
Imagem

Diana Martins Lavado

 Sorting Surgical Tools from a

Cluttered Tray - Object Detection and

Occlusion Reasoning

Dissertação de Mestrado em Engenharia Biomédica

na Especialidade de Instrumentação Médica e Biomateriais

 Setembro 2018

Imagem

DEPARTAMENTO DE FÍSICA

Sorting Surgical Tools from a Cluttered Tray -

Object Detection and Occlusion Reasoning

Submitted in Partial Fulfilment of the Requirements for the Degree of Master’s in
Biomedical Engineering in the speciality of Medical Instrumentation and
Biomaterials

Separação de Instrumentos Cirúrgicos

Desorganizados numa Bandeja – Deteção e

Resolução de Oclusão

Author

Diana Martins Lavado

Advisor[s]

Professor Doutor Joaquim Norberto Cardoso Pires da Silva
Professor Doutor Francisco José Santiago Fernandes Amado
Caramelo

Jury

President
Professor Doutor Rui Alexandre de Matos Araújo

Professor Associado c/ Agregação da Universidade de Coimbra

Vowel
Professor Doutor José Basílio Portas Salgado Simões

Professor Associado c/ Agregação da Universidade de Coimbra

Advisor

Professor Doutor Joaquim Norberto Cardoso Pires da
Silva

Professor Associado c/ Agregação da Universidade de Coimbra

Coimbra, Setembro, 2018

Esta cópia da tese é fornecida na condição de que, quem a consulta, reconhece

que os direitos de autor são pertença do autor da tese e que nenhuma citação ou informação

obtida a partir dela pode ser publicada, sem a referência apropriada.

This copy of the thesis has been supplied on condition that anyone who consults

it is understood to recognize that is copyright rests with its author and that no quotation from

the thesis and no information derived from it may be published without proper acknowledge.

Sorting Surgical Tools from a Cluttered Tray – Object Detection and Occlusion Reasoning

ii

“It always seems impossible until it’s done.”

Nelson Mandela

To my family, either here or in the sky

Sorting Surgical Tools from a Cluttered Tray – Object Detection and Occlusion Reasoning

iv

ACKNOWLEDGEMENTS

This dissertation is the culmination of several years of hard work and I would like to

acknowledge the people that somehow helped me throughout this journey and impacted the

outcome of this dissertation.

I want to begin by thanking professor J. Norberto Pires, my thesis advisor, for giving

me the tools to develop this project, as well as for all the guidance and support necessary to

get to the end. On the same note, I’m also thankful to my co-advisor, professor Francisco

Caramelo, for all the advice and discussions that helped me staying on the right track in the

“uncharted waters” of deep learning.

To my managers at Microsoft, I’m incredible thankful not only for the opportunity,

but also for the support and flexibility that were essential for finishing this dissertation on

time.

I want to thank everyone that helped proofreading this dissertation or somehow

contributed for its elaboration.

I’m grateful for being surrounded by inspiring people in the lab almost every day for

the past year. Thank you for putting up with me and my nonsenses. You all became great

friends and each one of you had a vital contribution for the concretization of this thesis thus,

I’m sure that it would definitely not be the same without you. Filipe, you accompanied me

until the very end and you were always supportive and cheered us all up, thank you for that.

João, thank you for always trying to help and for the good mood (looking past the occasional

scares). Diogo, you never let me give up and were always trying to motivate me, thank you.

To my baseball team (“primos”), thank you for keep pushing me to be a better player,

president and person.

 To my University friends, thank you for being an important part of my life, specially

to Maria João, for all the assignments, study afternoons and for knowing when I need junk

food without having to ask, despite injuring my earing with your singing; and to Catarina,

for being there every step of the way supporting and motivating me, as well as for all the “1

hour coffees”.

Sorting Surgical Tools from a Cluttered Tray – Object Detection and Occlusion Reasoning

vi

 Finally, but not least, to my parents, for giving me the opportunity to go to University,

to do a semester abroad, to actually study instead of helping you so much around the house.

For teaching me important values and raise me to be the person I am today. For all the support

and for keeping my best interests at heart. There are not enough words to describe how

thankful I am to both of you.

 To all, thank you, from the bottom of my heart.

Abstract

The main goal of this master dissertation is to classify and localize surgical tools in

a cluttered tray, as well as perform occlusion reasoning to determine which tool should be

removed first. These tasks are intended to be a part of a multi-stage robotic system able to

sort surgical tools after disinfection, in order to assembly surgical kits and, hopefully,

optimizing the nurses time in sterilization rooms, so that they can focus on more complex

tasks.

Initially, several classical approaches were tested to obtain 2D templates of each type

of surgical tool, such as canny edges, otsu’s threshold and watershed algorithm. The idea

was to place 2D data matrixes codes onto the surgical tools and whenever the code was

detected, the respective template would be added to a virtual map, which would be

posteriorly be assessed and determined which tool was on top by comparison with the

original image. However, due to difficulties in acquiring a specific software, a modern

approach was used instead, resorting to the YOLO (“you only look once”) deep learning

neural network.

In order to train the neural networks, a dataset was built, which was then published,

along with the respective labels of the data and appropriate division into train and test groups.

In total, 5 YOLOv2 neural networks were trained: 1 for object detection and classification

and 1 for occlusion reasoning of each instrument (making a total of 4). Regarding object

detection, it was also performed cross-validation, as well as trained the YOLOv3 network.

A console application that applies the proposed algorithm was also developed, in

which the first step is to run the object detector with either the trained YOLOv2 or YOLOv3

network, followed by sorting the detections in a decrescent order of confidence score.

Afterward, the detections correspondent to the two higher confidence scores are chosen and

the respective occlusion reasoning neural networks are run. Finally, the best combination of

confidence scores between object detection and occlusion reasoning determines the surgical

tool to be removed first from the cluttered tray.

Keywords Deep Learning, Robotics, YOLOv2, YOLOv3, Computer Vision.

Sorting Surgical Tools from a Cluttered Tray – Object Detection and Occlusion Reasoning

viii

Resumo

O principal objetivo desta dissertação de mestrado é classificar e localizar os

instrumentos cirúrgicos presentes numa bandeja desorganizada, assim como realizar o

raciocínio para resolver oclusão por forma a determinar qual o instrumento que deverá ser

retirado em primeiro lugar. Estas tarefas pretendem ser uma parte integrante de um sistema

complexo apto a separar instrumentos cirúrgicos após a sua desinfeção, de modo a montar

kits cirúrgicos e, esperançosamente, otimizar o tempo despendido pelos enfermeiros em

salas de esterilização, para que se possam dedicar a tarefas mais complexas.

Inicialmente, várias abordagens clássicas foram testadas para obter modelos 2D para

cada tipo de instrumento cirúrgico, tal como canny edges, otsu’s threshold e watershed

algorithm. A ideia era colocar códigos “2D data matrix” nos instrumentos cirúrgicos e,

sempre que o código fosse detetado, o respetivo modelo seria adicionado a um mapa virtual,

que seria posteriormente analisado para determinar qual o instrumento situado no topo,

através da comparação com a imagem original. Todavia, devido a dificuldades na aquisição

de um software específico, foi usada uma abordagem moderna, recorrendo à rede neuronal

de deep learning YOLO (“you only look once”).

De modo a treinar as redes neuronais foi elaborado um dataset, que foi

posteriormente publicado, em conjunto com as respetivas “labels” das imagens, assim como

uma divisão apropriada em grupo de teste e de treino. No total, 5 redes neuronais YOLOv2

foram treinadas: 1 para deteção e classificação de objetos e 1 para o resolver a oclusão

relativa a cada tipo de instrumento (perfazendo um total de 4). Relativamente à deteção de

objetos foi também realizada validação cruzada, assim como treinada a rede YOLOv3.

Uma aplicação de consola que aplica o algoritmo proposto foi também desenvolvida,

em que o primeiro passo é correr o detetor de objetos com redes treinadas quer de YOLOv2

ou de YOLOv3, seguido pela ordenação das deteções por ordem decrescente de percentagem

de confiança. Posteriormente, as deteções correspondentes às duas percentagens de

confiança mais elevadas são escolhidas, e as respetivas redes neuronais de raciocínio para

resolver oclusão são implementadas. Finalmente, a melhor combinação de percentagens de

Sorting Surgical Tools from a Cluttered Tray – Object Detection and Occlusion Reasoning

x

confiança entre a deteção de objetos e o raciocínio de oclusão determina qual o instrumento

cirúrgico que deverá ser removido em primeiro lugar do tabuleiro desorganizado.

Plavras-chave: Deep Learning, Robótica, YOLOv2, YOLOv3, Visão Computacional.

Contents

List OF FIGURES ... xiii

LIST OF TABLES .. xvii

ACRONYMS .. xix

1. INTRODUCTION ... 1

1.1. Objectives ... 2

2. STATE OF ART .. 3

2.1. Feature Detectors and Descriptors .. 4

2.2. Template and Shape Matching .. 6

2.3. Bag of Visual Words (BOVW) .. 8

2.4. Point Pair Features (PPF) .. 9

2.5. Implicit Shape Model (ISM) .. 10

2.6. Random Forests .. 10

2.7. Convolutional Neural Networks (CNN) ... 11

2.8. Surgical Instruments .. 13

2.8.1. External Markers .. 13

2.8.2. Marker-Less Approaches .. 15

3. Instruments and Software .. 19

4. Classical Approach.. 21

4.1. Templates ... 23

4.1.1. Edge-based Image Segmentation ... 23

4.1.2. Threshold-based Image Segmentation .. 28

4.1.3. Region-based Image Segmentation ... 29

5. Modern Approach .. 33

5.1. YOLO v2 .. 34

5.2. Dataset .. 36

5.2.1. Labeling ... 39

5.3. Train and Test Split .. 42

5.3.1. Cross-Validation ... 46

5.4. Neural Network Training .. 46

5.4.1. Learning Rate .. 49

5.5. Console Application... 59

6. Results ... 67

6.1. Classical Approach Results .. 67

6.2. Modern Approach Results ... 69

Sorting Surgical Tools from a Cluttered Tray – Object Detection and Occlusion Reasoning

xii

6.2.1. Object Detection Results ... 69

6.2.2. Occlusion Reasoning .. 79

6.2.3. Image Results .. 83

7. Future Work ... 91

8. Conclusions ... 93

BIBLIOGRAPHY .. 95

ANNEX A ... 107

ANNEX B .. 111

ANNEX C .. 123

LIST OF FIGURES

Figure 2.1- Recognition of real world scenes using the MOPED framework. [23] 5

Figure 2.2 – Framework of the HOG-LBP detector [25]. ... 5

Figure 2.3- Ulrich et al. detection example robust to occlusion [32]. 6

Figure 2.4- Object detection and pose estimation results from the FDCM algorithm

[44]. ... 7

Figure 2.5- Scheme of ISM algorithm [75]. ... 10

Figure 2.6- (a)(b) Examples of typical appearance variation in surgical tools of the

dataset. .. 14

Figure 2.7- Pose estimation using the four corners of the data matrices from both

template and input image of the container after non-linear refinement [104].15

Figure 4.1- Scheme of all the steps involved in this project. ... 21

Figure 4.2- Original image of a Curved Mayo Scissor. ... 23

Figure 4.3- Sobel magnitude of a Curved Mayo Scissor. .. 24

Figure 4.4- Scharr magnitude image of a Curved Mayo Scissor. 25

Figure 4.5- Edge operators implementation on a smoothed image. (a) Sobel (b) Scharr.

 ... 26

Figure 4.6- (a) Sliding bar in original image of a Curved Mayo Scissor (b) Canny edges

with threshold values presented in sliding bar. .. 27

Figure 4.7- Contours of Curved Mayo Scissor controlled with the sliding bar

application. ... 28

Figure 4.8- Image segmentation of a Curved Mayo Scissor resorting to Otsu’s method.29

Figure 4.9- Distance Transform of a Curved Mayo Scissor. ... 31

Figure 4.10- Watershed segmentation of a Curved Mayo Scissor. 31

Figure 5.1- Accuracy of detector (mAP on COCO) vs accuracy of feature extractor (on

ImageNet-CLS) of the low resolution models [142]. .. 33

Figure 5.2- Accuracy and speed comparison on VOC 2007 dataset [97]. 34

Figure 5.3- YOLO system model detector as a regression problem [96]. 35

Figure 5.4- YOLO v2 architecture. .. 37

Figure 5.5- GUI of BBox-Label-Tool. .. 40

file:///C:/Users/Diana/Downloads/Tese-Diana_5.docx%23_Toc524896175
file:///C:/Users/Diana/Downloads/Tese-Diana_5.docx%23_Toc524896176
file:///C:/Users/Diana/Downloads/Tese-Diana_5.docx%23_Toc524896177
file:///C:/Users/Diana/Downloads/Tese-Diana_5.docx%23_Toc524896178
file:///C:/Users/Diana/Downloads/Tese-Diana_5.docx%23_Toc524896178
file:///C:/Users/Diana/Downloads/Tese-Diana_5.docx%23_Toc524896179
file:///C:/Users/Diana/Downloads/Tese-Diana_5.docx%23_Toc524896180
file:///C:/Users/Diana/Downloads/Tese-Diana_5.docx%23_Toc524896180
file:///C:/Users/Diana/Downloads/Tese-Diana_5.docx%23_Toc524896181
file:///C:/Users/Diana/Downloads/Tese-Diana_5.docx%23_Toc524896181
file:///C:/Users/Diana/Downloads/Tese-Diana_5.docx%23_Toc524896182
file:///C:/Users/Diana/Downloads/Tese-Diana_5.docx%23_Toc524896183
file:///C:/Users/Diana/Downloads/Tese-Diana_5.docx%23_Toc524896184
file:///C:/Users/Diana/Downloads/Tese-Diana_5.docx%23_Toc524896185
file:///C:/Users/Diana/Downloads/Tese-Diana_5.docx%23_Toc524896186
file:///C:/Users/Diana/Downloads/Tese-Diana_5.docx%23_Toc524896186
file:///C:/Users/Diana/Downloads/Tese-Diana_5.docx%23_Toc524896187
file:///C:/Users/Diana/Downloads/Tese-Diana_5.docx%23_Toc524896187
file:///C:/Users/Diana/Downloads/Tese-Diana_5.docx%23_Toc524896188
file:///C:/Users/Diana/Downloads/Tese-Diana_5.docx%23_Toc524896188
file:///C:/Users/Diana/Downloads/Tese-Diana_5.docx%23_Toc524896189
file:///C:/Users/Diana/Downloads/Tese-Diana_5.docx%23_Toc524896190
file:///C:/Users/Diana/Downloads/Tese-Diana_5.docx%23_Toc524896191
file:///C:/Users/Diana/Downloads/Tese-Diana_5.docx%23_Toc524896192
file:///C:/Users/Diana/Downloads/Tese-Diana_5.docx%23_Toc524896192
file:///C:/Users/Diana/Downloads/Tese-Diana_5.docx%23_Toc524896193
file:///C:/Users/Diana/Downloads/Tese-Diana_5.docx%23_Toc524896194
file:///C:/Users/Diana/Downloads/Tese-Diana_5.docx%23_Toc524896195
file:///C:/Users/Diana/Downloads/Tese-Diana_5.docx%23_Toc524896196

Sorting Surgical Tools from a Cluttered Tray – Object Detection and Occlusion Reasoning

xiv

Figure 5.6- Yolo_mark graphical user interface. .. 41

Figure 5.7- Label file example of the image present in Figure 5.6. 41

Figure 5.8- Chord diagram of distribution of instruments in images in (a) train group

(b) test group. ... 45

Figure 5.9- Example of the training output of the network. ... 49

Figure 5.10- Learning rate assessment through loss function. .. 50

Figure 5.11- Plots of average Loss, IOU of each subdivision and Recall of each

subdivision for object detection with learning rates of: (a) 0.001 (b) 0.003 (c)

0.0003. ... 51

Figure 5.12- Plots of average Loss, IOU of each subdivision and Recall of each

subdivision for object detection with learning rates of: (a) 0.0001 (b) 0.00003

(c) 0.00001. ... 52

Figure 5.13- Plots of average Loss, IOU of each subdivision and Recall of each

subdivision for occlusion reasoning with learning rates of: (a) 0.0001 (b) 0.0003

(c) 0.00003 (d) 0.00001. .. 54

Figure 5.14- Plots of average Loss, IOU of each subdivision and Recall of each

subdivision for scalpel occlusion reasoning with learning rates of: (a) 0.0001 (b)

0.0003 (c) 0.00003 (d) 0.00001. .. 55

Figure 5.15- Plots of average Loss, IOU of each subdivision and Recall of each

subdivision for straight dissection clamp occlusion reasoning with learning

rates of: (a) 0.0001 (b) 0.0003 (c) 0.00003 (d) 0.00001. 56

Figure 5.16- Plots of average Loss, IOU of each subdivision and Recall of each

subdivision for straight mayo scissor occlusion reasoning with learning rates

of: (a) 0.0001 (b) 0.0003 (c) 0.00003 (d) 0.00001. ... 57

Figure 5.17- Plots of average Loss, IOU of each subdivision and Recall of each

subdivision for curved mayo scissor occlusion reasoning with learning rates of:

(a) 0.0001 (b) 0.0003 (c) 0.00003 (d) 0.00001. .. 58

Figure 5.18- Scheme of the proposed methodology to assemble surgical kits. 59

Figure 5.19- Platform Toolset property. ... 61

Figure 5.20- OpenCV include and library directories. .. 61

Figure 5.21- OpenCV and pthreads additional library directories. 62

Figure 5.22- OpenCV additional dependencies. ... 62

Figure 5.23- Console application menus (a) Files loaded (b) Main menu (c) Change files

menu. .. 63

Figure 5.24- Example of “Detect Objects” applied to an image. 64

file:///C:/Users/Diana/Downloads/Tese-Diana_5.docx%23_Toc524896197
file:///C:/Users/Diana/Downloads/Tese-Diana_5.docx%23_Toc524896198
file:///C:/Users/Diana/Downloads/Tese-Diana_5.docx%23_Toc524896199
file:///C:/Users/Diana/Downloads/Tese-Diana_5.docx%23_Toc524896199
file:///C:/Users/Diana/Downloads/Tese-Diana_5.docx%23_Toc524896200
file:///C:/Users/Diana/Downloads/Tese-Diana_5.docx%23_Toc524896201
file:///C:/Users/Diana/Downloads/Tese-Diana_5.docx%23_Toc524896202
file:///C:/Users/Diana/Downloads/Tese-Diana_5.docx%23_Toc524896202
file:///C:/Users/Diana/Downloads/Tese-Diana_5.docx%23_Toc524896202
file:///C:/Users/Diana/Downloads/Tese-Diana_5.docx%23_Toc524896203
file:///C:/Users/Diana/Downloads/Tese-Diana_5.docx%23_Toc524896203
file:///C:/Users/Diana/Downloads/Tese-Diana_5.docx%23_Toc524896203
file:///C:/Users/Diana/Downloads/Tese-Diana_5.docx%23_Toc524896204
file:///C:/Users/Diana/Downloads/Tese-Diana_5.docx%23_Toc524896204
file:///C:/Users/Diana/Downloads/Tese-Diana_5.docx%23_Toc524896204
file:///C:/Users/Diana/Downloads/Tese-Diana_5.docx%23_Toc524896205
file:///C:/Users/Diana/Downloads/Tese-Diana_5.docx%23_Toc524896205
file:///C:/Users/Diana/Downloads/Tese-Diana_5.docx%23_Toc524896205
file:///C:/Users/Diana/Downloads/Tese-Diana_5.docx%23_Toc524896206
file:///C:/Users/Diana/Downloads/Tese-Diana_5.docx%23_Toc524896206
file:///C:/Users/Diana/Downloads/Tese-Diana_5.docx%23_Toc524896206
file:///C:/Users/Diana/Downloads/Tese-Diana_5.docx%23_Toc524896207
file:///C:/Users/Diana/Downloads/Tese-Diana_5.docx%23_Toc524896207
file:///C:/Users/Diana/Downloads/Tese-Diana_5.docx%23_Toc524896207
file:///C:/Users/Diana/Downloads/Tese-Diana_5.docx%23_Toc524896208
file:///C:/Users/Diana/Downloads/Tese-Diana_5.docx%23_Toc524896208
file:///C:/Users/Diana/Downloads/Tese-Diana_5.docx%23_Toc524896208
file:///C:/Users/Diana/Downloads/Tese-Diana_5.docx%23_Toc524896209
file:///C:/Users/Diana/Downloads/Tese-Diana_5.docx%23_Toc524896210
file:///C:/Users/Diana/Downloads/Tese-Diana_5.docx%23_Toc524896211
file:///C:/Users/Diana/Downloads/Tese-Diana_5.docx%23_Toc524896212
file:///C:/Users/Diana/Downloads/Tese-Diana_5.docx%23_Toc524896213
file:///C:/Users/Diana/Downloads/Tese-Diana_5.docx%23_Toc524896214
file:///C:/Users/Diana/Downloads/Tese-Diana_5.docx%23_Toc524896214
file:///C:/Users/Diana/Downloads/Tese-Diana_5.docx%23_Toc524896215

Figure 6.1- Scalpel nº4 (a) contours (b) watershed model. .. 67

Figure 6.2- Straight Mayo Scissor (a) contours (b) watershed model. 68

Figure 6.3- Straight Dissection Clamp (a) contours (b) watershed model (c) profile

contours (d) profile watershed model. .. 68

Figure 6.4- Curved Mayo Scissor (a) contours (b) watershed model. 69

Figure 6.5- Precision-recall curve of weights respective to 100 000, 150 000 and

200 000 iterations. .. 71

Figure 6.6- Plot of IOU in function of mAP for every five thousand iterations between

55000 and 200000 iterations. ... 72

Figure 6.7- Plot of IOU in function of mAP for every thousand iterations between

75000 and 125000 iterations. ... 73

Figure 6.8- Pie chart with the discrimination of YOLOv2 errors for object detection. 75

Figure 6.9- Precision-recall curve of cross-validation weights respective to 100 000,

150 000 and 200 000 iterations. ... 76

Figure 6.10- Plot of IOU in function of mAP for every thousand iterations between

75000 and 125000 iterations. ... 77

Figure 6.11- Plot of IOU in function of mAP for every thousand iterations between

1000 and 50000 iterations for YOLOv3. ... 78

Figure 6.12- Pie chart with the discrimination of YOLOv3 errors for object detection.

 ... 79

Figure 6.13- Plot of IOU in function of mAP for every thousand iterations between

10000 and 60000 iterations for scalpel occlusion reasoning. 80

Figure 6.14- Plot of IOU in function of mAP for every thousand iterations between

10000 and 50000 iterations for straight dissection clamp occlusion reasoning. 80

Figure 6.15- Plot of IOU in function of mAP for every thousand iterations between

10000 and 60000 iterations for straight mayo scissor... 81

Figure 6.16- Plot of IOU in function of mAP for every thousand iterations between

15000 and 60000 iterations for curved mayo scissor occlusion reasoning. 81

Figure 6.17- Object detection and respective confidence scores resorting to (a) YOLOv2

(b) YOLOv3. ... 83

Figure 6.18- Object detection and respective confidence scores resorting to (a) YOLOv2

(b) YOLOv3. ... 84

Figure 6.19- Object detection and respective confidence scores resorting to (a) YOLOv2

(b) YOLOv3. ... 85

file:///C:/Users/Diana/Downloads/Tese-Diana_5.docx%23_Toc524896216
file:///C:/Users/Diana/Downloads/Tese-Diana_5.docx%23_Toc524896217
file:///C:/Users/Diana/Downloads/Tese-Diana_5.docx%23_Toc524896218
file:///C:/Users/Diana/Downloads/Tese-Diana_5.docx%23_Toc524896218
file:///C:/Users/Diana/Downloads/Tese-Diana_5.docx%23_Toc524896219
file:///C:/Users/Diana/Downloads/Tese-Diana_5.docx%23_Toc524896220
file:///C:/Users/Diana/Downloads/Tese-Diana_5.docx%23_Toc524896220
file:///C:/Users/Diana/Downloads/Tese-Diana_5.docx%23_Toc524896221
file:///C:/Users/Diana/Downloads/Tese-Diana_5.docx%23_Toc524896221
file:///C:/Users/Diana/Downloads/Tese-Diana_5.docx%23_Toc524896222
file:///C:/Users/Diana/Downloads/Tese-Diana_5.docx%23_Toc524896222
file:///C:/Users/Diana/Downloads/Tese-Diana_5.docx%23_Toc524896223
file:///C:/Users/Diana/Downloads/Tese-Diana_5.docx%23_Toc524896224
file:///C:/Users/Diana/Downloads/Tese-Diana_5.docx%23_Toc524896224
file:///C:/Users/Diana/Downloads/Tese-Diana_5.docx%23_Toc524896225
file:///C:/Users/Diana/Downloads/Tese-Diana_5.docx%23_Toc524896225
file:///C:/Users/Diana/Downloads/Tese-Diana_5.docx%23_Toc524896226
file:///C:/Users/Diana/Downloads/Tese-Diana_5.docx%23_Toc524896226
file:///C:/Users/Diana/Downloads/Tese-Diana_5.docx%23_Toc524896227
file:///C:/Users/Diana/Downloads/Tese-Diana_5.docx%23_Toc524896227
file:///C:/Users/Diana/Downloads/Tese-Diana_5.docx%23_Toc524896228
file:///C:/Users/Diana/Downloads/Tese-Diana_5.docx%23_Toc524896228
file:///C:/Users/Diana/Downloads/Tese-Diana_5.docx%23_Toc524896229
file:///C:/Users/Diana/Downloads/Tese-Diana_5.docx%23_Toc524896229
file:///C:/Users/Diana/Downloads/Tese-Diana_5.docx%23_Toc524896230
file:///C:/Users/Diana/Downloads/Tese-Diana_5.docx%23_Toc524896230
file:///C:/Users/Diana/Downloads/Tese-Diana_5.docx%23_Toc524896231
file:///C:/Users/Diana/Downloads/Tese-Diana_5.docx%23_Toc524896231
file:///C:/Users/Diana/Downloads/Tese-Diana_5.docx%23_Toc524896232
file:///C:/Users/Diana/Downloads/Tese-Diana_5.docx%23_Toc524896232
file:///C:/Users/Diana/Downloads/Tese-Diana_5.docx%23_Toc524896233
file:///C:/Users/Diana/Downloads/Tese-Diana_5.docx%23_Toc524896233
file:///C:/Users/Diana/Downloads/Tese-Diana_5.docx%23_Toc524896234
file:///C:/Users/Diana/Downloads/Tese-Diana_5.docx%23_Toc524896234

Sorting Surgical Tools from a Cluttered Tray – Object Detection and Occlusion Reasoning

xvi

Figure 6.20- Object detection and respective confidence scores resorting to (a) YOLOv2

(b) YOLOv3. ... 86

Figure 6.21- Object detection and respective confidence scores resorting to (a) YOLOv2

(b) YOLOv3. ... 87

Figure 6.22- Object detection and respective confidence scores resorting to (a) YOLOv2

(b) YOLOv3. ... 88

Figure 6.23- Object detection and respective confidence scores resorting to (a) YOLOv2

(b) YOLOv3. ... 89

Figure 6.24- (a) two choices resultant from the developed algorithm (b) console output

of the respective algorithm implementation with YOLOv3 for object detection

and YOLOv2 for occlusion reasoning. .. 90

file:///C:/Users/Diana/Downloads/Tese-Diana_5.docx%23_Toc524896235
file:///C:/Users/Diana/Downloads/Tese-Diana_5.docx%23_Toc524896235
file:///C:/Users/Diana/Downloads/Tese-Diana_5.docx%23_Toc524896236
file:///C:/Users/Diana/Downloads/Tese-Diana_5.docx%23_Toc524896236
file:///C:/Users/Diana/Downloads/Tese-Diana_5.docx%23_Toc524896237
file:///C:/Users/Diana/Downloads/Tese-Diana_5.docx%23_Toc524896237
file:///C:/Users/Diana/Downloads/Tese-Diana_5.docx%23_Toc524896238
file:///C:/Users/Diana/Downloads/Tese-Diana_5.docx%23_Toc524896238
file:///C:/Users/Diana/Downloads/Tese-Diana_5.docx%23_Toc524896239
file:///C:/Users/Diana/Downloads/Tese-Diana_5.docx%23_Toc524896239
file:///C:/Users/Diana/Downloads/Tese-Diana_5.docx%23_Toc524896239

LIST OF TABLES

Table 2.1- Summarized literature review of marker-less approaches for surgical tools

detection and tracking. Table adapted from [106]. .. 17

Table 3.1- Hardware specifications. .. 20

Table 5.1- Discrimination of the amount of pictures in the dataset. 38

Table 5.2- Discrimination of classes distribution. .. 42

Table 5.3- Discrimination of images with combination of instruments in the train and

test groups ... 43

Table 6.1- Symbolic confusion matrix... 70

Table 6.2- Discrimination of average precision per class corresponding to 117000

iterations during training. .. 74

Table 6.3- YOLOv3 results discrimination for resultant weights of 49000 iteration of

training. ... 78

Table 6.4- mAP and IOU relative to the weights of the last trained iteration for the

occlusion reasoning network of each instrument. ... 82

Table 6.5- Error analysis for each occlusion reasoning neural network respective to

each surgical tool. ... 82

Sorting Surgical Tools from a Cluttered Tray – Object Detection and Occlusion Reasoning

xviii

 ACRONYMS

ACRONYMS

AI - Artificial Intelligence

AUC - Area Under the ROC Curve

BOVW – Bag of Visual Words

BOW – Bag of Words

CNN - Convolutional Neural Network

CPU - Central Processing Unit

DEHV - Depth-Encoding Hough Voting

DL - Deep Learning

dll - dynamic link library

DoG - Difference of Gaussians

ESF - Ensemble of Shape Functions

FAST - Features from Accelerated Segmented Test

FDCM - Fast Directional Chamfer Method

FN - False Negative

FP - False Positive

FPS - Frames Per Second

GPU - Graphical Processing Unit

HOG - Histogram Oriented Gradients

ICE – Iterative Clustering-Estimation

IOU- Intersection over Union

IPC - Iterative Closest Point

ISM - Implicit Shape Model

LBP - Local Binary Pattern

LoG - Laplacian of Gaussian

mAP - mean Average Precision

MIL - Matrox Imaging Library

ML - Machine Learning

Sorting Surgical Tools from a Cluttered Tray – Object Detection and Occlusion Reasoning

xx

MSER - Maximally Stable Extremal Regions

MVS - Microsoft Visual Studio

PIL – Pillow (python library)

PPF - Point Pair Features

ROI - Region of Interest

RPN - Region Proposal Network

SIFT - Scale Invariant Feature Transform

SIM - Surgical Instruments Model

SSD - Single Shot Multibox Detector

SURF - Speeded up Robust Features

SVM - Support Vector Machines

TN - True Negative

TP - True Positive

YOLO - You Only Look Once

 INTRODUCTION

Diana Martins Lavado 1

1. INTRODUCTION

Nurses play an extremely important role in our society. They are responsible for

nurture the elderly, take care of the sick and wounded, assist the doctors, inform people,

prepare for surgeries, both the patients and the room, as well as to oversee the process of

recycling of surgical tools, which after surgeries are cleaned, sterilized and assembled into

surgical kits.

Unfortunately, it is not hard to understand the impact of nurses due to the current

lack of nurses throughout hospitals from all over the country, which lead to the closure of

some services in determined hospitals. America is facing the same problem and, a recent

study [1] claims that by 2025 there will be a shortage of 260 000 nurses in the USA. It was

also shown that a hospital understaffed has a patient mortality risk 6% higher than fully

functional hospitals [2].

Due to this shortage of nurses, they are overloaded with different tasks

simultaneously, which unavoidably leads to more workload for each one and they become

tired more easily, decreasing their efficiency and provoking delays or more preventable

medical errors such as a wrong instrument counting after surgeries or mistakenly sort the

tools for surgical kits. It was not found statistic values for Portugal, however, the critical lack

of nurses is similar to USA, in which preventable medical errors are responsible for the death

of between 44 000 and 98 000 patients, resulting in a 12-25 u.s. billions cost for the

healthcare system of the country [3]. The problem of the lack of nurses also raises safety

issues, because while sorting the tools to assembly the surgical kits, these health practitioners

can be hurt by handling sharp instruments and, if the sterilization process is compromised

the task needs to be repeated and the overall process is delayed.

 Robotic systems can be used with the objective of increasing efficiency and reducing

costs. Robots never get tired or hurt and are able to execute repetitive tasks such as sorting

tools or counting them with increased speed, allowing nurses to focus on more complex tasks

[4].

Sorting Surgical Tools from a Cluttered Tray – Object Detection and Occlusion Reasoning

2 2018

 During the last few years, the implementation of robotic systems in healthcare has

been growing exponentially, and can have several applications such as replace surgeons (e.g.

the use of Da Vinci [5] or Zeus [6] for minimally invasive surgeries), aid surgeons (e.g.

through robotic scrub nurses that can deliver the surgical tool to the surgeon by his request,

[4][7][8][9][10]), and aid nurses (e.g. with the implementation of sterilization systems that

automatically sort the instruments).

 In order to determine which necessities in Portugal’s healthcare could be improved

by the implementation of robots, it was scheduled an interview with Chief Nurse of the Main

Operating Room of the Hospital of University of Coimbra, Jorge Tavares, who raised

concerns regarding the time that nurses spend sorting tools after being disinfected that can

either undergo sterilization or be assembled into surgical kits. Thus, that time could be spent

focusing more on patients if a robotic system was implemented, which is towards that goal

that this thesis was developed.

1.1. Objectives

The project intends to optimize the time spent by nurses in the sterilization rooms,

by, after disinfection, automatically sorting the tools from a clustered tray and assemble

surgical kits previously defined. In that process, a robot equipped with an electromagnetic

gripper is used.

 In order to fulfill that goal, this dissertation focus on implementing a successful

methodology for object detection and occlusion reasoning, as well as developing an intuitive

user application.

 It is important to note that this dissertation resulted into the publication of the dataset

and respective labels on the website https://www.kaggle.com/dilavado/labeled-surgical-

tools/ as well as on scientific articles currently undergoing development.

 STATE OF ART

Diana Martins Lavado 3

2. STATE OF ART

Bin-picking is the technical term for grabbing randomly placed parts or objects in a

bin which represents one of the most classical challenges in Robotics for several decades.

Although is a simple task for humans, it is extremely difficult for robots as the pieces

in the bin tend to be at random positions and orientations, and also overlapping each other.

Therefore, the recognition using computer vision systems is highly hindered, which makes

even more difficult to adopt the right strategy to the robot approach the bin and pick one

piece. This kind of task also denotes the ultimate step towards fully automated industrial

systems, because it means to pass from an unstructured environment to a structure one

making the whole process much more uncertain.

Throughout the years a wide range of research fields tried to overcome this challenge

such as Computer Vision, Machine Learning and recently, Deep Learning, which have

resulted into several approaches. The following Sections in this dissertation discuss in further

detail these approaches applied to an industrial and in Section 2.8 is presented an overview

of recent studies regarding surgical tools.

Most of the classical approaches responsible for bin-picking applications are in the

midst of Computer Vision and its execution requires the completion of several steps such as

feature detection, feature matching, cluster identification, and pose estimation.

Before entering in further detail on a wide range of methods and their applications,

it is important to present a brief explanation of features, the efficiency and robustness of an

object detector depends directly of the efficiency and robustness of its feature extractor.

The foundation of a wide range of computer vision algorithm resides in features,

which do not have a universal definition. However, they can be described as points of interest

which can be precisely (well localized) and reliably (well matched) found in other images.

The most popular types of features are edges, corners, blobs, and ridges. Thus, the most

important properties of good features are the following:

• Repeatability – the same feature can be found in several images despite

geometric and photometric descriptors;

Sorting Surgical Tools from a Cluttered Tray – Object Detection and Occlusion Reasoning

4 2018

• Matchability – each feature has a distinctive descriptor;

• Compactness and Efficiency – a significantly lower amount of features

than image pixels;

• Locality – each feature should be a relatively small area of the image.

These properties are used to implement the strategy defined in this dissertation.

2.1. Feature Detectors and Descriptors

According to the type of features there are several algorithms for feature detection

that can implemented. Sobel [11] and Canny [12] are well-known methods for extracting

edges, and Harris [13] and Features from Accelerated Segmented Test (FAST) [14] are

frequently used to detect corners. In addition, Maximally Stable Extremal Regions (MSER)

[15] is used for blobs and Laplacian of Gaussian (LoG) [16] and Difference of Gaussian

(DoG) [17] are employed to obtain both corners and blobs.

Usually, a feature detector is the first step towards object detection and pose

estimation, which is generally followed by feature extractors that are responsible for

obtaining a feature descriptor or a feature vector. Despite being patented, the most popular

methods for feature extraction in intensity images are the following: Scale Invariant Feature

Transform (SIFT) [18][19], Speeded up Robust Features (SURF) [20] and Histogram

Oriented Gradients (HOG) [21][22].One interesting application of the SIFT and SURF

descriptor is to build object models that can be used in the recognition of all objects in the

scene an estimate their pose [23]. Collet et al. proposed as well, an optimized framework,

using MOPED applied with the Iterative Clustering-Estimation (ICE) algorithm developed

by the same author, which iteratively clusters neighbor features that are likely to belong to

the same object and then hypothesize the object classification within each cluster [23].

Although this framework successfully works for textured objects as shown in Figure 2.1 it

presents some shortcomings regarding less textured objects [24].

 STATE OF ART

Diana Martins Lavado 5

Regarding HOG, Wang et al. combined trilinear interpolated HOG with Local Binary

Pattern (LBP) in order to overcome partial occlusion [25] and the several steps are presented

in Figure 2.2.

 A very popular approach to compute pose estimation is to match features between a

3D model of the object and a corresponding 2D image [26][27]. However, these type of

approaches are only successful for locally planar textures [19][28][29][30], and objects in

an industrial and surgical setting do not usually present such properties. Thus, visual feature

matching is not robust to specular objects due to the unpredictable change of the intensity of

light throughout the object, which is not coherent with the 3D model.

 Feature-based approaches can use different features such as edges [31][32] or

intersection of straight lines [26][33]. In 2000, Costa and Shapiro [31] computed the edge

image of the output of a camera with two light sources and, then extracted the features and

their relationships that enables the recall of 2D object models through relational indexing

permitting an object classification. Instead of the relational indexing approach, Ulrich et al.

Figure 2.1- Recognition of real world scenes using the MOPED framework. [23]

Figure 2.2 – Framework of the HOG-LBP detector [25].

Sorting Surgical Tools from a Cluttered Tray – Object Detection and Occlusion Reasoning

6 2018

[32] used a 2D edge matching followed by a pyramid level method in order to obtain the

most likely classification, which enabled to obtain a more accurate 3D object position.

However, 2D images seem to be only suitable for bin-picking applications when robot poses

are limited to a few degrees of freedom [34]. A detection example with this approach can be

found in Figure 2.3. David et al. [26][33] proposed in 2003 and later on in 2005 an algorithm

able to recognize cluttered objects. This algorithm estimated the pose of the object by

matching lines presented in the real image with lines likely presented by 3D models of the

objects. One of the advantages of this approach is its robustness to occlusion since it only

requires a few unfragmented model lines to be successful.

 All the approaches previously described match the extracted features to the

corresponding model features thus, the object position can be computed using - non-prone

to occlusion - fast nearest neighbor and range search algorithms [26].

2.2. Template and Shape Matching

Another solution for object detection in random bin-picking systems is template

matching, which resembles the methods described in the previous section. However, instead

of local features, a database with templates of the objects at different poses is built and is

correlated to the input image, in order to find the best match.

 A popular template matching algorithm is the Hough Transform, which despite

originally being intended to detect lines [35] and it was later further developed to recognize

Figure 2.3- Ulrich et al. detection example robust to occlusion [32].

 STATE OF ART

Diana Martins Lavado 7

generic parametric shapes[36] and then generalized to identify object classes

[37][38][39][40][41][42]. In this algorithm, during recognition, for each edge (boundary)

point for each possible master theta (with theta being the orientation of the object) it is

computed the gradient direction and subtracted theta. Then for the resultant gradient, the

displacement vectors are retrieved to vote for the reference point which is the center of the

object defined by its coordinates, orientation, and possibly scale. This process of additive

aggregation of evidence from input images in a parametric space (Hough space) is known as

Hough voting, however, nowadays is wrongly misunderstood for Hough Transform which

is the overall algorithm [43]. The configuration of detected objects is encoded by the maxima

peaks amongst all Hough votes within the Hough space.

Despite Hough Transforms being a common algorithm there are others such as the

Fast Directional Chamfer Method (FDCM) [44], whose results are shown in Figure 2.4 , or

the global shape descriptor Ensemble of Shape Functions (ESF) [45], Depth-Encoding

Hough Voting (DEHV) [46], RANSAC algorithm [47], [48], [49] amongst others [50], [51],

[52], [53], [54], [55] which are used in shape matching for real-time object classification

applications.

 In 2010, Ferrari et al. [56] developed a shape matching framework that uses scale-

invariant local shape descriptors and a voting scheme on a Hough space as previously

described by the author [57].

The implementation of all the algorithms described in this section is quite

straightforward, nevertheless it presents two main shortcomings: on one hand, it requires a

long computation time, because of the high amount of possible poses for each edge point.

And, on the other hand, it is not able to handle either occlusion or shiny objects very well

Figure 2.4- Object detection and pose estimation results from the FDCM algorithm [44].

Sorting Surgical Tools from a Cluttered Tray – Object Detection and Occlusion Reasoning

8 2018

due to the fact that only edges above a predefined threshold shall be taken into account,

making the binarization process not very stable for those situations [32][58]. In order to

overcome the first drawback, Strzodka et al. [59] used graphics hardware-accelerated

implementations and resorted to parallel programming to achieve successful matches within

one minute. Nonetheless, for most bin-picking applications, a minute is still an unreasonable

amount of time, which discard its use in some real applications.

2.3. Bag of Visual Words (BOVW)

While all the methods presented so far are still being developed, another research

field has risen, due to the increasing interest in Artificial Intelligence (AI). A part of AI is

Machine Learning (ML), which also undergone an upsurge in 2010’s, as well as its branch,

Deep Learning (DL).

 The Bag of Words (BOW) model [60] is in the midst of both CV and ML and it is

mainly used in documents where the number of appearances of each word is firstly counted,

to define the keywords of the document and to draw a frequency histogram. The concept of

Bag of Visual Words is an adaptation of BOW, where image features are used instead of

words. The three main steps of this approach are [61]:

• Feature Extraction: the features and respective descriptors need to be

extracted from patches of the image which can be achieved through feature descriptors such

as SIFT, SURF or HOG as described in Section 2.1.

• Codebook Generation: codebooks are a method used to classify the

local appearance of features into a discrete number of visual words representing the class of

the object. In this step, the descriptors are clustered for example with the K-Means [62] or

DBSCAN [63] algorithm and the centroids of the clusters are used as vocabulary of the

visual dictionary, therefore the image is encoded as a histogram of visual code words.

• Learn and Test: several learning methods could be applied to the

histogram encoded image to predict the category of the objects in the image, such as Support

Vector Machines (SVM) [64] or the classifier Naïve Bayes [65]. However, Csurka et al. [60]

showed that SVM obtains better results than the classifier Naïve Bayes. During object

detection, interest point features are matched to the words of the codebook and then

classified by the trained classifier.

 STATE OF ART

Diana Martins Lavado 9

Despite their early discovery, codebooks are a common approach to execute object

detection and could be implemented with the aim to speed up a sliding window approach

[66] and undergone some improvements such as the use of histogram intersection kernel and

being generalized to arbitrary additive kernels [61]. In 2014, codebooks were applied in image

reconstruction [67] and recently in 2017, Zhou and Wachs developed an object recognition

approach in which surgical instruments were segmented through a variant of BOVW using

RGB and depth images from a Microsoft Kinect camera [4].

Codebook-based detectors have some advantages in comparison with the methods

described in previous sections, like an increased efficiency, since they do not require a

mechanism to encode spatial information among features [61] and they are not sensitive to

partial occlusion, since the classification of the object only needs a small amount of patches

[43].

2.4. Point Pair Features (PPF)

Another descriptor that obtains global information of objects for robust object

recognition is the Point Pair Features (PFF), which resorts to a Hough voting scheme or the

RANSAC algorithm to match surface element (surfel) pairs between the model and the input

image. Drost et al. [68] accomplished a success rate of 97% for an object with less than 84%

of occlusion which makes PPFs methods a great choice for random bin-picking applications.

The popularity of PPFs has increased quickly leading to the publication of several

adaptations and improvements. For example, Kim and Medioni [69] added visibility context

in order to achieve better results and Choi et al. [70] used different edge point relations to

decrease the number of features, hence increasing the detection speed. In another direction,

Drost & Ilic [71] used edge gradients to compute PPFs, and in 2015 Birdal &Ilic [72] resorted

to a weighted Hough voting method and an interpolated recovery of the parameters,

disposing of the Iterative Closest Point (IPC) algorithm to enhance the accuracy of detection

and pose estimation. In 2016, Hinterstoisser et al. [73] added a method of sampling and

spreading features and, recently in 2018, it was complemented by fusing a Correspondence

Rejector Sample Consensus algorithm along with an IPC technique, which enabled to

improvevboth the occlusion handling and the detection accuracy [74].

Sorting Surgical Tools from a Cluttered Tray – Object Detection and Occlusion Reasoning

10 2018

2.5. Implicit Shape Model (ISM)

Leibe et al. [75] proposed the Implicit Shape Model, which is a combination between

visual codebooks and the Hough Transform. According to Gall et al. [43] “During training,

they augment each visual word in the codebook with the spatial distribution of the

displacements between the object center and the respective visual word location” and for the

object detection to be successful it requires the matching of descriptors to visual words which

votes for the object center. All the steps of this algorithm are described in Figure 2.5.

Throughout the years this model underwent several developments, especially

focusing on improving the voting method and hypothesis generation [37], [39], [41], [42],

[66], [76], [77]. One example of this is Drost et al. [68], that adapted the Hough voting with

pairs of surface elements matches, which was then further developed in 2014 by Choi et al.

[70], by the acquisition of objects point clouds to use oriented points on objects contours.

2.6. Random Forests

A Random Forest is an ensemble of connected decision trees mostly trained through

the “bagging” method, which combines several learning models and requires labeled data

for training, therefore Random Forests can be classified as a supervised learning algorithm

and their initial aim was to improve the generalization accuracy by avoiding overfitting and

combining a large number of weak classifiers, e.g. decision trees [78].

Figure 2.5- Scheme of ISM algorithm [75].

 STATE OF ART

Diana Martins Lavado 11

 This algorithm has been used for tracking both humans [79] and objects in real time

[80], [81], [82] and also in combination with optical flow and template matching as proposed

in 2010 by Santner et al. [83] or with HOG and SIFT features [84].

Gall et al. [43] adapted random forests in 2011, leading to the upsurge of Hough

Forests which combines machine learning techniques with the Hough Transform and

according to the author “each tree in the Hough forest maps local appearance of image or

video elements to its leaves, where each leaf is attributed a probabilistic vote in the Hough

space”. The leaves in this approach can be described as an implicit appearance codebook

whereas in the ISM method it is an explicit codebook employing unsupervised clustering

processes.

In 2013 Badami et al. [24] aimed to classify and estimate the pose of objects of

different classes by using a Hough Forest framework to train a codebook of point-pair-

features votes from RGB depth images.

2.7. Convolutional Neural Networks (CNN)

In this dissertation it is assumed that the reader has some knowledge regarding neural

networks, however further detailed information could be found on the online book “Neural

Networks and Deep Learning” [85] or in [86] and [87].

CNNs are a supervised learning method and are considered a feed-forward artificial

neural network in which the features extracted present better generalization and

discrimination in comparison with features from classical methods [88] as well as higher

ability to handle occlusion and changes in scene illumination. However, as downside, they

require a large amount of data.

The first few layers of the neural network are responsible for extracting essential

features for recognition such as shape, color, and texture, however, these features are so

small that are imperceptible to the naked eye and are successively extracted through a

learning process that occurs layer by layer. Although these layers typically are convolution,

pooling or fully-connected [89], there could be other types such as ROI(Region of Interest)-

pooling layer of Fast R-CNN [90] or Region Proposal Network (RPN) layer of Faster R-

CNN [91]. Besides layers and filter size, it is possible to change the activation function, e.g.

logistic function, ReLu, ELU, softplus, softmax, amongst others.

Sorting Surgical Tools from a Cluttered Tray – Object Detection and Occlusion Reasoning

12 2018

The use of CNNs involves two steps: training and predicting. In order to train the

network, it is required a significant amount of data and respective labels. The learning of the

weights associated to layer-connections, as well as other parameters, is done through forward

and back propagation algorithms frequently resorting to gradient descent methods.

Throughout the years several CNN architectures has been developed aiming to

improve the results. The development of more capable dedicated hardware, such as graphical

processing unit (GPU) and central processing unit (CPU), has permitted a boom enabling

the uprising of Deep Learning (DL) networks, which are neural networks with many hidden

layers.

One of the first deep learning models dates back to 1988, when Yan LeCun proposed

the LeNet [89], that had just five layers to identify the digits within the zip codes. However

with the surpassing of computational power limitations the AlexNet [92] was developed.

This network architecture was the winner of the 2012 ImageNet challenge and its main

contributions were the GPU implementation, max pooling and the non-linear activation

function at the end of each layer, being followed by VGGNet [93] in 2014, that uses

consistent filter sizes and many convolutional and pooling layers.

 In 2015, Google developers proposed the GoogLeNet [94] which had a new

architecture, named Inception, and within that model there were several small filters in order

to extract smaller details, hence improving the accuracy. One year later, the ResNet [95] was

presented by Microsoft researchers and has more than 150 layers without the loss of

performance which was achieved by the addition of regularly spaced shortcut connections,

batch normalization and disposal of fully connected layers at the end.

 Also in 2015, J. Redmon proposed the You Only Look Once (YOLO) [96] in which

the input image is divided into several cells and each one is responsible for predicting

bounding boxes and class probability. This network underwent further development

resulting in YOLOv2 (2016) [97] and YOLOv3 (2018) [98] that are going to be discussed

in Section 5.1.

 Finally, the last method presented as state of the art is Single Shot Multibox Detector

(SSD) [99], which can be described as a combination of Faster R-CNN [91], by making

predictions from feature maps, and YOLO to achieve the highest detection accuracy with

the real-time speed of YOLO [96].

 STATE OF ART

Diana Martins Lavado 13

2.8. Surgical Instruments

Without regard to the application, bin-picking approaches face fundamentally 4

challenges [100]:

• Besides being placed in different positions, parts can present a wide range

of postures (with diverse inclinations, rotations, and even scale);

• The complexity of the piece, which hinders template-based approaches;

• Parts may be partially or fully occluded;

• Object detection must be able to withstand poorly lit conditions as well

as the reflectance properties of the piece.

All the methods and algorithms presented so far in this dissertation are applied in

random bin picking of industrial parts, however not all can be applied to objects made by

non-Lambertian materials (e.g. metal, ceramic or glass) such as surgical instruments, which

are prone to display an unpredictable change in intensity throughout the object, as shown in

Figure 2.6 that contains images used in this dissertation.

2.8.1. External Markers

A common approach to avoid surgical tool detection errors is the addition of external

markers to the surgical tool which significantly eases the recognition task. Over the years

several studies resorted this approach, using a variety of external markers such as

recognizable patterns [101], color tags [102], light-emitting diodes [103], RFID tags [10]

and 2D data matrix barcodes [3][104][105].

 The work of Xu et al. [104][105] is of great interest due to the high success rate

achieved. They used Key Surgical®KeyDot to identify the tools through a 2D data matrix.

The corners of the code are used to compute an affine transformation that aligns a template

to the real instrument, in order to obtain a virtual map of the scene, as the one present in

Figure 2.7, to apply the occlusion reasoning.

Sorting Surgical Tools from a Cluttered Tray – Object Detection and Occlusion Reasoning

14 2018

Specular Highlight

Interreflection

(a)

Specular Highlight

Interreflection

Extreme
Darkness

(b)
Figure 2.6- (a)(b) Examples of typical appearance variation in surgical tools of the dataset.

 STATE OF ART

Diana Martins Lavado 15

Although these methods show great potential, they have a huge drawback, which is

that they all apply physical modifications to surgical tools that might violate regulations,

raise safety concerns and, therefore hampering their implementation on surgical instruments.

2.8.2. Marker-Less Approaches

In 2017, Bouget et al. [106] published a literature review of marker-less approaches

for the detection and tracking of surgical tools and an adapted summary table could be found

in Table 2.1.

However, there are a wide range of studies and methodologies that were not

addressed. Carpintero et al. [8][107] resorted to Matrox Imaging Library (MIL) Finder Tool

to extract the instrument models, and to recognize the surgical tools in the scene. Other

approaches involved the approximation of the surgical instruments to geometric shapes such

as tubular shapes [47], [108] or pointy solid cylinders [109], [110], [84]. In 2017, Li et al.

[111] uses two cameras and performs blob analysis to extract the surgical instruments from

the background obtaining surgical instruments model (SIM) through stereo vision, thus

extracting point-pair features from SIM to distinguish the tools.

In 2016, M2CAI released a challenge in which the goal was to detect specific

surgical tools from the m2cai16-tool dataset. Most of the network architectures of top

winning deep learning approaches were modifications of AlexNet: Twinanda et al. [112]

Figure 2.7- Pose estimation using the four corners of the data matrices from both template and input image
of the container after non-linear refinement [104].

Sorting Surgical Tools from a Cluttered Tray – Object Detection and Occlusion Reasoning

16 2018

achieved 52,5% mAP (mean Average Precision) by developing ToolNet and EndoNet,

followed by Sahu et al. [113][114] with 53,9% mAP and 65% mAP respectively. Another

approach was proposed by Raju[115] which combined VGGNet with GoogLeNet obtaining

63,7% mAP, that was surpassed by Choi et al. [116] who made some modifications to YOLO

such as the addition of one fully connected layer, dropout, and batch normalization, thus

pretraining the convolutional layers on ImageNet 1000-class dataset achieving a total of

72,26% mAP.

The highest success rates for detecting surgical instruments are 87,6% mAP and

95,81% AUC (Area Under the ROC Curve) achieved by Hossain et al. [117] and Prellberg

et al. [118] respectively in 2018. The network architecture of Hossain et al. is a combination

of VGG-16 and RPN (Region Proposal Network), whereas the one developed by Prellber et

al. was built upon a 50 layer ResNet.

 STATE OF ART

Diana Martins Lavado 17

Table 2.1- Summarized literature review of marker-less approaches for surgical tools detection and tracking. Table adapted from [106].

 Features Prior knowledge Traking

C
o

lo
r

G
ra

d
ie

n
ts

H
O

G

T
ex

tu
re

S
h

ap
e

M
o

ti
o

n

D
ep

th

S
em

an
ti

c

L
ab

el
s

T
o

o
l

sh
ap

e

T
o

o
l

lo
ca

ti
o

n

U
se

r
as

si
st

.

K
in

em
at

ic
s

B
ay

es
.

P
ar

ti
cl

e

In
it

ia
li

sa
ti

o
n

(Allan et al., 2013) [84] ✓ ✓ ✓ ✓ ✓

(Allan et al., 2014) [119] ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

(Allan et al., 2015) [120] ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

(Alsheakhali et al., 2015) [121] ✓ ✓ ✓

(Bouget et al., 2015) [122] ✓ ✓ ✓ ✓

(Cano et al., 2008) [123] ✓ ✓ ✓ ✓ ✓

(Charrière et al., 2017) [124] ✓ ✓ ✓ ✓

(Doignon et al., 2005) [125] ✓ ✓ ✓ ✓ ✓

(Doignon et al., 2007) [126] ✓ ✓ ✓

(Haase et al., 2013) [110] ✓ ✓ ✓ ✓ ✓

(Kumar et al., 2013) [127] ✓ ✓ ✓ ✓

(McKenna et al., 2005) [128] ✓ ✓ ✓ ✓ ✓

(Pezzementi et al., 2009) [129] ✓ ✓ ✓

(Reiter & Allen, 2010) [130] ✓ ✓ ✓ ✓ ✓

(Reiter et al., 2012) [131] ✓ ✓ ✓ ✓

(Reiter et al., 2012) [132] ✓ ✓ ✓ ✓ ✓ ✓ ✓

(Richa et al., 2012) [133] ✓ ✓

(Rieke et al., 2015) [134] ✓ ✓ ✓ ✓

(Speidel et al., 2006) [135] ✓ ✓ ✓

(Speidel et al., 2008) [108] ✓ ✓ ✓ ✓

(Speidel et al., 2014) [136] ✓ ✓ ✓ ✓ ✓

(Sznitman et al., 2014) [47] ✓ ✓ ✓

(Voros et al., 2007) [137] ✓ ✓ ✓ ✓

(Wolf et al., 2011) [138] ✓ ✓ ✓ ✓ ✓

(Zhou & Payandeh, 2014)[139] ✓ ✓ ✓

Sorting Surgical Tools from a Cluttered Tray – Object Detection and Occlusion Reasoning

18 2018

Diana Martins Lavado 19

3. INSTRUMENTS AND SOFTWARE

The aim of this dissertation was to develop a successful methodology for detecting

surgical tools and perform occlusion reasoning to be applied on a system, that would sort the

surgical tools from a cluttered tray after disinfection to assembly surgical kits.

The first step towards accomplishing that goal is to choose the surgical instruments,

therefore, with the intention of making the system useful and as close to the “real world” as

possible, the Chief Nurse of the Main Operating Room of the Hospital of University of

Coimbra, Jorge Tavares, was interviewed and promptly supplied lists of surgical kits

amongst a wide range of medical specialties. These lists were analyzed and it was chosen

the most popular instruments across several medical fields, however, due to some difficulties

in acquiring those surgical tools, the instruments used throughout this research were the ones

found which had the closest form to the intended tools, which are: Scalpel nº4, Straight

Dissection Clamp, Straight Mayo Scissor and Curved Mayo Scissor.

 The camera used for this project was the Teledyne Dalsa BOA INS, which has

640x480 of pixel resolution. However, despite being a smart camera, none of its

functionalities were used.

The object detection, as well as occlusion reasoning stage in this dissertation, was

accomplished by resorting to convolutional neural networks as will be further explained.

These neural networks were trained on the operating system Ubuntu 16.04 on dual boot

because, at the time, the NVIDIA CUDA toolkit for Windows was incompatible with

Microsoft Visual Studio 2015. An installation script of all the required software and

packages to train the neural networks on Ubuntu can be found on ANNEX A.

 Independently of the operating system, the required software for the execution of this

project are:

• CUDA 9.1, which is a parallel computing platform by NVIDIA and it is

used with the intention of speeding up the running time;

• CuDNN 7.0.5, that was also developed by NVIDIA and is a GPU-

accelerated library of primitives for deep neural networks and it is used

Sorting Surgical Tools from a Cluttered Tray – Object Detection and Occlusion Reasoning

20 2018

with the aim of speeding up the training and implementation of the deep

neural networks;

• OpenCV 3.4.0, which stands for Open Source Computer Vision Library

is compatible with C++, python, and java, being supported by Windows,

Linux, Mac OS, iOS and Android. It can also be compiled with OpenCL

using the full capabilities of the hardware for acceleration purposes

• Darknet is an open source neural network framework written in C and

CUDA which supports CPU and GPU computation. The original pjreddie

repository only works on Ubuntu whereas the AlexeyAB darknet

repository is compatible with Windows and Ubuntu. Both darknet

frameworks can be compiled enabling CuDNN, OpenCV, OpenMP, and

GPU on the makefile.

It is very important to install the software and libraries with the order that were listed

above, due to dependencies during their installation. Another aspect that requires attention

are version compatibilities, because whenever a software undergoes updates it is likely that

it no longer is compatible with some of the other software or libraries mentioned and while

the other programs are being developed to support the improvement, the most recent releases

are not compatible, which proofs the utter importance of version compatibility.

 Regarding the hardware, two computers were used: one for training the neural

networks and other for developing the application and perform the train and test group split

of the data as well as analyze the results and their respective hardware specification could

be found on Table 3.1.

Table 3.1- Hardware specifications.

 Neural Networks Training App development

Graphics Card NVIDIA GEFORCE GTX 1050Ti NVIDIA GEFORCE GTX 850M

Dedicated memory 4GB 4GB

Diana Martins Lavado 21

4. CLASSICAL APPROACH

The aim of this project was to develop a robust detection system able to handle

occlusion for sorting surgical tools assessing the first tool to be removed and returning the

grasping point coordinates which do not require great precision due to the use of an

electromagnetic gripper. However, this dissertation focus mainly on object detection and

occlusion reasoning.

Due to the objective of recognizing the tool the as fastest as possible, the initial

approach to achieve the surgical object detection and sorting was similar to studies from Xu

et al. [3][104][105] and its scheme is presented in Figure 4.1. Despite the final developed

approach in this dissertation is not the one described in this chapter, it still is an important

contribution to solve random bin-picking of surgical tools.

Figure 4.1- Scheme of all the steps involved in this project.

Sorting Surgical Tools from a Cluttered Tray – Object Detection and Occlusion Reasoning

22 2018

Detection and Classification

The tool’s class ID is encoded into a 2D data matrix barcode, which besides

making the identification task quite straightforward, it eases the pose estimation through

computing an affine transformation between the four corners of the matrix of the template

and the real object. The detection and classification of the tools in the tray was planned to

be achieved using the software package 2DTG, that is capable of decoding multiple small

codes present in an image and return the position of all their corners.

Virtual Occupancy Map

After finding the position and classification of the tools in the tray, an occupancy

map would be built by applying an affine transformation on the instrument template before

adding it to the map with the respective position and orientation, thus a non-linear refinement

would be implemented to improve the alignment of the templates with the surgical

instruments in the scene.

Occlusion Reasoning

In order to determine the tool to be first removed it is mandatory to overcome

the difficulties imposed by occlusion. Thus, each instrument template is assigned to one bit

in the occupancy map which is a single channel image. Then each pixel would be analyzed

and its intensity value assessed accordingly. For example, if bit 4 is 1 then the instrument D

is there, however, if the bit 2 is 0 then instrument B is absent. This reasoning may provide a

location where an occlusion occurs (when the same pixel has more than one bit assigned),

and by comparing the several hypotheses (A occludes B or B occludes A) with the real image

it would be possible to determine which tool is on top of the tray and therefore, the first to

be removed.

Pose Estimation and Kits Assembly

The electrical current, position, and orientation of an electromagnetic gripper

would be adjusted accordingly to the shape, mass, material and touch point of the tool to be

removed. After picking up the surgical instrument, the robot would place it onto the proper

location, in accordance to the surgical kit being set up.

Diana Martins Lavado 23

4.1. Templates

In this approach, the first step towards pose estimation is the creation of a

template for each surgical instrument class, noting that the same tool could have more than

one template if it has more than one possible face, requiring a different barcode for every

single one.

There are three main image segmentation approaches to obtain the templates:

edge-based, threshold-based and region-based. The next sections of this dissertation make

an overview of some of these methods and their implementation in surgical tools, showing

their application in the original Figure 4.2. All the templates were built in C++ through

Microsoft Visual resorting to the OpenCV library.

4.1.1. Edge-based Image Segmentation

The first edge detector implemented was Sobel [11] which is a discrete

differentiation operator combining both Gaussian smoothing and differentiation. It

calculates an approximation of the gradient of an image intensity function, by convolving

the image, I, with a specific filter. From the Sobel operator, two derivatives are computed

Figure 4.2- Original image of a Curved Mayo Scissor.

Sorting Surgical Tools from a Cluttered Tray – Object Detection and Occlusion Reasoning

24 2018

that represent horizontal changes (Equation 4.1) and vertical changes (Equation 4.2) which

combined results in the gradient magnitude (Equation 4.3).

𝐺𝑥 = [
−1 0 1

−2 0 2

−1 0 1

] ∗ 𝐼 (4.1)

𝐺𝑦 = [
−1 −2 −1

0 0 0

1 2 1

] ∗ 𝐼 (4.2)

𝐺 = √𝐺𝑥2 + 𝐺𝑦2 (4.3)

The edges obtained by the Sobel magnitude of a Curved Mayo Scissor can be

found on Figure 4.3, which was achieved through executing the following OpenCV

functions in a greyscale image:

Sobel(Input_Mat, xsobel, CV_32F,1,0,3,BORDER_REPLICATE);

 Sobel(Input_Mat, ysobel, CV_32F, 0, 1, 3, BORDER_REPLICATE);
magnitude(xsobel,ysobel,output);

normalize(output, output_normalized,0.0,255.0, cv::NORM_MINMAX, CV_8U);
Code Snippet 4.1- Sobel edge functions.

Figure 4.3- Sobel magnitude of a Curved Mayo Scissor.

Diana Martins Lavado 25

According to the OpenCV Sobel documentation, this operator can produce some

noticeable inaccuracies, which can be reduced by the Scharr operator (Equations 4.4, 4.5,

4.3) that minimizes the angular error in Fourier Transform domain. However, such

improvement was not corroborated by Figure 4.4, that is very similar to Figure 4.3.

𝐺𝑥 = [
−3 0 3

−10 0 10

−3 0 3

] ∗ 𝐼 (4.4)

𝐺𝑦 = [
−3 10 3

0 0 0

3 10 3

] ∗ 𝐼 (4.5)

Nevertheless, these edge operators are sensitive to noise and do not work as well

in smooth edges, as verified in Figure 4.5, in which was applied the gaussian blur function

with a 3x3 kernel and an x and y standard deviation of 50 before the implementation of the

edge operators.

Figure 4.4- Scharr magnitude image of a Curved Mayo Scissor.

Sorting Surgical Tools from a Cluttered Tray – Object Detection and Occlusion Reasoning

26 2018

A more suitable algorithm for image segmentation through edge detection was

proposed by John Canny [12] and had the following main steps:

• Apply smoothing derivatives to suppress noise;

• Apply a high threshold to detect strong edge pixels;

• Link those pixels to form strong edges;

• Apply a low threshold to find weak but plausible edge pixels;

• Extend the strong edges to follow weak edge pixels.

In order to manually find the best set of thresholds, it was developed an

application with a sliding bar, which whenever moved callbacks the OpenCV Canny

function with the new parameters chosen, which can be observed in Figure 4.6 as well as the

best parameters applicable to the Curved Mayo Scissor.

Additionally, it is possible to obtain the contours of the surgical tool from the

edges, as shown in Figure 4.7. This can be computed through the functions present in Code

Snippet 4.2, in which “edges” is the output Mat from the Canny function, “contours” is a

vector with information of the lines (vector of points) and “drawing” is the output Mat with

the all the image contours. The code present is also within the callback function previously

mentioned, in order to observe the impact in both edge and contour image, while changing

each threshold value.

(a) (b)

Figure 4.5- Edge operators implementation on a smoothed image.
(a) Sobel (b) Scharr.

Diana Martins Lavado 27

(a)

(b)

Figure 4.6- (a) Sliding bar in original image of a Curved Mayo Scissor (b) Canny
edges with threshold values presented in sliding bar.

Sorting Surgical Tools from a Cluttered Tray – Object Detection and Occlusion Reasoning

28 2018

GaussianBlur(Input_Mat, blured, Size(9, 9), 1, 1, BORDER_REPLICATE);

findContours(edges, contours,hierarchy, RETR_TREE, CHAIN_APPROX_SIMPLE,

Point(0, 0));

drawContours(drawing, contours, index_color, color, 2, 8, hierarchy, 0,

Point());

Code Snippet 4.2- Object contour from Canny edges.

4.1.2. Threshold-based Image Segmentation

Other approaches for image segmentation are threshold-based techniques, which

compare the intensity levels with a threshold, that can be automatically found through Otsu’s

method. This method assumes that the image contains two classes of pixels (foreground and

background pixels), meaning that the grayscale image is converted to a binary image, then

some noise is removed by erosion and finally, is found the threshold that minimizes the

weighted within-class variance, which is equivalent to maximizing the variance between

classes.

Figure 4.7- Contours of Curved Mayo Scissor controlled with the sliding bar
application.

Diana Martins Lavado 29

The resultant image segmentation of a Curved Mayo Scissor is displayed in

Figure 4.8, and the respective OpenCV function is in Code Snippet 4.3.

threshold(Input_Mat, Binary, thresh, thresh2, CV_THRESH_OTSU);

Code Snippet 4.3- Image segmentation using Otsu’s method

4.1.3. Region-based Image Segmentation

These type of approaches merge and split pixels into sub-regions, considering

grayscale intensity values similarity with neighboring pixels. One of these methods is the

watershed algorithm [140], which quoting the OpenCV documentation “any grayscale image

can be viewed as a topographic surface where high intensity denotes peaks and hills while

low intensity denotes valleys. You start filling every isolated valleys (local minima) with

different colored water (labels). As the water rises, depending on the peaks (gradients)

nearby, water from different valleys, obviously with different colors will start to merge. To

avoid that, you build barriers in the locations where water merges. You continue the work

of filling water and building barriers until all the peaks are under water. Then the barriers

you created gives you the segmentation result” [141].

Figure 4.8- Image segmentation of a Curved Mayo Scissor resorting to Otsu’s method.

Sorting Surgical Tools from a Cluttered Tray – Object Detection and Occlusion Reasoning

30 2018

In order to improve the segmentation of an image through the watershed

algorithm, all the background pixels should have intensity values of 0 (black), because it

eases the discrimination of foreground pixels while applying the Distance Transform.

Afterward, it is advised to implement a Laplacian filter to sharpen the image, however, it

was verified that this results in an overly sectioned image of the surgical tools and that a

smoothing filter (e.g. Gaussian) leads to a more accurate segmentation. The next step is to

create a binary image resorting to Otsu’s method and apply the distance transform whose

output is displayed in Figure 4.9, whose peaks are going to be extracted by applying a

threshold and a morphologic operation (dilation). Then, the OpenCV function findcontours

allows to create markers for the watershed, that are posteriorly drawn and filled with random

colors. Some of the C++ lines of this algorithm could be found on Code Snippet 4.4. and the

final result in Figure 4.10.

 GaussianBlur(Input_Mat, img, Size(5, 5), 1, 1, BORDER_REPLICATE);

 cvtColor(img, imgResult, CV_BGR2GRAY);
 threshold(imgResult, imgResult, 66, 300, CV_THRESH_BINARY |

CV_THRESH_OTSU);

distanceTransform(imgResult, dist_transf, CV_DIST_L2, 3);

normalize(dist_transf, dist_transf, 0, 1., NORM_MINMAX);
 threshold(dist_transf, dist_transf, .4, 1., CV_THRESH_BINARY);

Mat kernel1 = Mat::ones(3, 3, CV_8UC1);

 dilate(dist_transf, dist_transf, kernel1);
 dist_transf.convertTo(dist_transf8u, CV_8U);

 findContours(dist_transf8u, contours2, CV_RETR_EXTERNAL,

CV_CHAIN_APPROX_SIMPLE);

 drawContours(markers, contours2, static_cast<int>(i),

Scalar::all(static_cast<int>(i) + 1), -1);

 circle(markers, Point(5, 5), 3, CV_RGB(255, 255, 255), -1);

 watershed(image1, markers);

markers.convertTo(mark, CV_8UC1);

 bitwise_not(mark, mark);
Code Snippet 4.4- Main lines of code of the watershed algorithm

At this point in the development of dissertation we were still unable to acquire a

license for the 2DTG software, which would allow to decode multiple 2D data matrix

barcodes in the same image and also the camera used in this project had a pixel resolution

of 640x480, which was not enough to identify the smallest change within the barcodes, due

to their reduced size. Therefore, this approach to detect surgical tools became unsuitable and

Diana Martins Lavado 31

it was required to follow a completely new path towards the bin-picking of surgical tools in

a clustered tray, which is discussed in Chapter 5.

Figure 4.9- Distance Transform of a Curved Mayo Scissor.

Figure 4.10- Watershed segmentation of a Curved Mayo Scissor.

Sorting Surgical Tools from a Cluttered Tray – Object Detection and Occlusion Reasoning

32 2018

Diana Martins Lavado 33

5. MODERN APPROACH

Within the last few years, Convolutional Neural Networks have undergone an

upsurge solving problems in a wide range of fields such as object detection in which the

most relevant networks are Faster R-CNN [91], SSD [99], YOLO(that currently has three

versions) [96], [97], [98].

According to Huang et al. [142], which compares the accuracy of Faster R-CNN,

R-FCN and SSD meta-architectures throughout several datasets and feature extractors, the

Faster R-CNN obtains better results in comparison with SSD, as shown in Figure 5.1, despite

the higher memory allocation, training duration and detection time.

According to a graph presented in YOLO v2 paper, which is displayed in Figure 5.2,

the Faster R-CNN Resnet evidences the highest mAP, followed by YOLOv2 and SSD

respectively, considering that the camera resolution is 640x480 pixels. However, in order to

enable real-time applications it is preferable to choose a network architecture able to detect

around 60 frames per second (FPS) at the cost of a slightly lower mAP. Hence, the neural

network used in this dissertation was YOLOv2.

Figure 5.1- Accuracy of detector (mAP on COCO) vs accuracy of feature extractor (on
ImageNet-CLS) of the low resolution models [142].

Sorting Surgical Tools from a Cluttered Tray – Object Detection and Occlusion Reasoning

34 2018

The current object detector neural network state of art is YOLOv3 [98] and, although

it was only published in March of 2018, it was also implemented for object detection in the

final stages of this dissertation.

5.1. YOLO v2

YOLO stands for “you only look once” and is a real-time object detection system

which was firstly introduced in 2015 [96], having undergone enhancements over time

resulting into three versions.

The second version of YOLO [97] is considered a single shot detector that splits the

image into an SxS grid, and each grid cell is responsible for predicting a fixed number of

randomly sized boundary boxes, B, each with one box confidence score and one object

classification, C, per grid cell, as shown in Figure 5.3. These predictions are then encoded

by a 𝑆 × 𝑆 × (𝐵 ∗ 5 + 𝐶) tensor, which in this dissertation corresponds to 7x7x14.

Figure 5.2- Accuracy and speed comparison on VOC 2007 dataset [97].

Diana Martins Lavado 35

The YOLOv2 architecture used on this project is represented in Figure 5.4, showing

19 convolutional layers, 5 max-pooling layers and a passthrough layer to enable the use of

fine grain features, which lead to a mAP of 78,6% on VOC dataset.

In comparison with YOLO, the second version of this neural network has an

improved performance due to four main factors:

• Batch normalization, which is implemented at the end of every convolutional

layer aiding the model to converge and stabilize, reducing overfitting and,

thus leading to the removal of the dropout layer;

• High resolution classifier: the network was pretrained on ImageNet dataset

and then was resized (to higher resolution) and fine-tuned for classification,

instead of just resizing it for detection, which was the approach implemented

on YOLOv1;

• Dimension clusters, which are the result of applying K-mean clustering to the

bounding boxes in training data, instead of resorting to predefined anchor

boxes (like YOLOv1);

• Multiscale-training: during training the network randomly changes the

images size

Figure 5.3- YOLO system model detector as a regression problem [96].

Sorting Surgical Tools from a Cluttered Tray – Object Detection and Occlusion Reasoning

36 2018

 The third version was not tested on the VOC dataset yet, however it is possible to

compare the performance of the two latest versions of YOLO on the COCO dataset, in which

the mAP is 44% for YOLOv2 and 57,9% for YOLOv3. Since the implementation of

YOLOv3 was also tested at the end of this dissertation, it is important to explain the main

improvements in comparison to YOLOv2, which are the following:

• Bounding box predictions: it also uses dimension clusters with resemblance

of the previous version, however predicts the objectiveness score using

logistic regression;

• Class predictions: for each class it is used logistic classifiers, whereas

YOLOv2 implements a regular softmax layer;

• Predictions across scales: the bounding boxes are predicted with 3 different

scales to make the detector robust to vary object scales;

• Feature extractor: instead of using darknet-19 as a backbone, YOLOv3 uses

darknet-53, which has 53 convolutional layers and is more efficient than

ResNet-101.

5.2. Dataset

Most of the public datasets used for surgical tools detection were obtain from in-

vivo surgery videos, for example:

• From DaVinci surgery [127];

• From retinal and laparoscopic videos [143];

• From minimally-invasive surgery [84];

• From robotic-assisted minimally-invasive surgery procedures taking scale

and rotation into account [144];

• From brain and spine tumor removal procedures [122];

• From gallbladder excision surgery [116];

• From cataract surgery videos [118];

• From cholecystectomy procedures, the m2cai16-tool dataset [115].

Diana Martins Lavado 37

Image

Convolutional

Maxpool

Convolutional

Maxpool

3 Convolutional

Maxpool

3 Convolutional

Maxpool

5 Convolutional

Maxpool

5 Convolutional

5 Convolutional

112x112

56x56

28x28

14x14

7x7

7x7

7x7

Figure 5.4- YOLO v2 architecture.

Sorting Surgical Tools from a Cluttered Tray – Object Detection and Occlusion Reasoning

38 2018

However, the datasets mentioned above lack in data, diversity, precision in

annotations and do not contain data regarding the surgical tools used in this dissertation.

Therefore, a new dataset was built with custom data.

The first step towards the dataset assembly was to take a lot of photos of each surgical

instrument individually on a surgical tray with several rotations, inclinations and lightening

conditions throughout the tray, resorting to iNspect Express (camera software) from

Teledyne. Afterwards, in order to make the method robust to occlusion, each tool is paired

with another of different class and the process is repeated, under the same conditions

previously described, with one of the instruments occluding the other and vice versa. Finally,

another set of photos are taken with tools of all classes without occlusion. The total amount

of pictures is discriminated in Table 5.1 in which the instruments with a “+” before their

name are on top of previous individually class.

Table 5.1- Discrimination of the amount of pictures in the dataset.

In machine leaning, the bigger the dataset the more accuracy the model is going to

achieve, especially in DL, which requires a higher amount of data [145]. There are a wide

range of techniques to perform data augmentation of an existing dataset, such as cropping,

rotating, flipping and scaling input image. In this dissertation, the data augmentation was

Surgical tools present in the image
Amount

of photos

Scalpel nº4 (individually) 550

+ Straight Dissection Clamp 71

+ Straight Mayo Scissor 49

+ Curved Mayo Scissor 64

Straight Dissection Clamp (individually) 460

+ Scalpel nº4 64

+ Straight Mayo Scissor 76

+ Curved Mayo Scissor 80

Straight Mayo Scissor (individually) 450

+ Scalpel nº4 59

+ Straight Dissection Clamp 77

+ Curved Mayo Scissor 79

Curved Mayo Scissor (individually) 550

+ Scalpel nº4 69

+ Straight Dissection Clamp 117

+ Straight Mayo Scissor 70

All Classes 100

Diana Martins Lavado 39

implemented by defining “random=1” in the network configuration on darknet, which during

training is responsible by randomly resizing the network to a size between 320x320 and

608x608 (multiples of 32) for every 10 iterations as well as changing color (hue, saturation

and exposure) and randomly cropping (through jitter of edges).

The dataset built was published on Kaggle with the title “Labeled Surgical Tools and

Images” achieving around 600 views in 20 days.

5.2.1. Labeling

YOLOv2 is used in this dissertation as a supervised learning algorithm therefore, it

requires the bounding boxes coordinates and corresponding label of all the objects present

in each image which needs to be written in a text file with the same name as the respective

image. Two different programs were tested in order to perform image labeling: BBox-Label-

Tool and Yolo_mark.

5.2.1.1. BBox-Label-Tool

This is a python program [146] compatible with both Windows and Ubuntu, requiring

python 2.7 and the PIL(pillow) package. In order to function the images have to be divided

by class and placed in the folders “…/Images/001”, “…/Images/002” and so on, thus it is

important to mention that the folder “…/Examples” need to contain the same subfolders than

“…/Images”.

 Other requirements are that image names cannot contain “.”, which can be modified

by “Bulk Rename Utility” and all images must have a jpeg format which can be achieved by

“Bulk Converter” software or by typing “ren *.bmp *.jpeg” at the image folder terminal.

By the time it was used for the dissertation, this labeling tool did not supported multi

class labeling (objects from different classes in the same image), so the solution would be to

change the class if of all labels and concatenate the text files referent to the same image or

resort to Yolo_mark labeling tool instead, which is described in section 5.2.1.2. However, in

the meanwhile, a branch of BBox-Label-Tool supporting multiclass objects was developed

[147].

Sorting Surgical Tools from a Cluttered Tray – Object Detection and Occlusion Reasoning

40 2018

5.2.1.2. YoloMark

With resemblance to the previous tool, Yolo_mark [148] is also able to support both

Windows and Ubuntu requiring images with the .jpg format as well.

 Since the training of the neural network would be done in Ubuntu, the same operating

system was used for image labeling. Thus, two text files are required: one with all the image

paths and other with the different class names.

The Figure 5.6 shows the labeling GUI that is created whenever the command

“./yolo_mark images_folder_path image_list_path names_path” is typed onto the terminal.

 The output of this tool is a text file per image, containing in each line the class

number, x, y, width and height of a bounding box label, in which x and y are the coordinates

of the center of the rectangle (and not the left corner as in BBox-Label-Tool)). The content

of an example label file could be found on Figure 5.7 that represents the labels of the surgical

tools displayed on Figure 5.6.

 Besides the detection challenge, YOLOv2 was also used to overcome occlusion

classifying each tool after detection as top (not occluded) or bottom (occluded) easing the

decision regarding which instrument should be firstly removed. Hence the need for labeling

not only for the surgical tool classification but whether it is on top or bottom as well. Since

Figure 5.5- GUI of BBox-Label-Tool.

Diana Martins Lavado 41

the bounding boxes of the labels for occlusion handling remain the same, a python script

was developed in order to change the class number of each label, which was only possible

due to the previous knowledge on which tool was on top in specific intervals of images.

Figure 5.6- Yolo_mark graphical user interface.

Figure 5.7- Label file example of the image present in Figure 5.6.

Sorting Surgical Tools from a Cluttered Tray – Object Detection and Occlusion Reasoning

42 2018

5.3. Train and Test Split

The next step of the development is the dataset split into train and test groups, which

in ML, usually corresponds to 70% (≈2090 images) and 30% (≈895 images) respectively of

the data. However, this division cannot be random, because it is very important to maintain

a balanced proportion of every class, otherwise if a determined class is more prominent then

during object detection the network would have the tendency to classify most objects as

instruments of that prominent class.

In Table 5.2 is represented the discrimination of the amount of images for each class.

In order to obtain a balanced division for each “category”, the highest amount divisible by

70 and 30 common within the lowest amongst classes is chosen. Meaning that for the

“individually”, “with other instruments” and “the 4 classes present” categories the chosen

values are respectively 450, 360 and 100.

Table 5.2- Discrimination of classes distribution.

At this point, the division into train and test groups of images, in which there is only

one instrument, or the four classes present is quite straightforward, whereas regarding

images with two instruments (second category) it is unreasonable to select random images

with two instruments without taking into account the class of the instruments.

 The amount of images of each instrument combination is described on Table 5.3 and

was obtained through solving the Equation 5.1. As previously explained, the initial amount

of images with combined instruments to split is 360 of which 108 (30%) will go to the test

group and the rest (252) to the train group. In order to simplify the calculations, the initial

focus was on finding the test group.

 Individually
With other

instruments

The 4 classes

present
Total

Scalpel 550 376

100

1026

Straight Dissection Clamp 460 485 1045

Straight Mayo Scissor 550 410 1060

Curved Mayo Scissor 450 479 1029

Diana Martins Lavado 43

Table 5.3- Discrimination of images with combination of instruments in the train and test groups

{

108 = 𝑐1 + 𝑠𝑠1 + 𝑐𝑠1 + 𝑠1 + 𝑠2 + 𝑠3

108 = 𝑠1 + 𝑠𝑠2 + 𝑐𝑠2 + 𝑐1 + 𝑐2 + 𝑐3

108 = 𝑠2 + 𝑐2 + 𝑐𝑠3 + 𝑠𝑠1 + 𝑠𝑠2 + 𝑠𝑠3

108 = 𝑠3 + 𝑐3 + 𝑠𝑠3 + 𝑐𝑠1 + 𝑐𝑠2 + 𝑐𝑠3
𝑐1 + 𝑠𝑠1 + 𝑐𝑠1 = 𝑠1 + 𝑠𝑠2 + 𝑐𝑠2

𝑠1 + 𝑠𝑠2 + 𝑐𝑠2 = 𝑠2 + 𝑐2 + 𝑐𝑠3

𝑠2 + 𝑐2 + 𝑐𝑠3 = 𝑠3 + 𝑐3 + 𝑠𝑠3

𝑐𝑠3 = 𝑠𝑠3

𝑠𝑠1 = 5

𝑐𝑠1 = 25

𝑠1 = 10

𝑠2 = 14

 (5.1)

 variable Train Test

Scalpel nº4 - 315 135

+ Straight Dissection Clamp c1 46 24

+ Straight Mayo Scissor ss1 44 5

+ Curved Mayo Scissor cs1 36 25

Straight Dissection Clamp - 315 135

+ Scalpel nº4 s1 54 10

+ Straight Mayo Scissor ss2 32 32

+ Curved Mayo Scissor cs2 40 12

Straight Mayo Scissor - 315 135

+ Scalpel nº4 s2 46 14

+ Straight Dissection Clamp c2 30 23

+ Curved Mayo Scissor cs3 50 17

Curved Mayo Scissor - 315 135

+ Scalpel nº4 s3 26 30

+ Straight Dissection Clamp c3 50 7

+ Straight Mayo Scissor ss3 50 17

All 4 classes present - 70 30

Total 1834 786

Sorting Surgical Tools from a Cluttered Tray – Object Detection and Occlusion Reasoning

44 2018

The first 4 equations translate that the sum of all images with a determined instrument

must be equal to 108, and the following 3 equations are meant to balance the amount of times

a determined tool is occluded (on the bottom), which is important for the training of the

networks handling occlusion. The last parameters were necessary so that the equation system

would be solvable, and their values were a mixture between intuition and trial and error to

achieve the best results.

The values for the train group were obtained by subtracting the same variables of

the test group to the values presented in Table 5.2.

Therefore, a python script was developed, in which for each “category” it would

randomly sort 5 times all the possible options and the first x (x being the corresponding value

in Table 5.3 on the test group) would be added to the test file and the following y (y being

the corresponding value in Table 5.3 on the train group) would be added to the train file.

In Figure 5.8 are displayed two chord diagrams showing the relative amount of

images for each combination of instruments in both train (Figure 5.8(a)) and test (Figure

5.8(b)) groups. The ribbons (each connection) thickness represents the relative amount of

images in which the two instruments it connects are present in the same image. Whenever it

does not have a ribbon, it symbolizes the amount of images in which that instrument appear

individually. Therefore, from the analysis of the diagrams, it is possible to conclude that both

train and test groups are balanced, because in each graph the ribbons have approximately the

same thickness, although in the test group straight mayo scissor + straight dissection clamp

and curved mayo scissor + scalpel evidences a slightly lower amount of images than the

other combinations.

 Regarding the occlusion reasoning, initially the data split into train and test groups

was the same only changing the labels, however, as will be explained in Section 5.4.1.1, it

was necessary to train an occlusion handling network per surgical tool class, which requires

a different division of the data. Since the dataset relative to occlusions is very unbalanced,

due to the largely higher amount of images with the tools on top rather than occluded,

therefore all of the data of each instrument class is randomly sorted 5 times and afterwards

de the first x (x being 30% of the respective total value presented in Table 5.2) will belong

to the test group for the occlusion reasoning of that object and the rest of the image goes to

the train group.

Diana Martins Lavado 45

(a)

(b)

Figure 5.8- Chord diagram of distribution of instruments in images in (a) train group (b) test group.

Sorting Surgical Tools from a Cluttered Tray – Object Detection and Occlusion Reasoning

46 2018

5.3.1. Cross-Validation

The purpose of test group is to estimate the model performance on unseen data,

although YOLOv2 uses this group as a validation helping to adjust some hyperparameters,

it never actually “learns” from it. However, it is important to evaluate the stability and

accuracy of the neural network, which is achieved by cross-validation, that is a method

responsible for assessing if the statistical results can be generalized to an independent

dataset. There are several cross-validation techniques such as k-fold, holdout or repeated

random sub-sampling.

Since in Deep Learning is very important to use as much data as possible, and the

dataset was limited, the technique implemented was an adaptation of k-fold cross validation,

because it uses the entire dataset, splitting it into k groups of which one is the test group and

the rest compose the train group, thus rotating amongst them after a complete training of the

network.

Due to the limited computation power and the extended duration of the training of deep

networks such as YOLOv2, in this dissertation it was only possible to do a cross validation

similar to a 3-fold cross validation (training the network a total of two times). However, the

3 groups do not have the same size in order to maintain the balance of images of every class,

as well as their combinations. In practice, after the completion of the first training of the

network, the data of the previous test group went to the new training group, and the new test

group was obtained extracting the same number of images of the test set on Table 5.3 from

the previous training group.

5.4. Neural Network Training

The YOLOv2 network was trained through the original darknet framework, which

required text files relative to configuration, data and names, that were adapted from the

respective files referent to PASCAL VOC dataset, which is publicly available and contains

20 classes of objects of daily life.

The name files only contain a class name in each line, whereas data files have the

absolute paths (although relative paths also work) to the train, test, and name files, as well

Diana Martins Lavado 47

as the path to the folder in which the weights resultant from the training will be stored. It is

important to emphasize that all files must be Unix text files, which can be obtained by

converting Win files through typing “tr -d ‘\15\32’ < winfile.txt > unixfile.txt” on the prompt

line of the terminal.

The configuration files for object recognition for both YOLOv2 and YOLOv3

architectures can be found on ANNEX B. An important chunk of the YOLOv2 configuration

file with relevant hyperparameters is on Code Snippet 5.1.

The batch size is the number of images and respective labels given to the network,

thus being used to update the weights via backpropagation and, although the smaller the

batch size results in a higher the training time, it leads to more frequent updates per epoch

and, therefore, to a better generalization in the instruments detection. The subdivision is the

number of groups in which the batch can be split and each set will run in parallel on GPU (if

darknet was compiled with GPU enabled). In this dissertation, it was firstly implemented a

batch of 64 and a subdivision of 8 however due to the error “CUDA: Out of memory” the

subdivisions were increased to 16, meaning that for each mini-batch has 4 images.

The height and width were set equally to the images size to increase the resolution

and enhance the performance of the model, still fulfilling the requirement of being divisible

by 32.

Code Snippet 5.1- Sample of YOLOv2 configuration file.

Sorting Surgical Tools from a Cluttered Tray – Object Detection and Occlusion Reasoning

48 2018

The momentum aids the decision of the next step with knowledge of previous steps,

helping to make the gradient stable, whereas the decay aims to reduce the weights to avoid

having large values. These parameters as well as angle, saturation, exposure and hue are

involved with data augmentation and were assigned to default values.

 Another modification to be made to yolov2-voc.cfg file is in the number of classes in

the region section which is set to 4, as well as in the number of filters immediately before the

region section, which corresponds to (classes+5)x5 = 45.

 By default, the darknet github repository from the pjreddie stores the weights in an

external file every 10 000 iterations, however, in order to forestall unexpected errors and to

not lose those intermediate weights, in this dissertation, the original repository was forked

and modified to save weigh files every thousand interactions, which was achieved through

the change presented on Code Snippet 5.2 in the detector.c.

 if(i%10000==0 || (i < 1000 && i%100 == 0))

 to

 if(i%1000==0 || (i < 1000 && i%100 == 0))

 Code Snippet 5.2- Modification in detector.c regarding the weights storing frequency

 The neural network can be trained through the terminal by typing “./darknet detector

train path-to-data path-to-cfg path-to-weigths” and the output could be saved to an external

file by adding “ >> path-to-output” at the end. In this dissertation, it was chosen to

implement a transfer learning approach, instead of training from scratch, due to the lack of

a dataset extensive enough to support that. The concept relative to transfer learning is to use

a pretrained network on very large dataset, in this case ImageNet, as a feature extractor,

which in practice is achieved by using the weight file “darknet19_448.conv.23”, that can be

downloaded from pjreddie website. After the training is stopped it can be easily continued

by using the last saved weight file.

 A sample of the output during the training of YOLOv2 can be found on Figure 5.9,

in which the entire “block” represents one batch of 64 images divided into 16 subdivisions,

where each line is one subdivision with 4 images and the total amount of instruments in those

4 images can be found next to “count:”. Regarding the mini-batch, “Avg IOU” corresponds

to the average intersection of the union between detected objects and respective ground truth

label, “Class” represents the average of the probabilities of objects classified correctly,

Diana Martins Lavado 49

“Obj” is the percentage of detected objects, in comparison with the total amount of objects

in the image, “No Obj” resembles “Obj”, however, it increases whenever the network detects

an object where there is none and “Avg Recall” represents the number of objects correctly

identified out of the total in that subdivision. The last line presented in Figure 5.9 is the most

important in which:

• 30001 is the current iteration number;

• 1.091642 is the total loss;

• 1.601845 represents the average loss error

• 0.0001 is the learning rate, previously defined (discussed in 5.4.1);

• 6.166774s is the time spent processing this batch

• 1920064 is the total amount of images used during training, which

corresponds to the multiplication between batch size and current

iteration number.

5.4.1. Learning Rate

The learning rate is an hyperparameter defined prior to the training and it translates

the update frequency of the network parameters while training. In YOLOv2, this value is

Figure 5.9- Example of the training output of the network.

Sorting Surgical Tools from a Cluttered Tray – Object Detection and Occlusion Reasoning

50 2018

increased by a factor of 10 on the iteration 40000 and 60000, which is in accordance to Code

Snippet 5.1. A small learning rate makes the learning process slower, although it still

converges smoothly, whereas a large learning rate leads to a faster learning, however it might

not converge as exemplified in Figure 5.10, in which is also represented the ideal learning

rate curve.

 The learning rate of YOLOv2 by default is 0.001, however, since the surgical tools

to be detected have some similarities amongst them as well as unpredictable specular

properties, thus being very different from the objects detect in PASCAL VOC dataset (in

which YOLOv2 is pretrained), it is important to assess the learning rate and adjust it

accordingly, in order to improve the generalization, hence enhancing the accuracy of the

model. To find the optimal learning rate, firstly the model is trained for a thousand iterations

with the learning rate of 0.001, and then it is followed the thumb rule in machine learning,

by repeating the process and increasing and decreasing the learning rate by a factor of 3. The

optimal value of this parameter was found by comparing the respective average Loss, IOU

of each subdivision and Recall of each subdivision, which were plotted resorting to a python

script that would interpret and organize the data of the output file of training.

Figure 5.10- Learning rate assessment through loss function.

Diana Martins Lavado 51

5.4.1.1. Learning Rate for Object Detection

In Figure 5.11(a) it is displayed the plots of average Loss, IOU of each subdivision

and Recall of each subdivision for a learning rate of 0.001 and from analyzing the loss graph

in comparison with Figure 5.10, it is possible to affirm that the learning rate is too high,

which was corroborated by Figure 5.11(b) in which the learning rate was increased to 0.003.

By reducing the learning rate to 0.0003, Figure 5.11(c), it is possible to observe an

improvement on Recall and slightly on IOU, however, the loss graph indicates that the

(a)

(b)

(c)

Figure 5.11- Plots of average Loss, IOU of each subdivision and Recall of each subdivision for object detection
with learning rates of: (a) 0.001 (b) 0.003 (c) 0.0003.

Sorting Surgical Tools from a Cluttered Tray – Object Detection and Occlusion Reasoning

52 2018

learning rate is still high, which led to the training for learning rates of 0.0001, 0.00003 and

0.00001, which results are shown on Figure 5.12.

From the plots displayed on Figure 5.12 is possible to conclude that 0.0001 is the

most suitable learning rate, since it achieves lower values of loss than 0.00003 and 0.00001,

although the curve from Figure 5.12(b) is smother. Regarding the IOU and Recall, it is also

corroborated that 0.0001 (Figure 5.12(a)) is the best parameter, due to the best results

accomplished by 0.00003 (Figure 5.12(b)) and 0.00001 (Figure 5.12(c)) as learning rate.

(a)

(b)

(c)

Figure 5.12- Plots of average Loss, IOU of each subdivision and Recall of each subdivision for object detection
with learning rates of: (a) 0.0001 (b) 0.00003 (c) 0.00001.

Diana Martins Lavado 53

5.4.1.1. Learning Rate for Occlusion Reasoning

With resemblance of the previous section, for occlusion reasoning it is also necessary

to find the optimal learning rate and the process is the same as previously described but

starting with the learning rate of 0.0001, which was the chosen value for object detection.

The first approach was to use the same test and train groups used in the training of the object

detection neural network, however, instead of resorting to the object detection labels, the

occlusion reasoning labels (with the classes top and bottom) were used.

The results from the first thousand iterations of the training with the learning rate of

0.0001 are displayed on Figure 5.13(a), and by observing the loss plot it can be considered

too large as well, as the learning rate from Figure 5.13(b). Amongst all the values tested for

the learning rate for occlusion reasoning, 0.00003 (Figure 5.13(c)) achieved the best results,

however, the loss curve should be smoother, indicating that the learning rate needs to be

decreased, which leads to bad recall results as shown in Figure 5.13(d).

Since none of the learning rates were suitable to perform occlusion detection, instead

of using one neural network, 4 different neural networks were trained, one per each

instrument class. Therefore, it was required to assess the best value of learning rate for each

class of surgical tool.

In Figure 5.14, Figure 5.15, Figure 5.16 and Figure 5.17 are presented the results

from the learning rates of 0.0001 (a), 0.0003 (b), 0.00003 (c), 0.00001 (d) applied to the

occlusion reasoning of scalpel, straight dissection clamp, straight mayo scissor and curved

mayo scissor, respectively. The optimal leaning rate for scalpel and straight dissection clamp

is 0.0001 because both Figure 5.14(a) and Figure 5.15(a) show the best results regarding the

loss curve, IOU and recall. Relatively to straight mayo scissor and curved mayo scissor,

according to Figure 5.16(c) and Figure 5.17(c), the learning rate of 0.00003 would be the

most appropriate, however since the tendency was to choose the learning rate 0.0001 another

thousand iterations were trained with both learning rates for both instruments and it was

verified that 0.0001 was indeed better.

There is an alternative method to find the optimal learning rate, which consists on

enabling “burn_in=1000” in the configuration file of the network that leads to a successive

increase of the learning rate up to the value chosen on the one thousand iteration, thus assess

the loss values and the corresponding learning rates.

Sorting Surgical Tools from a Cluttered Tray – Object Detection and Occlusion Reasoning

54 2018

(a)

(b)

(c)

Figure 5.13- Plots of average Loss, IOU of each subdivision and Recall of each subdivision for occlusion
reasoning with learning rates of: (a) 0.0001 (b) 0.0003 (c) 0.00003 (d) 0.00001.

(d)

Diana Martins Lavado 55

(a)

(b)

(c)

Figure 5.14- Plots of average Loss, IOU of each subdivision and Recall of each subdivision for scalpel occlusion
reasoning with learning rates of: (a) 0.0001 (b) 0.0003 (c) 0.00003 (d) 0.00001.

(d)

Sorting Surgical Tools from a Cluttered Tray – Object Detection and Occlusion Reasoning

56 2018

(a)

(b)

(c)

Figure 5.15- Plots of average Loss, IOU of each subdivision and Recall of each subdivision for straight dissection
clamp occlusion reasoning with learning rates of: (a) 0.0001 (b) 0.0003 (c) 0.00003 (d) 0.00001.

(d)

Diana Martins Lavado 57

(a)

(b)

(c)

Figure 5.16- Plots of average Loss, IOU of each subdivision and Recall of each subdivision for straight mayo
scissor occlusion reasoning with learning rates of: (a) 0.0001 (b) 0.0003 (c) 0.00003 (d) 0.00001.

(d)

Sorting Surgical Tools from a Cluttered Tray – Object Detection and Occlusion Reasoning

58 2018

(a)

(b)

(c)

Figure 5.17- Plots of average Loss, IOU of each subdivision and Recall of each subdivision for curved mayo
scissor occlusion reasoning with learning rates of: (a) 0.0001 (b) 0.0003 (c) 0.00003 (d) 0.00001.

(d)

Diana Martins Lavado 59

5.5. Console Application

Before explaining the console application developed, it is necessary to understand

the overall methodology proposed in this dissertation, which is schematized in Figure 5.18.

The proposed method in this dissertation is to initially apply the YOLOv2 trained for

surgical tools detection, which returns the location of the detected tools in the image or video

frame as well as the object classification (scalpel, straight dissection clamp, straight mayo

scissor or curved mayo scissor). After obtaining the detection list, it is then sorted by

decrescent order, and the image is segmented at the location correspondent to the detection

with higher confidence score. Since the class of the chosen tool is known, then the respective

trained YOLOv2 for occlusion reasoning of that instrument is implemented and the object

is classified as being on top (not occluded), which determines the tool to be removed or, if

it is at the bottom (occluded), then the procedure is repeated for the next detection in the

sorted list until an instrument is classified as on top. The step following the determination of

the tool that is going to be extracted corresponds to pose estimation, in which the coordinates

obtained through YOLOv2 are converted to real world coordinates passible of being

understood by a robot, in order to sort the tools and to allow the assembly of specific surgical

kits.

Figure 5.18- Scheme of the proposed methodology to assemble surgical kits.

Sorting Surgical Tools from a Cluttered Tray – Object Detection and Occlusion Reasoning

60 2018

Since the target users of this system are nurses and hospital staff responsible for

sorting the surgical tools after being disinfected, it was necessary to develop an intuitive

application, otherwise it would be required skilled professionals to apply the neural networks

resorting to the PowerShell.

Initially, it was developed a Graphical User Interface in C++/CLI, however, due to

time limitations to finish this dissertation, a C++ console application was developed on

Microsoft Visual Studio (MVS) prompting the user to choose options within several menus.

Although the third version of YOLO was implemented in the final stages of this

dissertation, the main neural network architecture used was YOLOv2, which is included in

the dnn module of OpenCV library. However, instead of implementing the method resorting

to this library, which is very restrict regarding architectures and functionalities, it was

included the darknet dynamic link library (dll) into the project.

The first step towards the inclusion of darknet into the console application project is

to go to the directory “C:\darknet\build\darknet” and open and compile the project

“yolo_cpp_dll.vcxproj” that generates the necessary dll’s. This project is then added on MSV

to the console application project, thus requiring to be linked to the main project, which is

achieved by selecting the console application project and add a reference to “yolo_cpp_dll”.

Other essential additions are “yolo_v2_class.hpp” to the header files and “yolo_cpp_dll.dll”,

“pthreadGC2.dll” and “pthreadVC2.dll” to the project itself. Besides these steps its

necessary to check whether the solution configuration is release and the platform x64 as well

as the inclusion of all the required directories and libraries in the solution properties, which

are the following:

• Platform Toolset Visual Studio 2015(v140), as shown in Figure 5.19, because

the compiler of MVS 2017 is different and is not able to successfully compile the darknet;

• OpenCV include and library directories in VC++ Directories (Figure 5.20);

• “C:\opencv_3.0\opencv\build\include” as an additional include directory in

C/C++ >General;

• Additional library directories shown in Figure 5.21;

• Additional dependencies shown in Figure 5.22.

Diana Martins Lavado 61

Figure 5.19- Platform Toolset property.

Figure 5.20- OpenCV include and library directories.

Sorting Surgical Tools from a Cluttered Tray – Object Detection and Occlusion Reasoning

62 2018

Figure 5.22- OpenCV additional dependencies.

Figure 5.21- OpenCV and pthreads additional library directories.

Diana Martins Lavado 63

After the setup of the MVS environment it was built a function for each menu

presented in Figure 5.23.

Whenever the application is launched the menu displayed in Figure 5.23(a) is shown.

If users choose the option 1 then Figure 5.23(b) is displayed, whereas if options 2, 3 or 4 are

chosen the menu from Figure 5.23 (c) appears.

The first menu lists all the currently loaded files. For that, it was created a struct

named network_data with name, configuration and weight file names as attributes and 5

instances of the struct (one for object detection and four for occlusion reasoning of each

instrument) were defined with the respective attributes. After the user choose one of the first

5 options of the menu Figure 5.23(c) and insert the name of the new file, the attribute

correspondent of the previous selected option on Figure 5.23(a) menu in the respective

instance indicated by the selected option on Figure 5.23 (c) will be modified.

 Both the option Change files in Figure 5.23(b) and Return in Figure 5.23(c) lead to

the Figure 5.23(a) menu and the current menu remains until a valid option is inserted.

 The main menu, Figure 5.23(b), has two principal options:

• Detect objects, which supports both video and images returning the

classification of every object detected in the image as well the respective confidence score;

(a)

(b)

(c)

Figure 5.23- Console application menus (a) Files loaded (b) Main menu (c) Change files menu.

Sorting Surgical Tools from a Cluttered Tray – Object Detection and Occlusion Reasoning

64 2018

• Run solution, than only works for images and besides detecting object it

implements occlusion reasoning as well to indicate which tool should be firstly removed.

The code for detect_objects function was adapted from the open source

“yolo_console_dll.cpp” from AlexeyAB darknet repository, in which optical flow tracking

is enabled. An example of the output the function detect_objects can be found on Figure

5.24, printing on the console the classes detected and respective confidence scores with a

threshold of 0.6, which means that only detections with a confidence score higher than 0.6

are shown.

The essential code lines for obtain and show the surgical tools detections in an image

are presented in Code Snippet 5.3.

Detector detector(dataset.cfg_file, dataset.weights_file);

getline(cin, filename);

cv::Mat original = cv::imread(filename);

std::vector<bbox_t> result_vec = detector.detect(original, 0.6);

draw_boxes(original, result_vec, obj_names);

cv::namedWindow("Detections", CV_WINDOW_AUTOSIZE);

cv::imshow("Detections", original);

show_console_result(result_vec, obj_names);

Code Snippet 5.3- Main lines of code responsible for obtaining and showing instrument detections in an
image.

Figure 5.24- Example of “Detect Objects” applied to an image.

Diana Martins Lavado 65

In order to fully understand the Code Snippet 5.3, it is important to clarify the following:

• “Detector” is a class defined on the header file “yolo_v2_class.hpp”;

• “dataset” is an instance of a network_data struct previously mentioned and

cfg_file and weights_file are respective attributes;

• “bbox_t” is a struct with information regarding a detection such as x and y

coordinates of the top left corner of the bounding box, as well as width,

height, confidence score, class id, track id and frame counter;

• “result_vec” is a vector in which the bbox_t of all detections with confidence

scores higher than 0.6 are stored;

• “draw_boxes”, as the name indicates, is a function that overlaps the bounding

boxes and respective labels with the original image;

• “show_console_result” is the function for displaying the detections class and

confidence scores onto the console.

Regarding the solution_img function, the first step is to detect the instruments present

in the image resorting to the code lines shown in Code Snippet 5.3. Afterwards, it is applied

a function to sort the detections with decrescent order of confidence score and the result list

of detections has the name sorted_vec. In accordance with the scheme of Figure 5.18, the

next step is to choose the first two detections of sorted_vec (with higher confidence score)

and for each segment the original image is segmented at the bounding box coordinates and

it was applied the respective occlusion reasoning network, as shown in Code Snippet 5.4.

Due to memory limitations there could only be one occlusion reasoning detector, alternating

between the neural networks correspondent to each class as need.

for (int i = 0; i < max_num; i++)
{
 Detector occlusion_detector(list_net_data[sorted_vec[i].obj_id].cfg_file,
list_net_data[sorted_vec[i].obj_id].weights_file);

 //Segment original image at sorted_vec[i] coordinates
 Rect ROI(sorted_vec[i].x, sorted_vec[i].y, sorted_vec[i].w, sorted_vec[i].h);
 Mat mask(original.size(), CV_8UC1, Scalar::all(0));
 mask(ROI).setTo(Scalar::all(255));
 original.copyTo(cropped_img, mask);

 //execute the respective occlusion detector and store the results
 std::vector<bbox_t> result_vec2 = occlusion_detector.detect(cropped_img,
0.6);
 std::vector<bbox_t> sorted_vec2 = sort_vector(result_vec2);
 result_occlusion.push_back(sorted_vec2[0]);
}

Code Snippet 5.4- Part of the algorithm for occlusion reasoning

Sorting Surgical Tools from a Cluttered Tray – Object Detection and Occlusion Reasoning

66 2018

The max_num is set to 2 because it is intended have two options (if possible) of tools

to be removed from the tray at the end of the algorithm and implement a voting system in

order to choose the best one, however this value can be changed by the user, thus the

algorithm implements foolproof conditions, e.g. the max_num need to be lower than the

number of detections on the image, otherwise max_num takes the value of total number of

detections. It is important to mention that the higher the value of max_num, the greater is the

computational power required and, consequently, the higher the running time of the

algorithm.

 For the first max_num (in this dissertation has the value 2) detections of the sorted

list, the occlusion detector respective to the instrument class of the detection is initialized,

the image is segmented in order to remove the background, easing the detecting and

improving the accuracy of the classification as top (not occluded) of bottom (occluded). If

the tool is classified as bottom, then it is discarded as a valid option and in the end, all the

top valid detections can be assessed through the multiplication between the object detection

confidence score and occlusion reasoning confidence score. Therefore, the instrument

detection with the highest value resultant from this multiplication corresponds to the surgical

tool to be removed by the robot.

Diana Martins Lavado 67

6. RESULTS

6.1. Classical Approach Results

As previous discussed in Section 4.1.3, the following figures present the final

watershed models and contours for each tool.

(a) (b)

Figure 6.1- Scalpel nº4 (a) contours (b) watershed model.

Sorting Surgical Tools from a Cluttered Tray – Object Detection and Occlusion Reasoning

68 2018

(a) (b) (c) (d)

Figure 6.3- Straight Dissection Clamp (a) contours (b) watershed model (c) profile contours
(d) profile watershed model.

(a) (b)

Figure 6.2- Straight Mayo Scissor (a) contours (b) watershed model.

Diana Martins Lavado 69

6.2. Modern Approach Results

6.2.1. Object Detection Results

After the training of the neural networks it is necessary to choose the iteration of

which weights are responsible for achieving the best results and the first step is to plot the

precision-recall curve.

The precision-recall curve is a good method for assessing the classifier

performance by analyzing the precision and recall evolution as the threshold change,

however besides requiring high computational power and memory, the process to compute

the values for each weigh iteration is too time consuming. Therefore, it was only generated

the data to plot the curve with weights respective 100 000, 150 000 and 200 000 iterations.

(a) (b)

Figure 6.4- Curved Mayo Scissor (a) contours (b) watershed model.

Sorting Surgical Tools from a Cluttered Tray – Object Detection and Occlusion Reasoning

70 2018

In order to understand the meaning of precision and recall it is necessary to

introduce the concept of a confusion matrix which is represented on Table 6.1.

Table 6.1- Symbolic confusion matrix.

 Prediction Class

Positive Negative

A
ct

u
al

 C
la

ss

Positive
True Positive

(TP)

False Positive

(FP)

Negative
False Negative

(FN)

True Negative

(TN)

The precision represents the percentage of correct detections of a class and are

actually correct and its expression is given by Equation 6.1, whereas the recall indicated the

proportion of a determined class that was identified correctly through Equation 6.2.

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
 (6.1)

𝑟𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
 (6.2)

Neither the pjreddie or the AlexeyAB repositories for darknet have a function to

obtain the necessary data, hence, it was added on detector.c the code presented in Annex B

to allow the plot of precision-recall curves by a matlab script.

The acquisition of the precision and recall for each value of threshold (varying

from 0 to 1 in intervals of 0.01) can be achieved by typing “./darknet detector PRcurve path-

to-data path-to-cfg path-to-weight” onto the Ubuntu terminal.

The precision-recall curve of weights respective to the iterations 100000, 150000

and 200000 is shown in Figure 6.5, in which we can observe that the best results are achieved

by the weights of 100000 iteration, which indicate that by the iteration number 200000 the

neural network may be overfitted, due to “memorization” of images losing its generalization

ability. From the same graph, the extremity point of each curve is chosen, and its

correspondent threshold value is found and used in the following analysis step.

Diana Martins Lavado 71

Therefore, threshold values for 100000, 150000 and 200000 iterations are

respectively 0.35, 0.45 and 0.45.

The next step is to find the iteration number which achieves the best mAP and IOU

results on the test group, because training the network too much leads to a memorization of

images and a decreased ability of generalization and, on the other hand, not training enough

results in a method, which performance could be improved. In order to acquire the necessary

data, it is used the AlexeyAB fork of darknet, because it has a function that returns the

required values in a text file per weight, which are then organized and analyzed by a

developed matlab function. This data could be achieved through typing “./darknet detector

map path-to-data path-to-cfg path-to-weighs -thresh threshold_value” on the ubuntu

terminal however, since it was necessary to follow this procedure for several weight files, it

Figure 6.5- Precision-recall curve of weights respective to 100 000, 150 000 and 200 000 iterations.

Sorting Surgical Tools from a Cluttered Tray – Object Detection and Occlusion Reasoning

72 2018

was developed a python script that has the minimum, maximum and interval of weights as

an input, and automatically executes the respective command on the terminal with thresholds

according to the ones found through the precision-recall curve.

Firstly, to assess the round value of the ideal iteration number, it was executed the

python script previously described for every five thousand iterations between 75 000 and

200 000 iterations, in which if the current iteration number was equal or higher than 150 000,

the threshold value was 0.45, whereas if it was inferior, then the threshold was 0.35. After

the generation of the data, the text files were converted to winfiles and loaded to matlab,

which enabled a better data visualization easing the iteration choice through the analysis of

Figure 6.6.

The best iteration number is the one presenting higher mAP and IOU values, which

corresponds to the point closer to the top right corner of Figure 6.6.

From the analysis of this graph, it is possible to conclude that the choice of the best

iteration number is between two points, assigned respectively to 100000 (blue) and 185000

(yellow) iterations. The difference of both mAP values corresponds to 0.01%, whereas the

Figure 6.6- Plot of IOU in function of mAP for every five thousand iterations between 55000
and 200000 iterations.

Diana Martins Lavado 73

difference of the IOU parameters is 0.17%, thus they are approximately at the same distance

of the top right corner. Therefore, the optimal iteration number is located near 100 000

iterations, because in bin-picking applications it is preferable to have an improved

localization detection of the tools at the cost of 0.01% in the mAP value.

In order to find the exact optimal iteration number, the process was repeated for every

thousand iterations between 75 000 and 125 000 iterations, and the results are shown in

Figure 6.7.

Once again, the decision of the exact optimal iteration number lies in the choice

between two points, respective to 100000 (green) and 117000 (yellow) iterations, in which

the mAP difference is 0.02% and the IOU difference is 0.12% however, instead of following

the logic previously described, it is chosen the closest point to the corner which is the yellow,

meaning that YOLOv2 achieves the best performance detecting surgical tools with the

weights of 117 000 iterations, accomplishing a IOU of 72.62% and a mAP of 90.06%, which

is discriminated per each class in Table 6.2.

Figure 6.7- Plot of IOU in function of mAP for every thousand iterations between 75000 and
125000 iterations.

Sorting Surgical Tools from a Cluttered Tray – Object Detection and Occlusion Reasoning

74 2018

Table 6.2- Discrimination of average precision per class corresponding to 117000 iterations during training.

From the observation of Table 6.2, it is possible to verify that the scalpel has the

highest average precision amongst the tested surgical tools, which is due to being the most

different from the other instruments.

Another measure usually used to assess the model performance is F1 score, which

balances precision and recall and its formula can be found on Equation 6.3 applied to 117000

iterations.

𝐹1 = 2 ×
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛×𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
× 100 = 2 ×

0.88×0.95

0.88+0.95
 × 100 = 91.4% (6.3)

Finally, in order to classify the type of error of the neural network it was used the

methodology of Hoiem [149]. However, to apply that method it was necessary the IOU,

predicted class and actual class of each detection on the test group. To acquire that data, the

map function (named validate_detector_map) from the AlexeyAB darknet repository was

modified with the addition of the code “printf(“ IOU = %f, prob = %f, class_id = %d,

truth_id = %d \n”, box_iou(dets[i].bbox, t), prob, class_id, truth[j].id);” and afterwards the

framework was recompiled.

 The data was analyzed resorting to matlab, in which the detections were classified

with the following categories:

• Correct: correct class and IOU≥0.5;

• Localization: correct class and 0.1<IOU<0.5;

• Similar: class is similar (both scissors) and IOU>0.1;

• Other: class is wrong and IOU>0.1;

• Background: IOU<0.1.

Surgical Tool Average Precision (%)

Scalpel nº4 90,66

Straight Dissection Clamp 89,42

Straight Mayo Scissor 90,40

Curved Mayo Scissor 89,75

Diana Martins Lavado 75

The Figure 6.8 displays a pie chart with the percentages of each error for detections

with a confidence score higher than 60% (threshold) in a total of 1721 detections, using the

weights after 117000 iterations of training.

6.2.1.1. Cross Validation

The importance of cross validation and respective split of the dataset into train and

test groups is described in Section 5.3.1, and the results analysis is the same as detailed in

the previous section.

 The precision-recall curve for cross-validation weight correspondent to 100 000, 150

000 and 200 000 iterations is displayed in Figure 6.9, and it can be verified that it is in

accordance with Figure 6.5.

Resembling the previous section, the best iteration number for training during cross-

validation is found through Figure 6.10, which shows lower mAP and IOU values in

comparison with Figure 6.7, however, still evidencing the good performance of the neural

network. From the analysis of the graph, the ideal iteration number is 140 000 iterations,

which is the closest point to the top right corner, presenting a mAP of 89.13% and a IOU of

67.28%.

57%

1%

5%

17%

20%

Error Analysis YOLOv2

Correct

Localization

Similar

Other

Background

Figure 6.8- Pie chart with the discrimination of YOLOv2 errors for object detection.

Sorting Surgical Tools from a Cluttered Tray – Object Detection and Occlusion Reasoning

76 2018

Figure 6.9- Precision-recall curve of cross-validation weights respective to 100 000, 150 000 and 200 000 iterations.

Diana Martins Lavado 77

6.2.1.2. YOLOv3

During the last stages of writing this dissertation, the architecture of the third version

of YOLO was implemented and trained for 50 000 iterations with the learning rate of 0.0001,

which is in accordance with the previous learning rates. The default value for the learning

rate of YOLOV3 is 0.001 however, after being tested it was concluded that this value was

too high and that 0.0001 was more suitable.

The precision recall curve was not plotted because each curve requires a high amount

of computational power and time, which was limited at this point, hence, it was preferable

to assess the training iteration number with best mAP and IOU and to perform an error

analysis.

In Figure 6.11, it is possible to find the iteration number until 50000 that achieves

higher performances with the YOLOv3 architecture, which corresponds to iteration 49000,

due do being the closest point on the graph to the top right corner and the discriminated

Figure 6.10- Plot of IOU in function of mAP for every thousand iterations between 75000 and 125000 iterations.

Sorting Surgical Tools from a Cluttered Tray – Object Detection and Occlusion Reasoning

78 2018

results can be consulted on Table 6.3, allowing to confirm the higher performance of

YOLOv3 in comparison with the previous version.

Table 6.3- YOLOv3 results discrimination for resultant weights of 49000 iteration of training.

The Figure 6.12 displays a pie chart with the percentages of each error for detections

with a confidence score higher than 60% (threshold) in a total of 1869 detections, using the

weights after 49000 iterations of training. The main difference between this YOLO version

and the previous is the percentage of correct detections is approximately 1% lower for

YOLOv3, however, it is important to mention that this method identifies almost more 150

detections the YOLOv2, thus the confident scores of each detection are much higher for the

most recent version.

mAP IOU F1 Scalpel AP
Straight Dissect.

Clamp AP

Straight Mayo

Scissor AP

Curved Mayo

Scissor AP

91,98% 78,93% 94% 90,03 % 90,72 % 90,47 % 96,68 %

Figure 6.11- Plot of IOU in function of mAP for every thousand iterations between 1000 and 50000 iterations for
YOLOv3.

Diana Martins Lavado 79

6.2.2. Occlusion Reasoning

With regard to the 4 occlusion reasoning neural networks, the respective data is

severely imbalanced, due to the existence of a significant higher quantity of examples in

which each tool is on top of the pile (or does not present occlusion) rather than on the bottom

(being occluded).

 The precision-recall curve is usually not significantly affected by imbalanced data,

however, this graph is not applicable to the data generated through darknet due to the uneven

split of data per each class (top or bottom).

 The neural networks aiming to overcome the occlusion challenge were trained for

50 000 or 60 000 iterations, due to time limitations of this dissertation, therefore, the optimal

iteration number was not found and the weights resultant from training that achieved the best

performance are respective to the last iteration number, which can be verified by analyzing

Figure 6.13, Figure 6.14, Figure 6.15, Figure 6.16, in which the last point is closer to the top

right corner in every graph. The respective mAP and IOU can be found in Table 6.4.

56%

1%

5%

19%

19%

Error Analysis YOLOv3

Correct

Localization

Similar

Other

Background

Figure 6.12- Pie chart with the discrimination of YOLOv3 errors for object detection.

Sorting Surgical Tools from a Cluttered Tray – Object Detection and Occlusion Reasoning

80 2018

Figure 6.14- Plot of IOU in function of mAP for every thousand iterations between 10000 and 50000 iterations
for straight dissection clamp occlusion reasoning.

Figure 6.13- Plot of IOU in function of mAP for every thousand iterations between 10000 and 60000 iterations
for scalpel occlusion reasoning.

Diana Martins Lavado 81

Figure 6.16- Plot of IOU in function of mAP for every thousand iterations between 15000

and 60000 iterations for curved mayo scissor occlusion reasoning.

Figure 6.15- Plot of IOU in function of mAP for every thousand iterations between 10000 and 60000
iterations for straight mayo scissor.

Sorting Surgical Tools from a Cluttered Tray – Object Detection and Occlusion Reasoning

82 2018

Table 6.4- mAP and IOU relative to the weights of the last trained iteration for the occlusion reasoning
network of each instrument.

 The results of error analysis for the occlusion reasoning neural networks, resembling

the one described in Section 6.2.1, can be found in Table 6.5. In this table there is not a

“similar” category, because the two classes (top and bottom) that these networks distinguish

are very different, and the occlusion reasoning performance of the scalpel neural network is

higher, because this surgical tool is the most unalike with the other instruments. Through the

same reasoning, it is possible to justify the slightly lower performance of both types of

scissor, due to their similarities.

Table 6.5- Error analysis for each occlusion reasoning neural network respective to each surgical tool.

 Scalpel

Straight

Dissection

Clamp

Straight Mayo

Scissor

Curved Mayo

Scissor

#detection>55% 315 318 293 356

Correct 95,23 % 93,71 % 92,49 % 88,76 %

Location 0,00 % 0,31 % 1,71 % 1,69 %

Other 4,44 % 5,03 % 3,07 % 4,49 %

Background 0,32 % 0,94 % 2,73 % 5,06 %

Surgical Tool Mean Average Precision (%) IOU(%)

Scalpel nº4 89,09 79,35

Straight Dissection Clamp 91,82 74,59

Straight Mayo Scissor 90,57 74,05

Curved Mayo Scissor 90,46 73,21

Diana Martins Lavado 83

6.2.3. Image Results

The images in this section intend to display some object detection results and the

respective comparison between YOLOv2 trained for 117 000 iterations and YOLOv3 trained

for 49 000 iterations.

(a)

(b)

Figure 6.17- Object detection and respective confidence scores resorting to (a) YOLOv2 (b) YOLOv3.

Sorting Surgical Tools from a Cluttered Tray – Object Detection and Occlusion Reasoning

84 2018

Figure 6.17 and Figure 6.18 allow to observe that YOLOv3 detects more objects in

the image and performs better localization, as well as it always presents a much higher

confidence score in comparison with YOLOv2.

(a)

(b)

Figure 6.18- Object detection and respective confidence scores resorting to (a) YOLOv2 (b) YOLOv3.

Diana Martins Lavado 85

Both versions of YOLO are robust to clutter, as shown in Figure 6.19 and Figure

6.20 and, once again YOLOv3 demonstrated its performance superiority. In Figure 6.20, it

is possible to verify a detection error by YOLOv2, which mistook a straight mayo scissor

for a curved mayo scissor.

(a)

(b)

Figure 6.19- Object detection and respective confidence scores resorting to (a) YOLOv2 (b) YOLOv3.

Sorting Surgical Tools from a Cluttered Tray – Object Detection and Occlusion Reasoning

86 2018

(a)

(b)

Figure 6.20- Object detection and respective confidence scores resorting to (a) YOLOv2 (b) YOLOv3.

Diana Martins Lavado 87

Figure 6.21 and Figure 6.22 show the performance of the two latest version of YOLO

in poor lit conditions.

(a)

(b)

Figure 6.21- Object detection and respective confidence scores resorting to (a) YOLOv2 (b) YOLOv3.

Sorting Surgical Tools from a Cluttered Tray – Object Detection and Occlusion Reasoning

88 2018

(a)

(b)

Figure 6.22- Object detection and respective confidence scores resorting to (a) YOLOv2 (b) YOLOv3.

Diana Martins Lavado 89

Figure 6.23 intends to prove that these methods can be implemented on surgical

tools with a different background from the training images and still achieve great results.

(a)

(b)

Figure 6.23- Object detection and respective confidence scores resorting to (a) YOLOv2 (b) YOLOv3.

Sorting Surgical Tools from a Cluttered Tray – Object Detection and Occlusion Reasoning

90 2018

The output of developed algorithm is displayed in Figure 6.24, in which Figure

6.24(a) represents the two best choices of instruments to be first removed, and Figure 6.24(b)

shows the respective output on the console.

(a)

(b)

Figure 6.24- (a) two choices resultant from the developed algorithm (b) console output of the
respective algorithm implementation with YOLOv3 for object detection and YOLOv2 for
occlusion reasoning.

Diana Martins Lavado 91

7. FUTURE WORK

The overall challenges addressed in this dissertation can be divided into several

stages such as detection, occlusion reasoning, grasping point detection, pose estimation and

kit assembly. However, in this research the focus was on the first stage and trying to prove

that the occlusion reasoning was possible using neural networks.

Regarding object detection, the network architecture YOLOv3 achieved promising

results surpassing YOLOv2 and can be further improved by continuing the training of the

neural network, because according to Figure 6.11, the networks does not show signs of

overtraining (decrease in the IOU-map relation). Another way of increasing the performance

of the system is to approximate the grabbed instrument to the camera for validation of the

object classification or to attach the camera to the robot and move it closer to the instrument,

however the first approach should achieve better results due to distance between the surgical

tool removed and the background clutter.

The performance of occlusion reasoning using neural networks, with resemblance of

the object detection with YOLOv3, could be improved by training the respective neural

networks more time since none achieved the overtraining stage. When testing the several

learning rates for the occlusion reasoning network trained with images of all four classes of

surgical tools, the loss graph correspondent to the learning rate of 0.00003 (Figure 5.13(c))

looks promising despite the reasonable recall, therefore it would be interesting to train for

further iterations to better assess if it successfully detects whether a tool is on top or at the

bottom.

A possible future work for both object detection and occlusion reasoning is to test

other network architectures such as Faster R-CNN, which in the literature has a higher mean

average precision at the cost of increased running and training speed and YOLOv3 (for

occlusion reasoning).

The stage of grasping point detection was not developed, however, it is suggested to

label all the images for each class with the bounding box around the ideal grasping point and

to train the neural networks. For grasping point refinement, it could be used a pixel-voting

Sorting Surgical Tools from a Cluttered Tray – Object Detection and Occlusion Reasoning

92 2018

system similar to hough voting to determine the orientation of the tool and consequently, of

the robotic arm.

As for the type of gripper, one of the most used in bin-picking is a vacuum-gripper,

but it is not suitable for surgical tools because it requires planar surfaces and the exact

orientation of the tool. The second most popular gripper for this type of applications is a

magnetic gripper, however, different instruments have different weighs, and if the magnetic

force is too big, then it will grab more than a tool. Hence, it is proposed the use of an

electromagnetic gripper whose magnetic force is controlled through the definition of a

current, according to the instrument detected class.

The console application of this dissertation is still in its early stages of development,

which justifies shortcomings such as the code instability and inefficient memory allocation,

that can be the focus of further development. Thus, an important future work suggested is

the creation of an intuitive graphical user interface, as well as some addition of some

conditions to the algorithm for example to lower the detector threshold value if no surgical

tool is detected in the image or video frame.

Another essential part of the system that needs to be developed is the enabling of a

real time connection with the camera and implementation of the algorithm. Currently, in this

dissertation, the algorithm does not run is real-time, because it takes between 5 and 10

seconds to determine which tool should be removed, however, those values do not negatively

impact the system due to being lower than the necessary time for the robot to grab the

selected surgical tool and place it the appropriate place. Nevertheless, the algorithm run-time

can be significantly improved by acquiring better hardware, such as graphics cards with

more dedicated memory, because it would allow the continuous parallel running of different

detectors, as well as leading to an increased running speed.

All the neural networks were trained with the built dataset, however their

performance could be further improved by enlarging the dataset and apply data augmentation

techniques, despite YOLO already perform data augmentation during the training.

Diana Martins Lavado 93

8. CONCLUSIONS

This dissertation proposes a methodology based on deep learning neural networks to

identify the surgical tools present in a cluttered tray and execute occlusion reasoning for the

two detections with higher confidence score, thus indicating the instrument to be removed.

In the presented work, it is possible to conclude that the main objectives were

successfully achieved, accomplishing the following results:

• a mean average precision of 91,98% and IOU of 78,93% for object

classification through YOLOv3 after 49000 iteration of training;

• a mean average precision of 89,09% and IOU of 79,35% for scalpel occlusion

reasoning through YOLOv2 after 60000 iteration of training;

• a mean average precision of 91,82% and IOU of 74,59% for straight

dissection clamp occlusion reasoning through YOLOv2 after 50000 iteration

of training;

• a mean average precision of 90,57% and IOU of 74,05% for scalpel occlusion

reasoning through YOLOv2 after 60000 iteration of training;

• a mean average precision of 90,46% and IOU of 73,21% for scalpel occlusion

reasoning through YOLOv2 after 60000 iteration of training;

• the running of each detector of the neural networks above mentioned takes

around 0.2 seconds for an image or video frame, which allows real-time

monitoring;

• the running of the overall algorithm to select the tool to be removed takes

around 10 seconds, with the hardware mentioned on Table 3.1.

Although the results already are promising, there is still room for improvement,

which can be performed by implantation of the suggestions in Section 7.

Sorting Surgical Tools from a Cluttered Tray – Object Detection and Occlusion Reasoning

94 2018

Diana Martins Lavado 95

BIBLIOGRAPHY

[1] P. I. Buerhaus, D. I. Auerbach, and D. O. Staiger, “The recent surge in nurse

employment: Causes and implications,” Health Aff., vol. 28, no. 4, pp. 657–668, 2009.

[2] S. Schenkel, “Nurse staffing and inpatient hospital mortality.,” N. Engl. J. Med., vol.

364, no. 25, p. 2468; author reply 2469, 2011.

[3] H. Tan et al., “An integrated vision-based robotic manipulation system for sorting

surgical tools,” in IEEE Conference on Technologies for Practical Robot

Applications, TePRA, 2015, vol. 2015–Augus, pp. 1–6.

[4] T. Zhou and J. P. Wachs, “Needle in a haystack: Interactive surgical instrument

recognition through perception and manipulation,” Rob. Auton. Syst., vol. 97, pp.

182–192, 2017.

[5] G. S. Guthart and J. K. Salisbury, “The Intuitive telesurgery system: overview and

application,” Proc. 2000 ICRA. Millenn. Conf. IEEE Int. Conf. Robot. Autom. Symp.

Proc. (Cat. No.00CH37065), vol. 1, no. April, pp. 618–621, 2000.

[6] D. H. Boehm et al., “Clinical Use of a Computer-enhanced Surgical Robotic System

for Endoscopic Coronary Artery Bypass Grafting on the Beating Heart,” Thorac

Cardiovasc Surg, vol. 48, no. 04, pp. 198–202, 2000.

[7] M. G. Jacob, Y.-T. Li, and J. P. Wachs, “Gestonurse,” in Proceedings of the seventh

annual ACM/IEEE international conference on Human-Robot Interaction - HRI ’12,

2012.

[8] E. Carpintero, C. Pérez, R. Morales, N. García, A. Candela, and J. M. Azorín,

“Development of a robotic scrub nurse for the operating theatre,” in 2010 3rd IEEE

RAS and EMBS International Conference on Biomedical Robotics and

Biomechatronics, BioRob 2010, 2010.

[9] M. G. Jacob, Y. T. Li, and J. P. Wachs, “Surgical instrument handling and retrieval

in the operating room with a multimodal robotic assistant,” in Proceedings - IEEE

International Conference on Robotics and Automation, 2013.

[10] F. Miyawaki et al., “Development of automatic acquisition system of surgical-

instrument informantion in endoscopic and laparoscopic surgey,” in 2009 4th IEEE

Conference on Industrial Electronics and Applications, ICIEA 2009, 2009, pp. 3058–

Sorting Surgical Tools from a Cluttered Tray – Object Detection and Occlusion Reasoning

96 2018

3063.

[11] I. Sobel and G. Feldman, “A 3 × 3 Isotropic Gradient Operator for Image Processing,”

Stanford Artif. Intell. Proj., pp. 271–272, 1968.

[12] J. Canny, “A Computational Approach to Edge Detection,” IEEE Trans. Pattern Anal.

Mach. Intell., vol. PAMI-8, no. 6, pp. 679–698, 1986.

[13] C. Harris and M. Stephens, “A Combined Corner and Edge Detector,” Procedings

Alvey Vis. Conf. 1988, p. 23.1-23.6, 1988.

[14] E. Rosten and T. Drummond, “Machine Learning for High Speed Corner Detection,”

Comput. Vis. -- ECCV 2006, pp. 430–443, 2004.

[15] M. S. Extremal, J. Matas, O. Chum, M. Urban, and T. Pajdla, “Robust Wide Baseline

Stereo from,” Br. Mach. Vis. Conf., pp. 384–393, 2002.

[16] M. Basu and S. Member, “Gaussian-Based Edge-Detection Methods — A Survey,”

vol. 32, no. 3, pp. 252–260, 2002.

[17] W. Beck, J. O. Bockris, J. McBreen, and L. Nanis, “Hydrogen Permeation in Metals

as a Function of Stress, Temperature and Dissolved Hydrogen Concentration,” Proc.

R. Soc. A Math. Phys. Eng. Sci., vol. 290, no. 1421, pp. 220–235, 1966.

[18] D. G. Lowe, “Object recognition from local scale-invariant features,” Proc. Seventh

IEEE Int. Conf. Comput. Vis., pp. 1150–1157 vol.2, 1999.

[19] D. G. Lowe, “Distinctive image features from scale-invariant keypoints,” Int. J.

Comput. Vis., vol. 60, no. 2, pp. 91–110, 2004.

[20] H. Bay, T. Tuytelaars, and L. Van Gool, “SURF: Speeded Up Robust Features,” in

Computer Vision -- ECCV 2006, 2006, pp. 404–417.

[21] W. Freeman and M. Roth, “Orientation histograms for hand gesture recognition,” Int.

Work. Autom. Face Gesture Recognit., vol. 12, pp. 296–301, 1995.

[22] N. Dalal and B. Triggs, “Histograms of oriented gradients for human detection,” Proc.

- 2005 IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recognition, CVPR 2005, vol.

I, pp. 886–893, 2005.

[23] A. Collet and M. Martinez, “MOPED: Object Recognition and Pose Estimation for

Manipulation,” Int. J. Rob. Res., 2011.

[24] I. Badami, J. Stückler, and S. Behnke, “Depth-Enhanced Hough Forests for Object-

Class Detection and Continuous Pose Estimation,” 2013.

[25] X. Wang, T. X. Han, and S. Yan, “An HOG-LBP human detector with partial

Diana Martins Lavado 97

occlusion handling,” in 2009 IEEE 12th International Conference on Computer

Vision, 2009, pp. 32–39.

[26] P. David and D. Dementhon, “Object recognition in high clutter images using line

features,” Proc. IEEE Int. Conf. Comput. Vis., vol. II, pp. 1581–1588, 2005.

[27] D. G. Lowe, “Three--Dimensional Object Recognition from Single Two--

Dimensional Images,” Ai, vol. 31, no. 3, pp. 355–395, 1987.

[28] V. Lepetit and P. Fua, “Keypoint Recognition Using Randomized Trees,” {IEEE}

Trans. Pattern Anal. Mach. Intell., vol. 28, no. 9, pp. 1465–1479, 2006.

[29] P. Fua, “A Fast Local Descriptor for Dense Matching,” CVPR’08, pp. 1–15.

[30] M. Özuysal, M. Calonder, V. Lepetit, P. Fua, and M. Oezuysal, “Fast Keypoint

Recognition Using Random Ferns.pdf,” IEEE T-PAMI, vol. 32, no. 3, pp. 448–461,

2010.

[31] M. S. Costa and L. G. Shapiro, “3D object recognition and pose with relational

indexing,” Comput. Vis. Image Underst., vol. 79, no. 3, pp. 364–407, 2000.

[32] M. Ulrich, C. Wiedemann, and C. Steger, “CAD-based recognition of 3D objects in

monocular images,” in 2009 IEEE International Conference on Robotics and

Automation, 2009, pp. 1191–1198.

[33] P. David et al., “Simultaneous pose and correspondence determination using line

features,” Ieee Comput. Soc. Conf. Comput. Vis. Pattern Recognit., vol. 2, no. 3, pp.

424–431, 2003.

[34] K. T. Song, C. H. Wu, and S. Y. Jiang, “CAD-based Pose Estimation Design for

Random Bin Picking using a RGB-D Camera,” J. Intell. Robot. Syst. Theory Appl.,

vol. 87, no. 3–4, pp. 455–470, 2017.

[35] P. E. Hart and R. O. Duda, “Use of the Hough Trasformtion To Detect Lines and

Curves in Pictures,” vol. 15, no. April 1971, pp. 11–15, 1972.

[36] D. H. Ballard, “Generalizing the Hough Transform to Detect Arbitrary Shapes,” vol.

13, no. 2, pp. 111–122, 1981.

[37] B. Leibe, A. Leonardis, and B. Schiele, “Robust object detection with interleaved

categorization and segmentation,” Int. J. Comput. Vis., vol. 77, no. 1–3, pp. 259–289,

2008.

[38] J. Liebelt, C. Schmid, and K. Schertler, “Viewpoint-independent object class

detection using 3D Feature Maps,” IEEE Conf. Comput. Vis. Pattern Recognit., vol.

Sorting Surgical Tools from a Cluttered Tray – Object Detection and Occlusion Reasoning

98 2018

64, no. 6, pp. 1–8, 2008.

[39] S. Maji and J. Malik, “Object detection using a max-margin {Hough} transform,”

Proc. {IEEE} Conf. Comput. Vis. Pattern Recognit., pp. 1038–1045, 2009.

[40] A. Opelt, A. Pinz, and A. Zisserman, “Learning an alphabet of shape and appearance

for multi-class object detection,” Int. J. Comput. Vis., vol. 80, no. 1, pp. 16–44, 2008.

[41] B. Ommer and J. Malik, “Multi-scale object detection by clustering lines,” Proc. IEEE

Int. Conf. Comput. Vis., no. Iccv, pp. 484–491, 2009.

[42] A. Lehmann, B. Leibe, and L. Van Gool, “Fast PRISM: Branch and bound hough

transform for object class detection,” Int. J. Comput. Vis., vol. 94, no. 2, pp. 175–197,

2011.

[43] J. Gall, A. Yao, N. Razavi, L. Van Gool, and V. Lempitsky, “Hough forests for object

detection, tracking, and action recognition,” IEEE Trans. Pattern Anal. Mach. Intell.,

vol. 33, no. 11, pp. 2188–2202, 2011.

[44] M. Y. Liu, O. Tuzel, A. Veeraraghavan, Y. Taguchi, T. K. Marks, and R. Chellappa,

“Fast object localization and pose estimation in heavy clutter for robotic bin picking,”

Int. J. Rob. Res., vol. 31, no. 8, pp. 951–973, May 2012.

[45] W. Wohlkinger and M. Vincze, “Ensemble of shape functions for 3D object

classification,” 2011 IEEE Int. Conf. Robot. Biomimetics, pp. 2987–2992, 2011.

[46] M. Sun, G. Bradski, B. X. Xu, and S. Savarese, “Depth-encoded hough voting for

joint object detection and shape recovery,” Lect. Notes Comput. Sci. (including

Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics), vol. 6315 LNCS, no.

PART 5, pp. 658–671, 2010.

[47] R. Sznitman, C. Becker, and P. Fua, “Fast part-based classification for instrument

detection in minimally invasive surgery,” Lect. Notes Comput. Sci. (including Subser.

Lect. Notes Artif. Intell. Lect. Notes Bioinformatics), vol. 8674 LNCS, no. PART 2,

pp. 692–699, 2014.

[48] H. Y. Kuo, H. R. Su, S. H. Lai, and C. C. Wu, “3D object detection and pose

estimation from depth image for robotic bin picking,” in IEEE International

Conference on Automation Science and Engineering, 2014, vol. 2014–Janua, pp.

1264–1269.

[49] C. Papazov, S. Haddadin, S. Parusel, K. Krieger, and D. Burschka, “Rigid 3D

geometry matching for grasping of known objects in cluttered scenes,” Int. J. Rob.

Diana Martins Lavado 99

Res., vol. 31, no. 4, pp. 538–553, 2012.

[50] B. K. H. and K. Ikeuchi., “Picking parts out of a bin,” Tech. report, Massachussetts

Inst. Technol., 1982.

[51] S. Belongie, J. Malik, and J. Puzicha, “Shape matching and object recognition using

shape contexts,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 24, no. 4, pp. 509–522,

2002.

[52] a. C. Berg, T. L. Berg, and J. Malik, “Shape Matching and Object Recognition Using

Low Distortion Correspondences,” 2005 IEEE Comput. Soc. Conf. Comput. Vis.

Pattern Recognit., vol. 1, pp. 26–33, 2005.

[53] H. L. H. Ling and D. W. Jacobs, “Shape Classification Using the Inner-Distance,”

IEEE Trans. Pattern Anal. Mach. Intell., vol. 29, no. 2, pp. 286–299, 2007.

[54] V. Ferrari, F. Jurie, and C. Schmid, “Accurate object detection with deformable shape

models learnt from images,” Proc. IEEE Comput. Soc. Conf. Comput. Vis. Pattern

Recognit., 2007.

[55] Q. Zhu, L. Wang, Y. Wu, and J. Shi, “Contour context selection for object detection:

A set-to-set contour matching approach,” Lect. Notes Comput. Sci. (including Subser.

Lect. Notes Artif. Intell. Lect. Notes Bioinformatics), vol. 5303 LNCS, no. PART 2,

pp. 774–787, 2008.

[56] V. Ferrari, F. Jurie, and C. Schmid, “From images to shape models for object

detection,” Int. J. Comput. Vis., vol. 87, no. 3, pp. 284–303, 2010.

[57] V. Ferrari, L. Fevrier, F. Jurie, and C. Schmid, “Groups of adjacent contour segments

for object detection,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 30, no. 1, pp. 36–

51, 2008.

[58] J. J. Rodrigues, J. S. Kim, M. Furukawa, J. Xavier, P. Aguiar, and T. Kanade, “6D

pose estimation of textureless shiny objects using random ferns for bin-picking,” in

IEEE International Conference on Intelligent Robots and Systems, 2012, pp. 3334–

3341.

[59] R. Strzodka, I. Ihrke, and M. Magnor, “A graphics hardware implementation of the

generalized Hough transform for fast object recognition, scale, and 3D pose

detection,” Proc. - 12th Int. Conf. Image Anal. Process. ICIAP 2003, pp. 188–193,

2003.

[60] G. Csurka, C. R. Dance, L. Fan, J. Willamowski, and Cédric Bray, “Visual

Sorting Surgical Tools from a Cluttered Tray – Object Detection and Occlusion Reasoning

100 2018

Categorization with Bags of Keypoints,” Work. Stat. Learn. Comput. Vision, ECCV,

pp. 1–22, 2004.

[61] J. Wu, W. Tan, and J. Rehg, “Efficient and effective visual codebook generation using

additive kernels,” J. Mach. Learn. Res., vol. 12, pp. 3097–3118, 2011.

[62] P. S. Bradley, K. P. Bennett, and A. Demiriz, “Constrained k-means clustering,”

Microsoft Res., pp. 1–8, 2000.

[63] M. Ester, H.-P. Kriegel, J. Sander, and X. Xu, “A Density-Based Algorithm for

Discovering Clusters in Large Spatial Databases with Noise,” Compr. Chemom.,

1996.

[64] M. a. Hearst, S. T. Dumais, E. Osuna, J. Platt, and B. Schölkopf, “Support vector

machines,” IEEE Intell. Syst. their Appl., vol. 13, pp. 18–28, 1998.

[65] D. D. Lewis, “Naive (Bayes) at forty: The independence assumption in information

retrieval,” in Machine Learning: ECML-98, 1998, pp. 4–15.

[66] C. H. Lampert, M. B. Blaschko, and T. Hofmann, “Efficient subwindow search: A

branch and bound framework for object localization,” IEEE Trans. Pattern Anal.

Mach. Intell., vol. 31, no. 12, pp. 2129–2142, 2009.

[67] H. Kato and T. Harada, “Image reconstruction from bag-of-visual-words,” Proc.

IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recognit., pp. 955–962, 2014.

[68] B. Drost, M. Ulrich, N. Navab, and S. Ilic, “Model Globally, Match Locally: Efficient

and Robust 3D Object Recognition,” Cvpr, pp. 998–1005, 2010.

[69] E. Kim, “3D object recognition in range images using visibility context,” Robot. Syst.

(IROS), 2011 IEEE/, pp. 3800–3807, 2011.

[70] C. Choi, Y. Taguchi, O. Tuzel, M.-Y. Liu, and S. Ramalingam, “Voting-based pose

estimation for robotic assembly using a 3D sensor,” 2012 IEEE Int. Conf. Robot.

Autom., pp. 1724–1731, 2012.

[71] B. Drost and S. Ilic, “3D Object Detection and Localization Using Multimodal Point

Pair Features,” 2012 Second Int. Conf. 3D Imaging, Model. Process. Vis. Transm.,

pp. 9–16, 2012.

[72] T. Birdal and S. Ilic, “Point Pair Features Based Object Detection and Pose Estimation

Revisited,” Proc. - 2015 Int. Conf. 3D Vision, 3DV 2015, pp. 527–535, 2015.

[73] S. Hinterstoisser, V. Lepetit, N. Rajkumar, and K. Konolige, “Going further with

point pair features,” Lect. Notes Comput. Sci. (including Subser. Lect. Notes Artif.

Diana Martins Lavado 101

Intell. Lect. Notes Bioinformatics), vol. 9907 LNCS, pp. 834–848, 2016.

[74] L. Kiforenko, B. Drost, F. Tombari, N. Krüger, and A. Glent Buch, “A performance

evaluation of point pair features,” Comput. Vis. Image Underst., vol. 166, no. June

2017, pp. 66–80, 2018.

[75] B. Leibe, A. Leonardis, and B. Schiele, “An Implicit Shape Model for Combined

Object Categorization and Segmentation,” no. May, pp. 508–524, 2004.

[76] L. Breiman, “Random forests,” Mach. Learn., vol. 45, no. 1, pp. 5–32, 2001.

[77] P. Yarlagadda, A. Monroy, and B. Ommer, “Voting by grouping dependent parts,”

Lect. Notes Comput. Sci. (including Subser. Lect. Notes Artif. Intell. Lect. Notes

Bioinformatics), vol. 6315 LNCS, no. PART 5, pp. 197–210, 2010.

[78] T. K. Ho, “Random Decision Forests Tin Kam Ho Perceptron training,” Proc. 3rd Int.

Conf. Doc. Anal. Recognit., pp. 278–282, 1995.

[79] H. Chen, T. Liu, and C. Fuh, “Segmenting Highly Articulated Video Objects with

Weak-Prior Random Forests,” Comput. Vis. – ECCV 2006, vol. 3954, no. May 2006,

2006.

[80] V. Lepetit, P. Lagger, and P. Fua, “Randomized trees for real-time keypoint

recognition,” Proc. - 2005 IEEE Comput. Soc. Conf. Comput. Vis. Pattern

Recognition, CVPR 2005, vol. II, pp. 775–781, 2005.

[81] M. P. I. Informatik and V. Lempitsky, “Class-Speci c Hough Forests for Object

Detection,” Building, pp. 1022–1029, 2009.

[82] O. Barinova, V. Lempitsky, and P. Kohli, “On detection of multiple object instances

using Hough transform,” vol. 34, no. 9, pp. 1773–1784, 2010.

[83] J. Santner, C. Leistner, A. Saffari, T. Pock, and H. Bischof, “PROST: Parallel robust

online simple tracking,” Proc. IEEE Comput. Soc. Conf. Comput. Vis. Pattern

Recognit., no. 813396, pp. 723–730, 2010.

[84] M. Allan, S. Ourselin, S. Thompson, D. J. Hawkes, J. Kelly, and D. Stoyanov,

“Toward detection and localization of instruments in minimally invasive surgery,”

IEEE Trans. Biomed. Eng., vol. 60, no. 4, pp. 1050–1058, 2013.

[85] M. A. Nielsen, Neural Networks and Deep Learning. Determination Press, 2015.

[86] J. Schmidhuber, “Deep Learning in neural networks: An overview,” Neural Networks,

vol. 61. pp. 85–117, 2015.

[87] A. C. Ian Goodfellow, Yoshua Bengio, “Deep Learning,” MIT Press, vol. 521, no.

Sorting Surgical Tools from a Cluttered Tray – Object Detection and Occlusion Reasoning

102 2018

7553, p. 785, 2017.

[88] C. Szegedy, “Deep Neural Networks for Object Detection,” Nips 2013, pp. 1–9, 2013.

[89] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning applied to

document recognition,” Proc. IEEE, vol. 86, no. 11, pp. 2278–2323, 1998.

[90] R. Girshick, “Fast R-CNN,” in Proceedings of the IEEE International Conference on

Computer Vision, 2015, vol. 2015 Inter, pp. 1440–1448.

[91] S. Ren, K. He, R. Girshick, and J. Sun, “Faster R-CNN: Towards Real-Time Object

Detection with Region Proposal Networks,” IEEE Trans. Pattern Anal. Mach. Intell.,

vol. 39, no. 6, pp. 1137–1149, 2017.

[92] A. Krizhevsky, I. Sutskever, and H. Geoffrey E., “ImageNet Classification with Deep

Convolutional Neural Networks,” Adv. Neural Inf. Process. Syst. 25, pp. 1–9, 2012.

[93] K. Simonyan and A. Zisserman, “Very Deep Convolutional Networks for Large-Scale

Image Recognition,” Int. Conf. Learn. Represent., pp. 1–14, 2015.

[94] C. Szegedy et al., “Going deeper with convolutions,” in Proceedings of the IEEE

Computer Society Conference on Computer Vision and Pattern Recognition, 2015,

vol. 07–12–June, pp. 1–9.

[95] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,”

Proc. IEEE, pp. 1–9, 2016.

[96] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, “You Only Look Once: Unified,

Real-Time Object Detection,” 2015.

[97] J. Redmon and A. Farhadi, “YOLO9000: Better, Faster, Stronger.”

[98] J. Redmon and A. Farhadi, “YOLOv3: An Incremental Improvement,” 2018.

[99] W. Liu et al., “{SSD:} Single Shot MultiBox Detector,” CoRR, vol. abs/1512.0, 2016.

[100] K. N. Kaipa et al., “Enhancing robotic unstructured bin-picking performance by

enabling remote human interventions in challenging perception scenarios,” in IEEE

International Conference on Automation Science and Engineering, 2016, vol. 2016–

Novem, pp. 639–645.

[101] A. Casals, J. Amat, and E. Laporte, “Automatic Guidance of an Assistant Robot in

Laparoscopic Surgery,” IEEE Int. Conf. Robot. Autom. Minneap., no. April, pp. 895–

900, 1996.

[102] O. Tonet, R. U. Thoranaghatte, G. Megali, and P. Dario, “Tracking endoscopic

instruments without a localizer: A shape-analysis-based approach,” in Computer

Diana Martins Lavado 103

Aided Surgery, 2007, vol. 12, no. 1, pp. 35–42.

[103] A. Krupa et al., “Autonomous 3-D Positioning of Surgical Instruments in Robotized

Laparoscopic Surgery Using Visual Servoing,” IEEE Trans. Robot. Autom., vol. 19,

no. 5, pp. 842–853, 2003.

[104] Y. Xu, X. Tong, Y. Mao, W. B. Griffin, B. Kannan, and L. A. Derose, “A vision-

guided robot manipulator for surgical instrument singulation in a cluttered

environment,” in Proceedings - IEEE International Conference on Robotics and

Automation, 2014, pp. 3517–3523.

[105] Y. Xu et al., “Robotic Handling of Surgical Instruments in a Cluttered Tray,” IEEE

Trans. Autom. Sci. Eng., vol. 12, no. 2, pp. 775–780, 2015.

[106] D. Bouget, M. Allan, D. Stoyanov, and P. Jannin, “Vision-based and marker-less

surgical tool detection and tracking: a review of the literature,” Medical Image

Analysis, vol. 35. Elsevier B.V., pp. 633–654, 2017.

[107] C. Perez-Vidal et al., “Steps in the development of a robotic scrub nurse,” Rob. Auton.

Syst., vol. 60, no. 6, pp. 901–911, 2012.

[108] S. Speidel et al., “Recognition of risk situations based on endoscopic instrument

tracking and knowledge based situation modeling,” 2008, vol. 6918, p. 69180X.

[109] D. Burschka et al., “Navigating inner space: 3-D assistance for minimally invasive

surgery,” in Robotics and Autonomous Systems, 2005, vol. 52, no. 1, pp. 5–26.

[110] S. Haase, J. Wasza, T. Kilgus, and J. Hornegger, “Laparoscopic Instrument

Localization using a 3-D Time-of-Flight/RGB Endoscope,” 2013.

[111] M. Li, Y. Hu, Y. Sun, X. Yang, L. Wang, and Y. Liu, “A surgical instruments sorting

system based on stereo vision and impedance control,” in 2017 IEEE International

Conference on Information and Automation (ICIA), 2017, pp. 266–271.

[112] A. P. Twinanda, D. Mutter, J. Marescaux, M. de Mathelin, and N. Padoy, “Single-

and Multi-Task Architectures for Tool Presence Detection Challenge at M2CAI

2016,” pp. 1–5, 2016.

[113] M. Sahu, A. Mukhopadhyay, A. Szengel, and S. Zachow, “Tool and Phase recognition

using contextual CNN features,” 2016.

[114] M. Sahu, A. Mukhopadhyay, A. Szengel, and S. Zachow, “Addressing multi-label

imbalance problem of surgical tool detection using CNN,” Int. J. Comput. Assist.

Radiol. Surg., vol. 12, no. 6, pp. 1013–1020, 2017.

Sorting Surgical Tools from a Cluttered Tray – Object Detection and Occlusion Reasoning

104 2018

[115] A. Raju, S. Wang, and J. Huang, “M2CAI Surgical Tool Detection Challenge Report,”

pp. 2–6, 2017.

[116] B. Choi, K. Jo, S. Choi, and J. Choi, “Surgical - tools Detection based on

Convolutional Neural Network in Laparoscopic Robot - assisted Surgery *,” Ieee, pp.

1756–1759, 2017.

[117] M. Hossain, S. Nishio, T. Hiranaka, and S. Kobashi, “Real-time Surgical Tools

Recognition in Total Knee Arthroplasty Using Deep Neural Networks,” 2018.

[118] J. Prellberg and O. Kramer, “Multi-label Classification of Surgical Tools with

Convolutional Neural Networks,” 2018.

[119] M. Allan et al., “2D-3D Pose Tracking of Rigid Instruments in Minimally Invasive

Surgery,” in Information Processing in Computer-Assisted Interventions, 2014, pp.

1–10.

[120] F. N. Iandola, S. Han, M. W. Moskewicz, K. Ashraf, W. J. Dally, and K. Keutzer,

“SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and <0.5MB model

size,” no. April 2016, 2016.

[121] M. Alsheakhali, M. Yigitsoy, A. Eslami, and N. Navab, “Surgical tool detection and

tracking in retinal microsurgery,” 2015, vol. 9415, p. 941511.

[122] D. Bouget, R. Benenson, M. Omran, L. Riffaud, B. Schiele, and P. Jannin, “Detecting

Surgical Tools by Modelling Local Appearance and Global Shape,” IEEE Trans.

Med. Imaging, vol. 34, no. 12, pp. 2603–2617, 2015.

[123] A. M. Cano, F. Gayá, P. Lamata, P. Sánchez-González, and E. J. Gómez,

“Laparoscopic Tool Tracking Method for Augmented Reality Surgical Applications,”

in Biomedical Simulation, 2008, pp. 191–196.

[124] K. Charrière et al., “Real-time analysis of cataract surgery videos using statistical

models,” Multimed. Tools Appl., vol. 76, no. 21, pp. 22473–22491, 2017.

[125] C. Doignon, P. Graebling, and M. De Mathelin, “Real-time segmentation of surgical

instruments inside the abdominal cavity using a joint hue saturation color feature,”

Real-Time Imaging, vol. 11, no. 5–6 SPEC. ISS., pp. 429–442, 2005.

[126] C. Doignon, F. Nageotte, and M. De Mathelin, “Segmentation and guidance of

multiple rigid objects for intra-operative endoscopic vision,” in Lecture Notes in

Computer Science (including subseries Lecture Notes in Artificial Intelligence and

Lecture Notes in Bioinformatics), 2007, vol. 4358 LNCS, pp. 314–327.

Diana Martins Lavado 105

[127] S. Kumar, M. S. Narayanan, S. Misra, and S. Garimella, “Video-based Framework

for Safer and Smarter Computer Aided Surgery,” pp. 2–3, 2013.

[128] S. J. Mckenna, H. N. Charif, and T. Frank, “Towards Video Understanding of

Laparoscopic Surgery : Instrument Tracking,” Proc. Image Vis. Comput., no.

November, pp. 2–6, 2005.

[129] Z. Pezzementi, S. Voros, and G. D. Hager, “Articulated object tracking by rendering

consistent appearance parts,” 2009 IEEE Int. Conf. Robot. Autom., pp. 3940–3947,

2009.

[130] A. Reiter and P. K. Allen, “An online learning approach to in-vivo tracking using

synergistic features,” in IEEE/RSJ 2010 International Conference on Intelligent

Robots and Systems, IROS 2010 - Conference Proceedings, 2010, pp. 3441–3446.

[131] A. Reiter, P. K. Allen, and T. Zhao, “Feature Classification for Tracking Articulated

Surgical Tools,” 2012, pp. 592–600.

[132] A. Reiter, P. K. Allen, and T. Zhao, “Marker-less Articulated Surgical Tool

Detection,” Comput. Assist. Radiol. Surg., pp. 1–8, 2012.

[133] R. Richa, M. Balicki, R. Sznitman, E. Meisner, R. Taylor, and G. Hager, “Vision-

based proximity detection in retinal surgery,” IEEE Trans. Biomed. Eng., vol. 59, no.

8, pp. 2291–2301, 2012.

[134] N. Rieke et al., “Surgical Tool Tracking and Pose Estimation in Retinal

Microsurgery,” vol. 9349. 2015.

[135] S. Speidel, M. Delles, C. Gutt, and R. Dillmann, “Tracking of instruments in

minimally invasive surgery for surgical skill analysis,” in Medical Imaging and

Augmented Reality, 2006, pp. 148–155.

[136] S. Speidel et al., “Visual tracking of da Vinci instruments for laparoscopic surgery,”

Proc. SPIE Med. Imaging 2014 Image-Guided Proced. Robot. Interv. Model. Med.

Imaging 2014 Image-Guided Proced. Robot. Interv. Model., vol. 9036, p. 903608,

2014.

[137] S. Voros, J. A. Long, and P. Cinquin, “Automatic detection of instruments in

laparoscopic images: A first step towards high-level command of robotic endoscopic

holders,” in International Journal of Robotics Research, 2007, vol. 26, no. 11–12, pp.

1173–1190.

[138] R. Wolf, J. Duchateau, P. Cinquin, and S. Voros, “3D tracking of laparoscopic

Sorting Surgical Tools from a Cluttered Tray – Object Detection and Occlusion Reasoning

106 2018

instruments using statistical and geometric modeling.,” Med. Image Comput. Comput.

Assist. Interv., vol. 14, no. Pt 1, pp. 203–210, 2011.

[139] J. Zhou and S. Payandeh, “Visual Tracking of Laparoscopic Instruments,” J. Autom.

Control Eng., vol. 2, no. 3, pp. 234–241, 2014.

[140] S. Beucher, “The Watershed Transformation Applied to Image Segmentation,” in

Proceedings of the 10th Pfefferkorn Conference on Signal and Image Processing in

Microscopy and Microanalysis, 1992, pp. 299–314.

[141] OpenCV, “Image Segmentation with Watershed Algorithm.” [Online]. Available:

https://docs.opencv.org/trunk/d7/d1c/tutorial_js_watershed.html. [Accessed: 18-

Dec-2017].

[142] J. Huang et al., “Speed/accuracy trade-offs for modern convolutional object

detectors,” NIPS, vol. 11–18–Dece, no. 2, pp. 185–192, 2017.

[143] R. Sznitman, K. Ali, R. Richa, R. H. Taylor, G. D. Hager, and P. Fual, “Data-driven

visual tracking in retinal microsurgery.,” Med. Image Comput. Comput. Assist.

Interv., vol. 15, no. Pt 2, pp. 568–75, 2012.

[144] S. Giannarou, M. Visentini-Scarzanella, and G. Z. Yang, “Probabilistic tracking of

affine-invariant anisotropic regions,” IEEE Trans. Pattern Anal. Mach. Intell., vol.

35, no. 1, pp. 130–143, 2013.

[145] J. Wang and L. Perez, “The Effectiveness of Data Augmentation in Image

Classification using Deep Learning,” Unpublished, 2017.

[146] Puzzledqs, “BBox-Label-Tool.” [Online]. Available:

https://github.com/puzzledqs/BBox-Label-Tool. [Accessed: 08-Mar-2018].

[147] Puzzledqs, “BBox-Label-Tool multiclass.” [Online]. Available:

https://github.com/puzzledqs/BBox-Label-Tool/tree/multi-class. [Accessed: 25-Aug-

2018].

[148] AlexeyAB, “Yolo_mark.” [Online]. Available:

https://github.com/AlexeyAB/Yolo_mark. [Accessed: 21-Mar-2018].

[149] D. Hoiem, Y. Chodpathumwan, and Q. Dai, “Diagnosing error in object detectors,”

Lect. Notes Comput. Sci. (including Subser. Lect. Notes Artif. Intell. Lect. Notes

Bioinformatics), vol. 7574 LNCS, no. PART 3, pp. 340–353, 2012.

 ANNEX A

Diana Martins Lavado 107

ANNEX A

In this annex it could be found all the required commands on the terminal to intall all

the necessary software, packages and libraries on Ubuntu.

sudo apt update

sudo apt dist-upgrade

python -V

python3 -V

if it doesn't have, install python

sudo apt-get install python-pip

pip install numpy pandas scipy matplotlib scikit-learn

pyparsing

update NVIDIA drivers

sudo apt-get purge nvidia*

sudo add-apt-repository ppa:graphics-drivers/ppa

sudo apt update

sudo apt install nvidia-390

lsmod | grep nvidia

CUDA

#sudo apt install nvidia-cuda-toolkit (version 7.5)

download from internet

cd Transferências

sudo dpkg -i cuda-repo-ubuntu1604-9-1-local_9.1.85-

1_amd64.deb

sudo apt-key add /var/cuda-repo-9-1-local/7fa2af80.pub

sudo apt-get update

sudo apt-get install cuda

echo 'export PATH=/usr/local/cuda/bin:$PATH' >>

~/.bashrc

echo 'export LD_LIBRARY_PATH=

/usr/local/cuda/lib64:$LD_LIBRARY_PATH' >> ~/.bashrc

source ~/.bashrc

Sorting Surgical Tools from a Cluttered Tray – Object Detection and Occlusion Reasoning

108 2018

cuDNN (linux library)

tar xvf cudnn-9.1-linux-x64-v7.tgz

sudo cp -P cuda/lib64/* /usr/local/cuda/lib64/

sudo cp cuda/include/* /usr/local/cuda/include/

echo 'export LD_LIBRARY_PATH=

"$LD_LIBRARY_PATH:/usr/local/cuda/lib64:/usr/local/cuda/extra

s/CUPTI/lib64"' >> ~/.bashrc

echo 'export CUDA_HOME=/usr/local/cuda' >> ~/.bashrc

echo 'export PATH="/usr/local/cuda/bin:$PATH"' >>

~/.bashrc

source ~/.bashrc

cat /usr/local/cuda/include/cudnn.h | grep CUDNN_MAJOR -

A 2

OpenCV

sudo apt-get update

sudo apt-get upgrade

sudo apt-get install build-essential cmake pkg-config

sudo apt-get install libjpeg8-dev libtiff5-dev

libjasper-dev libpng12-dev

sudo apt-get install libavcodec-dev libavformat-dev

libswscale-dev libv4l-dev

sudo apt-get install libxvidcore-dev libx264-dev

sudo apt-get install libgtk-3-dev

sudo apt-get install libatlas-base-dev gfortran

sudo apt-get install python2.7-dev python3.5-dev

sudo apt install cmake gcc g++ git libjpeg-dev libpng-

dev libtiff5-dev libavcodec-dev libavformat-dev libswscale-

dev pkg-config libgtk2.0-dev libopenblas-dev libatlas-base-

dev liblapack-dev libeigen3-dev libtheora-dev libvorbis-dev

libxvidcore-dev libx264-dev sphinx-common libtbb-dev yasm

libopencore-amrnb-dev libopencore-amrwb-dev libopenexr-dev

libgstreamer-plugins-base1.0-dev libavcodec-dev libavutil-dev

libavfilter-dev libavformat-dev libavresample-dev ffmpeg

wget https://github.com/opencv/opencv/archive/3.4.0.zip

-O opencv-3.4.0.zip

wget

https://github.com/opencv/opencv_contrib/archive/3.4.0.zip -O

opencv_contrib-3.4.0.zip

 ANNEX A

Diana Martins Lavado 109

unzip opencv-3.4.0.zip

unzip opencv_contrib-3.4.0.zip

cd opencv-3.4.0

mkdir build

cd build

cmake -DCMAKE_BUILD_TYPE=Release -

DCMAKE_INSTALL_PREFIX=/usr/local -

DOPENCV_EXTRA_MODULES_PATH=../../opencv_contrib-3.4.0/modules

-DWITH_CUDA=ON -DOPENCV_ENABLE_NONFREE=True ..

make -j4

sudo make install

sudo ldconfig

Darknet

git clone https://github.com/pjreddie/darknet.git

cd darknet

change make file

make

Sorting Surgical Tools from a Cluttered Tray – Object Detection and Occlusion Reasoning

110 2018

 ANNEX A

Diana Martins Lavado 111

ANNEX B

Configuration file of YOLOV2 for object detection

[net]

Testing

#batch=1

#subdivisions=1

Training

batch=64

subdivisions=16

height=480

width=640

channels=3

momentum=0.9

decay=0.0005

angle=0

saturation = 1.5

exposure = 1.5

hue=.1

learning_rate=0.0001

#burn_in=1000

max_batches = 200000

policy=steps

steps=40000,60000

scales=.1,.1

[convolutional]

batch_normalize=1

filters=32

size=3

stride=1

pad=1

activation=leaky

[maxpool]

size=2

stride=2

[convolutional]

batch_normalize=1

filters=64

size=3

stride=1

pad=1

activation=leaky

[maxpool]

size=2

stride=2

[convolutional]

batch_normalize=1

filters=128

size=3

stride=1

pad=1

activation=leaky

[convolutional]

batch_normalize=1

filters=64

size=1

stride=1

pad=1

activation=leaky

[convolutional]

batch_normalize=1

filters=128

size=3

stride=1

pad=1

activation=leaky

Sorting Surgical Tools from a Cluttered Tray – Object Detection and Occlusion Reasoning

112 2018

[maxpool]

size=2

stride=2

[convolutional]

batch_normalize=1

filters=256

size=3

stride=1

pad=1

activation=leaky

[convolutional]

batch_normalize=1

filters=128

size=1

stride=1

pad=1

activation=leaky

[convolutional]

batch_normalize=1

filters=256

size=3

stride=1

pad=1

activation=leaky

[maxpool]

size=2

stride=2

[convolutional]

batch_normalize=1

filters=512

size=3

stride=1

pad=1

activation=leaky

[convolutional]

batch_normalize=1

filters=256

size=1

stride=1

pad=1

activation=leaky

[convolutional]

batch_normalize=1

filters=512

size=3

stride=1

pad=1

activation=leaky

[convolutional]

batch_normalize=1

filters=256

size=1

stride=1

pad=1

activation=leaky

[convolutional]

batch_normalize=1

filters=512

size=3

stride=1

pad=1

activation=leaky

[maxpool]

size=2

stride=2

[convolutional]

batch_normalize=1

filters=1024

size=3

stride=1

pad=1

activation=leaky

[convolutional]

batch_normalize=1

filters=512

size=1

stride=1

pad=1

activation=leaky

[convolutional]

batch_normalize=1

filters=1024

 ANNEX A

Diana Martins Lavado 113

size=3

stride=1

pad=1

activation=leaky

[convolutional]

batch_normalize=1

filters=512

size=1

stride=1

pad=1

activation=leaky

[convolutional]

batch_normalize=1

filters=1024

size=3

stride=1

pad=1

activation=leaky

#######

[convolutional]

batch_normalize=1

size=3

stride=1

pad=1

filters=1024

activation=leaky

[convolutional]

batch_normalize=1

size=3

stride=1

pad=1

filters=1024

activation=leaky

[route]

layers=-9

[convolutional]

batch_normalize=1

size=1

stride=1

pad=1

filters=64

activation=leaky

[reorg]

stride=2

[route]

layers=-1,-4

[convolutional]

batch_normalize=1

size=3

stride=1

pad=1

filters=1024

activation=leaky

[convolutional]

size=1

stride=1

pad=1

filters=45

activation=linear

[region]

anchors = 1.3221,

1.73145, 3.19275,

4.00944, 5.05587,

8.09892, 9.47112,

4.84053, 11.2364,

10.0071

bias_match=1

classes=4

coords=4

num=5

softmax=1

jitter=.3

rescore=1

object_scale=5

noobject_scale=1

class_scale=1

coord_scale=1

absolute=1

thresh = .6

random=1

Sorting Surgical Tools from a Cluttered Tray – Object Detection and Occlusion Reasoning

114 2018

Configuration file of YOLOv3 for object detection

[net]

Testing

#batch=1

#subdivisions=1

Training

batch=64

subdivisions=64

width=640

height=480

channels=3

momentum=0.9

decay=0.0005

angle=0

saturation = 1.5

exposure = 1.5

hue=.1

learning_rate=0.0001

#burn_in=1000

max_batches = 100000

policy=steps

steps=40000,45000

scales=.1,.1

[convolutional]

batch_normalize=1

filters=32

size=3

stride=1

pad=1

activation=leaky

Downsample

[convolutional]

batch_normalize=1

filters=64

size=3

stride=2

pad=1

activation=leaky

[convolutional]

batch_normalize=1

filters=32

size=1

stride=1

pad=1

activation=leaky

[convolutional]

batch_normalize=1

filters=64

size=3

stride=1

pad=1

activation=leaky

[shortcut]

from=-3

activation=linear

Downsample

[convolutional]

batch_normalize=1

filters=128

size=3

stride=2

pad=1

activation=leaky

[convolutional]

batch_normalize=1

filters=64

size=1

stride=1

pad=1

activation=leaky

[convolutional]

batch_normalize=1

filters=128

size=3

stride=1

pad=1

activation=leaky

 ANNEX A

Diana Martins Lavado 115

[shortcut]

from=-3

activation=linear

[convolutional]

batch_normalize=1

filters=64

size=1

stride=1

pad=1

activation=leaky

[convolutional]

batch_normalize=1

filters=128

size=3

stride=1

pad=1

activation=leaky

[shortcut]

from=-3

activation=linear

Downsample

[convolutional]

batch_normalize=1

filters=256

size=3

stride=2

pad=1

activation=leaky

[convolutional]

batch_normalize=1

filters=128

size=1

stride=1

pad=1

activation=leaky

[convolutional]

batch_normalize=1

filters=256

size=3

stride=1

pad=1

activation=leaky

[shortcut]

from=-3

activation=linear

[convolutional]

batch_normalize=1

filters=128

size=1

stride=1

pad=1

activation=leaky

[convolutional]

batch_normalize=1

filters=256

size=3

stride=1

pad=1

activation=leaky

[shortcut]

from=-3

activation=linear

[convolutional]

batch_normalize=1

filters=128

size=1

stride=1

pad=1

activation=leaky

[convolutional]

batch_normalize=1

filters=256

size=3

stride=1

pad=1

activation=leaky

[shortcut]

from=-3

activation=linear

Sorting Surgical Tools from a Cluttered Tray – Object Detection and Occlusion Reasoning

116 2018

[convolutional]

batch_normalize=1

filters=128

size=1

stride=1

pad=1

activation=leaky

[convolutional]

batch_normalize=1

filters=256

size=3

stride=1

pad=1

activation=leaky

[shortcut]

from=-3

activation=linear

[convolutional]

batch_normalize=1

filters=128

size=1

stride=1

pad=1

activation=leaky

[convolutional]

batch_normalize=1

filters=256

size=3

stride=1

pad=1

activation=leaky

[shortcut]

from=-3

activation=linear

[convolutional]

batch_normalize=1

filters=128

size=1

stride=1

pad=1

activation=leaky

[convolutional]

batch_normalize=1

filters=256

size=3

stride=1

pad=1

activation=leaky

[shortcut]

from=-3

activation=linear

[convolutional]

batch_normalize=1

filters=128

size=1

stride=1

pad=1

activation=leaky

[convolutional]

batch_normalize=1

filters=256

size=3

stride=1

pad=1

activation=leaky

[shortcut]

from=-3

activation=linear

[convolutional]

batch_normalize=1

filters=128

size=1

stride=1

pad=1

activation=leaky

[convolutional]

batch_normalize=1

filters=256

size=3

stride=1

pad=1

activation=leaky

 ANNEX A

Diana Martins Lavado 117

[shortcut]

from=-3

activation=linear

Downsample

[convolutional]

batch_normalize=1

filters=512

size=3

stride=2

pad=1

activation=leaky

[convolutional]

batch_normalize=1

filters=256

size=1

stride=1

pad=1

activation=leaky

[convolutional]

batch_normalize=1

filters=512

size=3

stride=1

pad=1

activation=leaky

[shortcut]

from=-3

activation=linear

[convolutional]

batch_normalize=1

filters=256

size=1

stride=1

pad=1

activation=leaky

[convolutional]

batch_normalize=1

filters=512

size=3

stride=1

pad=1

activation=leaky

[shortcut]

from=-3

activation=linear

[convolutional]

batch_normalize=1

filters=256

size=1

stride=1

pad=1

activation=leaky

[convolutional]

batch_normalize=1

filters=512

size=3

stride=1

pad=1

activation=leaky

[shortcut]

from=-3

activation=linear

[convolutional]

batch_normalize=1

filters=256

size=1

stride=1

pad=1

activation=leaky

[convolutional]

batch_normalize=1

filters=512

size=3

stride=1

pad=1

activation=leaky

[shortcut]

from=-3

activation=linear

[convolutional]

Sorting Surgical Tools from a Cluttered Tray – Object Detection and Occlusion Reasoning

118 2018

batch_normalize=1

filters=256

size=1

stride=1

pad=1

activation=leaky

[convolutional]

batch_normalize=1

filters=512

size=3

stride=1

pad=1

activation=leaky

[shortcut]

from=-3

activation=linear

[convolutional]

batch_normalize=1

filters=256

size=1

stride=1

pad=1

activation=leaky

[convolutional]

batch_normalize=1

filters=512

size=3

stride=1

pad=1

activation=leaky

[shortcut]

from=-3

activation=linear

[convolutional]

batch_normalize=1

filters=256

size=1

stride=1

pad=1

activation=leaky

[convolutional]

batch_normalize=1

filters=512

size=3

stride=1

pad=1

activation=leaky

[shortcut]

from=-3

activation=linear

[convolutional]

batch_normalize=1

filters=256

size=1

stride=1

pad=1

activation=leaky

[convolutional]

batch_normalize=1

filters=512

size=3

stride=1

pad=1

activation=leaky

[shortcut]

from=-3

activation=linear

Downsample

[convolutional]

batch_normalize=1

filters=1024

size=3

stride=2

pad=1

activation=leaky

[convolutional]

batch_normalize=1

filters=512

size=1

stride=1

pad=1

activation=leaky

 ANNEX A

Diana Martins Lavado 119

[convolutional]

batch_normalize=1

filters=1024

size=3

stride=1

pad=1

activation=leaky

[shortcut]

from=-3

activation=linear

[convolutional]

batch_normalize=1

filters=512

size=1

stride=1

pad=1

activation=leaky

[convolutional]

batch_normalize=1

filters=1024

size=3

stride=1

pad=1

activation=leaky

[shortcut]

from=-3

activation=linear

[convolutional]

batch_normalize=1

filters=512

size=1

stride=1

pad=1

activation=leaky

[convolutional]

batch_normalize=1

filters=1024

size=3

stride=1

pad=1

activation=leaky

[shortcut]

from=-3

activation=linear

[convolutional]

batch_normalize=1

filters=512

size=1

stride=1

pad=1

activation=leaky

[convolutional]

batch_normalize=1

filters=1024

size=3

stride=1

pad=1

activation=leaky

[shortcut]

from=-3

activation=linear

####################

[convolutional]

batch_normalize=1

filters=512

size=1

stride=1

pad=1

activation=leaky

[convolutional]

batch_normalize=1

size=3

stride=1

pad=1

filters=1024

activation=leaky

[convolutional]

batch_normalize=1

filters=512

size=1

stride=1

Sorting Surgical Tools from a Cluttered Tray – Object Detection and Occlusion Reasoning

120 2018

pad=1

activation=leaky

[convolutional]

batch_normalize=1

size=3

stride=1

pad=1

filters=1024

activation=leaky

[convolutional]

batch_normalize=1

filters=512

size=1

stride=1

pad=1

activation=leaky

[convolutional]

batch_normalize=1

size=3

stride=1

pad=1

filters=1024

activation=leaky

[convolutional]

size=1

stride=1

pad=1

filters=27

activation=linear

[yolo]

mask = 6,7,8

anchors = 10,13, 16,30,

33,23, 30,61, 62,45,

59,119, 116,90,

156,198, 373,326

classes=4

num=9

jitter=.3

ignore_thresh = .5

truth_thresh = 1

random=1

[route]

layers = -4

[convolutional]

batch_normalize=1

filters=256

size=1

stride=1

pad=1

activation=leaky

[upsample]

stride=2

[route]

layers = -1, 61

[convolutional]

batch_normalize=1

filters=256

size=1

stride=1

pad=1

activation=leaky

[convolutional]

batch_normalize=1

size=3

stride=1

pad=1

filters=512

activation=leaky

[convolutional]

batch_normalize=1

filters=256

size=1

stride=1

pad=1

activation=leaky

[convolutional]

batch_normalize=1

size=3

stride=1

pad=1

filters=512

activation=leaky

 ANNEX A

Diana Martins Lavado 121

[convolutional]

batch_normalize=1

filters=256

size=1

stride=1

pad=1

activation=leaky

[convolutional]

batch_normalize=1

size=3

stride=1

pad=1

filters=512

activation=leaky

[convolutional]

size=1

stride=1

pad=1

filters=27

activation=linear

[yolo]

mask = 3,4,5

anchors = 10,13, 16,30,

33,23, 30,61, 62,45,

59,119, 116,90,

156,198, 373,326

classes=4

num=9

jitter=.3

ignore_thresh = .5

truth_thresh = 1

random=1

[route]

layers = -4

[convolutional]

batch_normalize=1

filters=128

size=1

stride=1

pad=1

activation=leaky

[upsample]

stride=2

[route]

layers = -1, 36

[convolutional]

batch_normalize=1

filters=128

size=1

stride=1

pad=1

activation=leaky

[convolutional]

batch_normalize=1

size=3

stride=1

pad=1

filters=256

activation=leaky

[convolutional]

batch_normalize=1

filters=128

size=1

stride=1

pad=1

activation=leaky

[convolutional]

batch_normalize=1

size=3

stride=1

pad=1

filters=256

activation=leaky

[convolutional]

batch_normalize=1

filters=128

size=1

stride=1

pad=1

activation=leaky

[convolutional]

batch_normalize=1

size=3

stride=1

pad=1

Sorting Surgical Tools from a Cluttered Tray – Object Detection and Occlusion Reasoning

122 2018

filters=256

activation=leaky

[convolutional]

size=1

stride=1

pad=1

filters=27

activation=linear

[yolo]

mask = 0,1,2

anchors = 10,13, 16,30,

33,23, 30,61, 62,45,

59,119, 116,90,

156,198, 373,326

classes=4

num=9

jitter=.3

ignore_thresh = .5

truth_thresh = 1

random=1

 Erro! A origem da referência não foi encontrada.

Diana Martins Lavado 123

ANNEX C

Code adapted from AlexeyAB darknet repository to obtain the data for precision-

recall curve.

void validate_detector_PRcurve(char *datacfg, char *cfgfile, char *weightfile)
{
 list *options = read_data_cfg(datacfg);
 char *valid_images = option_find_str(options, "valid", "Dataset-top-
scalpel/test.txt");
 network *net = load_network(cfgfile, weightfile, 0);

 set_batch_network(&net, 1);
 fprintf(stderr, "Learning Rate: %g, Momentum: %g, Decay: %g\n", net-
>learning_rate, net->momentum, net->decay);
 srand(time(0));

 list *plist = get_paths(valid_images);
 char **paths = (char **)list_to_array(plist);

 layer l = net->layers[net->n-1];
 int classes = l.classes;

 int j, k;
 box *boxes = calloc(l.w*l.h*l.n, sizeof(box));
 float **probs = calloc(l.w*l.h*l.n, sizeof(float *));
 for(j = 0; j < l.w*l.h*l.n; ++j) probs[j] = calloc(classes+1, sizeof(float *));

 int m = plist->size;
 int i=0;

 float iou_thresh = .5;
 float nms = .4;

 for(float thresh = 0; thresh < 1; thresh = thresh + 0.01){
 int total = 0;
 int TP = 0, FP = 0;
 int proposals = 0;
 float avg_iou = 0;
 for(i = 0; i < m; ++i){
 char *path = paths[i];
 image orig = load_image_color(path, 0, 0);
 image sized = resize_image(orig, net->w, net->h);
 char *id = basecfg(path);
 network_predict(net, sized.data);
 get_region_boxes(l, sized.w, sized.h, net->w, net->h, thresh, probs,
boxes, 1, 0, .5, 1);
 if (nms) do_nms(boxes, probs, l.w*l.h*l.n, 1, nms);

 char labelpath[4096];

Sorting Surgical Tools from a Cluttered Tray – Object Detection and Occlusion Reasoning

124 2018

 find_replace(path, "images", "labels", labelpath);
 find_replace(labelpath, "JPEGImages", "labels", labelpath);
 find_replace(labelpath, ".png", ".txt", labelpath);
 find_replace(labelpath, ".jpg", ".txt", labelpath);
 find_replace(labelpath, ".JPEG", ".txt", labelpath);

 int num_labels = 0;
 box_label *truth = read_boxes(labelpath, &num_labels);
 for(k = 0; k < l.w*l.h*l.n; ++k){
 if(probs[k][0] > thresh){
 ++proposals;
 }
 }
 for (j = 0; j < num_labels; ++j) {
 ++total;
 box t = {truth[j].x, truth[j].y, truth[j].w, truth[j].h};
 float best_iou = 0;
 for(k = 0; k < l.w*l.h*l.n; ++k){
 float iou = box_iou(boxes[k], t);
 if(probs[k][0] > thresh && iou > best_iou){
 best_iou = iou;
 }
 }
 avg_iou += best_iou;
 if(best_iou > iou_thresh){
 ++TP;
 }
 }
 FP = proposals - TP;

 free(id);
 free_image(orig);
 free_image(sized);
 }
 fprintf(stderr, "Thresh:%.4f\tRecall:%.2f%%\tPrecision:%.2f%%\n", thresh,
100.*TP/total, 100.*TP/(TP+FP));
 }
}

