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Resumo

Com a evolucao tecnoldgica, verificou-se um aumento exponencial da quantidade
de dados recolhidos e armazenados. Assim, surgiu a necessidade de criar mecanis-
mos automaticos para extrair conhecimento dos referidos dados. Estes mecanismos
automaticos, conhecidos por modelos de aprendizagem automatica, foram, na sua
maioria, desenvolvidos para dados completos, requisito que nem sempre € possivel
cumprir. Neste contexto, a imputacao dos dados (substitui¢do dos valores em falta
por estimativas plausiveis) surge como uma possivel solugao, garantindo a qualidade

dos dados para posterior analise.

Nos ultimos anos, varios estudos tém proposto novas técnicas de imputacao, de
entre as quais se destaca a utilizagdo de Stacked Denoising Autoencoders. Dada a
sua extraordinaria capacidade de recuperar dados corrompidos, os Stacked Denois-
ing Autoencoders mostram-se promissores na area da imputacao de dados, tendo

despertado um interesse crescente por parte da comunidade cientifica.

No entanto, sendo um topico recente, a sua aplicagao ainda nao se encontra suficien-
temente bem estudada, apresentando diversos aspetos por explorar; em particular,
a sua adequagcao a diferentes mecanismos de dados em falta (Missing Completely At
Random, Missing At Random e Missing Not At Random).

Esta tese apresenta um estudo aprofundado da imputagao de dados via Stacked De-
noising Autoencoders, considerando diferentes mecanismos e percentagens de dados
em falta. Em comparacao com métodos de imputacao do estado da arte, os Stacked
Denoising Autoencoders mostraram ser abordagens robustas para a imputacao de
elevadas percentagens de dados em falta, especialmente quando o mecanismo sub-

jacente a sua geracao é Missing Not At Random.

Palavras-Chave: mecanismos de dados em falta, preenchimento de dados em falta,

denoising autoencoders
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Abstract

The evolution of technology led to an exponential increase in the amount of data
being collected and stored, thus creating the need to develop automatic mechanisms
to extract knowledge from data. These automatic mechanisms, known as Machine
Learning techniques, were mostly designed for complete data, a requirement that is
not always fulfilled. In this context, data imputation (replacement of missing values
by plausible estimates) arises as a possible solution, ensuring the quality of data for

later analysis.

Over the years, several studies presented alternative imputation strategies, among
which Stacked Denoising Autoencoders stand out. Given their ability to recover
corrupted data, Stacked Denoising Autoencoders are promising in the area of data
imputation, generating great interest in the scientific community. However, their
application is an understudied topic, still presenting challenging aspects for research;
namely, their suitability for different missing data mechanisms (Missing Completely
At Random, Missing At Random and Missing Not At Random).

This thesis presents a thorough study of data imputation via Stacked Denoising
Autoencoders, considering different missing data mechanisms and missing rates.
In comparison to state-of-the-art imputation methods, Stacked Denoising Autoen-
coders proved to be robust for imputing high missing rates, especially, when the

mechanism underlying their generation is Missing Not At Random.

Keywords: missing data mechanisms, missing data imputation, denoising autoen-

coders
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Introduction

Over the years, the evolution of information technology and the improvement in
terms of computational power led to an increase in the amount of available data —
as datasets became larger and more complex, it was no longer possible to interpret
them manually. This created a need to extract knowledge from datasets using

automated techniques.

In the late 80’s, Gregory Piatetsky-Shapiro proposed the term Knowledge Discovery
in Databases (KDD) for the title of a workshop held at the Internacional Joint
Conference on Artificial Intelligence [1]. Some years later, Fayyad et al. defined
KDD as the “overall process of discovering useful knowledge from data” [2]. This
interactive and iterative process is composed by 5 main steps (Figure 1.1): Selection,

Preprocessing, Transformation, Data Mining and Interpretation/Evaluation.

Interpretation/
Evaluation

Transformation
Preprocessing

Selection \a’ Transformed Datalé

\/@%? Preprocessed Data :
S é é
@ i Target Data | ;

Pattems

I ﬂ\@ u\ﬂ

'
v

Figure 1.1: Knowledge Discovery in Databases process. Adapted from Fayyad et
al. [2].
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The Selection step encompasses the collection of data from which the knowledge
will be extracted. The next step is the Preprocessing which consists essentially
of data cleaning operations - removal of noise or outliers, handling missing data,
among others. In the Transformation step, dimensionality reduction techniques or
transformation methods are applied in order to obtain useful representations of the
data. In the Data Mining step, the aim is to search for patterns in data, selecting
methods according to the type of problem to be solved (e.g., classification, clustering,
regression). The last step consists on interpreting and validating the model obtained

from the previous step.

The work presented in this thesis focuses on the preprocessing stage, where several
issues may arise. In particular, we focus on the problem of missing data, the lack of

information in one or several features in a dataset.

1.1 Context

Missing Data (MD) is a common problem that appears in real-world datasets, and
may compromise the performance of learning models [3, 4]. In the research com-
munity, three missing mechanisms are recognised: Missing Completely At Random
(MCAR), Missing At Random (MAR) and Missing Not At Random (MNAR) (a
detailed description is provided in Chapter 2). Furthermore, an incomplete dataset
may have MD only in one feature — univariate MD (here denoted as univa) — or in

several features — multivariate MD (here denoted as unifo) .

In the literature, there are several ways of handle missing data, as shown in Fig-
ure 1.2: Case deletion, Imputation Methods, Maximum Likelihood and Machine

Learning without MD estimation.

Each of these approaches presents their advantages and limitations, however, the
one most used in the literature is data imputation [6]. Imputation methods aim
to find plausible values to replace the missing ones, and are mainly divided into
statistical-based and machine learning-based methods [5]. Statistical methods con-
sist in replacing the missing observations with the most similar ones among the
training data, without the need of constructing a predictive model to evaluate their
“similarity” (e.g. Mean/Mode imputation). Machine learning-based techniques,
construct a predictive model with the available data to estimate values for replacing

those that are missing (e.g. k-Nearest Neighbours imputation).
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i v v V

Case Deletion Missing Data Maximum Likelihood Machine Leaming
imputation without MD estimation
o . Machine Leaming
Statistical Imputation Imoutation
MLP imputation
M Mod p
Irfla?l{at?one kNN imputation Mixture Models Ensemble Approaches
P SOM imputati - Fuzzy Methods
Regression Imputation putation EM algorithm -
AANN imputation ecision Irees

Multiple Imputation
RNN imputation J

Missing values are estimated and fill-in imputed)

Figure 1.2: Methods to handle missing values. Adapted from Garcia-Laencina et.
al. [5].

Deep learning techniques are currently a hot topic in Machine Learning since they

have proved to find elegant solutions for several classic problems [7].

Stacked Denoising Autoencoders (SDAE) are a special type of deep neural networks,
developed to recover a clean output from a corrupted input. Since the presence of
missing values in a dataset constitutes a type of corruption, it seems that a natural
extension is the use of SDAE in the imputation task. Although the subject of
imputation has been previously discussed in the literature [19, 5, 23], the application

of SDAE-based approaches for imputation purposes remains an understudied topic.

1.2 Goals

The main goal of this work is to study the performance of SDAE-based approaches
for imputation purposes, analysing whether this technique constitutes a good impu-
tation approach, when compared to well-established approaches (Mean Imputation,
kNN imputation, Support Vector Machines imputation, Multiple Imputation by

Chained Equations and Expectation-Maximization).

To achieve this goal we performed three main experiments in order to answer the
three following questions (a full description of such experiments is presented in
Chapter 4):
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1. How do the SDAE perform when there are enough complete data to train the

model (missing values only in the test set)?

e We selected 20 complete datasets, from open source repositories, and per-
formed synthetic MD generation using 9 univa implementations, under 5
and 20% of Missing Rate (MR). Then, we compared the performance of
our proposed SDAE approach with 7 state-of-the-art imputation meth-

ods.

2. How do the SDAE perform when training data corruption follows an underly-

ing missing mechanism?

o We selected 33 complete datasets and performed synthetic MD genera-
tion using 3 wniva implementations and 3 unifo implementations, under
5, 10, 15, 20 and 40% of MR. Then, we compared the performance of
this approach for two different SDAE with 7 state-of-the-art imputation
methods.

3. Does the performance of SDAE increase for larger datasets, with higher sample

sizes?

e We investigated the usefulness of SDAE when handling larger datasets.
For that, 5 complete datasets with higher sample sizes were selected and

the simulation setup performed for question 2 was repeated.

1.3 Research Contributions

The work developed during this thesis resulted in the following contributions:

e Adriana F. Costa, Miriam S. Santos, Jastin Soares, Pedro H. Abreu. “Missing
Data Imputation Using Deep Denoising Autoencoders: data recoverability
in different missing scenarios”. IJCAI-ECAI 2018, 27th International Joint
Conference on Artificial Intelligence and the 23rd European Conference on
Artificial Intelligence (Submitted on 31th January 2018).

e Adriana F. Costa, Miriam S. Santos, Jastin Soares, Pedro H. Abreu. “Missing
Data Imputation Using Denoising Autoencoders: the untold story”. IDA 2018
- 17th International Symposium on Intelligent Data Analysis (Accepted as full

paper).
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e Miriam S. Santos, Adriana F. Costa, Jastin Soares, Pedro H. Abreu, “Syn-
thetic Missing Data Generation: The Nuts and Bolts” (in preparation, to be

submitted to Pattern Recognition).

e Adriana F. Costa, Miriam S. Santos, Inés Domingues, Pedro H. Abreu, “Stacked
Denoising Autoencoders for Missing Data Imputation: exploring the effects of
sample size, missing mechanisms and rates on performance classification” (in

preparation, to be submitted to Expert Systems with Applications).

1.4 Document Structure

The remainder of this document is organised as follows: in Chapter 2 we provide
some useful background knowledge which will be the basis of this work. Chapter 3
presents several research works from the missing data field that use deep learning
approaches for imputation purposes. Then, Chapter 4 describes the different stages
of the experimental setup and Chapter 5 discusses the obtained results. Finally,

Chapter 6 concludes the thesis and presents some possibilities for future work.
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Background Knowledge

Missing data corresponds to the lack of information in a dataset, so it occurs when
no data is available for an observation [14]. This is a common shortcoming that
arises in several real-world domains. For example, in UCI Machine Learning Repos-
itory — which provides a collection of datasets widely used for the empirical analysis
of machine learning algorithms — about 45% of datasets have missing data [15]. Han-
dling missing data is an important issue since, in addition of being a very frequent

problem, the presence of missing values affects the results obtained on classification.

There are a lot of plausible explanations for the occurrence of missing values, such
as equipment errors, erroneous data registration, non-response in surveys, among
others [16]. For example, in the field of medical diagnosis, some values may not be
saved due to a deficient manual data registration or to the unavailability of certain
medical equipments. In genetic research, there are also a lot of incomplete data
when handling Deoxyribonucleic Acid (DNA) microarrays, where this data may be
missing due to several reasons including sample contamination. In control based-
applications, missing data can also be a result of equipment errors and incorrect
measures - a faulty equipment may not be able to record certain observations because

of their fault or because of the value of the observation itself.

The occurrence of missing values is more easily explained using as example the
process of responding to a survey. In this case, respondents can accidentally skip
questions or can skip a question intentionally, due to its content. More, questions
can be skipped depending on the age of the respondent, in other words, a younger
person may skip a question to which an older one would respond easily. For example,
an adult may find it easier to answer a question of political nature than a teenager.
These three examples follow different missing mechanisms, which will be explained

in what follows.
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2.1 Basic Notations

The missing data theory was introduced by Rubin [17] in the late 70s. To provide a
clear explanation about this theory it is important to establish some basic notation.
Let X denote a dataset with m € N observations and n € N features. Each element
of the dataset is defined by X;;, where ¢ = {1,2,....m} and j = {1,2,...,n}.

A complete dataset, X,,,, consists of the data with no missing values. However,
most real-world datasets have missing values. Suppose that X is divided into two
parts such that X = { X s, Xiniss } where Xy will be the set of observed values of X
and X,,;ss will be the set with missing values of X. Each feature of X will be denoted
as Tnss if it is composed by some observations of the missing part of the dataset and
Tops if it is a part of the observed values in the dataset. For example, the dataset
in Table 2.1 is composed by two features, Age and Number of Cigarettes: Age can
also be denoted as x.,s, since their observations are all observed in the dataset,
while Number of Cigarettes can be called x,, since it contains missing values.
Furthermore, observed values of both Age and Number of Cigarettes constitute
Xops Whereas, in this case, X,,;ss consists only on the missing values of one of the
features, Age. Both parts, X,,s and X,,;ss can consist of more than one feature,

depending on the number of features in the dataset.

Let R be the missing data indicator matrix that has the same dimensions as X:

1 if X;; is missing
R;; = (2.1)
0 if X;; is obseved

To illustrate this notation, reconsider the small dataset in Table 2.1. The missing
data indicator matrix has the same dimensions as the simulated dataset and takes

value 1 when data is missing and value 0 when data is observed.

A dataset X could have different percentages of missing data which are referred to
Missing Rates (MRs).

2.2 Missing Data Mechanisms

There are three mechanisms under which missing data can occur: Missing Com-
pletely At Random (MCAR), Missing At Random (MAR) and Missing Not At
Random (MNAR). The mechanism under the missing data can be characterized by

8
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Table 2.1: A study in adolescent tobacco use containing missing values.

(a) Simulated dataset with missing (b) Missing data indicator matrix for
values. this dataset.

Age Number of Cigarettes Age Number of Cigarettes

15 2
15 -
15
16
16
16
16
17
17
17
17
17
18 -
18
18
19
19 -
19 -
20 9
20 2

(e}
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the conditional distribution of R given X:

p<R’X7£) :p(R’Xob&szssag) (22)

where p is the probability distribution, R is the missing data indicator matrix, X s
and X,,;ss are the sets of observed and missing data, respectively, and & designates
the set of parameters that describes the relation between R and the dataset, X.
The set of parameters, ¢ is normally unknown [18|. However, this is not a problem
since it is the existence or absence of a relationship between X and R that defines

the missing mechanisms.

To illustrate the three missing mechanisms, consider the small dataset in Table 2.2
which corresponds to a simulated dataset of a study in adolescent tobacco, with
20 participants. It is assumed that this data was collected via a survey made to

students of high school level. In this study, several students have missing values on

9
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their daily number of cigarettes.

Table 2.2: Simulated dataset of a study in adolescent tobacco use, with N = 20
participants. The daily average of cigarettes is presented with MCAR, MAR and
MNAR missing values.

Number of Cigarettes
Complete MCAR MAR MNAR

Age

15
15
15
16
16
16
16
17
17
17
17
17
18
18
18
19
19
19
20
20
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Missing Completely At Random

The Missing Completely At Random mechanism (MCAR) occurs when the mecha-
nism under the missingness is unrelated to any observed or unobserved value from
the dataset, so:

P(R = 1{Xops, Xiniss: §) = p(R = 1[€) (2:3)

Equation 2.3 shows that the probability that R takes 1 as value (i.e., there is a
missing value) is conditioned by some parameter (or set of parameters) &, but it is

not conditioned by any data, whether it may be X,,;ss or X ps.

In the MCAR column, the missing values for the daily number of cigarettes are

unrelated with their own values and also with the Age, so missingness is unrelated

10
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to the data. One possible explanation for MCAR values is that students did not go
to school to participate in the survey, because of some personal event (e.g. a funeral,

a car accident, an illness) which is not part of the dataset.
Missing At Random

In this case, the cause of the missing data is related with observed values from the

dataset. This mechanism can be expressed by the relation:

p(R = ]-|Xobsa Xmi857 g) = p(R = ]—|Xobs7 5) (24)

Equation 2.4 describes the probability of a missing value occurring under MAR
mechanism. This probability is conditioned by the observed data, X, through

some parameter (or set of parameters), £.

For the MAR example, the number of daily cigarettes is missing for younger students
(aged between 15 and 16). For example, younger students are less likely to fill in
their number of smoked cigarettes in a day because they do not want to admit that
they are regular smokers. However, this lack of values has nothing to do with the

daily number of cigarettes reported by a student — it is only related to their age.
Missing Not At Random

Finally, data is Missing Not At Random (MNAR) when the probability of a value to
be missing is related with the missing data itself. This mechanism can be expressed

by the expression:

p(R = HXobsaXmiss:g) (25)

Equation 2.5 shows that the probability of missing a value depends on the set of
missing data, X,,;ss, but also on the set of observed data, X,,s. So, this probability

varies in a way that is unknown to us, which makes this mechanism more complex.

Considering again the dataset in Table 2.2, we can see that MNAR values are directly
related with the missing values. If students smoke a lot they are more likely to hide
their number of daily cigarettes. So, the probability of a missing value depends on
the value itself - the probability of a missing value is higher for students who smoke

frequently and may also be related to their age.

11
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2.2.1 Synthetic Missing Data Generation Methods

The three mechanisms can be synthetically generated in various ways, and con-
sequently different implementations can be found in the literature. Tipically, the

studies on missing data imputation follow a specific pipeline:

1. Selection of complete datasets, that will constitute the ground truth; these
datasets can have different characteristics (e.g., dimensionality, sample size,

types of features)

2. Synthetic generation of missing values, that can encompass the different miss-

ing mechanisms and univariate (univa) and multivariate (unifo) approaches;

3. Data imputation using several strategies, either statistic-based, or machine

learning-based techniques;

4. Evaluation of imputation methods in terms of imputation quality and/or clas-

sification performance.

In this subsection, we focus on step 2 and will present several univa and unifo Miss-
ing Data (MD) generation approaches (based on related works) and the respective
pseudo-codes. These pseudo-codes use several functions as building blocks which
are described in Table A.1. The nomenclature we use represents the missing val-
ues by “NaN" values. Table 2.3 shows all the missing data generation approaches
that were implemented and a brief description. We implemented all the synthetic

generation approaches using Python 3.

In addition to the pseudo-codes, we also present illustrative schemes for some ap-
proaches. In all of them, we use grey observations to represent the location of the
missing values. Moreover, we represent the observed values that are relevant in
a particular approach using different shades of green: darker shades are used to

represent higher values while lighter shades represent lower values.

2.2.1.1 Univariate implementations

For the univariate implementations, the feature that will have MD, x,,;55, Will always
be the one most correlated with the class labels. This correlation is accessed through
the calculation of all the correlation coefficients between each feature and the class
label. It is important to emphasize that we have decide to choose z,,;ss in this way

but this approach may not match the one used on related works.

12
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Table 2.3: Summary of the different missing data configurations found in the
related work.

Univariate Multivariate

Designation Authors Description Designation Authors Description

MCARlynive Twala et Based on the values MCAR1ynifo Twala et Based on the values
al. [19] of a Bernoulli distribu- al. [19] of a Bernoulli distribu-

tion. tion.

MCAR2yniva  Rieger et Random observations MCAR2ynifo Nanni et  For each observation, a
al. [20]; Xia et of Tiss are set to be al. [22] random percentage of
al. [21] missing. features is set to be

missing.

MCAR3ynijo Garciarena et Random observations
al. [23]; Ali et are set to be miss-
al. [24]; Zhu et ing, considering all the

al. [25] dataset.
MAR1 yniva Twala et Observations bellow MAR1ypnif0 Twala et  Observations  bellow
al. [19] the MR  percentile al. [19] the MR  percentile
of z,ps are set to be of z,ps are set to be
missing on Tyiss- missing on Tmiss.
MAR2yniva Based on ranks of zp. MAR2yp;if0 Zhu et al. [26];  Based on the median of
Ali et al. [24] ZTobs-
MAR3yniva Rieger et al. [20] Based on the median of MAR3ypnifo Garciarena et  There is only one ob-
Tobs- al. [23] served feature. Each

Tmiss Will have missing
values for the lowest
observations of Z,p.

MARAyniva Tmiss Wwill have miss-
ing values depending
on the highest values of

Lobs-

M AR5 niva Tmiss Wwill have miss-
ing values depending
on the lowest and the
highest values of z,ps.

MNAR1ypive Twala et Lowest values of Ziss MNARlynifo Zhuet al [26].; Based on the median of
al. [19] are deleted. Ali et al. [24] Tomiss-

MNAR2ynive Xia et al. [21] Highest values of Zy;ss MNAR2,,ifo Garciarena et All the features will

are deleted. al. [23] have missing values for

the same observations.

MNAR3nifo Garciarena et Lower values of each

al. [23] Tmiss are set to be

missing.
MNAR4ynifo Twala et  Features are separated
al. [19] into pairs. Each has

one Tyiss- Lower val-
ues of each z,;ss are
set to be missing.

Choosing x,,iss to be the most correlated feature with the class labels ensures a
generic pattern among all the datasets used. On the other hand, it is also safe-
guarded that the values that are set to be missing are relevant information. However,
other approaches can be found in the literature such as choosing z,,;ss randomly as
in Xia et al. [21] and Rieger et al. [20].

13
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Univariate MCAR implementations

For MCAR mechanism, we consider two univariate implementations, M CAR1 ,iva
(Figure 2.1a and Algorithm 1) and MCAR2,,iva (Figure 2.1b and Algorithm 2),
based on three related works (Twala et al. [19], Rieger et al. [20], Xia et al. [21]).

b X X, X X, . X
POXy Xe X3 Xy X 1 s 3 4 n
0

o
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a]
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0]
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a]

0]

0]
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0

1]

o]

0]

0

(a) Missing data pattern for (b) Missing data pattern for
MCAR1,pine implementation. b MCAR2,,,, implementation.
represents the Bernoulli distribu-

tion.

Figure 2.1: Schemes describing missing data patterns for each MCAR implemen-
tation. In (a), the missingness is defined by a Bernoulli distribution.

Twala et al. [19] performed MCAR generation by choosing the locations of Z;ss
using a Bernoulli distribution — it is referred to as MCAR1,pne- The Bernoulli
distribution is a discrete distribution that has outcome £ = 1 with a probability
p and outcome k = 0 with a probability of 1 — p, as shown in Equation 2.6. The
probability p represents the expected missing rate and, as in any Bernoulli trial,

each value of x,,;ss has a probability p of being deleted.

l—pfork=0
f(k.p) = (2.6)
pfor k=1

This implementation is not the most accurate as it may not return the expected
missing rate, especially when it comes to small datasets. Of course, in any of the
implementations, we may have to round the number of Missing Values (MVs) that
we want to generate. For example, consider a dataset with 30 observations and 5
features in which we want to generate 15% of MVs that will be equally distributed
by all features — each feature should have 4.5 (30 x 15%) missing values but in reality,
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it will have 5, which corresponds to a MR of, approximately, 16.7%. However, there
are some implementations that, by their nature, can generate a very different number

of MVs that was intended and hence they are limiting.

According to the Law of Large Numbers (LLN), the expected probability is more
easily achieved for datasets with many samples. The increase in the number of
observations makes the number of outcomes equal to 1 (kK = 1) converge to the

expected probability.

Algorithm 1: Implementation of MCAR1,iva-
Input

data: Complete dataset
MR: MD percentage
Jmiss: Missing feature index
Output:
Dataset with MR% generated MD
begin
x = numObservations(data)
observations = bernoulli( MR, size = x)
data| (observations == 1), jmiss | = “NaN”

return (data)

Rieger et al. [20] and Xia et al. [21] proposed a simple method for generating MCAR
which chooses random locations in x,,;ss to be missing. We choose this random loca-
tions with a random number generator function. This implementation method is the

most immediate for a random mechanism and is herein referred to as MCAR2 iva-

Algorithm 2: Implementation of MCAR2,,iva-
Input

data: Complete dataset
MR: MD percentage
Jmiss: Missing feature index
Output:
Dataset with MR% generated MD
begin
x = numObservations(data)
numMYV = round(z x MR =+ 100)
observations = random(x, size = numMYV)
data| observations, jmiss | = “NaN”

return(data)

Univariate MAR implementations

For MAR mechanism we consider five different implementations: M AR1,iva (Fig-
ure 2.2 and Algorithm 3), M AR2,piva (Algorithm 4), M AR3, e (Algorithm 5),
M AR4 ynive (Figure 2.3 and Algorithm 6) and M AR5, (Figure 2.4 and Algo-

rithm 7). All MAR generation methods make use of an observed feature x5 to
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define the missing locations in x,,;s: again, the missing feature x,,;ss will be the one
most correlated with the class labels and the observed feature, x,, is the one most
correlated with the missing feature, x,,;ss. As mentioned previously, this choice of
features was made in order to coherently compare the obtained results on all the
used datasets. Once again, this approach may not coincide with those used in related

works.

Twalaet al. [19] implemented a MAR generation algorithm, referred to as M AR pniva,
where x,,;ss Will be missing for the observations that are below the MR percentile
in the observed feature x,,s. This means that the lowest observations of x,s will be

deleted on ;5.

Algorithm 3: Implementation of M AR ,,;va-
Input

data: Complete dataset
MR: MD percentage
Jmiss: Missing feature index
Tops: Observed feature
Output:
Dataset with MR% generated MD
begin
x = numObservations(data)
numMV = round(x x MR + 100)
observations = sort(z,ps, reverse = False)
observations = observations| 0 : numMV ]
data| observations, jmiss | = “NaN”

return (data)

Figure 2.2: Missing data pattern for M AR1,,;.,. implementation.

In the work of Rieger et al. [20], 4 different MAR generations are suggested, which
we have implemented as well in this work (M AR2,pniva, M AR3univa, M AR4ynive and
MAR5univa) :
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M AR2,,;q 1s based on ranks of x5 (70ps): the probability of a pattern x; ;55 to be
missing is computed by dividing the rank of z; ;s by the sum of all ranks for .
Then, the patterns to have missing values are sampled according to such probability,
until the desired MR is reached (this method is also used by Xia et al. [21]);

Ti,0bs
Pmiss = (27)

Z;il Ti,obs

Algorithm 4: Implementation of M AR2,,;vq-
Input

data: Complete dataset
MR: MD percentage
Jmiss: Missing feature index
Tops: Observed feature
Output:
Dataset with MR% generated MD
begin
x = numObservations(data)
numMYV = round(z x MR -+ 100)
ranks = rank(zps)
probs = ranks / sum(ranks)
observations = random(x, size = numMV, p = probs)
data[ observations, jmiss | = “NaN”

return (data)

In M AR3,,iva, the patterns are divided into two groups according to the median of
the observed feature x.,,, so that the probability of missingness is different among
groups: patterns with observations greater than (or equal to) the median of s will
belong to Group 1, otherwise the observations belong to Group 2. In Algorithm 5,
groups is an array of size x that contains the group of each observation in x.,,. The
observations are then sampled according to an established probability of missingness
that will be n%’l for Group 1 and % for Group 2 (nG; and nGy are the number of

observations in Group 1 and Group 2, respectively);

09 . _ .
e if @ ops >= median(xyps)

Pmiss = (28)

0.1 : -
e A Tiobs < median(zps)

In M ARA4 niva, the locations of x,,;ss where x,, assumes its highest values are set

to be missing.

M ARD,i0q considers both the highest and lowest values of x,: given the necessary
number of observations to have missing values for the specified missing rate, call it

numMV ; M AR5 pniva sets numMV /2 observations to have missing values according
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Algorithm 5: Implementation of M AR3,,iva-

Input

data: Complete dataset

MR: MD percentage

Jmiss: Missing feature index

groups: array with the groups of each observation of x,ps

nG1 and nG2: number of observations in Group 1 and Group 2, respectively
Output:

Dataset with MR% generated MD
begin

x = numObservations(data)
numMYV = round(z x MR + 100)
probs = ||
for g in groups do
if ¢ == 1 then
| probs.append(0.9/nG)
if ¢ == 2 then
| probs.append(0.1/nG>)

observations = random(x, size = numMV, p = probs)
data[ observations, jmiss | = “NaN”

return (data)

Algorithm 6: Implementation of M AR4 ,iva-

Input

data: Complete dataset

MR: MD percentage

Jmiss: Missing feature index

Tops: Observed feature
Output:

Dataset with MR% generated MD
begin

x = numObservations(data)

numMV = round(x x MR + 100)
observations = sort(z,ps, reverse = True)
observations = observations[ 0 : numMYV |
data observations, jmiss | = “NaN”

return (data)

to the highest values of x s, and numMV /2 according to the lowest.
Univariate MNAR implementations

In the MNAR context, there is no dependency on any observed feature, so for this

mechanism there is only one feature of interest, the missing feature, ;.

For this mechanism, two methods were implemented, M N AR1 ;o (Figure 2.5a,
Figure 2.5b and Algorithm 8) and M N AR2,,,;v, (Figure 2.6a, Figure 2.6b and Al-
gorithm 9). M NAR1 e was proposed by Twala et al. [19]: this method is similar

to the approach used in M AR1,,;vq, but the feature x,,;, itself is used as observed
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Figure 2.3: Missing data pattern for M AR4,,,. implementation.

Algorithm 7: Implementation of M AR5 ,iva-
Input

data: Complete dataset

MR: MD percentage

Jmiss: Missing feature index

Tops: Observed feature
Output:

Dataset with MR% generated MD
begin
x = numObservations(data)
numMYV = round(z x MR =+ 100)
highest_observations = sort(zps, reverse = True)
lowest_observations = sort(xps, reverse = False)
highest_observations = highest_observations[ 0 : numMV/2 ]
lowest_observations = lowest_observations| 0 : numMV /2 |
data[ highest_observations, jn,iss | = “NaN”
data[ lowest_observations, jmiss | = “NaN”

return (data)

Figure 2.4: Missing data pattern for M ARb5,,iv. implementation.
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feature, i.e, the MR percentile of x,,;s is determined and values of x,,;ss lower than

the cut-off value are removed.

Algorithm 8: Implementation of M NARI1 ,,;va.
Input

data: Complete dataset
MR: MD percentage
Jmiss: Missing feature index
Tmiss: Missing feature
Output:
Dataset with MR% generated MD
begin
x = numObservations(data)
numMV = round(z x MR -+ 100)
observations = sort(Z,ss, reverse = False)
observations = observations| 0 : numMV ]
datalobservations, jiss] = “NaN”

return (data)

(a) Complete dataset. (b) Dataset with synthetic missing val-
ues.

Figure 2.5: Missing data pattern for M N AR1,,,, implementation.

MNAR2,ivq is created according to Xia et al. [21]: larger values of x,,ss are re-
moved until the MR is reached.

2.2.1.2 Multivariate implementations

Regarding multivariate implementations, there are several alternatives to choose the
missing values positions. For MCAR and MNAR, usually the missing values are gen-
erated in all the features of the dataset (except for M NAR2,,,r, and M N AR4,,; o,
as will be explained bellow). However, for MAR, the process will be different. In this
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Algorithm 9: Implementation of M NAR2,,iva.
Input

data: Complete dataset
MR: MD percentage
Jmiss: Missing feature index
Tmiss: Missing feature
Output:
Dataset with MR% generated MD
begin
x = numObservations(data)
numMV = round(z x MR -+ 100)
observations = sort(zmiss, reverse = True)
observations = observations| 0 : numMV ]
data[ observations, jmiss | = “NaN”

return (data)

nnnnn

(a) Complete dataset. (b) Dataset with synthetic missing val-
ues.

Figure 2.6: Missing data pattern for M N AR2,,;.,. implementation.

case, it is necessary to have at least one observed feature and it is also common to
create pairs of correlated features which are composed of an observed and a missing

feature, (Zops, Tmiss), where ;5 has the missing values while x s will be complete.
Multivariate MCAR implementations

We consider three different multivariate implementations of the missing completely
at random (MCAR) mechanism, which are presented on five related works (Twala
et al. [19], Nanni et al. [22], Garciarena et al. [23], Ali et al. [24] and Zhu et al. [26]).

In Twala et al. [19], the three multivariate generations are performed similar to its
univariate implementations. MCAR is generated similar to M C AR1,,ivq, but in this
case random locations are chosen for each feature, also using a Bernoulli distribution.

It would be expected that all features have the same amount of missingness which
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may not happen because of the Bernoulli distribution. This implementation will be

denoted as MCAR1,,;f, (Figure 2.7 and Algorithm 10).

Algorithm 10: Implementation of MCARL,; ..

Input
data: Complete dataset
MR: MD percentage
Output:
Dataset with MR% generated MD
begin
x = numObservations(data)
y = numFeatures(data)
for jmniss in range(0, y) do
observations = bernoulli(MR, size = x)
L data[(observations == 1), jniss] = “NaN”

return (data)
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Figure 2.7: Missing data pattern for M CAR1,,,f, implementation. b represents

the Bernoulli distribution for each feature.

Nanni et al. [22] generate MCAR in a slightly different way: instead of generating

missing values by feature, they are generated by observation. Here, the desired num-

ber of missing values is equally distributed by all the observations and the choice

of missing features is randomly performed. So, in this case, different features may

be missing for different observations of the dataset. This implementation is not

completely accurate since the desired MR may not be attained since, by rounding

the number of missing values for each observation, the desired number of missing

values may not be reached. Nanni et al. [22] implementation is herein referred to as

MCAR2yis, (Figure 2.8 and Algorithm 11).
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Algorithm 11: Implementation of MCAR2,,, ..

Input

data: Complete dataset

MR: MD percentage
Output:

Dataset with MR% generated MD
begin

x = numObservations(data)
y = numFeatures(data)
numMV = round(y x MR - 100)
for i in range(0,z) do
featureMV = random(y, size = numMV)
L data[i, featureMV] = “NaN”

return (data)

Figure 2.8: Missing data pattern for M CAR2,,,r, implementation.

In Garciarena et al. [23], Ali et al. [24] and Zhu et al. [26] is proposed a simple
method for MCAR generation which will be denoted as MCAR3,,f, (Figure 2.9
and Algorithm 12). This method chooses random locations in the dataset to be

missing until the desired missing rate is reached.
Multivariate MAR implementations

We consider three multivariate implementations for MAR mechanism, which are
based on four different works (Twala et al. [19], Zhu et al. [26], Ali et al. [24] and

Garciarena et al. [23]).

The following two MAR implementations use the same approach for choosing the
observed and missing features. Twala et al. [19], Zhu et al. [26] and Ali et al. [24]
define pairs of features which include an observed and a missing feature (Zops, Tpmiss)-
This pair selection of features is based on high correlations among all the features of

the dataset. In the case of having an odd number of features, the unpaired feature
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Algorithm 12: Implementation of MCAR3,.; .-

Input
data: Complete dataset
MR: MD percentage
Output:
Dataset with MR% generated MD
begin
x = numObservations(data)
y = numFeatures(data)
numMV = round(z X y x MR + 100)
countMV = count(data)
while countMV /= numMV do
observationMV = random(x, size = 1)
featureMV = random(y, size = 1)
data[observationMV, featureMV] = “NaN”
countMV = count(data)

return (data)

Figure 2.9: Missing data pattern for M CAR3,,s, implementation.

may be added to the pair which contains its most correlated feature.

Twala et al. [19] proposed a multivariate implementation which is similar to its

univariate version (M AR1,vq) — herein referred to as M AR1,,;f, (Figure 2.10 and

Algorithm 13). For each pair of correlated features, the missing feature will be the

one most correlated with the class labels. In the case of having a triple of correlated

features, there will be two missing features which will also be those most correlated

with the labels. MAR1,,;f, sets the observations of @,,;ss to be missing when they

correspond to values of x.,, bellow 2 x MR quantil (% X MR quantil for triples).

Zhu et al. [26] and Ali et al. [24] also created pairs of correlated features, however,

it is not stated how observed and missing features are chosen. So, we adapt the

implementation proposed in this work using the following approach: for each pair
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Algorithm 13: Implementation of M AR1,,;s,. This pseudo-code assumes that
there is an even number of features. pairs is an array with the paired indices of
features.

Input

data: Complete dataset

MR: MD percentage

pairs: array containing the pairs of correlated features
Output:

Dataset with MR% generated MD
begin

x = numObservations(data)

for pair in pairs do
Jobss Jmiss = select_by_correlation(pair, data)
LTobs = data[ ) jobs ]
quantil = 2 x © x MR+ 100
observations = sort(z,s, reverse = False)
observations = observations| 0 : quantil ]
data[ observations, jmiss | = “NaN”

return (data)

Xobs,l Xmiss_l Xobs,Z Xmiss_Z Xobs,n o Xmiss_n

Figure 2.10: Missing data pattern for M AR1,,,s, implementation.

of correlated features, the missing feature, x,,;ss, will be randomly chosen and the
remaining one will be the observed feature, x.,,. We use this approach in order
to present an alternative to the choice of x,,s and x,s. For each pair or triple
of features, x,,;ss is divided in two groups according to the median of x,s: the
values of x,,ss will be assigned to a group (or another) according to whether the
respective observations of z,,s have lower (or greater) values than its median. Zhu
et al. [26] proposed a more complete version of this implementation: for categorical
features, two equally-sized groups are created by randomly dividing the observations.
After splitting the observations into two groups, one group is randomly selected to
have missing values with a probability of 4 x MR (3 x MR for triples). This
implementation is herein referred to as M AR2,,,s, (Algorithm 14).
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Algorithm 14: Implementation of M AR2,,,s,. This pseudo-code assumes that

there is an even number of features.
Input

data: Complete dataset

MR: MD percentage

pairs: array containing the pairs of correlated features
Output:

Dataset with MR% generated MD

begin
x = numObservations(data)
for pair in pairs do
Jobss Jmiss = random_select(pair)
Lobs = data[ ) jobs ]
gl, g2 = group(zeps, threshold = median(zyps))
g = random_select(gl, g2)
observations = random(g, size = 4 x M R X size(g) + 100)
data] observations, jmiss | = “NaN”

return (data)

Garciarena et al. [23] performed MAR generation setting the lowest observations of
Tops 1O be missing in the missing features. In this case, there is only an observed
feature x5, which is randomly chosen. Here, there are nF' missing features that are

also randomly chosen. This implementation of Garciarena et al. will be referred to
as MAR3unifo (Figure 2.11 and Algorithm 15).

Algorithm 15: Implementation of M AR3.,;o-

Input

data: Complete dataset

MR: MD percentage

nF: number of missing features
Output:

Dataset with MR% generated MD

begin
x = numObservations(data)
y = numFeatures(data)
numMV = round(x X y x MR + 100 = nF)
Jobs = random(y, size = 1)
Tobs = data[ A jobs }
features = remove([1 : y], jobs)
featuresMV = random(features, size = nF)
observations = sort(z,ps, reverse = False)
observations = observations[ 0 : numMYV |
for joiss in featuresMV do

| data[ observations, jmiss | = “NaN”

return (data)
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X XZ Xmiss_3

miss_1

Figure 2.11: Missing data pattern for M AR3,,,f, implementation.

Multivariate MNAR implementations

For MNAR mechanism we implement four multivariate MNAR versions, which are
presented in four different works (Zhu et al. [26], Ali et al. [24], Garciarena et al. [23]
and Twala et al. [19]).

Zhu et al. [26] and Ali et al. [24] generate MNAR by dividing each missing feature
(i.e., each feature of the dataset) into two groups: one group will have the obser-
vations bellow the median of x,,;,s and the other will have observations above the
median. Zhu et al. [26] proposed a more complete version of this implementation
as already explained for M AR2,,,s,. After splitting observations, one group is ran-
domly chosen and their values are set to be missing with a probability of 2 x M R.
The approach chosen to be implemented was the one of Zhu et al. [26] which will
be denoted as M NAR1,,;f, (Algorithm 16).

Algorithm 16: Implementation of M N AR, o.

Input

data: Complete dataset

MR: MD percentage
Output:

Dataset with MR% generated MD
begin

x = numObservations(data)
y = numFeatures(data)
for jmiss in range (0,y) do
Tmiss = data’[ ) jmiss ]
gl, g2 = group(Zmss, threshold = median(zyps))
g = random_select(gl, g2)
observations = random(g, size = 2 X M R X size(g) + 100)
data[ observations, jmiss | = “NaN”

return (data)
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Garciarena et al. [23] proposed two different implementations for MNAR multivari-
ate generation: MNAR2,,f, (Figure 2.12 and Algorithm 17) and MNAR3,.if0
(Figures 2.13a and 2.13b and Algorithm 18). MNAR2,,,, is also called Missing-
ness depending on unobserved Variables (MuOV) since each feature of the dataset
will have the same number of missing values for the same observations. The missing
observations and the nF' missing features are randomly chosen. Here, it is not in-
tended to generate MD in all the features from the dataset because in that case we
would be deleting complete samples. However, the authors do not refer to any re-
striction on the value of nF. Missingness depending on Its Value itself (MIV) is the
definition chosen by Garciarena et al. [23] for M NAR3,,is,. This implementation
chooses the lower values of each feature to be missing so, in this case, an observation
can be missing depending on its value itself. Also, for this implementation, all the

features will have the same number of missing values.

Algorithm 17: Implementation of M NAR2,,,,.

Input

data: Complete dataset

MR: MD percentage

nF: number of missing features
Output:

Dataset with MR% generated MD
begin

x = numObservations(data)
y = numFeatures(data)
numMV = round(z X y x MR +100 + nF)
observations = random(x, size = numMYV)
featuresMV = random(y, size = nF)
for jmiss in featuresMV do

| data[ observations, jmiss | = “NaN”

return (data)

Twala et al. [19] proposed a MNAR multivariate implementation similar to their
MAR implementation (MAR1ypnif,). This implementation is called MNAR4 ;0
(Figures 2.14a and 2.14b and Algorithm 19) and, unlike the other approaches used
for MNAR generation, there is also the creation of pairs of correlated features. As
in MAR1nifo, Tmiss Will be the one most correlated with the class labels and, in
this case, there will be no x.,. Furthermore, for an odd number of features, there
will be a triple of correlated features with two missing features. For each z,,ss,

observations bellow 2 x M R are set to be missing (% X MR in case of a triple).

28



2. Background Knowledge

Figure 2.12: Missing data pattern for M N AR2,,,s, implementation.

Algorithm 18: Implementation of MNAR3,,; .

Input

data: Complete dataset

MR: MD percentage
Output:

Dataset with MR% generated MD
begin

x = numObservations(data)

y = numFeatures(data)

numMYV = round(z x MR =+ 100)

for jniss in range(0, y) do
observations = sort(jmss, reverse = False)
observations = observations[ 0 : numMYV |
data[ observations, jmiss | = “NaN”

return (data)

10 1 HNl-

(a) Complete dataset. (b) Dataset with synthetic missing val-
ues.

Figure 2.13: Missing data pattern for M N AR3,,s, implementation.
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Algorithm 19: Implementation of M NAR4,,;,.

Input

data: Complete dataset

MR: MD percentage

pairs: array containing the pairs of correlated features
Output:

Dataset with MR% generated MD
begin

x = numObservations(data)

for pair in pairs do
Jobs, Jmiss = select_by_correlation(pair, data)
Tmiss = data[ Dy Jmiss ]
quantil = 2 x x x MR = 100
observations = sort(z,;ss, reverse = False)
observations = observations| 0 : quantil ]
data[ observations, jmiss | = “NaN”

return (data)

Xmiss_l X2 Xmiss_3 X4 Xniss_5 -+ Xn Xmiss_l Xz xmiss_3 Xy Xniss 5 - X

(a) Complete dataset. (b) Dataset with synthetic miss-
ing values.

Figure 2.14: Missing data pattern for M N AR4,,,s, implementation.

Conclusions

In this section, we have provided a detailed description of several implementations
for the three missing mechanisms. We implemented all the above approaches, how-
ever, we did not use them at all the stages of this work. We considered that the
most appropriate approaches are those that guarantee the generation of the desired
number of missing values. Therefore, we performed a selection of these implemen-
tations in order to have one per each mechanism and type (univa and unifo). More

details will be provided in Chapter 4.
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2.3 Missing Data Imputation

Imputation methods aim to find plausible values to replace the ones that are missing
and are mainly divided into statistical-based or machine learning-based methods [5].
Statistical methods consist in replacing the missing observations with the most simi-
lar ones among the training data, without the need of constructing a predictive model
to evaluate their “similarity” (e.g. Mean imputation). Machine learning-based tech-
niques, construct a predictive model with the available data to estimate values for
replacing those that are missing (e.g. k-Nearest Neighbours (kNN) imputation, Sup-
port Vector Machines (SVM) imputation, Stacked Denoising Autoencoders (SDAE)

imputation).

2.3.1 Mean/Mode Imputation

The simplest method to impute missing values is Mean/Mode imputation. The miss-
ing entries of each feature, x,,;ss, are replaced by the mean of its observed values
or by the mode, in case of categorical values. Class-conditional mean imputation
is a variant approach where each MV is replaced with the mean of observed val-
ues belonging to its class [5]. Although this method is quite simple it has several
limitations since it can produced biased estimates and it does not preserve the re-
lationships between features [27]. Mean/Mode imputation is herein referred to as

Meanimp and was applied using the implementation of Scikit Learn’s.

2.3.2 Imputation with k-Nearest Neighbours

The kNN algorithm is quite popular in the missing data imputation field [28]. Basi-
cally, given a missing value in a pattern, a plausible substitute value can be estimated
using the values of patterns that are close to it, considering observed values from
other features than x,,;s;. This estimation may be the mean of nearest neighbours
in case of a continuous feature and also may be the mode, for categorical features.
This technique requires a selection of a distance metric and a definition of the num-
ber of neighbours, k: we defined the nearest neighbours using Euclidean Distance,
as it is done in several related works [29]; we used three different values for k — 1,
3 and 5. Furthermore, we refer to this method as kNNimp and to apply it we use

fancyimpute [30] implementation in Python.
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2.3.3 Imputation with Support Vector Machines

SVM are a powerful classification technique widely used in the pattern recognition
field. This approach can be used in both classification and regression problems.
Originally, SVM was a linear classifier but it can be improved by modifying kernel
functions [31]. One of the most typical kernel functions is the Gaussian Radial Basis
Function (RBF) kernel. In this work, we used a SVM regressor with a RBF kernel
to imputation purposes. This method requires a tuning process where the optimal
parameters C and ~ are calculated, for each complete dataset. To fill in the missing
values, each missing feature, x,,;ss is used as target while the remaining features are
used to train the model. This imputation approach, here referred to as SVMimp,

was implemented by us using scikit-learn.

2.3.4 Multiple Imputation by Chained Equations

Multiple Imputation by Chained Equations (MICE) is a widely used multiple im-
putation approach [32, 33| that creates several regression models so that each z,,;ss
is conditionally modeled by the remaining features. This method is composed of 4

main steps [34]:

1. All the MVs are replaced by the average of the observed values — pre-imputation

step using mean imputation;
2. For each x,,;ss: the MV are set back to be missing;

3. A regression of x,,,ss predicted by the remaining features of the dataset is

performed, using the observed values of x,,;ss;

4. The regression equation obtained in the previous step is used to predict the
MV of z,,;ss-

This iterative process through the missing features is repeated until the convergence
of the imputation parameters (e.g., coefficients of the regression model) [34]. At
the end, MICE has replaced the MV using several regressions that preserved the
relationship between the data. MICE was applied using fancyimpute [30] imple-

mentation in Python, with default settings.
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2.3.5 Expectation-Maximization

The Expectation-Maximization (EM) [35] is a maximum likelihood method that
estimates the MV considering their relation with the unknown parameters of the
data model [36]. The main idea of this algorithm is to iteratively adjust the MV
while preserving the covariance structure of the data. In brief, the EM can be

summarized in the following steps:
1. Initialize the unknown parameters of the data model (randomly);

2. Compute the probability distribution over the possible values, using the cur-
rent parameters. Fill-in the missing values with the estimated values — Expec-

tation step;
3. Estimate another set of parameters for the current data — Maximization step.

The iteration between steps 2 and 3 continues until the estimates converge. We used

EM’s implementation from library impyute [37] in Python.

2.3.6 Denoising Autoencoders

Neural network-based methods have been increasingly used for missing data impu-
tation [38]; however, deep learning architectures especially designed for missing data

imputation remain an understudied topic.

Denoising Autoencoders (DAEs) [39] are designed to recover noisy data (X), which
can exist due to data corruption via some additive mechanism or by missing data [40].
DAEs are a variant of Autoencoders (AEs) (Figure 2.15) which are a type of artificial
neural networks that are trained to reproduce its input at the output layer. Each
autoencoder is composed by three layers (input, hidden and output layer) which can
be divided into two parts: encoder (from the input layer to the output of the hidden
layer) and decoder (from the hidden layer to the output of the output layer).

The DAE is similar to a basic AE: the main difference is the application of a stochas-
tic corruption to the inputs of the DAE during the training phase. One of the pos-
sible corruptions techniques consists in setting to 0 a fixed amount of features for
each observation (Figure 2.17). There are other possible corruption processes, such

as adding Gaussian noise or salt-and-pepper noise [41].

The encoder part of a DAE maps an input vector Z to a hidden representation

y, through a nonlinear transformation fy(Z) = s(ZW” + b) where # represents
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Figure 2.15: Simplified structure of an Autoencoder. f represents the encoder and
g represents the decoder.

Corrupted
partially

Figure 2.16: Simplified structure of an Denoising Autoencoder.

the weight matrix W and bias vector b. The resulting y representation is then
mapped back to a vector z which has the same shape of Z, where z is equal to
gp(y) = s(W’y + b’). The training of an DAE consists in optimising the model
parameters (W, W’ b and b’) to minimise the reconstruction error between x (the

uncorrupted input) and z, using the squared error loss:

Ly(x,2) = ||x — z|? (2.9)

The difference for the train of an AE is that z is a deterministic function of Z rather

than x. Defining the joint distribution:

(X, X,Y) = ¢"(X)ap(X|X)d;, 5)(Y) (2.10)
where 6,(v) equals 0 when u # v, Y is a deterministic function of X. We use

upper-case letters to represent random variables. The objective function minimized
by Stochastic Gradient Descent (SGD) is:

arg in E o) L2(X, g0 (fo(X) (2.11)
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Figure 2.17: Representation of the training phase of DAE. Some of the input nodes
are randomly setted to 0. However, the reconstruction error compares the original
data (x) with the reconstructed data (z).

where [ represents the Expectation and ¢°(X X ) corresponds to the stochastic map-

ping which performs the partial destruction of X.
Network Structure

There are two types of representations for a DAE [40]: overcomplete (Figure 2.18a),
when the hidden layer has more nodes than the input layer, and undercomplete

(Figure 2.18b), when the hidden layer is smaller than the input layer.

In the case of an AE, an overcomplete architecture only learns the identity function
and, therefore, copies the input to the output. To avoid this behavior, the objec-
tive function can be modified to include a regularization term. The DAE can be
overcomplete without the need of any regularization since it compares the original

impute to its corrupted version [40].

When an undercomplete architecture is used, the DAE is forced to learn a more

concise representation of the input data.
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Figure 2.18: Differences in network architectures.

Stacked Denoising Autoencoders

Vincent et al. [41] proposed a strategy to build deep networks by stacking layers of
Denoising Autoencoders. The results have shown that stacking DAEs improves the
performance over the standard DAE. Furthermore, deeper architectures tend to be
a better solution in terms of generalization performance, using fewer nodes per layer
and, consequently, fewer parameters. On the other hand, the optimization of these

architectures is more complex [42].
— Layer-wise Pretraining and Fine Tuning

The training process of SDAE consists of a layer-wise unsupervised pre-training —
the representation of the k-th layer is the input for (k+1)-th layer which is trained
after the k-th layer has been trained. When the k layer is trained it will have as input
the uncorrupted output from the previous layers. After the training of a few layers,
the fine tuning will be performed — the current network parameters will initialize a

network that will be optimized under a supervised training criterion.
Regularizations

Adding regularizers to the objective function forces the model to have different prop-
erties. There are several regularization terms that can be added to the objective
function to prevent the overfitting of the training data. For example, 1.2 regulariza-
tion is also known as “weight decay” because it forces the weights to decay towards

zero (but not exactly zero). The L2 term consists of the sum of the squared values
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of the weights so, larger weights lead to a larger error which causes the training
algorithm to favour and generate smaller weights. Applying dropout is also regular-
ization [43] since it prevents the overfitting to the training data by “ignoring” some

nodes of the network during the training phase.
Activation Functions

Each node of any layer uses an activation function to compute the weighted sum
of the inputs and to define its output. The most popular activations functions are
Rectified Linear Units (ReLu), Hyperbolic Tangent (Tanh) and logistic function [40].

Optimization Algorithms

The most usual optimization algorithm is Stochastic Gradient Descent (SGD) [44]
which has several variants, such as AdaGrad [45], Adadelta [46], RMSProp [47]
and Adam [48]. These algorithms are based in the gradient descent method [44].
Gradient descent is an iterative optimization algorithm that aims at minimizing a
given function. More precisely, Gradient descent uses backpropagation to calculate
the gradient of the objective function and allows the optimization algorithm to adjust

the parameters (W, W’ b and b’) in order to find a minimum of the function.

2.4 Classification and Evaluation Metrics

The main purpose of data imputation is to replace the MVs with estimates that are
closest to the original values. On the other hand, the imputation process precedes the
classification task and, therefore, the imputation method must be properly chosen
in order to not affect the performance of the classifier. These are two key points
of the MD problem that must be evaluated: imputation quality and classification

performance.
Classification

In machine learning, there are a lot of supervised learning algorithms to perform
classification: SVM is known to belong to the best performers [49]. SVMs are based
on the construction of a hyperplane that defines a decision boundary. In other words,
for a set of labeled data, the SVM returns an optimal hyperplane that maximizes the
margin of separation and that will be capable of categorizing new samples (data from
the test set). As already mentioned in Section 2.3.3, SVM is a linear discriminant
algorithm but when no linear separation is possible, the implementation uses a

kernel which maps the training samples to a higher dimensional space and learns
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to separate the samples in that space. The use of this kernel trick makes SVM so
popular and accurate since it has a large capacity for generalization regardless of
the distribution of the patterns [50].

Every machine learning model must be evaluated in terms of generalization capa-
bility - also known as model evaluation. The Holdout method is a popular strategy
used to perform this evaluation. This method randomly separates the dataset into
2 subsets, called training and test set. The model is fitted to the training set while

the error estimation is computed for the test set [50].

In this work, classification performance was assessed with F-measure which considers
both Precision and Recall [51]:

2 X precision X recall

F-measure = — (2.12)
precision + recall
TP
precision = TP—_|_FP (213)
TP
recall = m (214)

In Equations 2.13 and 2.14, TP correspond to the true positives (i.e. the number
of positive patterns correctly predicted), FP denotes the false positives (i.e. the
number of patterns wrongly predicted as positive) and FN are the false negatives

(i.e. the number of patterns wrongly predicted as negative).
Imputation Quality

Besides the evaluation of classification performance, it is also important to assess
the imputation quality, in other words, measure how close the imputed values are

to the original ones [5, 52].

The coefficient of determination, R?, is equivalent to the square of Pearson corre-
lation coefficient. This metric measures the correlation between 2 features which,
in the context of imputation, corresponds to measure between the original feature
(before the synthetic generation of MV) and the imputed feature. R? varies between
0 and 1.

R ( Ty (5 = B 5) )) (215)
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Root Mean Squared Error (RMSE) is a quadratic metric used to measure the dif-
ferences between 2 features of interest. In other words, RMSE is the square root of
the average of the squared differences between the imputed feature and the original

one. This metric can range from 0 to oco.

RMSE = | = (x; — i) (2.16)

In Equations 2.15 and 2.16, & are the imputed values of a feature, 7 is the mean of
the imputed values, x are the corresponding original values, Z is the mean of the

original values and n is the number of missing values.

2.5 Statistical Tests

Statistical inference is normally used for comparing classifiers over several datasets [53].
Following this idea, statistical tests can also be performed in order to compare im-

putation methods over multiple datasets.

The Friedman test [54] is a non-parametric statistical test which is similar to the non-
parametric repeated measures ANOVA [53, 55]. Given N datasets and k algorithms,
Friedman test ranks the algorithms for each dataset — 7,7 will be the rank for the j**
algorithm on dataset ¢ — and compares the mean of the ranks for each algorithm,
R; = %ZZ ri7. Under the null hypothesis of the test, there are no differences

between the algorithms and the Friedman statistic is:

, 12N , k(k+1)?
=D {Z R? - T} (2.17)

This statistic has a equivalent distribution to x% with k-1 degrees of freedom as N
and k become large. Iman et al. [56] derived an approximation for the test statistic
which is distributed according to the F-distribution with k¥ — 1 and (k—1)(N — 1):

(N = Dx%
N(k—1) = x%

Fp = (2.18)

The F statistic value must be compared with the value of F distribution, which will

give the p — value for the test.
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The t-Student test for paired samples is a parametric test that compares population
means for a pair of random samples [57]. The null hypothesis of the test states there

is no statistical difference between the mean of the two populations.

The use of parametric tests requires the verification of two assumptions: i) normal
distribution ii) homogeneity of variance. In order to test if a sample follows a
normal distribution may be performed a Kolmogorov-Smirnov [58] test or a Shapiro-
Wilk test [59]. To determine if two samples have homogeneous variance is used the
Levene’s test [60].

The Wilcoxon signed rank test [61] is a non-parametric test that can be used for
paired data or for a single set of observations — it is a non-parametric alternative to
the t-Student test for paired samples. When used for paired data, the null hypothesis
of the test states that the median difference between the pairs of observations is
zero [62]. The test calculates the differences between pairs and ranks them ignoring
the sign; the test statistic is the sum of the ranks for either positive and negative

differences.
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In this chapter, we provide a detailed description of several imputation approaches
based on Stacked Denoising Autoencoders (SDAE), since the main goal of this work
is the study of these techniques for imputation purposes. For each studied work, we
perform a detailed characterization regarding the characteristics of the used data,
generated missing mechanism (and the respective missing rates) and also refer to

each proposed architecture regarding its hyperparameters.

In two recent works, Gondara et al. studied the appropriateness of SDAE for multi-
ple imputation [8] and their application to imputation in clinical health records [9].
In these works, the proposed algorithm is compared with Multiple Imputation by
Chained Equations (MICE) using the Predictive Mean Matching method.

In the first work, Gondara et al. [8] proposed a multiple imputation approach based
on overcomplete SDAE. Two different scenarios of missingness were considered: all
the features were set to have missing values (uniform synthetic generation) and only
half of the features were set to be missing (random synthetic generation). These
two scenarios were created for Missing Completely At Random (MCAR) and Miss-
ing Not At Random (MNAR) mechanisms using 15 real-world and publicly-available
datasets. The proposed model includes a pre-imputation step which imputes the in-
complete datasets with the well-known method Mean/Mode — continuous features
are imputed with its mean while categorical ones are imputed using its mode. The
training phase starts with a stochastic corruption (dropout) of 50% (i.e., for each
training batch, half of the inputs are randomly set to zero). The proposed architec-
ture is composed of 5 hidden layers - each successive hidden layer has # = 7 more
nodes than the previous one. So, this is an overcomplete architecture and 6 quanti-
fies the increase in the dimensionality of successive layers - different values for 6 were
tested in order to choose the best one. At the end, # = 7 was chosen as increment
since it showed better results on several datasets. The model was trained using 500

epochs, an adaptative learning rate with a time decay factor of 0.99 and a Nes-
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terov’s accelerated gradient. In order to ensure a faster convergence, the input was
standardized between 0 and 1. Furthermore, the authors have chosen Hyperbolic
Tangent (Tanh) as activation function rather than Rectified Linear Units (ReLu)
since they found that the first performed better for small datasets. They also used
an early stopping rule which ensures that the training process is finished when a
Mean Squared Error (MSE) of 1 x 1079 is achieved or when there is no improvement
in a moving average (length 5) of the error deviance. Each training process uses
70% of the data while the remaining 30% is used as test set. The imputation results
of both mechanisms (MCAR and MNAR) are compared using Sum of Root Mean
Squared Error (RMSE,,,) and this value is relative to the test set - they show that
the SDAE-based approach outperforms MICE for all the uniform scenarios and in
7 seven cases for the random scenario (this can be seen for 2 datasets under MCAR
and for 5 datasets under MNAR). Additionally, MNAR mechanism is also evaluated
in terms of classification error, using a Random Forest (RF) classifier. This analysis
also proved that data imputed with the SDAE model has a higher classification (in
average) than data imputed with MICE.

In the second work [9], the authors propose a SDAE-based model to fill in loss to
follow-up information, using 10 simulated and 4 real-world datasets, under MCAR
and MNAR mechanisms. Loss to follow-up information occurs often in clinical re-
search when a patient who was participating in a clinical trial leaves it before it is
completed. The proposed model is composed of 4 fully connected hidden layers and
each successive hidden layer has an increment of # = 5 in the number of nodes (in
the encoder). Contrary to the work presented above, a dropout of 20% and batch
normalization are applied to each layer of the proposed model. These two techniques
are used in order to avoid a possible overfitting issue that may arise in overcomplete
architectures, when the number of units is greater than the dimensionality of the
input. So, the authors proposed an alternative version of the SDAE architecture
since they applied dropout at all the hidden layers and not just at the input layer.
Contrary to what was expected, the authors did not mention any pre-imputation
phase. Furthermore, ReLLu was used as activation function, MSE was used as loss
function, no early stopping rule was used and the models were trained using 1000
epochs, although convergence occurs in less than 200 epochs for most cases. Besides
the use of RMSEy,,,, for measuring the imputation performance of continuous time,
the authors also evaluate the quality of imputation for binary outcomes using a nor-
malized metric (which allows to compare the results of the different datasets). The
analysis proved that the SDAE-based model performs better in terms of imputation
quality than MICE — SDAE outperforms MICE with a minimum and maximum
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difference of 2.4% and 64.9%, respectively (for real-world datasets).

In both works, although the authors prove the advantages of SDAE for imputation,
a complete study under all missing mechanisms is not provided, since in both cases,
Missing At Random (MAR) generation is completely disregarded. Furthermore,
they only compare two imputation methods (MICE and SDAE) and the classification

performance is only evaluated for one mechanism (MNAR).

Beaulieu et al. [63] used Autoencoders (AEs) to impute data for electronic health
records. This approach is compared with 5 other imputation strategies: Iterative
Singular Value Decomposition (SVD), k-Nearest Neighbours (kNN) imputation,
SoftImpute, Mean imputation and Median imputation [63]. The imputation per-
formance was evaluated, in terms of Root Mean Squared Error (RMSE), for two
missing mechanisms, MCAR and MNAR, and the disease progression prediction
was also evaluated, comparing the performance of a RF regressor for the different
imputation strategies. Regarding the AE used for the evaluation, it is composed
of 2 hidden layers of 500 nodes each (undercomplete architecture) and a dropout
of 20% was applied between each layer. The training process starts with normal-
ization of the inputs in order to have values between 0 and 1. Furthermore, AEs
were trained using a modified binary cross entropy cost function [64] that takes into
consideration the values that are missing, so pre-imputation is not required. The
results have shown that the AE-based approach is the one with best results under
MCAR mechanism - with a minimum and maximum difference from the second best
method (SoftImpute) of 0.005 (Missing Rate (MR) of 50%) and 0.1 (MR of 30%),
respectively. For MNAR mechanism, the authors proved that AE had the best re-
sults but these are very similar to those obtained by kNN imputation, Softimpute
and SVD - AEs differ from the second best method by a minimum of 0.0045 (for
kNN imputation under a MR of 20%) and a maximum of 0.0125 (for SoftImpute
under a MR of 40%).

Duan et al. [10, 11] used SDAE for traffic data imputation and evaluated the impu-
tation quality using RMSE, Mean Absolute Error (MAE) and Mean Relative Error
(MRE). The type of data used in these works does not require a pre-imputation step

since the missing values are represented by 0.

In the first work [10], Duan et al. compared the proposed approach with another that
uses Artificial Neural Networks (ANN) with the same set of layers and nodes as the
ones used in SDAE. Contrary to several works that deal with missing data separately
from the observed data, the authors used observed data along with missing data

for the process of imputation. The SDAE architecture is undercomplete and is
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composed of 3 hidden layers - input and output layer was designed to contain 288
nodes and the 3 hidden layers were made of 144, 72 and 144 nodes, respectively.
The data was divided into training and test sets using a ratio of 3:2. The results
are analysed for a random mechanism of missingness (MCAR) performed for several
missing rates ranging from 10% to 90%. Regarding the RMSE metric, it can be
observed that its values vary between 16.9 and 20.3, for the SDAE approach, and
between 17 and 21, for the ANN - SDAE proved to be a better imputation method

than ANN in most cases.

In the second work [11], other 3 imputation methods were used for comparison:
Autoregressive Integrated Moving-Average (ARIMA), history model and ANN. The
authors studied the influence of spatial and temporal factors on the imputation
process. For this reason, they evaluate the difference between data from different
scenarios: data collected at one or multiple stations (spatial factors) and data col-
lected on weekdays and non-weekdays (temporal factors). Here, they perform a
more complete study than in [10] where only data from weekdays is used. The pro-
posed architecture based on SDAE used sigmoid function as activation function and
is composed of 3 hidden layers with 144, 72 and 144 nodes (undercomplete archi-
tecture). The determination of this hyperparameters was a result of a grid search
procedure. At the end, the results were analysed for missing rates ranging from
5% to 50% and the proposed SDAE model has proved to outperform the remaining
models, followed by ANN - in terms of RMSE, the values range from 13.5 to 14.9
for the SDAE approach, while for ANN the range is between 15.2 and 17.5.

Ning et al. [12] proposed an algorithm based on SDAE for dealing with big data
of quality inspection. The proposed approach is compared with 2 other imputation
algorithms — a weighted k-Nearest Neighbours data filling algorithm based on Grey
correlation analysis (GBWKNN) [65] and Mutual k-Nearest Neighbours Imputation
(MKNNTI) [66] — that are both based on the kNN algorithm. Contrary to most of the
works, the authors do not describe the architecture of the SDAE and they do not
refer any pre-imputation step. The final results are evaluated through d, (suitability
between the imputed value and the actual value) and RMSE under several missing
rates (1, 5, 10, 15, 20, 25 and 30%). The authors conclude that the proposed
SDAE-based approach surpasses the comparative imputation strategies. Moreover,
the SDAE is followed by GBWkNN and the RMSE metric ranges from 13.4 to 14.5
and 15.2 to 17.5 for these two approaches, respectively.

Sénchez-Morales et al. [13] proposed an imputation method that uses a SDAE.

The main goal of their work was to understand how the proposed approach can
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improve the results obtained in the pre-imputation step. Only MCAR generation
Besides this

synthetic generation of missing values, the authors deleted some input values of

was consider under three different missing rates: 10, 20 and 30%.

the pre-imputed dataset, in order to generate some noise. So, these deleted values
correspond to some known values that are used as targets which allows a more
accurate prediction of the real missing values — this technique could be considered
as a “kind of dropout” applied over the inputs and not over the hidden nodes
(traditional approach). The proposed model has 3 hidden layers with 25%-75% of
expansion and for each imputation there were made 50 training runs. Moreover,
each dataset is split into training set (80%) and test set (20%). They used three
state-of-the-art methods for pre-imputation: Zero Imputation, kNN Imputation and
Support Vector Machines (SVM) Imputation. In this study, 3 datasets from UCI
These results showed that SDAE is capable of

improving the final imputed values from a pre-imputed dataset - the quality of

were used to report the results.

imputation improves from 17% to 96%, regarding all the studied scenarios.

Table 3.1: Summary of reviewed works.

Authors Missing Missing Dataset(s) Comparative Metrics
Mechanisms Rates strategies
Gondara et al. [8] MCAR 20% Standard open source datasets MICE RMSE
MNAR (15):  Boston Housing; Breast
Cancer; DNA; Glass; House
Votes; Ionosphere; Ozone; Satel-
lite; Servo; Shuttle; Sonar; Soy-
bean; Vehicle; Vowel; Zoo.
Gondara et al. [9] MCAR 60 and 80% Simulated data (1); Real life MICE RMSE
MNAR datasets (4): Grace; EORTC; RH
and HDD.
Beaulieu et al. [63] MCAR 10, 20, 30, 40 Pooled Resource Open-Access IterativeSVD RMSE
MNAR and 50% ALS Clinical Trials Database kNN imputation
(PRO-ACT) SoftImpute
Mean imputation
Median imputation
Duan et al. [10] MCAR 1, 10, 20, 30, Traffic flow data - Caltrans Per- ANN RMSE
40, 50, 60, 70, formance Measurement System MAE
80 and 90%  (PeMS) MRE
Duan et al. [11] MCAR 5, 10, 15, 20, Traffic low data - Caltrans Per- ARIMA RMSE
25, 30, 35, 40, formance Measurement System  history model MAE
45 and 50%  (PeMS) ANN MRE
Ning et al. [12] MCAR 1, 5, 10, 15, Big Data of quality inspection GBWKNN d2
20, 25 and MKNNI RMSE
30%
Sanchez-Morales et  MCAR 10, 20 and Standard datasets from UCI (3): Used for pre- MSE
al. [13] 30% Cloud dataset; Blood transfusion imputation:

and Boston housing Zero Imputation
k-Nearest Neighbour
Imputation

Support Vector Ma-

chine Imputation.

To summarise, most of related works do not address all three missing data mecha-
nisms, and mostly evaluate the results in terms of quality of imputation (e.g., RMSE,

MSE, MAE) rather than evaluating the usefulness of an imputation method to gen-
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erate quality data for classification (e.g. evaluation of final classification metrics).
Furthermore, none of the reviewed works studied the effects of different missing data
mechanisms and imputation techniques including SDAE for several missing rates.
In this thesis, we propose a more complete study on the use of SDAE for data
imputation, accessing the effects of several missing mechanisms, missing rates and

comparing them with other well-established imputation methods.
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Proposed Architecture

Our experimental setup comprised five main stages: (1) Data Collection, (2) Missing
Data Generation, (3) Missing Data Imputation, (4) Classification and (5) Evaluation
(Figures 4.1 and 4.2).

1 2 3 4

MD
Generation

Data Collection

Evaluation

Figure 4.2: Summary of the experimental setup.

This work can be divided into three distinct experiments regarding the simulations

that were carried out:

15t Experiment: We selected 20 complete datasets from different open source
repositories and simulated the missing mechanisms using 9 univariate implementa-
tions (undva). Then, 7 well-known imputation techniques and other 2 imputation

approaches based on SDAE are evaluated in terms of F-measure and R2.

2"d Experiment: We increased the benchmark of datasets used in the first one,
selecting another 13 complete datasets. In this case, we simulated each one of
the three missing mechanisms using two different configurations (univa and unifo),
which gives a total of 6 different implementations. After that, we impute the miss-
ing values using the same 7 widely-known imputation techniques used in the 15
experiment and we propose another 2 SDAE-based approaches for imputation. We

evaluate the results with three different metrics: F-measure, R and RMSE.
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@ IstExperiment

@ 2nd Experiment

@ wamxua:am__:_wm:m
Big Data

Data Collection

—

— 3
—

MD generation MD imputation
MCAR1,iva Mean
MCAR2,,,1s

MAR1,;v,

MARZ,;v,

MAR3,,..

MAR4,,.

S SVM RBF
MNAR1,,, L
MNAR2, v, L2131

SDAE1 adadelta
SDAE1,,

MCAR2,, s SDAEZ,4agelta
MCAR3,;1, SDAE2, ..,
MAR2, ..

MAR1,,,

MNAR1,;.,

MNARS, 5,

Figure 4.1: Detailed experimental setup.

Imputed Dataset

Classification Evaluation
Linear SVM F-measure
NN
RMSE
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2nd

3'd Experiment: This experiment is quite similar to the , where we explore

datasets with different characteristics, namely, a higher number of samples.

4.1 Data Collection

To analyse the effect of different implementations of missing mechanisms on impu-
tation methods, we selected several datasets attending to different contexts, sample

sizes, number of features and types of features.

All datasets were publicly available and were obtained from the following reposito-

ries:
e UCI Machine Learning Repository — http://archive.ics.uci.edu/ml

e Knowledge Extraction based on Evolutionary Learning (KEEL) — http://
sci2s.ugr.es/keel/datasets.php

e StatLib — http://lib.stat.cmu.edu/datasets/
o Kaggle — http://www.kaggle.com/datasets/

e Pattern Recognition and Neural Networks book [67] — https://www.stats.
ox.ac.uk/pub/PRNN/

Since imputation experiments required complete data for evaluation, some of the
original datasets were preprocessed in order to remove observations with missing
values. In the case of multiclass datasets, they were modified in order to become
binary [68], since we focus solely on binary classification problems. After preprocess-
ing, all datasets are complete and binary. Their basic characteristics are presented
in Table 4.1. Additional information about the datasets, such as their source and

positive/negative classes is shown in Table B.1.

For the 1% and 2°¢ experiments, we chose standard datasets (low dimensionality
and low sample size) so that we had a reasonable computational time. lung-cancer
has the lowest number of observations (27) and bankote has the highest (1376).
Regarding the number of features, toy has the lowest (2) while lung-cancer has
the highest (56). In the 2"¢ experiment, we decided to remove ecoli dataset from
the study since we found that it has a feature that takes the same value (0.5) for all
observations, which makes the dataset a bit incoherent and may also create some
conflicts during the synthetic generation of missing values — in particular, for unifo

configurations.
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For the 3' experiment we selected 5 datasets with higher sample sizes. thyroidl
and thyroid2 have the lowest number of observations (7034) while nursery2 has
the highest (8586). Regarding the number of features, nurseryl and nursery2

have the lowest number (8) while the remaining datasets have 21.

4.2 Missing Data Generation

In this section, we will describe how we generated the synthetic missing values.
Furthermore, we will introduce some intermediate results that we consider funda-
mental to establish some directions followed in this work. These results are related
to a preliminary experiment that was performed in order to select the generation

approaches that should be used in the remaining experiments.

As previously mentioned, several approaches to the synthetic generation of missing
values can be found in the literature. We used Python 3 to implement all the
synthetic generation methods mentioned in Section 2.2.1. In Table 4.2 we present a
summary of the characteristics of the generation configurations used in the different

experiments.

Table 4.2: Configurations used for the synthetic missing data generation on the
different experiments.

# Generation Methods

Experiment _ - ; _ # Datasets # Runs MR # Incomplete Datasets
Univariate Multivariate

1st 9 0 20 10 5 and 20% 3600

2nd 33 o 4950

3rd 3 3 5 5 5, 10, 15, 20 and 40%. 750

Synthetic generation of Missing Data in the 15 Experiment

In the 1% experiment, we study only univariate implementations (univa) for 2 differ-
ent missing rates, 5% and 20%. The process of artificially generating missing values
was performed 10 times (10 runs) for each dataset and for each implementation.
As already mentioned in Section 2.2.1, the missing feature, x,,;.s, was the one most
correlated with the class labels and the observed feature, x,s, was the one most
correlated with x,,;,s. The correlation between features is assessed using different
coefficients depending on the type of features (Table 4.3). For example, if we want
to measure the correlation between a nominal feature and the class labels (binary)

we would use Cramer’s V.
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Table 4.1: Description of the datasets used in this study. The last columns show
the number of features according to their type: C (continuous), O (ordinal), N
(nominal) and B (binary).

Dataset Context Sample No. of C O N B
Size Features
australian Credit card applications. 690 14 6 0 4 4
banknote Data extracted from banknote im- 1372 4 4 0 0 0
ages.
biomed Blood measurements database. 194 5 5 0 0
breast-ljub Breast cancer data. 277 9 0 5 1 3
breast-tissue Impedance measurements of tissue 106 9 9 0 0
” from the breast.
?, cleveland Heart disease database. 297 13 6 1 3 3
g crabs Morphological features of crabs. 200 6 0 0 1
5‘ dermatologyl Clinical features of erythema and 96 34 1 32 0 1
- scaling.
D ecoli Measurements about the cell to pre- 220 7 7 0 0 0
:% dict the location site of proteins.
£ glassl Inflammation about 6 types of glass. 214 9 9 0 0 0
- heart-statlog Heart disease database. 270 13 6 1 3 3
iris Iris plant database. 150 4 4 0 0 0
kidney Chronic kidney disease database. 158 24 11 0 3 10
lung-cancer Lung cancer database. 27 56 0 43 13
lymphography Lymphoma detection. 142 18 3 0 9
postoperative Patient features used to determine 86 8 0 4 2 2
whether a patient should be moved
from an area to another.
saheart South African heart database. 462 9 0 0 1
urinary Acute inflammation of urinary blad- 120 6 1 0 0 5
der database.
winel Chemical analysis of wines. 130 13 13 0 0 0
wpbc Follow-up data for breast cancer 198 32 32 0 0 0
cases (prognostic).
balancescale Balance scale weight and distance 576 4 4 0 0 0
database.
bankrupcy Qualitative parameters to predict 250 6 0 0 6 6
bankrupcy.
cme Contraceptive method choice 844 9 2 0 4 3
§ database.
E dermatology?2 Clinical features of erythema and 182 34 1 32 0 1
é’. scaling.
:J edu-datal Students’ academic performance 269 16 4 0 6 6
% edu-data2 database. 353 16 4 0 6 6
glass2 Information about 6 types of glass. 214 9 9 0 0 0
hee-data-mortality  Clinical features of real patients diag- 165 5 1 1 0 3
hcc-data-survival nosed with Hepatocellular Carcinoma 165 5 1 1 0 3
(HCC).
hepato Hepatobiliary disorders database. 302 9 9 0
new-thyroid Thyroid disease database. 65 5 5 0 0 0
toy Synthetic dataset composed of five 1250 2 2 0 0 0
Gaussian components.
wine2 . . . 107 13 13 0 0 0
wine3 Chemical analysis of wines. 119 13 13 0 0 0
é mushrooms Mushrooms description regarding of 8124 21 0 0 17 4
E physical characteristics.
g. nurseryl Ranking applications for nursery 8364 8 0 0 7 1
H  nursery2 schools. 8586 8 0 0 7 1
% thyroidl Thyroid disease database - data from 7034 21 6 0 0 15
thyroid2 10 different databases. 7034 21 6 0 0 15
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So, for each dataset, z,,s and z.,s were the same regardless of the implementa-
tion used — Table C.1 shows the index of these features for each dataset. For this
experiment we generate Missing Data (MD) using the following implementations:
MCAR piva; MCAR2piva, MARL piva; MAR2 ive, MAR3miva, M AR miva,
MARbSuniva, MN AR i0q and MNAR2,i0a-

Table 4.3: Different correlation coefficients depending on the type of features (or
labels). Adapted from [69].

Continuous Ordinal Nominal Binary
Continuous Pearson R Spearman rho ETA Point-Biserial
Ordinal - Spearman rho ETA (.Wlth ranks Rank Biserial
in ordinal)
Nominal - - Cramer’s V Cramer’s V
Binary - - - Phi Coefficient

After the 1% experiment, we moved to the 2"¢ experiment, increasing the number of
datasets as well as using 2 multiple imputation approaches based on SDAE. These
changes would lead to an increase on the required computational time, so we changed
the configuration of the synthetic generation as follows: we used only 6 different
generation approaches, one for each mechanism (MCAR, MAR and MNAR) and
for each type of implementation, univa and unifo; we only perform 5 runs for each
dataset and implementation; furthermore, we use a larger set of MRs (5, 10, 15, 20

and 40%) in order to generalize the obtained results.
Synthetic generation of Missing Data in the 274 and 3¢ Experiments

In order to select the 6 generation approaches that would be used both in the 2°¢ and
3'4 experiments, we performed a preliminary analysis of the effect of the different
implementations in the well-known imputation techniques. For this, we generated
MD using all the implementations described in Section 2.2.1: this MD generation
was performed 10 times (10 runs) for all 33 datasets and for 5 different MRs (5, 10,
15, 20 and 40%). Then, the incomplete datasets were imputed using 7 well-known
techniques: Mean Imputation (Meanimp), imputation with k-Nearest Neighbours
(kNNimp) for k=1, 3 and 5, imputation with Support Vector Machines (SVMimp),
MICE and Expectation-Maximization (EM). The results of this analysis correspond
to the mean results for all the datasets and are shown both in terms of quality
of imputation (R? and RMSE) and classification performance (F-measure): the
values obtained for each evaluation metric and the ranks of the different imputation
methods per generation approach are presented in the Appendices of this document
— Tables E.1 and E.2 for F-measure under univa generation approaches; Tables E.3
and E.4 for R? and RMSE under univa generation approaches; Tables E.5 and E.6
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for F-measure under unifo generation approaches; Tables E.7 and E.8 for R? and
RMSE under unifo generation approaches. Next, we discuss the best approach to

implement each configuration and missing mechanism.
e Univariate Implementations, univa (Tables E.1 and E.3)

For MCAR mechanism, we chose M C' AR2,,,,;,, although the results in terms of
imputation quality and classification performance are in most cases superior for
MCARI nive. However, we believe it would not be correct to use MCAR1 v
due to its limitation in the generation of the desired MR because of the use of

Bernoulli distribution.

To generate MD under MAR mechanism we use M AR2,,,,;,, since this seems
the best generation method regarding the quality of imputation. Although
this approach does not guarantee the best results in terms of classification
performance, it was chosen because of its simple implementation which also

ensures the generation of the desired number of missing values.

MN AR2,,.,, was chosen since in most scenarios it was superior to M N AR1 iva,

both in terms of quality of imputation and classification performance.
e Multivariate Implementations, unifo (Tables E.5 and E.7)

We choose to use MCAR3,,if, because besides being the MCAR implemen-
tation with the best results for most of the studied scenarios, it is also the
most common implementation for this mechanism. Furthermore, the remain-

ing MCAR implementations have the limitation of not being able to generate
the desired MR.

For MAR mechanism, we discarded M AR2,,;s, since it has the limitation
of only being able to generate MR up to 25%. MAR3,,;f, is the one that
achieves the best results for most studied scenarios, however, this implemen-
tation chooses only one observed feature, s, to influence the MD generation
process in the entire dataset. Since we do not consider this last approach the

most exemplary of MAR uni fo implementations, we chose M ARL,p;f,.

We chose MNAR3,,if, even though M NAR2,,;;, was the implementation
that shows superiority in terms of imputation quality. This implementation
was not chosen since the pattern it generates is somehow limited: if we define
the number of missing features (nF') as the total number of features, this

implementation will delete entire samples.
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4.3 Missing Data Imputation

After the MD generation step, we move on to the imputation of the incomplete
datasets. In the three experiments, we compared the performance of SDAE with
7 well-known imputation methods, namely: Meanimp, kNNimp for k=1, 3 and 5,
SVMimp, MICE and EM (please refer to Section 2.3).

Next, we will refer to the details of the implementations used for the imputation
methods, especially to the configurations of the SDAE — most of the methods were

applied using open-source implementations.

Meanimp and kNNimp were implemented using fancyimpute [30] implementation
in Python. For kNNimp we considered the euclidean distance and a set of closest
neighbours {1, 3, 5}.

SVMimp was implemented using scikit-learn. The search for optimal parameters C
and ~ of the kernel was performed through a grid search for each dataset. Different
ranges were tested: 1072 to 10'° for C' and 107 to 103 for v, both ranges increasing
by a factor of 10 — these are considered suitable ranges, according to the documen-
tation of scikit-learn. We performed 5 repetitions of a Holdout validation, for each
combination of C' and +, using 80% of the data to train and 20% to test. Table D.1
shows the optimal values of C'; v and the average accuracy over the 5 repetitions,

for all the datasets used in this study.

For MICE we used fancyimpute [30] implementation in Python with default set-
tings. We perform 100 iterations of the method which means that the complete
dataset was a result of 100 imputed datasets (multiple imputation). Finally, EM
was implemented using the Python library impyute [37].

SDAE-based approaches

In this work we propose four different SDAE-based approaches for the complete
reconstruction of missing data: two of them are used and evaluated in the 1% exper-
iment while the remaining two are evaluated in the 2°¢ and 3™ experiments. All the
models were implemented using Keras library with a Theano backend [70, 71]. We
chose to use overcomplete representations since Gondara et al. [9] proved that over-
complete architectures provided better results. Furthermore, for all the proposed
approaches we defined that our target would be the complete data, i.e. the data

before the synthetic generation of Missing Value (MV).
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In the 1%° experiment, we explored 2 different approaches based on SDAE: SDAE1 4q0deita
and SDAFE1,,. Here, we use only complete samples to train the model while the
incomplete ones are used as test set. The MVs on the test set are replaced by zero
values, since SDAE does not accept “NaN” values. We also apply z-score (Equation
4.1) standardisation to the input data in order to have a faster convergence. The

z-score of a value, x, is obtained by the following equation:

(4.1)

where p and o are the mean and standard deviation of the feature that we want
to scale, respectively. After applying z-score standardisation, each dataset will have

zero mean and unitary standard deviation.
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Figure 4.3: Our overcomplete SDAE general architecture composed of 5 hidden
layers. Each successive hidden layer from the encoder has an increment in the num-
ber of nodes of # = 7. In the decoder, the number of nodes decreases symmetrically
up to the original dimensions.

The architectures of SDAE1,4qdeita and SDAE1,,, are similar to the architecture
proposed by Gondara et al. [9]. The models are composed by an input layer, 5
hidden layers and an output layer which form the encoder and the decoder (both
constructed using regular densely-connected neural network layers) — Figure 4.3.
The increment in the number of nodes for each successive hidden layer was set to 7,

as it has proven to obtain good results in previous works [9]. The two models have
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an input dropout ratio of 30%. For both versions, SDAFE1,4ade1ta and SDAE1 4,
we use the activation function Tanh for encoding and decoding layers. First, the
SDAE are fed with the complete patterns to train, and after the training phase, the

model is used to impute the incomplete patterns (from the test set).

The difference between SDAE1,4qdeita and SDAFE1,44 is in the configuration of the
training phase. SDAFE1,,, is adapted from Gondara et al. [9], while for SDAE1 4adeita;
we have decided to study a different optimisation function — Adadelta optimisation
algorithm — since it avoids the difficulties of defining a proper learning rate [46].
Therefore, SDAE1,4q4e11q 1s trained with 500 epochs using Adadelta optimisation
algorithm [46] and mean squared error as loss function, while SDAFE1,,, uses the
Stochastic Gradient Descent (SGD) [44] with a time decay factor of 0.99 and Nes-

terov’s accelerated gradient [72].

The major limitation of SDAE-based approaches found in the related works is that
they report the results only for the test set. In practice, this means that we are only
imputing the MD from the test set. So, it is assumed that the training group has no
missing values and the only existent corruption is related to the training process of
the Denoising Autoencoder (DAE). In the two approaches we have described earlier,
we created the training sets only with complete data. Of course this option has a
great limitation, since it is influenced by the percentage of missing values in the
dataset. Moreover, SDAF1,444e1ta and SDAFE1,4q would hardly be used for unifo
implementations because in these cases there may not be any complete pattern to

form the training set for the models.

For the 2"! and 3" experiment we propose another two approaches based on SDAE:
SDAE2,40de1ta and SDAE2,44,. With these two approaches, we seek to explore the
effect of an SDAE architecture that uses a training set that, similar to the test set,
is corrupted according to the missing mechanisms. For this, we propose a multiple
imputation method based on SDAE that ensures that the entire dataset is imputed.
These approaches include a pre-imputation step for which we use the well-known
Mean/Mode imputation method as was done in Gondara et al. [9]. We also apply
z-score (Equation 4.1) standardisation to the input data in order to have a faster
convergence. Once again, these two architectures are similar to the one proposed by
Gondara et al. [9] (Figure 4.3). For the encoding layers we chose Tanh as activation
function due to its greater gradients [40]. ReLu was used as activation function in
the decoding layers since Charte et al. [40] affirm that it is the best choice when
combined with the mean squared error. The difference between SDAFE2,444c1t and

SDAFE2,44m is the optimization algorithm - Adadelta optimisation algorithm [46] is
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used for SDAFE2,4q4e1t While Adam optimisation algorithm [48] is used SDAE2,44m.-
We chose Adam optimizer since Charte et al. [40] compared it with other SGD-
based approaches (such as AdaGrad [45] and RMSProp [47]) and showed that Adam
obtained the best results in terms of speed of convergence. Both models are trained
with 100 epochs using mean squared error as loss function. Our models have an
input dropout ratio of 50%, which means that half of the network’s inputs are set
to zero in each training batch. To prevent the training data from overfitting we add

a regularization function named L2 [40].

Our imputation approaches based on SDAFE2,4q4dc1ta and SDAFE2,44., consider the
creation of three different models (for three different training sets), for which three
runs will be performed (multiple imputation). This approach is illustrated in Algo-
rithm 20 and in Figure 4.4 and works as follows: (1) the instances of each dataset
are divided into three equal-size sets (p = 3); (2) each set is used as test set, while
the remaining two are used to feed the SDAE in the training phase; (3) 3 multiple
runs (1 = 3) will be performed for each one of these models; (4) the output mean of

the three models is used to impute the unknown values of the test set.

Multiple imputation
S —
S —
m —_— _—
Divide the dataset T Complete Dataset
O o eS| ——
Tncomplete Pre-imputed —_— -
Traning Set [] FEachmodel
Each run of amodel - one step
Tost et O of imputation @ @ @

Figure 4.4: Multiple imputation using SDAE - data division for each model.

4.4 Classification and Evaluation Metrics

After the imputation step is concluded, we move towards the classification stage.
The step of classification is common to all experiments. We perform classification
with a SVM with linear kernel and considering a value of C = 1, as explained in
Section 2.4.
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Algorithm 20: Multiple imputation using SDAE — SDAFE2.444e1ta and
SDAFE2.40m
Input

Pre-imputed dataset X, p data partitions, [ multiple imputations
Output:
Complete dataset

begin
for i in range(1, p) do
Consider all partitions (except partition ¢) as training set
Consider partition i as test set
for j in range(1, 1) do
Perform dropout (50%) in training set
Initialise the SDAE with random weights
Fit the imputation model to the training set
Apply the trained model to test set i and save its imputed version j

return Complete dataset X

We evaluate two key performance requirements for imputation techniques: their
efficiency on retrieving the true values in data (quality of imputation) [73] and their
ability of providing quality data for classification [5]. The quality of imputation
was assessed calculating two metrics: square of Pearson’s Correlation Coefficient
(Equation 2.15 which is used in all experiments), R?, and RMSE (Equation 2.16 used
for 2°d and 3" experiment). The higher the value of R2, the better the performance
of the imputation method. For the RMSE, the closer to 0 the value is, the better
the imputation quality.

The classification performance was assessed using F-measure which considers a har-
monic mean of precision and recall [51]. The higher the value of F-measure, the
better the classification performance. In order to evaluate the classification perfor-
mance, we perform Holdout validation [50] which simply divides the dataset into
two different sets, train and test (70% and 30%), and calculates the desired metric
for the test set. This method has some limitations since the training set may not be
representative of the whole data which can cause biased results [51]. Despite this
shortcoming, we chose this method because any other would greatly increase the

computational time of the simulations.
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Experimental Results

In this chapter, we will report the results obtained from the three experiments
described in Chapter 4. We intend to analyse the effect of the different MD imple-
mentations on several imputation methods and under various MRs. Furthermore,
our main goal is to study the performance of imputation approaches based on SDAE,
compared to other imputation methods from the state of the art, divided into three

experiments:

e 15" Experiment: Assess the performance of SDAE-based methods for univa

configurations;

e 2" Experiment: Assess the performance of SDAE-based methods for both

univa and unifo configurations;

e 3" Experiment: Reassess the 2°¢ Experiment for datasets with higher sample

sizes.

5.1 1%t Experiment

The main goals of the 1°° experiment are the following:

e Propose 2 imputation methods based on SDAE capable of reconstructing the

incomplete data;

e Compare the performance of these methods with other approaches from the

state of the art, in terms of classification performance and imputation quality;

e Study the effect of several univa generation methods on different imputation

approaches.

Missing values were inserted at two MRs (5 and 20%) following 9 different scenar-

iOS (MCARlum'va; MCARzumva? MAR]—univaa MARzunivaa MARgum’vau MAR4univa7
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MARbyniva; MNAR ypiva and M N AR2,,,:,,) that are described in Section 2.2.1.
Ten runs were performed for each missing generation, per dataset and missing rate
(a total of 3600 incomplete datasets). Regarding the MRs, we chose to use 2 ex-
treme values representing both scenarios, with a small amount of missing data (5%)
and a large amount (20%). Furthermore, we use another 7 imputation techniques
often explored in the literature, in order to compare their performance with our pro-
posed models. Finally, we selected 20 complete datasets from different open source
repositories (Table 4.1). This first experiment allows us to distinguish the effects of
different univa implementations (for the same mechanism) on different imputation
methods. Furthermore, this is an initial experiment used to explore basic aspects of

SDAE under several generation methods.

Table 5.1: Results obtained from the 15 experiment: average results are shown re-
garding each missing data mechanism, implementation, metric (R? and F-measure)
and missing rate. For each mechanism is presented the average of its implementa-
tions and the respective rank. The best results for each configuration are in boldface.

Imputation Methods

MR Mechanism SDAElgdadeita SDAElggg Meanimp kNNimpl kNNimp3 kNNimp5 SVMimp MICE EM
MCARI1 0.9091 5 0.8962 8 0.8986 7 09062 6 0.9182 4 0.9213 1 0.9210 2 08623 9 0.9205 3
MCAR2 0.9446 5 0.9374 8 0.9383 7 0.9391 6 0.9511 3 0.9536 2 0.9510 4 09042 9 0.9541 1
Mean 0.9276 5 0.9182 8 0.9193 7 09239 6 0.9356 4 0.9382 2 0.9363 3 08844 9 0.9384 1
MARI1 0.9128 5 0.9014 7 0.9008 8 0.9051 6 0.9180 4 0.9217 2 0.9223 1 0.8669 9 0.9215 3
MAR2 0.8814 6 0.8553 7 0.8495 8 0.8993 4 0.9100 2 0.9107 1 0.8843 5 08225 9 0.9043 3
MAR3 0.8966 6 0.8802 7 0.8700 8 0.8996 5 0.9119 3 0.9146 2 0.9074 4 0.8403 9 0.9156 1
5% MAR4 0.9103 5 0.8937 7 0.8846 8 0.9023 6 09128 4 0.9171 3 09221 1 08569 9 09189 2
MARS5 0.9107 5 0.9022 7 0.9006 8 09052 6 0.9188 4 0.9210 2 0.9205 3 08676 9 0.9219 1
Mean 0.9038 5 0.8887 7 0.8844 8 09037 6 0.9155 3 0.9181 1 09133 4 0.8532 9 0.9170 2
MNARI1 0.8637 6 0.8514 7 0.8371 8 0.8856 5 0.8876 4 0.8879 3 09028 1 08109 9 0.8902 2
MNAR2 0.8078 6 0.7731 7 0.7554 8 0.8104 5 0.8309 2 0.8306 3 0.8284 4 0.7281 9 0.8437 1
Mean 0.8358 6 0.8122 7 0.7962 8 0.8480 5 0.8593 3 0.8592 4 0.8656 2 07695 9 0.8670 1
o
~ MCARI1 0.8004 5 0.7658 7 0.7623 8 0.7936 6  0.8340 4 0.8416 2 0.8439 1 0.6540 9 0.8372 3
MCAR2 0.8327 5 0.8012 7 0.8003 8 0.8147 6 0.8574 4 0.8649 2 0.8593 3 06644 9 0.8677 1
Mean 0.8134 5 0.7784 7 0.7782 8 0.7990 6 0.8423 4 0.8501 1 0.8472 3 0.6565 9 0.8496 2
MARI1 0.7913 5 0.7499 7 0.7459 8 0.7868 6  0.8266 4 0.8323 2 0.8329 1 0.6309 9 0.8287 3
MAR2 0.7516 5 0.7126 7 0.6584 8 07172 6 0.7772 4 0.7865 3 0.8055 1 0.5766 9 0.7934 2
MAR3 0.7485 6 0.6707 7 0.6604 8 0.7529 5 0.8071 4 0.8146 3 0.8160 2 0.5586 9 0.8189 1
20%  MAR4 0.8115 4 0.7513 7 0.7052 8 0.7795 6 0.8188 3 0.8262 2 0.8098 5 06175 9 0.8288 1
MARS5 0.7981 5 0.7560 7 0.7513 8 0.7809 6 0.8235 4 0.8325 3 0.8417 1 0.6351 9 0.8331 2
Mean 0.7832 5 0.7333 7 0.7127 8 0.7669 6 0.8136 4 0.8214 3 0.8239 1 0.6092 9 08228 2
MNARI1 0.7407 1 0.6927 6 0.5690 8 0.6722 7 0.7019 5 0.7098 4 0.7253 3 05283 9 0.7405 2
MNAR2 0.6830 1 0.6128 6 0.4749 8 0.6145 5 0.6322 4 0.6339 3 0.6035 7 04555 9 0.6598 2
Mean 0.7119 1 0.6528 6 0.5220 8 0.6433 7 0.6670 4 0.6718 3 0.6644 5 04919 9 0.7002 2
MCAR1 0.7372 6 0.7362 8 0.7359 9 07373 5 0.7379 4 0.7380 3 0.7407 1 0.7370 7 0.7396 2
MCAR2 0.7372 7 0.7375 5 0.7370 8 0.7389 2 0.7383 3 0.7382 4 0.7396 1 0.7365 9 0.7374 6
Mean 0.7368 6 0.7368 7 0.7366 8 0.7373 5 0.7374 4 0.7377 3 0.7393 1 07363 9 0.7383 2
MARI1 0.7344 6 0.7327 9 0.7339 7 0.7363 5 0.7375 3 0.7384 2 0.7390 1 0.7329 8 0.7368 4
MAR2 0.7374 4 0.7349 7 0.7324 9 0.7369 5 0.7382 3 0.7365 6 0.7413 2 07338 8 0.7415 1
. MAR3 0.7367 8 0.7369 7 0.7373 6 0.7377 5 0.7382 25 0.7382 2.5 0.7385 1 0.7345 9 0.7380 4
5% MAR4 0.7383 2 0.7383 5 0.7385 1 0.7379 7 0.7383 3.5 0.7383 3.5 0.7381 6 07373 9 0.7377 8
MARS5 0.7366 6 0.7362 8 0.7366 7 07382 4 0.7383 3 0.7384 2 0.7396 1 0.7344 9 0.7366 5
Mean 0.7365 6 0.7356 7 0.7355 8 0.7373 5 0.7379 3 0.7377 4 0.7392 1 07344 9 07380 2
MNARI1 0.7311 8 0.7343 5 0.7316 7 0738 2 0.7367 3 0.7326 6 0.7393 1 0.7299 9 0.7362 4
© MNAR2 0.7295 6 0.7279 8 0.7272 9 0.7346 5 0.7359 2 0.7362 1 0.7350 4 07286 7 0.7356 3
2 Mean 0.7303 7 0.7311 6 0.7294 8 0.7366 2 0.7363 3 0.7344 5 07372 1 07292 9 0.7359 4
<
é MCARI1 0.7267 8 9 6 07293 5 0.7315 3 0.7328 2 0.7411 1 0.7268 7 0.7308 4
[ MCAR2 0.7321 8 5 6 0.7358 3 0.7349 5 0.7355 4 0.7388 1 0.7299 9 0.7329 7
Mean 0.7307 8 6 7 0.7335 4 0.7343 3 0.7352 2 0.7395 1 07279 9 0.7334 5
MARI1 0.7247 6 7 0.7223 9 0.7307 3 0.7311 2 0.7305 4 0.7396 1 0.7223 8 0.7295 5
MAR2 0.7355 6 7 0.7366 4 0.7313 8 0.7408 2  0.7409 1 0.7391 3 07270 9 0.7365 5
MAR3 0.7316 6 7 0.7331 5 0.7301 8 0.7344 4 0.7380 2 0.7384 1 0.7262 9 0.7366 3
20%  MAR4 0.7297 6 7 0.7267 9 0.7341 4 0.7350 3 0.7357 1 0.7355 2 07278 8 0.7306 5
MARS 0.7281 6 0.7269 7 0.7256 8 0.7316 5 0.7343 3 0.7352 2 07413 1 07229 9 0.7321 4
Mean 0.7293 6 0.7278 8 0.7281 7 0.7312 5 0.7346 3 0.7355 2 0.7391 1 07242 9 0.7322 4
MNARI1 0.7298 1 0.7237 5 0.7205 9 0.7225 7 0.7253 3 0.7246 4 0.7255 2 07222 8 0.7230 6
MNAR2 0.7275 1 0.7249 3 0.7170 8 0.7160 9 0.7195 7 0.7215 5 0.7260 2 0.7200 6 0.7229 4
Mean 0.7287 1 0.7243 3 0.7188 9 0.7192 8 0.7224 6 0.7231 4 0.7257 2 07211 7 0.7230 5
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Table 5.1 and Figures 5.1 and 5.2 present the average results obtained for each
dataset. The results are divided by metric (F-measure and R?), missing mecha-
nism (MCAR, MAR and MNAR) and missing rate (5 and 20%). Table 5.1 further

distinguishes between different implementations of the missing mechanisms.

Overall, the increase of the missing rate leads to a decrease in the performance of
classifiers (F-measure) and in the quality of imputation (R?). It is also noticeable
that the values of both metrics decrease from MCAR to MAR and from MAR
to MNAR for most imputation scenarios. We now thoroughly analyse the results
obtained regarding the quality of imputation and impact on classification results

individually.

Quality of Imputation (R?):
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Figure 5.1: Average R? values for all datasets, considering the different imputation
methods under the three missing mechanisms.

For MCAR mechanisms and considering a 5% missing rate, kNNimp5 and EM were
the best approaches for MCAR1 ,ive and M CAR2,,,;vq, Tespectively; while for a
20% missing rate, SVMimp and EM proved to be the best imputation techniques
for MC AR ivq and MCAR2i0a, respectively. For both MRs, SDAFE14adeita 1S
the 5% best approach, with differences from the best method of 0.0108 (MR 5%)
and 0.0367 (MR 20%). SDAF1,, is the 8" (MR 5%) and 7" (MR 20%) with
differences from the best method of 0.0202 and 0.0717, respectively.
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For MAR mechanism there are three winner approaches when missing rate is 5%:
SVMimp (for M AR nie and M AR piva), EM (for M AR3 e and M ARSpniva)
and kNNimp5 (for M AR2,,iva ). For a missing rate of 20%, two winner approaches
arise: SVMimp (for M AR yniva, M AR2nive and M ARSypive) and EM (M AR3pniva
and M AR4yniva). Regardless of the MR, SDAFE144adeira and SDAFE1,,, are the 5™
and 7" best imputation approaches — SDAFE1404e1a differs from the best method
of 0.0144 (MR of 5%) and 0.0407 (MR of 20%); SDAFE1,44 0.0295 (MR of 5%) and
0.0906 (MR, of 20%) from the 1%* approach.

Regarding MNAR mechanism, SVMimp and EM show the best results for M N AR1 iva
and MNAR2,,iva, respectively, considering a 5% missing rate. SDAE1.d0delta
(0.0312) and SDAFE1,,, (0.0547) are ranked with 5 and 7, respectively, and the val-
ues in parentheses indicate the difference from the best approach. For a higher MR
(20%), SDAFE1 4adeita seems to be the best imputation approach — SDAFE14adeita
reaches an average value of 0.71187 followed by EM that achieves 0.70016.

Impact on classification (F-measure):
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Figure 5.2: Average F-measure values for all datasets, considering the different
imputation methods under the three missing mechanisms.

For MCAR mechanisms, SVMimp seems to be the best imputation method in
terms of classification performance (F-measure), regardless of the missing rate.
SDAFE14adeita is ranked with 6 (5%) and 8 (20%), differing from the best method
of 0.00254 and 0.00880, respectively. SDAFE1,y, is the 7" and the 6™ best method
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under the 2 MRs. Here, the differences between the imputation methods are smaller
than for R? — the differences between the SDAE-based approach and the best method
for each scenario are 0.00255 and 0.00786, respectively.

Considering MAR mechanism, there are three winner approaches for 5% of MR:
Meanimp (for M AR4 niva), SVMimp (for M AR niva; M AR3nive and M ARSi0a)
and EM (for MAR2,piva). For a higher MR (20%), SVMimp (for M AR1yniva,
MAR3niva and M AR pive) and KNNimph (M AR2,ni0q and M AR4 i) proved
to be the best approaches. SDAF1444e1ta (5% — 0.0028; 20% — 0.0098) is ranked as
6 best method for both MRs. SDAF1,,, is the 7" (MR 5%) and 8™ (MR 5%) best
method differing from the 15° of 0.0079 and 0.0114, respectively.

For MNAR mechanism and 5% of missingness there are two winner approaches:
SVMimp (for M NAR1pive) and KNN5imp (for M N AR2,pivq). For the same MR,
SDAFE1 4dadeita (0.0069) and SDAFE1,4 (0.0061) are ranked with 7 and 6, respec-
tively. When the missing rate increases (20%), SDAFE1dadeita and SDAE1, are
among the top 3 approaches: SDAFE1 4440114 sSurpasses all the remaining methods,
while SDAFE1,,4 is the third best imputation method, falling just behind kNNimp5.

Conclusions

In this 1%¢ experiment, we propose 2 SDAE-based approaches capable of imputing
data that are missing. The results show that our proposed approaches surpass other
imputation methods from the state of the art, for some combinations of missing
mechanisms and MRs. Despite this, it is important to note that our models have
some limitations since we assume that there is enough complete data to be used
in the training phase: in other words, our training set is composed of complete

observations while the incomplete ones belong to the test set.

These results show that our model (SDAF1,444e1t) Which uses Adadelta as opti-
mization algorithm surpasses the results obtained by SDAE1,,; proposed in Gondara
et al. [9]. Furthermore, the results obtained for MNAR mechanisms under a high
MR, show the superiority of SDAE over the remaining state-of-the-art methods,
indicating that autoencoders might be a feasible approach for this scenario, which
is a relevant insight for the research community, since MNAR is a non-ignorable

mechanism and the most problematic to impute in an unbiased way.

Regarding both metrics (R? and F-measure), the top 3 imputation methods per
mechanism are always the same except for MNAR with 20% of missing values.
EM, kNNimp5 and SVMimp are the approaches that achieve the best results for
MAR and MCAR mechanisms, and MNAR seems to be the only mechanism which
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influences the choice of imputation method.
In summary, the conclusions of the 15 experiment are the following:

e Our experiments show that under MCAR and MAR mechanisms there are
three imputation methods that perform well: EM, kNNimp5 and SVMimp.
For these scenarios, SDAFE1,444c1ta and SDAE2,4., are ranked between 5
and 8 position — SDAFE14444eita Seems to be superior to SDAE44;

e For MNAR mechanism, the imputation technique based on overcomplete SDAE
— SDAFE144deita — outperforms well-known imputation methods for high rates
of missing data (20%), both in terms of classification performance (F-measure)

and quality of imputation (R?);

5.2 2" Experiment

The goals of this experiment are:
e Propose another 2 SDAE architectures to recover missing data;

e Propose a multiple imputation algorithm capable of imputing missing data

regardless of the MR, using the 2 SDAE architectures mentioned above;

e Compare the performance of our proposed models with imputation methods

from the state of the art, under several missing rates;

e Study the effect of the different generation methods on several imputation
methods.

Before we started a new experiment, it was necessary to select the synthetic gen-
eration methods that would be used from then on. If we apply all the generation
methods to the datasets, we would need a lot of computational time. So, in order
to reduce the computational time, we selected a set of generation methods. The
aim of this preliminary study was to investigate the generation methods that led to
a better performance of the imputation methods. In addition to the performance
of the imputation methods, we also took into consideration some limitations of the
generation methods that were already known. At the end, we chose to use a gen-
eration method for each mechanism (MCAR, MAR and MNAR) and for each type
of implementation (univa and unifo) — MCAR2pipa, MCAR3umito, MAR2 i,
MARLif0, MN AR pipq and M N AR3,,i.. This analysis can be found in Section
4.2.
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In brief, we performed a comparative study on the effect of the various generation

methods described in Section 2.2.1 on 7 well-known imputation methods from the

state of the art (Meanimp, kNNimp for k=1,3 and 5, SVMimp, MICE and EM).

This 2°¢ experiment also requires a missing value generation phase (where 5 runs
were performed) followed by imputation and classification. Then, we evaluated both
the imputation quality and its impact on classification. The results are divided by
metric (F-measure, R? and RMSE), missing mechanism (MCAR, MAR and MNAR),
type of configuration (univa and unifo) and missing rate (5, 10, 15, 20 and 40%).
We evaluate 9 different imputation techniques including 2 SDAE-based approaches
for a total of 4950 incomplete datasets.

Table 5.2 presents the average results obtained for all the 33 complete datasets used
in this study (Table 4.1). As in the 1°* experiment, the increase in the missing rate
leads to a decrease in the classification performance (F-measure) and the quality of
imputation (R? and RMSE). Moreover, we evaluate 2 important perspectives from
the missing data problem — imputation quality and classification performance — the
results obtained for these 2 perspectives do not match. Next, we provide a detailed
analysis of the results obtained considering imputation quality and classification

performance.
Quality of Imputation (R? and RMSE):

For univa configurations, SDAFE2,44.., proved to be the best approach for all missing
mechanisms, regardless of the missing rate. SDAFE2,4440ta Was ranked as the 6" or
7™ best method, in terms of R?, and regarding RMSE metric was considered to be
5% or 6" best method.

For the unifo configurations, MICE is the best imputation method for MCAR miss-
ing mechanisms for all the MRs while the SDAE-based approaches are ranked be-
tween 2"4 and 6'" positions. Considering MAR missing mechanism, MICE is also
the best method in most of the scenarios: for a higher MR (40%), SDAE2,40m
seems to be the best approach in terms of RMSE. In the case of MNAR mecha-
nism and for lower MRs (5% and 10%), MICE is also the best approach. However,
for higher MRs, the SDAE-based approaches guarantee a better imputation quality
~ SDAE?2,40de1ta 18 the best method under 15% and 40% MRs while SDAFE2,44m

seems to be superior for 20%.
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Table 5.2: Results obtained from the 2"! experiment by imputation method: average F-measure, R?> and RMSE are shown
regarding each missing data mechanism, configuration, metric and missing rate. The best results for each configuration are marked
in bold. Pink and blue values indicate whether SDAFE2,44deita Or SDAE2,44m belong to the top 3 of the best imputation approaches,
respectively.

Classification Performance Imputation Quality
R? RMSE
Univa Unifo Univa Unifo Univa
MR  Methods MCAR2 MAR2 MNAR1 MCAR3 MAR1 MNAR3 MCAR2 MAR2 MNAR1 MCAR3 MAR1 MNAR3 MCAR2 MAR2 MNAR1 MCAR3 MNARS3
meanimp 0.7626 8 0.7648 8 07628 8§ 07593 7 07675 3 0.7759 6 0.9518 7 09480 7 08702 8§ 0.9415 6 09248 8 08675 5 0.2202 7 02201 7 03691 7 0.2206 6 7 5
kNNimpl 07630 5 07671 4  0.7673 3 07587 8 07630 9  0.7535 9 0.9541 5 09538 5 09043 6 0.9370 7 09360 4 08592 8§ 0.2180 5 02187 5 03169 5 0.2339 7 1 7
kNNimp3 07642 4 07680 2  0.7679 2 0.7646 4 07672 5  0.7765 2 0.9679 4 09655 4 09180 4 09510 3 09492 3 08733 3 01802 4 01872 4 1 0.1986 3 3 3
kNNimp5 0.7645 3 3 07654 4 07671 2 07674 4  0.7763 5 0.9701 3 09676 3 09215 3 09535 2 09516 2 2 01736 3 01813 3 3 2 2 2
5%  SVMimp 0.7676 1 1 07715 1 0.7686 1 07676 2 0.7871 1 0.9468 8 09428 8  0.9069 5 09301 8 09296 5 7 0.4918 9  0.5857 9 9 9 9 9
EM 0.7591 9 9 07618 9 9 07648 8 07654 8 0.9140 9 09132 9 08431 9 0.9055 9 08954 9 9 0.2979 8  0.2998 8 8 8 8 8
MICE 2 5 07644 5 3 07692 1 07751 7 0.9713 2 09706 2 09249 2 0.9578 1 0.9556 1 1 01701 2 01736 2 2 1 1 1
SDAE244qdelta 7 6 07630 6 6 07666 6 0.7763 4 0.9523 6 09500 6 08710 7 0.9416 4 09279 6 4 02191 6 02245 6 6 1 5 1
SDAE244am 6 707628 7 5 07665 7 07764 3 0.9835 1 0.9830 1 0.9699 1 0.9415 5 09278 7  0.8665 6 0.0785 1 0.0816 1 1 5 6 6
meanimp 8 8 07592 5 6 07676 4 07682 4 0.9064 8 08958 8 0.7741 8§ 0.8915 6 08761 8 0.7781 4 03070 6 03255 7T 7 5 6 4
kNNimpl 5 4 07612 4 5 07626 & 07614 6 0.9091 6 0.9065 6 0.8270 6 0.8796 8 0.8832 7 0.7476 8 03104 7 03155 5 5 7 7 7
kNNimp3 1 3 07615 3 4 07685 2 07563 8 0.9355 4 09263 4 08570 4 0.9076 3 09127 3 07741 6 0.2565 4 0.2760 4 4 3 3 6
kNNimp5 2 2 07622 1 3 07668 5 07602 7 0.9397 3 09310 3 08601 3 09130 2 09181 2 07792 3 0.2474 3 02664 3 3 2 2 3
10% SVMimp 3 1 07620 2 1 07679 3 0.7801 1 09182 5 09133 5 08456 5 0.8880 7  0.8906 4  0.7693 7 0.6793 9  0.6784 9 9 9 9 9
EM 9 9 07589 7 9 07557 9 0.7483 9 0.8355 9 08251 9 0.7345 9 0.8230 9 08257 9 0.7276 9 0.4165 8  0.4299 8 8 8 8 8
MICE 1 5 07583 9 2 07690 1 07693 3 0.9418 2 09400 2  0.8692 2 0.9238 1 0.9247 1 08172 1 5 2 02477 2 2 1 1 1
SDAE2440de1ta 6 6 07589 6 707654 7 07676 5 0.9072 7 09002 7  0.7956 7 0.8915 5  0.8886 5 0.7745 5 5 03178 6 6 6 5 5
SDAE24dam 7 707587 8 8 07659 6 07699 2 0.9779 1 0.9770 1 0.9593 1 0.8916 4  0.8886 6 0.7950 2 1 01132 1 0.1833 1 4 1 2
meanimp 6 07581 8 07597 7 07381 6 07514 6 07451 5 0.8464 8 0.8490 8 0.6840 8 0.8404 4 08227 8 07025 5 03937 7 0.6075 T 5 7 4
kNNimpl 5 07635 4 07612 3 07335 8 07651 2  0.7205 9 0.8631 6 0.8658 6 0.7609 6 0.8131 8 08374 7 06442 9 03822 6 05259 5 7 6 8
kNNimp3 2 07647 2 07604 4 07451 4 07531 5 07324 7 0.8962 4 09024 4 07998 4 0.8567 3  0.8634 3  0.6781 7 0.3168 4 04802 4 3 3 6
kNNimp5 3 07643 3 07593 8 07503 3 07509 7 07374 6 0.9038 3 09076 3 0.8081 3 0.8663 2 0.8700 2 0.6840 6 03074 3 04707 3 2 2 5
15%  SVMimp 1 07678 1 0.7658 1 0.7672 1 0.7789 1 0.7872 1 0.8870 5 0.8900 5 0.7908 5 0.8396 7 08389 6 0.7062 4 0.7884 9  0.8418 9 9 9 9
EM 9 07539 9 07582 9 07085 9 07332 9 07230 8§ 0.7480 9 07535 9  0.6260 9 0.7416 9 07576 9  0.6452 8§ 05154 8  0.6584 8 8 8 7
MICE 07630 4  0.7607 5 07612 2 07528 2 07504 8 07611 3 0.9090 2 09107 2 08249 2 0.8866 1 0.8828 1 0.7439 3 03021 2 04502 2 1 1 3
SDAE244qde1ta 07585 8 07583 7 07602 5 07378 7 07561 3  0.7633 2 0.8483 7 08579 T 0.7445 7 0.8399 6 08507 4  0.7556 1 03802 5 05482 6 6 1 1
SDAE24qam 0.7587 7 0.7597 6  0.7598 6 07383 5 07550 4 0.7609 4 0.9700 1 0.9708 1 0.9519 1 0.8403 5 08506 5 0.7509 2 0.1383 1 0.2105 1 1 5 2
meanimp 0.7587 6  0.7573 8  0.7553 7 07219 6 07335 8 07317 5 0.8009 8  0.7960 8  0.5962 8 0.7907 6 07742 8  0.6315 5 04479 7 04595 7  0.7067 7 5 7 4
kNNimpl 0.7554 8  0.7583 5  0.7564 5 0.7185 8  0.7408 4  0.7062 8 0.8208 6 0.8256 6  0.7067 7 0.7534 8 07834 7  0.5546 9 04438 5 0438 5 05979 5 7 6 8
kNNimp3 0.7609 3  0.7607 4  0.7570 4 07381 3 07414 3 07228 7 0.8660 4  0.8637 4  0.7363 4 0.8069 3 08225 3 05881 7 0.3717 4 03759 4  0.5686 4 3 3 7
kNNimp5 0.7613 2 07620 3  0.7556 6 0.7380 4 07395 5 0.7296 6 0.8747 3 08728 3  0.7446 3 0.8187 2 08310 2 03581 3 03618 3 05613 3 2 2 6
20%  SVMimp 0.7661 1 0.7714 1 0.7627 1 0.7643 1 0.7582 1 0.7896 1 0.8576 5 08587 5 07314 5 0.7922 4 07959 6 11028 9 09814 9 09409 9 9 9 9
EM 07547 9 07533 9  0.7536 8§ 0.6861 9 0.7146 9  0.6976 9 0.6720 9  0.6759 9 05514 9 0.6672 9  0.7030 9 0.5966 8 0.5974 8 0.7395 8 8 8 5
MIC: 07599 4 07632 2 07515 9 07431 2 07425 2 0.7499 4 0.8806 2 08799 2 0.7671 2 0.8497 1 0.8496 1 03484 2 03511 2 05329 2 1 1 3
SDAE24g0deita 07589 5 0.7577 6 0.7591 2 07210 7 07363 7 0.7515 3 0.8034 7 08090 7 0.7224 6 0.7903 7 08178 5 0.4448 6 04416 6 0.6045 6 6 5 2
SDAE24qam 07587 7 07575 7  0.758 3 07219 5 07373 6  0.7574 2 0.9637 1 0.9644 1 0.9489 1 0.7907 5 08181 4 0.1616 1 0.1605 1 0.2301 1 4 4 1
meanimp 0.7478 6  0.7431 8  0.7448 4 4 06801 6 06710 4 0.5961 8  0.5844 8 0.5899 4 0.6085 8 0.6387 7  0.6682 7 1.0326 8 3 07553 6 4
kNNimpl 0.7469 8 07441 7 07415 8 8 0685 5 0587 8 0.6575 6  0.6549 6 04875 8 06111 7 0.6364 6 0.6502 6 09124 6 707817 7 8
kNNimp3 0.7512 4 0.7464 4  0.7440 5 6 06973 4 05836 9 0.7261 5 07241 5 05714 7 0.6386 5 05404 4 05492 4  0.8883 4 6 07163 5 7
kNNimp5 0.7541 2 0.7480 3  0.7428 6 706988 3 05948 7 0.7397 3 0.7387 3 0.5907 3 0.6474 4 05229 3 05302 3 08951 5 5 06987 4 6
40%  SVMimp 0.7649 1 0.7695 1 07532 3 1 07670 1 0.7385 1 0.7369 4 0.7338 4 0.6205 2 0.6304 6 11565 9 14194 9  1.8521 9 9 37205 9 9
EM 0.7407 9 07392 9 07416 7 9 06585 9 . 6 0.3962 9 04093 9 0.3993 9 05416 9 0.8460 8 0.8408 8 09938 7 8 08270 8 3
MICE 07526 3 07491 2 07393 9 2 07025 2 06344 5 0.7601 2 07542 2 0.6821 1 0.6719 1 0.5027 2 0.5094 2 08396 3 1 06975 3 5
SDAE2440deita 07479 5 0.7453 5 | 0.7552 2 5 06781 & 07330 2 0.5994 7  0.6180 7 0.5881 6  0.6659 3 0.6347 5 0.6256 5 07078 2 4 0580 2 1
SDAE24q0m 07471 7 07449 6 0.7552 1 3 06781 7 07321 3 0.9380 1 0.9394 1 09528 1 0.5892 5 0.6661 2 0.2280 1 0.2264 1 0.2641 1 2 0.5878 1 06761 2
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5. Experimental Results

Impact on classification (F-measure):

The results show that SVMimp seems to be the best imputation method in terms of
classification performance and for the three highest MRs (15, 20 and 40%), regardless
of the missing mechanism and configurations considered. For the lower MR (5 and
10%) there is no standard, suggesting that small amounts of missing values have
little influence on the quality of the dataset for classification purposes — there is an
exception for the univa configurations under 5% of MR: in this case, SVMimp is the

winner.

Regarding the performance of the SDAE-based approaches, the 2 SDAE are ranked
between the 5" and 7" position (considering all the MRs), for MCAR2, v, and
MAR2,ivq- Regarding M N AR1 504, the SDAE belong to the top 3 best imputa-
tion approaches for higher MRs (20% and 40%) while for lower MRs they are ranked
between 5" and 8" positions. The SDAE are placed between 2°¢ and 5" positions
for MCAR3nifo and M AR50, while for M N AR3,,f, they are placed between
224 and 5*" positions, for all the MRs.

We also compared all the imputation methods using the Friedman rank test, for
k=8 imputation methods and N=33 datasets. Table 5.3 shows the mean ranks for
all the datasets and the value of the Friedman statistic, Fr, for each scenario. The
null hypothesis of this test, Hy, is the equivalence between all the methods. Follow-
ing the work of Demsar [53], we compared the values of Fr to the F distribution
F(0.05)5256 = 1.9747 (8 degrees of freedom). For the boldface values at Table 5.3
there is weak evidence against the null hypothesis, so conclusions about the statis-
tical differences between the imputation methods cannot be drawn. On the other
hand, for all the Fr values that are not in boldface, there is strong evidence against
the null hypothesis, so we reject it - meaning that there are significant differences
between the imputation methods. In brief, for all the cases where we reject the null

hypothesis, we can affirm that all methods under comparison are different.

We performed another statistical test for those cases in which we could not conclude
if there were statistical differences between all the methods (using the Friedman
test). We use the Wilcoxon Signed Rank test to verify if there are statistical dif-
ferences between some pairs of methods: for each scenario, we compared the SDAE
with the imputation method that performed better. Under the null hypothesis, the
median difference between pairs of observations of the 2 imputation methods is zero

— when the null hypothesis is rejected, the 2 methods are considered to be different.
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5. Experimental Results

Table 5.3: Average ranks for the datasets used in 2"¢ experiment: Friedman test. Boldface values indicate weak evidence against
the null hypothesis.

Classification Performance Imputation Quality
F measure R? RMSE
Univa Unifo Univa Unifo Univa Unifo
MR  Methods MCAR2 MAR2 MNARI1 MCAR3 MAR1 MNAR3 MCAR2 MAR2 MNAR1 MCAR3 MAR1 MNAR3 MCAR2 MAR2 MNARI1 MCAR3 MAR1 MNARS3
meanimp 5.0606 5.3333 5.2879 5.3788 4.8182 4.8939 6.3939 6.2727 6.4545 5.2727 6.3939 4.8182 6.4242 6.3030 6.5152 5.2424 6.3939 5.0000
kNNimp1l 5.2879 5.0606 4.8030 6.0455 5.3333 5.5606 6.1818 6.3030 5.1515 6.5152 5.6970 6.4848 6.2121 6.3636 5.1515 6.5758 5.7273 6.4545
kNNimp3 4.8030 4.7273 4.6515 4.6970 5.2727 5.1515 4.3333 4.5152 4.2727 4.5455 3.6364 5.0909 4.3939 4.6061 4.3030 4.6061 3.5758 5.0606
kNNimp5 4.7879 4.8333 4.8182 4.3182 5.0000 5.0000 3.5455 3.6364 4.1515 3.1212 2.5758 4.2121 3.5758 3.6970 4.2121 3.0909 2.5455 4.0303
SVMimp 3.9697 4.0152 3.9848 3.2121 4.2879 3.6818 3.6970 3.8788 3.6970 3.2727 3.9697 3.6970 3.7273 3.9394 3.7879 3.2424 3.9394 3.5455
5% EM 6.3485 5.6970 5.8485 6.9545 5.9545 6.2576 8.7273 8.6061 8.1818 8.9394 8.8485 8.3333 8.7576 8.6061 8.2121 8.9394 8.8182 8.2121
MICE 4.8182 4.6667 5.1818 4.1212 4.9091 5.0455 3.8788 3.5758 4.0303 2.0303 2.3939 2.5152 3.9091 3.6061 4.1212 2.0606 2.5152 2.5152
SDAE2,qqdelta 4.9848 5.2273 5.1970 5.0152 4.6364 4.6970 6.2727 6.1212 6.6970 5.4848 5.5152 4.3030 6.3030 6.1515 6.7576 5.5152 5.5152 4.4848
SDAE2,4qm 5.4394 5.2273 5.2576 4.7879 4.7121 1.9697 2.0909 2.3636 5.8182 5.9697 5.5455 1.6970 1.7273 1.9394 5.7273 5.9697 5.6970
Fr 1.7358 1.1197 1.1894 6.1321 1.0023 2.1907 40.5899  35.1833 24.4371 42.8025  41.9454 19.3831 46.1462  40.5043 28.8380 42.9527  40.7516 19.0893
meanimp 5.5758 4.9545 5.1667 5.2121 4.5758 4.5152 6.0303 6.3636 7.0000 5.0000 6.6061 4.8485 6.0303 6.4242 7.0909 4.9697 6.6061 4.9697
kNNimp1l 4.7879 4.9091 5.8636 5.2576 5.2273 6.3030 6.2727 5.5758 6.5758 6.0303 7.1818 6.4545 6.3333 5.5152 6.6970 6.1212 7.1818
kNNimp3 4.1515 4.8788 4.8333 4.6364 5.8182 4.4242 4.6364 4.2121 4.7273 3.8485 5.5758 4.4545 4.6364 4.1818 4.8182 3.8182 5.5758
kNNimp5 4.4545 4.7121 4.3636 4.8333 5.2576 3.7576 3.6364 3.8788 3.1818 2.9697 4.6667 3.7879 3.6364 3.9091 3.2121 2.8788 4.5758
SVMimp 4.5758 4.6667 3.0303 4.5455 3.8030 3.8788 4.0303 4.1515 3.3636 4.0000 3.7273 3.8788 4.0606 4.1515 3.3939 4.0909 3.6061
10%  EM 6.1970 5.1212 7.2273 6.6364 7.1818 8.7576 8.6970 8.0606 8.9394 8.7879 8.0000 8.7576 8.7273 8.1212 8.9091 8.7879 7.9091
MICE 4.7727 5.5152 4.0303 4.7727 4.1212 3.6970 3.2727 4.1212 1.8788 2.2424 2.7576 3.7273 3.3333 4.1515 1.8788 2.2424 2.7879
SDAE2,4qdelta 5.1970 4.9394 5.1818 4.9545 4.7273 6.2727 6.0909 5.9697 5.6061 5.0303 5.1818 6.2424 6.0909 6.0606 5.5152 5.0000 5.2424
SDAE2,44m 5.2879 5.0909 5.2576 4.7879 4.3485 1.8788 2.0000 2.0303 5.7273 5.4848 3.0606 1.6667 1.7576 1.8182 5.6061 5.4545 3.1515
Fr 1.7909 0.2888 7.2668 1.9159 5.2719 39.2978  39.7825 25.8806 43.8830  37.2574 22.3424 43.5758  44.9668 29.7909 42.8400  38.3763 21.4042
meanimp 5.1970 5.1667 4.8788 4.6970 5.3333 6.2121 6.3636 7.1212 4.6364 6.4242 5.1818 6.2727 6.3636 7.2121 4.6364 6.4545 5.3030
kNNimp1l 5.0606 4.8182 6.2879 4.8636 6.3030 6.3030 6.3030 5.7879 6.9697 6.0909 7.7576 6.3636 6.4242 5.5758 7.0303 6.0303 7.6667
kNNimp3 4.4242 4.8939 5.2424 5.0455 5.8636 4.4848 4.3636 4.4242 4.9091 4.3333 6.0909 4.5152 4.4545 4.4242 4.9091 4.3636 6.0909
kNNimp5 4.8182 5.1667 4.7424 4.8333 5.4394 3.6061 3.6061 3.7576 3.6061 3.2424 5.3030 3.6667 3.6364 3.9394 3.6667 3.1212 5.3030
SVMimp 3.6212 4.4545 2.5758 3.8182 2.8182 3.7879 3.8182 4.3030 3.3030 4.1818 4.0000 3.8182 3.8485 4.3030 3.3030 4.3333 3.8788
15%  EM 6.2273 6.5606 5.2727 7.9242 7.5455 6.9545 8.7576 8.7879 8.3636 8.8788 8.8788 7.4242 8.7576 8.8182 8.3636 8.8788 8.6970 7.3030
MICE 4.5000 4.9091 5.1818 3.8485 5.0303 4.4545 3.7576 3.8485 4.0303 1.8182 2.2424 3.4242 3.7576 3.8485 4.0303 1.8485 2.4545 3.4848
SDAE2,4qdelta 5.6212 5.2727 4.9091 4.7727 4.5303 3.8788 6.1818 6.0606 5.4242 5.3939 4.6970 2.3939 6.1515 5.9697 5.5152 5.3030 4.6667 2.4848
SDAE244am 5.5303 4.8030 5.1364 4.7273 4.6364 3.9545 1.9091 1.8485 1.7879 5.4848 4.9091 3.4242 1.6970 1.6364 1.6364 5.4242 4.8788 3.4848
Fp 2.7394 2.3119 0.2861 13.3671 5.1877 9.7175 40.3388  41.9402 32.5015 43.0065  32.3665 27.1747 44.1538  46.4629 34.2090 42.3292  27.6815 24.4096
meanimp 4.9848 5.1667 5.1515 5.0000 5.2424 5.5000 6.2121 6.5152 7.3636 4.6061 6.3636 5.1818 6.1212 6.5758 7.4848 4.4848 6.6061 5.2727
kNNimp1l 5.9848 5.6364 4.9545 6.5000 5.3485 6.1061 6.3333 6.1818 5.4848 6.9091 6.5455 7.6970 6.4848 6.2727 5.3636 7.3333 6.4545 7.6364
kNNimp3 4.9394 4.8636 4.6364 4.6667 4.8939 5.7576 4.3636 4.6061 4.6364 4.7879 4.3636 6.3030 4.5152 4.6364 4.5152 4.9697 4.2121 6.3939
kNNimp5 4.7727 4.5303 4.8939 4.4242 5.2576 5.4545 3.4545 3.6364 4.2121 3.5758 3.1212 5.4848 3.4848 3.6970 4.3333 3.5758 3.0303 5.5455
SVMimp 3.9697 3.3030 4.7424 2.6061 3.2879 2.7879 4.0606 3.7879 4.5455 3.5455 4.8788 4.2121 4.0909 3.7879 4.5758 3.8182 5.0909 4.2424
20% EM 5.9697 6.6212 5.9242 7.8182 6.5455 7.1818 8.8182 8.7576 8.0909 8.8788 8.7879 7.3636 8.8182 8.6970 7.9697 8.8182 8.6667 7.0303
MICE 4.5909 4.6364 5.5758 4.0455 4.3939 4.2121 3.6667 3.6970 4.0303 1.8485 2.2424 3.7273 3.6364 3.9697 1.8485 2.4545 3.7273
SDAE2,4aqdelta 4.8939 5.1667 4.5000 5.0152 4.9545 4.3939 6.2727 5.9697 5.0303 5.2121 4.2121 3.1515 5.9697 5.2121 4.8485 4.0303 3.2424
SDAE2,4qm 4.8939 5.0758 4.6212 4.9242 5.0758 3.6061 1.8182 1.8485 1.6061 5.6364 4.4848 1.8788 1.7273 1.5758 5.3030 4.4545 1.9091
Fr 1.8130 3.7847 0.9977 12.9468 3.5244 10.5144 44.8706  41.4673 29.5290 40.2238  34.2888 32.4856 46.7288  43.5321 29.5725 41.1742  32.7893 28.4231
meanimp 4.7424 5.5758 5.1818 4.4697 5.1667 4.6667 6.0909 6.5758 7.4848 4.0606 6.0909 4.7576 6.1515 6.5455 77727 4.1515 6.0909 5.3030
kNNimp1l 5.6061 5.8030 5.4697 6.9091 5.7576 6.5606 6.3030 6.1818 6.1667 7.5455 6.7576 8.4545 6.3939 6.5152 5.6818 8.0303 7.0909 8.1515
kNNimp3 5.2727 4.5758 5.3788 5.2424 4.8030 6.3485 4.6061 4.6970 5.2121 5.6970 5.1515 7.0606 4.6061 4.6667 4.9091 5.9394 5.3636 7.0000
kNNimp5 5.3485 5.4545 4.8636 6.1818 3.7273 3.8485 5.3333 4.3636 4.1212 6.1818 3.6667 3.8182 5.5758 4.4848 4.4545 6.2121
40% SVMimp 4.3485 2.0606 3.0455 3.0758 4.0000 3.8788 5.1061 3.0909 4.7576 4.8182 4.0606 3.9697 5.1364 3.6061 5.7576 4.9394
EM 6.5303 4.9697 8.2273 6.3485 6.1212 8.8182 8.7273 6.7576 8.7576 8.8485 5.4848 8.7879 8.6364 6.5909 8.6364 7.9394 4.8182
MICE 4.3788 5.3939 3.4091 4.6970 5.6212 3.5152 3.6364 4.6364 1.6061 3.5758 5.2424 3.5455 3.6061 4.8182 1.6667 3.8485 5.5758
SDAE2,qqdelta 5.0152 4.4242 4.8788 5.1818 3.0909 6.2727 5.8485 3.0303 5.0303 2.7879 1.0606 6.1515 5.6364 3.3333 4.2121 2.0909 1.0303
SDAE2,q4m 5.3182 4.4848 4.3485 5.1364 3.3333 1.6667 1.6061 1.2727 4.8485 2.9091 1.9394 1.6364 1.6061 1.1818 4.2727 2.3636 1.9697
Fr 3.5444 4.4506 0.9309 24.8328 3.8485 13.2082 45.3483  43.4286 29.3350 53.5586  34.7544 79.9435 45.3827  42.8346 28.8203 57.2090  36.4368 68.0134
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5. Experimental Results

We define the level of significance as a = 0.05 and the p — values of the comparison

tests are shown in Table 5.4.

Table 5.4: P — values for the Wilcoxon Signed Rank test. We use this test to
ascertain whether there are significant differences between the indicated pairs of im-
putation methods. Boldface methods are the superior ones (in terms of classification
performance) from each pair. Boldface p-values indicate strong evidence against the
null hypothesis.

F-measure
MR  Mechanism Methods p-value
. SDAFE2.40deita 0.1570
MCAR2 SVMIimp  ¢pAE2, 40 0.1701
. SDAE2qdederta  0.0174
5% ~ MAR2 SVMImp  gp A B 0.0113

_ SDAE2yg0qe1a 0.0131
MNAR1 SVMimp  sp4pe .~ 0.0131

R _ SDAE2qdadeita  0.0400
MCAR2 kNNimp3  op 4o, . 0.0442

SDAE2,40deita 0.0386

10% MAR2 SVMimp o apo . 0.0158

, SDAE2,qudera 0.2721
unive MNAR1 KNNimp5 o7y 49 Z e 893
SDAE2ugaderra  0.1728

15% MNAR1 SVMimp SDAE2,40m 0.1556

, SDAE2yqude1ra 0.0333
MCAR2 ~ SVMimp  gpape .~ 0.0366

20% . SDAEQO,dadEltG 0.6092
MNARI1 SVMimp SDAE2udum 0.5321

SDAFE2.40deita 0.9176
40% MNARI1 SVMimp SDAE2,40m 0.9588

SDAE2,40deita  0.1771

5%  MARI MICE SDAE2q4am 0.1240
unifo SDAFE2,g0de1ta  0.9826
10% MARI1 MICE SDAFE2,qam 0.4348

We reject the null hypothesis of the Wilcoxon Signed Rank test when the p—wvalue is
bellow the level of significance (o = 0.05). For example, according to the information
in Table 5.4, for 5% of MR and M AR2,,iva, SVMimp shows to be significantly
different from SDAE-based approaches. On the other hand, although SDAE2,40m
has superiority for 40% of MR and M N AR1 ,iva, it does not prove to be significantly
different from SVMimp.

According to Table 5.4, there seems to be no superiority of the SDAE compared
to the remaining methods. For some scenarios, we can conclude that there are

significant differences between the 2 imputation methods in comparison — MR of
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5%: MAR2umva and MNAR1 pia; MR of 10%: MCAR2,pma and MAR2,,i0a;
MR of 20%: MCAR2,,,,. However, in these cases the SDAE are not superior.
For the remaining scenarios, we can not conclude about the superiority of any of
the compared methods. Therefore, although the SDAE are not superior in terms

of F-measure, they show no statistically significant differences regarding the best
method.

We continue this analysis by referring to the results obtained by Gondara et al. [9],
which used a similar benchmarking of datasets (although smaller, with only 15
datasets) and a SDAE approach for imputation (DAFE1,,,). Gondara et al. [9]
proposed a SDAE based model for imputation but only compare the results with
one other imputation method, MICE. Furthermore, in the work of Gondara et al.,
only 2 missing mechanisms were generated — MCAR and MNAR — for a fixed MR, of
20%. Their results have shown that the SDAE-based approach outperforms MICE
for most studied scenarios. Therefore, we also perform this comparison, only for
unifo configuration since Gondara et al. [9] did not use any univa methods for the

synthetic generation of MD. These results are presented in Figures 5.3 and 5.4.
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Figure 5.3: Comparison between the results obtained with the SDAE based ap-
proaches and the well-known method MICE (unifo configuration), in terms of clas-
sification performance (F-measure).

In terms of classification performance (F-measure), the results for MCAR3,,if0
show that MICE is superior under all the MRs. Furthermore, for M AR1,;f,, MICE
remains superior, except for the MR of 15%, in which both SDAE approaches show
a better performance. For M NAR3,,;t, the results are somewhat different: for

higher MRs (15, 20 and 40%), the 2 SDAE-based approaches are superior to MICE.
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Figure 5.4: Comparison between the results obtained with the SDAE based ap-
proaches and the well-known method MICE (unifo configuration), in terms of im-
putation quality (RMSE).

Regarding imputation quality, measured with RMSE, the results show that for
MCAR3, ;o there is no advantage in using our SDAE-based approaches compared
to MICE. For M AR1,;f,, SDAE seem to be superior to MICE for a higher MR
(40%). Finally, M N AR3,,;f, benefits from the use of SDAE, for higher MRs (15, 20
and 40%) while under lower MRs (5 and 10%) MICE seems to be superior, despite
the small difference compared to the SDAE.

Conclusions

In this 2"! experiment, we proposed a multiple imputation approach based on SDAE
where the training data is corrupted in a way that mimics a particular missing mech-
anism. Furthermore, we study the performance of several imputation approaches
for different generation methods (univa and unifo configurations). Overall, the fol-

lowing conclusions are derived:

e In terms of imputation quality (RMSE), SDAFE2,44, shows the best results
for univa configurations. Considering unifo configurations and MCAR and
MAR mechanisms, MICE seems to be the best method. For MNAR3,,f.
and higher MR, there is a clear advantage in using SDAE-based approaches;

e In terms of imputation quality and considering univa implementations, Adam

optimizer seems to achieve better results than the Adadelta optimizer;

e Regarding classification performance and for several of the studied scenarios
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there are not statistical differences between all the methods. Therefore, even
if some methods obtained better results than SDAE-based approaches does
not mean that they are superior, since the differences are not statistically

significant;

e For higher MRs, SVMimp seems to be the best imputation method, in terms
of classification performance. In this case, the SDAE also have a good perfor-

mance. For lower MRs, the results are not homogeneous.

e Although the SDAFE2,44,, ensures the best imputation quality for univa con-

figurations, the same does not occur in terms of classification performance;

Although the results of the SDAE-based approaches show its advantage for some of
the studied scenarios, these results are not sufficiently high to counteract the greatest
limitation of the use of SDAE: the high computational time and space/memory

required.

5.3 3" Experiment

In the 2" experiment, we used a benchmark of standard datasets to study the
imputation performance of SDAE-based approaches. Our SDAE-based approaches
have demonstrated to be superior for many of the studied scenarios, although there
was no agreement on the best methods regarding the classification performance and
imputation quality.

Therefore, in this 3¢ experiment, we reproduce the setup proposed for the 27d

experiment (Section 5.2) but, in this case, we selected 5 datasets that have higher
sample sizes than the ones used in the previous experiment, since deep learning
techniques have a “good reputation” in contexts where more data is available [7].
With this 3'¢ experiment, we want to determine if there is any advantage in using the
proposed SDAE approaches when the amount of data increases and if this advantage

exists for in both evaluated perspectives: classification and imputation quality.
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Thus being, the main goal of this experiment is:

e Evaluate the performance of 2 SDAE-based approaches for datasets with higher

sample sizes.

As for the 2" experiment, we synthetically generated MVs for 5 runs, using 6 differ-
ent implementations (univa and unifo), for 5 MRs (5, 10, 15, 20 and 40%) — a total
of 750 incomplete datasets. Once again, it can be observed that, the classification
performance (F-measure) and imputation quality (R? and RMSE) decrease as the
MRs increase. We can also verify that the results regarding both classification and
imputation performance are superior for univa configurations. Next, we analyse in
detail the results of this 3'% Experiment, regarding both imputation quality and

classification performance, shown in Table 5.5.
Quality of Imputation (R? and RMSE):

For univa configurations, SDAE2,q4adeita and SDAFE2,44,, proved to be the first and
the second best imputation approaches, respectively, for all missing mechanisms,
regardless of the MR.

Regarding unifo configurations, the results are not so homogeneous. MICE proved
to be the best imputation method under MCAR configurations while SDAE2,444c1t4
and SDAFE2,4qm are ranked as 4" and 5" best approaches.

For MAR configuration and R? metric, SVMimp is the top winner. However, RMSE
do not coincide with R? for all scenarios: RMSE shows that MICE is the best
imputation approach under 5% of MR while SDAE2,44deite 1S the top winner for
40% of MR. In summary, both SDAE-based methods are ranked between the 15
and 4" positions. Both metrics show that SDAFE2,44deita is the best imputation
approach for MNAR configurations, for most scenarios: the only exception occurs
in terms of RMSE and under 5% of MR, where MICE is superior to the SDAE-based

approaches.

Considering all the MRs, we can also verify that at least one of our proposed methods
based on SDAE approaches is included in the top 3 best imputation approaches, for
MAR and MNAR configurations. In the case of MNAR, the SDAE approaches are
in the 1" and 2"¢ place. For MAR configurations, they present a minimum and
maximum difference from the best method of 0.0081 (MR of 5%) and 0.0182 (20%),
respectively. Furthermore, Adadelta seems to be the optimizer that guarantees the

best imputation results.
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5. Experimental Results

Table 5.5: Results obtained from the 3'¢ experiment by imputation method: average F-measure, R? and RMSE are shown regarding
each missing data mechanism, configuration, metric and missing rate. The best results for each configuration are marked in bold.
Pink and blue values indicate whether SDAFE2,444e1ta 0r SDAFE2,44m belong to the top 3 of the best imputation approaches,

respectively.
Classification Performance Tmputation Quality
R? RMSE
Univa Unifo Univa Unifo Univa Unifo
MR  Methods MCAR2 MAR2 MNAR1 MCAR3 MAR1 MCAR2 MAR2 MNARI1 MCAR3 MAR1 MNARS3 MCAR2 MAR2 MNARI1 MAR1 MNAR3
meanimp 0.9486 4 0.9486 4 0.9619 3 0.9460 4 0.9365 0.9476 5 0.9606 5 0.8827 8 0.9406 3 0.9363 6 0.8889 3 0.2289 5 0.1987 5 0.3515 8 0.2344 6 0.3338 4
kNNimp1 0.9358 8 0.9387 8 0.9523 8 0.9345 8 0.9212 09114 8 0.9309 8 0.9203 6 0.9099 8 0.9152 8 0.8386 8 0.3015 8 0.2667 8 0.2909 6 8 0.4027 8
kNNimp3 0.9393 7 09432 7 0.9562 6 09373 7 0.9252 0.9276 7 0.9438 7 0.9273 5 0.9309 7 0.9344 7 0.8579 6 0.2706 7 0.2389 7 0.2779 5 7 0.3745 6
kNNimp5 0.9396 6 0.9435 6 0.9558 7 0.9387 6 0.9276 0.9296 6 0.9446 6 0.9275 4 0.9347 6 0.9370 5 0.8624 5 0.2668 6 0.2371 6 4 5 0.3678 5
5% SVMimp 0.9640 1 0.9632 1 0.9619 3 0.9647 1 0.9650 09723 3 0.9840 3 0.9585 3 0.9446 2 0.9454 1 0.8020 9 0.1270 3 3 2 .5845 9
EM 0.9268 9 0.9285 9 0.9471 9 09182 9 0.9048 0.9094 9 0.9240 9 0.8509 9 0.9031 9 0.9027 9 0.8523 7 0.2785 9 9 9 0.3802 7
MICE 0.9470 5 0.9485 5 0.9612 5 0.9456 5 0.9315 0.9547 4 0.9681 1 09192 7 0.9493 1 0.9453 2 0.8886 4 0.1785 4 7 1 0.3272 1
SDAE2udadelta 0.9493 3 09489 3 0.9619 3 0.9463 2 0.9350 0.9864 1 0.9869 1 0.9811 1 0.9404 4 0.9373 3  0.8910 1 0.0597 1 1 3 0.3300 2
SDAE2q4am 0.9496 2 09497 2 0.9619 3 0.9462 3 0.9350 0.9864 2 0.9869 2 0.9809 2 0.9403 5 0.9372 4 0.8894 2 0.0598 2 2 4 0.3326 3
meanimp 0.9311 4 0.9405 4 0.9618 3 0.9269 4 0.9072 0.8971 5 0.9210 5 0.7769 4 0.8917 3 0.8881 5 0.8126 3 0.2814 5 4 5 0.4449 3
kNNimpl 09121 8 0.9210 8 0.9309 8 0.9105 8 0.8777 0.8294 8 0.8706 8 0.7178 9 0.8360 8 0.8440 8 0.6753 8 0.3700 8 9 8 0.7525 8
kNNimp3 09169 7 0.9297 7 0.9470 7 0.9165 7 0.8889 0.8612 7 0.8914 7 0.7212 8 0.8764 7 0.8764 7 07112 7 0.3346 7 8 7 0.6349 7
kNNimp5 0.9192 6 0.9301 6 0.9487 6 09191 6 0.8905 0.8644 6 0.8933 6 0.7255 7 0.8849 6 0.8821 6 0.7193 6 0.3317 6 7 6 0.6128 6
10% SVMimp 0.9645 1 0.9642 1 0.9607 4 0.9642 1 0.9624 0.9435 3 0.9630 3 0.7823 3 0.8996 2 0.9070 1 0.6642 9 0.1948 3 3 1 19015 9
EM 0.8895 9 0.8969 9 0.9279 9 0.8787 9 0.8441 0.8254 9 0.8466 9 0.7299 6 0.8202 9 0.8286 9 0.7586 5 0.4001 9 6 9 0.5032 5
MICE 0.9299 5 0.9397 5 0.9572 5 0.9245 5 0.9032 09111 4 0.9355 4 0.7730 5 0.9071 1 0.9015 2 0.7997 4 0.2540 4 5 2 0.4615 4
SDAE24dadelta 0.9326 3 0.9408 3 0.9619 2 0.9290 2 0.9098 0.9825 1 0.9834 1 0.9738 1 0.8913 4 0.8919 3 0.8313 1 0.0841 1 1 3 04211 1
SDAE2adam 0.9329 2 0.9409 2 0.9619 1 0.9286 3 0.9098 0.9824 2 0.9834 2 0.9734 2 0.8911 5 0.8918 4 0.8282 2 0.0843 2 2 4 0.4252 2
meanimp 0.9182 4 0.9277 4 0.9619 2 0.9146 4 0.8907 0.8541 5 0.8791 5 0.6870 4 0.8375 3 0.8407 5 0.7444 3 0.3482 5 0.6055 4 0.3954 5 3
kNNimpl 0.8812 8 0.8987 8 09119 8 0.8872 8 0.8326 0.7690 8 0.8082 8 0.5962 9 0.7602 8 0.7823 8 0.5615 7 0.4570 8 0.6937 9 0.4926 8 1.0575 7
kNNimp3 0.8933 7 0.9107 7 0.9362 7 0.8958 7 0.8544 0.8036 7 0.8370 7 0.6173 8 0.8147 7 0.8249 7 0.6039 6 0.4136 7 0.6757 8 0.4198 7 0.8922 6
kNNimp5 0.8965 6 0.9130 6 0.9370 6 0.8983 6 0.8608 0.8074 6 0.8392 6 0.6235 7 0.8262 6 0.8342 6 0.6125 5 0.4105 6 0.6713 7 0.4050 6 0.8621 5
15% SVMimp 0.9626 1 0.9652 1 0.9607 4 0.9641 1 0.9650 1 0.9581 4 0.9216 3 0.9442 3 0.7296 3 0.8498 2 0.8657 1 0.5530 9 0.2398 3 0.5703 3 0.3605 1 1.2867 9
EM 0.8577 9 0.8666 9 0.9097 9 0.8342 9 0.8052 9 0.9067 8 0.7513 9 0.7721 9 0.6385 6 0.7363 9 0.7616 9 0.6787 4 0.4930 9 0.6454 6 0.5076 9 0.5966 4
MICE 0.9149 5 0.9244 5 0.9562 5 09110 5 0.8806 5 0.9497 5 0.8734 4 0.9002 4 0.6752 5 0.8583 1 0.8553 2 0.5550 8 0.3160 4 0.6181 5 0.3775 2 1.1655 8
SDAE244adelta 09191 3 0.9286 3 0.9619 2 09155 3 0.8897 3 0.9600 2 0.9789 1 0.9798 1 0.9684 1 0.8370 4 0.8480 3 0.7916 1 0.1034 1 0.1621 1 0.3824 3 0.4827 1
SDAE2a4am 09192 2 0.9290 2 0.9619 2 0.9157 2 0.8894 4 0.9600 2 0.9788 2 0.9798 2 0.9678 2 0.8367 5 0.8478 4 0.7873 2 0.1036 2 0.1640 2 0.3828 4 04877 2
meanimp 0.9081 4 0.9165 3 0.9619 2 0.8943 4 0.8591 4 0.9597 4 0.8021 5 0.8430 5 0.6038 4 0.7924 ¢ 0.7931 5 0.6766 ¢ 0.397: 5 0.7002 4 0.4451 3 0.4590 6 0.6209 3
kNNimp1l 0.8556 8 0.8740 8 0.8900 8 0.8396 8 0.7929 8 0.8566 9 0.6951 8 0.7550 8 0.5150 9 0.6960 8 0.7355 8 0.4647 9 0.5235 8 0.7807 9 0.5722 8 0.5533 8 1.4089 8
kNNimp3 0.8760 7 0.8876 7 0.9226 7 0.8597 7 0.8076 7 0.8994 7 0.7384 7 0.7905 7 0.5510 8 0.7641 7 0.7809 7 0.5108 6 04731 7 0.7501 8 0.4840 7 0.4737 7 1.1896 6
kNNimp5 0.8802 6 0.8931 6 0.9240 6 0.8633 6 0.8089 6 09115 6 0.7443 6 0.7940 6 0.5585 7 0.7785 6 0.7911 6 0.5205 5 0.4687 6 0.7452 7 0.4662 6 0.4580 5 1.1539 5
20% SVMimp 0.9650 1 0.9659 1 0.9607 4 0.9624 1 0.8944 3 0.9235 3 0.6539 3 0.8114 2 0.8239 1 0.4766 7 0.2846 3 0.6837 3 0.4300 2 0.4238 1 1.4969 9
EM 0.8189 9 0.8345 9 0.8870 9 0.8762 8 0.6716 9 0.7051 9 0.5613 6 9 0.7015 9 0.6057 4 0.5679 9 0.7280 6 0.5939 9 0.5828 9 0.6786 4
MIC: 0.9009 5 0.9126 5 0.9514 5 0.9467 5 0.8298 4 0.8709 4 0.6033 5 0.8093 2 0.4733 8 4 0.3595 4 0.7002 5 0.4143 1 0.4409 4 1.3386 T
SDAE2,4qdelta 0.9104 2 0.9166 2 0.9619 2 0.9616 3 0.9748 1 0.9764 1 0.9652 1 0.8057 3 0.7653 1 1 0.1188 1 0.1809 1 0.4461 4 04363 2 0.5311 1
SDAE2440m 0.9103 3 09162 4 0.9619 2 0.9616 3 0.9747 2 0.9764 2 0.9645 2 0.8054 4 0.7596 2 0.1256 2 0.1192 2 0.1829 2 0.4466 5 0.4368 3 0.5372 2
meanimp 4 0.8729 3 0.9606 0.9509 4 0.5932 5 0.6762 5 0.4403 5 0.6048 5 0.4814 3 0.6379 5 0.5729 5 0.9305 5 0.6322 3 0.6646 5 0.9013 3
kNNimp1l A 9 0.7872 8 0.7908 8 0.6161 9 0.4438 8 0.5764 8 0.3511 9 0.5646 8 02143 9 0.8225 8 0.7216 8 1.0001 9 0.8519 9 0.8052 9 14815 7
kNNimp3 0.7645 7 0.8090 7 0.8006 7 0.6463 8 0.5048 7 0.6233 7 0.3783 8 0.5869 7 02728 6 0.7440 7 0.6526 7 0.9797 8 0.6955 7 0.7156 7 11914 6
kNNimp5 0.7792 6 0.8186 6 0.8051 6 0.6919 7 0.5147 6 6 0.3881 6 0.5937 6 0.2889 5 0.7339 6 0.6444 6 0.9754 7 0.6619 6 0.6946 6 1.1410 5
40% SVMimp 0.9737 1 0.9704 1 0.9598 4 0.9553 3 0.7744 3 3 0.5486 3 0.6457 1 0.2287 8 0.4836 3 0.4189 3 0.8527 3 0.6270 2 0.6391 3 13626 9
EM 0.7465 8 0.7699 9 0.7809 9 0.7549 6 0.3939 9 9 0.3874 7 0.5287 9 0.4095 4 0.8403 9 0.8135 9 0.9511 6 0.8343 8 0.7991 8 0.9250 4
MICE 0.8357 5 0.8612 5 0.9126 5 0.8701 5 0.6472 4 4 0.4532 4 0.6166 4 0.2448 7 0.5941 4 0.5250 4 0.9006 4 0.5978 1 0.6572 4 1.7857 8
SDAE2,4qdelta 0.8484 3 0.8726 4 0.9620 2 0.9564 1 0.9586 1 1 09709 1 0.6187 2 0.7841 1 0.1787 1 0.1686 1 0.1990 1 0.6334 4 0.6128 1 0.6192 1
SDAE2q40m 0.8487 2 0.8729 2 0.9620 1 0.9562 2 0.9586 2 2 0.9702 2 0.5895 5 0.6185 3 0.7780 2 0.1789 2 0.1691 2 0.2019 2 0.6341 5 0.6134 2 0.6271 2
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5. Experimental Results

Impact on classification (F-measure):

SVMimp seems to be the method which ensures the best classification perfomance
for MCAR and MAR mechanisms, regardless of the missing rate and type of con-

figuration (univa and unifo).

For MNAR wuniva configurations, SDAE2,4.,» proved to be the best imputation
method under 2 different MRs (10 and 40%). For 5% of MR, there is a tie be-
tween 4 methods: SDAE2,40m, SDAE2.40de1ta, SVMimp and Meanimp. For the
remaining MR (15 and 20%), there are 3 tied methods in the top of best imputation
approaches, including SDAE2,44m, SDAE2.404c1:a and Meanimp. For unifo config-
urations, there is no standard: there are 3 tied methods, including the 2 SDAE and
Meanimp, when the MR is low (5 and 15%); SDAFE2,4adeita Seems to be the best
method for MRs of 10 and 40%; SVMimp seems to be the best method for a MR of
20%.

Regarding the performance of SDAE, at least one of the used approaches is in-
cluded in the top 3 best imputation approaches for all the studied scenarios, with
a minimum and maximum difference from the best method of 0.0135 (M AR2,,iva

and MR of 5%) and 0.2411 (M AR1,,is, and MR of 40%), respectively. Moreover,

Adam optimizer seems to achieve better results than Adadelta.

For this experiment, we also made a comparison between all the imputation methods
using the Friedman rank test [53]. Table 5.6 shows the mean ranks for all the datasets
and the value of the Friedman statistic, F, for each scenario. Once again, we
followed the work of Demsar [53] and compared the values of Fr to the F distribution
F(0.05)g30 = 2.2444 (8 degrees of freedom). The boldface values in Table 5.6
indicate weak evidence against the null hypothesis, so in this case it is not possible to

conclude whether there are significant differences between the imputation methods.

We reject the null hypothesis of Friedman’s test for most of the scenarios, regardless
of the metric, which means that the methods are not equivalent. Regarding of
classification performance (F-measure), for M N AR1,,;,, there is a tie between 4
imputation methods (Meanimp, SVMimp, SDAFE2,444c1ta and SDAE2,44). In
addiction, there is weak evidence against the null hypothesis so, in this case, we do

not conclude if there are statistical differences between the methods.

For all the cases where SDAE belongs to the top 3 best imputation approaches,
the results proved that all methods are significantly different. Therefore, we can

conclude that the SDAE are effectively superior to the remaining methods.
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5. Experimental Results

Table 5.6: Average ranks for the datasets used in 3'¢ experiment: Friedman test. Boldface values

indicate weak evidence against

the null hypothesis.
Classification Performance Imputation Quality
F measure R? RMSE
Univa Univa Unifo Univa Unifo
MR  Methods MCAR2 MAR2 MNARI1 MCARS3 MNARS3 MCAR2 MAR2 MNAR1 MCAR3 MAR1 MNAR3 MCAR2 MAR2 MNARI1 MCAR3 MAR1 MNARS3
meanimp 4.6 4.0 4.4 5.4 5.2 6.2 3.4 5.6 3.8 5.8 5.2 6.2 3.4 5.6 3.8
kNNimp1l 7.3 6.3 7.5 7.8 7.8 6.4 7.8 7.8 8.2 8.2 8.2 4 7.8 7.8 7.8
kNNimp3 6.3 4.9 6.1 6.6 6.4 5.0 6.2 5.2 6.6 7.0 6.8 5.0 6.2 5.2 6.6
kNNimp5 5.9 4.9 5.1 5.4 5.2 4.4 5.2 3.8 5.2 5.8 5.6 4.4 5.2 3.8 5.2
SVMimp 1.3 4.0 1.5 2.6 3.4 4.4 2.6 2.4 5.0 3.0 3.8 4.4 2.6 2.4 5.0
5% EM 7.8 7.8 8.4 8.2 7.8 8.0 8.6 8.6 6.6 8.2 7.8 8.0 8.6 8.6 6.6
MICE 4.2 5.1 3.4 3.9 3.6 4.2 6.0 1.4 2.2 3.6 4.0 4.6 6.0 1.4 2.2 3.2
SDAE2,d0deita 3.7 3.7 4.0 43 2.2 2.2 1.8 1.4 4.2 2.0 1.0 1.2 1.8 4.4 4.2 2.4
SDAE2q4am 4.0 3.9 4.0 43 3.2 2.8 2.8 5.4 5.2 4.0 2.0 1.8 2.8 5.4 5.2 4.4
Fp 5.5012 4.8955 1.1680 5.6696 7.8577 5.0909 3.7922 11.0754 6.8696 3.6923 52.6038 16.0000 3.7922 11.0754 6.8696 2.8182
meanimp 4.8 3.8 4.1 5.2 3.1 5.8 5.4 4.0 3.4 4.8 3.6 5.8 5.4 4.0 3.4 4.8 3.6
kNNimp1l 7.1 7.6 6.7 7.6 8.2 8.2 7.8 7.4 7.8 7.6 8.6 8.2 7.8 7.4 7.8 7.6 8.8
kNNimp3 6.5 6.6 5.7 6.1 6.2 6.8 6.0 7.4 6.0 6.2 7.6 6.8 6.4 7.4 6.0 6.2 7.6
kNNimp5 5.9 6.2 5.1 5.3 6.6 6.0 4.8 6.4 5.0 5.0 6.6 6.0 5.2 6.4 5.0 5.0 6.6
SVMimp 1.3 1.6 3.3 1.0 1.4 2.6 3.6 5.6 2.6 2.2 5.8 3.2 4.0 5.6 2.6 2.2 5.6
10%  EM 7.0 7.8 8.2 8.6 8.0 7.8 7.8 6.8 8.6 8.6 5.6 7.8 7.8 6.8 8.6 8.6 5.4
MICE 4.6 5.2 5.5 3.8 5.0 4.4 5.4 4.4 1.8 3.2 3.4 4.2 5.4 4.4 1.8 3.2 3.6
SDAE2,4qdelta 4.1 3.0 3.5 3.3 3.0 1.2 1.8 1.0 4.4 3.4 1.4 1.0 1.2 1.0 4.4 3.4 14
SDAE2qdam 3.7 3.2 2.9 41 3.5 . 2.2 2.4 2.0 5.4 4.0 2.4 2.0 1.8 2.0 5.4 4.0 2.4
Fr 3.4673 7.3636 2.7114 9.4831 13.2166 18.7704 23.7778 6.0000 10.4928 8.5523 5.9338 15.2308 25.4118 10.7059 10.4928 8.5523 5.9338 15.8675
meanimp 3.3 4.6 3.4 4.4 2.6 2.3 6.0 5.4 4.6 3.4 5.0 3.6 5.8 5.4 4.6 3.4 4.8 3.2
kNNimpl 7.7 7.4 7.0 7.6 8.4 7.6 8.2 7.8 8.0 7.8 7.6 8.2 8.2 7.8 8.2 8.0 7.6 8.2
6.5 6.4 6.4 5.8 6.1 7.2 6.6 6.4 7.0 6.0 6.2 7.2 6.6 6.4 6.8 6.0 6.0 7.2
kNNimp5 6.5 6.0 6.0 5.6 6.1 7.0 6.0 5.2 6.2 5.0 5.0 6.2 6.0 5.2 6.2 5.0 5.0 6.2
SVMimp 1.7 1.4 3.2 1.0 1.6 3.1 2.8 3.6 5.2 2.4 2.2 5.4 3.4 4.0 5.2 2.4 2.4 5.8
EM 7.8 7.8 7.4 8.6 8.2 8.2 7.8 7.8 6.6 8.6 8.6 5.2 7.8 7.8 6.6 8.4 8.6 5.2
MICE 3.7 3.8 4.8 4.4 3.8 5.0 4.2 5.4 4.4 2.0 3.2 6.2 4.2 5.4 4.4 2.0 3.4 6.2
SDAE2q4adelta 4.0 4.4 3.4 3.6 4.0 2.3 1.2 1.4 1.0 4.4 3.2 1.0 1.0 1.2 1.0 4.4 3.2 1.0
SDAE244am 3.8 3.2 3.4 4.0 4.2 2.3 2.2 2.0 2.0 5.4 4.0 2.0 2.0 1.8 2.0 5.4 4.0 2.0
Fp 6.6857 5.4937 2.6079 8.2449  11.6047 23.6498 21.0000 9.2743 9.7615 8.3967 6.2041 12.1290 21.2101  10.7059 10.1509 8.2449 5.3458 14.2927
meanimp 3.6 3.3 3.0 4.6 2.9 3.2 6.0 5.2 4.8 3.4 5.2 3.6 5.8 5.2 5.0 3.4 5.2 3.4
kNNimp1l 7.4 7.7 7.0 7.2 8.4 8.6 8.2 7.8 8.2 7.8 7.8 8.2 8.2 7.8 8.2 8.2 8.0 8.6
kNNimp3 6.6 6.9 7.0 6.4 6.5 7.2 7.0 6.6 6.4 6.2 6.2 7.2 7.2 6.6 6.4 6.2 6.0 7.2
kNNimp5 5.8 6.1 6.6 5.2 6.6 6.2 5.8 5.2 5.8 5.0 5.0 6.2 5.8 5.2 5.8 4.8 5.0 6.2
SVMimp 1.4 1.7 3.0 1.0 2.4 2.4 3.0 3.6 5.6 2.2 2.2 5.8 3.0 4.0 5.6 2.6 2.4 5.8
20% EM 7.8 7.8 7.4 8.8 7.4 8.0 7.8 7.8 6.6 8.6 8.8 5.0 7.8 7.8 6.4 8.2 8.6 4.8
MICE 5.2 4.3 5.0 4.8 3.8 5.0 4.2 5.4 4.6 2.0 3.2 6.0 4.2 5.4 4.6 1.8 3.2 6.0
SDAE2q4adeita 3.2 3.2 3.0 3.5 3.6 2.2 1.0 1.4 1.0 1.4 3.0 1.0 1.0 1.2 1.0 4.4 3.0
SDAE2q4am 4.0 4.0 3.0 3.5 3.4 2.2 2.0 2.0 2.0 5.4 3.6 2.0 2.0 1.8 2.0 5.4 3.6
Fr 6.0000 7.1421 4.6705 9.3185 7.5718 35.4737 32.1446 9.6364 8.6050 9.4529 8.5000 12.1290 34.9610  11.1515 8.1951 8.6582 7.4068
meanimp 3.1 3.2 3.4 3.8 3.2 2.9 5.6 4.6 4.0 5.6 5.4 4.6 3.0
kNNimp1l 7.7 7.7 8.8 8.0 8.4 8.2 8.0 7.6 8.2 7.8 8.0 8.8
6.9 6.9 2 7.0 8.0 7.0 7.4 7.2 7.2 6.4 74 6.2
kNNimp5 6.1 6.4 5.2 6.4 6.0 6.6 6 5.0 ] 5.0
40% SVMimp 1.7 3.4 1.0 1.0 2.7 3.0 5.4 2.0 6.4 4.0 5.4 3.0
EM 7.8 7.0 8.2 8.0 7.0 7.8 5.6 8.4 3.8 7.8 7.8 5.6 8.2
MICE 4.9 5.0 4.8 5.6 4.8 4.4 4.4 3.8 6.4 3.8 5.6 4.4 1.6 4.0
SDAE2qdadeita 3.0 3.6 2.7 3.4 3.3 2.1 1.0 1.0 3.0 1.0 1.0 1.2 1.0 4.0 2.0 1.0
SDAE2,q4m 3.2 3.1 2.5 3.6 2.5 2.5 2.0 1.8 2.0 3.6 2.0 2.0 1.8 2.0 5.2 3.0 2.0
Fr 21.0000 7.7994 5.0634 16.2703  28.8767 24.3019 29.3333 10.7783 10.4231 9.3333 6.1351 12.5746 38.8571 10.8515 10.4231 14.0723 9.4529 18.7273
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5. Experimental Results

Conclusions

In this 3" experiment we study the performance of 2 approaches based on SDAE
compared to other imputation methods, for datasets with high sample sizes. More-
over, we analyse the effect of different generation methods (univa and wunifo) on
several imputation approaches, both in terms of imputation quality (R? and RMSE)
and classification performance (F-measure). The results show that there seems to
be an advantage in using SDAE imputation methods for larger datasets. In general,
the SDAE are ranked between 1% and 5 best method which is not the case for the

27 experiment. In particular:

e SDAE belong to the top 3 best imputation approaches regarding classification

performance, for almost all scenarios;

e Adadelta optimizer has shown to be the best optimizer in terms of imputation

quality while Adam proved to be superior for classification performance;

e SVMimp has shown to be the best imputation approach for classification, in
the MCAR and MAR scenarios; SDAE2,44m and SDAFE2,444011a also take a
prominent position regardless the MR and the type of configuration (univa

and unifo);

e Regarding imputation quality, SDAFE2,444e110 1S the best approach for univa
configurations, followed by SDAFE2,44m; SVMimp (MCAR), MICE (MAR)
and SDAFE2,40de1ta (MNAR) are the best approaches under unifo configura-

tions;

e In comparison to the results from the 2"¢ Experiment, there seems to be an
advantage in using our SDAE-based approaches when dealing with MD for

larger datasets.

In the context of this thesis, we were not able to explore a larger number of datasets
due to the computational time required for the simulations. However, the results
obtained are promising; with the aim of performing a more rigorous interpretation
and generalization of these results, the realization of new experiments would be

useful.
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Conclusions

Data quality is a fundamental requirement to ensure a good performance of Data

Mining models. In this regard, missing data arises as a common problem that affects

the quality of the data. The scientific community has been studying several ways to

handle the MD problem, however, the use of SDAE as imputation technique remains

a underdeveloped topic.

In this work, we study the performance of SDAE-based approaches in order to

provide some insights regarding three main research questions:

1.

How do the SDAE perform when there are enough complete data to train the

model?

. How do the SDAE perform when training data corruption follows an underly-

ing missing mechanism?

. Does the performance of SDAE increase for larger datasets, with higher sample

sizes?

We conducted three main experiments designed to answer these research questions.

According to the results obtained from the 1%, 2°¢ and 3" experiments, three main

conclusions may be derived for each question:

1.

DAF1 4440110 shows to be superior to the remaining methods, for MNAR mech-
anism and high missing rates. However, the SDAE-based approaches explored
in this experiment are limited: it is assumed that there are enough complete

samples to train each model.

. The SDAE show to be superior in many of the studied scenarios. However, this

superiority may not be sufficient to counteract the limitations of SDAE-based
approaches, especially, when they are used in a multiple imputation context,

since they require a high computational effort and memory space.
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6. Conclusions

3. For datasets with larger sample sizes, there seems to be a great advantage in

using SDAE for imputation purpose.

Considering the results obtained in this work, one of the possible directions for
future work is to investigate the usefulness of SDAE for a larger benchmark of
datasets. Also, as the advantage of SDAE seems to be more clear for higher missing
rates (40%), a smoother step of missing rates (between 20% and 40%) could bring
new insights. Other future direction is hyperparameter optimization of the SDAE’s
architecture (e.g., learning rate, #hidden layers, #nodes per hidden layer etc.) to

ease their computational cost.
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A. Synthetic generation of MD

Table A.1: Functions that are used as building blocks of the pseudo-codes.

Function

Description

bernoulli(mr, size = int)
range(start, stop)

count(data)

group(array, threshold = float)

median(array)
numFeatures(data)
numObservations(data)

random(b, size = int, p = array)

random_select(array)

rank(array)

round(float)

remove(array, value)

select_by_correlation(array,
data)

size(array)

sort(array, reverse = boolean)

94

Returns a Bernoulli distribution of a specified size and a proba-
bility equal to MR.

Generates an array of natural numbers starting from start to stop
with an increment of 1. The output will not include stop.

Returns the total number of missing values in data, a matrix that
represents the dataset.

Takes an array as input and divides it into two groups that will
contain the values below and above the threshold.

Returns the median of an array of integers.
Returns the number of features in data.
Returns the number of observations in data.

Takes two or three input parameters depending on how the ran-
dom choice of values will be made. If the first input parameter
is a number, the values will be randomly chosen from the range
between zero and that number. If the first input parameter is
an array, a random choice of its values will be made. The sec-
ond input parameter is mandatory and represents the number of
values that will be selected. Finally, p is not mandatory and can
only be used when the first input is an array: this parameter is
an array which contains the probability for each element of the
first input to be selected.

Takes one array or two arrays as input. If the input is an array,
this function will return one or more elements of it, depending on
the number of outputs defined by the user. If the input consists
of two arrays, the function will return one of them.

Returns an array with the computed numerical ranks (1 through
n, being n the total number of elements in array) of the input
array.

Returns the floating point value number rounded to zero digits
after the decimal point.

This function will remove value from array.

Given an array containing indexes of two features and the dataset
matrix data, returns ordered indexes in terms of correlation with
the class labels: the first index will correspond to the feature with
lowest correlation with the class labels and the second one will
correspond to the most correlated feature with the class labels.

Returns the number of elements in an array.

Sorts the elements of the input array in a specific order: ascend-
ing or descending. If reverse is equal to False, descending order
will be performed (ascending otherwise). Returns an array with
the sorted values of the input array.
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B. Data Collection

Table B.1: Additional information on the datasets used in this study.

Dataset Source Context Positive Negative
Class Class
australian UCI Credit card applications. 1 0
banknote UCI Data extracted from banknote im- 1 0
ages.
biomed STATLIB  Blood measurements database. carrier normal
breast-ljub UCI Breast cancer data. recurrence- no-
events recurrence-
events
é breast-tissue UCI Impedance measurements of tissue  positive negative
§ from the breast.
é cleveland KEEL Heart disease database. presence absence
:J crabs PRNN Morphological features of crabs. B O
& dermatology1l UCI Clinical features of erythema and 4 5
g scaling.
= ecoli KEEL Measurements about the cell to pre-  positive negative
- dict the location site of proteins.
glassl KEEL Information about 6 types of glass.  non-window window
heart-statlog UCI Heart disease database. 2 1
iris KEEL Iris plant database. positive negative
kidney UCI Chronic kidney disease database. ckd notckd
lung-cancer UCI Lung cancer database. 2 1
lymphography KEEL Lymphoma detection. malign_lymph  metastases
postoperative UCI Patient features used to determine S A
whether a patient should be moved
from na area to another.
saheart KEEL South African heart database. 1 0
urinary UCI Acute inflammation of wurinary yes no
bladder database.
winel UCI Chemical analysis of wines. 1 2
wpbc UCI Follow-up data for breast cancer R N
cases (prognostic).
balancescale UCI Balance scale weight and distance L R
database
bankrupcy UCI Qualitative parameters to predict B NB
the bankrupcy.
cmc UCI Contraceptive method choice L S
é database.
E dermatology2 UCI Clinical features of erythema and 1 3
§ scaling.
_iﬂ edu-datal KAGGLE  gtudents’ academic performance H L
N edu-data2 KAGGLE database. H M
glass2 KEEL Information about 6 types of glass. non-float pro- remaining
cessed
hce-data-mortality  CISUC Clinical features of real patients di- ~ dies lives
hcc-data-survival CISUC agnosed with HCC. lives dies
hepato ISICAL Hepatobiliary disorders database. PH LC
new-thyroid KEEL Thyroid disease database. 1 2
toy PRNN Synthetic dataset composed of five 1 0
Gaussian components.
wine2 UCI . . . 3 1
wine3 Ucr Chemical analysis of wines. 3 9
E mushrooms UCI Mushrooms description regarding p e
£ of physical characteristics.
g nurseryl UCI Ranking applications for nursery spec_prior not_recom
m nursery?2 UCI schools. priority not_recom
% thyroidl KEEL Thyroid disease database - data 368 6666
thyroid2 KEEL from 10 different databases. 6666 368
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Correlation Results

C

Table C.1: Missing and observed features for each dataset - univariate missing
data generation (univa).

Dataset Tomiss Correlation Value Tobs
Measure
australian 8 Phi-Coefficient 0.7204 9
banknote 1 Point-Biserial 0.7248 3
biomed ) Point-Biserial 0.6066 4
breast-ljub 5 Phi-Coefficient 0.2890 4
breast-tissue 2 Point-Biserial 0.7251 3
cleveland 11 Cramer’s V 0.5269 10
‘05) crabs 2 Point-Biserial 0.4380 6
g  dermatologyl 34 Point-Biserial 0.0478 6
E ecoli 4 Point-Biserial 0.9043 1
4 glassl 3 Point-Biserial 0.7583 8
° heart-statlog 11 Cramer’s V 0.5255 10
j‘; iris 3 Point-Biserial 0.9227 4
% kidney 4 Cramer’s V 0.9840 19
= lung-cancer 20 Cramer’s V 0.6814 1
™ lymphography 13 Cramer’s V 0.6107 15
postoperative 6 Cramer’s V 0.1885 2
saheart 9 Point-Biserial 0.3730 4
urinary 4 Phi-Coefficient 0.6954 6
winel 13 Point-Biserial 0.8453 10
wpbc 1 Point-Biserial 0.3513 4
balancescale 2 Point-Biserial 0.4283 3
bankrupcy 5 Cramer’s V 0.9692 3
cmc 1 Point-Biserial 0.2726 4
dermatology2 11 Phi-Coefficient 0.3624 31
«  edu-datal 11 Spearman rho 0.7980 10
¢ edu-data2 10 Spearman rho 0.3863 12
5 glass2 2 Point-Biserial 0.2739 8
g hce-data- 4 Point-Biserial 0.1461 1
- mortality
% hee-data- 4 Point-Biserial 0.1461 1
survival
hepato 1 Point-Biserial 0.2090 2
new-thyroid 2 Point-Biserial 0.9092 3
toy 2 Point-Biserial 0.7559 1
wine2 7 Point-Biserial 0.9521 6
wine3 10 Point-Biserial 0.7944 11
%  mushrooms 5 Cramer’s V 0.9710 15
£ nurseryl 8 Cramer’s V 1.0000 2
ﬂz nursery2 8 Cramer’s V 1.0000 2
4  thyroidl 17 Point-Biserial 0.4167 21
T thyroid2 17 Point-Biserial 0.4167 21
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D. Parameter Optimization

Table D.1: Optimal parameters C and  for the different datasets as well as the
average accuracy. C and v were obtained through grid search. Average accuracy is
computed over a b-fold cross-validation procedure, for each combination of these 2

parameters.
Dataset C 0% Average
Accuracy
australian 1 1x1073 0.8812
banknote 1 1 1.0000
biomed 1% 104 1x10=3 0.9128
breast-ljub 1x 103 1x1073%  0.7536
breast-tissue 1 x 10? 1x1072 0.9636
cleveland 1x 10! 1x1072 0.8433
£ crabs 1x 10t 1x10-1  1.0000
£ dermatologyl 1x1072 1x1075 1.0000
g ecoli 1 x 102 1x1072  0.9864
& glassl 1 1x 1071 0.9302
3 heart-statlog 1 1x1072 0.8185
S iris 1x10~1 1x10-' 1.0000
£ kidney 1x107t 1x10~' 1.0000
= lung-cancer 1 x 101 1x1073  0.8667
~  lymphography 1 x 102 1x1073  0.8759
postoperative 1x107%  1x1075 0.7222
saheart 1 x 107 1x10=°% 0.7355
urinary 1x10~! 1x10"! 1.0000
winel 1x 102 1x1072 0.9923
wpbc 1x 10! 1x 101 0.8150
balancescale 1x 102 1x 102 1.0000
bankrupcy 1x10~t  1x107' 0.9960
cmc 1x 108 1x10=* 0.6840
dermatology2 1x 101! 1x 1072  1.0000
= edu-datal 1x107Y  1x1072 0.9704
¢ edu-data2 1 x 104 1x107% 0.8310
T glass2 1 1 0.8000
g hee-data-mortality 1 x 10% 1x1072  0.7030
< hce-data-survival 1x 10t 1x10~2 0.6545
A hepato 1 x 102 1 0.8557
new-thyroid 1x10~! 1x10=' 1.0000
toy 1 x 106 1x10-1  0.9040
wine2 1x10~1 1x10=2 1.0000
wine3 1 1x1072  0.9917
% mushrooms 1 1x10~1  1.0000
£ nurseryl 1x1072 1x10~1 1.0000
€ nursery2 1x107Y  1x1072  1.0000
& thyroidl 1x 10* 1x1072 0.9908
¥  thyroid2 1x 10 1x1073  0.9912
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Experimental Results

Table E.1: Effect of different univariate (univa) configurations in the classification
performance (F-measure) using imputation methods from the state of the art.

F-measure — univa

MR Methods MCAR1 MCAR2 MAR1 MAR2 MAR3 MAR4 MAR5 MNAR1 MNAR2

Meanimp 0.7731 0.7693 0.7764 0.7714 0.7735 0.7698 0.7716 0.7690 0.7662
kNNimp1l 0.7735 0.7700 0.7721 0.7725 0.7720 0.7729 0.7720 0.7734 0.7696
kNNimp3 0.7735 0.7713 0.7728 0.7729 0.7734 0.7737 0.7734 0.7739 0.7700
kNNimp5 0.7737 0.7717 0.7731 0.7728 0.7730 0.7732 0.7729 0.7715 0.7707
5% SVMimp 0.7747 0.7741 0.7721 0.7749 0.7752 0.7758 0.7725 0.7775 0.7717
EM 0.7696 0.7684 0.7727 0.7704 0.7718 0.7712 0.7703 0.7688 0.7663
MICE 0.7740 0.7713 0.7747 0.7732 0.7738 0.7749 0.7739 0.7699 0.7714
Meanimp 0.7695 0.7699 0.7745 0.7683 0.7699 0.7688 0.7738 0.7655 0.7618
kNNimp1l 0.7726 0.7707 0.7723 0.7713 0.7691 0.7671 0.7718 0.7674 0.7631
kNNimp3 0.7721 0.7727 0.7712 0.7723 0.7718 0.7714 0.7726 0.7677 0.7641
kNNimp5 0.7725 0.7729 0.7732 0.7729 0.7711 0.7738 0.7741 0.7684 0.7626
10%  SVMimp 0.7760 0.7750 0.7713 0.7758 0.7746 0.7762 0.7742 0.7683 0.7649
EM 0.7674 0.7670 0.7696 0.7667 0.7665 0.7658 0.7683 0.7639 0.7626
MICE 0.7716 0.7717 0.7733 0.7714 0.7714 0.7702 0.7759 0.7652 0.7662
Meanimp 0.7673 0.7666 0.7741 0.7659 0.7680 0.7717 0.7706 0.7659 0.7530
kNNimpl 0.7705 0.7673 0.7695 0.7690 0.7681 0.7678 0.7726 0.7674 0.7578
kNNimp3 0.7709 0.7683 0.7720 0.7706 0.7709 0.7737 0.7708 0.7666 0.7627
kNNimp5 0.7711 0.7688 0.7736 0.7701 0.7698 0.7745 0.7709 0.7656 0.7634
15%  SVMimp 0.7747 0.7739 0.7705 0.7743 0.7768 0.7745 0.7773 0.7713 0.7631
EM 0.7640 0.7593 0.7712 0.7624 0.7630 0.7657 0.7673 0.7658 0.7553
MICE 0.7698 0.7685 0.7728 0.7683 0.7706 0.7726 0.7738 0.7671 0.7624
Meanimp 0.7674 0.7642 0.7688 0.7639 0.7640 0.7709 0.7676 0.7617 0.7561
kNNimpl 0.7666 0.7648 0.7693 0.7656 0.7633 0.7659 0.7645 0.7627 0.7528
kNNimp3 0.7699 0.7684 0.7693 0.7677 0.7655 0.7726 0.7661 0.7633 0.7581
kNNimp5 0.7707 0.7685 0.7704 0.7696 0.7646 0.7726 0.7691 0.7620 0.7580
20%  SVMimp 0.7764 0.7742 0.7701 0.7782 0.7748 0.7727 0.7715 0.7689 0.7649
EM 0.7625 0.7576 0.7668 0.7602 0.7582 0.7646 0.7634 0.7632 0.7567
MICE 0.7705 0.7660 0.7701 0.7703 0.7657 0.7698 0.7714 0.7586 0.7633
Meanimp 0.7586 0.7542 0.7652 0.7522 0.7526 0.7553 0.7652 0.7515 0.7480
kNNimp1 0.7578 0.7517 0.7641 0.7517 0.7509 0.7566 0.7647 0.7482 0.7508
kNNimp3 0.7617 0.7559 0.7673 0.7562 0.7564 0.7569 0.7680 0.7507 0.7549
kNNimpb 0.7617 0.7595 0.7641 0.7570 0.7573 0.7602 0.7711 0.7496 0.7511
40%  SVMimp 0.7756 0.7712 0.7687 0.7759 0.7758 0.7677 0.7674 0.7594 0.7601
EM 0.7507 0.7472 0.7587 0.7487 0.7483 0.7525 0.7581 0.7480 0.7452
MICE 0.7612 0.7603 0.7693 0.7578 0.7581 0.7603 0.7618 0.7464 0.7508
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E. Experimental Results

Table E.2: Ranks of the effect of different univariate (univa) configurations in the
classification performance (F-measure) using imputation methods from the state of
the art.

F-measure — univa

MR Methods MCAR1 MCAR2 MAR1 MAR2 MAR3 MAR4 MAR5 MNAR1 MNAR2

Meanimp
kNNimpl
kNNimp3
kNNimpb
5% SVMimp
EM
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kNNimpl 6
kNNimp3 1
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15% SVMimp 4
EM 4
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MEAN 3.85 0

2.71 6.00 4.28 2.42 6.85 9.00
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20%  SVMimp
EM
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MEAN 2.71
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E. Experimental Results
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E. Experimental Results

Table E.4: Ranks of the effect of different univariate (univa) configurations in imputation quality (R? and RMSE) using imputation
methods from the state of the art.

univa

RMSE w

MR Methods MCAR1 MCAR2 MAR1 MAR2 MAR3 MAR4 MAR5 MNAR1 MNAR2 MCAR1 MCAR2 MAR1 MAR2 MAR3 MAR4 MAR5 MNAR1 MNAR2
Meanimp 3 1 5 4 2 7 6 8 9 3 1 5 4 2 7 6 8 9
kNNimp1 1 2 5 3 4 7 6 8 9 1 2 5 3 4 7 6 8 9
kNNimp3 2 1 5 3 4 7 6 8 9 2 1 5 3 4 7 6 8 9
kNNimp5 3 1 5 2 4 7 6 8 9 3 1 5 2 4 7 6 8 9

5%  SVMimp 3 1 4 6 2 5 9 7 8 4 1 5 3 2 8 7 6 9
EM 3 1 5 4 2 7 6 8 9 3 1 5 4 2 7 6 8 9

MICE 3 1 5 2 4 7 6 8 9 3 1 5 2 4 7 6 8 9
MEAN 2.571 1.143 4.857 3.429 3.143 6.714 6.429 7.857 8.857 2.714 1.143 5.000 3.000 3.143 7.143 6.143 7.714 9.000
Meanimp 2 1 5 3 4 7 6 8 9 2 1 5 3 4 7 6 8 9
kNNimpl 4 1 3 5 2 7 6 8 9 3 1 4 5 2 7 6 8 9
kNNimp3 2 1 4 5 3 7 6 8 9 2 1 4 5 3 7 6 8 9
kNNimp5 2 1 4 5 3 7 6 8 9 2 1 4 5 3 7 6 8 9

10%  SVMimp 5 4 3 6 7 1 9 2 8 2 1 5 3 4 6 7 8 9
EM 3 2 5 1 4 7 6 8 9 3 2 5 1 4 7 6 8 9

MICE 3 2 5 4 1 6 7 8 9 3 2 5 4 1 6 7 8 9
MEAN 3.000 1.714 4.143 4.143 3.429 6.000 6.571 7.143 8.857 2.429 1.286 4.571 3.714 3.000 6.714 6.286 8.000 9.000
Meanimp 2 1 5 3 4 7 6 8 9 2 1 5 3 4 7 6 8 9
kNNimpl 1 4 5 3 2 7 6 8 9 1 4 5 2 3 7 6 8 9
kNNimp3 3 2 5 1 4 7 6 8 9 3 2 5 1 4 7 6 8 9
kNNimp5 3 1 5 2 4 7 6 8 9 3 1 5 2 4 7 6 8 9

15%  SVMimp 3 5 9 2 1 6 7 4 8 2 1 5 3 4 7 6 8 9
EM 1 2 5 3 4 7 6 8 9 1 2 5 3 4 6 7 8 9

MICE 1 2 5 3 4 7 6 8 9 1 2 5 3 4 7 6 8 9
MEAN 2.000 2.429 5.571 2.429 3.286 6.857 6.143 7.429 8.857 1.857 1.857 5.000 2.429 3.857 6.857 6.143 8.000 9.000
Meanimp 2 1 5 3 4 7 6 8 9 2 1 5 3 4 7 6 8 9
kNNimp1 1 4 5 2 3 7 6 8 9 1 4 5 2 3 7 6 8 9
kNNimp3 1 2 5 3 4 7 6 8 9 1 2 5 3 4 7 6 8 9
kNNimp5 2 1 5 3 4 7 6 8 9 2 1 4 3 5 7 6 8 9

20%  SVMimp 2 6 7 5 3 8 1 4 9 1 2 5 3 4 7 6 8 9
EM 1 2 5 4 3 7 6 8 9 1 2 5 4 3 6 7 8 9

MICE 2 1 5 4 3 7 6 8 9 2 1 5 4 3 7 6 8 9
MEAN 1.571 2.429 5.286 3.429 3.429 7.143 5.286 7.429 9.000 1.429 1.857 4.857 3.143 3.714 6.857 6.143 8.000 9.000
Meanimp 1 2 6 3 4 7 5 8 9 1 2 5 3 4 7 6 8 9
KNNimp1 1 2 6 4 3 7 5 8 9 1 2 5 3 4 7 6 8 9
kNNimp3 1 2 6 3 4 7 5 8 9 1 2 6 3 4 7 5 8 9
kNNimp5 1 2 6 3 4 7 5 8 9 1 2 6 3 4 7 5 8 9

40%  SVMimp 4 1 7 2 2 9 6 5 8 1 2 6 3 4 7 5 8 9
EM 2 1 6 4 3 7 5 8 9 2 1 5 4 3 6 8 7 9

MICE 1 2 5 3 4 7 6 8 9 1 2 5 3 4 7 6 8 9
MEAN 1.571 1.714 6.000 3.143 3.571 7.286 5.286 7.571 8.857 1.143 1.857 5.429 3.143 3.857 6.857 5.857 7.857 9.000
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E. Experimental Results

Table E.5: Effect of different multivariate (unifo) configurations in the classifi-
cation performance (F-measure) using imputation methods from the state of the

art.
unifo
MR Methods MCAR1 MCAR2 MCAR3 MAR1 MAR2 MAR3 MNAR1 MNAR2 MNAR3 MNAR4
Meanimp 0.7544 0.7563 0.7578 0.7675 0.7575 0.7610 0.7558 0.7479 0.7759 0.7545
kNNimp1l 0.7582 0.7592 0.7592 0.7630 0.7575 0.7554 0.7592 0.7478 0.7535 0.7597
kNNimp3 0.7609 0.7607 0.7628 0.7672 0.7546 0.7566 0.7614 0.7478 0.7765 0.7588
5% kNNimp5 0.7606 0.7598 0.7647 0.7674 0.7561 0.7574 0.7629 0.7478 0.7763 0.7596
SVMimp 0.7645 0.7652 0.7683 0.7695 0.7642 0.7717 0.7698 0.7685 0.7826 0.7634
EM 0.7491 0.7472 0.7461 0.7627 0.7509 0.7538 0.7486 0.7469 0.7619 0.7492
MICE 0.7591 0.7617 0.7611 0.7689 0.7555 0.7600 0.7652 0.7458 0.7751 0.7582
Meanimp 0.7387 0.7404 0.7466 0.7676 0.7347 0.7501 0.7366 0.7245 0.7682 0.7409
kNNimpl 0.7438 0.7498 0.7484 0.7626 0.7538 0.7379 0.7385 0.7248 0.7614 0.7487
kNNimp3 0.7486 0.7539 0.7518 0.7685 0.7459 0.7393 0.7478 0.7248 0.7563 0.751
10% kNNimp5 0.7507 0.7570 0.7521 0.7668 0.7447 0.7401 0.7472 0.7248 0.7602 0.7532
SVMimp 0.7602 0.7654 0.7599 0.7650 0.7659 0.7762 0.7667 0.7625 0.7819 0.7637
EM 0.7240 0.7270 0.7249 0.7500 0.7316 0.7318 0.7231 0.7164 0.7501 0.73
MICE 0.7501 0.7528 0.7536 0.7683 0.7557 0.7438 0.7492 0.7179 0.7695 0.749
Meanimp 0.7234 0.7355 0.7297 0.7514 0.7351 0.7400 0.7279 0.6976 0.7451 0.7385
kNNimp1l 0.7321 0.7467 0.7313 0.7651 0.7393 0.7346 0.7265 0.6986 0.7205 0.7417
kNNimp3 0.7374 0.7564 0.7410 0.7531 0.7446 0.7301 0.7341 0.6986 0.7324 0.7443
15%  kNNimp5 0.7381 0.7560 0.7431 0.7509 0.7440 0.7298 0.7349 0.6986 0.7374 0.7456
SVMimp 0.7602 0.7607 0.7624 0.7780 0.7622 0.7852 0.7596 0.7589 0.7857 0.7735
EM 0.6992 0.7156 0.7061 0.7352 0.7180 0.7245 0.7090 0.6890 0.7261 0.7247
MICE 0.7407 0.7550 0.7482 0.7522 0.7494 0.7357 0.7419 0.6918 0.7609 0.7512
Meanimp 0.7165 0.7087 0.7202 0.7335 0.7428 0.7318 0.7080 0.6778 0.7317 0.7299
kNNimpl 0.7200 0.7143 0.7201 0.7408 0.7109 0.7337 0.7072 0.6778 0.7062 0.729
kNNimp3 0.7355 0.7295 0.7346 0.7414 0.7185 0.7273 0.7132 0.6778 0.7228 0.7409
20% kNNimp5 0.7394 0.7296 0.7339 0.7395 0.7168 0.7251 0.7155 0.6778 0.7296 0.7404
SVMimp 0.7661 0.7599 0.7594 0.7557 0.7645 0.7786 0.7556 0.7594 0.7876 0.7749
EM 0.6885 0.6763 0.6911 0.7165 0.7016 0.7034 0.6897 0.6571 0.7036 0.709
MICE 0.7397 0.7378 0.7406 0.7425 0.7445 0.7285 0.7322 0.6652 0.7516 0.7395
Meanimp 0.6693 0.6629 0.6675 0.6801 - 0.6566 0.6181 0.5761 0.6710 0.6664
kNNimp1l 0.6392 0.6276 0.6396 0.6855 - 0.6565 0.5943 0.5809 0.5867 0.6443
kNNimp3 0.6661 0.6585 0.6633 0.6973 - 0.6602 0.6196 0.5809 0.5836 0.6608
40%  kNNimp5 0.6671 0.6600 0.6626 0.6988 - 0.6529 0.6273 0.5809 0.5948 0.6566
SVMimp 0.7671 0.7705 0.7567 0.7641 - 0.7844 0.7134 0.7575 0.7356 0.7166
EM 0.6162 0.5961 0.6073 0.6565 - 0.6291 0.6076 0.5551 0.6129 0.6433
MICE 0.6941 0.6969 0.6903 0.7022 - 0.6571 0.6537 0.5640 0.6361 0.6617
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E. Experimental Results

Table E.6: Ranks of the effect of different multivariate (unifo) configurations in
the classification performance (F-measure) using imputation methods from the state
of the art.

F-measure — unifo

MR Methods MCAR1 MCAR2 MCAR3 MAR1 MAR2 MAR3 MNAR1 MNAR2 MNAR3 MNAR4

Meanimp 9 6 4 2 5 3 7 10 1 8
kNNimp1 6 3 5 1 7 8 4 10 9 2
kNNimp3 5 6 3 2 9 8 4 10 1 7
kKNNimp5 5 6 3 2 9 8 4 10 1 7
5% SVMimp 8 7 6 4 9 2 3 5 1 10
EM 6 8 10 1 4 3 7 9 2 5
MICE 7 4 5 2 9 6 3 10 1 8
MEAN 6.571 5.714 5.143 2.000 7.429 5.429 4.571 9.143 2.286 6.714
Meanimp 7 6 4 2 9 3 8 10 1 5
kNNimp1 7 4 6 1 3 9 8 10 2 5
kNNimp3 6 3 4 1 8 9 7 10 2 5
kNNimp5 6 3 5 1 8 9 7 10 2 4
10%  SVMimp 9 5 10 6 4 2 3 8 1 7
EM 8 6 7 2 4 3 9 10 1 5
MICE 6 5 4 2 3 9 7 10 1 8
MEAN 7.000 4.571 5.714 2.143 5.571 6.286 7.000 9.714 1.429 5.571
Meanimp 9 5 7 1 6 3 8 10 2 4
kNNimp1 6 2 7 1 4 5 8 10 9 3
kNNimp3 6 1 5 2 3 9 7 10 8 4
kNNimp5 6 1 5 2 4 9 8 10 7 3
15%  SVMimp 8 7 5 3 6 2 9 10 1 4
EM 9 6 8 1 5 4 7 10 2 3
MICE 8 2 6 3 5 9 7 10 1 4
MEAN 7.429 3.429 6.143 1.857 4.714 5.857 7.714 10.000 4.286 3.571
Meanimp 7 8 6 2 1 3 9 10 4
kNNimp1 5 6 4 1 7 2 8 10 9 3
kNNimp3 3 5 4 1 8 6 9 10 7 2
kNNimp5 3 5 4 2 8 7 9 10 6 1
20%  SVMimp 4 6 8 9 5 2 10 7 1 3
EM 8 9 6 1 5 4 7 10 3 2
MICE 5 7 4 3 2 9 8 10 1 6
MEAN 5.000 6.571 5.143 2.714 5.143 4.714 8.571 9.571 4.429 3.143
Meanimp 3 6 4 1 - 7 8 9 2 5
kNNimp1 5 6 4 1 - 2 7 9 8 3
kNNimp3 2 6 3 1 - 5 7 9 8 4
KNNimp5 2 4 3 1 - 6 7 9 8 5
40%  SVMimp 3 2 6 4 - 1 9 5 7 8
EM 4 8 7 1 - 3 6 9 5 2
MICE 3 2 4 1 - 6 7 9 8 5
MEAN 3.143 4.857 4.429 1.429 - 4.286 7.286 8.429 6.571 4.571
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Table E.8: Ranks of the effect of different multivariate (unifo) configurations in imputation quality (R* and RMSE) using imputation
methods from the state of the art.

unifo
RMSE R?

MR Methods MCAR1 MCAR2 MCAR3 MAR1 MAR2 MAR3 MNAR1 MNAR2 MNAR3 MNAR4 MCAR1 MCAR2 MCAR3 MAR1 MAR2 MAR3 MNAR1 MNAR2 MNAR3 MNAR4
Meanimp 3 4 2 9 8 6 5 1 10 7 3 4 2 9 8 6 5 1 10 7
kNNimpl 4 2 3 9 6 7 5 1 10 8 4 2 3 8 6 7 5 1 10 9
kNNimp3 3 1 2 8 9 6 5 4 10 7 3 1 2 6 8 7 4 5 10 9
kNNimp5 3 1 2 8 9 6 4 5 10 7 3 1 2 6 9 7 4 5 10 8

5%  SVMimp 4 5 3 9 6 2 7 1 8 10 3 2 1 9 6 7 5 4 10 8
EM 3 4 2 10 7 6 5 1 8 9 3 4 2 10 7 6 5 1 8 9
MICE 2 3 1 8 9 7 4 5 10 6 2 3 1 6 7 9 4 5 10 8
MEAN 3.143 2.857 2.143 8.714 7.714 5.714 5.000 2.571 9.429 7.714 3.000 2.42¢ 1.857 7.714 7.286  7.000 4.571 3.143 9.714 8.286
Meanimp 2 4 3 9 8 6 5 1 10 7 2 4 3 9 7 6 5 1 10 8
kNNimp1 4 2 3 9 6 7 5 1 10 8 4 2 3 8 6 7 5 1 10 9
kNNimp3 2 1 3 8 7 6 5 4 10 9 2 1 3 7 6 8 5 4 10 9
kNNimp5 2 1 3 7 9 6 5 4 10 8 2 1 3 7 6 8 5 4 10 9

10%  SVMimp 5 7 4 9 3 2 6 1 8 10 1 3 2 9 6 7 5 4 10 8
EM 1 4 2 10 7 6 5 3 8 9 1 4 2 9 6 7 5 3 8 10
MICE 1 3 2 7 8 6 4 5 10 9 1 3 2 7 6 8 4 5 10 9
MEAN 9 3.143 2.857 8.429 6.857  5.571 5.000 2.714 9.429 8.571 1.857 2.571 2.571 8.000  6.143 7.286 4.857 3.143 9.714 8.857
Meanimp 3 4 2 10 8 6 5 1 9 7 3 4 1 10 7 6 5 2 8 9
kNNimp1 4 2 3 9 6 7 5 1 10 8 4 2 3 8 5 7 6 1 10 9
kNNimp3 3 1 2 9 7 6 5 4 10 8 3 1 2 9 6 7 5 4 10 8
kNNimp5 3 1 2 9 8 6 5 4 10 7 3 1 2 9 6 7 5 4 10 8

15%  SVMimp 2 4 3 10 6 7 5 1 8 9 2 3 1 9 5 8 6 4 10 7
EM 3 4 1 10 7 6 5 2 8 9 3 4 1 9 5 7 6 2 8 10
MICE 2 3 1 9 8 6 4 5 10 7 2 3 1 9 6 7 4 5 10 8
MEAN 2.857 2.714 2.000 9.429 7.143  6.286 4.857 1 9.286 7.857 2.857 2.571 1.571 9.000 5.714 7.000 5.286 3.143 9.429 8.429
Meanimp 3 4 2 10 8 5 6 1 9 7 3 4 2 10 7 6 5 1 8 9
kNNimp1 3 4 2 9 6 7 5 1 10 8 3 4 2 9 5 7 6 1 10 8
kNNimp3 2 4 1 9 8 6 5 3 10 7 2 3 1 8 6 7 5 4 10 9
kNNimp5 2 3 1 9 8 6 5 4 10 7 2 3 1 8 6 7 5 4 10 9

20%  SVMimp 3 5 2 9 4 10 6 1 7 8 2 3 1 10 5 7 6 4 9 8
EM 2 4 3 10 6 7 5 1 8 9 3 6 4 9 1 7 5 2 8 10
MICE 2 3 1 9 8 6 4 5 10 7 2 3 1 8 5 7 4 6 10 9
MEAN 2.429 3.857 1.714 9.286 6.857  6.714 5.143 2.286 9.143 7.571 2.429 3.714 1.714 8.857  5.000 6.857 5.143 3.143 9.286 8.857
Meanimp 2 4 1 8 - 5 6 3 7 9 2 5 1 9 - 6 8 3 7 4
kNNimp1 2 4 3 9 - 5 6 1 8 7 4 5 3 9 - 6 7 1 8 2
kNNimp3 3 4 2 7 - 5 6 1 9 8 4 5 3 9 - 6 7 1 8 2
kNNimp5 3 4 2 7 - 5 6 1 9 8 3 5 2 8 - 6 7 1 9 4

40%  SVMimp 2 4 3 8 - 9 7 1 5 6 2 3 1 9 - 6 8 5 7 4
EM 1 4 2 9 - 5 6 3 7 8 3 6 2 9 - 8 7 4 5 1
MICE 1 3 2 7 - 5 6 4 8 9 2 3 1 9 - 6 7 5 8 4
MEAN 2.000 3.857 2.143 7.857 - 5.571 6.143 2.000 7.571 7.857 2.857 4.571 1.857 8.857 - 6.286 7.286 2.857 7.429 3.000
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