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Resumo

Com a evolução tecnológica, verificou-se um aumento exponencial da quantidade

de dados recolhidos e armazenados. Assim, surgiu a necessidade de criar mecanis-

mos automáticos para extrair conhecimento dos referidos dados. Estes mecanismos

automáticos, conhecidos por modelos de aprendizagem automática, foram, na sua

maioria, desenvolvidos para dados completos, requisito que nem sempre é posśıvel

cumprir. Neste contexto, a imputação dos dados (substituição dos valores em falta

por estimativas plauśıveis) surge como uma posśıvel solução, garantindo a qualidade

dos dados para posterior análise.

Nos últimos anos, vários estudos têm proposto novas técnicas de imputação, de

entre as quais se destaca a utilização de Stacked Denoising Autoencoders. Dada a

sua extraordinária capacidade de recuperar dados corrompidos, os Stacked Denois-

ing Autoencoders mostram-se promissores na área da imputação de dados, tendo

despertado um interesse crescente por parte da comunidade cient́ıfica.

No entanto, sendo um tópico recente, a sua aplicação ainda não se encontra suficien-

temente bem estudada, apresentando diversos aspetos por explorar; em particular,

a sua adequação a diferentes mecanismos de dados em falta (Missing Completely At

Random, Missing At Random e Missing Not At Random).

Esta tese apresenta um estudo aprofundado da imputação de dados via Stacked De-

noising Autoencoders, considerando diferentes mecanismos e percentagens de dados

em falta. Em comparação com métodos de imputação do estado da arte, os Stacked

Denoising Autoencoders mostraram ser abordagens robustas para a imputação de

elevadas percentagens de dados em falta, especialmente quando o mecanismo sub-

jacente à sua geração é Missing Not At Random.

Palavras-Chave: mecanismos de dados em falta, preenchimento de dados em falta,

denoising autoencoders
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Abstract

The evolution of technology led to an exponential increase in the amount of data

being collected and stored, thus creating the need to develop automatic mechanisms

to extract knowledge from data. These automatic mechanisms, known as Machine

Learning techniques, were mostly designed for complete data, a requirement that is

not always fulfilled. In this context, data imputation (replacement of missing values

by plausible estimates) arises as a possible solution, ensuring the quality of data for

later analysis.

Over the years, several studies presented alternative imputation strategies, among

which Stacked Denoising Autoencoders stand out. Given their ability to recover

corrupted data, Stacked Denoising Autoencoders are promising in the area of data

imputation, generating great interest in the scientific community. However, their

application is an understudied topic, still presenting challenging aspects for research;

namely, their suitability for different missing data mechanisms (Missing Completely

At Random, Missing At Random and Missing Not At Random).

This thesis presents a thorough study of data imputation via Stacked Denoising

Autoencoders, considering different missing data mechanisms and missing rates.

In comparison to state-of-the-art imputation methods, Stacked Denoising Autoen-

coders proved to be robust for imputing high missing rates, especially, when the

mechanism underlying their generation is Missing Not At Random.

Keywords: missing data mechanisms, missing data imputation, denoising autoen-

coders
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Introduction

Over the years, the evolution of information technology and the improvement in

terms of computational power led to an increase in the amount of available data –

as datasets became larger and more complex, it was no longer possible to interpret

them manually. This created a need to extract knowledge from datasets using

automated techniques.

In the late 80’s, Gregory Piatetsky-Shapiro proposed the term Knowledge Discovery

in Databases (KDD) for the title of a workshop held at the Internacional Joint

Conference on Artificial Intelligence [1]. Some years later, Fayyad et al. defined

KDD as the “overall process of discovering useful knowledge from data” [2]. This

interactive and iterative process is composed by 5 main steps (Figure 1.1): Selection,

Preprocessing, Transformation, Data Mining and Interpretation/Evaluation.

Data

Knowledge

Target Data

PreprocessedData

Transformed Data

Patterns

Selection

Preprocessing

Transformation

Data Mining

Interpretation/
Evaluation

Figure 1.1: Knowledge Discovery in Databases process. Adapted from Fayyad et
al. [2].
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1. Introduction

The Selection step encompasses the collection of data from which the knowledge

will be extracted. The next step is the Preprocessing which consists essentially

of data cleaning operations - removal of noise or outliers, handling missing data,

among others. In the Transformation step, dimensionality reduction techniques or

transformation methods are applied in order to obtain useful representations of the

data. In the Data Mining step, the aim is to search for patterns in data, selecting

methods according to the type of problem to be solved (e.g., classification, clustering,

regression). The last step consists on interpreting and validating the model obtained

from the previous step.

The work presented in this thesis focuses on the preprocessing stage, where several

issues may arise. In particular, we focus on the problem of missing data, the lack of

information in one or several features in a dataset.

1.1 Context

Missing Data (MD) is a common problem that appears in real-world datasets, and

may compromise the performance of learning models [3, 4]. In the research com-

munity, three missing mechanisms are recognised: Missing Completely At Random

(MCAR), Missing At Random (MAR) and Missing Not At Random (MNAR) (a

detailed description is provided in Chapter 2). Furthermore, an incomplete dataset

may have MD only in one feature – univariate MD (here denoted as univa) – or in

several features – multivariate MD (here denoted as unifo) .

In the literature, there are several ways of handle missing data, as shown in Fig-

ure 1.2: Case deletion, Imputation Methods, Maximum Likelihood and Machine

Learning without MD estimation.

Each of these approaches presents their advantages and limitations, however, the

one most used in the literature is data imputation [6]. Imputation methods aim

to find plausible values to replace the missing ones, and are mainly divided into

statistical-based and machine learning-based methods [5]. Statistical methods con-

sist in replacing the missing observations with the most similar ones among the

training data, without the need of constructing a predictive model to evaluate their

“similarity” (e.g. Mean/Mode imputation). Machine learning-based techniques,

construct a predictive model with the available data to estimate values for replacing

those that are missing (e.g. k-Nearest Neighbours imputation).

2
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Case Deletion Missing Data 
imputation Maximum Likelihood Machine Learning 

without MD estimation

Statistical Imputation

Mean/Mode 
Imputation 

Regression Imputation 
Multiple Imputation

Machine Learning 
Imputation

Mixture Models 
EM algorithm

Ensemble Approaches 
Fuzzy Methods 
Decision Trees

Missing values are estimated and fill- in (imputed)

MLP imputation 
kNN imputation 
SOM imputation 

AANN imputation 
RNN imputation

Figure 1.2: Methods to handle missing values. Adapted from Garćıa-Laencina et.
al. [5].

Deep learning techniques are currently a hot topic in Machine Learning since they

have proved to find elegant solutions for several classic problems [7].

Stacked Denoising Autoencoders (SDAE) are a special type of deep neural networks,

developed to recover a clean output from a corrupted input. Since the presence of

missing values in a dataset constitutes a type of corruption, it seems that a natural

extension is the use of SDAE in the imputation task. Although the subject of

imputation has been previously discussed in the literature [19, 5, 23], the application

of SDAE–based approaches for imputation purposes remains an understudied topic.

1.2 Goals

The main goal of this work is to study the performance of SDAE-based approaches

for imputation purposes, analysing whether this technique constitutes a good impu-

tation approach, when compared to well-established approaches (Mean Imputation,

kNN imputation, Support Vector Machines imputation, Multiple Imputation by

Chained Equations and Expectation-Maximization).

To achieve this goal we performed three main experiments in order to answer the

three following questions (a full description of such experiments is presented in

Chapter 4):
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1. How do the SDAE perform when there are enough complete data to train the

model (missing values only in the test set)?

• We selected 20 complete datasets, from open source repositories, and per-

formed synthetic MD generation using 9 univa implementations, under 5

and 20% of Missing Rate (MR). Then, we compared the performance of

our proposed SDAE approach with 7 state-of-the-art imputation meth-

ods.

2. How do the SDAE perform when training data corruption follows an underly-

ing missing mechanism?

• We selected 33 complete datasets and performed synthetic MD genera-

tion using 3 univa implementations and 3 unifo implementations, under

5, 10, 15, 20 and 40% of MR. Then, we compared the performance of

this approach for two different SDAE with 7 state-of-the-art imputation

methods.

3. Does the performance of SDAE increase for larger datasets, with higher sample

sizes?

• We investigated the usefulness of SDAE when handling larger datasets.

For that, 5 complete datasets with higher sample sizes were selected and

the simulation setup performed for question 2 was repeated.

1.3 Research Contributions

The work developed during this thesis resulted in the following contributions:

• Adriana F. Costa, Miriam S. Santos, Jastin Soares, Pedro H. Abreu. “Missing

Data Imputation Using Deep Denoising Autoencoders: data recoverability

in different missing scenarios”. IJCAI-ECAI 2018, 27th International Joint

Conference on Artificial Intelligence and the 23rd European Conference on

Artificial Intelligence (Submitted on 31th January 2018).

• Adriana F. Costa, Miriam S. Santos, Jastin Soares, Pedro H. Abreu. “Missing

Data Imputation Using Denoising Autoencoders: the untold story”. IDA 2018

- 17th International Symposium on Intelligent Data Analysis (Accepted as full

paper).
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• Miriam S. Santos, Adriana F. Costa, Jastin Soares, Pedro H. Abreu, “Syn-

thetic Missing Data Generation: The Nuts and Bolts” (in preparation, to be

submitted to Pattern Recognition).

• Adriana F. Costa, Miriam S. Santos, Inês Domingues, Pedro H. Abreu, “Stacked

Denoising Autoencoders for Missing Data Imputation: exploring the effects of

sample size, missing mechanisms and rates on performance classification” (in

preparation, to be submitted to Expert Systems with Applications).

1.4 Document Structure

The remainder of this document is organised as follows: in Chapter 2 we provide

some useful background knowledge which will be the basis of this work. Chapter 3

presents several research works from the missing data field that use deep learning

approaches for imputation purposes. Then, Chapter 4 describes the different stages

of the experimental setup and Chapter 5 discusses the obtained results. Finally,

Chapter 6 concludes the thesis and presents some possibilities for future work.
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2

Background Knowledge

Missing data corresponds to the lack of information in a dataset, so it occurs when

no data is available for an observation [14]. This is a common shortcoming that

arises in several real-world domains. For example, in UCI Machine Learning Repos-

itory – which provides a collection of datasets widely used for the empirical analysis

of machine learning algorithms – about 45% of datasets have missing data [15]. Han-

dling missing data is an important issue since, in addition of being a very frequent

problem, the presence of missing values affects the results obtained on classification.

There are a lot of plausible explanations for the occurrence of missing values, such

as equipment errors, erroneous data registration, non-response in surveys, among

others [16]. For example, in the field of medical diagnosis, some values may not be

saved due to a deficient manual data registration or to the unavailability of certain

medical equipments. In genetic research, there are also a lot of incomplete data

when handling Deoxyribonucleic Acid (DNA) microarrays, where this data may be

missing due to several reasons including sample contamination. In control based-

applications, missing data can also be a result of equipment errors and incorrect

measures - a faulty equipment may not be able to record certain observations because

of their fault or because of the value of the observation itself.

The occurrence of missing values is more easily explained using as example the

process of responding to a survey. In this case, respondents can accidentally skip

questions or can skip a question intentionally, due to its content. More, questions

can be skipped depending on the age of the respondent, in other words, a younger

person may skip a question to which an older one would respond easily. For example,

an adult may find it easier to answer a question of political nature than a teenager.

These three examples follow different missing mechanisms, which will be explained

in what follows.
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2.1 Basic Notations

The missing data theory was introduced by Rubin [17] in the late 70s. To provide a

clear explanation about this theory it is important to establish some basic notation.

Let X denote a dataset with m ∈ N observations and n ∈ N features. Each element

of the dataset is defined by Xij, where i = {1,2,...,m} and j = {1,2,...,n}.

A complete dataset, Xcom, consists of the data with no missing values. However,

most real-world datasets have missing values. Suppose that X is divided into two

parts such that X = {Xobs, Xmiss} where Xobs will be the set of observed values of X

and Xmiss will be the set with missing values of X. Each feature of X will be denoted

as xmiss if it is composed by some observations of the missing part of the dataset and

xobs if it is a part of the observed values in the dataset. For example, the dataset

in Table 2.1 is composed by two features, Age and Number of Cigarettes: Age can

also be denoted as xobs, since their observations are all observed in the dataset,

while Number of Cigarettes can be called xmiss since it contains missing values.

Furthermore, observed values of both Age and Number of Cigarettes constitute

Xobs whereas, in this case, Xmiss consists only on the missing values of one of the

features, Age. Both parts, Xobs and Xmiss can consist of more than one feature,

depending on the number of features in the dataset.

Let R be the missing data indicator matrix that has the same dimensions as X:

Rij =

1 if Xij is missing

0 if Xij is obseved
(2.1)

To illustrate this notation, reconsider the small dataset in Table 2.1. The missing

data indicator matrix has the same dimensions as the simulated dataset and takes

value 1 when data is missing and value 0 when data is observed.

A dataset X could have different percentages of missing data which are referred to

Missing Rates (MRs).

2.2 Missing Data Mechanisms

There are three mechanisms under which missing data can occur: Missing Com-

pletely At Random (MCAR), Missing At Random (MAR) and Missing Not At

Random (MNAR). The mechanism under the missing data can be characterized by

8
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Table 2.1: A study in adolescent tobacco use containing missing values.

(a) Simulated dataset with missing
values.

Age Number of Cigarettes

15 2
15 -
15 -
16 2
16 2
16 4
16 3
17 -
17 6
17 -
17 5
17 5
18 -
18 6
18 -
19 3
19 -
19 -
20 9
20 2

(b) Missing data indicator matrix for
this dataset.

Age Number of Cigarettes

0 0
0 1
0 1
0 0
0 0
0 0
0 0
0 1
0 0
0 1
0 0
0 0
0 1
0 0
0 1
0 0
0 1
0 1
0 0
0 0

the conditional distribution of R given X:

p(R|X,ξ) = p(R|Xobs, Xmiss, ξ) (2.2)

where p is the probability distribution, R is the missing data indicator matrix, Xobs

and Xmiss are the sets of observed and missing data, respectively, and ξ designates

the set of parameters that describes the relation between R and the dataset, X.

The set of parameters, ξ is normally unknown [18]. However, this is not a problem

since it is the existence or absence of a relationship between X and R that defines

the missing mechanisms.

To illustrate the three missing mechanisms, consider the small dataset in Table 2.2

which corresponds to a simulated dataset of a study in adolescent tobacco, with

20 participants. It is assumed that this data was collected via a survey made to

students of high school level. In this study, several students have missing values on

9
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their daily number of cigarettes.

Table 2.2: Simulated dataset of a study in adolescent tobacco use, with N = 20
participants. The daily average of cigarettes is presented with MCAR, MAR and
MNAR missing values.

Age
Number of Cigarettes

Complete MCAR MAR MNAR

15 2 2 - 2
15 3 - - 3
15 4 - - 4
16 2 2 - 2
16 2 2 - 2
16 4 4 - 4
16 3 3 - 3
17 9 - 9 -
17 6 6 6 -
17 4 - 4 4
17 5 5 5 5
17 5 5 5 5
18 7 - 7 -
18 6 6 6 -
18 7 - 7 -
19 3 3 3 3
19 8 - 8 -
19 3 - 3 3
20 9 9 9 -
20 2 2 2 2

Missing Completely At Random

The Missing Completely At Random mechanism (MCAR) occurs when the mecha-

nism under the missingness is unrelated to any observed or unobserved value from

the dataset, so:

p(R = 1|Xobs, Xmiss, ξ) = p(R = 1|ξ) (2.3)

Equation 2.3 shows that the probability that R takes 1 as value (i.e., there is a

missing value) is conditioned by some parameter (or set of parameters) ξ, but it is

not conditioned by any data, whether it may be Xmiss or Xobs.

In the MCAR column, the missing values for the daily number of cigarettes are

unrelated with their own values and also with the Age, so missingness is unrelated

10
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to the data. One possible explanation for MCAR values is that students did not go

to school to participate in the survey, because of some personal event (e.g. a funeral,

a car accident, an illness) which is not part of the dataset.

Missing At Random

In this case, the cause of the missing data is related with observed values from the

dataset. This mechanism can be expressed by the relation:

p(R = 1|Xobs, Xmiss, ξ) = p(R = 1|Xobs, ξ) (2.4)

Equation 2.4 describes the probability of a missing value occurring under MAR

mechanism. This probability is conditioned by the observed data, Xobs, through

some parameter (or set of parameters), ξ.

For the MAR example, the number of daily cigarettes is missing for younger students

(aged between 15 and 16). For example, younger students are less likely to fill in

their number of smoked cigarettes in a day because they do not want to admit that

they are regular smokers. However, this lack of values has nothing to do with the

daily number of cigarettes reported by a student – it is only related to their age.

Missing Not At Random

Finally, data is Missing Not At Random (MNAR) when the probability of a value to

be missing is related with the missing data itself. This mechanism can be expressed

by the expression:

p(R = 1|Xobs, Xmiss, ξ) (2.5)

Equation 2.5 shows that the probability of missing a value depends on the set of

missing data, Xmiss, but also on the set of observed data, Xobs. So, this probability

varies in a way that is unknown to us, which makes this mechanism more complex.

Considering again the dataset in Table 2.2, we can see that MNAR values are directly

related with the missing values. If students smoke a lot they are more likely to hide

their number of daily cigarettes. So, the probability of a missing value depends on

the value itself - the probability of a missing value is higher for students who smoke

frequently and may also be related to their age.

11
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2.2.1 Synthetic Missing Data Generation Methods

The three mechanisms can be synthetically generated in various ways, and con-

sequently different implementations can be found in the literature. Tipically, the

studies on missing data imputation follow a specific pipeline:

1. Selection of complete datasets, that will constitute the ground truth; these

datasets can have different characteristics (e.g., dimensionality, sample size,

types of features)

2. Synthetic generation of missing values, that can encompass the different miss-

ing mechanisms and univariate (univa) and multivariate (unifo) approaches;

3. Data imputation using several strategies, either statistic-based, or machine

learning-based techniques;

4. Evaluation of imputation methods in terms of imputation quality and/or clas-

sification performance.

In this subsection, we focus on step 2 and will present several univa and unifo Miss-

ing Data (MD) generation approaches (based on related works) and the respective

pseudo-codes. These pseudo-codes use several functions as building blocks which

are described in Table A.1. The nomenclature we use represents the missing val-

ues by “NaN” values. Table 2.3 shows all the missing data generation approaches

that were implemented and a brief description. We implemented all the synthetic

generation approaches using Python 3.

In addition to the pseudo-codes, we also present illustrative schemes for some ap-

proaches. In all of them, we use grey observations to represent the location of the

missing values. Moreover, we represent the observed values that are relevant in

a particular approach using different shades of green: darker shades are used to

represent higher values while lighter shades represent lower values.

2.2.1.1 Univariate implementations

For the univariate implementations, the feature that will have MD, xmiss, will always

be the one most correlated with the class labels. This correlation is accessed through

the calculation of all the correlation coefficients between each feature and the class

label. It is important to emphasize that we have decide to choose xmiss in this way

but this approach may not match the one used on related works.

12
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Table 2.3: Summary of the different missing data configurations found in the
related work.

Univariate Multivariate

Designation Authors Description Designation Authors Description

MCAR1univa Twala et
al. [19]

Based on the values
of a Bernoulli distribu-
tion.

MCAR1unifo Twala et
al. [19]

Based on the values
of a Bernoulli distribu-
tion.

MCAR2univa Rieger et
al. [20]; Xia et
al. [21]

Random observations
of xmiss are set to be
missing.

MCAR2unifo Nanni et
al. [22]

For each observation, a
random percentage of
features is set to be
missing.

MCAR3unifo Garciarena et
al. [23]; Ali et
al. [24]; Zhu et
al. [25]

Random observations
are set to be miss-
ing, considering all the
dataset.

MAR1univa Twala et
al. [19]

Observations bellow
the MR percentile
of xobs are set to be
missing on xmiss.

MAR1unifo Twala et
al. [19]

Observations bellow
the MR percentile
of xobs are set to be
missing on xmiss.

MAR2univa

Rieger et al. [20]

Based on ranks of xobs. MAR2unifo Zhu et al. [26];
Ali et al. [24]

Based on the median of
xobs.

MAR3univa Based on the median of
xobs.

MAR3unifo Garciarena et
al. [23]

There is only one ob-
served feature. Each
xmiss will have missing
values for the lowest
observations of xobs.

MAR4univa xmiss will have miss-
ing values depending
on the highest values of
xobs.

MAR5univa xmiss will have miss-
ing values depending
on the lowest and the
highest values of xobs.

MNAR1univa Twala et
al. [19]

Lowest values of xmiss
are deleted.

MNAR1unifo Zhu et al [26].;
Ali et al. [24]

Based on the median of
xmiss.

MNAR2univa Xia et al. [21] Highest values of xmiss
are deleted.

MNAR2unifo Garciarena et
al. [23]

All the features will
have missing values for
the same observations.

MNAR3unifo Garciarena et
al. [23]

Lower values of each
xmiss are set to be
missing.

MNAR4unifo Twala et
al. [19]

Features are separated
into pairs. Each has
one xmiss. Lower val-
ues of each xmiss are
set to be missing.

Choosing xmiss to be the most correlated feature with the class labels ensures a

generic pattern among all the datasets used. On the other hand, it is also safe-

guarded that the values that are set to be missing are relevant information. However,

other approaches can be found in the literature such as choosing xmiss randomly as

in Xia et al. [21] and Rieger et al. [20].
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Univariate MCAR implementations

For MCAR mechanism, we consider two univariate implementations, MCAR1univa

(Figure 2.1a and Algorithm 1) and MCAR2univa (Figure 2.1b and Algorithm 2),

based on three related works (Twala et al. [19], Rieger et al. [20], Xia et al. [21]).
MCAR1 univa

b x1 xmiss x3 x4 xn
0

<

0

1

1

1

0

0

0

1

0

0

0

1

0

0

0

1

1

0

0

. . .

(a) Missing data pattern for
MCAR1univa implementation. b
represents the Bernoulli distribu-
tion.

MCAR2 univa

x1 xmiss x3 x4 xn
<

. . .

(b) Missing data pattern for
MCAR2univa implementation.

Figure 2.1: Schemes describing missing data patterns for each MCAR implemen-
tation. In (a), the missingness is defined by a Bernoulli distribution.

Twala et al. [19] performed MCAR generation by choosing the locations of xmiss

using a Bernoulli distribution – it is referred to as MCAR1univa. The Bernoulli

distribution is a discrete distribution that has outcome k = 1 with a probability

p and outcome k = 0 with a probability of 1 − p, as shown in Equation 2.6. The

probability p represents the expected missing rate and, as in any Bernoulli trial,

each value of xmiss has a probability p of being deleted.

f(k,p) =

1− p for k = 0

p for k = 1
(2.6)

This implementation is not the most accurate as it may not return the expected

missing rate, especially when it comes to small datasets. Of course, in any of the

implementations, we may have to round the number of Missing Values (MVs) that

we want to generate. For example, consider a dataset with 30 observations and 5

features in which we want to generate 15% of MVs that will be equally distributed

by all features – each feature should have 4.5 (30×15%) missing values but in reality,
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it will have 5, which corresponds to a MR of, approximately, 16.7%. However, there

are some implementations that, by their nature, can generate a very different number

of MVs that was intended and hence they are limiting.

According to the Law of Large Numbers (LLN), the expected probability is more

easily achieved for datasets with many samples. The increase in the number of

observations makes the number of outcomes equal to 1 (k = 1) converge to the

expected probability.

Algorithm 1: Implementation of MCAR1univa.

Input :
data: Complete dataset
MR: MD percentage
jmiss: Missing feature index

Output:
Dataset with MR% generated MD

begin
x = numObservations(data)
observations = bernoulli(MR, size = x)
data[ (observations == 1), jmiss ] = “NaN”

return (data)

Rieger et al. [20] and Xia et al. [21] proposed a simple method for generating MCAR

which chooses random locations in xmiss to be missing. We choose this random loca-

tions with a random number generator function. This implementation method is the

most immediate for a random mechanism and is herein referred to as MCAR2univa.

Algorithm 2: Implementation of MCAR2univa.
Input :

data: Complete dataset
MR: MD percentage
jmiss: Missing feature index

Output:
Dataset with MR% generated MD

begin
x = numObservations(data)
numMV = round(x×MR÷ 100)
observations = random(x, size = numMV)
data[ observations, jmiss ] = “NaN”

return(data)

Univariate MAR implementations

For MAR mechanism we consider five different implementations: MAR1univa (Fig-

ure 2.2 and Algorithm 3), MAR2univa (Algorithm 4), MAR3univa (Algorithm 5),

MAR4univa (Figure 2.3 and Algorithm 6) and MAR5univa (Figure 2.4 and Algo-

rithm 7). All MAR generation methods make use of an observed feature xobs to
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define the missing locations in xmiss: again, the missing feature xmiss will be the one

most correlated with the class labels and the observed feature, xobs, is the one most

correlated with the missing feature, xmiss. As mentioned previously, this choice of

features was made in order to coherently compare the obtained results on all the

used datasets. Once again, this approach may not coincide with those used in related

works.

Twala et al. [19] implemented a MAR generation algorithm, referred to asMAR1univa,

where xmiss will be missing for the observations that are below the MR percentile

in the observed feature xobs. This means that the lowest observations of xobs will be

deleted on xmiss.

Algorithm 3: Implementation of MAR1univa.
Input :

data: Complete dataset
MR: MD percentage
jmiss: Missing feature index
xobs: Observed feature

Output:
Dataset with MR% generated MD

begin
x = numObservations(data)
numMV = round(x×MR÷ 100)
observations = sort(xobs, reverse = False)
observations = observations[ 0 : numMV ]
data[ observations, jmiss ] = “NaN”

return (data)
MAR1 univa

x1 xmiss x3 xobs xn
<

. . .

Figure 2.2: Missing data pattern for MAR1univa implementation.

In the work of Rieger et al. [20], 4 different MAR generations are suggested, which

we have implemented as well in this work (MAR2univa, MAR3univa, MAR4univa and

MAR5univa):
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MAR2univa is based on ranks of xobs (robs): the probability of a pattern xi,miss to be

missing is computed by dividing the rank of xi,obs by the sum of all ranks for xobs.

Then, the patterns to have missing values are sampled according to such probability,

until the desired MR is reached (this method is also used by Xia et al. [21]);

pmiss =
ri,obs∑m
i=1 ri,obs

(2.7)

Algorithm 4: Implementation of MAR2univa.
Input :

data: Complete dataset
MR: MD percentage
jmiss: Missing feature index
xobs: Observed feature

Output:
Dataset with MR% generated MD

begin
x = numObservations(data)
numMV = round(x×MR÷ 100)
ranks = rank(xobs)
probs = ranks / sum(ranks)
observations = random(x, size = numMV, p = probs)
data[ observations, jmiss ] = “NaN”

return (data)

In MAR3univa, the patterns are divided into two groups according to the median of

the observed feature xobs, so that the probability of missingness is different among

groups: patterns with observations greater than (or equal to) the median of xobs will

belong to Group 1, otherwise the observations belong to Group 2. In Algorithm 5,

groups is an array of size x that contains the group of each observation in xobs. The

observations are then sampled according to an established probability of missingness

that will be 0.9
nG1

for Group 1 and 0.1
nG2

for Group 2 (nG1 and nG2 are the number of

observations in Group 1 and Group 2, respectively);

pmiss =

 0.9
nG1

if xi,obs >= median(xobs)

0.1
nG2

if xi,obs < median(xobs)
(2.8)

In MAR4univa, the locations of xmiss where xobs assumes its highest values are set

to be missing.

MAR5univa considers both the highest and lowest values of xobs: given the necessary

number of observations to have missing values for the specified missing rate, call it

numMV , MAR5univa sets numMV/2 observations to have missing values according
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Algorithm 5: Implementation of MAR3univa.
Input :

data: Complete dataset
MR: MD percentage
jmiss: Missing feature index
groups: array with the groups of each observation of xobs

nG1 and nG2: number of observations in Group 1 and Group 2, respectively
Output:

Dataset with MR% generated MD

begin
x = numObservations(data)
numMV = round(x×MR÷ 100)
probs = []
for g in groups do

if g == 1 then
probs.append(0.9/nG1)

if g == 2 then
probs.append(0.1/nG2)

observations = random(x, size = numMV, p = probs)
data[ observations, jmiss ] = “NaN”

return (data)

Algorithm 6: Implementation of MAR4univa.
Input :

data: Complete dataset
MR: MD percentage
jmiss: Missing feature index
xobs: Observed feature

Output:
Dataset with MR% generated MD

begin
x = numObservations(data)
numMV = round(x×MR÷ 100)
observations = sort(xobs, reverse = True)
observations = observations[ 0 : numMV ]
data[ observations, jmiss ] = “NaN”

return (data)

to the highest values of xobs, and numMV/2 according to the lowest.

Univariate MNAR implementations

In the MNAR context, there is no dependency on any observed feature, so for this

mechanism there is only one feature of interest, the missing feature, xmiss.

For this mechanism, two methods were implemented, MNAR1univa (Figure 2.5a,

Figure 2.5b and Algorithm 8) and MNAR2univa (Figure 2.6a, Figure 2.6b and Al-

gorithm 9). MNAR1univa was proposed by Twala et al. [19]: this method is similar

to the approach used in MAR1univa, but the feature xmiss itself is used as observed
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MAR4 univa

x1 xmiss x3 xobs xn
<

. . .

Figure 2.3: Missing data pattern for MAR4univa implementation.

Algorithm 7: Implementation of MAR5univa.
Input :

data: Complete dataset
MR: MD percentage
jmiss: Missing feature index
xobs: Observed feature

Output:
Dataset with MR% generated MD

begin
x = numObservations(data)
numMV = round(x×MR÷ 100)
highest observations = sort(xobs, reverse = True)
lowest observations = sort(xobs, reverse = False)
highest observations = highest observations[ 0 : numMV/2 ]
lowest observations = lowest observations[ 0 : numMV/2 ]
data[ highest observations, jmiss ] = “NaN”
data[ lowest observations, jmiss ] = “NaN”

return (data)

MAR5 univa

x1 xmiss x3 xobs xn. . .

Figure 2.4: Missing data pattern for MAR5univa implementation.
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feature, i.e, the MR percentile of xmiss is determined and values of xmiss lower than

the cut-off value are removed.

Algorithm 8: Implementation of MNAR1univa.
Input :

data: Complete dataset
MR: MD percentage
jmiss: Missing feature index
xmiss: Missing feature

Output:
Dataset with MR% generated MD

begin
x = numObservations(data)
numMV = round(x×MR÷ 100)
observations = sort(xmiss, reverse = False)
observations = observations[ 0 : numMV ]
data[observations, jmiss] = “NaN”

return (data)

MNAR1 univa

x1 xmiss x3 x4 xn
<

<<<

x1 xmiss x3 x4 xn
<

. . .

(a) Complete dataset.

MNAR1 univa

x1 xmiss x3 x4 xn
<

<<<

x1 xmiss x3 x4 xn
<

. . .

(b) Dataset with synthetic missing val-
ues.

Figure 2.5: Missing data pattern for MNAR1univa implementation.

MNAR2univa is created according to Xia et al. [21]: larger values of xmiss are re-

moved until the MR is reached.

2.2.1.2 Multivariate implementations

Regarding multivariate implementations, there are several alternatives to choose the

missing values positions. For MCAR and MNAR, usually the missing values are gen-

erated in all the features of the dataset (except for MNAR2unifo and MNAR4unifo,

as will be explained bellow). However, for MAR, the process will be different. In this
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Algorithm 9: Implementation of MNAR2univa.
Input :

data: Complete dataset
MR: MD percentage
jmiss: Missing feature index
xmiss: Missing feature

Output:
Dataset with MR% generated MD

begin
x = numObservations(data)
numMV = round(x×MR÷ 100)
observations = sort(xmiss, reverse = True)
observations = observations[ 0 : numMV ]
data[ observations, jmiss ] = “NaN”

return (data)

MNAR2 univa

x1 xmiss x3 x4 xn

<<<

x1 xmiss x3 x4 xn
<

. . .

(a) Complete dataset.

MNAR2 univa

x1 xmiss x3 x4 xn
<

<<<

x1 xmiss x3 x4 xn
<

. . .

(b) Dataset with synthetic missing val-
ues.

Figure 2.6: Missing data pattern for MNAR2univa implementation.

case, it is necessary to have at least one observed feature and it is also common to

create pairs of correlated features which are composed of an observed and a missing

feature, (xobs, xmiss), where xmiss has the missing values while xobs will be complete.

Multivariate MCAR implementations

We consider three different multivariate implementations of the missing completely

at random (MCAR) mechanism, which are presented on five related works (Twala

et al. [19], Nanni et al. [22], Garciarena et al. [23], Ali et al. [24] and Zhu et al. [26]).

In Twala et al. [19], the three multivariate generations are performed similar to its

univariate implementations. MCAR is generated similar to MCAR1univa, but in this

case random locations are chosen for each feature, also using a Bernoulli distribution.

It would be expected that all features have the same amount of missingness which
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may not happen because of the Bernoulli distribution. This implementation will be

denoted as MCAR1unifo (Figure 2.7 and Algorithm 10).

Algorithm 10: Implementation of MCAR1unifo.

Input :
data: Complete dataset
MR: MD percentage

Output:
Dataset with MR% generated MD

begin
x = numObservations(data)
y = numFeatures(data)
for jmiss in range(0, y) do

observations = bernoulli(MR, size = x)
data[(observations == 1), jmiss] = “NaN”

return (data) MCAR1 unifo

b x1 b x2 b x3 b x4 b xn
0

<
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1 1 1 0 1
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0 1 0 0 1
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1 0 0 0 1

0 0 0 0 0

0 0 0 1 0
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1 1 0 0 0

0 0 1 0 0
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1

. . .

Figure 2.7: Missing data pattern for MCAR1unifo implementation. b represents
the Bernoulli distribution for each feature.

Nanni et al. [22] generate MCAR in a slightly different way: instead of generating

missing values by feature, they are generated by observation. Here, the desired num-

ber of missing values is equally distributed by all the observations and the choice

of missing features is randomly performed. So, in this case, different features may

be missing for different observations of the dataset. This implementation is not

completely accurate since the desired MR may not be attained since, by rounding

the number of missing values for each observation, the desired number of missing

values may not be reached. Nanni et al. [22] implementation is herein referred to as

MCAR2unifo (Figure 2.8 and Algorithm 11).
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Algorithm 11: Implementation of MCAR2unifo.

Input :
data: Complete dataset
MR: MD percentage

Output:
Dataset with MR% generated MD

begin
x = numObservations(data)
y = numFeatures(data)
numMV = round(y ×MR÷ 100)
for i in range(0,x) do

featureMV = random(y, size = numMV)
data[i, featureMV] = “NaN”

return (data)

MCAR2 unifo

x1 x2 x3 x4 xn
<

. . .

Figure 2.8: Missing data pattern for MCAR2unifo implementation.

In Garciarena et al. [23], Ali et al. [24] and Zhu et al. [26] is proposed a simple

method for MCAR generation which will be denoted as MCAR3unifo (Figure 2.9

and Algorithm 12). This method chooses random locations in the dataset to be

missing until the desired missing rate is reached.

Multivariate MAR implementations

We consider three multivariate implementations for MAR mechanism, which are

based on four different works (Twala et al. [19], Zhu et al. [26], Ali et al. [24] and

Garciarena et al. [23]).

The following two MAR implementations use the same approach for choosing the

observed and missing features. Twala et al. [19], Zhu et al. [26] and Ali et al. [24]

define pairs of features which include an observed and a missing feature (xobs, xmiss).

This pair selection of features is based on high correlations among all the features of

the dataset. In the case of having an odd number of features, the unpaired feature
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Algorithm 12: Implementation of MCAR3unifo.

Input :
data: Complete dataset
MR: MD percentage

Output:
Dataset with MR% generated MD

begin
x = numObservations(data)
y = numFeatures(data)
numMV = round(x× y ×MR÷ 100)
countMV = count(data)
while countMV != numMV do

observationMV = random(x, size = 1)
featureMV = random(y, size = 1)
data[observationMV, featureMV] = “NaN”
countMV = count(data)

return (data)

MCAR3 unifo

x1 x2 x3 x4 xn
<

. . .

Figure 2.9: Missing data pattern for MCAR3unifo implementation.

may be added to the pair which contains its most correlated feature.

Twala et al. [19] proposed a multivariate implementation which is similar to its

univariate version (MAR1univa) – herein referred to as MAR1unifo (Figure 2.10 and

Algorithm 13). For each pair of correlated features, the missing feature will be the

one most correlated with the class labels. In the case of having a triple of correlated

features, there will be two missing features which will also be those most correlated

with the labels. MAR1unifo sets the observations of xmiss to be missing when they

correspond to values of xobs bellow 2×MR quantil (3
2
×MR quantil for triples).

Zhu et al. [26] and Ali et al. [24] also created pairs of correlated features, however,

it is not stated how observed and missing features are chosen. So, we adapt the

implementation proposed in this work using the following approach: for each pair
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Algorithm 13: Implementation of MAR1unifo. This pseudo-code assumes that
there is an even number of features. pairs is an array with the paired indices of
features.
Input :

data: Complete dataset
MR: MD percentage
pairs: array containing the pairs of correlated features

Output:
Dataset with MR% generated MD

begin
x = numObservations(data)
for pair in pairs do

jobs, jmiss = select by correlation(pair, data)
xobs = data[ :, jobs ]
quantil = 2× x×MR÷ 100
observations = sort(xobs, reverse = False)
observations = observations[ 0 : quantil ]
data[ observations, jmiss ] = “NaN”

return (data)

MAR1 unifo

xobs_1 . . .xmiss_1 xobs_2 xmiss_2 xobs_n xmiss_n

Figure 2.10: Missing data pattern for MAR1unifo implementation.

of correlated features, the missing feature, xmiss, will be randomly chosen and the

remaining one will be the observed feature, xobs. We use this approach in order

to present an alternative to the choice of xmiss and xobs. For each pair or triple

of features, xmiss is divided in two groups according to the median of xobs: the

values of xmiss will be assigned to a group (or another) according to whether the

respective observations of xobs have lower (or greater) values than its median. Zhu

et al. [26] proposed a more complete version of this implementation: for categorical

features, two equally-sized groups are created by randomly dividing the observations.

After splitting the observations into two groups, one group is randomly selected to

have missing values with a probability of 4 × MR (3 × MR for triples). This

implementation is herein referred to as MAR2unifo (Algorithm 14).
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Algorithm 14: Implementation of MAR2unifo. This pseudo-code assumes that
there is an even number of features.
Input :

data: Complete dataset
MR: MD percentage
pairs: array containing the pairs of correlated features

Output:
Dataset with MR% generated MD

begin
x = numObservations(data)
for pair in pairs do

jobs, jmiss = random select(pair)
xobs = data[ :, jobs ]
g1, g2 = group(xobs, threshold = median(xobs))
g = random select(g1, g2)
observations = random(g, size = 4×MR× size(g)÷ 100)
data[ observations, jmiss ] = “NaN”

return (data)

Garciarena et al. [23] performed MAR generation setting the lowest observations of

xobs to be missing in the missing features. In this case, there is only an observed

feature xobs, which is randomly chosen. Here, there are nF missing features that are

also randomly chosen. This implementation of Garciarena et al. will be referred to

as MAR3unifo (Figure 2.11 and Algorithm 15).

Algorithm 15: Implementation of MAR3unifo.

Input :
data: Complete dataset
MR: MD percentage
nF: number of missing features

Output:
Dataset with MR% generated MD

begin
x = numObservations(data)
y = numFeatures(data)
numMV = round(x× y ×MR÷ 100÷ nF )
jobs = random(y, size = 1)
xobs = data[ : , jobs ]
features = remove([1 : y], jobs)
featuresMV = random(features, size = nF)
observations = sort(xobs, reverse = False)
observations = observations[ 0 : numMV ]
for jmiss in featuresMV do

data[ observations, jmiss ] = “NaN”

return (data)
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xmiss_1 x2 xmiss_3 x4 xobs xmiss_n. . .

Figure 2.11: Missing data pattern for MAR3unifo implementation.

Multivariate MNAR implementations

For MNAR mechanism we implement four multivariate MNAR versions, which are

presented in four different works (Zhu et al. [26], Ali et al. [24], Garciarena et al. [23]

and Twala et al. [19]).

Zhu et al. [26] and Ali et al. [24] generate MNAR by dividing each missing feature

(i.e., each feature of the dataset) into two groups: one group will have the obser-

vations bellow the median of xmiss and the other will have observations above the

median. Zhu et al. [26] proposed a more complete version of this implementation

as already explained for MAR2unifo. After splitting observations, one group is ran-

domly chosen and their values are set to be missing with a probability of 2×MR.

The approach chosen to be implemented was the one of Zhu et al. [26] which will

be denoted as MNAR1unifo (Algorithm 16).

Algorithm 16: Implementation of MNAR1unifo.

Input :
data: Complete dataset
MR: MD percentage

Output:
Dataset with MR% generated MD

begin
x = numObservations(data)
y = numFeatures(data)
for jmiss in range (0,y) do

xmiss = data[ : , jmiss ]
g1, g2 = group(xmiss, threshold = median(xobs))
g = random select(g1, g2)
observations = random(g, size = 2×MR× size(g)÷ 100)
data[ observations, jmiss ] = “NaN”

return (data)
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Garciarena et al. [23] proposed two different implementations for MNAR multivari-

ate generation: MNAR2unifo (Figure 2.12 and Algorithm 17) and MNAR3unifo

(Figures 2.13a and 2.13b and Algorithm 18). MNAR2unifo is also called Missing-

ness depending on unobserved Variables (MuOV) since each feature of the dataset

will have the same number of missing values for the same observations. The missing

observations and the nF missing features are randomly chosen. Here, it is not in-

tended to generate MD in all the features from the dataset because in that case we

would be deleting complete samples. However, the authors do not refer to any re-

striction on the value of nF . Missingness depending on Its Value itself (MIV) is the

definition chosen by Garciarena et al. [23] for MNAR3unifo. This implementation

chooses the lower values of each feature to be missing so, in this case, an observation

can be missing depending on its value itself. Also, for this implementation, all the

features will have the same number of missing values.

Algorithm 17: Implementation of MNAR2unifo.

Input :
data: Complete dataset
MR: MD percentage
nF: number of missing features

Output:
Dataset with MR% generated MD

begin
x = numObservations(data)
y = numFeatures(data)
numMV = round(x× y ×MR÷ 100÷ nF )
observations = random(x, size = numMV)
featuresMV = random(y, size = nF)
for jmiss in featuresMV do

data[ observations, jmiss ] = “NaN”

return (data)

Twala et al. [19] proposed a MNAR multivariate implementation similar to their

MAR implementation (MAR1unifo). This implementation is called MNAR4unifo

(Figures 2.14a and 2.14b and Algorithm 19) and, unlike the other approaches used

for MNAR generation, there is also the creation of pairs of correlated features. As

in MAR1unifo, xmiss will be the one most correlated with the class labels and, in

this case, there will be no xobs. Furthermore, for an odd number of features, there

will be a triple of correlated features with two missing features. For each xmiss,

observations bellow 2×MR are set to be missing (3
2
×MR in case of a triple).
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MNAR2 unifo

x1 x2 x3 x4 xn
<

. . .

Figure 2.12: Missing data pattern for MNAR2unifo implementation.

Algorithm 18: Implementation of MNAR3unifo.

Input :
data: Complete dataset
MR: MD percentage

Output:
Dataset with MR% generated MD

begin
x = numObservations(data)
y = numFeatures(data)
numMV = round(x×MR÷ 100)
for jmiss in range(0, y) do

observations = sort(jmiss, reverse = False)
observations = observations[ 0 : numMV ]
data[ observations, jmiss ] = “NaN”

return (data)

x1 x2 x3 x4 xn x1 x2 x3 x4 xn
<

MNAR3 unifo

. . .

(a) Complete dataset.

x1 x2 x3 x4 xn
<

x1 x2 x3 x4 xn

MNAR3 unifo

. . .

(b) Dataset with synthetic missing val-
ues.

Figure 2.13: Missing data pattern for MNAR3unifo implementation.

29



2. Background Knowledge

Algorithm 19: Implementation of MNAR4unifo.

Input :
data: Complete dataset
MR: MD percentage
pairs: array containing the pairs of correlated features

Output:
Dataset with MR% generated MD

begin
x = numObservations(data)
for pair in pairs do

jobs, jmiss = select by correlation(pair, data)
xmiss = data[ : , jmiss ]
quantil = 2× x×MR÷ 100
observations = sort(xmiss, reverse = False)
observations = observations[ 0 : quantil ]
data[ observations, jmiss ] = “NaN”

return (data)

MNAR4 unifo

xmiss,1 xmiss,2x1 x2 xmiss,n xnxmiss_1 xmiss_3x2 x4 xmiss_5 xn. . .

(a) Complete dataset.

MNAR4 unifo

xmiss,1 xmiss,2x1 x2 xmiss,n xn xmiss_1 xmiss_3x2 x4 xmiss_5 xn. . .

(b) Dataset with synthetic miss-
ing values.

Figure 2.14: Missing data pattern for MNAR4unifo implementation.

Conclusions

In this section, we have provided a detailed description of several implementations

for the three missing mechanisms. We implemented all the above approaches, how-

ever, we did not use them at all the stages of this work. We considered that the

most appropriate approaches are those that guarantee the generation of the desired

number of missing values. Therefore, we performed a selection of these implemen-

tations in order to have one per each mechanism and type (univa and unifo). More

details will be provided in Chapter 4.
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2.3 Missing Data Imputation

Imputation methods aim to find plausible values to replace the ones that are missing

and are mainly divided into statistical-based or machine learning-based methods [5].

Statistical methods consist in replacing the missing observations with the most simi-

lar ones among the training data, without the need of constructing a predictive model

to evaluate their “similarity” (e.g. Mean imputation). Machine learning-based tech-

niques, construct a predictive model with the available data to estimate values for

replacing those that are missing (e.g. k-Nearest Neighbours (kNN) imputation, Sup-

port Vector Machines (SVM) imputation, Stacked Denoising Autoencoders (SDAE)

imputation).

2.3.1 Mean/Mode Imputation

The simplest method to impute missing values is Mean/Mode imputation. The miss-

ing entries of each feature, xmiss, are replaced by the mean of its observed values

or by the mode, in case of categorical values. Class-conditional mean imputation

is a variant approach where each MV is replaced with the mean of observed val-

ues belonging to its class [5]. Although this method is quite simple it has several

limitations since it can produced biased estimates and it does not preserve the re-

lationships between features [27]. Mean/Mode imputation is herein referred to as

Meanimp and was applied using the implementation of Scikit Learn’s.

2.3.2 Imputation with k-Nearest Neighbours

The kNN algorithm is quite popular in the missing data imputation field [28]. Basi-

cally, given a missing value in a pattern, a plausible substitute value can be estimated

using the values of patterns that are close to it, considering observed values from

other features than xmiss. This estimation may be the mean of nearest neighbours

in case of a continuous feature and also may be the mode, for categorical features.

This technique requires a selection of a distance metric and a definition of the num-

ber of neighbours, k: we defined the nearest neighbours using Euclidean Distance,

as it is done in several related works [29]; we used three different values for k – 1,

3 and 5. Furthermore, we refer to this method as kNNimp and to apply it we use

fancyimpute [30] implementation in Python.
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2.3.3 Imputation with Support Vector Machines

SVM are a powerful classification technique widely used in the pattern recognition

field. This approach can be used in both classification and regression problems.

Originally, SVM was a linear classifier but it can be improved by modifying kernel

functions [31]. One of the most typical kernel functions is the Gaussian Radial Basis

Function (RBF) kernel. In this work, we used a SVM regressor with a RBF kernel

to imputation purposes. This method requires a tuning process where the optimal

parameters C and γ are calculated, for each complete dataset. To fill in the missing

values, each missing feature, xmiss is used as target while the remaining features are

used to train the model. This imputation approach, here referred to as SVMimp,

was implemented by us using scikit-learn.

2.3.4 Multiple Imputation by Chained Equations

Multiple Imputation by Chained Equations (MICE) is a widely used multiple im-

putation approach [32, 33] that creates several regression models so that each xmiss

is conditionally modeled by the remaining features. This method is composed of 4

main steps [34]:

1. All the MVs are replaced by the average of the observed values – pre-imputation

step using mean imputation;

2. For each xmiss: the MV are set back to be missing;

3. A regression of xmiss predicted by the remaining features of the dataset is

performed, using the observed values of xmiss;

4. The regression equation obtained in the previous step is used to predict the

MV of xmiss.

This iterative process through the missing features is repeated until the convergence

of the imputation parameters (e.g., coefficients of the regression model) [34]. At

the end, MICE has replaced the MV using several regressions that preserved the

relationship between the data. MICE was applied using fancyimpute [30] imple-

mentation in Python, with default settings.
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2.3.5 Expectation-Maximization

The Expectation-Maximization (EM) [35] is a maximum likelihood method that

estimates the MV considering their relation with the unknown parameters of the

data model [36]. The main idea of this algorithm is to iteratively adjust the MV

while preserving the covariance structure of the data. In brief, the EM can be

summarized in the following steps:

1. Initialize the unknown parameters of the data model (randomly);

2. Compute the probability distribution over the possible values, using the cur-

rent parameters. Fill-in the missing values with the estimated values – Expec-

tation step;

3. Estimate another set of parameters for the current data – Maximization step.

The iteration between steps 2 and 3 continues until the estimates converge. We used

EM’s implementation from library impyute [37] in Python.

2.3.6 Denoising Autoencoders

Neural network-based methods have been increasingly used for missing data impu-

tation [38]; however, deep learning architectures especially designed for missing data

imputation remain an understudied topic.

Denoising Autoencoders (DAEs) [39] are designed to recover noisy data (x̃), which

can exist due to data corruption via some additive mechanism or by missing data [40].

DAEs are a variant of Autoencoders (AEs) (Figure 2.15) which are a type of artificial

neural networks that are trained to reproduce its input at the output layer. Each

autoencoder is composed by three layers (input, hidden and output layer) which can

be divided into two parts: encoder (from the input layer to the output of the hidden

layer) and decoder (from the hidden layer to the output of the output layer).

The DAE is similar to a basic AE: the main difference is the application of a stochas-

tic corruption to the inputs of the DAE during the training phase. One of the pos-

sible corruptions techniques consists in setting to 0 a fixed amount of features for

each observation (Figure 2.17). There are other possible corruption processes, such

as adding Gaussian noise or salt-and-pepper noise [41].

The encoder part of a DAE maps an input vector x̃ to a hidden representation

y, through a nonlinear transformation fθ(x̃) = s(x̃WT + b) where θ represents
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𝑓𝜃 𝑔′𝜃

Figure 2.15: Simplified structure of an Autoencoder. f represents the encoder and
g represents the decoder.

෥𝒙

𝑓𝜃 𝑔′𝜃

Corrupted
partially

Figure 2.16: Simplified structure of an Denoising Autoencoder.

the weight matrix W and bias vector b. The resulting y representation is then

mapped back to a vector z which has the same shape of x̃, where z is equal to

g′θ(y) = s(W’y + b’). The training of an DAE consists in optimising the model

parameters (W, W’, b and b’) to minimise the reconstruction error between x (the

uncorrupted input) and z, using the squared error loss:

L2(x,z) = ‖x− z‖2 (2.9)

The difference for the train of an AE is that z is a deterministic function of x̃ rather

than x. Defining the joint distribution:

q0(X, X̃, Y ) = q0(X)qD(X̃|X)δfθ(X̃)(Y ) (2.10)

where δu(v) equals 0 when u 6= v, Y is a deterministic function of X̃. We use

upper-case letters to represent random variables. The objective function minimized

by Stochastic Gradient Descent (SGD) is:

arg min
θ,θ′

Eq0(X,X̃)L2(X, gθ′(fθ(X̃))) (2.11)
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X

X

Figure 2.17: Representation of the training phase of DAE. Some of the input nodes
are randomly setted to 0. However, the reconstruction error compares the original
data (x) with the reconstructed data (z).

where E represents the Expectation and q0(X,X̃) corresponds to the stochastic map-

ping which performs the partial destruction of X.

Network Structure

There are two types of representations for a DAE [40]: overcomplete (Figure 2.18a),

when the hidden layer has more nodes than the input layer, and undercomplete

(Figure 2.18b), when the hidden layer is smaller than the input layer.

In the case of an AE, an overcomplete architecture only learns the identity function

and, therefore, copies the input to the output. To avoid this behavior, the objec-

tive function can be modified to include a regularization term. The DAE can be

overcomplete without the need of any regularization since it compares the original

impute to its corrupted version [40].

When an undercomplete architecture is used, the DAE is forced to learn a more

concise representation of the input data.
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(a) Representation of an overcom-
plete architecture.

(b) Representation of an undercom-
plete architecture.

Figure 2.18: Differences in network architectures.

Stacked Denoising Autoencoders

Vincent et al. [41] proposed a strategy to build deep networks by stacking layers of

Denoising Autoencoders. The results have shown that stacking DAEs improves the

performance over the standard DAE. Furthermore, deeper architectures tend to be

a better solution in terms of generalization performance, using fewer nodes per layer

and, consequently, fewer parameters. On the other hand, the optimization of these

architectures is more complex [42].

– Layer-wise Pretraining and Fine Tuning

The training process of SDAE consists of a layer-wise unsupervised pre-training –

the representation of the k-th layer is the input for (k+1)-th layer which is trained

after the k-th layer has been trained. When the k layer is trained it will have as input

the uncorrupted output from the previous layers. After the training of a few layers,

the fine tuning will be performed – the current network parameters will initialize a

network that will be optimized under a supervised training criterion.

Regularizations

Adding regularizers to the objective function forces the model to have different prop-

erties. There are several regularization terms that can be added to the objective

function to prevent the overfitting of the training data. For example, L2 regulariza-

tion is also known as “weight decay” because it forces the weights to decay towards

zero (but not exactly zero). The L2 term consists of the sum of the squared values
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of the weights so, larger weights lead to a larger error which causes the training

algorithm to favour and generate smaller weights. Applying dropout is also regular-

ization [43] since it prevents the overfitting to the training data by “ignoring” some

nodes of the network during the training phase.

Activation Functions

Each node of any layer uses an activation function to compute the weighted sum

of the inputs and to define its output. The most popular activations functions are

Rectified Linear Units (ReLu), Hyperbolic Tangent (Tanh) and logistic function [40].

Optimization Algorithms

The most usual optimization algorithm is Stochastic Gradient Descent (SGD) [44]

which has several variants, such as AdaGrad [45], Adadelta [46], RMSProp [47]

and Adam [48]. These algorithms are based in the gradient descent method [44].

Gradient descent is an iterative optimization algorithm that aims at minimizing a

given function. More precisely, Gradient descent uses backpropagation to calculate

the gradient of the objective function and allows the optimization algorithm to adjust

the parameters (W, W’, b and b’) in order to find a minimum of the function.

2.4 Classification and Evaluation Metrics

The main purpose of data imputation is to replace the MVs with estimates that are

closest to the original values. On the other hand, the imputation process precedes the

classification task and, therefore, the imputation method must be properly chosen

in order to not affect the performance of the classifier. These are two key points

of the MD problem that must be evaluated: imputation quality and classification

performance.

Classification

In machine learning, there are a lot of supervised learning algorithms to perform

classification: SVM is known to belong to the best performers [49]. SVMs are based

on the construction of a hyperplane that defines a decision boundary. In other words,

for a set of labeled data, the SVM returns an optimal hyperplane that maximizes the

margin of separation and that will be capable of categorizing new samples (data from

the test set). As already mentioned in Section 2.3.3, SVM is a linear discriminant

algorithm but when no linear separation is possible, the implementation uses a

kernel which maps the training samples to a higher dimensional space and learns
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to separate the samples in that space. The use of this kernel trick makes SVM so

popular and accurate since it has a large capacity for generalization regardless of

the distribution of the patterns [50].

Every machine learning model must be evaluated in terms of generalization capa-

bility - also known as model evaluation. The Holdout method is a popular strategy

used to perform this evaluation. This method randomly separates the dataset into

2 subsets, called training and test set. The model is fitted to the training set while

the error estimation is computed for the test set [50].

In this work, classification performance was assessed with F-measure which considers

both Precision and Recall [51]:

F-measure =
2× precision× recall

precision + recall
(2.12)

precision =
TP

TP + FP
(2.13)

recall =
TP

TP + FN
(2.14)

In Equations 2.13 and 2.14, TP correspond to the true positives (i.e. the number

of positive patterns correctly predicted), FP denotes the false positives (i.e. the

number of patterns wrongly predicted as positive) and FN are the false negatives

(i.e. the number of patterns wrongly predicted as negative).

Imputation Quality

Besides the evaluation of classification performance, it is also important to assess

the imputation quality, in other words, measure how close the imputed values are

to the original ones [5, 52].

The coefficient of determination, R2, is equivalent to the square of Pearson corre-

lation coefficient. This metric measures the correlation between 2 features which,

in the context of imputation, corresponds to measure between the original feature

(before the synthetic generation of MV) and the imputed feature. R2 varies between

0 and 1.

R2 =

( ∑n
i=1 (x̃i − ¯̃xi)(xi − x̄i)√∑n

i=1 (x̃i − ¯̃xi)2
∑n

i=1 (xi − x̄i)2

)2

(2.15)
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Root Mean Squared Error (RMSE) is a quadratic metric used to measure the dif-

ferences between 2 features of interest. In other words, RMSE is the square root of

the average of the squared differences between the imputed feature and the original

one. This metric can range from 0 to ∞.

RMSE =

√√√√ 1

n

n∑
i=1

(xi − x̃i)2 (2.16)

In Equations 2.15 and 2.16, x̃ are the imputed values of a feature, ¯̃x is the mean of

the imputed values, x are the corresponding original values, x̄ is the mean of the

original values and n is the number of missing values.

2.5 Statistical Tests

Statistical inference is normally used for comparing classifiers over several datasets [53].

Following this idea, statistical tests can also be performed in order to compare im-

putation methods over multiple datasets.

The Friedman test [54] is a non-parametric statistical test which is similar to the non-

parametric repeated measures ANOVA [53, 55]. Given N datasets and k algorithms,

Friedman test ranks the algorithms for each dataset – ri
j will be the rank for the jth

algorithm on dataset i – and compares the mean of the ranks for each algorithm,

Rj = 1
N

∑
i ri

j. Under the null hypothesis of the test, there are no differences

between the algorithms and the Friedman statistic is:

χ2
F =

12N

k(k + 1)

[∑
R2
j −

k(k + 1)2

4

]
(2.17)

This statistic has a equivalent distribution to χ2
F with k-1 degrees of freedom as N

and k become large. Iman et al. [56] derived an approximation for the test statistic

which is distributed according to the F-distribution with k− 1 and (k− 1)(N − 1):

FF =
(N − 1)χ2

F

N(k − 1)− χ2
F

(2.18)

The F statistic value must be compared with the value of F distribution, which will

give the p− value for the test.
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The t-Student test for paired samples is a parametric test that compares population

means for a pair of random samples [57]. The null hypothesis of the test states there

is no statistical difference between the mean of the two populations.

The use of parametric tests requires the verification of two assumptions: i) normal

distribution ii) homogeneity of variance. In order to test if a sample follows a

normal distribution may be performed a Kolmogorov-Smirnov [58] test or a Shapiro-

Wilk test [59]. To determine if two samples have homogeneous variance is used the

Levene’s test [60].

The Wilcoxon signed rank test [61] is a non-parametric test that can be used for

paired data or for a single set of observations – it is a non-parametric alternative to

the t-Student test for paired samples. When used for paired data, the null hypothesis

of the test states that the median difference between the pairs of observations is

zero [62]. The test calculates the differences between pairs and ranks them ignoring

the sign; the test statistic is the sum of the ranks for either positive and negative

differences.
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Literature Review

In this chapter, we provide a detailed description of several imputation approaches

based on Stacked Denoising Autoencoders (SDAE), since the main goal of this work

is the study of these techniques for imputation purposes. For each studied work, we

perform a detailed characterization regarding the characteristics of the used data,

generated missing mechanism (and the respective missing rates) and also refer to

each proposed architecture regarding its hyperparameters.

In two recent works, Gondara et al. studied the appropriateness of SDAE for multi-

ple imputation [8] and their application to imputation in clinical health records [9].

In these works, the proposed algorithm is compared with Multiple Imputation by

Chained Equations (MICE) using the Predictive Mean Matching method.

In the first work, Gondara et al. [8] proposed a multiple imputation approach based

on overcomplete SDAE. Two different scenarios of missingness were considered: all

the features were set to have missing values (uniform synthetic generation) and only

half of the features were set to be missing (random synthetic generation). These

two scenarios were created for Missing Completely At Random (MCAR) and Miss-

ing Not At Random (MNAR) mechanisms using 15 real-world and publicly-available

datasets. The proposed model includes a pre-imputation step which imputes the in-

complete datasets with the well-known method Mean/Mode – continuous features

are imputed with its mean while categorical ones are imputed using its mode. The

training phase starts with a stochastic corruption (dropout) of 50% (i.e., for each

training batch, half of the inputs are randomly set to zero). The proposed architec-

ture is composed of 5 hidden layers - each successive hidden layer has θ = 7 more

nodes than the previous one. So, this is an overcomplete architecture and θ quanti-

fies the increase in the dimensionality of successive layers - different values for θ were

tested in order to choose the best one. At the end, θ = 7 was chosen as increment

since it showed better results on several datasets. The model was trained using 500

epochs, an adaptative learning rate with a time decay factor of 0.99 and a Nes-
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terov’s accelerated gradient. In order to ensure a faster convergence, the input was

standardized between 0 and 1. Furthermore, the authors have chosen Hyperbolic

Tangent (Tanh) as activation function rather than Rectified Linear Units (ReLu)

since they found that the first performed better for small datasets. They also used

an early stopping rule which ensures that the training process is finished when a

Mean Squared Error (MSE) of 1×10−6 is achieved or when there is no improvement

in a moving average (length 5) of the error deviance. Each training process uses

70% of the data while the remaining 30% is used as test set. The imputation results

of both mechanisms (MCAR and MNAR) are compared using Sum of Root Mean

Squared Error (RMSEsum) and this value is relative to the test set - they show that

the SDAE-based approach outperforms MICE for all the uniform scenarios and in

7 seven cases for the random scenario (this can be seen for 2 datasets under MCAR

and for 5 datasets under MNAR). Additionally, MNAR mechanism is also evaluated

in terms of classification error, using a Random Forest (RF) classifier. This analysis

also proved that data imputed with the SDAE model has a higher classification (in

average) than data imputed with MICE.

In the second work [9], the authors propose a SDAE-based model to fill in loss to

follow-up information, using 10 simulated and 4 real-world datasets, under MCAR

and MNAR mechanisms. Loss to follow-up information occurs often in clinical re-

search when a patient who was participating in a clinical trial leaves it before it is

completed. The proposed model is composed of 4 fully connected hidden layers and

each successive hidden layer has an increment of θ = 5 in the number of nodes (in

the encoder). Contrary to the work presented above, a dropout of 20% and batch

normalization are applied to each layer of the proposed model. These two techniques

are used in order to avoid a possible overfitting issue that may arise in overcomplete

architectures, when the number of units is greater than the dimensionality of the

input. So, the authors proposed an alternative version of the SDAE architecture

since they applied dropout at all the hidden layers and not just at the input layer.

Contrary to what was expected, the authors did not mention any pre-imputation

phase. Furthermore, ReLu was used as activation function, MSE was used as loss

function, no early stopping rule was used and the models were trained using 1000

epochs, although convergence occurs in less than 200 epochs for most cases. Besides

the use of RMSEsum for measuring the imputation performance of continuous time,

the authors also evaluate the quality of imputation for binary outcomes using a nor-

malized metric (which allows to compare the results of the different datasets). The

analysis proved that the SDAE-based model performs better in terms of imputation

quality than MICE – SDAE outperforms MICE with a minimum and maximum
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difference of 2.4% and 64.9%, respectively (for real-world datasets).

In both works, although the authors prove the advantages of SDAE for imputation,

a complete study under all missing mechanisms is not provided, since in both cases,

Missing At Random (MAR) generation is completely disregarded. Furthermore,

they only compare two imputation methods (MICE and SDAE) and the classification

performance is only evaluated for one mechanism (MNAR).

Beaulieu et al. [63] used Autoencoders (AEs) to impute data for electronic health

records. This approach is compared with 5 other imputation strategies: Iterative

Singular Value Decomposition (SVD), k-Nearest Neighbours (kNN) imputation,

SoftImpute, Mean imputation and Median imputation [63]. The imputation per-

formance was evaluated, in terms of Root Mean Squared Error (RMSE), for two

missing mechanisms, MCAR and MNAR, and the disease progression prediction

was also evaluated, comparing the performance of a RF regressor for the different

imputation strategies. Regarding the AE used for the evaluation, it is composed

of 2 hidden layers of 500 nodes each (undercomplete architecture) and a dropout

of 20% was applied between each layer. The training process starts with normal-

ization of the inputs in order to have values between 0 and 1. Furthermore, AEs

were trained using a modified binary cross entropy cost function [64] that takes into

consideration the values that are missing, so pre-imputation is not required. The

results have shown that the AE-based approach is the one with best results under

MCAR mechanism - with a minimum and maximum difference from the second best

method (SoftImpute) of 0.005 (Missing Rate (MR) of 50%) and 0.1 (MR of 30%),

respectively. For MNAR mechanism, the authors proved that AE had the best re-

sults but these are very similar to those obtained by kNN imputation, Softimpute

and SVD - AEs differ from the second best method by a minimum of 0.0045 (for

kNN imputation under a MR of 20%) and a maximum of 0.0125 (for SoftImpute

under a MR of 40%).

Duan et al. [10, 11] used SDAE for traffic data imputation and evaluated the impu-

tation quality using RMSE, Mean Absolute Error (MAE) and Mean Relative Error

(MRE). The type of data used in these works does not require a pre-imputation step

since the missing values are represented by 0.

In the first work [10], Duan et al. compared the proposed approach with another that

uses Artificial Neural Networks (ANN) with the same set of layers and nodes as the

ones used in SDAE. Contrary to several works that deal with missing data separately

from the observed data, the authors used observed data along with missing data

for the process of imputation. The SDAE architecture is undercomplete and is
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composed of 3 hidden layers - input and output layer was designed to contain 288

nodes and the 3 hidden layers were made of 144, 72 and 144 nodes, respectively.

The data was divided into training and test sets using a ratio of 3:2. The results

are analysed for a random mechanism of missingness (MCAR) performed for several

missing rates ranging from 10% to 90%. Regarding the RMSE metric, it can be

observed that its values vary between 16.9 and 20.3, for the SDAE approach, and

between 17 and 21, for the ANN - SDAE proved to be a better imputation method

than ANN in most cases.

In the second work [11], other 3 imputation methods were used for comparison:

Autoregressive Integrated Moving-Average (ARIMA), history model and ANN. The

authors studied the influence of spatial and temporal factors on the imputation

process. For this reason, they evaluate the difference between data from different

scenarios: data collected at one or multiple stations (spatial factors) and data col-

lected on weekdays and non-weekdays (temporal factors). Here, they perform a

more complete study than in [10] where only data from weekdays is used. The pro-

posed architecture based on SDAE used sigmoid function as activation function and

is composed of 3 hidden layers with 144, 72 and 144 nodes (undercomplete archi-

tecture). The determination of this hyperparameters was a result of a grid search

procedure. At the end, the results were analysed for missing rates ranging from

5% to 50% and the proposed SDAE model has proved to outperform the remaining

models, followed by ANN - in terms of RMSE, the values range from 13.5 to 14.9

for the SDAE approach, while for ANN the range is between 15.2 and 17.5.

Ning et al. [12] proposed an algorithm based on SDAE for dealing with big data

of quality inspection. The proposed approach is compared with 2 other imputation

algorithms – a weighted k-Nearest Neighbours data filling algorithm based on Grey

correlation analysis (GBWkNN) [65] and Mutual k-Nearest Neighbours Imputation

(MkNNI) [66] – that are both based on the kNN algorithm. Contrary to most of the

works, the authors do not describe the architecture of the SDAE and they do not

refer any pre-imputation step. The final results are evaluated through d2 (suitability

between the imputed value and the actual value) and RMSE under several missing

rates (1, 5, 10, 15, 20, 25 and 30%). The authors conclude that the proposed

SDAE-based approach surpasses the comparative imputation strategies. Moreover,

the SDAE is followed by GBWkNN and the RMSE metric ranges from 13.4 to 14.5

and 15.2 to 17.5 for these two approaches, respectively.

Sánchez-Morales et al. [13] proposed an imputation method that uses a SDAE.

The main goal of their work was to understand how the proposed approach can
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improve the results obtained in the pre-imputation step. Only MCAR generation

was consider under three different missing rates: 10, 20 and 30%. Besides this

synthetic generation of missing values, the authors deleted some input values of

the pre-imputed dataset, in order to generate some noise. So, these deleted values

correspond to some known values that are used as targets which allows a more

accurate prediction of the real missing values – this technique could be considered

as a “kind of dropout” applied over the inputs and not over the hidden nodes

(traditional approach). The proposed model has 3 hidden layers with 25%-75% of

expansion and for each imputation there were made 50 training runs. Moreover,

each dataset is split into training set (80%) and test set (20%). They used three

state-of-the-art methods for pre-imputation: Zero Imputation, kNN Imputation and

Support Vector Machines (SVM) Imputation. In this study, 3 datasets from UCI

were used to report the results. These results showed that SDAE is capable of

improving the final imputed values from a pre-imputed dataset - the quality of

imputation improves from 17% to 96%, regarding all the studied scenarios.

Table 3.1: Summary of reviewed works.

Authors Missing
Mechanisms

Missing
Rates

Dataset(s) Comparative
strategies

Metrics

Gondara et al. [8] MCAR
MNAR

20% Standard open source datasets
(15): Boston Housing; Breast
Cancer; DNA; Glass; House
Votes; Ionosphere; Ozone; Satel-
lite; Servo; Shuttle; Sonar; Soy-
bean; Vehicle; Vowel; Zoo.

MICE RMSE

Gondara et al. [9] MCAR
MNAR

60 and 80% Simulated data (1); Real life
datasets (4): Grace; EORTC; RH
and HDD.

MICE RMSE

Beaulieu et al. [63] MCAR
MNAR

10, 20, 30, 40
and 50%

Pooled Resource Open-Access
ALS Clinical Trials Database
(PRO-ACT)

IterativeSVD
kNN imputation
SoftImpute
Mean imputation
Median imputation

RMSE

Duan et al. [10] MCAR 1, 10, 20, 30,
40, 50, 60, 70,
80 and 90%

Traffic flow data - Caltrans Per-
formance Measurement System
(PeMS)

ANN RMSE
MAE
MRE

Duan et al. [11] MCAR 5, 10, 15, 20,
25, 30, 35, 40,
45 and 50%

Traffic flow data - Caltrans Per-
formance Measurement System
(PeMS)

ARIMA
history model
ANN

RMSE
MAE
MRE

Ning et al. [12] MCAR 1, 5, 10, 15,
20, 25 and
30%

Big Data of quality inspection GBWkNN
MkNNI

d2
RMSE

Sánchez-Morales et
al. [13]

MCAR 10, 20 and
30%

Standard datasets from UCI (3):
Cloud dataset; Blood transfusion
and Boston housing

Used for pre-
imputation:
Zero Imputation
k-Nearest Neighbour
Imputation
Support Vector Ma-
chine Imputation.

MSE

To summarise, most of related works do not address all three missing data mecha-

nisms, and mostly evaluate the results in terms of quality of imputation (e.g., RMSE,

MSE, MAE) rather than evaluating the usefulness of an imputation method to gen-
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erate quality data for classification (e.g. evaluation of final classification metrics).

Furthermore, none of the reviewed works studied the effects of different missing data

mechanisms and imputation techniques including SDAE for several missing rates.

In this thesis, we propose a more complete study on the use of SDAE for data

imputation, accessing the effects of several missing mechanisms, missing rates and

comparing them with other well-established imputation methods.
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Proposed Architecture

Our experimental setup comprised five main stages: (1) Data Collection, (2) Missing

Data Generation, (3) Missing Data Imputation, (4) Classification and (5) Evaluation

(Figures 4.1 and 4.2).

Data Collection
MD

Generation
MD 

Imputation
Classification

Evaluation

1 2 3 4

5

Figure 4.2: Summary of the experimental setup.

This work can be divided into three distinct experiments regarding the simulations

that were carried out:

1st Experiment: We selected 20 complete datasets from different open source

repositories and simulated the missing mechanisms using 9 univariate implementa-

tions (univa). Then, 7 well-known imputation techniques and other 2 imputation

approaches based on SDAE are evaluated in terms of F-measure and R2.

2nd Experiment: We increased the benchmark of datasets used in the first one,

selecting another 13 complete datasets. In this case, we simulated each one of

the three missing mechanisms using two different configurations (univa and unifo),

which gives a total of 6 different implementations. After that, we impute the miss-

ing values using the same 7 widely-known imputation techniques used in the 1st

experiment and we propose another 2 SDAE-based approaches for imputation. We

evaluate the results with three different metrics: F-measure, R2 and RMSE.
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3rd Experiment: This experiment is quite similar to the 2nd, where we explore

datasets with different characteristics, namely, a higher number of samples.

4.1 Data Collection

To analyse the effect of different implementations of missing mechanisms on impu-

tation methods, we selected several datasets attending to different contexts, sample

sizes, number of features and types of features.

All datasets were publicly available and were obtained from the following reposito-

ries:

• UCI Machine Learning Repository – http://archive.ics.uci.edu/ml

• Knowledge Extraction based on Evolutionary Learning (KEEL) – http://

sci2s.ugr.es/keel/datasets.php

• StatLib – http://lib.stat.cmu.edu/datasets/

• Kaggle – http://www.kaggle.com/datasets/

• Pattern Recognition and Neural Networks book [67] – https://www.stats.

ox.ac.uk/pub/PRNN/

Since imputation experiments required complete data for evaluation, some of the

original datasets were preprocessed in order to remove observations with missing

values. In the case of multiclass datasets, they were modified in order to become

binary [68], since we focus solely on binary classification problems. After preprocess-

ing, all datasets are complete and binary. Their basic characteristics are presented

in Table 4.1. Additional information about the datasets, such as their source and

positive/negative classes is shown in Table B.1.

For the 1st and 2nd experiments, we chose standard datasets (low dimensionality

and low sample size) so that we had a reasonable computational time. lung-cancer

has the lowest number of observations (27) and bankote has the highest (1376).

Regarding the number of features, toy has the lowest (2) while lung-cancer has

the highest (56). In the 2nd experiment, we decided to remove ecoli dataset from

the study since we found that it has a feature that takes the same value (0.5) for all

observations, which makes the dataset a bit incoherent and may also create some

conflicts during the synthetic generation of missing values – in particular, for unifo

configurations.
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For the 3rd experiment we selected 5 datasets with higher sample sizes. thyroid1

and thyroid2 have the lowest number of observations (7034) while nursery2 has

the highest (8586). Regarding the number of features, nursery1 and nursery2

have the lowest number (8) while the remaining datasets have 21.

4.2 Missing Data Generation

In this section, we will describe how we generated the synthetic missing values.

Furthermore, we will introduce some intermediate results that we consider funda-

mental to establish some directions followed in this work. These results are related

to a preliminary experiment that was performed in order to select the generation

approaches that should be used in the remaining experiments.

As previously mentioned, several approaches to the synthetic generation of missing

values can be found in the literature. We used Python 3 to implement all the

synthetic generation methods mentioned in Section 2.2.1. In Table 4.2 we present a

summary of the characteristics of the generation configurations used in the different

experiments.

Table 4.2: Configurations used for the synthetic missing data generation on the
different experiments.

Experiment
# Generation Methods

# Datasets # Runs MR # Incomplete Datasets
Univariate Multivariate

1st 9 0 20 10 5 and 20% 3600

2nd
3 3

33
5 5, 10, 15, 20 and 40%.

4950
3rd 5 750

Synthetic generation of Missing Data in the 1st Experiment

In the 1st experiment, we study only univariate implementations (univa) for 2 differ-

ent missing rates, 5% and 20%. The process of artificially generating missing values

was performed 10 times (10 runs) for each dataset and for each implementation.

As already mentioned in Section 2.2.1, the missing feature, xmiss, was the one most

correlated with the class labels and the observed feature, xobs, was the one most

correlated with xmiss. The correlation between features is assessed using different

coefficients depending on the type of features (Table 4.3). For example, if we want

to measure the correlation between a nominal feature and the class labels (binary)

we would use Cramer’s V.
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Table 4.1: Description of the datasets used in this study. The last columns show
the number of features according to their type: C (continuous), O (ordinal), N
(nominal) and B (binary).

Dataset Context Sample
Size

No. Of
Features

C O N B

1
s
t
a
n
d

2
n
d

E
x
p
e
ri
m

e
n
ts

australian Credit card applications. 690 14 6 0 4 4

banknote Data extracted from banknote im-
ages.

1372 4 4 0 0 0

biomed Blood measurements database. 194 5 5 0 0 0

breast-ljub Breast cancer data. 277 9 0 5 1 3

breast-tissue Impedance measurements of tissue
from the breast.

106 9 9 0 0 0

cleveland Heart disease database. 297 13 6 1 3 3

crabs Morphological features of crabs. 200 6 5 0 0 1

dermatology1 Clinical features of erythema and
scaling.

96 34 1 32 0 1

ecoli Measurements about the cell to pre-
dict the location site of proteins.

220 7 7 0 0 0

glass1 Inflammation about 6 types of glass. 214 9 9 0 0 0

heart-statlog Heart disease database. 270 13 6 1 3 3

iris Iris plant database. 150 4 4 0 0 0

kidney Chronic kidney disease database. 158 24 11 0 3 10

lung-cancer Lung cancer database. 27 56 0 0 43 13

lymphography Lymphoma detection. 142 18 3 0 6 9

postoperative Patient features used to determine
whether a patient should be moved
from an area to another.

86 8 0 4 2 2

saheart South African heart database. 462 9 8 0 0 1

urinary Acute inflammation of urinary blad-
der database.

120 6 1 0 0 5

wine1 Chemical analysis of wines. 130 13 13 0 0 0

wpbc Follow-up data for breast cancer
cases (prognostic).

198 32 32 0 0 0

2
n
d

E
x
p
e
ri
m
e
n
t

balancescale Balance scale weight and distance
database.

576 4 4 0 0 0

bankrupcy Qualitative parameters to predict
bankrupcy.

250 6 0 0 6 6

cmc Contraceptive method choice
database.

844 9 2 0 4 3

dermatology2 Clinical features of erythema and
scaling.

182 34 1 32 0 1

edu-data1 Students’ academic performance
database.

269 16 4 0 6 6

edu-data2 353 16 4 0 6 6

glass2 Information about 6 types of glass. 214 9 9 0 0 0

hcc-data-mortality Clinical features of real patients diag-
nosed with Hepatocellular Carcinoma
(HCC).

165 5 1 1 0 3

hcc-data-survival 165 5 1 1 0 3

hepato Hepatobiliary disorders database. 302 9 9 0 0 0

new-thyroid Thyroid disease database. 65 5 5 0 0 0

toy Synthetic dataset composed of five
Gaussian components.

1250 2 2 0 0 0

wine2
Chemical analysis of wines.

107 13 13 0 0 0

wine3 119 13 13 0 0 0

3
r
d

E
x
p
e
ri
m

e
n
t mushrooms Mushrooms description regarding of

physical characteristics.
8124 21 0 0 17 4

nursery1 Ranking applications for nursery
schools.

8364 8 0 0 7 1

nursery2 8586 8 0 0 7 1

thyroid1 Thyroid disease database - data from
10 different databases.

7034 21 6 0 0 15

thyroid2 7034 21 6 0 0 15
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So, for each dataset, xmiss and xobs were the same regardless of the implementa-

tion used – Table C.1 shows the index of these features for each dataset. For this

experiment we generate Missing Data (MD) using the following implementations:

MCAR1univa, MCAR2univa, MAR1univa, MAR2univa, MAR3univa, MAR4univa,

MAR5univa, MNAR1univa and MNAR2univa.

Table 4.3: Different correlation coefficients depending on the type of features (or
labels). Adapted from [69].

Continuous Ordinal Nominal Binary

Continuous Pearson R Spearman rho ETA Point-Biserial

Ordinal – Spearman rho
ETA (with ranks
in ordinal)

Rank Biserial

Nominal – – Cramer’s V Cramer’s V
Binary – – – Phi Coefficient

After the 1st experiment, we moved to the 2nd experiment, increasing the number of

datasets as well as using 2 multiple imputation approaches based on SDAE. These

changes would lead to an increase on the required computational time, so we changed

the configuration of the synthetic generation as follows: we used only 6 different

generation approaches, one for each mechanism (MCAR, MAR and MNAR) and

for each type of implementation, univa and unifo; we only perform 5 runs for each

dataset and implementation; furthermore, we use a larger set of MRs (5, 10, 15, 20

and 40%) in order to generalize the obtained results.

Synthetic generation of Missing Data in the 2nd and 3rd Experiments

In order to select the 6 generation approaches that would be used both in the 2nd and

3rd experiments, we performed a preliminary analysis of the effect of the different

implementations in the well-known imputation techniques. For this, we generated

MD using all the implementations described in Section 2.2.1: this MD generation

was performed 10 times (10 runs) for all 33 datasets and for 5 different MRs (5, 10,

15, 20 and 40%). Then, the incomplete datasets were imputed using 7 well-known

techniques: Mean Imputation (Meanimp), imputation with k-Nearest Neighbours

(kNNimp) for k=1, 3 and 5, imputation with Support Vector Machines (SVMimp),

MICE and Expectation-Maximization (EM). The results of this analysis correspond

to the mean results for all the datasets and are shown both in terms of quality

of imputation (R2 and RMSE) and classification performance (F-measure): the

values obtained for each evaluation metric and the ranks of the different imputation

methods per generation approach are presented in the Appendices of this document

– Tables E.1 and E.2 for F-measure under univa generation approaches; Tables E.3

and E.4 for R2 and RMSE under univa generation approaches; Tables E.5 and E.6
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for F-measure under unifo generation approaches; Tables E.7 and E.8 for R2 and

RMSE under unifo generation approaches. Next, we discuss the best approach to

implement each configuration and missing mechanism.

• Univariate Implementations, univa (Tables E.1 and E.3)

For MCAR mechanism, we chose MCAR2univa although the results in terms of

imputation quality and classification performance are in most cases superior for

MCAR1univa. However, we believe it would not be correct to use MCAR1univa

due to its limitation in the generation of the desired MR because of the use of

Bernoulli distribution.

To generate MD under MAR mechanism we use MAR2univa since this seems

the best generation method regarding the quality of imputation. Although

this approach does not guarantee the best results in terms of classification

performance, it was chosen because of its simple implementation which also

ensures the generation of the desired number of missing values.

MNAR2univa was chosen since in most scenarios it was superior toMNAR1univa,

both in terms of quality of imputation and classification performance.

• Multivariate Implementations, unifo (Tables E.5 and E.7)

We choose to use MCAR3unifo because besides being the MCAR implemen-

tation with the best results for most of the studied scenarios, it is also the

most common implementation for this mechanism. Furthermore, the remain-

ing MCAR implementations have the limitation of not being able to generate

the desired MR.

For MAR mechanism, we discarded MAR2unifo since it has the limitation

of only being able to generate MR up to 25%. MAR3unifo is the one that

achieves the best results for most studied scenarios, however, this implemen-

tation chooses only one observed feature, xobs, to influence the MD generation

process in the entire dataset. Since we do not consider this last approach the

most exemplary of MAR unifo implementations, we chose MAR1unifo.

We chose MNAR3unifo even though MNAR2unifo was the implementation

that shows superiority in terms of imputation quality. This implementation

was not chosen since the pattern it generates is somehow limited: if we define

the number of missing features (nF ) as the total number of features, this

implementation will delete entire samples.
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4.3 Missing Data Imputation

After the MD generation step, we move on to the imputation of the incomplete

datasets. In the three experiments, we compared the performance of SDAE with

7 well-known imputation methods, namely: Meanimp, kNNimp for k=1, 3 and 5,

SVMimp, MICE and EM (please refer to Section 2.3).

Next, we will refer to the details of the implementations used for the imputation

methods, especially to the configurations of the SDAE – most of the methods were

applied using open-source implementations.

Meanimp and kNNimp were implemented using fancyimpute [30] implementation

in Python. For kNNimp we considered the euclidean distance and a set of closest

neighbours {1, 3, 5}.

SVMimp was implemented using scikit-learn. The search for optimal parameters C

and γ of the kernel was performed through a grid search for each dataset. Different

ranges were tested: 10−2 to 1010 for C and 10−9 to 103 for γ, both ranges increasing

by a factor of 10 – these are considered suitable ranges, according to the documen-

tation of scikit-learn. We performed 5 repetitions of a Holdout validation, for each

combination of C and γ, using 80% of the data to train and 20% to test. Table D.1

shows the optimal values of C, γ and the average accuracy over the 5 repetitions,

for all the datasets used in this study.

For MICE we used fancyimpute [30] implementation in Python with default set-

tings. We perform 100 iterations of the method which means that the complete

dataset was a result of 100 imputed datasets (multiple imputation). Finally, EM

was implemented using the Python library impyute [37].

SDAE-based approaches

In this work we propose four different SDAE-based approaches for the complete

reconstruction of missing data: two of them are used and evaluated in the 1st exper-

iment while the remaining two are evaluated in the 2nd and 3rd experiments. All the

models were implemented using Keras library with a Theano backend [70, 71]. We

chose to use overcomplete representations since Gondara et al. [9] proved that over-

complete architectures provided better results. Furthermore, for all the proposed

approaches we defined that our target would be the complete data, i.e. the data

before the synthetic generation of Missing Value (MV).
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In the 1st experiment, we explored 2 different approaches based on SDAE: SDAE1adadelta

and SDAE1sgd. Here, we use only complete samples to train the model while the

incomplete ones are used as test set. The MVs on the test set are replaced by zero

values, since SDAE does not accept “NaN” values. We also apply z-score (Equation

4.1) standardisation to the input data in order to have a faster convergence. The

z-score of a value, x, is obtained by the following equation:

z =
x− µ
σ

(4.1)

where µ and σ are the mean and standard deviation of the feature that we want

to scale, respectively. After applying z-score standardisation, each dataset will have

zero mean and unitary standard deviation.
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m + 2θ

m + 3θ
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Original
Input

OutputCorrupted
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H1
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Encoder Decoder

Figure 4.3: Our overcomplete SDAE general architecture composed of 5 hidden
layers. Each successive hidden layer from the encoder has an increment in the num-
ber of nodes of θ = 7. In the decoder, the number of nodes decreases symmetrically
up to the original dimensions.

The architectures of SDAE1adadelta and SDAE1sgd are similar to the architecture

proposed by Gondara et al. [9]. The models are composed by an input layer, 5

hidden layers and an output layer which form the encoder and the decoder (both

constructed using regular densely-connected neural network layers) – Figure 4.3.

The increment in the number of nodes for each successive hidden layer was set to 7,

as it has proven to obtain good results in previous works [9]. The two models have
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4. Proposed Architecture

an input dropout ratio of 30%. For both versions, SDAE1adadelta and SDAE1sgd,

we use the activation function Tanh for encoding and decoding layers. First, the

SDAE are fed with the complete patterns to train, and after the training phase, the

model is used to impute the incomplete patterns (from the test set).

The difference between SDAE1adadelta and SDAE1sgd is in the configuration of the

training phase. SDAE1sgd is adapted from Gondara et al. [9], while for SDAE1adadelta,

we have decided to study a different optimisation function – Adadelta optimisation

algorithm – since it avoids the difficulties of defining a proper learning rate [46].

Therefore, SDAE1adadelta is trained with 500 epochs using Adadelta optimisation

algorithm [46] and mean squared error as loss function, while SDAE1sgd uses the

Stochastic Gradient Descent (SGD) [44] with a time decay factor of 0.99 and Nes-

terov’s accelerated gradient [72].

The major limitation of SDAE-based approaches found in the related works is that

they report the results only for the test set. In practice, this means that we are only

imputing the MD from the test set. So, it is assumed that the training group has no

missing values and the only existent corruption is related to the training process of

the Denoising Autoencoder (DAE). In the two approaches we have described earlier,

we created the training sets only with complete data. Of course this option has a

great limitation, since it is influenced by the percentage of missing values in the

dataset. Moreover, SDAE1adadelta and SDAE1sgd would hardly be used for unifo

implementations because in these cases there may not be any complete pattern to

form the training set for the models.

For the 2nd and 3rd experiment we propose another two approaches based on SDAE:

SDAE2adadelta and SDAE2adam. With these two approaches, we seek to explore the

effect of an SDAE architecture that uses a training set that, similar to the test set,

is corrupted according to the missing mechanisms. For this, we propose a multiple

imputation method based on SDAE that ensures that the entire dataset is imputed.

These approaches include a pre-imputation step for which we use the well-known

Mean/Mode imputation method as was done in Gondara et al. [9]. We also apply

z-score (Equation 4.1) standardisation to the input data in order to have a faster

convergence. Once again, these two architectures are similar to the one proposed by

Gondara et al. [9] (Figure 4.3). For the encoding layers we chose Tanh as activation

function due to its greater gradients [40]. ReLu was used as activation function in

the decoding layers since Charte et al. [40] affirm that it is the best choice when

combined with the mean squared error. The difference between SDAE2adadelta and

SDAE2adam is the optimization algorithm - Adadelta optimisation algorithm [46] is

56



4. Proposed Architecture

used for SDAE2adadelta while Adam optimisation algorithm [48] is used SDAE2adam.

We chose Adam optimizer since Charte et al. [40] compared it with other SGD-

based approaches (such as AdaGrad [45] and RMSProp [47]) and showed that Adam

obtained the best results in terms of speed of convergence. Both models are trained

with 100 epochs using mean squared error as loss function. Our models have an

input dropout ratio of 50%, which means that half of the network’s inputs are set

to zero in each training batch. To prevent the training data from overfitting we add

a regularization function named L2 [40].

Our imputation approaches based on SDAE2adadelta and SDAE2adam consider the

creation of three different models (for three different training sets), for which three

runs will be performed (multiple imputation). This approach is illustrated in Algo-

rithm 20 and in Figure 4.4 and works as follows: (1) the instances of each dataset

are divided into three equal-size sets (p = 3); (2) each set is used as test set, while

the remaining two are used to feed the SDAE in the training phase; (3) 3 multiple

runs (l = 3) will be performed for each one of these models; (4) the output mean of

the three models is used to impute the unknown values of the test set.

Incomplete
Dataset

Pre-imputed
Dataset

Multiple imputation

Complete Dataset

Training Set

Test Set 1 2 3

Divide the dataset
Into 3 equal-size sets

1

2

3

Each model
Each run of a model – one step 
of imputation

Figure 4.4: Multiple imputation using SDAE - data division for each model.

4.4 Classification and Evaluation Metrics

After the imputation step is concluded, we move towards the classification stage.

The step of classification is common to all experiments. We perform classification

with a SVM with linear kernel and considering a value of C = 1, as explained in

Section 2.4.
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Algorithm 20: Multiple imputation using SDAE – SDAE2adadelta and
SDAE2adam
Input :

Pre-imputed dataset X, p data partitions, l multiple imputations
Output:

Complete dataset

begin
for i in range(1, p) do

Consider all partitions (except partition i) as training set
Consider partition i as test set
for j in range(1, l) do

Perform dropout (50%) in training set
Initialise the SDAE with random weights
Fit the imputation model to the training set
Apply the trained model to test set i and save its imputed version j

return Complete dataset X

We evaluate two key performance requirements for imputation techniques: their

efficiency on retrieving the true values in data (quality of imputation) [73] and their

ability of providing quality data for classification [5]. The quality of imputation

was assessed calculating two metrics: square of Pearson’s Correlation Coefficient

(Equation 2.15 which is used in all experiments), R2, and RMSE (Equation 2.16 used

for 2nd and 3rd experiment). The higher the value of R2, the better the performance

of the imputation method. For the RMSE, the closer to 0 the value is, the better

the imputation quality.

The classification performance was assessed using F-measure which considers a har-

monic mean of precision and recall [51]. The higher the value of F-measure, the

better the classification performance. In order to evaluate the classification perfor-

mance, we perform Holdout validation [50] which simply divides the dataset into

two different sets, train and test (70% and 30%), and calculates the desired metric

for the test set. This method has some limitations since the training set may not be

representative of the whole data which can cause biased results [51]. Despite this

shortcoming, we chose this method because any other would greatly increase the

computational time of the simulations.
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Experimental Results

In this chapter, we will report the results obtained from the three experiments

described in Chapter 4. We intend to analyse the effect of the different MD imple-

mentations on several imputation methods and under various MRs. Furthermore,

our main goal is to study the performance of imputation approaches based on SDAE,

compared to other imputation methods from the state of the art, divided into three

experiments:

• 1st Experiment: Assess the performance of SDAE-based methods for univa

configurations;

• 2nd Experiment: Assess the performance of SDAE-based methods for both

univa and unifo configurations;

• 3rd Experiment: Reassess the 2nd Experiment for datasets with higher sample

sizes.

5.1 1st Experiment

The main goals of the 1st experiment are the following:

• Propose 2 imputation methods based on SDAE capable of reconstructing the

incomplete data;

• Compare the performance of these methods with other approaches from the

state of the art, in terms of classification performance and imputation quality;

• Study the effect of several univa generation methods on different imputation

approaches.

Missing values were inserted at two MRs (5 and 20%) following 9 different scenar-

ios (MCAR1univa, MCAR2univa, MAR1univa, MAR2univa, MAR3univa, MAR4univa,
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MAR5univa, MNAR1univa and MNAR2univa) that are described in Section 2.2.1.

Ten runs were performed for each missing generation, per dataset and missing rate

(a total of 3600 incomplete datasets). Regarding the MRs, we chose to use 2 ex-

treme values representing both scenarios, with a small amount of missing data (5%)

and a large amount (20%). Furthermore, we use another 7 imputation techniques

often explored in the literature, in order to compare their performance with our pro-

posed models. Finally, we selected 20 complete datasets from different open source

repositories (Table 4.1). This first experiment allows us to distinguish the effects of

different univa implementations (for the same mechanism) on different imputation

methods. Furthermore, this is an initial experiment used to explore basic aspects of

SDAE under several generation methods.

Table 5.1: Results obtained from the 1st experiment: average results are shown re-
garding each missing data mechanism, implementation, metric (R2 and F-measure)
and missing rate. For each mechanism is presented the average of its implementa-
tions and the respective rank. The best results for each configuration are in boldface.

Imputation Methods

MR Mechanism SDAE1adadelta SDAE1sgd Meanimp kNNimp1 kNNimp3 kNNimp5 SVMimp MICE EM

R
2

5%

MCAR1 0.9091 5 0.8962 8 0.8986 7 0.9062 6 0.9182 4 0.9213 1 0.9210 2 0.8623 9 0.9205 3
MCAR2 0.9446 5 0.9374 8 0.9383 7 0.9391 6 0.9511 3 0.9536 2 0.9510 4 0.9042 9 0.9541 1
Mean 0.9276 5 0.9182 8 0.9193 7 0.9239 6 0.9356 4 0.9382 2 0.9363 3 0.8844 9 0.9384 1

MAR1 0.9128 5 0.9014 7 0.9008 8 0.9051 6 0.9180 4 0.9217 2 0.9223 1 0.8669 9 0.9215 3
MAR2 0.8814 6 0.8553 7 0.8495 8 0.8993 4 0.9100 2 0.9107 1 0.8843 5 0.8225 9 0.9043 3
MAR3 0.8966 6 0.8802 7 0.8700 8 0.8996 5 0.9119 3 0.9146 2 0.9074 4 0.8403 9 0.9156 1
MAR4 0.9103 5 0.8937 7 0.8846 8 0.9023 6 0.9128 4 0.9171 3 0.9221 1 0.8569 9 0.9189 2
MAR5 0.9107 5 0.9022 7 0.9006 8 0.9052 6 0.9188 4 0.9210 2 0.9205 3 0.8676 9 0.9219 1
Mean 0.9038 5 0.8887 7 0.8844 8 0.9037 6 0.9155 3 0.9181 1 0.9133 4 0.8532 9 0.9170 2

MNAR1 0.8637 6 0.8514 7 0.8371 8 0.8856 5 0.8876 4 0.8879 3 0.9028 1 0.8109 9 0.8902 2
MNAR2 0.8078 6 0.7731 7 0.7554 8 0.8104 5 0.8309 2 0.8306 3 0.8284 4 0.7281 9 0.8437 1
Mean 0.8358 6 0.8122 7 0.7962 8 0.8480 5 0.8593 3 0.8592 4 0.8656 2 0.7695 9 0.8670 1

20%

MCAR1 0.8004 5 0.7658 7 0.7623 8 0.7936 6 0.8340 4 0.8416 2 0.8439 1 0.6540 9 0.8372 3
MCAR2 0.8327 5 0.8012 7 0.8003 8 0.8147 6 0.8574 4 0.8649 2 0.8593 3 0.6644 9 0.8677 1
Mean 0.8134 5 0.7784 7 0.7782 8 0.7990 6 0.8423 4 0.8501 1 0.8472 3 0.6565 9 0.8496 2

MAR1 0.7913 5 0.7499 7 0.7459 8 0.7868 6 0.8266 4 0.8323 2 0.8329 1 0.6309 9 0.8287 3
MAR2 0.7516 5 0.7126 7 0.6584 8 0.7172 6 0.7772 4 0.7865 3 0.8055 1 0.5766 9 0.7934 2
MAR3 0.7485 6 0.6707 7 0.6604 8 0.7529 5 0.8071 4 0.8146 3 0.8160 2 0.5586 9 0.8189 1
MAR4 0.8115 4 0.7513 7 0.7052 8 0.7795 6 0.8188 3 0.8262 2 0.8098 5 0.6175 9 0.8288 1
MAR5 0.7981 5 0.7560 7 0.7513 8 0.7809 6 0.8235 4 0.8325 3 0.8417 1 0.6351 9 0.8331 2
Mean 0.7832 5 0.7333 7 0.7127 8 0.7669 6 0.8136 4 0.8214 3 0.8239 1 0.6092 9 0.8228 2

MNAR1 0.7407 1 0.6927 6 0.5690 8 0.6722 7 0.7019 5 0.7098 4 0.7253 3 0.5283 9 0.7405 2
MNAR2 0.6830 1 0.6128 6 0.4749 8 0.6145 5 0.6322 4 0.6339 3 0.6035 7 0.4555 9 0.6598 2
Mean 0.7119 1 0.6528 6 0.5220 8 0.6433 7 0.6670 4 0.6718 3 0.6644 5 0.4919 9 0.7002 2

F
-m

ea
su

re

5%

MCAR1 0.7372 6 0.7362 8 0.7359 9 0.7373 5 0.7379 4 0.7380 3 0.7407 1 0.7370 7 0.7396 2
MCAR2 0.7372 7 0.7375 5 0.7370 8 0.7389 2 0.7383 3 0.7382 4 0.7396 1 0.7365 9 0.7374 6
Mean 0.7368 6 0.7368 7 0.7366 8 0.7373 5 0.7374 4 0.7377 3 0.7393 1 0.7363 9 0.7383 2

MAR1 0.7344 6 0.7327 9 0.7339 7 0.7363 5 0.7375 3 0.7384 2 0.7390 1 0.7329 8 0.7368 4
MAR2 0.7374 4 0.7349 7 0.7324 9 0.7369 5 0.7382 3 0.7365 6 0.7413 2 0.7338 8 0.7415 1
MAR3 0.7367 8 0.7369 7 0.7373 6 0.7377 5 0.7382 2.5 0.7382 2.5 0.7385 1 0.7345 9 0.7380 4
MAR4 0.7383 2 0.7383 5 0.7385 1 0.7379 7 0.7383 3.5 0.7383 3.5 0.7381 6 0.7373 9 0.7377 8
MAR5 0.7366 6 0.7362 8 0.7366 7 0.7382 4 0.7383 3 0.7384 2 0.7396 1 0.7344 9 0.7366 5
Mean 0.7365 6 0.7356 7 0.7355 8 0.7373 5 0.7379 3 0.7377 4 0.7392 1 0.7344 9 0.7380 2

MNAR1 0.7311 8 0.7343 5 0.7316 7 0.7385 2 0.7367 3 0.7326 6 0.7393 1 0.7299 9 0.7362 4
MNAR2 0.7295 6 0.7279 8 0.7272 9 0.7346 5 0.7359 2 0.7362 1 0.7350 4 0.7286 7 0.7356 3
Mean 0.7303 7 0.7311 6 0.7294 8 0.7366 2 0.7363 3 0.7344 5 0.7372 1 0.7292 9 0.7359 4

20%

MCAR1 0.7267 8 0.7263 9 0.7274 6 0.7293 5 0.7315 3 0.7328 2 0.7411 1 0.7268 7 0.7308 4
MCAR2 0.7321 8 0.7334 5 0.7333 6 0.7358 3 0.7349 5 0.7355 4 0.7388 1 0.7299 9 0.7329 7
Mean 0.7307 8 0.7316 6 0.7315 7 0.7335 4 0.7343 3 0.7352 2 0.7395 1 0.7279 9 0.7334 5

MAR1 0.7247 6 0.7247 7 0.7223 9 0.7307 3 0.7311 2 0.7305 4 0.7396 1 0.7223 8 0.7295 5
MAR2 0.7355 6 0.7332 7 0.7366 4 0.7313 8 0.7408 2 0.7409 1 0.7391 3 0.7270 9 0.7365 5
MAR3 0.7316 6 0.7304 7 0.7331 5 0.7301 8 0.7344 4 0.7380 2 0.7384 1 0.7262 9 0.7366 3
MAR4 0.7297 6 0.7280 7 0.7267 9 0.7341 4 0.7350 3 0.7357 1 0.7355 2 0.7278 8 0.7306 5
MAR5 0.7281 6 0.7269 7 0.7256 8 0.7316 5 0.7343 3 0.7352 2 0.7413 1 0.7229 9 0.7321 4
Mean 0.7293 6 0.7278 8 0.7281 7 0.7312 5 0.7346 3 0.7355 2 0.7391 1 0.7242 9 0.7322 4

MNAR1 0.7298 1 0.7237 5 0.7205 9 0.7225 7 0.7253 3 0.7246 4 0.7255 2 0.7222 8 0.7230 6
MNAR2 0.7275 1 0.7249 3 0.7170 8 0.7160 9 0.7195 7 0.7215 5 0.7260 2 0.7200 6 0.7229 4
Mean 0.7287 1 0.7243 3 0.7188 9 0.7192 8 0.7224 6 0.7231 4 0.7257 2 0.7211 7 0.7230 5
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Table 5.1 and Figures 5.1 and 5.2 present the average results obtained for each

dataset. The results are divided by metric (F-measure and R2), missing mecha-

nism (MCAR, MAR and MNAR) and missing rate (5 and 20%). Table 5.1 further

distinguishes between different implementations of the missing mechanisms.

Overall, the increase of the missing rate leads to a decrease in the performance of

classifiers (F-measure) and in the quality of imputation (R2). It is also noticeable

that the values of both metrics decrease from MCAR to MAR and from MAR

to MNAR for most imputation scenarios. We now thoroughly analyse the results

obtained regarding the quality of imputation and impact on classification results

individually.

Quality of Imputation (R2):
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Figure 5.1: Average R2 values for all datasets, considering the different imputation
methods under the three missing mechanisms.

For MCAR mechanisms and considering a 5% missing rate, kNNimp5 and EM were

the best approaches for MCAR1univa and MCAR2univa, respectively; while for a

20% missing rate, SVMimp and EM proved to be the best imputation techniques

for MCAR1univa and MCAR2univa, respectively. For both MRs, SDAE1adadelta is

the 5th best approach, with differences from the best method of 0.0108 (MR 5%)

and 0.0367 (MR 20%). SDAE1sgd is the 8th (MR 5%) and 7th (MR 20%) with

differences from the best method of 0.0202 and 0.0717, respectively.
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For MAR mechanism there are three winner approaches when missing rate is 5%:

SVMimp (for MAR1univa and MAR4univa), EM (for MAR3univa and MAR5univa)

and kNNimp5 (for MAR2univa ). For a missing rate of 20%, two winner approaches

arise: SVMimp (for MAR1univa, MAR2univa and MAR5univa) and EM (MAR3univa

and MAR4univa). Regardless of the MR, SDAE1adadelta and SDAE1sgd are the 5th

and 7th best imputation approaches – SDAE1adadelta differs from the best method

of 0.0144 (MR of 5%) and 0.0407 (MR of 20%); SDAE1sgd 0.0295 (MR of 5%) and

0.0906 (MR of 20%) from the 1st approach.

Regarding MNAR mechanism, SVMimp and EM show the best results forMNAR1univa

and MNAR2univa, respectively, considering a 5% missing rate. SDAE1adadelta

(0.0312) and SDAE1sgd (0.0547) are ranked with 5 and 7, respectively, and the val-

ues in parentheses indicate the difference from the best approach. For a higher MR

(20%), SDAE1adadelta seems to be the best imputation approach – SDAE1adadelta

reaches an average value of 0.71187 followed by EM that achieves 0.70016.
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Figure 5.2: Average F-measure values for all datasets, considering the different
imputation methods under the three missing mechanisms.

For MCAR mechanisms, SVMimp seems to be the best imputation method in

terms of classification performance (F-measure), regardless of the missing rate.

SDAE1adadelta is ranked with 6 (5%) and 8 (20%), differing from the best method

of 0.00254 and 0.00880, respectively. SDAE1sgd is the 7th and the 6th best method
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under the 2 MRs. Here, the differences between the imputation methods are smaller

than for R2 – the differences between the SDAE-based approach and the best method

for each scenario are 0.00255 and 0.00786, respectively.

Considering MAR mechanism, there are three winner approaches for 5% of MR:

Meanimp (for MAR4univa), SVMimp (for MAR1univa, MAR3univa and MAR5univa)

and EM (for MAR2univa). For a higher MR (20%), SVMimp (for MAR1univa,

MAR3univa and MAR5univa) and kNNimp5 (MAR2univa and MAR4univa) proved

to be the best approaches. SDAE1adadelta (5% – 0.0028; 20% – 0.0098) is ranked as

6 best method for both MRs. SDAE1sgd is the 7th (MR 5%) and 8th (MR 5%) best

method differing from the 1st of 0.0079 and 0.0114, respectively.

For MNAR mechanism and 5% of missingness there are two winner approaches:

SVMimp (for MNAR1univa) and kNN5imp (for MNAR2univa). For the same MR,

SDAE1adadelta (0.0069) and SDAE1sgd (0.0061) are ranked with 7 and 6, respec-

tively. When the missing rate increases (20%), SDAE1adadelta and SDAE1sgd are

among the top 3 approaches: SDAE1adadelta surpasses all the remaining methods,

while SDAE1sgd is the third best imputation method, falling just behind kNNimp5.

Conclusions

In this 1st experiment, we propose 2 SDAE-based approaches capable of imputing

data that are missing. The results show that our proposed approaches surpass other

imputation methods from the state of the art, for some combinations of missing

mechanisms and MRs. Despite this, it is important to note that our models have

some limitations since we assume that there is enough complete data to be used

in the training phase: in other words, our training set is composed of complete

observations while the incomplete ones belong to the test set.

These results show that our model (SDAE1adadelta) which uses Adadelta as opti-

mization algorithm surpasses the results obtained by SDAE1sgd proposed in Gondara

et al. [9]. Furthermore, the results obtained for MNAR mechanisms under a high

MR, show the superiority of SDAE over the remaining state-of-the-art methods,

indicating that autoencoders might be a feasible approach for this scenario, which

is a relevant insight for the research community, since MNAR is a non-ignorable

mechanism and the most problematic to impute in an unbiased way.

Regarding both metrics (R2 and F-measure), the top 3 imputation methods per

mechanism are always the same except for MNAR with 20% of missing values.

EM, kNNimp5 and SVMimp are the approaches that achieve the best results for

MAR and MCAR mechanisms, and MNAR seems to be the only mechanism which
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influences the choice of imputation method.

In summary, the conclusions of the 1st experiment are the following:

• Our experiments show that under MCAR and MAR mechanisms there are

three imputation methods that perform well: EM, kNNimp5 and SVMimp.

For these scenarios, SDAE1adadelta and SDAE2adam are ranked between 5

and 8 position – SDAE1adadelta seems to be superior to SDAE1sgd;

• For MNAR mechanism, the imputation technique based on overcomplete SDAE

– SDAE1adadelta – outperforms well-known imputation methods for high rates

of missing data (20%), both in terms of classification performance (F-measure)

and quality of imputation (R2);

5.2 2nd Experiment

The goals of this experiment are:

• Propose another 2 SDAE architectures to recover missing data;

• Propose a multiple imputation algorithm capable of imputing missing data

regardless of the MR, using the 2 SDAE architectures mentioned above;

• Compare the performance of our proposed models with imputation methods

from the state of the art, under several missing rates;

• Study the effect of the different generation methods on several imputation

methods.

Before we started a new experiment, it was necessary to select the synthetic gen-

eration methods that would be used from then on. If we apply all the generation

methods to the datasets, we would need a lot of computational time. So, in order

to reduce the computational time, we selected a set of generation methods. The

aim of this preliminary study was to investigate the generation methods that led to

a better performance of the imputation methods. In addition to the performance

of the imputation methods, we also took into consideration some limitations of the

generation methods that were already known. At the end, we chose to use a gen-

eration method for each mechanism (MCAR, MAR and MNAR) and for each type

of implementation (univa and unifo) – MCAR2univa, MCAR3unifo, MAR2univa,

MAR1unifo, MNAR1univa and MNAR3unifo. This analysis can be found in Section

4.2.
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In brief, we performed a comparative study on the effect of the various generation

methods described in Section 2.2.1 on 7 well-known imputation methods from the

state of the art (Meanimp, kNNimp for k=1,3 and 5, SVMimp, MICE and EM).

This 2nd experiment also requires a missing value generation phase (where 5 runs

were performed) followed by imputation and classification. Then, we evaluated both

the imputation quality and its impact on classification. The results are divided by

metric (F-measure, R2 and RMSE), missing mechanism (MCAR, MAR and MNAR),

type of configuration (univa and unifo) and missing rate (5, 10, 15, 20 and 40%).

We evaluate 9 different imputation techniques including 2 SDAE-based approaches

for a total of 4950 incomplete datasets.

Table 5.2 presents the average results obtained for all the 33 complete datasets used

in this study (Table 4.1). As in the 1st experiment, the increase in the missing rate

leads to a decrease in the classification performance (F-measure) and the quality of

imputation (R2 and RMSE). Moreover, we evaluate 2 important perspectives from

the missing data problem – imputation quality and classification performance – the

results obtained for these 2 perspectives do not match. Next, we provide a detailed

analysis of the results obtained considering imputation quality and classification

performance.

Quality of Imputation (R2 and RMSE):

For univa configurations, SDAE2adam proved to be the best approach for all missing

mechanisms, regardless of the missing rate. SDAE2adadelta was ranked as the 6th or

7th best method, in terms of R2, and regarding RMSE metric was considered to be

5th or 6th best method.

For the unifo configurations, MICE is the best imputation method for MCAR miss-

ing mechanisms for all the MRs while the SDAE-based approaches are ranked be-

tween 2nd and 6th positions. Considering MAR missing mechanism, MICE is also

the best method in most of the scenarios: for a higher MR (40%), SDAE2adam

seems to be the best approach in terms of RMSE. In the case of MNAR mecha-

nism and for lower MRs (5% and 10%), MICE is also the best approach. However,

for higher MRs, the SDAE-based approaches guarantee a better imputation quality

– SDAE2adadelta is the best method under 15% and 40% MRs while SDAE2adam

seems to be superior for 20%.
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5. Experimental Results

Impact on classification (F-measure):

The results show that SVMimp seems to be the best imputation method in terms of

classification performance and for the three highest MRs (15, 20 and 40%), regardless

of the missing mechanism and configurations considered. For the lower MR (5 and

10%) there is no standard, suggesting that small amounts of missing values have

little influence on the quality of the dataset for classification purposes – there is an

exception for the univa configurations under 5% of MR: in this case, SVMimp is the

winner.

Regarding the performance of the SDAE-based approaches, the 2 SDAE are ranked

between the 5th and 7th position (considering all the MRs), for MCAR2univa and

MAR2univa. Regarding MNAR1univa, the SDAE belong to the top 3 best imputa-

tion approaches for higher MRs (20% and 40%) while for lower MRs they are ranked

between 5th and 8th positions. The SDAE are placed between 2nd and 5th positions

for MCAR3unifo and MAR1unifo, while for MNAR3unifo they are placed between

2nd and 5th positions, for all the MRs.

We also compared all the imputation methods using the Friedman rank test, for

k=8 imputation methods and N=33 datasets. Table 5.3 shows the mean ranks for

all the datasets and the value of the Friedman statistic, FF , for each scenario. The

null hypothesis of this test, H0, is the equivalence between all the methods. Follow-

ing the work of Demšar [53], we compared the values of FF to the F distribution

F (0.05)8.256 = 1.9747 (8 degrees of freedom). For the boldface values at Table 5.3

there is weak evidence against the null hypothesis, so conclusions about the statis-

tical differences between the imputation methods cannot be drawn. On the other

hand, for all the FF values that are not in boldface, there is strong evidence against

the null hypothesis, so we reject it - meaning that there are significant differences

between the imputation methods. In brief, for all the cases where we reject the null

hypothesis, we can affirm that all methods under comparison are different.

We performed another statistical test for those cases in which we could not conclude

if there were statistical differences between all the methods (using the Friedman

test). We use the Wilcoxon Signed Rank test to verify if there are statistical dif-

ferences between some pairs of methods: for each scenario, we compared the SDAE

with the imputation method that performed better. Under the null hypothesis, the

median difference between pairs of observations of the 2 imputation methods is zero

– when the null hypothesis is rejected, the 2 methods are considered to be different.
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5. Experimental Results
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5. Experimental Results

We define the level of significance as α = 0.05 and the p− values of the comparison

tests are shown in Table 5.4.

Table 5.4: P − values for the Wilcoxon Signed Rank test. We use this test to
ascertain whether there are significant differences between the indicated pairs of im-
putation methods. Boldface methods are the superior ones (in terms of classification
performance) from each pair. Boldface p-values indicate strong evidence against the
null hypothesis.

F-measure

MR Mechanism Methods p-value

univa

5%

MCAR2 SVMimp
SDAE2adadelta 0.1570
SDAE2adam 0.1701

MAR2 SVMimp
SDAE2adadelta 0.0174
SDAE2adam 0.0113

MNAR1 SVMimp
SDAE2adadelta 0.0131
SDAE2adam 0.0131

10%

MCAR2 kNNimp3
SDAE2adadelta 0.0400
SDAE2adam 0.0442

MAR2 SVMimp
SDAE2adadelta 0.0386
SDAE2adam 0.0158

MNAR1 kNNimp5
SDAE2adadelta 0.2721
SDAE2adam 0.1823

15% MNAR1 SVMimp
SDAE2adadelta 0.1728
SDAE2adam 0.1556

20%

MCAR2 SVMimp
SDAE2adadelta 0.0333
SDAE2adam 0.0366

MNAR1 SVMimp
SDAE2adadelta 0.6092
SDAE2adam 0.5321

40% MNAR1 SVMimp
SDAE2adadelta 0.9176
SDAE2adam 0.9588

unifo

5% MAR1 MICE
SDAE2adadelta 0.1771
SDAE2adam 0.1240

10% MAR1 MICE
SDAE2adadelta 0.9826
SDAE2adam 0.4348

We reject the null hypothesis of the Wilcoxon Signed Rank test when the p−value is

bellow the level of significance (α = 0.05). For example, according to the information

in Table 5.4, for 5% of MR and MAR2univa, SVMimp shows to be significantly

different from SDAE-based approaches. On the other hand, although SDAE2adam

has superiority for 40% of MR and MNAR1univa, it does not prove to be significantly

different from SVMimp.

According to Table 5.4, there seems to be no superiority of the SDAE compared

to the remaining methods. For some scenarios, we can conclude that there are

significant differences between the 2 imputation methods in comparison – MR of
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5. Experimental Results

5%: MAR2univa and MNAR1univa; MR of 10%: MCAR2univa and MAR2univa;

MR of 20%: MCAR2univa. However, in these cases the SDAE are not superior.

For the remaining scenarios, we can not conclude about the superiority of any of

the compared methods. Therefore, although the SDAE are not superior in terms

of F-measure, they show no statistically significant differences regarding the best

method.

We continue this analysis by referring to the results obtained by Gondara et al. [9],

which used a similar benchmarking of datasets (although smaller, with only 15

datasets) and a SDAE approach for imputation (DAE1sgd). Gondara et al. [9]

proposed a SDAE based model for imputation but only compare the results with

one other imputation method, MICE. Furthermore, in the work of Gondara et al.,

only 2 missing mechanisms were generated – MCAR and MNAR – for a fixed MR of

20%. Their results have shown that the SDAE-based approach outperforms MICE

for most studied scenarios. Therefore, we also perform this comparison, only for

unifo configuration since Gondara et al. [9] did not use any univa methods for the

synthetic generation of MD. These results are presented in Figures 5.3 and 5.4.

MR
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Figure 5.3: Comparison between the results obtained with the SDAE based ap-
proaches and the well-known method MICE (unifo configuration), in terms of clas-
sification performance (F-measure).

In terms of classification performance (F-measure), the results for MCAR3unifo

show that MICE is superior under all the MRs. Furthermore, for MAR1unifo, MICE

remains superior, except for the MR of 15%, in which both SDAE approaches show

a better performance. For MNAR3unifo, the results are somewhat different: for

higher MRs (15, 20 and 40%), the 2 SDAE-based approaches are superior to MICE.
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5. Experimental Results
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Figure 5.4: Comparison between the results obtained with the SDAE based ap-
proaches and the well-known method MICE (unifo configuration), in terms of im-
putation quality (RMSE).

Regarding imputation quality, measured with RMSE, the results show that for

MCAR3univo there is no advantage in using our SDAE-based approaches compared

to MICE. For MAR1unifo, SDAE seem to be superior to MICE for a higher MR

(40%). Finally, MNAR3unifo benefits from the use of SDAE, for higher MRs (15, 20

and 40%) while under lower MRs (5 and 10%) MICE seems to be superior, despite

the small difference compared to the SDAE.

Conclusions

In this 2nd experiment, we proposed a multiple imputation approach based on SDAE

where the training data is corrupted in a way that mimics a particular missing mech-

anism. Furthermore, we study the performance of several imputation approaches

for different generation methods (univa and unifo configurations). Overall, the fol-

lowing conclusions are derived:

• In terms of imputation quality (RMSE), SDAE2adam shows the best results

for univa configurations. Considering unifo configurations and MCAR and

MAR mechanisms, MICE seems to be the best method. For MNAR3unifo

and higher MR, there is a clear advantage in using SDAE-based approaches;

• In terms of imputation quality and considering univa implementations, Adam

optimizer seems to achieve better results than the Adadelta optimizer;

• Regarding classification performance and for several of the studied scenarios
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5. Experimental Results

there are not statistical differences between all the methods. Therefore, even

if some methods obtained better results than SDAE-based approaches does

not mean that they are superior, since the differences are not statistically

significant;

• For higher MRs, SVMimp seems to be the best imputation method, in terms

of classification performance. In this case, the SDAE also have a good perfor-

mance. For lower MRs, the results are not homogeneous.

• Although the SDAE2adam ensures the best imputation quality for univa con-

figurations, the same does not occur in terms of classification performance;

Although the results of the SDAE-based approaches show its advantage for some of

the studied scenarios, these results are not sufficiently high to counteract the greatest

limitation of the use of SDAE: the high computational time and space/memory

required.

5.3 3rd Experiment

In the 2nd experiment, we used a benchmark of standard datasets to study the

imputation performance of SDAE-based approaches. Our SDAE-based approaches

have demonstrated to be superior for many of the studied scenarios, although there

was no agreement on the best methods regarding the classification performance and

imputation quality.

Therefore, in this 3rd experiment, we reproduce the setup proposed for the 2nd

experiment (Section 5.2) but, in this case, we selected 5 datasets that have higher

sample sizes than the ones used in the previous experiment, since deep learning

techniques have a “good reputation” in contexts where more data is available [7].

With this 3rd experiment, we want to determine if there is any advantage in using the

proposed SDAE approaches when the amount of data increases and if this advantage

exists for in both evaluated perspectives: classification and imputation quality.
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5. Experimental Results

Thus being, the main goal of this experiment is:

• Evaluate the performance of 2 SDAE-based approaches for datasets with higher

sample sizes.

As for the 2nd experiment, we synthetically generated MVs for 5 runs, using 6 differ-

ent implementations (univa and unifo), for 5 MRs (5, 10, 15, 20 and 40%) – a total

of 750 incomplete datasets. Once again, it can be observed that, the classification

performance (F-measure) and imputation quality (R2 and RMSE) decrease as the

MRs increase. We can also verify that the results regarding both classification and

imputation performance are superior for univa configurations. Next, we analyse in

detail the results of this 3rd Experiment, regarding both imputation quality and

classification performance, shown in Table 5.5.

Quality of Imputation (R2 and RMSE):

For univa configurations, SDAE2adadelta and SDAE2adam proved to be the first and

the second best imputation approaches, respectively, for all missing mechanisms,

regardless of the MR.

Regarding unifo configurations, the results are not so homogeneous. MICE proved

to be the best imputation method under MCAR configurations while SDAE2adadelta

and SDAE2adam are ranked as 4th and 5th best approaches.

For MAR configuration and R2 metric, SVMimp is the top winner. However, RMSE

do not coincide with R2 for all scenarios: RMSE shows that MICE is the best

imputation approach under 5% of MR while SDAE2adadelta is the top winner for

40% of MR. In summary, both SDAE-based methods are ranked between the 1st

and 4th positions. Both metrics show that SDAE2adadelta is the best imputation

approach for MNAR configurations, for most scenarios: the only exception occurs

in terms of RMSE and under 5% of MR, where MICE is superior to the SDAE-based

approaches.

Considering all the MRs, we can also verify that at least one of our proposed methods

based on SDAE approaches is included in the top 3 best imputation approaches, for

MAR and MNAR configurations. In the case of MNAR, the SDAE approaches are

in the 1st and 2nd place. For MAR configurations, they present a minimum and

maximum difference from the best method of 0.0081 (MR of 5%) and 0.0182 (20%),

respectively. Furthermore, Adadelta seems to be the optimizer that guarantees the

best imputation results.

73



5. Experimental Results

T
a
b

le
5
.5

:
R

esu
lts

ob
tain

ed
from

th
e

3
rd

ex
p

erim
en

t
b
y

im
p
u
tation

m
eth

o
d
:

average
F

-m
easu

re,
R

2
an

d
R

M
S
E

are
sh

ow
n

regard
in

g
each

m
issin

g
d
ata

m
ech

an
ism

,
con

fi
gu

ration
,

m
etric

an
d

m
issin

g
rate.

T
h
e

b
est

resu
lts

for
each

con
fi
gu

ration
are

m
arked

in
b

old
.

P
in

k
an

d
b
lu

e
valu

es
in

d
icate

w
h
eth

er
S
D
A
E

2
a
d
a
d
elta

or
S
D
A
E

2
a
d
a
m

b
elon

g
to

th
e

top
3

of
th

e
b

est
im

p
u
tation

ap
p
roach

es,
resp

ectively.

C
la

ssifi
ca

tio
n

P
erfo

rm
a
n

ce
Im

p
u

ta
tio

n
Q

u
a
lity

F
-m

e
a
su

r
e

R
2

R
M

S
E

U
n
iv
a

U
n
ifo

U
n
iv
a

U
n
ifo

U
n
iv
a

U
n
ifo

M
R

M
e
th

o
d
s

M
C
A
R
2

M
A
R
2

M
N
A
R
1

M
C
A
R
3

M
A
R
1

M
N
A
R
3

M
C
A
R
2

M
A
R
2

M
N
A
R
1

M
C
A
R
3

M
A
R
1

M
N
A
R
3

M
C
A
R
2

M
A
R
2

M
N
A
R
1

M
C
A
R
3

M
A
R
1

M
N
A
R
3

5
%

m
ea

n
im

p
0
.9

4
8
6

4
0
.9

4
8
6

4
0
.9
6
1
9

3
0
.9

4
6
0

4
0
.9

3
6
5

2
0
.9
6
4
8

2
0
.9

4
7
6

5
0
.9

6
0
6

5
0
.8

8
2
7

8
0
.9

4
0
6

3
0
.9

3
6
3

6
0
.8

8
8
9

3
0
.2

2
8
9

5
0
.1

9
8
7

5
0
.3

5
1
5

8
0
.2

2
3
4

3
0
.2

3
4
4

6
0
.3

3
3
8

4
k
N

N
im

p
1

0
.9

3
5
8

8
0
.9

3
8
7

8
0
.9

5
2
3

8
0
.9

3
4
5

8
0
.9

2
1
2

8
0
.9

4
6
7

8
0
.9

1
1
4

8
0
.9

3
0
9

8
0
.9

2
0
3

6
0
.9

0
9
9

8
0
.9

1
5
2

8
0
.8

3
8
6

8
0
.3

0
1
5

8
0
.2

6
6
7

8
0
.2

9
0
9

6
0
.2

8
7
4

8
0
.2

8
1
2

8
0
.4

0
2
7

8
k
N

N
im

p
3

0
.9

3
9
3

7
0
.9

4
3
2

7
0
.9

5
6
2

6
0
.9

3
7
3

7
0
.9

2
5
2

7
0
.9

5
4
7

6
0
.9

2
7
6

7
0
.9

4
3
8

7
0
.9

2
7
3

5
0
.9

3
0
9

7
0
.9

3
4
4

7
0
.8

5
7
9

6
0
.2

7
0
6

7
0
.2

3
8
9

7
0
.2

7
7
9

5
0
.2

4
4
9

7
0
.2

3
8
7

7
0
.3

7
4
5

6
k
N

N
im

p
5

0
.9

3
9
6

6
0
.9

4
3
5

6
0
.9

5
5
8

7
0
.9

3
8
7

6
0
.9

2
7
6

6
0
.9

5
4
3

7
0
.9

2
9
6

6
0
.9

4
4
6

6
0
.9

2
7
5

4
0
.9

3
4
7

6
0
.9

3
7
0

5
0
.8

6
2
4

5
0
.2

6
6
8

6
0
.2

3
7
1

6
0
.2

7
7
6

4
0
.2

3
6
7

6
0
.2

3
3
0

5
0
.3

6
7
8

5
S

V
M

im
p

0
.9
6
4
0

1
0
.9
6
3
2

1
0
.9
6
1
9

3
0
.9
6
4
7

1
0
.9
6
5
0

1
0
.9

6
3
2

4
0
.9

7
2
3

3
0
.9

8
4
0

3
0
.9

5
8
5

3
0
.9

4
4
6

2
0
.9
4
5
4

1
0
.8

0
2
0

9
0
.1

6
6
8

3
0
.1

2
7
0

3
0
.2

1
0
9

3
0
.2

1
6
0

2
0
.2

1
4
3

2
0
.5

8
4
5

9
E

M
0
.9

2
6
8

9
0
.9

2
8
5

9
0
.9

4
7
1

9
0
.9

1
8
2

9
0
.9

0
4
8

9
0
.9

4
1
3

9
0
.9

0
9
4

9
0
.9

2
4
0

9
0
.8

5
0
9

9
0
.9

0
3
1

9
0
.9

0
2
7

9
0
.8

5
2
3

7
0
.3

0
3
7

9
0
.2

7
8
5

9
0
.3

9
5
5

9
0
.2

9
8
3

9
0
.3

0
2
2

9
0
.3

8
0
2

7
M

IC
E

0
.9

4
7
0

5
0
.9

4
8
5

5
0
.9

6
1
2

5
0
.9

4
5
6

5
0
.9

3
1
5

5
0
.9

6
0
8

5
0
.9

5
4
7

4
0
.9

6
8
1

4
0
.9

1
9
2

7
0
.9
4
9
3

1
0
.9

4
5
3

2
0
.8

8
8
6

4
0
.2

1
2
8

4
0
.1

7
8
5

4
0
.2

9
2
7

7
0
.2
0
3
1

1
0
.2
1
3
7

1
0
.3
2
7
2

1
S
D
A
E

2
a
d
a
d
e
lta

0
.9

4
9
3

3
0
.9

4
8
9

3
0
.9
6
1
9

3
0
.9

4
6
3

2
0
.9

3
5
0

4
0
.9
6
4
8

2
0
.9
8
6
4

1
0
.9
8
6
9

1
0
.9
8
1
1

1
0
.9

4
0
4

4
0
.9

3
7
3

3
0
.8
9
1
0

1
0
.0
6
3
8

1
0
.0
5
9
7

1
0
.0
9
9
2

1
0
.2

2
3
8

4
0
.2

3
2
1

3
0
.3

3
0
0

2
S
D
A
E

2
a
d
a
m

0
.9

4
9
6

2
0
.9

4
9
7

2
0
.9
6
1
9

3
0
.9

4
6
2

3
0
.9

3
5
0

3
0
.9
6
4
8

2
0
.9

8
6
4

2
0
.9

8
6
9

2
0
.9

8
0
9

2
0
.9

4
0
3

5
0
.9

3
7
2

4
0
.8

8
9
4

2
0
.0

6
3
9

2
0
.0

5
9
8

2
0
.1

0
0
3

2
0
.2

2
4
1

5
0
.2

3
2
4

4
0
.3

3
2
6

3

1
0
%

m
ea

n
im

p
0
.9

3
1
1

4
0
.9

4
0
5

4
0
.9
6
1
8

3
0
.9

2
6
9

4
0
.9

0
7
2

4
0
.9

6
3
5

3
0
.8

9
7
1

5
0
.9

2
1
0

5
0
.7

7
6
9

4
0
.8

9
1
7

3
0
.8

8
8
1

5
0
.8

1
2
6

3
0
.3

2
0
8

5
0
.2

8
1
4

5
0
.4

9
7
7

4
0
.3

1
4
3

3
0
.3

2
4
6

5
0
.4

4
4
9

3
k
N

N
im

p
1

0
.9

1
2
1

8
0
.9

2
1
0

8
0
.9

3
0
9

8
0
.9

1
0
5

8
0
.8

7
7
7

8
0
.9

1
3
2

9
0
.8

2
9
4

8
0
.8

7
0
6

8
0
.7

1
7
8

9
0
.8

3
6
0

8
0
.8

4
4
0

8
0
.6

7
5
3

8
0
.4

2
4
7

8
0
.3

7
0
0

8
0
.5

6
0
9

9
0
.4

0
3
8

8
0
.4

0
4
3

8
0
.7

5
2
5

8
k
N

N
im

p
3

0
.9

1
6
9

7
0
.9

2
9
7

7
0
.9

4
7
0

7
0
.9

1
6
5

7
0
.8

8
8
9

7
0
.9

3
3
0

7
0
.8

6
1
2

7
0
.8

9
1
4

7
0
.7

2
1
2

8
0
.8

7
6
4

7
0
.8

7
6
4

7
0
.7

1
1
2

7
0
.3

7
7
3

7
0
.3

3
4
6

7
0
.5

5
8
0

8
0
.3

4
0
1

7
0
.3

4
8
2

7
0
.6

3
4
9

7
k
N

N
im

p
5

0
.9

1
9
2

6
0
.9

3
0
1

6
0
.9

4
8
7

6
0
.9

1
9
1

6
0
.8

9
0
5

6
0
.9

3
9
8

6
0
.8

6
4
4

6
0
.8

9
3
3

6
0
.7

2
5
5

7
0
.8

8
4
9

6
0
.8

8
2
1

6
0
.7

1
9
3

6
0
.3

7
2
7

6
0
.3

3
1
7

6
0
.5

5
4
3

7
0
.3

2
6
2

6
0
.3

3
8
6

6
0
.6

1
2
8

6
S

V
M

im
p

0
.9
6
4
5

1
0
.9
6
4
2

1
0
.9

6
0
7

4
0
.9
6
4
2

1
0
.9
6
2
4

1
0
.9

5
7
2

5
0
.9

4
3
5

3
0
.9

6
3
0

3
0
.7

8
2
3

3
0
.8

9
9
6

2
0
.9
0
7
0

1
0
.6

6
4
2

9
0
.2

3
9
3

3
0
.1

9
4
8

3
0
.4

9
7
0

3
0
.3

0
5
2

2
0
.2
9
2
8

1
0
.9

0
1
5

9
E

M
0
.8

8
9
5

9
0
.8

9
6
9

9
0
.9

2
7
9

9
0
.8

7
8
7

9
0
.8

4
4
1

9
0
.9

2
2
2

8
0
.8

2
5
4

9
0
.8

4
6
6

9
0
.7

2
9
9

6
0
.8

2
0
2

9
0
.8

2
8
6

9
0
.7

5
8
6

5
0
.4

2
5
4

9
0
.4

0
0
1

9
0
.5

4
5
2

6
0
.4

2
0
2

9
0
.4

1
8
6

9
0
.5

0
3
2

5
M

IC
E

0
.9

2
9
9

5
0
.9

3
9
7

5
0
.9

5
7
2

5
0
.9

2
4
5

5
0
.9

0
3
2

5
0
.9

5
9
3

4
0
.9

1
1
1

4
0
.9

3
5
5

4
0
.7

7
3
0

5
0
.9
0
7
1

1
0
.9

0
1
5

2
0
.7

9
9
7

4
0
.2

9
8
2

4
0
.2

5
4
0

4
0
.5

0
1
6

5
0
.2
8
8
9

1
0
.3

0
0
5

2
0
.4

6
1
5

4
S
D
A
E

2
a
d
a
d
e
lta

0
.9

3
2
6

3
0
.9

4
0
8

3
0
.9

6
1
9

2
0
.9

2
9
0

2
0
.9

0
9
8

2
0
.9
6
4
7

1
0
.9
8
2
5

1
0
.9
8
3
4

1
0
.9
7
3
8

1
0
.8

9
1
3

4
0
.8

9
1
9

3
0
.8
3
1
3

1
0
.0
8
9
6

1
0
.0
8
4
1

1
0
.1
3
6
4

1
0
.3

1
5
0

4
0
.3

1
7
2

3
0
.4
2
1
1

1
S
D
A
E

2
a
d
a
m

0
.9

3
2
9

2
0
.9

4
0
9

2
0
.9
6
1
9

1
0
.9

2
8
6

3
0
.9

0
9
8

3
0
.9

6
4
7

2
0
.9

8
2
4

2
0
.9

8
3
4

2
0
.9

7
3
4

2
0
.8

9
1
1

5
0
.8

9
1
8

4
0
.8

2
8
2

2
0
.0

8
9
7

2
0
.0

8
4
3

2
0
.1

3
7
9

2
0
.3

1
5
3

5
0
.3

1
7
5

4
0
.4

2
5
2

2

1
5
%

m
ea

n
im

p
0
.9

1
8
2

4
0
.9

2
7
7

4
0
.9
6
1
9

2
0
.9

1
4
6

4
0
.8

9
0
7

2
0
.9
6
0
0

2
0
.8

5
4
1

5
0
.8

7
9
1

5
0
.6

8
7
0

4
0
.8

3
7
5

3
0
.8

4
0
7

5
0
.7

4
4
4

3
0
.3

8
2
0

5
0
.3

4
8
2

5
0
.6

0
5
5

4
0
.3

9
1
2

3
0
.3

9
5
4

5
0
.5

3
5
3

3
k
N

N
im

p
1

0
.8

8
1
2

8
0
.8

9
8
7

8
0
.9

1
1
9

8
0
.8

8
7
2

8
0
.8

3
2
6

8
0
.8

8
5
2

9
0
.7

6
9
0

8
0
.8

0
8
2

8
0
.5

9
6
2

9
0
.7

6
0
2

8
0
.7

8
2
3

8
0
.5

6
1
5

7
0
.4

9
8
8

8
0
.4

5
7
0

8
0
.6

9
3
7

9
0
.4

9
8
6

8
0
.4

9
2
6

8
1
.0

5
7
5

7
k
N

N
im

p
3

0
.8

9
3
3

7
0
.9

1
0
7

7
0
.9

3
6
2

7
0
.8

9
5
8

7
0
.8

5
4
4

7
0
.9

1
0
0

7
0
.8

0
3
6

7
0
.8

3
7
0

7
0
.6

1
7
3

8
0
.8

1
4
7

7
0
.8

2
4
9

7
0
.6

0
3
9

6
0
.4

5
2
3

7
0
.4

1
3
6

7
0
.6

7
5
7

8
0
.4

2
4
3

7
0
.4

1
9
8

7
0
.8

9
2
2

6
k
N

N
im

p
5

0
.8

9
6
5

6
0
.9

1
3
0

6
0
.9

3
7
0

6
0
.8

9
8
3

6
0
.8

6
0
8

6
0
.9

1
2
2

6
0
.8

0
7
4

6
0
.8

3
9
2

6
0
.6

2
3
5

7
0
.8

2
6
2

6
0
.8

3
4
2

6
0
.6

1
2
5

5
0
.4

4
7
6

6
0
.4

1
0
5

6
0
.6

7
1
3

7
0
.4

0
8
8

6
0
.4

0
5
0

6
0
.8

6
2
1

5
S

V
M

im
p

0
.9
6
2
6

1
0
.9
6
5
2

1
0
.9

6
0
7

4
0
.9
6
4
1

1
0
.9
6
5
0

1
0
.9

5
8
1

4
0
.9

2
1
6

3
0
.9

4
4
2

3
0
.7

2
9
6

3
0
.8

4
9
8

2
0
.8
6
5
7

1
0
.5

5
3
0

9
0
.2

8
2
8

3
0
.2

3
9
8

3
0
.5

7
0
3

3
0
.3

8
2
7

2
0
.3
6
0
5

1
1
.2

8
6
7

9
E

M
0
.8

5
7
7

9
0
.8

6
6
6

9
0
.9

0
9
7

9
0
.8

3
4
2

9
0
.8

0
5
2

9
0
.9

0
6
7

8
0
.7

5
1
3

9
0
.7

7
2
1

9
0
.6

3
8
5

6
0
.7

3
6
3

9
0
.7

6
1
6

9
0
.6

7
8
7

4
0
.5

1
2
9

9
0
.4

9
3
0

9
0
.6

4
5
4

6
0
.5

1
8
0

9
0
.5

0
7
6

9
0
.5

9
6
6

4
M

IC
E

0
.9

1
4
9

5
0
.9

2
4
4

5
0
.9

5
6
2

5
0
.9

1
1
0

5
0
.8

8
0
6

5
0
.9

4
9
7

5
0
.8

7
3
4

4
0
.9

0
0
2

4
0
.6

7
5
2

5
0
.8
5
8
3

1
0
.8

5
5
3

2
0
.5

5
5
0

8
0
.3

5
5
9

4
0
.3

1
6
0

4
0
.6

1
8
1

5
0
.3
6
5
7

1
0
.3

7
7
5

2
1
.1

6
5
5

8
S
D
A
E

2
a
d
a
d
e
lta

0
.9

1
9
1

3
0
.9

2
8
6

3
0
.9
6
1
9

2
0
.9

1
5
5

3
0
.8

8
9
7

3
0
.9
6
0
0

2
0
.9
7
8
9

1
0
.9
7
9
8

1
0
.9
6
8
4

1
0
.8

3
7
0

4
0
.8

4
8
0

3
0
.7
9
1
6

1
0
.1
0
7
8

1
0
.1
0
3
4

1
0
.1
6
2
1

1
0
.3

9
1
9

4
0
.3

8
2
4

3
0
.4
8
2
7

1
S
D
A
E

2
a
d
a
m

0
.9

1
9
2

2
0
.9

2
9
0

2
0
.9
6
1
9

2
0
.9

1
5
7

2
0
.8

8
9
4

4
0
.9
6
0
0

2
0
.9

7
8
8

2
0
.9

7
9
8

2
0
.9

6
7
8

2
0
.8

3
6
7

5
0
.8

4
7
8

4
0
.7

8
7
3

2
0
.1

0
8
0

2
0
.1

0
3
6

2
0
.1

6
4
0

2
0
.3

9
2
3

5
0
.3

8
2
8

4
0
.4

8
7
7

2

2
0
%

m
ea

n
im

p
0
.9

0
8
1

4
0
.9

1
6
5

3
0
.9
6
1
9

2
0
.8

9
4
3

4
0
.8

5
9
1

4
0
.9

5
9
7

4
0
.8

0
2
1

5
0
.8

4
3
0

5
0
.6

0
3
8

4
0
.7

9
2
4

3
0
.7

9
3
1

5
0
.6

7
6
6

3
0
.4

4
4
9

5
0
.3

9
7
3

5
0
.7

0
0
2

4
0
.4

4
5
1

3
0
.4

5
9
0

6
0
.6

2
0
9

3
k
N

N
im

p
1

0
.8

5
5
6

8
0
.8

7
4
0

8
0
.8

9
0
0

8
0
.8

3
9
6

8
0
.7

9
2
9

8
0
.8

5
6
6

9
0
.6

9
5
1

8
0
.7

5
5
0

8
0
.5

1
5
0

9
0
.6

9
6
0

8
0
.7

3
5
5

8
0
.4

6
4
7

9
0
.5

8
0
3

8
0
.5

2
3
5

8
0
.7

8
0
7

9
0
.5

7
2
2

8
0
.5

5
3
3

8
1
.4

0
8
9

8
k
N

N
im

p
3

0
.8

7
6
0

7
0
.8

8
7
6

7
0
.9

2
2
6

7
0
.8

5
9
7

7
0
.8

0
7
6

7
0
.8

9
9
4

7
0
.7

3
8
4

7
0
.7

9
0
5

7
0
.5

5
1
0

8
0
.7

6
4
1

7
0
.7

8
0
9

7
0
.5

1
0
8

6
0
.5

2
5
6

7
0
.4

7
3
1

7
0
.7

5
0
1

8
0
.4

8
4
0

7
0
.4

7
3
7

7
1
.1

8
9
6

6
k
N

N
im

p
5

0
.8

8
0
2

6
0
.8

9
3
1

6
0
.9

2
4
0

6
0
.8

6
3
3

6
0
.8

0
8
9

6
0
.9

1
1
5

6
0
.7

4
4
3

6
0
.7

9
4
0

6
0
.5

5
8
5

7
0
.7

7
8
5

6
0
.7

9
1
1

6
0
.5

2
0
5

5
0
.5

1
9
2

6
0
.4

6
8
7

6
0
.7

4
5
2

7
0
.4

6
6
2

6
0
.4

5
8
0

5
1
.1

5
3
9

5
S

V
M

im
p

0
.9
6
5
0

1
0
.9
6
5
9

1
0
.9

6
0
7

4
0
.9
6
5
4

1
0
.9
6
7
9

1
0
.9
6
2
4

1
0
.8

9
4
4

3
0
.9

2
3
5

3
0
.6

5
3
9

3
0
.8

1
1
4

2
0
.8
2
3
9

1
0
.4

7
6
6

7
0
.3

2
7
8

3
0
.2

8
4
6

3
0
.6

8
3
7

3
0
.4

3
0
0

2
0
.4
2
3
8

1
1
.4

9
6
9

9
E

M
0
.8

1
8
9

9
0
.8

3
4
5

9
0
.8

8
7
0

9
0
.8

0
6
1

9
0
.7

7
3
8

9
0
.8

7
6
2

8
0
.6

7
1
6

9
0
.7

0
5
1

9
0
.5

6
1
3

6
0
.6

6
2
9

9
0
.7

0
1
5

9
0
.6

0
5
7

4
0
.5

9
4
7

9
0
.5

6
7
9

9
0
.7

2
8
0

6
0
.5

9
3
9

9
0
.5

8
2
8

9
0
.6

7
8
6

4
M

IC
E

0
.9

0
0
9

5
0
.9

1
2
6

5
0
.9

5
1
4

5
0
.8

9
2
7

5
0
.8

4
6
8

5
0
.9

4
6
7

5
0
.8

2
9
8

4
0
.8

7
0
9

4
0
.6

0
3
3

5
0
.8
1
9
3

1
0
.8

0
9
3

2
0
.4

7
3
3

8
0
.4

1
2
5

4
0
.3

5
9
5

4
0
.7

0
0
2

5
0
.4
1
4
3

1
0
.4

4
0
9

4
1
.3

3
8
6

7
S
D
A
E

2
a
d
a
d
e
lta

0
.9

1
0
4

2
0
.9

1
6
6

2
0
.9
6
1
9

2
0
.8

9
5
7

2
0
.8

6
1
8

3
0
.9

6
1
6

3
0
.9
7
4
8

1
0
.9
7
6
4

1
0
.9
6
5
2

1
0
.7

9
1
7

4
0
.8

0
5
7

3
0
.7
6
5
3

1
0
.1
2
5
4

1
0
.1
1
8
8

1
0
.1
8
0
9

1
0
.4

4
6
1

4
0
.4

3
6
3

2
0
.5
3
1
1

1
S
D
A
E

2
a
d
a
m

0
.9

1
0
3

3
0
.9

1
6
2

4
0
.9
6
1
9

2
0
.8

9
5
7

3
0
.8

6
1
9

2
0
.9

6
1
6

3
0
.9

7
4
7

2
0
.9

7
6
4

2
0
.9

6
4
5

2
0
.7

9
1
3

5
0
.8

0
5
4

4
0
.7

5
9
6

2
0
.1

2
5
6

2
0
.1

1
9
2

2
0
.1

8
2
9

2
0
.4

4
6
6

5
0
.4

3
6
8

3
0
.5

3
7
2

2

4
0
%

m
ea

n
im

p
0
.8

4
7
1

4
0
.8

7
2
9

3
0
.9

6
0
6

3
0
.8

1
6
2

4
0
.7

3
7
9

4
0
.9

5
0
9

4
0
.5

9
3
2

5
0
.6

7
6
2

5
0
.4

4
0
3

5
0
.5

9
0
9

3
0
.6

0
4
8

5
0
.4

8
1
4

3
0
.6

3
7
9

5
0
.5

7
2
9

5
0
.9

3
0
5

5
0
.6

3
2
2

3
0
.6

6
4
6

5
0
.9

0
1
3

3
k
N

N
im

p
1

0
.7

3
8
3

9
0
.7

8
7
2

8
0
.7

9
0
8

8
0
.7

1
4
7

8
0
.6

7
7
0

8
0
.6

1
6
1

9
0
.4

4
3
8

8
0
.5

7
6
4

8
0
.3

5
1
1

9
0
.4

1
3
3

8
0
.5

6
4
6

8
0
.2

1
4
3

9
0
.8

2
2
5

8
0
.7

2
1
6

8
1
.0

0
0
1

9
0
.8

5
1
9

9
0
.8

0
5
2

9
1
.4

8
1
5

7
k
N

N
im

p
3

0
.7

6
4
5

7
0
.8

0
9
0

7
0
.8

0
0
6

7
0
.7

3
8
2

7
0
.6

8
2
4

7
0
.6

4
6
3

8
0
.5

0
4
8

7
0
.6

2
3
3

7
0
.3

7
8
3

8
0
.5

3
1
5

7
0
.5

8
6
9

7
0
.2

7
2
8

6
0
.7

4
4
0

7
0
.6

5
2
6

7
0
.9

7
9
7

8
0
.6

9
5
5

7
0
.7

1
5
6

7
1
.1

9
1
4

6
k
N

N
im

p
5

0
.7

7
9
2

6
0
.8

1
8
6

6
0
.8

0
5
1

6
0
.7

5
4
9

6
0
.6

8
7
5

6
0
.6

9
1
9

7
0
.5

1
4
7

6
0
.6

3
0
3

6
0
.3

8
8
1

6
0
.5

6
4
3

6
0
.5

9
3
7

6
0
.2

8
8
9

5
0
.7

3
3
9

6
0
.6

4
4
4

6
0
.9

7
5
4

7
0
.6

6
1
9

6
0
.6

9
4
6

6
1
.1

4
1
0

5
S

V
M

im
p

0
.9
7
3
7

1
0
.9
7
0
4

1
0
.9

5
9
8

4
0
.9
7
2
7

1
0
.9
8
1
8

1
0
.9

5
5
3

3
0
.7

7
4
4

3
0
.8

3
9
5

3
0
.5

4
8
6

3
0
.6

2
4
3

2
0
.6
4
5
7

1
0
.2

2
8
7

8
0
.4

8
3
6

3
0
.4

1
8
9

3
0
.8

5
2
7

3
0
.6

2
7
0

2
0
.6

3
9
1

3
2
.3

6
2
6

9
E

M
0
.7

4
6
5

8
0
.7

6
9
9

9
0
.7

8
0
9

9
0
.7

0
8
7

9
0
.6

7
4
6

9
0
.7

5
4
9

6
0
.3

9
3
9

9
0
.4

5
2
8

9
0
.3

8
7
4

7
0
.3

9
3
5

9
0
.5

2
8
7

9
0
.4

0
9
5

4
0
.8

4
0
3

9
0
.8

1
3
5

9
0
.9

5
1
1

6
0
.8

3
4
3

8
0
.7

9
9
1

8
0
.9

2
5
0

4
M

IC
E

0
.8

3
5
7

5
0
.8

6
1
2

5
0
.9

1
2
6

5
0
.8

1
1
7

5
0
.7

0
0
0

5
0
.8

7
0
1

5
0
.6

4
7
2

4
0
.7

2
5
4

4
0
.4

5
3
2

4
0
.6
3
3
7

1
0
.6

1
6
6

4
0
.2

4
4
8

7
0
.5

9
4
1

4
0
.5

2
5
0

4
0
.9

0
0
6

4
0
.5
9
7
8

1
0
.6

5
7
2

4
1
.7

8
5
7

8
S
D
A
E

2
a
d
a
d
e
lta

0
.8

4
8
4

3
0
.8

7
2
6

4
0
.9

6
2
0

2
0
.8

1
8
4

3
0
.7

4
0
0

3
0
.9
5
6
4

1
0
.9
5
8
6

1
0
.9
6
2
3

1
0
.9
7
0
9

1
0
.5

9
0
0

4
0
.6

1
8
7

2
0
.7
8
4
1

1
0
.1
7
8
7

1
0
.1
6
8
6

1
0
.1
9
9
0

1
0
.6

3
3
4

4
0
.6
1
2
8

1
0
.6
1
9
2

1
S
D
A
E

2
a
d
a
m

0
.8

4
8
7

2
0
.8

7
2
9

2
0
.9
6
2
0

1
0
.8

1
8
7

2
0
.7

4
0
7

2
0
.9

5
6
2

2
0
.9

5
8
6

2
0
.9

6
2
2

2
0
.9

7
0
2

2
0
.5

8
9
5

5
0
.6

1
8
5

3
0
.7

7
8
0

2
0
.1

7
8
9

2
0
.1

6
9
1

2
0
.2

0
1
9

2
0
.6

3
4
1

5
0
.6

1
3
4

2
0
.6

2
7
1

2

74



5. Experimental Results

Impact on classification (F-measure):

SVMimp seems to be the method which ensures the best classification perfomance

for MCAR and MAR mechanisms, regardless of the missing rate and type of con-

figuration (univa and unifo).

For MNAR univa configurations, SDAE2adam proved to be the best imputation

method under 2 different MRs (10 and 40%). For 5% of MR, there is a tie be-

tween 4 methods: SDAE2adam, SDAE2adadelta, SVMimp and Meanimp. For the

remaining MR (15 and 20%), there are 3 tied methods in the top of best imputation

approaches, including SDAE2adam, SDAE2adadelta and Meanimp. For unifo config-

urations, there is no standard: there are 3 tied methods, including the 2 SDAE and

Meanimp, when the MR is low (5 and 15%); SDAE2adadelta seems to be the best

method for MRs of 10 and 40%; SVMimp seems to be the best method for a MR of

20%.

Regarding the performance of SDAE, at least one of the used approaches is in-

cluded in the top 3 best imputation approaches for all the studied scenarios, with

a minimum and maximum difference from the best method of 0.0135 (MAR2univa

and MR of 5%) and 0.2411 (MAR1unifo and MR of 40%), respectively. Moreover,

Adam optimizer seems to achieve better results than Adadelta.

For this experiment, we also made a comparison between all the imputation methods

using the Friedman rank test [53]. Table 5.6 shows the mean ranks for all the datasets

and the value of the Friedman statistic, FF , for each scenario. Once again, we

followed the work of Demšar [53] and compared the values of FF to the F distribution

F (0.05)8.32 = 2.2444 (8 degrees of freedom). The boldface values in Table 5.6

indicate weak evidence against the null hypothesis, so in this case it is not possible to

conclude whether there are significant differences between the imputation methods.

We reject the null hypothesis of Friedman’s test for most of the scenarios, regardless

of the metric, which means that the methods are not equivalent. Regarding of

classification performance (F-measure), for MNAR1univa there is a tie between 4

imputation methods (Meanimp, SVMimp, SDAE2adadelta and SDAE2adam). In

addiction, there is weak evidence against the null hypothesis so, in this case, we do

not conclude if there are statistical differences between the methods.

For all the cases where SDAE belongs to the top 3 best imputation approaches,

the results proved that all methods are significantly different. Therefore, we can

conclude that the SDAE are effectively superior to the remaining methods.
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5. Experimental Results
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5. Experimental Results

Conclusions

In this 3rd experiment we study the performance of 2 approaches based on SDAE

compared to other imputation methods, for datasets with high sample sizes. More-

over, we analyse the effect of different generation methods (univa and unifo) on

several imputation approaches, both in terms of imputation quality (R2 and RMSE)

and classification performance (F-measure). The results show that there seems to

be an advantage in using SDAE imputation methods for larger datasets. In general,

the SDAE are ranked between 1st and 5th best method which is not the case for the

2nd experiment. In particular:

• SDAE belong to the top 3 best imputation approaches regarding classification

performance, for almost all scenarios;

• Adadelta optimizer has shown to be the best optimizer in terms of imputation

quality while Adam proved to be superior for classification performance;

• SVMimp has shown to be the best imputation approach for classification, in

the MCAR and MAR scenarios; SDAE2adam and SDAE2adadelta also take a

prominent position regardless the MR and the type of configuration (univa

and unifo);

• Regarding imputation quality, SDAE2adadelta is the best approach for univa

configurations, followed by SDAE2adam; SVMimp (MCAR), MICE (MAR)

and SDAE2adadelta (MNAR) are the best approaches under unifo configura-

tions;

• In comparison to the results from the 2nd Experiment, there seems to be an

advantage in using our SDAE-based approaches when dealing with MD for

larger datasets.

In the context of this thesis, we were not able to explore a larger number of datasets

due to the computational time required for the simulations. However, the results

obtained are promising; with the aim of performing a more rigorous interpretation

and generalization of these results, the realization of new experiments would be

useful.
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Conclusions

Data quality is a fundamental requirement to ensure a good performance of Data

Mining models. In this regard, missing data arises as a common problem that affects

the quality of the data. The scientific community has been studying several ways to

handle the MD problem, however, the use of SDAE as imputation technique remains

a underdeveloped topic.

In this work, we study the performance of SDAE-based approaches in order to

provide some insights regarding three main research questions:

1. How do the SDAE perform when there are enough complete data to train the

model?

2. How do the SDAE perform when training data corruption follows an underly-

ing missing mechanism?

3. Does the performance of SDAE increase for larger datasets, with higher sample

sizes?

We conducted three main experiments designed to answer these research questions.

According to the results obtained from the 1st, 2nd and 3rd experiments, three main

conclusions may be derived for each question:

1. DAE1adadelta shows to be superior to the remaining methods, for MNAR mech-

anism and high missing rates. However, the SDAE-based approaches explored

in this experiment are limited: it is assumed that there are enough complete

samples to train each model.

2. The SDAE show to be superior in many of the studied scenarios. However, this

superiority may not be sufficient to counteract the limitations of SDAE-based

approaches, especially, when they are used in a multiple imputation context,

since they require a high computational effort and memory space.
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6. Conclusions

3. For datasets with larger sample sizes, there seems to be a great advantage in

using SDAE for imputation purpose.

Considering the results obtained in this work, one of the possible directions for

future work is to investigate the usefulness of SDAE for a larger benchmark of

datasets. Also, as the advantage of SDAE seems to be more clear for higher missing

rates (40%), a smoother step of missing rates (between 20% and 40%) could bring

new insights. Other future direction is hyperparameter optimization of the SDAE’s

architecture (e.g., learning rate, #hidden layers, #nodes per hidden layer etc.) to

ease their computational cost.
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of Data Distribution in Missing Data Imputation”, in Conference on Artificial

Intelligence in Medicine in Europe, pp. 285–294, Springer, 2017.

89



Bibliography

90



Appendices

91





A

Synthetic generation of MD

93



A. Synthetic generation of MD

Table A.1: Functions that are used as building blocks of the pseudo-codes.

Function Description

bernoulli(mr, size = int) Returns a Bernoulli distribution of a specified size and a proba-
bility equal to MR.

range(start, stop) Generates an array of natural numbers starting from start to stop
with an increment of 1. The output will not include stop.

count(data) Returns the total number of missing values in data, a matrix that
represents the dataset.

group(array, threshold = float) Takes an array as input and divides it into two groups that will
contain the values below and above the threshold.

median(array) Returns the median of an array of integers.

numFeatures(data) Returns the number of features in data.

numObservations(data) Returns the number of observations in data.

random(b, size = int, p = array) Takes two or three input parameters depending on how the ran-
dom choice of values will be made. If the first input parameter
is a number, the values will be randomly chosen from the range
between zero and that number. If the first input parameter is
an array, a random choice of its values will be made. The sec-
ond input parameter is mandatory and represents the number of
values that will be selected. Finally, p is not mandatory and can
only be used when the first input is an array: this parameter is
an array which contains the probability for each element of the
first input to be selected.

random select(array) Takes one array or two arrays as input. If the input is an array,
this function will return one or more elements of it, depending on
the number of outputs defined by the user. If the input consists
of two arrays, the function will return one of them.

rank(array) Returns an array with the computed numerical ranks (1 through
n, being n the total number of elements in array) of the input
array.

round(float) Returns the floating point value number rounded to zero digits
after the decimal point.

remove(array, value) This function will remove value from array.

select by correlation(array,
data)

Given an array containing indexes of two features and the dataset
matrix data, returns ordered indexes in terms of correlation with
the class labels: the first index will correspond to the feature with
lowest correlation with the class labels and the second one will
correspond to the most correlated feature with the class labels.

size(array) Returns the number of elements in an array.

sort(array, reverse = boolean) Sorts the elements of the input array in a specific order: ascend-
ing or descending. If reverse is equal to False, descending order
will be performed (ascending otherwise). Returns an array with
the sorted values of the input array.
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B. Data Collection

Table B.1: Additional information on the datasets used in this study.

Dataset Source Context Positive
Class

Negative
Class

1
s
t
a
n
d

2
n
d

E
x
p
e
ri
m
e
n
t

australian UCI Credit card applications. 1 0

banknote UCI Data extracted from banknote im-
ages.

1 0

biomed STATLIB Blood measurements database. carrier normal

breast-ljub UCI Breast cancer data. recurrence-
events

no-
recurrence-
events

breast-tissue UCI Impedance measurements of tissue
from the breast.

positive negative

cleveland KEEL Heart disease database. presence absence

crabs PRNN Morphological features of crabs. B O

dermatology1 UCI Clinical features of erythema and
scaling.

4 5

ecoli KEEL Measurements about the cell to pre-
dict the location site of proteins.

positive negative

glass1 KEEL Information about 6 types of glass. non-window window

heart-statlog UCI Heart disease database. 2 1

iris KEEL Iris plant database. positive negative

kidney UCI Chronic kidney disease database. ckd notckd

lung-cancer UCI Lung cancer database. 2 1

lymphography KEEL Lymphoma detection. malign lymph metastases

postoperative UCI Patient features used to determine
whether a patient should be moved
from na area to another.

S A

saheart KEEL South African heart database. 1 0

urinary UCI Acute inflammation of urinary
bladder database.

yes no

wine1 UCI Chemical analysis of wines. 1 2

wpbc UCI Follow-up data for breast cancer
cases (prognostic).

R N

2
n
d

E
x
p
e
ri
m
e
n
t

balancescale UCI Balance scale weight and distance
database

L R

bankrupcy UCI Qualitative parameters to predict
the bankrupcy.

B NB

cmc UCI Contraceptive method choice
database.

L S

dermatology2 UCI Clinical features of erythema and
scaling.

1 3

edu-data1 KAGGLE Students’ academic performance
database.

H L

edu-data2 KAGGLE H M

glass2 KEEL Information about 6 types of glass. non-float pro-
cessed

remaining

hcc-data-mortality CISUC Clinical features of real patients di-
agnosed with HCC.

dies lives

hcc-data-survival CISUC lives dies

hepato ISICAL Hepatobiliary disorders database. PH LC

new-thyroid KEEL Thyroid disease database. 1 2

toy PRNN Synthetic dataset composed of five
Gaussian components.

1 0

wine2 UCI
Chemical analysis of wines.

3 1

wine3 UCI 3 2

3
r
d

E
x
p
e
ri
m
e
n
t mushrooms UCI Mushrooms description regarding

of physical characteristics.
p e

nursery1 UCI Ranking applications for nursery
schools.

spec prior not recom

nursery2 UCI priority not recom

thyroid1 KEEL Thyroid disease database - data
from 10 different databases.

368 6666

thyroid2 KEEL 6666 368
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C

Correlation Results

Table C.1: Missing and observed features for each dataset - univariate missing
data generation (univa).

Dataset xmiss Correlation
Measure

Value xobs

1
s
t
a
n
d

2
n
d

E
x
p
e
ri
m
e
n
t

australian 8 Phi-Coefficient 0.7204 9
banknote 1 Point-Biserial 0.7248 3
biomed 5 Point-Biserial 0.6066 4
breast-ljub 5 Phi-Coefficient 0.2890 4
breast-tissue 2 Point-Biserial 0.7251 3
cleveland 11 Cramer’s V 0.5269 10
crabs 2 Point-Biserial 0.4380 6
dermatology1 34 Point-Biserial 0.0478 6
ecoli 4 Point-Biserial 0.9043 1
glass1 3 Point-Biserial 0.7583 8
heart-statlog 11 Cramer’s V 0.5255 10
iris 3 Point-Biserial 0.9227 4
kidney 4 Cramer’s V 0.9840 19
lung-cancer 20 Cramer’s V 0.6814 1
lymphography 13 Cramer’s V 0.6107 15
postoperative 6 Cramer’s V 0.1885 2
saheart 9 Point-Biserial 0.3730 4
urinary 4 Phi-Coefficient 0.6954 6
wine1 13 Point-Biserial 0.8453 10
wpbc 1 Point-Biserial 0.3513 4

2
n
d

E
x
p
e
ri
m
e
n
t

balancescale 2 Point-Biserial 0.4283 3
bankrupcy 5 Cramer’s V 0.9692 3
cmc 1 Point-Biserial 0.2726 4
dermatology2 11 Phi-Coefficient 0.3624 31
edu-data1 11 Spearman rho 0.7980 10
edu-data2 10 Spearman rho 0.3863 12
glass2 2 Point-Biserial 0.2739 8
hcc-data-
mortality

4 Point-Biserial 0.1461 1

hcc-data-
survival

4 Point-Biserial 0.1461 1

hepato 1 Point-Biserial 0.2090 2
new-thyroid 2 Point-Biserial 0.9092 3
toy 2 Point-Biserial 0.7559 1
wine2 7 Point-Biserial 0.9521 6
wine3 10 Point-Biserial 0.7944 11

3
r
d

E
x
p
e
ri
m
e
n
t mushrooms 5 Cramer’s V 0.9710 15
nursery1 8 Cramer’s V 1.0000 2
nursery2 8 Cramer’s V 1.0000 2
thyroid1 17 Point-Biserial 0.4167 21
thyroid2 17 Point-Biserial 0.4167 21
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D. Parameter Optimization

Table D.1: Optimal parameters C and γ for the different datasets as well as the
average accuracy. C and γ were obtained through grid search. Average accuracy is
computed over a 5-fold cross-validation procedure, for each combination of these 2
parameters.

Dataset C γ Average
Accuracy

1
s
t
a
n
d

2
n
d

E
x
p
e
ri
m
e
n
t

australian 1 1× 10−3 0.8812
banknote 1 1 1.0000
biomed 1× 104 1× 10−3 0.9128
breast-ljub 1× 103 1× 10−3 0.7536
breast-tissue 1× 101 1× 10−2 0.9636
cleveland 1× 101 1× 10−2 0.8433
crabs 1× 101 1× 10−1 1.0000
dermatology1 1× 10−3 1× 10−5 1.0000
ecoli 1× 102 1× 10−2 0.9864
glass1 1 1× 10−1 0.9302
heart-statlog 1 1× 10−2 0.8185
iris 1× 10−1 1× 10−1 1.0000
kidney 1× 10−1 1× 10−1 1.0000
lung-cancer 1× 101 1× 10−3 0.8667
lymphography 1× 102 1× 10−3 0.8759
postoperative 1× 10−3 1× 10−5 0.7222
saheart 1× 107 1× 10−5 0.7355
urinary 1× 10−1 1× 10−1 1.0000
wine1 1× 102 1× 10−2 0.9923
wpbc 1× 101 1× 10−1 0.8150

2
n
d

E
x
p
e
ri
m
e
n
t

balancescale 1× 103 1× 10−2 1.0000
bankrupcy 1× 10−1 1× 10−1 0.9960
cmc 1× 106 1× 10−4 0.6840
dermatology2 1× 10−1 1× 10−2 1.0000
edu-data1 1× 10−1 1× 10−2 0.9704
edu-data2 1× 104 1× 10−5 0.8310
glass2 1 1 0.8000
hcc-data-mortality 1× 104 1× 10−2 0.7030
hcc-data-survival 1× 101 1× 10−3 0.6545
hepato 1× 102 1 0.8557
new-thyroid 1× 10−1 1× 10−1 1.0000
toy 1× 106 1× 10−1 0.9040
wine2 1× 10−1 1× 10−2 1.0000
wine3 1 1× 10−2 0.9917

3
r
d

E
x
p
e
ri
m
e
n
t mushrooms 1 1× 10−1 1.0000

nursery1 1× 10−2 1× 10−1 1.0000
nursery2 1× 10−1 1× 10−2 1.0000
thyroid1 1× 104 1× 10−2 0.9908
thyroid2 1× 104 1× 10−3 0.9912
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E

Experimental Results

Table E.1: Effect of different univariate (univa) configurations in the classification
performance (F-measure) using imputation methods from the state of the art.

F-measure – univa

MR Methods MCAR1 MCAR2 MAR1 MAR2 MAR3 MAR4 MAR5 MNAR1 MNAR2

5%

Meanimp 0.7731 0.7693 0.7764 0.7714 0.7735 0.7698 0.7716 0.7690 0.7662
kNNimp1 0.7735 0.7700 0.7721 0.7725 0.7720 0.7729 0.7720 0.7734 0.7696
kNNimp3 0.7735 0.7713 0.7728 0.7729 0.7734 0.7737 0.7734 0.7739 0.7700
kNNimp5 0.7737 0.7717 0.7731 0.7728 0.7730 0.7732 0.7729 0.7715 0.7707
SVMimp 0.7747 0.7741 0.7721 0.7749 0.7752 0.7758 0.7725 0.7775 0.7717
EM 0.7696 0.7684 0.7727 0.7704 0.7718 0.7712 0.7703 0.7688 0.7663
MICE 0.7740 0.7713 0.7747 0.7732 0.7738 0.7749 0.7739 0.7699 0.7714

10%

Meanimp 0.7695 0.7699 0.7745 0.7683 0.7699 0.7688 0.7738 0.7655 0.7618
kNNimp1 0.7726 0.7707 0.7723 0.7713 0.7691 0.7671 0.7718 0.7674 0.7631
kNNimp3 0.7721 0.7727 0.7712 0.7723 0.7718 0.7714 0.7726 0.7677 0.7641
kNNimp5 0.7725 0.7729 0.7732 0.7729 0.7711 0.7738 0.7741 0.7684 0.7626
SVMimp 0.7760 0.7750 0.7713 0.7758 0.7746 0.7762 0.7742 0.7683 0.7649
EM 0.7674 0.7670 0.7696 0.7667 0.7665 0.7658 0.7683 0.7639 0.7626
MICE 0.7716 0.7717 0.7733 0.7714 0.7714 0.7702 0.7759 0.7652 0.7662

15%

Meanimp 0.7673 0.7666 0.7741 0.7659 0.7680 0.7717 0.7706 0.7659 0.7530
kNNimp1 0.7705 0.7673 0.7695 0.7690 0.7681 0.7678 0.7726 0.7674 0.7578
kNNimp3 0.7709 0.7683 0.7720 0.7706 0.7709 0.7737 0.7708 0.7666 0.7627
kNNimp5 0.7711 0.7688 0.7736 0.7701 0.7698 0.7745 0.7709 0.7656 0.7634
SVMimp 0.7747 0.7739 0.7705 0.7743 0.7768 0.7745 0.7773 0.7713 0.7631
EM 0.7640 0.7593 0.7712 0.7624 0.7630 0.7657 0.7673 0.7658 0.7553
MICE 0.7698 0.7685 0.7728 0.7683 0.7706 0.7726 0.7738 0.7671 0.7624

20%

Meanimp 0.7674 0.7642 0.7688 0.7639 0.7640 0.7709 0.7676 0.7617 0.7561
kNNimp1 0.7666 0.7648 0.7693 0.7656 0.7633 0.7659 0.7645 0.7627 0.7528
kNNimp3 0.7699 0.7684 0.7693 0.7677 0.7655 0.7726 0.7661 0.7633 0.7581
kNNimp5 0.7707 0.7685 0.7704 0.7696 0.7646 0.7726 0.7691 0.7620 0.7580
SVMimp 0.7764 0.7742 0.7701 0.7782 0.7748 0.7727 0.7715 0.7689 0.7649
EM 0.7625 0.7576 0.7668 0.7602 0.7582 0.7646 0.7634 0.7632 0.7567
MICE 0.7705 0.7660 0.7701 0.7703 0.7657 0.7698 0.7714 0.7586 0.7633

40%

Meanimp 0.7586 0.7542 0.7652 0.7522 0.7526 0.7553 0.7652 0.7515 0.7480
kNNimp1 0.7578 0.7517 0.7641 0.7517 0.7509 0.7566 0.7647 0.7482 0.7508
kNNimp3 0.7617 0.7559 0.7673 0.7562 0.7564 0.7569 0.7680 0.7507 0.7549
kNNimp5 0.7617 0.7595 0.7641 0.7570 0.7573 0.7602 0.7711 0.7496 0.7511
SVMimp 0.7756 0.7712 0.7687 0.7759 0.7758 0.7677 0.7674 0.7594 0.7601
EM 0.7507 0.7472 0.7587 0.7487 0.7483 0.7525 0.7581 0.7480 0.7452
MICE 0.7612 0.7603 0.7693 0.7578 0.7581 0.7603 0.7618 0.7464 0.7508
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Table E.2: Ranks of the effect of different univariate (univa) configurations in the
classification performance (F-measure) using imputation methods from the state of
the art.

F-measure – univa

MR Methods MCAR1 MCAR2 MAR1 MAR2 MAR3 MAR4 MAR5 MNAR1 MNAR2

5%

Meanimp 3 7 1 5 2 6 4 8 9
kNNimp1 1 8 5 4 7 3 6 2 9
kNNimp3 3 8 7 6 5 2 4 1 9
kNNimp5 1 7 3 6 4 2 5 8 9
SVMimp 5 6 8 4 3 2 7 1 9
EM 6 8 1 4 2 3 5 7 9
MICE 3 8 2 6 5 1 4 9 7
MEAN 3.143 7.429 3.857 5.000 4.000 2.714 5.000 5.143 8.714

10%

Meanimp 5 4 1 7 3 6 2 8 9
kNNimp1 1 5 2 4 6 8 3 7 9
kNNimp3 4 1 7 3 5 6 2 8 9
kNNimp5 6 5 3 4 7 2 1 8 9
SVMimp 2 4 7 3 5 1 6 8 9
EM 3 4 1 5 6 7 2 8 9
MICE 4 3 2 6 5 7 1 9 8
MEAN 3.571 3.714 3.286 4.571 5.286 5.286 2.429 8.000 8.857

15%

Meanimp 5 6 1 8 4 2 3 7 9
kNNimp1 2 8 3 4 5 6 1 7 9
kNNimp3 4 7 2 6 3 1 5 8 9
kNNimp5 3 7 2 5 6 1 4 8 9
SVMimp 3 6 8 5 2 4 1 7 9
EM 5 8 1 7 6 4 2 3 9
MICE 5 6 2 7 4 3 1 8 9
MEAN 3.857 6.857 2.714 6.000 4.286 3.000 2.429 6.857 9.000

20%

Meanimp 4 5 2 7 6 1 3 8 9
kNNimp1 2 5 1 4 7 3 6 8 9
kNNimp3 2 4 3 5 7 1 6 8 9
kNNimp5 2 6 3 4 7 1 5 8 9
SVMimp 2 4 7 1 3 5 6 8 9
EM 5 8 1 6 7 2 3 4 9
MICE 2 6 4 3 7 5 1 9 8
MEAN 2.714 5.429 3.000 4.286 6.286 2.571 4.286 7.571 8.857

40%

Meanimp 3 5 2 7 6 4 1 8 9
kNNimp1 3 6 2 5 7 4 1 9 8
kNNimp3 3 7 2 6 5 4 1 9 8
kNNimp5 3 5 2 7 6 4 1 9 8
SVMimp 3 4 5 1 2 6 7 9 8
EM 4 8 1 5 6 3 2 7 9
MICE 3 5 1 7 6 4 2 9 8
MEAN 3.143 5.714 2.143 5.429 5.429 4.143 2.143 8.571 8.286
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E. Experimental Results

Table E.5: Effect of different multivariate (unifo) configurations in the classifi-
cation performance (F-measure) using imputation methods from the state of the
art.

unifo

MR Methods MCAR1 MCAR2 MCAR3 MAR1 MAR2 MAR3 MNAR1 MNAR2 MNAR3 MNAR4

5%

Meanimp 0.7544 0.7563 0.7578 0.7675 0.7575 0.7610 0.7558 0.7479 0.7759 0.7545
kNNimp1 0.7582 0.7592 0.7592 0.7630 0.7575 0.7554 0.7592 0.7478 0.7535 0.7597
kNNimp3 0.7609 0.7607 0.7628 0.7672 0.7546 0.7566 0.7614 0.7478 0.7765 0.7588
kNNimp5 0.7606 0.7598 0.7647 0.7674 0.7561 0.7574 0.7629 0.7478 0.7763 0.7596
SVMimp 0.7645 0.7652 0.7683 0.7695 0.7642 0.7717 0.7698 0.7685 0.7826 0.7634
EM 0.7491 0.7472 0.7461 0.7627 0.7509 0.7538 0.7486 0.7469 0.7619 0.7492
MICE 0.7591 0.7617 0.7611 0.7689 0.7555 0.7600 0.7652 0.7458 0.7751 0.7582

10%

Meanimp 0.7387 0.7404 0.7466 0.7676 0.7347 0.7501 0.7366 0.7245 0.7682 0.7409
kNNimp1 0.7438 0.7498 0.7484 0.7626 0.7538 0.7379 0.7385 0.7248 0.7614 0.7487
kNNimp3 0.7486 0.7539 0.7518 0.7685 0.7459 0.7393 0.7478 0.7248 0.7563 0.751
kNNimp5 0.7507 0.7570 0.7521 0.7668 0.7447 0.7401 0.7472 0.7248 0.7602 0.7532
SVMimp 0.7602 0.7654 0.7599 0.7650 0.7659 0.7762 0.7667 0.7625 0.7819 0.7637
EM 0.7240 0.7270 0.7249 0.7500 0.7316 0.7318 0.7231 0.7164 0.7501 0.73
MICE 0.7501 0.7528 0.7536 0.7683 0.7557 0.7438 0.7492 0.7179 0.7695 0.749

15%

Meanimp 0.7234 0.7355 0.7297 0.7514 0.7351 0.7400 0.7279 0.6976 0.7451 0.7385
kNNimp1 0.7321 0.7467 0.7313 0.7651 0.7393 0.7346 0.7265 0.6986 0.7205 0.7417
kNNimp3 0.7374 0.7564 0.7410 0.7531 0.7446 0.7301 0.7341 0.6986 0.7324 0.7443
kNNimp5 0.7381 0.7560 0.7431 0.7509 0.7440 0.7298 0.7349 0.6986 0.7374 0.7456
SVMimp 0.7602 0.7607 0.7624 0.7780 0.7622 0.7852 0.7596 0.7589 0.7857 0.7735
EM 0.6992 0.7156 0.7061 0.7352 0.7180 0.7245 0.7090 0.6890 0.7261 0.7247
MICE 0.7407 0.7550 0.7482 0.7522 0.7494 0.7357 0.7419 0.6918 0.7609 0.7512

20%

Meanimp 0.7165 0.7087 0.7202 0.7335 0.7428 0.7318 0.7080 0.6778 0.7317 0.7299
kNNimp1 0.7200 0.7143 0.7201 0.7408 0.7109 0.7337 0.7072 0.6778 0.7062 0.729
kNNimp3 0.7355 0.7295 0.7346 0.7414 0.7185 0.7273 0.7132 0.6778 0.7228 0.7409
kNNimp5 0.7394 0.7296 0.7339 0.7395 0.7168 0.7251 0.7155 0.6778 0.7296 0.7404
SVMimp 0.7661 0.7599 0.7594 0.7557 0.7645 0.7786 0.7556 0.7594 0.7876 0.7749
EM 0.6885 0.6763 0.6911 0.7165 0.7016 0.7034 0.6897 0.6571 0.7036 0.709
MICE 0.7397 0.7378 0.7406 0.7425 0.7445 0.7285 0.7322 0.6652 0.7516 0.7395

40%

Meanimp 0.6693 0.6629 0.6675 0.6801 - 0.6566 0.6181 0.5761 0.6710 0.6664
kNNimp1 0.6392 0.6276 0.6396 0.6855 - 0.6565 0.5943 0.5809 0.5867 0.6443
kNNimp3 0.6661 0.6585 0.6633 0.6973 - 0.6602 0.6196 0.5809 0.5836 0.6608
kNNimp5 0.6671 0.6600 0.6626 0.6988 - 0.6529 0.6273 0.5809 0.5948 0.6566
SVMimp 0.7671 0.7705 0.7567 0.7641 - 0.7844 0.7134 0.7575 0.7356 0.7166
EM 0.6162 0.5961 0.6073 0.6565 - 0.6291 0.6076 0.5551 0.6129 0.6433
MICE 0.6941 0.6969 0.6903 0.7022 - 0.6571 0.6537 0.5640 0.6361 0.6617
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E. Experimental Results

Table E.6: Ranks of the effect of different multivariate (unifo) configurations in
the classification performance (F-measure) using imputation methods from the state
of the art.

F-measure – unifo

MR Methods MCAR1 MCAR2 MCAR3 MAR1 MAR2 MAR3 MNAR1 MNAR2 MNAR3 MNAR4

5%

Meanimp 9 6 4 2 5 3 7 10 1 8
kNNimp1 6 3 5 1 7 8 4 10 9 2
kNNimp3 5 6 3 2 9 8 4 10 1 7
kNNimp5 5 6 3 2 9 8 4 10 1 7
SVMimp 8 7 6 4 9 2 3 5 1 10
EM 6 8 10 1 4 3 7 9 2 5
MICE 7 4 5 2 9 6 3 10 1 8
MEAN 6.571 5.714 5.143 2.000 7.429 5.429 4.571 9.143 2.286 6.714

10%

Meanimp 7 6 4 2 9 3 8 10 1 5
kNNimp1 7 4 6 1 3 9 8 10 2 5
kNNimp3 6 3 4 1 8 9 7 10 2 5
kNNimp5 6 3 5 1 8 9 7 10 2 4
SVMimp 9 5 10 6 4 2 3 8 1 7
EM 8 6 7 2 4 3 9 10 1 5
MICE 6 5 4 2 3 9 7 10 1 8
MEAN 7.000 4.571 5.714 2.143 5.571 6.286 7.000 9.714 1.429 5.571

15%

Meanimp 9 5 7 1 6 3 8 10 2 4
kNNimp1 6 2 7 1 4 5 8 10 9 3
kNNimp3 6 1 5 2 3 9 7 10 8 4
kNNimp5 6 1 5 2 4 9 8 10 7 3
SVMimp 8 7 5 3 6 2 9 10 1 4
EM 9 6 8 1 5 4 7 10 2 3
MICE 8 2 6 3 5 9 7 10 1 4
MEAN 7.429 3.429 6.143 1.857 4.714 5.857 7.714 10.000 4.286 3.571

20%

Meanimp 7 8 6 2 1 3 9 10 4 5
kNNimp1 5 6 4 1 7 2 8 10 9 3
kNNimp3 3 5 4 1 8 6 9 10 7 2
kNNimp5 3 5 4 2 8 7 9 10 6 1
SVMimp 4 6 8 9 5 2 10 7 1 3
EM 8 9 6 1 5 4 7 10 3 2
MICE 5 7 4 3 2 9 8 10 1 6
MEAN 5.000 6.571 5.143 2.714 5.143 4.714 8.571 9.571 4.429 3.143

40%

Meanimp 3 6 4 1 - 7 8 9 2 5
kNNimp1 5 6 4 1 - 2 7 9 8 3
kNNimp3 2 6 3 1 - 5 7 9 8 4
kNNimp5 2 4 3 1 - 6 7 9 8 5
SVMimp 3 2 6 4 - 1 9 5 7 8
EM 4 8 7 1 - 3 6 9 5 2
MICE 3 2 4 1 - 6 7 9 8 5
MEAN 3.143 4.857 4.429 1.429 - 4.286 7.286 8.429 6.571 4.571
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E. Experimental Results
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E. Experimental Results
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