reference/android/content/Context.html\#registerReceiver(android.content.BroadcastReceiver,android.content.IntentFilter)
https://www.fiware.org
https://developer.android.com/reference/android/support/v4/content/LocalBroadcastManager.html\#sendBroadcast(android.content.Intent)
https://developer.android.com/reference/android/support/v4/content/LocalBroadcastManager.html\#sendBroadcast(android.content.Intent)
https://developer.android.com/reference/java/util/Collections.html\#sort(java.util.List<T>,java.util.Comparator<? super T>)
https://developer.android.com/reference/java/util/Collections.html\#sort(java.util.List<T>,java.util.Comparator<? super T>)
https://developer.android.com/reference/android/support/v7/widget/RecyclerView.Adapter.html\#bindViewHolder(VH,int)
https://developer.android.com/reference/android/support/v7/widget/RecyclerView.Adapter.html\#bindViewHolder(VH,int)
https://www.eclipse.org/leshan/

References

[58] Open Mobile Alliance, “LwM2M Registry”. Available Online:
http://www.openmobilealliance.org/wp/0MNA/LwM2M/LwM2MRegistry.html.
Accessed in January 6th, 2019.

[59] Eclipse, Leshan Project. Available Online:
https://github.com/eclipse/leshan. Accessed in May, 2018.

[60] ApplicationPlatformForloT, “LwM2MDemoClientAndroid”. Available Online:
https://github.com/ApplicationPlatformForIoT/LwM2MDemoClientAndroid.
Accessed in October, 2018.

[61] FIWARE, “WELCOME TO THE FIWARE 10T AGENT
FOR OMA LIGHTWEIGHT M2M”. Available Online:
https://fiware-iotagent-lwm2m.readthedocs.io/en/latest/index.html.
Accessed in January 10th, 2019.

[62] Telefénica I4+-D, “Features”. Available Online: https://github.com/telefonicaid/
iotagent-node-lib#features. Accessed in January 10th, 2019.

[63] Telefénica I4+D, “lightweightm2m-iotagent”. Available Online:
https://github.com/telefonicaid/lightweightm2m-iotagent. Accessed in
November, 2018.

[64] Telef6nica I+D, “lwm2m-node-lib”. Available Online:
https://github.com/telefonicaid/lwm2m-node-1ib. Accessed in November,
2018.

[65] Telefonica I+D, “Device to NGSI Mapping”. Available Online:
https://github.com/telefonicaid/iotagent-node-lib#device-to-ngsi-
mapping. Accessed in January 10th, 2019.

[66] “apt-get update”. Available online: https://askubuntu.com/questions/222348/
what-does-sudo-apt-get-update-do. Accessed in April, 2018.

[67] Eclipse, “Eclipse Kepler”. Available online: http://www.eclipse.org/downloads/
packages/eclipse-standard-432/keplersr2. Accessed in April, 2018.

[68] adafruit, “Adafruit Python DHT Sensor Library”. Available online:
https://github.com/adafruit/Adafruit Python DHT. Acessed in June, 2018.

[69] Google, “Battery Historian”. Available Online: https://github.com/google/
battery-historian. Accessed in January 3rd, 2019.

[70] Docker Inc., “Docker”. Available Online: https://www.docker.com. Accessed in Jan-
uary 3rd, 2019.

[71] Android Developer, “Profile battery usage with Bat-
terystats and Battery Historian”. Available Online:
https://developer.android.com/studio/profile/battery-historian. Ac-

cessed in January 3rd, 2019.

[72] N. Armando. “A Unified Management Approach for the Extended IoT.ppt”, FC-
TUC/CISUC/LCT, December 2018.

[73] Telefénica I4+D, “lightweightm2m-iotagent Dockerfile”. Available Online:
https://hub.docker.com/r/telefonicaiot/lightweightm2m-iotagent/
dockerfile. Accessed in December, 2019.

99

http://www.openmobilealliance.org/wp/OMNA/LwM2M/LwM2MRegistry.html
https://github.com/eclipse/leshan
https://github.com/ApplicationPlatformForIoT/LwM2MDemoClientAndroid
https://fiware-iotagent-lwm2m.readthedocs.io/en/latest/index.html
https://github.com/telefonicaid/iotagent-node-lib#features
https://github.com/telefonicaid/iotagent-node-lib#features
https://github.com/telefonicaid/lightweightm2m-iotagent
https://github.com/telefonicaid/lwm2m-node-lib
https://github.com/telefonicaid/iotagent-node-lib#device-to-ngsi-mapping
https://github.com/telefonicaid/iotagent-node-lib#device-to-ngsi-mapping
https://askubuntu.com/questions/222348/what-does-sudo-apt-get-update-do
https://askubuntu.com/questions/222348/what-does-sudo-apt-get-update-do
http://www.eclipse.org/downloads/packages/eclipse-standard-432/keplersr2
http://www.eclipse.org/downloads/packages/eclipse-standard-432/keplersr2
https://github.com/adafruit/Adafruit_Python_DHT
https://github.com/google/battery-historian
https://github.com/google/battery-historian
https://www.docker.com
https://developer.android.com/studio/profile/battery-historian
https://hub.docker.com/r/telefonicaiot/lightweightm2m-iotagent/dockerfile
https://hub.docker.com/r/telefonicaiot/lightweightm2m-iotagent/dockerfile

This page is intentionally left blank.

Appendices

61

Appendix A

Configuration of the Virtual
Machine for the Leshan LWM2M
Server

First, we begin with a download of the package lists from the repositories and “update”
them to get information on the newest versions of packages and their dependencies [66].
So, in terminal, we run this command:

sudo apt-get update
The next step is to install the Oracle JDK, so we have to run the following commands:

sudo apt-get install software-properties
sudo apt-add-repository ppa:webupd8/java
sudo apt-get update

sudo apt-get install oracle-java8-installer

Then, it’s time to get Eclipse. We download the Kepler version, from the website [67] and
we extract it on the Download folder. In terminal, we move the extracted folder to a new
location through the following commands:

sudo mkdir -p /opt/ide/64
sudo mv .~ /Downloads/eclipse /opt/ide/64

After that, we have to give administrator permissions to the new folder. Inside the new
folder, we run these commands:

sudo chown -R root:root eclipse
At this point, we need Maven. So we download it, through terminal:

sudo apt-get update
sudo apt-get install maven

Now, we need to define and configure the workspace:

sudo mvn -e -Declipse.workspace=<workspace folder> eclipse:configure-workspace
(Our workspace folder is /home/leshan/workspace.)

Finally, we will clone the Leshan project from GitHub inside the workspace folder:

sudo git clone https://github.com/eclipse/leshan.git

63

Chapter A

Then, inside the Leshan folder that we just cloned, we have to run tests, with the help of
the following commands:

mvn eclipse:eclipse
mvn install

Lastly, we import the project into Eclipse and, if there are no errors, the configuration is
finished.

64

Appendix B

Configuration of the FIWARE
Environment for the LWM2M IoT
Agent

First, we needed to have a virtualization software installed and I used VMWare Player,
then, we needed to download a FIWARE .ovf Image with all its modules installed and,
finally, we needed an SSH client. The FIWARE modules were deployed using Docker
containers.

After importing the .ovf image to the VMWare Player, we started configuring the modules
so they fitted our system. We did this through the docker-compose file, in which we defined
the services we used. For our system:

e MongoDB: a database to store the information.

e ORION module: an image of the FIWARE ORION module.
e IDAS module: an image of the LightweightM2M Agent provided by the Telefénica
I+D [73].
In this file we, also, defined the host names, the container names and the ports of each of
the services.
Finally, we started all FIWARE containers by running the following command:

docker-compose up -d

Note: To check the running modules we run docker ps and to stop all modules we run
docker-compose stop.

65

Appendix C

Article

67

Towards the Development of IoT Management in Human-in-the-Loop
Cyber-physical Systems

I. Mota!, S. Sinche! 2, D. Raposo!, J. Fernandes', A. Ngombo!, J. Sa Silva!, A. Rodrigues' 3
and F. Boavidal

Abstract— This paper presents an innovative system to the
monitorization of the surroundings of students in favor of
improving their academic performances by using a Human-
in-the-Loop Cyber-physical system. Therefore, the system is
composed by a lot of different sensors that are incorporated
in different physical devices. With this in mind, we explore the
concept of management of a network of these heterogeneous
devices and evaluate the path to follow taking into account
the components that already existed in the system. Lightweight
Machine-to-Machine was the chosen protocol, even though it
is recent and there was not a lot of information of its use
in cyber-physical systems. To integrate the protocol in the
existent system we used Eclipse’s Leshan project and FIWARE’s
LWM2M IoT Agent. Concerns about the consumption of energy
by the smartphone application with the protocol were raised,
so performance tests were made and the results were favorable.

Keywords: Internet of Things, Cyber-physical Sys-
tems, Human-in-the-Loop, Lightweight machine-to-machine,
CoAP, IoT Agent.

I. INTRODUCTION

IoT Student Advisor and Best Lifestyle Analyzer (IS-
ABELA) is a Human-in-the-Loop Cyber-physical system
that collects data from students and their environment in
order to provide an accurate evaluation of their state. For that,
the system is composed by a plethora of sensors distributed
by several devices. Systems like ISABELA, that depend on
their components work to achieve their objectives, can benefit
from the use of protocols with management capabilities.

Management gives control over the system functionalities,
as it can monitor network performance, detect faults and
configure parameters. Therefore, the integration of a net-
work management protocol that manages the heterogeneous
devices that are part of the ISABELA system was the
main objective of this work. A study of various protocols
was made and the chosen one was LWM2M, a protocol
design by Open Mobile Alliance SpecWorks for managing
sensor networks and remote machine-to-machine devices. Its
integration was made through two approaches: 1) Eclipse’s
Leshan project, where the management protocol is parallel
to the ISABELA system and 2) FIWARE’s LWM2M IoT
Agent, where the server is integrated on the project’s IoT
middleware (FIWARE).

1 Department of Informatic Engineering, University of Coimbra, Coimbra,
Portugal

2Department of Eletronic, Telecommunications and Networks, Escuela
Politcnica Nacional, Quito, Ecuador

3Polytechnic Institute of Coimbra, Coimbra, Portugal

imota@student.dei.uc.pt, {smaita, draposo, jmfernandes, nar-
mando, sasilva, arod, boavida} @dei.uc.pt

The paper is structured as follows: in section II a pre-
sentation and evaluation of the various network management
protocols considered to manage the several devices that form
part of the system is given. In section III, there is a brief
description of the ISABELA project and of some of its
components. Section IV presents the process of development
of the components that make it possible to fulfill the objective
of this work. Section V is focused on the tests made to
the application and consequent results. Finally, section VI
is dedicated to the conclusions taken from the development
of the work.

II. IOT MANAGEMENT

The number of active devices is rising and their complexity
is increasing. This resulted in the creation of various tools
and technologies specialized in IoT management.

Management functionalities require data exchanges be-
tween the manager and the managed systems. The managed
systems are often different from each other in terms of
computing capabilities, storage and energy consumption.

The heterogeneity of the devices that make up the system
must be considered when a way to manage them is being
chosen. Several organizations developed standards able to
handle heterogeneous devices and some of those were con-
sidered for this work and are going to be presented in the
next subsections.

A. Protocols

1) Network Configuration Protocol (NETCONF): NET-
CONF is a network management protocol proposed by the
Internet Engineering Task Force (IETF). It was created so
that it was possible to configure networks of devices, imple-
menting functions to install, edit and delete its parameters
[1]. It uses XML encoding for the configuration data as well
as the protocol messages. The transport protocol is TCP,
generally. Its operations are performed as remote procedure
calls. NETCONEF establishes SSH sessions between its server
and its client [2] and defines the configuration of data stores
and a set of operations - Create, Read, Update and Delete
(CRUD) - that can be used to access the aforementioned data
stores [3][4].

2) RESTCONF: RESTCONF is a protocol based on
HTML that provides an interface for accessing data defined
in YANG', using datastores defined in NETCONF. Its oper-
ations are the HTTP operations GET, POST, PUT, PATCH

'Data modeling language for the definition of data sent over the NET-
CONF protocol.

and DELETE and the transport protocol is HTTP. It uses
HTTP methods as equivalents for NETCONF operations.
This protocol was also designed by the IETF [5] and does
not intend to replace NETCONF. In fact, they can coexist
(Fig. 1), so that RESTCONF can offer an additional interface
with REST-like functionalities to the NETCONF protocol, or
it can be used alone (Fig. 2) [1].

RESTCONF

Web App

NETCONF
NETCONF Client -

Fig. 1: RESTCONF with the NETCONF Server [1].

- -

Web App

Fig. 2: RESTCONF without the NETCONF Server [1].

3) Lightweight Machine-to-machine (LWM2M): LWM2M
is a protocol for IoT device management from Open Mobile
Alliance SpecWorks [6]. It was designed for sensor networks
and remote management of machine-to-machine devices. Its
architectural design is based on REST, defines an extensible
resource and data model and builds on an efficient secure
data transfer standard called CoAP?. The target devices are
mainly resource constrained, so the protocol is light and
compact.

LWM2M is a protocol which implements a client-server
architecture and uses CoAP as the underlying transfer pro-
tocol over UDP and SMS bearers (optional). It also includes
a secure channel through which the messages between the
server and the client are interchanged. This level of security
is provided by the DTLS? protocol [11].

The LWM2M Enabler* has two components: a server and
a client. The server is typically located in a data center
and can be hosted by the M2M, Network or Application
Service Provider. The client resides in the device. It also has
four interfaces between its two components: 1) Bootstrap;
2) Client Registration; 3) Device management and Service
Enablement; 4) Information Reporting. The architecture of
the LWM2M Enabler is represented in Fig. 3.

2Constrained Application Protocol is a specialized Internet Application
Protocol for constrained devices, defined in RFC 7252 [9].

3Data Transport Layer Security (DTLS) is a protocol that secures com-
munications between a client and sever, defined in RFC 6347 [10].

4Name given to the standard produced by OMA for the LWM2M solution.

LWM2M Server

Information
Reporting

Device management and Client
Service Enablement Resgistration

P LWM2M Bootstrap
Server (optional)

LWM2M Client

Bootstrap

SmartCard (optional)

Fig. 3: Architecture of the LWM2M Enabler [12].

The LWM2M model demmands the use of end-to-end IP
connectivity between the client and the server. However, a
gateway can be used when non-IP endpoints are needed, al-
though LWM2M poses great challenges in respect to remote
gateway management [1].

B. Comparative Analysis

NETCONF was the first real solution for the integration
of a network management protocol as one of its strengths
is its support for robust configuration change involving
multiple devices. These transactions are mostly important
when configuring services across network elements [7]. But
for networks of constrained devices the operations tested
were only get, get-config, copy-config, lock and unlock. NET-
CONF does not necessarily require a security mechanism but
some authors tested a light version of the protocol with some
mechanisms in constrained devices and concluded that it is
inefficient in terms of memory usage [8].

RESTCONEF is a more recent bet from the IETF and, as
said before, does not intend to replace NETCONE. Unlike
NETCONF, RESTCONF allows for XML and JSON to be
used and does not have the concept of distributed trans-
actions, only device-by-device configuration. Also, a call
from this protocol is a transaction by itself as it uses HTTP
operations to edit data resources [7] and it requires a security
mechanism - Transport Layer Security (TLS).

LWM2M is a client-server model and requires end-to-
end IP connectivity. Sometimes this poses as a challenge
but some enhancing strategies are being proposed in recent
works. Despite this, LWM2M is widely implemented and
used, thus becoming the solution for the management of con-
strained device with the highest acceptance of the scientific
community [1]. Therefore, it was selected to be incorporated
into the ISABELA project, to help manage all the physical
sensors and, hopefully later, also manage the virtual sensors.

The characteristics of each protocol analyzed are summa-
rized in table L.

Protocol NETCONF RESTCONF LWM2M
Standard IETF IETF OMA
Definition YANG YANG LWM2M Lan-
Language guage, YANG

Extended
Information YANG YANG LWM2M
Model Modules Modules Objects
Instantiated XML XML or JSON Plain Text,
Informa- JSON or TLV
tion/Transfer
Syntax
(payload)
Transfer Pro- SSH, SSL, HTTP, TLS, CoAP, DTLS,
tocol HTTP TLS HTTPS with | UDP

X.509v3

Security Yes Yes Yes
Used on | Yes, reducing | Yes, reducing | Yes
Constrained some some
Devices operations operations

TABLE I: Summarized Protocols [13].

III. ISABELA

ISABELA is an Human-in-the-Loop Cyber-physical sys-
tem, whose goal is to prevent bad academic performances.
It was developed to collect data from students and evaluate
it in order to assess the state of the participants and help
them, by providing feedback and advices to try to prevent
poor academic results.

A. General Overview

ISABELA uses smartphones’ sensors, other physical sen-
sors and some virtual ones, too, to collect information of the
participants’ day-to-day life, in order to detect behavior that
is potentially bad for good academic results. This application
is meant to be used by college students.

The application monitors the students continuously. The
sensors retrieve information that is sent to FIWARE through
an Internet connection. Then, the data is retrieved from
FIWARE, it is processed and shown to the user. When
behavior that is not deemed helpful to achieve academic
success is detected, a ChatBot sends a notification and a
message and if the user wants to know more about how to
prevent that type of behavior, they can ask the ChatBot and
it gives back a well-founded answer.

To assess the students’ behavior, ISABELA collects infor-
mation about their activity, sleep, sociability, social media
presence and location.

B. System Architecture and Components

Human-in-the-Loop Cyber-physical systems work in four
phases: data acquisition, inference, future inference and
actuation. With that in mind, the architecture, represented
in Fig. 4, emerged.

Student

§é

Student Room

=y
(0]

‘@

¢ X

Fig. 4: System architecture.

We use the smartphone and all the sensors to acquire the
data. FIWARE provides the storage capabilities and allows
the communication between the devices. State inference is
made in the smartphone and the actuation is performed
through messages and notifications, based on the previous
inferences.

FIWARE has the objective of standardize the way we
collect, manage and publish context information and to solve
the heterogeneity in IoT protocols. Therefore, it is used as the
backend of the ISABELA system. In Fig. 5 its architecture
is represented.

CKAN

yiny g Wai

I

Fig. 5: FIWARE architecture.

The ISABELA system uses many FIWARE modules.
These modules are going to be explained in the following
sections.

1) ORION: the context broker. This broker is capable of
representing several IoT contexts using a new representation
standard — FIWARE NGSIv2 API. This API implements
a REST API, therefore, is capable of performing updates,
queries or react to changes. This is a must have capability,
as we want to create connections between the sensors and
the applications that consume the information.

ORION only holds information about the last instance of
an entity and/or an attribute. To save the context history,
created by the evolution of context information overtime,

we need to accompany ORION with COMET and CYGNUS
[14].

2) COMET: or FIWARE Short Time Historic is a com-
ponent capable of storing and retrieving historical context
information [15]. As said before, it communicates with
ORION and lets external clients, like ISABELA, query the
stored information, through REST APL

COMET is very useful because it allows us to query
specific time intervals and aggregate information by time,
sums and occurrences.

COMET is a very important component of this system, as
it is from it that it gets most of the data in the application.

3) IDAS: is the module that handles the communications
with the devices that make up the system, as it offers a wide
range of IoT agents [16].

This module is needed to connect objects to gather data.
While the smartphone connects directly with ORION, the
embedded devices connect to IDAS. Its IoT agents translate
IoT-specific protocols into FIWARE standard data exchange
model. By using an IoT agent, the devices can subscribe
entities and can query and be updated if a value of that
entity is changed [17].

4) Other Modules:

o CYGNUS: is a connector in charge of coordinating the
data, creating a historical view of such data. We can
introduce this data into third-party storage systems, such
as MongoDB or MySQL. It also connects the ORION
to many FIWARE storages, like CKAN and COMET
[18].

o CKAN: is not a FIWARE module. It is an open data
platform that makes it easy to publish, share and work
with data. This platform allows us to store the retrieved
data, with the advantage that it has a rich front-end and
visualization tools, that we can use to see the data [19].
CKAN provides a powerful way for cataloging and
accessing datasets. If the data retrieved during this
project is available on this platform, it can be used by
other investigators.

IV. IMPLEMENTATION

We tried two approaches to apply LWM2M to our system:
through the Eclipse’s Leshan project and through an IoT
Agent. They are going to be explained in the next sections.

A. Leshan Solution

This solution was implemented with the help of an Eclipse
project called Leshan. Leshan provides libraries that help
with what we wanted to do [20]. The project also provides
a server and a client demonstration as an example of the
Leshan API and for testing purposes.

The server of the LWM2M protocol was lodged in a virtual
machine, running Ubuntu 16.04. The clients were a Rasp-
berry Pi with a digital temperature and humidity sensor and a

smartphone running Android. The server and the Raspberry
Pi were connected through a switch via LAN connection
and the digital sensor to the GPIO pins of the Raspberry
Pi. The server and the smartphone were connected via the
Wi-Fi network. The architecture of the Leshan solution is
represented in Fig. 6.

Management Center

LWM2M Client LWM2M Server

sssssssssssssss

NegstatonfRoports | pocatess

Smartphone)

Fig. 6: Architecture of the Leshan solution.

1) Server: To launch the server, we just need to run, in
Eclipse, the leshan-server-demo project as a Java Application
and then select LeshanServerDemo.class.

Then, we need to open Mozilla Firefox and go to
https://localhost:8080 to open the server page.

For the sensor’s parameters and its values to appear on
the device’s page the server has to have files, written in
.xml format, in which they are defined. For the more generic
and used sensors, such as the accelerometer, these files are
available in a LWM2M registry provided by OMA [21]
and for the other sensors that are not so common, like the
physical activity, they had to be created.

2) Clients: The client also needs to declare the same .xml
models that the server has so that the parameters and the
values sensed appear on the device’s page.

« Raspberry Pi:
In order to adapt the demos to our system, some changes
were made to the code provided by the Leshan project
that we downloaded from its GitHub repository [22].
First of all, the original client only had a (random)
temperature sensor, so we had to prepare our client
to read values of temperature and humidity and cre-
ate classes for these sensors (TemperatureSensor and
HumiditySensor). Then, we needed to create a class
to deal with the DHT11 sensor’ - DHTIIClass. All
sensor classes receive an object of type DHTIIClass
as parameter.
In DHTI11Class, the values from the sensors are read
through the Python script sensorsleshan.py. The results
returned from this script are put into a buffer and parsed
into respective variables.

SDigital sensor used for temperature and humidity readings.

In each sensor’s class, there are variables for maximum,
minimum and current values, of the parameter that
is being read. We will need them to appear in the
device’s information page when that device connects
to the server.

There are many operations that can be done through
these classes. We can update the values read and we can
reset and adjust the maximum and minimum measured
values.

In order to update the values read, we need to declare
a DHTIIClass object. Through this object we can
obtain a value, for example by invoking the function
getTemperature.

In order to adjust the minimum and maximum measured
values, a comparison between the values previously read
and the current one is performed.

In order to reset the minimum and maximum measured
values, these are made equal to the current value.

After the update of the code to match our system, we
needed to run the client, so we used a .jar file of the
leshan-client-demo project, with all the changes made.
It was exported, in Eclipse, as a JAVA App and, then,
a runnable JAR file. The .jar file was then put into the
Raspberry Pi.

We needed a tool to help get the temperature and
humidity values from the DHT11 sensor. We chose to
install the Adafruit Python DHT Sensor Library, which
is a Python library used to read the DHT series of
humidity and temperature sensors on a Raspberry Pi
[23].

First, we downloaded the library to the Raspberry Pi:

git clone https://github.com/adafruit/
Adafruit Python DHT.git

Then, we made sure that our system was ready to
compile Python extensions. So, we run the following
commands:

sudo apt-get upgrade
sudo apt-get install build-essential
python—-dev

Eventually, we installed the library by running the
following command, inside its folder:

sudo python setup.py install

Finally, we connected the server and the client. First we
launched the server, as said in section IV-A.1, and then
we opened a terminal tab inside the Raspberry Pi and
run the command:

java —jar leshan-client-demo.jar -u
<server’s 1ip address>:5683
(5683 is the Leshan port.)

o Android:
For this part we found a demo application in a GitHub
repository [24] that implemented a LWM2M Leshan
client in Android. The demo included some Sensor
Classes, where the values were read and sent to the
server, and the Main Activity, where the LWM2M client
was built with its objects and it connected to the server.
To integrate the client in the ISABELA application, we
started with the creation of a class called LWM2MClient
that does the same that the Main Activity did in the
demo application. The first change in this class was the
server to which the clients were going to connect to.
The demo application came with a connection to the
Bootstrap Server® and the client needed to connect to
the server we adapted for ISABELA and had running
in the local machine. For this to happen, we needed
to give the IP address and ID of the our server and
a constructor of a Server with the same ID to the
initializer of the LWM?2M client, instead of passing the
IP and constructor of the Bootstrap Server.
After that, we needed to create the classes for the
sensors and the services that permitted reading the
values.
Fundamentally, every Sensor class has a constructor and
is divided in a start function, where the parameters that
start the sensor are initialized, a stop function, where
the same parameters are stopped, an id, where the id
of that sensor is defined and has to correspond to the
one defined in the .xml model, a function where the
values are read and a read function that returns the
values that are read and essentially updates the values
in the device’s page.
Each one of these sensors are started in the
LWM2MClient and added to the initializer of the
LWM2M client along with its .xml models. That is
why their parameters appear on the device’s page on
the server side.
An instance of the LWM2MClient is created in the
Main_Service so that it creates the client, connects to
the server and starts sensing as soon as the application
starts.

Disclaimer: Before applying the changes directly in
ISABELA, I adapted the demo application to connect to
the server we had and created the classes of the sensors
we needed and tested from that.

When the connection is established, the device appears on
the server page. By clicking on the device, we have access
to its information.

B. IoT Agent Solution

This approach consisted on integrating an LWM2M IoT
agent in FIWARE to serve as a bridge of communication
between the devices that use the LWM2M protocol and the
Context Broker (ORION module) [25].

SImplementation offered by the project.

The Lightweight M2M IoT Agent is a standard FIWARE
IoT Agent based in the public Node.js IoT Agent Library.
The Agent described in that library is a component that
facilitates the management and control of the information of
a group of devices from a FIWARE NGSI Context Broker
using their own native protocols.

These agents support various types of features [26]. They
are:

o Device Registration: all the devices connected to the
agent are mapped to a Context Broker entity.

o Device Information Update: when there are new
values for an attribute, the devices should send the
information to the agent and the agent should send a
request to the Context Broker to update the devices
entity.

« Device Management: the agent should offer a repos-
itory where the devices are registered and that holds
information needed for the connection to the Context
Broker.

o Device Provisioning: the agent should offer an external
way for the user to be able to customize the device’s
entity name, type and information.

o Type Configuration: the agent should provide default
values to the device attributes based on its type.

Devices measures can have three different behaviors:

o Commands: an attribute is set on the Context Broker
entity and the agent will be responsible of contacting
the device to perform the command itself, updating as
soon as it has the information.

o Lazy Attributes: the sensors will wait for the agent to
request data.

o Active Attributes: the sensed values are pushed from
the device to the agent, that will request an update to
the Context Broker with that information.

An implementation of this agent is given by Teleforiica
Investigacin y Desarrollo’ and is available in a GitHub
repository [27]. Teleforiica also offers a library that aims
to be a simple way to build LWM2M servers and clients
with Node.js [28] and we adapted it to fit the devices of our
system.

Here, the server and the smartphone were, also, connected
via the Wi-Fi network. The architecture of the IoT Agent
solution is represented in Fig. 7.

7Spanish telecommunications company.

Caption:

LWM2M Client

LWM2M Server

............

Smartphone

Fig. 7: Architecture of the IoT Agent solution.

1) LWM2M [oT Agent: As previously said, the IDAS
module is the one that handles communications with the
devices through its IoT agents. So, its configuration was
made to implement the LightweightM2M [oT Agent.

This agent uses the features provided by the Node.js
IoT Agent Library with some adaptations to the LWM2M
protocol, as is the case of the Mappings. For LWM2M
mapping can be:

1) OMA Registry objects and resources from their URIs

to their common names.

2) Custom device objects to the names defined by the

user.

To accomplish that, the agent supports:

o lwm2mResourceMapping: an additional property that
lets the user customize the names for particular re-
sources.

e omaRegistryjson: contains the OMA Registry previ-
ously mentioned and is used for automatic mappings
in case there are not custom ones.

No alterations were made to the agent files for our work.
The server and the client are going to be explained in the
next sections.

2) Server: The implementation of this server was based
on the one provided by Teleforiica [28] and the only changes
we made were to add the customized models of the sensors
that are not part of the OMA Registry.

The agent calls up the server in its implementation so it
starts running when the FIWARE containers are started.

3) Client: As was the case for the Leshan client, this
client had to be adapted to run on Android [28], as it was
written in a different language.

For this, I made use of one of the agent’s features - the
provisioning - and created a script were I defined an Entity,
its type and attributes. Then, in the same file, I mapped
the LWM2M resources according to the .xml models of the
Sensors.

In the class LWM2M(Client, the endpoint name was made
to correspond to the one I had given to the Entity in the

provisioning and the connection was made to the IP and
port of the server, running in the Docker.

Disclaimer: This approach was not fully implemented.
Although the server received connections from the client,
it was not being registered in ORION and the readings did
not appear. The challenges that appeared during this part of
the work are explained in section VI.

V. VALIDATION AND TESTS

With the incorporation of a new protocol some questions
about the performance of the system were raised, therefore
some tests in respect to the performance of the system were
performed and are presented in this section.

For the tests we used a tool, developed by Google, named
Battery Historian. This tool creates reports from the usage
of a smartphone while it is not plugged in and allows the
visualization of system events and statistics. It also allows the
selection of a specific application and subsequent inspection
of the metrics that affect the battery life of said application
[29].

A. Tests

The tests were focused on the impact of the LWM?2M pro-
tocol on the battery performance of the Android ISABELA
application. For these tests, we let the ISABELA application
run for two days, using it normally to fill the sleep forms
and view some information. Two situations were tested:

1) Only running the ISABELA application.
2) Running the ISABELA application with the LWM2M
client (Leshan solution).

Additionally, other tests were performed to evaluate the
impact of the interval of time between readings on the battery
use. For these, we used the demo application that imple-
mented the LWM2M client in Android with the changes I
made before applying them to ISABELA.

These tests were made for 10, 20, 30, 40, 50 and 60
seconds in time periods of 6 hours each.

B. Results

After running the tests and analyzing the data that resulted
with Battery Historian, the percentage of battery use for
each of the systems previously mentioned is shown in the
following table:

TESTED SYSTEM
T. ISABELA (only)
2. ISABELA + LWMZM

BATTERY USE
4,83%
7,50%

TABLE II: Battery use for each system.

As expected, system 1 consumes less energy than system
2, as system 2 spends energy with the ISABELA parts and
on top of it has the LWM2M client parts too. Because there
is a duplication of information in the Leshan solution, it
does not go through the same route, as it does in the IoT

Agent solution. Therefore, we thought it was best to test the
system with the worst case scenario in terms of performance,
because if the results were favorable for that one, they would
be favorable for the best one.

Finally, as we can see on the table, the percentage of
battery use of system 2 is not significantly higher than the
percentage of battery use of system 1. Furthermore, in terms
of other important performance metrics, for example the CPU
Usage, the values are the same or, at least, less different
between them than the battery use ones.

As a result, we can conclude that by adding the LWM2M
component to the ISABELA Android application we are not
sacrificing its performance.

For the application only running the LWM2M client the
results are shown in the following graph:

Battery Use only with the LWM2M Protocol
16,96
16,8 ‘\
16,6

16,04 15,96

5,88

N

,_.
“uon
@ w

15,58

Percentage of Battery Use (%)
-
@

,_.
u
S

,_.
v
~

15,17
N

-
@

10 20 30 40 50 60

Duration of Sensor Reading (s)

Fig. 8: Battery Use only with the LWM2M Protocol.

As it was expected, the value of the percentage of battery
use decreases as the time interval increases. The system has
to perform less actions in the same amount of total time.
Furthermore, as we can see, the values of the percentage of
battery use are very close, not having a difference bigger
than, approximately, 2% between the outermost values.

The ISABELA application collects data in a time interval
of 30 seconds. As the values do not vary much, we can
state that this time interval is not significantly more battery
consuming than the bigger intervals considered, so it can be
deemed appropriate.

VI. CONCLUSIONS

We were able to adapt and incorporate a network man-
agement protocol with clients for Android and Raspberry Pi.
However, we can conclude that there is a long way to go
and that each approach that we took for the integration of
the LWM2M protocol has its limitations.

As a matter of fact, the Leshan implementation has reading
management capabilities for both Android and stationary
devices [30], but as it is:

e There is a duplication of the information. The same
information that is sent to the LWM2M server is sent
through another route to the FIWARE’s context broker.

o There is absence of execute-write-delete capabilities.

o The values in the LWM2M server are only stored for
until there is a new reading that replaces the older one.

o There is no capability of automatic group device provi-
sioning.

Even so this approach offers a simple way to see the each
device that is connected, their attributes and sensed values
through its interface.

The IoT Agent implementation was considered to be the
solution to some of the limitations that the Leshan imple-
mentation offers. For example, it is a way of implementing
a bridge between the LWM2M protocol and the system’s
components (FIWARE). So, it obliterates the duplication of
information, as the information passes through the IoT agent
to the server and the context broker directly. It also offers
the capability of group device provisioning through running
a script and the storage of information in a database.

On one hand, the existence of a tool, developed by the
same corporation that developed the data center that we
chose for our project, which gave answers to some of the
limitations of other existent tools was of great help because
the integration was a smoother process.

But, on the other hand, the fact that it implemented
the server and the client in a complete different way and
language posed as a very hard challenge in and of itself.
As I could learn, the time that I had to work with the
protocol was not sufficient to benefit from its capabilities
to the fullest. Because the challenges that appeared were so
time consuming, I could not finish the incorporation through
this approach.

Even so, we could conclude that the incorporation of a
protocol like this did not affect significantly the performance
of this system. So, systems like this that are composed by
heterogeneous devices and depend on them working to give
accurate and real advice only have to gain if they can have
a protocol that manages and controls them.

REFERENCES

[1] Sinche Soraya and Jorge S Silva and Raposo, D. and Rodrigues, A. and
Vasco Pereira and Boavida, F. , "Towards Effective IoT Management”,
in IEEE Sensors 2018 international conference, New Delhi, India, 28-
31 October 2018., 2018.

[2] Hedstrom, Brian and Watwe, Akshay and Sakthidharan, Siddharth.
Protocol Efficiencies of NETCONF versus SNMP for Configuration
Management Functions. In University of Colorado, Master Thesis,
2011.

[3] R.Enns, “NETCONF Configuration Protocol RFC 4741”, RFC Editor,
2006.

[4] R. Enns, M. Bjorklund, J. Schoenwaelder, and A. Bierman, “Network
Configuration Protocol (NETCONF) RFC 6241, RFC Editor, 2011.

[5] A.Bierman, M.Bjorklund, and K.Watsen, “RESTCONF Protocol -
RFC 8040, no. 8040. RFC Editor, 2017.

[6] Open Mobile Alliance, “OMA SpecWorks”. Available online:
https://www.omaspecworks.org/what-is-oma-
specworks/iot/lightweight-m2m-1wm2m/. Accessed in

May, 2018.
[71 “NETCONF versus RESTCONF: Capabilitity = Comparisons
for Data Model-driven = Management”. Available online:

https://www.claise.be/2017/10/netconf-versus—
restconf-capabilitity-comparisons—-for-data-model
-driven-management-2/. Accessed in June, 2018.

[8]

[9]
[10]

(11]

[12]
[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

A. Sehgal, V. Perelman, S. Kuryla, J. Schonwalder, and O. In,
“Management of resource constrained devices in the internet of things,
Commun. Mag. IEEE, vol. 50, no. 12, pp. 144149, 2012.

Bormann, C., K. Hartke, and Z. Shelby. ”The Constrained Application
Protocol (CoAP).” RFC 7252 (2015).

Rescorla, Eric and Modadugu, Nagendra, “Datagram transport layer
security version 1.2”, 2012.

Klas, Guenter and Rodermund, Friedhelm and Shelby, Zach and
Akhouri, Sandeep and Holler, J. Lightweight M2M: enabling device
management and applications for the internet of things. In White Paper
from Vodafone, Ericsson and ARM, vol. 26. 2014.

Alliance, Open Mobile. Lightweight Machine to Machine Require-
ments, pages 1-12, 2017.

S. Sinche. “IoT Management System.ppt”, FCTUC/CISUC/LCT, Oc-
tober 2017.

FIWARE, “CORE CONTEXT MANAGE-
MENT CHAPTER”. Available online:
https://www.fiware.org/developers/catalogue/.
Accessed in June 28th, 2018.

Telefnica I+D, “FIWARE Short Time His-
toric (STH) - Comet”. Available online:
https://github.com/telefonicaid/fiware-sth-comet.
Accessed in June 28th, 2018.

FIWARE, “INTERFACE WITH IOT, ROBOTS AND
THIRD-PARTY SYSTEMS CHAPTER”. Available online:
https://www.fiware.org/developers/catalogue/.
Accessed in June 28th, 2018.

FIWARE, “Backend Device Management - IDAS”. Available online:
https://catalogue-server.fiware.org/enablers/
backend-device-management—-idas. Accessed in June 28th,
2018.

Teleforiica I+D, “Cygnus”. Available
https://github.com/telefonicaid/
fiware—cygnus. Accessed in June 28th, 2018.
ckan, “CKAN: The Open Source Data Portal Software”. Available
online: https://github.com/ckan/ckan. Accessed in June
28th, 2018.

online:

Eclipse, “Eclipse Leshan”. Available online:
https://www.eclipse.org/leshan/. Accessed in June,
2018.

Open Mobile Alliance, “LwM2M Registry”. Available Online:
http://www.openmobilealliance.org/wp/OMNA/LwM2M/
LwM2MRegistry.html. Accessed in January 6th, 2019.

Eclipse, Leshan Project. Available Online:
https://github.com/eclipse/leshan. Accessed in May,
2018.

adafruit, “Adafruit Python DHT Sensor Library”. Available online:
https://github.com/adafruit/Adafruit_Python_DHT.
Acessed in June, 2018.

ApplicationPlatformForloT, “LwM2MDemoClientAndroid”. Avail-
able Online: https://github.com/ApplicationPlatform
ForIoT/LwM2MDemoClientAndroid. Accessed in October,
2018.

FIWARE, “WELCOME TO THE FIWARE IOT AGENT
FOR OMA LIGHTWEIGHT M2M”. Available Online:
https://fiware—-iotagent-lwm2m.readthedocs.io/en/
latest/index.html. Accessed in January 10th, 2019.
Telefonica 1+D, “Features”. Available
https://github.com/telefonicaid/
iotagent-node-lib#features. Accessed in January 10th,
2019.

Teleforiica I+D, “lightweightm2m-iotagent”. Available Online:
https://github.com/telefonicaid/lightweightm2m—
iotagent. Accessed in November, 2018.

Telefonica 1+D, “lwm2m-node-lib”. Available Online:
https://github.com/telefonicaid/lwm2m-node-1lib.
Accessed in November, 2018.

Google, “Battery Historian”. Available Online:
https://github.com/google/battery-historian.
Accessed in January 3rd, 2019.

N. Armando. “A Unified Management Approach for the Extended
IoT.ppt”, FCTUC/CISUC/LCT, December 2018.

Online:

https://www.omaspecworks.org/what-is-oma-specworks/iot/lightweight-m2m-lwm2m/
https://www.omaspecworks.org/what-is-oma-specworks/iot/lightweight-m2m-lwm2m/
https://www.claise.be/2017/10/netconf-versus-restconf-capabilitity-comparisons-for-data-model-driven-management-2/
https://www.claise.be/2017/10/netconf-versus-restconf-capabilitity-comparisons-for-data-model-driven-management-2/
https://www.claise.be/2017/10/netconf-versus-restconf-capabilitity-comparisons-for-data-model-driven-management-2/
https://www.fiware.org/developers/catalogue/
https://github.com/telefonicaid/fiware-sth-comet
https://www.fiware.org/developers/catalogue/
https://catalogue-server.fiware.org/enablers/backend-device-management-idas
https://catalogue-server.fiware.org/enablers/backend-device-management-idas
https://github.com/telefonicaid/fiware-cygnus
https://github.com/telefonicaid/fiware-cygnus
https://github.com/ckan/ckan
https://www.eclipse.org/leshan/
http://www.openmobilealliance.org/wp/OMNA/LwM2M/LwM2MRegistry.html
http://www.openmobilealliance.org/wp/OMNA/LwM2M/LwM2MRegistry.html
https://github.com/eclipse/leshan
https://github.com/adafruit/Adafruit_Python_DHT
https://github.com/ApplicationPlatformForIoT/LwM2MDemoClientAndroid
https://github.com/ApplicationPlatformForIoT/LwM2MDemoClientAndroid
https://fiware-iotagent-lwm2m.readthedocs.io/en/latest/index.html
https://fiware-iotagent-lwm2m.readthedocs.io/en/latest/index.html
https://github.com/telefonicaid/iotagent-node-lib#features
https://github.com/telefonicaid/iotagent-node-lib#features
https://github.com/telefonicaid/lightweightm2m-iotagent
https://github.com/telefonicaid/lightweightm2m-iotagent
https://github.com/telefonicaid/lwm2m-node-lib
https://github.com/google/battery-historian

	Acronyms
	List of Figures
	List of Tables
	Introduction
	Context
	Objectives
	Report Structure
	Work Planning and Methodology
	Concepts
	Internet of Things
	Cyber-physical Systems
	Human-in-the-Loop

	Used Technologies
	Android
	FIWARE
	Raspberry Pi and Arduino

	Network Management Protocols
	Protocols
	Network Configuration Protocol (NETCONF)
	RESTCONF
	Lightweight machine-to-machine

	Comparative Analysis

	ISABELA
	General Overview
	Description
	Similar Projects
	StudentLife
	Smart Kindergarten
	ISABELA vs Similar Projects

	User Interface

	System Architecture and Components
	Overall System
	FIWARE Architecture and Modules
	ORION
	COMET
	IDAS
	Other Modules

	Development
	Requirements
	Proximity Module
	Device Management

	Proximity Module
	Data Acquisition
	Communication
	Android Application
	Trial Tests
	Participants
	Results
	Positive Points
	Drawbacks

	Lightweight machine-to-machine Protocol
	Overview
	Leshan Solution
	Server
	Clients

	IoT Agent Solution
	LWM2M IoT Agent
	Server
	Client

	Performance Tests and Results
	Battery Life
	Tests
	Results

	Conclusions and Future Work
	Challenges
	Conclusions
	Future Work

	References
	Appendices
	Configuration of the Virtual Machine for the Leshan LWM2M Server
	Configuration of the FIWARE Environment for the LWM2M IoT Agent
	Article
	Introduction (1)
	IoT Management
	Protocols
	Network Configuration Protocol (NETCONF)
	RESTCONF
	Lightweight Machine-to-machine (LWM2M)

	Comparative Analysis

	ISABELA (1)
	General Overview
	System Architecture and Components
	ORION
	COMET
	IDAS
	Other Modules

	Implementation
	Leshan Solution
	Server
	Clients

	IoT Agent Solution
	LWM2M IoT Agent
	Server
	Client

	Validation and Tests
	Tests
	Results

	Conclusions
	References (1)

