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Abstract 
 

The main goal of this master dissertation is to classify and localize surgical tools in 

a cluttered tray, as well as perform occlusion reasoning to determine which tool should be 

removed first. These tasks are intended to be a part of a multi-stage robotic system able to 

sort surgical tools after disinfection, in order to assembly surgical kits and, hopefully, 

optimizing the nurses time in sterilization rooms, so that they can focus on more complex 

tasks. 

Initially, several classical approaches were tested to obtain 2D templates of each type 

of surgical tool, such as canny edges, otsu’s threshold and watershed algorithm. The idea 

was to place 2D data matrixes codes onto the surgical tools and whenever the code was 

detected, the respective template would be added to a virtual map, which would be 

posteriorly be assessed and determined which tool was on top by comparison with the 

original image. However, due to difficulties in acquiring a specific software, a modern 

approach was used instead, resorting to the YOLO (“you only look once”) deep learning 

neural network. 

In order to train the neural networks, a dataset was built, which was then published, 

along with the respective labels of the data and appropriate division into train and test groups. 

In total, 5 YOLOv2 neural networks were trained: 1 for object detection and classification 

and 1 for occlusion reasoning of each instrument (making a total of 4). Regarding object 

detection, it was also performed cross-validation, as well as trained the YOLOv3 network. 

A console application that applies the proposed algorithm was also developed, in 

which the first step is to run the object detector with either the trained YOLOv2 or YOLOv3 

network, followed by sorting the detections in a decrescent order of confidence score. 

Afterward, the detections correspondent to the two higher confidence scores are chosen and 

the respective occlusion reasoning neural networks are run. Finally, the best combination of 

confidence scores between object detection and occlusion reasoning determines the surgical 

tool to be removed first from the cluttered tray. 
 

Keywords Deep Learning, Robotics, YOLOv2, YOLOv3, Computer Vision. 
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Resumo 

 

O principal objetivo desta dissertação de mestrado é classificar e localizar os 

instrumentos cirúrgicos presentes numa bandeja desorganizada, assim como realizar o 

raciocínio para resolver oclusão por forma a determinar qual o instrumento que deverá ser 

retirado em primeiro lugar. Estas tarefas pretendem ser uma parte integrante de um sistema 

complexo apto a separar instrumentos cirúrgicos após a sua desinfeção, de modo a montar 

kits cirúrgicos e, esperançosamente, otimizar o tempo despendido pelos enfermeiros em 

salas de esterilização, para que se possam dedicar a tarefas mais complexas. 

Inicialmente, várias abordagens clássicas foram testadas para obter modelos 2D para 

cada tipo de instrumento cirúrgico, tal como canny edges, otsu’s threshold e watershed 

algorithm. A ideia era colocar códigos “2D data matrix” nos instrumentos cirúrgicos e, 

sempre que o código fosse detetado, o respetivo modelo seria adicionado a um mapa virtual, 

que seria posteriormente analisado para determinar qual o instrumento situado no topo, 

através da comparação com a imagem original. Todavia, devido a dificuldades na aquisição 

de um software específico, foi usada uma abordagem moderna, recorrendo à rede neuronal 

de deep learning YOLO (“you only look once”). 

De modo a treinar as redes neuronais foi elaborado um dataset, que foi 

posteriormente publicado, em conjunto com as respetivas “labels” das imagens, assim como 

uma divisão apropriada em grupo de teste e de treino. No total, 5 redes neuronais YOLOv2 

foram treinadas: 1 para deteção e classificação de objetos e 1 para o resolver a oclusão 

relativa a cada tipo de instrumento (perfazendo um total de 4). Relativamente à deteção de 

objetos foi também realizada validação cruzada, assim como treinada a rede YOLOv3. 

Uma aplicação de consola que aplica o algoritmo proposto foi também desenvolvida, 

em que o primeiro passo é correr o detetor de objetos com redes treinadas quer de YOLOv2 

ou de YOLOv3, seguido pela ordenação das deteções por ordem decrescente de percentagem 

de confiança. Posteriormente, as deteções correspondentes às duas percentagens de 

confiança mais elevadas são escolhidas, e as respetivas redes neuronais de raciocínio para 

resolver oclusão são implementadas. Finalmente, a melhor combinação de percentagens de 
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confiança entre a deteção de objetos e o raciocínio de oclusão determina qual o instrumento 

cirúrgico que deverá ser removido em primeiro lugar do tabuleiro desorganizado. 

 

Plavras-chave: Deep Learning, Robótica, YOLOv2, YOLOv3, Visão Computacional. 
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1. INTRODUCTION 

 

Nurses play an extremely important role in our society. They are responsible for 

nurture the elderly, take care of the sick and wounded, assist the doctors, inform people, 

prepare for surgeries, both the patients and the room, as well as to oversee the process of 

recycling of surgical tools, which after surgeries are cleaned, sterilized and assembled into 

surgical kits.  

Unfortunately, it is not hard to understand the impact of nurses due to the current 

lack of nurses throughout hospitals from all over the country, which lead to the closure of 

some services in determined hospitals. America is facing the same problem and, a recent 

study [1] claims that by 2025 there will be a shortage of 260 000 nurses in the USA. It was 

also shown that a hospital understaffed has a patient mortality risk 6% higher than fully 

functional hospitals [2]. 

Due to this shortage of nurses, they are overloaded with different tasks 

simultaneously, which unavoidably leads to more workload for each one and they become 

tired more easily, decreasing their efficiency and provoking delays or more preventable 

medical errors such as a wrong instrument counting after surgeries or mistakenly sort the 

tools for surgical kits. It was not found statistic values for Portugal, however, the critical lack 

of nurses is similar to USA, in which preventable medical errors are responsible for the death 

of between 44 000 and 98 000 patients, resulting in a 12$-25$ u.s. billions cost for the 

healthcare system of the country [3]. The problem of the lack of nurses also raises safety 

issues, because while sorting the tools to assembly the surgical kits, these health practitioners 

can be hurt by handling sharp instruments and, if the sterilization process is compromised 

the task needs to be repeated and the overall process is delayed. 

 Robotic systems can be used with the objective of increasing efficiency and reducing 

costs. Robots never get tired or hurt and are able to execute repetitive tasks such as sorting 

tools or counting them with increased speed, allowing nurses to focus on more complex tasks 

[4]. 
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 During the last few years, the implementation of robotic systems in healthcare has 

been growing exponentially, and can have several applications such as replace surgeons (e.g. 

the use of Da Vinci [5] or Zeus [6]  for minimally invasive surgeries), aid surgeons (e.g. 

through robotic scrub nurses that can deliver the surgical tool to the surgeon by his request, 

[4][7][8][9][10]), and aid nurses (e.g. with the implementation of sterilization systems that 

automatically sort the instruments). 

 In order to determine which necessities in Portugal’s healthcare could be improved 

by the implementation of robots, it was scheduled an interview with Chief Nurse of the Main 

Operating Room of the Hospital of University of Coimbra, Jorge Tavares, who raised 

concerns regarding the time that nurses spend sorting tools after being disinfected that can 

either undergo sterilization or be assembled into surgical kits. Thus, that time could be spent 

focusing more on patients if a robotic system was implemented, which is towards that goal 

that this thesis was developed. 

 

1.1. Objectives 

 

The project intends to optimize the time spent by nurses in the sterilization rooms, 

by, after disinfection, automatically sorting the tools from a clustered tray and assemble 

surgical kits previously defined. In that process, a robot equipped with an electromagnetic 

gripper is used. 

 In order to fulfill that goal, this dissertation focus on implementing a successful 

methodology for object detection and occlusion reasoning, as well as developing an intuitive 

user application. 

 It is important to note that this dissertation resulted into the publication of the dataset 

and respective labels on the website https://www.kaggle.com/dilavado/labeled-surgical-

tools/ as well as on scientific articles currently undergoing development.



 

 

  STATE OF ART 

 

 

Diana Martins Lavado  3 

 

 

2. STATE OF ART 

 

Bin-picking is the technical term for grabbing randomly placed parts or objects in a 

bin which represents one of the most classical challenges in Robotics for several decades.  

Although is a simple task for humans, it is extremely difficult for robots as the pieces 

in the bin tend to be at random positions and orientations, and also overlapping each other. 

Therefore, the recognition using computer vision systems is highly hindered, which makes 

even more difficult to adopt the right strategy to the robot approach the bin and pick one 

piece. This kind of task also denotes the ultimate step towards fully automated industrial 

systems, because it means to pass from an unstructured environment to a structure one 

making the whole process much more uncertain. 

Throughout the years a wide range of research fields tried to overcome this challenge 

such as Computer Vision, Machine Learning and recently, Deep Learning, which have 

resulted into several approaches. The following Sections in this dissertation discuss in further 

detail these approaches applied to an industrial and in Section 2.8 is presented an overview 

of recent studies regarding surgical tools. 

Most of the classical approaches responsible for bin-picking applications are in the 

midst of Computer Vision and its execution requires the completion of several steps such as 

feature detection, feature matching, cluster identification, and pose estimation.  

Before entering in further detail on a wide range of methods and their applications, 

it is important to present a brief explanation of features, the efficiency and robustness of an 

object detector depends directly of the efficiency and robustness of its feature extractor. 

The foundation of a wide range of computer vision algorithm resides in features, 

which do not have a universal definition. However, they can be described as points of interest 

which can be precisely (well localized) and reliably (well matched) found in other images. 

The most popular types of features are edges, corners, blobs, and ridges. Thus, the most 

important properties of good features are the following: 

• Repeatability – the same feature can be found in several images despite 

geometric and photometric descriptors; 
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• Matchability – each feature has a distinctive descriptor; 

• Compactness and Efficiency – a significantly lower amount of features 

than image pixels; 

• Locality – each feature should be a relatively small area of the image. 

These properties are used to implement the strategy defined in this dissertation. 

 

2.1. Feature Detectors and Descriptors 

 

According to the type of features there are several algorithms for feature detection 

that can implemented. Sobel [11] and Canny [12] are well-known methods for extracting 

edges,  and Harris [13] and Features from Accelerated Segmented Test (FAST) [14] are 

frequently used to detect corners. In addition, Maximally Stable Extremal Regions (MSER) 

[15] is used for blobs and Laplacian of Gaussian (LoG) [16] and Difference of Gaussian 

(DoG) [17]  are employed to obtain both corners and blobs.  

Usually, a feature detector is the first step towards object detection and pose 

estimation, which is generally followed by feature extractors that are responsible for 

obtaining a feature descriptor or a feature vector. Despite being patented, the most popular 

methods for feature extraction in intensity images are the following: Scale Invariant Feature 

Transform (SIFT) [18][19], Speeded up Robust Features (SURF) [20] and Histogram 

Oriented Gradients (HOG) [21][22].One interesting application of the SIFT and SURF 

descriptor is to build object models that can be used in the recognition of all objects in the 

scene an estimate their pose [23]. Collet et al. proposed as well, an optimized framework, 

using MOPED applied with the Iterative Clustering-Estimation (ICE) algorithm developed 

by the same author, which iteratively clusters neighbor features that are likely to belong to 

the same object and then hypothesize the object classification within each cluster [23]. 

Although this framework successfully works for textured objects as shown in Figure 2.1 it 

presents some shortcomings regarding less textured objects [24]. 
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Regarding HOG, Wang et al. combined trilinear interpolated HOG with Local Binary 

Pattern (LBP) in order to overcome partial occlusion [25] and the several steps are presented 

in Figure 2.2. 

 

 A very popular approach to compute pose estimation is to match features between a 

3D model of the object and a corresponding 2D image [26][27]. However, these type of 

approaches are only successful for locally planar textures [19][28][29][30], and objects in 

an industrial and surgical setting do not usually present such properties. Thus, visual feature 

matching is not robust to specular objects due to the unpredictable change of the intensity of 

light throughout the object, which is not coherent with the 3D model. 

 Feature-based approaches can use different features such as edges [31][32] or 

intersection of straight lines [26][33]. In 2000, Costa and Shapiro [31] computed the edge 

image of the output of a camera with two light sources and, then extracted the features and 

their relationships that enables the recall of 2D object models through relational indexing 

permitting an object classification. Instead of the relational indexing approach, Ulrich et al. 

Figure 2.1- Recognition of real world scenes using the MOPED framework. [23] 

Figure 2.2 – Framework of the HOG-LBP detector [25]. 
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[32] used a 2D edge matching followed by a pyramid level method in order to obtain the 

most likely classification, which enabled to obtain a more accurate 3D object position. 

However, 2D images seem to be only suitable for bin-picking applications when robot poses 

are limited to a few degrees of freedom [34]. A detection example with this approach can be 

found in Figure 2.3. David et al. [26][33] proposed in 2003 and later on in 2005 an algorithm 

able to recognize cluttered objects. This algorithm estimated the pose of the object by 

matching lines presented in the real image with lines likely presented by 3D models of the 

objects. One of the advantages of this approach is its robustness to occlusion since it only 

requires a few unfragmented model lines to be successful. 

 

 All the approaches previously described match the extracted features to the 

corresponding model features thus, the object position can be computed using - non-prone 

to occlusion - fast nearest neighbor and range search algorithms [26].  

2.2. Template and Shape Matching 

 
Another solution for object detection in random bin-picking systems is template 

matching, which resembles the methods described in the previous section. However, instead 

of local features, a database with templates of the objects at different poses is built and is 

correlated to the input image, in order to find the best match. 

 A popular template matching algorithm is the Hough Transform, which despite 

originally being intended to detect lines [35] and it was later further developed to recognize 

Figure 2.3- Ulrich et al. detection example robust to occlusion [32]. 
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generic parametric shapes[36] and then generalized to identify object classes 

[37][38][39][40][41][42]. In this algorithm, during recognition, for each edge (boundary) 

point for each possible master theta (with theta being the orientation of the object) it is 

computed the gradient direction and subtracted theta. Then for the resultant gradient, the 

displacement vectors are retrieved to vote for the reference point which is the center of the 

object defined by its coordinates, orientation, and possibly scale. This process of additive 

aggregation of evidence from input images in a parametric space (Hough space) is known as 

Hough voting, however, nowadays is wrongly misunderstood for Hough Transform which 

is the overall algorithm [43]. The configuration of detected objects is encoded by the maxima 

peaks amongst all Hough votes within the Hough space. 
 

Despite Hough Transforms being a common algorithm there are others such as the 

Fast Directional Chamfer Method (FDCM) [44], whose results are shown in Figure 2.4 , or 

the global shape descriptor Ensemble of Shape Functions (ESF) [45], Depth-Encoding 

Hough Voting (DEHV) [46], RANSAC algorithm [47], [48], [49] amongst others [50], [51], 

[52], [53], [54], [55] which are used in shape matching for real-time object classification 

applications. 

 In 2010, Ferrari et al. [56] developed a shape matching framework that uses scale-

invariant local shape descriptors and a voting scheme on a Hough space as previously 

described by the author [57]. 

The implementation of all the algorithms described in this section is quite 

straightforward, nevertheless it presents two main shortcomings: on one hand, it requires a 

long computation time, because of the high amount of possible poses for each edge point. 

And, on the other hand, it is not able to handle either occlusion or shiny objects very well 

Figure 2.4- Object detection and pose estimation results from the FDCM algorithm [44]. 
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due to the fact that only edges above a predefined threshold shall be taken into account, 

making the binarization process not very stable for those situations  [32][58]. In order to 

overcome the first drawback, Strzodka et al. [59] used graphics hardware-accelerated 

implementations and resorted to parallel programming to achieve successful matches within 

one minute. Nonetheless, for most bin-picking applications, a minute is still an unreasonable 

amount of time, which discard its use in some real applications. 

2.3. Bag of Visual Words (BOVW) 

 
While all the methods presented so far are still being developed, another research 

field has risen, due to the increasing interest in Artificial Intelligence (AI). A part of AI is 

Machine Learning (ML), which also undergone an upsurge in 2010’s, as well as its branch, 

Deep Learning (DL). 

 The Bag of Words (BOW) model [60] is in the midst of both CV and ML and it is 

mainly used in documents where the number of appearances of each word is firstly counted, 

to define the keywords of the document and to draw a frequency histogram. The concept of 

Bag of Visual Words is an adaptation of BOW, where image features are used instead of 

words. The three main steps of this approach are [61]: 

• Feature Extraction: the features and respective descriptors need to be 

extracted from patches of the image which can be achieved through feature descriptors such 

as SIFT, SURF or HOG as described in Section 2.1. 

• Codebook Generation: codebooks are a method used to classify the 

local appearance of features into a discrete number of visual words representing the class of 

the object. In this step, the descriptors are clustered for example with the K-Means [62] or 

DBSCAN [63] algorithm and the centroids of the clusters are used as vocabulary of the 

visual dictionary, therefore the image is encoded as a histogram of visual code words. 

• Learn and Test: several learning methods could be applied to the 

histogram encoded image to predict the category of the objects in the image, such as Support 

Vector Machines (SVM) [64] or the classifier Naïve Bayes [65]. However, Csurka et al. [60] 

showed that SVM  obtains better results than the classifier Naïve Bayes. During object 

detection, interest point features are matched to the words of the codebook and then 

classified by the trained classifier. 
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Despite their early discovery, codebooks are a common approach to execute object 

detection and could be implemented with the aim to speed up a sliding window approach 

[66] and undergone some improvements such as the use of histogram intersection kernel and 

being generalized to arbitrary additive kernels [61]. In 2014, codebooks were applied in image 

reconstruction [67] and recently in 2017, Zhou and Wachs developed an object recognition 

approach in which surgical instruments were segmented through a variant of BOVW using 

RGB and depth images from a Microsoft Kinect camera [4]. 

Codebook-based detectors have some advantages in comparison with the methods 

described in previous sections, like an increased efficiency, since they do not require a 

mechanism to encode spatial information among features [61] and they are not sensitive to 

partial occlusion, since the classification of the object only needs a small amount of patches 

[43]. 

2.4. Point Pair Features (PPF) 

 

Another descriptor that obtains global information of objects for robust object 

recognition is the Point Pair Features (PFF), which resorts to a Hough voting scheme or the 

RANSAC algorithm to match surface element (surfel) pairs between the model and the input 

image. Drost et al. [68] accomplished a success rate of 97% for an object with less than 84% 

of occlusion which makes PPFs methods a great choice for random bin-picking applications. 

The popularity of PPFs has increased quickly leading to the publication of several 

adaptations and improvements. For example, Kim and Medioni [69] added visibility context 

in order to achieve better results and Choi et al. [70] used different edge point relations to 

decrease the number of features, hence increasing the detection speed. In another direction,  

Drost & Ilic [71] used edge gradients to compute PPFs, and in 2015 Birdal &Ilic [72] resorted 

to a weighted Hough voting method and an interpolated recovery of the parameters, 

disposing of the Iterative Closest Point (IPC) algorithm to enhance the accuracy of detection 

and pose estimation. In 2016, Hinterstoisser et al. [73] added a method of sampling and 

spreading features and, recently in 2018, it was complemented by fusing a Correspondence 

Rejector Sample Consensus algorithm along with an IPC technique, which enabled to 

improvevboth the occlusion handling and the detection accuracy [74]. 
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2.5. Implicit Shape Model (ISM) 

 

Leibe et al. [75] proposed the Implicit Shape Model, which is a combination between 

visual codebooks and the Hough Transform. According to Gall et al. [43] “During training, 

they augment each visual word in the codebook with the spatial distribution of the 

displacements between the object center and the respective visual word location” and for the 

object detection to be successful it requires the matching of descriptors to visual words which 

votes for the object center. All the steps of this algorithm are described in Figure 2.5. 

 

Throughout the years this model underwent several developments, especially 

focusing on improving the voting method and hypothesis generation [37], [39], [41], [42], 

[66],  [76], [77]. One example of this is Drost et al. [68], that adapted the Hough voting with 

pairs of surface elements matches, which was then further developed in 2014 by Choi et al. 

[70], by the acquisition of objects point clouds to use oriented points on objects contours. 

2.6. Random Forests 

 
A Random Forest is an ensemble of connected decision trees mostly trained through 

the “bagging” method, which combines several learning models and requires labeled data 

for training, therefore Random Forests can be classified as a supervised learning algorithm 

and their initial aim was to improve the generalization accuracy by avoiding overfitting and 

combining a large number of weak classifiers, e.g. decision trees [78]. 

Figure 2.5- Scheme of ISM algorithm [75]. 
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 This algorithm has been used for tracking both humans [79] and objects in real time 

[80], [81], [82] and also in combination with optical flow and template matching as proposed 

in 2010 by Santner et al. [83] or with HOG and SIFT features [84]. 

Gall et al. [43] adapted random forests in 2011, leading to the upsurge of Hough 

Forests which combines machine learning techniques with the Hough Transform and 

according to the author “each tree in the Hough forest maps local appearance of image or 

video elements to its leaves, where each leaf is attributed a probabilistic vote in the Hough 

space”. The leaves in this approach can be described as an implicit appearance codebook 

whereas in the ISM method it is an explicit codebook employing unsupervised clustering 

processes.  

In 2013 Badami et al. [24] aimed to classify and estimate the pose of objects of 

different classes by using a Hough Forest framework to train a codebook of point-pair-

features votes from RGB depth images. 

2.7.  Convolutional Neural Networks (CNN) 

 

In this dissertation it is assumed that the reader has some knowledge regarding neural 

networks, however further detailed information could be found on the online book “Neural 

Networks and Deep Learning” [85] or in [86] and [87]. 

CNNs are a supervised learning method and are considered a feed-forward artificial 

neural network in which the features extracted present better generalization and 

discrimination in comparison with features from classical methods [88] as well as higher 

ability to handle occlusion and changes in scene illumination. However, as downside, they 

require a large amount of data. 

The first few layers of the neural network are responsible for extracting essential 

features for recognition such as shape, color, and texture, however, these features are so 

small that are imperceptible to the naked eye and are successively extracted through a 

learning process that occurs layer by layer. Although these layers typically are convolution, 

pooling or fully-connected [89], there could be other types such as ROI(Region of Interest)-

pooling layer of Fast R-CNN [90] or Region Proposal Network (RPN) layer of Faster R-

CNN [91]. Besides layers and filter size, it is possible to change the activation function, e.g. 

logistic function, ReLu, ELU, softplus, softmax, amongst others. 
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The use of CNNs involves two steps: training and predicting. In order to train the 

network, it is required a significant amount of data and respective labels. The learning of the 

weights associated to layer-connections, as well as other parameters, is done through forward 

and back propagation algorithms frequently resorting to gradient descent methods. 

Throughout the years several CNN architectures has been developed aiming to 

improve the results. The development of more capable dedicated hardware, such as graphical 

processing unit (GPU) and central processing unit (CPU), has permitted a boom enabling 

the uprising of Deep Learning (DL) networks, which are neural networks with many hidden 

layers.  

One of the first deep learning models dates back to 1988, when Yan LeCun proposed 

the LeNet [89], that had just five layers to identify the digits within the zip codes. However 

with the surpassing of computational power limitations the AlexNet [92] was developed. 

This network architecture was the winner of the 2012 ImageNet challenge and its main 

contributions were the GPU implementation, max pooling and the non-linear activation 

function at the end of each layer, being followed by VGGNet [93] in 2014, that uses 

consistent filter sizes and many convolutional and pooling layers.  

 In 2015, Google developers proposed the GoogLeNet [94] which had a new 

architecture, named Inception, and within that model there were several small filters in order 

to extract smaller details, hence improving the accuracy. One year later, the ResNet [95] was 

presented by Microsoft researchers and has more than 150 layers without the loss of 

performance which was achieved by the addition of regularly spaced shortcut connections, 

batch normalization and disposal of fully connected layers at the end. 

 Also in 2015, J. Redmon proposed the You Only Look Once (YOLO) [96] in which 

the input image is divided into several cells and each one is responsible for predicting 

bounding boxes and class probability. This network underwent further development 

resulting in YOLOv2 (2016) [97] and YOLOv3 (2018) [98] that are going to be discussed 

in Section 5.1. 

 Finally, the last method presented as state of the art is Single Shot Multibox Detector 

(SSD) [99], which can be described as a combination of Faster R-CNN [91], by making 

predictions from feature maps, and YOLO to achieve the highest detection accuracy with 

the real-time speed of YOLO [96]. 
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2.8. Surgical Instruments 

Without regard to the application, bin-picking approaches face fundamentally 4 

challenges [100]: 

• Besides being placed in different positions, parts can present a wide range 

of postures (with diverse inclinations, rotations, and even scale); 

• The complexity of the piece, which hinders template-based approaches; 

• Parts may be partially or fully occluded; 

• Object detection must be able to withstand poorly lit conditions as well 

as the reflectance properties of the piece. 

All the methods and algorithms presented so far in this dissertation are applied in 

random bin picking of industrial parts, however not all can be applied to objects made by 

non-Lambertian materials (e.g. metal, ceramic or glass) such as surgical instruments, which 

are prone to display an unpredictable change in intensity throughout the object, as shown in 

Figure 2.6 that contains images used in this dissertation. 

 

2.8.1. External Markers 

 

A common approach to avoid surgical tool detection errors is the addition of external 

markers to the surgical tool which significantly eases the recognition task. Over the years 

several studies resorted this approach, using a variety of external markers such as 

recognizable patterns [101], color tags [102], light-emitting diodes [103], RFID tags [10] 

and 2D data matrix barcodes [3][104][105]. 

 The work of Xu et al. [104][105] is of great interest due to the high success rate 

achieved. They used Key Surgical®KeyDot to identify the tools through a 2D data matrix. 

The corners of the code are used to compute an affine transformation that aligns a template 

to the real instrument, in order to obtain a virtual map of the scene, as the one present in 

Figure 2.7, to apply the occlusion reasoning.  
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Figure 2.6- (a)(b) Examples of typical appearance variation in surgical tools of the dataset. 
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Although these methods show great potential, they have a huge drawback, which is 

that they all apply physical modifications to surgical tools that might violate regulations, 

raise safety concerns and, therefore hampering their implementation on surgical instruments.  

2.8.2. Marker-Less Approaches 

 

In 2017, Bouget et al. [106] published a literature review of marker-less approaches 

for the detection and tracking of surgical tools and an adapted summary table could be found 

in Table 2.1. 

However, there are a wide range of studies and methodologies that were not 

addressed. Carpintero et al. [8][107] resorted to Matrox Imaging Library (MIL) Finder Tool 

to extract the instrument models, and to recognize the surgical tools in the scene. Other 

approaches involved the approximation of the surgical instruments to geometric shapes such 

as tubular shapes [47], [108] or pointy solid cylinders [109], [110], [84]. In 2017, Li et al. 

[111] uses two cameras and performs blob analysis to extract the surgical instruments from 

the background obtaining surgical instruments model (SIM) through stereo vision, thus 

extracting point-pair features from SIM to distinguish the tools. 

In 2016, M2CAI released a challenge  in which the goal was to detect specific 

surgical tools from the m2cai16-tool dataset. Most of the network architectures of top 

winning deep learning approaches were modifications of AlexNet: Twinanda et al. [112] 

Figure 2.7- Pose estimation using the four corners of the data matrices from both template and input image 
of the container after non-linear refinement [104]. 
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achieved 52,5% mAP (mean Average Precision) by developing ToolNet and EndoNet, 

followed by Sahu et al. [113][114] with 53,9% mAP and 65% mAP respectively. Another 

approach was proposed by Raju[115] which combined VGGNet with GoogLeNet obtaining 

63,7% mAP, that was surpassed by Choi et al. [116] who made some modifications to YOLO 

such as the addition of one fully connected layer, dropout, and batch normalization, thus 

pretraining the convolutional layers on ImageNet 1000-class dataset achieving a total of 

72,26% mAP. 

The highest success rates for detecting surgical instruments are 87,6% mAP and 

95,81% AUC (Area Under the ROC Curve) achieved by Hossain et al. [117] and Prellberg 

et al. [118] respectively in 2018. The network architecture of Hossain et al. is a combination 

of VGG-16 and RPN (Region Proposal Network), whereas the one developed by Prellber et 

al. was built upon a 50 layer ResNet. 
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Table 2.1- Summarized literature review of marker-less approaches for surgical tools detection and tracking. Table adapted from [106]. 
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(Allan et al., 2013) [84]    ✓    ✓   ✓ ✓ ✓      

(Allan et al., 2014) [119] ✓   ✓ ✓   ✓ ✓ ✓ ✓  ✓   

(Allan et al., 2015) [120] ✓    ✓ ✓  ✓ ✓ ✓ ✓  ✓   

(Alsheakhali  et al., 2015) [121] ✓ ✓   ✓           

(Bouget et al., 2015) [122] ✓  ✓ ✓    ✓        

(Cano et al., 2008) [123] ✓ ✓       ✓ ✓     ✓ 

(Charrière et al., 2017) [124]   ✓   ✓      ✓ ✓   

(Doignon et al., 2005) [125] ✓ ✓   ✓    ✓ ✓      

(Doignon et al., 2007) [126]  ✓       ✓ ✓      

(Haase et al., 2013) [110] ✓ ✓     ✓  ✓ ✓      

(Kumar et al., 2013) [127]   ✓ ✓  ✓         ✓ 

(McKenna et al., 2005) [128] ✓       ✓ ✓ ✓    ✓  

(Pezzementi et al., 2009) [129] ✓   ✓     ✓       

(Reiter & Allen, 2010) [130] ✓   ✓     ✓  ✓    ✓ 

(Reiter et al., 2012) [131] ✓   ✓        ✓ ✓   

(Reiter et al., 2012) [132] ✓ ✓  ✓    ✓ ✓ ✓  ✓    

(Richa et al., 2012) [133] ✓              ✓ 

(Rieke et al., 2015) [134] ✓  ✓       ✓     ✓ 

(Speidel et al., 2006) [135] ✓         ✓    ✓  

(Speidel et al., 2008) [108] ✓      ✓ ✓ ✓       

(Speidel et al., 2014) [136] ✓     ✓ ✓   ✓     ✓ 

(Sznitman et al., 2014) [47]  ✓      ✓ ✓       

(Voros et al., 2007) [137]  ✓   ✓    ✓  ✓     

(Wolf et al., 2011) [138]  ✓   ✓    ✓  ✓   ✓  

(Zhou & Payandeh, 2014)[139]  ✓       ✓    ✓   
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3. INSTRUMENTS AND SOFTWARE 

 

The aim of this dissertation was to develop a successful methodology for detecting 

surgical tools and perform occlusion reasoning to be applied on a system, that would sort the 

surgical tools from a cluttered tray after disinfection to assembly surgical kits.  

The first step towards accomplishing that goal is to choose the surgical instruments, 

therefore, with the intention of making the system useful and as close to the “real world” as 

possible, the Chief Nurse of the Main Operating Room of the Hospital of University of 

Coimbra, Jorge Tavares, was interviewed and promptly supplied lists of surgical kits 

amongst a wide range of medical specialties. These lists were analyzed and it was chosen 

the most popular instruments across several medical fields, however, due to some difficulties 

in acquiring those surgical tools, the instruments used throughout this research were the ones 

found which had the closest form to the intended tools, which are: Scalpel nº4, Straight 

Dissection Clamp, Straight Mayo Scissor and Curved Mayo Scissor. 

 The camera used for this project was the Teledyne Dalsa BOA INS, which has 

640x480 of pixel resolution. However, despite being a smart camera, none of its 

functionalities were used. 

The object detection, as well as occlusion reasoning stage in this dissertation, was 

accomplished by resorting to convolutional neural networks as will be further explained. 

These neural networks were trained on the operating system Ubuntu 16.04 on dual boot 

because, at the time, the NVIDIA CUDA toolkit for Windows was incompatible with 

Microsoft Visual Studio 2015. An installation script of all the required software and 

packages to train the neural networks on Ubuntu can be found on ANNEX A. 

 Independently of the operating system, the required software for the execution of this 

project are: 

• CUDA 9.1, which is a parallel computing platform by NVIDIA and it is 

used with the intention of speeding up the running time; 

• CuDNN 7.0.5, that was also developed by NVIDIA and is a GPU-

accelerated library of primitives for deep neural networks and it is used 



 

 

Sorting Surgical Tools from a Cluttered Tray – Object Detection and Occlusion Reasoning  

 

 

20  2018 

 

with the aim of speeding up the training and implementation of the deep 

neural networks; 

• OpenCV 3.4.0, which stands for Open Source Computer Vision Library 

is compatible with C++, python, and java, being supported by Windows, 

Linux, Mac OS, iOS and Android. It can also be compiled with OpenCL 

using the full capabilities of the hardware for acceleration purposes 

• Darknet is an open source neural network framework written in C and 

CUDA which supports CPU and GPU computation. The original pjreddie 

repository only works on Ubuntu whereas the AlexeyAB darknet 

repository is compatible with Windows and Ubuntu. Both darknet 

frameworks can be compiled enabling CuDNN, OpenCV, OpenMP, and 

GPU on the makefile. 

It is very important to install the software and libraries with the order that were listed 

above, due to dependencies during their installation. Another aspect that requires attention 

are version compatibilities, because whenever a software undergoes updates it is likely that 

it no longer is compatible with some of the other software or libraries mentioned and while 

the other programs are being developed to support the improvement, the most recent releases 

are not compatible, which proofs the utter importance of version compatibility. 

 Regarding the hardware, two computers were used: one for training the neural 

networks and other for developing the application and perform the train and test group split 

of the data as well as analyze the results and their respective hardware specification could 

be found on Table 3.1. 

 

Table 3.1- Hardware specifications. 

 Neural Networks Training App development 

Graphics Card NVIDIA GEFORCE GTX 1050Ti NVIDIA GEFORCE GTX 850M 

Dedicated memory 4GB 4GB 
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4. CLASSICAL APPROACH 

 

The aim of this project was to develop a robust detection system able to handle 

occlusion for sorting surgical tools assessing the first tool to be removed and returning the 

grasping point coordinates which do not require great precision due to the use of an 

electromagnetic gripper. However, this dissertation focus mainly on object detection and 

occlusion reasoning. 

Due to the objective of recognizing the tool the as fastest as possible, the initial 

approach to achieve the surgical object detection and sorting was similar to studies from Xu 

et al. [3][104][105] and its scheme is presented in Figure 4.1. Despite the final developed 

approach in this dissertation is not the one described in this chapter, it still is an important 

contribution to solve random bin-picking of surgical tools. 

 

 

Figure 4.1- Scheme of all the steps involved in this project. 
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Detection and Classification 

The tool’s class ID is encoded into a 2D data matrix barcode, which besides 

making the identification task quite straightforward, it eases the pose estimation through 

computing an affine transformation between the four corners of the matrix of the template 

and the real object. The detection and classification of the tools in the tray was planned to 

be achieved using the software package 2DTG, that is capable of decoding multiple small 

codes present in an image and return the position of all their corners. 

 

Virtual Occupancy Map 

After finding the position and classification of the tools in the tray, an occupancy 

map would be built by applying an affine transformation on the instrument template before 

adding it to the map with the respective position and orientation, thus a non-linear refinement 

would be implemented to improve the alignment of the templates with the surgical 

instruments in the scene. 

 

Occlusion Reasoning 

In order to determine the tool to be first removed it is mandatory to overcome 

the difficulties imposed by occlusion. Thus, each instrument template is assigned to one bit 

in the occupancy map which is a single channel image. Then each pixel would be analyzed 

and its intensity value assessed accordingly. For example, if bit 4 is 1 then the instrument D 

is there, however, if the bit 2 is 0 then instrument B is absent. This reasoning may provide a 

location where an occlusion occurs (when the same pixel has more than one bit assigned), 

and by comparing the several hypotheses (A occludes B or B occludes A) with the real image 

it would be possible to determine which tool is on top of the tray and therefore, the first to 

be removed. 

 

Pose Estimation and Kits Assembly 

The electrical current, position, and orientation of an electromagnetic gripper 

would be adjusted accordingly to the shape, mass, material and touch point of the tool to be 

removed. After picking up the surgical instrument, the robot would place it onto the proper 

location, in accordance to the surgical kit being set up. 
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4.1. Templates 

 

In this approach, the first step towards pose estimation is the creation of a 

template for each surgical instrument class, noting that the same tool could have more than 

one template if it has more than one possible face, requiring a different barcode for every 

single one. 

There are three main image segmentation approaches to obtain the templates: 

edge-based, threshold-based and region-based. The next sections of this dissertation make 

an overview of some of these methods and their implementation in surgical tools, showing 

their application in the original Figure 4.2. All the templates were built in C++ through 

Microsoft Visual resorting to the OpenCV library.  

4.1.1. Edge-based Image Segmentation 

The first edge detector implemented was Sobel [11] which is a discrete 

differentiation operator combining both Gaussian smoothing and differentiation. It 

calculates an approximation of the gradient of an image intensity function, by convolving 

the image, I, with a specific filter. From the Sobel operator, two derivatives are computed 

Figure 4.2- Original image of a Curved Mayo Scissor. 
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that represent horizontal changes (Equation 4.1)  and vertical changes (Equation 4.2) which 

combined results in the gradient magnitude (Equation 4.3). 

 

𝐺𝑥 = [
−1 0 1

−2 0 2

−1 0 1

] ∗ 𝐼                                                        (4.1)                                                                     

 

𝐺𝑦 = [
−1 −2 −1

0 0 0

1 2 1

] ∗ 𝐼                                                     (4.2)                                                   

 

𝐺 = √𝐺𝑥2 + 𝐺𝑦2                                                                 (4.3) 

The edges obtained by the Sobel magnitude of a Curved Mayo Scissor can be 

found on Figure 4.3, which was achieved through executing the following OpenCV 

functions in a greyscale image: 

 

Sobel(Input_Mat, xsobel, CV_32F,1,0,3,BORDER_REPLICATE); 

 Sobel(Input_Mat, ysobel, CV_32F, 0, 1, 3, BORDER_REPLICATE); 
magnitude(xsobel,ysobel,output); 

normalize(output, output_normalized,0.0,255.0, cv::NORM_MINMAX, CV_8U); 
Code Snippet 4.1- Sobel edge functions. 

Figure 4.3- Sobel magnitude of a Curved Mayo Scissor. 
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According to the OpenCV Sobel documentation, this operator can produce some 

noticeable inaccuracies, which can be reduced by the Scharr operator (Equations 4.4, 4.5, 

4.3) that minimizes the angular error in Fourier Transform domain. However, such 

improvement was not corroborated by Figure 4.4, that is very similar to Figure 4.3. 

𝐺𝑥 = [
−3 0 3

−10 0 10

−3 0 3

] ∗ 𝐼                                                       (4.4) 

𝐺𝑦 = [
−3 10 3

0 0 0

3 10 3

] ∗ 𝐼                                                        (4.5) 

 

 

Nevertheless, these edge operators are sensitive to noise and do not work as well 

in smooth edges, as verified in  Figure 4.5, in which was applied the gaussian blur function 

with a 3x3 kernel and an x and y standard deviation of 50 before the implementation of the 

edge operators. 

 

 

 

Figure 4.4- Scharr magnitude image of a Curved Mayo Scissor. 
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A more suitable algorithm for image segmentation through edge detection was 

proposed by John Canny [12] and had the following main steps: 

• Apply smoothing derivatives to suppress noise; 

• Apply a high threshold to detect strong edge pixels; 

• Link those pixels to form strong edges; 

• Apply a low threshold to find weak but plausible edge pixels; 

• Extend the strong edges to follow weak edge pixels. 

In order to manually find the best set of thresholds, it was developed an 

application with a sliding bar, which whenever moved callbacks the OpenCV Canny 

function with the new parameters chosen, which can be observed in Figure 4.6 as well as the 

best parameters applicable to the Curved Mayo Scissor. 

Additionally, it is possible to obtain the contours of the surgical tool from the 

edges, as shown in Figure 4.7. This can be computed through the functions present in Code 

Snippet 4.2, in which “edges” is the output Mat from the Canny function, “contours” is a 

vector with information of the lines (vector of points) and “drawing” is the output Mat with 

the all the image contours. The code present is also within the callback function previously 

mentioned, in order to observe the impact in both edge and contour image, while changing 

each threshold value. 

(a) (b) 

Figure 4.5- Edge operators implementation on a smoothed image. 
(a) Sobel (b) Scharr. 



 

 

   

 

 

Diana Martins Lavado  27 

 

 

(a) 

(b) 

Figure 4.6- (a) Sliding bar in original image of a Curved Mayo Scissor (b) Canny 
edges with threshold values presented in sliding bar. 
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GaussianBlur(Input_Mat, blured, Size(9, 9), 1, 1, BORDER_REPLICATE); 

findContours(edges, contours,hierarchy, RETR_TREE, CHAIN_APPROX_SIMPLE, 

Point(0, 0)); 

drawContours(drawing, contours, index_color, color, 2, 8, hierarchy, 0, 

Point()); 

Code Snippet 4.2- Object contour from Canny edges. 

 

4.1.2. Threshold-based Image Segmentation 

 

Other approaches for image segmentation are threshold-based techniques, which 

compare the intensity levels with a threshold, that can be automatically found through Otsu’s 

method. This method assumes that the image contains two classes of pixels (foreground and 

background pixels), meaning that the grayscale image is converted to a binary image, then 

some noise is removed by erosion and finally, is found the threshold that minimizes the 

weighted within-class variance, which is equivalent to maximizing the variance between 

classes. 

Figure 4.7- Contours of Curved Mayo Scissor controlled with the sliding bar 
application. 
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The resultant image segmentation of a Curved Mayo Scissor is displayed in 

Figure 4.8, and the respective OpenCV function is in Code Snippet 4.3. 

 

threshold(Input_Mat, Binary, thresh, thresh2, CV_THRESH_OTSU); 

Code Snippet 4.3- Image segmentation using Otsu’s method  

 

4.1.3. Region-based Image Segmentation 

 

These type of approaches merge and split pixels into sub-regions, considering 

grayscale intensity values similarity with neighboring pixels. One of these methods is the 

watershed algorithm [140], which quoting the OpenCV documentation “any grayscale image 

can be viewed as a topographic surface where high intensity denotes peaks and hills while 

low intensity denotes valleys. You start filling every isolated valleys (local minima) with 

different colored water (labels). As the water rises, depending on the peaks (gradients) 

nearby, water from different valleys, obviously with different colors will start to merge. To 

avoid that, you build barriers in the locations where water merges. You continue the work 

of filling water and building barriers until all the peaks are under water. Then the barriers 

you created gives you the segmentation result” [141].  

Figure 4.8- Image segmentation of a Curved Mayo Scissor resorting to Otsu’s method. 
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In order to improve the segmentation of an image through the watershed 

algorithm, all the background pixels should have intensity values of 0 (black), because it 

eases the discrimination of foreground pixels while applying the Distance Transform. 

Afterward, it is advised to implement a Laplacian filter to sharpen the image, however, it 

was verified that this results in an overly sectioned image of the surgical tools and that a 

smoothing filter (e.g. Gaussian) leads to a more accurate segmentation. The next step is to 

create a binary image resorting to Otsu’s method and apply the distance transform whose 

output is displayed in Figure 4.9, whose peaks are going to be extracted by applying a 

threshold and a morphologic operation (dilation). Then, the OpenCV function findcontours 

allows to create markers for the watershed, that are posteriorly drawn and filled with random 

colors. Some of the C++ lines of this algorithm could be found on Code Snippet 4.4. and the 

final result in Figure 4.10. 

 

  GaussianBlur(Input_Mat, img, Size(5, 5), 1, 1, BORDER_REPLICATE); 

 cvtColor(img, imgResult, CV_BGR2GRAY); 
  threshold(imgResult, imgResult, 66, 300, CV_THRESH_BINARY | 

CV_THRESH_OTSU); 

distanceTransform(imgResult, dist_transf, CV_DIST_L2, 3); 

normalize(dist_transf, dist_transf, 0, 1., NORM_MINMAX); 
  threshold(dist_transf, dist_transf, .4, 1., CV_THRESH_BINARY); 

Mat kernel1 = Mat::ones(3, 3, CV_8UC1); 

 dilate(dist_transf, dist_transf, kernel1); 
  dist_transf.convertTo(dist_transf8u, CV_8U); 

  findContours(dist_transf8u, contours2, CV_RETR_EXTERNAL, 

CV_CHAIN_APPROX_SIMPLE); 

  drawContours(markers, contours2, static_cast<int>(i), 

Scalar::all(static_cast<int>(i) + 1), -1); 

  circle(markers, Point(5, 5), 3, CV_RGB(255, 255, 255), -1); 

  watershed(image1, markers); 

markers.convertTo(mark, CV_8UC1); 

 bitwise_not(mark, mark); 
Code Snippet 4.4- Main lines of code of the watershed algorithm 

 

At this point in the development of dissertation we were still unable to acquire a 

license for the 2DTG software, which would allow to decode multiple 2D data matrix 

barcodes in the same image and also the camera used in this project had a pixel resolution 

of 640x480, which was not enough to identify the smallest change within the barcodes, due 

to their reduced size. Therefore, this approach to detect surgical tools became unsuitable and 
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it was required to follow a completely new path towards the bin-picking of surgical tools in 

a clustered tray, which is discussed in Chapter 5. 

 

 

 

Figure 4.9- Distance Transform of a Curved Mayo Scissor. 

Figure 4.10- Watershed segmentation of a Curved Mayo Scissor. 



 

 

Sorting Surgical Tools from a Cluttered Tray – Object Detection and Occlusion Reasoning  

 

 

32  2018 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

   

 

 

Diana Martins Lavado  33 

 

 

5. MODERN APPROACH 

 

Within the last few years, Convolutional Neural Networks have undergone an 

upsurge solving problems in a wide range of fields such as object detection in which the 

most relevant networks are Faster R-CNN [91], SSD [99], YOLO(that currently has three 

versions) [96], [97], [98]. 

According to Huang et al. [142], which compares the accuracy of Faster R-CNN, 

R-FCN and SSD meta-architectures throughout several datasets and feature extractors, the 

Faster R-CNN obtains better results in comparison with SSD, as shown in Figure 5.1, despite 

the higher memory allocation, training duration and detection time. 

 

According to a graph presented in YOLO v2 paper, which is displayed in Figure 5.2, 

the Faster R-CNN Resnet evidences the highest mAP, followed by YOLOv2 and SSD 

respectively, considering that the camera resolution is 640x480 pixels. However, in order to 

enable real-time applications it is preferable to choose a network architecture able to detect 

around 60 frames per second (FPS) at the cost of a slightly lower mAP. Hence, the neural 

network used in this dissertation was YOLOv2. 

Figure 5.1- Accuracy of detector (mAP on COCO) vs accuracy of feature extractor (on 
ImageNet-CLS) of the low resolution models [142]. 
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The current object detector neural network state of art is YOLOv3 [98] and, although 

it was only published in March of 2018, it was also implemented for object detection in the 

final stages of this dissertation. 

 

5.1. YOLO v2 

 

YOLO stands for “you only look once” and is a real-time object detection system 

which was firstly introduced in 2015 [96], having undergone enhancements over time 

resulting into three versions. 

The second version of YOLO [97] is considered a single shot detector that splits the 

image into an SxS grid, and each grid cell is responsible for predicting a fixed number of 

randomly sized boundary boxes, B, each with one box confidence score and one object 

classification, C, per grid cell, as shown in Figure 5.3. These predictions are then encoded 

by a 𝑆 × 𝑆 × (𝐵 ∗ 5 + 𝐶) tensor, which in this dissertation corresponds to 7x7x14. 

Figure 5.2- Accuracy and speed comparison on VOC 2007 dataset [97]. 
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The YOLOv2 architecture used on this project is represented in Figure 5.4, showing 

19 convolutional layers, 5 max-pooling layers and a passthrough layer to enable the use of 

fine grain features, which lead to a mAP of 78,6% on VOC dataset. 

In comparison with YOLO, the second version of this neural network has an 

improved performance due to four main factors: 

• Batch normalization, which is implemented at the end of every convolutional 

layer aiding the model to converge and stabilize, reducing overfitting and, 

thus leading to the removal of the dropout layer; 

• High resolution classifier: the network was pretrained on ImageNet dataset 

and then was resized (to higher resolution) and fine-tuned for classification, 

instead of just resizing it for detection, which was the approach implemented 

on YOLOv1; 

• Dimension clusters, which are the result of applying K-mean clustering to the 

bounding boxes in training data, instead of resorting to predefined anchor 

boxes (like YOLOv1); 

• Multiscale-training: during training the network randomly changes the 

images size 

Figure 5.3- YOLO system model detector as a regression problem [96]. 
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 The third version was not tested on the VOC dataset yet, however it is possible to 

compare the performance of the two latest versions of YOLO on the COCO dataset, in which 

the mAP is 44% for YOLOv2 and 57,9% for YOLOv3. Since the implementation of 

YOLOv3 was also tested at the end of this dissertation, it is important to explain the main 

improvements in comparison to YOLOv2, which are the following: 

• Bounding box predictions: it also uses dimension clusters with resemblance 

of the previous version, however predicts the objectiveness score using 

logistic regression; 

• Class predictions: for each class it is used logistic classifiers, whereas 

YOLOv2 implements a regular softmax layer; 

• Predictions across scales: the bounding boxes are predicted with 3 different 

scales to make the detector robust to vary object scales; 

• Feature extractor: instead of using darknet-19 as a backbone, YOLOv3 uses 

darknet-53, which has 53 convolutional layers and is more efficient than 

ResNet-101. 

5.2. Dataset 

 

Most of the public datasets used for surgical tools detection were obtain from in-

vivo surgery videos, for example: 

• From DaVinci surgery [127]; 

• From retinal and laparoscopic videos [143]; 

• From minimally-invasive surgery [84]; 

• From robotic-assisted minimally-invasive surgery procedures taking scale 

and rotation into account [144]; 

• From brain and spine tumor removal procedures [122]; 

• From gallbladder excision surgery [116]; 

• From cataract surgery videos [118]; 

• From cholecystectomy procedures, the m2cai16-tool dataset [115]. 
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Figure 5.4- YOLO v2 architecture. 



 

 

Sorting Surgical Tools from a Cluttered Tray – Object Detection and Occlusion Reasoning  

 

 

38  2018 

 

However, the datasets mentioned above lack in data, diversity, precision in 

annotations and do not contain data regarding the surgical tools used in this dissertation. 

Therefore, a new dataset was built with custom data. 

The first step towards the dataset assembly was to take a lot of photos of each surgical 

instrument individually on a surgical tray with several rotations, inclinations and lightening 

conditions throughout the tray, resorting to iNspect Express (camera software) from 

Teledyne. Afterwards, in order to make the method robust to occlusion, each tool is paired 

with another of different class and the process is repeated, under the same conditions 

previously described, with one of the instruments occluding the other and vice versa. Finally, 

another set of photos are taken with tools of all classes without occlusion. The total amount 

of pictures is discriminated in Table 5.1 in which the instruments with a “+” before their 

name are on top of previous individually class. 
 

Table 5.1- Discrimination of the amount of pictures in the dataset. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In machine leaning, the bigger the dataset the more accuracy the model is going to 

achieve, especially in DL, which requires a higher amount of data [145]. There are a wide 

range of techniques to perform data augmentation of an existing dataset, such as cropping, 

rotating, flipping and scaling input image. In this dissertation, the data augmentation was 

Surgical tools present in the image 
Amount 

of photos 

Scalpel nº4 (individually) 550 

+ Straight Dissection Clamp 71 

+ Straight Mayo Scissor 49 

+ Curved Mayo Scissor 64 

Straight Dissection Clamp (individually) 460 

+ Scalpel nº4 64 

+ Straight Mayo Scissor 76 

+ Curved Mayo Scissor 80 

Straight Mayo Scissor (individually) 450 

+ Scalpel nº4 59 

+ Straight Dissection Clamp 77 

+ Curved Mayo Scissor 79 

Curved Mayo Scissor (individually) 550 

+ Scalpel nº4 69 

+ Straight Dissection Clamp 117 

+ Straight Mayo Scissor 70 

All Classes 100 
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implemented by defining “random=1” in the network configuration on darknet, which during 

training is responsible by randomly resizing the network to a size between 320x320 and 

608x608 (multiples of 32) for every 10 iterations as well as changing color (hue, saturation 

and exposure) and randomly cropping (through jitter of edges). 

The dataset built was published on Kaggle with the title “Labeled Surgical Tools and 

Images” achieving around 600 views in 20 days. 

5.2.1. Labeling 

 

YOLOv2 is used in this dissertation as a supervised learning algorithm therefore, it 

requires the bounding boxes coordinates and corresponding label of all the objects present 

in each image which needs to be written in a text file with the same name as the respective 

image. Two different programs were tested in order to perform image labeling: BBox-Label-

Tool and Yolo_mark. 

5.2.1.1. BBox-Label-Tool 

 

This is a python program [146] compatible with both Windows and Ubuntu, requiring 

python 2.7 and the PIL(pillow) package. In order to function the images have to be divided 

by class and placed in the folders “…/Images/001”, “…/Images/002” and so on, thus it is 

important to mention that the folder “…/Examples” need to contain the same subfolders than 

“…/Images”.  

 Other requirements are that image names cannot contain “.”, which can be modified 

by “Bulk Rename Utility” and all images must have a jpeg format which can be achieved by 

“Bulk Converter” software or by typing “ren *.bmp *.jpeg” at the image folder terminal. 

By the time it was used for the dissertation, this labeling tool did not supported multi 

class labeling (objects from different classes in the same image), so the solution would be to 

change the class if of all labels and concatenate the text files referent to the same image or 

resort to Yolo_mark labeling tool instead, which is described in section 5.2.1.2. However, in 

the meanwhile, a branch of BBox-Label-Tool supporting multiclass objects was developed 

[147]. 
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5.2.1.2. YoloMark 

 

With resemblance to the previous tool, Yolo_mark [148] is also able to support both 

Windows and Ubuntu requiring images with the .jpg format as well. 

 Since the training of the neural network would be done in Ubuntu, the same operating 

system was used for image labeling. Thus, two text files are required: one with all the image 

paths and other with the different class names.  

The Figure 5.6 shows the labeling GUI that is created whenever the command 

“./yolo_mark images_folder_path image_list_path names_path” is typed onto the terminal. 

 The output of this tool is a text file per image, containing in each line the class 

number, x, y, width and height of a bounding box label, in which x and y are the coordinates 

of the center of the rectangle (and not the left corner as in BBox-Label-Tool)). The content 

of an example label file could be found on Figure 5.7 that represents the labels of the surgical 

tools displayed on Figure 5.6. 

 Besides the detection challenge, YOLOv2 was also used to overcome occlusion 

classifying each tool after detection as top (not occluded) or bottom (occluded) easing the 

decision regarding which instrument should be firstly removed. Hence the need for labeling 

not only for the surgical tool classification but whether it is on top or bottom as well. Since 

Figure 5.5- GUI of BBox-Label-Tool. 
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the bounding boxes of the labels for occlusion handling  remain the same, a python script 

was developed in order to change the class number of each label, which was only possible 

due to the previous knowledge on which tool was on top in specific intervals of images. 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.6- Yolo_mark graphical user interface. 

Figure 5.7- Label file example of the image present in Figure 5.6. 
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5.3. Train and Test Split 

 

The next step of the development is the dataset split into train and test groups, which 

in ML, usually corresponds to 70% (≈2090 images) and 30% (≈895 images) respectively of 

the data. However, this division cannot be random, because it is very important to maintain 

a balanced proportion of every class, otherwise if a determined class is more prominent then 

during object detection the network would have the tendency to classify most objects as 

instruments of that prominent class. 

In Table 5.2 is represented the discrimination of the amount of images for each class. 

In order to obtain a balanced division for each “category”, the highest amount divisible by 

70 and 30 common within the lowest amongst classes is chosen. Meaning that for the 

“individually”, “with other instruments” and “the 4 classes present” categories the chosen 

values are respectively 450, 360 and 100.   

 

Table 5.2- Discrimination of classes distribution. 

 

At this point, the division into train and test groups of images, in which there is only 

one instrument, or the four classes present is quite straightforward, whereas regarding 

images with two instruments (second category) it is unreasonable to select random images 

with two instruments without taking into account the class of the instruments. 

 The amount of images of each instrument combination is described on Table 5.3 and 

was obtained through solving the Equation 5.1. As previously explained, the initial amount 

of images with combined instruments to split is 360 of which 108 (30%) will go to the test 

group and the rest (252) to the train group. In order to simplify the calculations, the initial 

focus was on finding the test group. 

 

 Individually 
With other 

instruments 

The 4 classes 

present 
Total 

Scalpel 550 376 

100 

1026 

Straight Dissection Clamp 460 485 1045 

Straight Mayo Scissor 550 410 1060 

Curved Mayo Scissor 450 479 1029 
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Table 5.3- Discrimination of images with combination of instruments in the train and test groups 

 

 

 

 

 

{
 
 
 
 
 

 
 
 
 
 
108 =  𝑐1 + 𝑠𝑠1 + 𝑐𝑠1 + 𝑠1 + 𝑠2 + 𝑠3    

108 =  𝑠1 + 𝑠𝑠2 + 𝑐𝑠2 + 𝑐1 + 𝑐2 + 𝑐3    

108 =  𝑠2 + 𝑐2 + 𝑐𝑠3 + 𝑠𝑠1 + 𝑠𝑠2 + 𝑠𝑠3

108 =  𝑠3 + 𝑐3 + 𝑠𝑠3 + 𝑐𝑠1 + 𝑐𝑠2 + 𝑐𝑠3
𝑐1 + 𝑠𝑠1 + 𝑐𝑠1 =  𝑠1 + 𝑠𝑠2 + 𝑐𝑠2            

𝑠1 + 𝑠𝑠2 + 𝑐𝑠2 =  𝑠2 + 𝑐2 + 𝑐𝑠3              

𝑠2 + 𝑐2 + 𝑐𝑠3 =  𝑠3 + 𝑐3 + 𝑠𝑠3                 

𝑐𝑠3 = 𝑠𝑠3                                                          

𝑠𝑠1 = 5                                                             

𝑐𝑠1 = 25                                                          

𝑠1 = 10                                                            

𝑠2 = 14                                                            

                              (5.1) 

 

 

 variable Train Test 

Scalpel nº4  - 315 135 

+ Straight Dissection Clamp c1 46 24 

+ Straight Mayo Scissor ss1 44 5 

+ Curved Mayo Scissor cs1 36 25 

Straight Dissection Clamp - 315 135 

+ Scalpel nº4 s1 54 10 

+ Straight Mayo Scissor ss2 32 32 

+ Curved Mayo Scissor cs2 40 12 

Straight Mayo Scissor - 315 135 

+ Scalpel nº4 s2 46 14 

+ Straight Dissection Clamp c2 30 23 

+ Curved Mayo Scissor cs3 50 17 

Curved Mayo Scissor - 315 135 

+ Scalpel nº4 s3 26 30 

+ Straight Dissection Clamp c3 50 7 

+ Straight Mayo Scissor ss3 50 17 

All 4 classes present - 70 30 

Total  1834 786 
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The first 4 equations translate that the sum of all images with a determined instrument 

must be equal to 108, and the following 3 equations are meant to balance the amount of times 

a determined tool is occluded (on the bottom), which is important for the training of the 

networks handling occlusion. The last parameters were necessary so that the equation system 

would be solvable, and their values were a mixture between intuition and trial and error to 

achieve the best results. 

The values for the train group were obtained by subtracting the same variables of 

the test group to the values presented in Table 5.2.  

Therefore, a python script was developed, in which for each “category” it would 

randomly sort 5 times all the possible options and the first x (x being the corresponding value 

in Table 5.3 on the test group ) would be added to the test file and the following y (y being 

the corresponding value in Table 5.3 on the train group) would be added to the train file.  

In Figure 5.8 are displayed two chord diagrams showing the relative amount of 

images for each combination of instruments in both train (Figure 5.8(a)) and test (Figure 

5.8(b)) groups. The ribbons (each connection) thickness represents the relative amount of 

images in which the two instruments it connects are present in the same image. Whenever it 

does not have a ribbon, it symbolizes the amount of images in which that instrument appear 

individually. Therefore, from the analysis of the diagrams, it is possible to conclude that both 

train and test groups are balanced, because in each graph the ribbons have approximately the 

same thickness, although in the test group straight mayo scissor + straight dissection clamp 

and curved mayo scissor + scalpel evidences a slightly lower amount of images than the 

other combinations. 

 Regarding the occlusion reasoning, initially the data split into train and test groups 

was the same only changing the labels, however, as will be explained in Section 5.4.1.1, it 

was necessary to train an occlusion handling network per surgical tool class, which requires 

a different division of the data. Since the dataset relative to occlusions is very unbalanced, 

due to the largely higher amount of images with the tools on top rather than occluded, 

therefore all of the data of each instrument class is randomly sorted 5 times and afterwards 

de the first x (x being 30% of the respective total value presented in Table 5.2) will belong 

to the test group for the occlusion reasoning of that object and the rest of the image goes to 

the train group. 
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(a) 

(b) 

Figure 5.8- Chord diagram of distribution of instruments in images in (a) train group (b) test group. 
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5.3.1. Cross-Validation 

 

The purpose of test group is to estimate the model performance on unseen data, 

although YOLOv2 uses this group as a validation helping to adjust some hyperparameters, 

it never actually “learns” from it. However, it is important to evaluate the stability and 

accuracy of the neural network, which is achieved by cross-validation, that is a method 

responsible for assessing if the statistical results can be generalized to an independent 

dataset. There are several cross-validation techniques such as k-fold, holdout or repeated 

random sub-sampling. 

Since in Deep Learning is very important to use as much data as possible, and the 

dataset was limited, the technique implemented was an adaptation of k-fold cross validation, 

because it uses the entire dataset, splitting it into k groups of which one is the test group and 

the rest compose the train group, thus rotating amongst them after a complete training of the 

network.  

Due to the limited computation power and the extended duration of the training of deep 

networks such as YOLOv2, in this dissertation it was only possible to do a cross validation 

similar to a 3-fold cross validation (training the network a total of two times). However, the 

3 groups do not have the same size in order to maintain the balance of images of every class, 

as well as their combinations. In practice, after the completion of the first training of the 

network, the data of the previous test group went to the new training group, and the new test 

group was obtained extracting the same number of images of the test set on Table 5.3 from 

the previous training group. 

5.4. Neural Network Training 
  

The YOLOv2 network was trained through the original darknet framework, which 

required text files relative to configuration, data and names, that were adapted from the 

respective files referent to PASCAL VOC dataset, which is publicly available and contains 

20 classes of objects of daily life. 

The name files only contain a class name in each line, whereas data files have the 

absolute paths (although relative paths also work) to the train, test, and name files, as well 
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as the path to the folder in which the weights resultant from the training will be stored. It is 

important to emphasize that all files must be Unix text files, which can be obtained by 

converting Win files through typing “tr -d ‘\15\32’ < winfile.txt > unixfile.txt” on the prompt 

line of the terminal. 

The configuration files for object recognition for both YOLOv2 and YOLOv3 

architectures can be found on ANNEX B. An important chunk of the YOLOv2 configuration 

file with relevant hyperparameters is on Code Snippet 5.1. 

 

The batch size is the number of images and respective labels given to the network, 

thus being used to update the weights via backpropagation and, although the smaller the 

batch size results in a higher the training time, it leads to more frequent updates per epoch 

and, therefore, to a better generalization in the instruments detection. The subdivision is the 

number of groups in which the batch can be split and each set will run in parallel on GPU (if 

darknet was compiled with GPU enabled). In this dissertation, it was firstly implemented a 

batch of 64 and a subdivision of 8 however due to the error “CUDA: Out of memory” the 

subdivisions were increased to 16, meaning that for each mini-batch has 4 images. 

The height and width were set equally to the images size to increase the resolution 

and enhance the performance of the model, still fulfilling the requirement of being divisible 

by 32. 

Code Snippet 5.1- Sample of YOLOv2 configuration file. 
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The momentum aids the decision of the next step with knowledge of previous steps, 

helping to make the gradient stable, whereas the decay aims to reduce the weights to avoid 

having large values. These parameters as well as angle, saturation, exposure and hue are 

involved with data augmentation and were assigned to default values. 

 Another modification to be made to yolov2-voc.cfg file is in the number of classes in 

the region section which is set to 4, as well as in the number of filters immediately before the 

region section, which corresponds to (classes+5)x5 = 45. 

 By default, the darknet github repository from the pjreddie stores the weights in an 

external file every 10 000 iterations, however, in order to forestall unexpected errors and to 

not  lose those intermediate weights, in this dissertation, the original repository was forked 

and modified to save weigh files every thousand interactions, which was achieved through 

the change presented on Code Snippet 5.2 in the detector.c. 

 

 if(i%10000==0 || (i < 1000 && i%100 == 0)) 

   to 

 if(i%1000==0 || (i < 1000 && i%100 == 0)) 

           Code Snippet 5.2- Modification in detector.c regarding the weights storing frequency  

  The neural network can be trained through the terminal by typing “./darknet detector 

train path-to-data path-to-cfg path-to-weigths” and the output could be saved to an external 

file by adding “ >> path-to-output” at the end. In this dissertation, it was chosen to 

implement a transfer learning approach, instead of training from scratch, due to the lack of 

a dataset extensive enough to support that. The concept relative to transfer learning is to use 

a pretrained network on very large dataset, in this case ImageNet, as a feature extractor, 

which in practice is achieved by using the weight file “darknet19_448.conv.23”, that can be 

downloaded from pjreddie website. After the training is stopped it can be easily continued 

by using the last saved weight file. 

 A sample of the output during the training of YOLOv2 can be found on Figure 5.9, 

in which the entire “block” represents one batch of 64 images divided into 16 subdivisions, 

where each line is one subdivision with 4 images and the total amount of instruments in those 

4 images can be found next to “count:”. Regarding the mini-batch, “Avg IOU” corresponds 

to the average intersection of the union between detected objects and respective ground truth 

label, “Class” represents the average of the probabilities of objects classified correctly, 
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“Obj” is the percentage of detected objects, in comparison with the total amount of objects 

in the image, “No Obj” resembles “Obj”, however, it increases whenever the network detects 

an object where there is none and “Avg Recall” represents the number of objects correctly 

identified out of the total in that subdivision. The last line presented in Figure 5.9 is the most 

important in which: 

• 30001 is the current iteration number; 

• 1.091642 is the total loss; 

• 1.601845 represents the average loss error 

• 0.0001 is the learning rate, previously defined (discussed in 5.4.1); 

• 6.166774s is the time spent processing this batch 

• 1920064 is the total amount of images used during training, which 

corresponds to the multiplication between batch size and current 

iteration number. 

 

 

5.4.1. Learning Rate 

 

The learning rate is an hyperparameter defined prior to the training and it translates 

the update frequency of the network parameters while training. In YOLOv2, this value is 

Figure 5.9- Example of the training output of the network. 
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increased by a factor of 10 on the iteration 40000 and 60000, which is in accordance to Code 

Snippet 5.1. A small learning rate makes the learning process slower, although it still 

converges smoothly, whereas a large learning rate leads to a faster learning, however it might 

not converge as exemplified in Figure 5.10, in which is also represented the ideal learning 

rate curve. 

  

 The learning rate of YOLOv2 by default is 0.001, however, since the surgical tools 

to be detected have some similarities amongst them as well as unpredictable specular 

properties, thus being very different from the objects detect in PASCAL VOC dataset (in 

which YOLOv2 is pretrained), it is important to assess the learning rate and adjust it 

accordingly, in order to improve the generalization, hence enhancing the accuracy of the 

model. To find the optimal learning rate, firstly the model is trained for a thousand iterations 

with the learning rate of 0.001, and then it is followed the thumb rule in machine learning, 

by repeating the process and increasing and decreasing the learning rate by a factor of 3. The 

optimal value of this parameter was found by comparing the respective average Loss, IOU 

of each subdivision and Recall of each subdivision, which were plotted resorting to a python 

script that would interpret and organize the data of the output file of training.  

Figure 5.10- Learning rate assessment through loss function. 
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5.4.1.1. Learning Rate for Object Detection 

 

In Figure 5.11(a) it is displayed the plots of average Loss, IOU of each subdivision 

and Recall of each subdivision for a learning rate of 0.001 and from analyzing the loss graph 

in comparison with Figure 5.10, it is possible to affirm that the learning rate is too high, 

which was corroborated by Figure 5.11(b) in which the learning rate was increased to 0.003. 

 

 

By reducing the learning rate to 0.0003, Figure 5.11(c), it is possible to observe an 

improvement on Recall and slightly on IOU, however, the loss graph indicates that the 

(a) 

(b) 

(c) 

Figure 5.11- Plots of average Loss, IOU of each subdivision and Recall of each subdivision for object detection 
with learning rates of: (a) 0.001 (b) 0.003 (c) 0.0003. 
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learning rate is still high, which led to the training for learning rates of 0.0001, 0.00003 and 

0.00001, which results are shown on Figure 5.12. 

 

 

From the plots displayed on Figure 5.12 is possible to conclude that 0.0001 is the 

most suitable learning rate, since it achieves lower values of loss than 0.00003 and 0.00001, 

although the curve from Figure 5.12(b) is smother. Regarding the IOU and Recall, it is also 

corroborated that 0.0001 (Figure 5.12(a)) is the best parameter, due to the best results 

accomplished by 0.00003 (Figure 5.12(b)) and 0.00001 (Figure 5.12(c)) as learning rate. 

 

(a) 

(b) 

(c) 

Figure 5.12- Plots of average Loss, IOU of each subdivision and Recall of each subdivision for object detection 
with learning rates of: (a) 0.0001 (b) 0.00003 (c) 0.00001. 
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5.4.1.1. Learning Rate for Occlusion Reasoning 

 

With resemblance of the previous section, for occlusion reasoning it is also necessary 

to find the optimal learning rate and the process is the same as previously described but 

starting with the learning rate of 0.0001, which was the chosen value for object detection. 

The first approach was to use the same test and train groups used in the training of the object 

detection neural network, however, instead of resorting to the object detection labels, the 

occlusion reasoning labels (with the classes top and bottom) were used. 

The results from the first thousand iterations of the training with the learning rate of 

0.0001 are displayed on Figure 5.13(a), and by observing the loss plot it can be considered 

too large as well,  as the learning rate from Figure 5.13(b). Amongst all the values tested for 

the learning rate for occlusion reasoning, 0.00003 (Figure 5.13(c)) achieved the best results, 

however, the loss curve should be smoother, indicating that the learning rate needs to be 

decreased, which leads to bad recall results as shown in Figure 5.13(d).  

Since none of the learning rates were suitable to perform occlusion detection, instead 

of using one neural network, 4 different neural networks were trained, one per each 

instrument class. Therefore, it was required to assess the best value of learning rate for each 

class of surgical tool. 

In Figure 5.14, Figure 5.15, Figure 5.16 and Figure 5.17 are presented the results 

from the learning rates of 0.0001 (a), 0.0003 (b), 0.00003 (c), 0.00001 (d) applied to the 

occlusion reasoning of scalpel, straight dissection clamp, straight mayo scissor and curved 

mayo scissor, respectively. The optimal leaning rate for scalpel and straight dissection clamp 

is 0.0001 because both Figure 5.14(a) and Figure 5.15(a) show the best results regarding the 

loss curve, IOU and recall. Relatively to straight mayo scissor and curved mayo scissor, 

according to Figure 5.16(c) and Figure 5.17(c), the learning rate of 0.00003 would be the 

most appropriate, however since the tendency was to choose the learning rate 0.0001 another 

thousand iterations were trained with both learning rates for both instruments and it was 

verified that 0.0001 was indeed better. 

There is an alternative method to find the optimal learning rate, which consists on 

enabling “burn_in=1000” in the configuration file of the network that leads to a successive 

increase of the learning rate up to the value chosen on the one thousand iteration, thus assess 

the loss values and the corresponding learning rates. 
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(a) 

(b) 

(c) 

Figure 5.13- Plots of average Loss, IOU of each subdivision and Recall of each subdivision for occlusion 
reasoning with learning rates of: (a) 0.0001 (b) 0.0003 (c) 0.00003 (d) 0.00001. 

(d) 
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(a) 

(b) 

(c) 

Figure 5.14- Plots of average Loss, IOU of each subdivision and Recall of each subdivision for scalpel occlusion 
reasoning with learning rates of: (a) 0.0001 (b) 0.0003 (c) 0.00003 (d) 0.00001. 

(d) 
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(a) 

(b) 

(c) 

Figure 5.15- Plots of average Loss, IOU of each subdivision and Recall of each subdivision for straight dissection 
clamp occlusion reasoning with learning rates of: (a) 0.0001 (b) 0.0003 (c) 0.00003 (d) 0.00001. 

(d) 
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(a) 

(b) 

(c) 

Figure 5.16- Plots of average Loss, IOU of each subdivision and Recall of each subdivision for straight mayo 
scissor occlusion reasoning with learning rates of: (a) 0.0001 (b) 0.0003 (c) 0.00003 (d) 0.00001. 

(d) 
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(a) 

(b) 

(c) 

Figure 5.17- Plots of average Loss, IOU of each subdivision and Recall of each subdivision for curved mayo 
scissor occlusion reasoning with learning rates of: (a) 0.0001 (b) 0.0003 (c) 0.00003 (d) 0.00001. 

(d) 
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5.5. Console Application 

 

Before explaining the console application developed, it is necessary to understand 

the overall methodology proposed in this dissertation, which is schematized in Figure 5.18.  

 

The proposed method in this dissertation is to initially apply the YOLOv2 trained for 

surgical tools detection, which returns the location of the detected tools in the image or video 

frame as well as the object classification (scalpel, straight dissection clamp, straight mayo 

scissor or curved mayo scissor). After obtaining the detection list, it is then sorted by 

decrescent order, and the image is segmented at the location correspondent to the detection 

with higher confidence score. Since the class of the chosen tool is known, then the respective 

trained YOLOv2 for occlusion reasoning of that instrument is implemented and the object 

is classified as being on top (not occluded), which determines the tool to be removed or, if 

it is at the bottom (occluded), then the procedure is repeated for the next detection in the 

sorted list until an instrument is classified as on top. The step following the determination of 

the tool that is going to be extracted corresponds to pose estimation, in which the coordinates 

obtained through YOLOv2 are converted to real world coordinates passible of being 

understood by a robot, in order to sort the tools and to allow the assembly of specific surgical 

kits. 

Figure 5.18- Scheme of the proposed methodology to assemble surgical kits. 
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Since the target users of this system are nurses and hospital staff responsible for 

sorting the surgical tools after being disinfected, it was necessary to develop an intuitive 

application, otherwise it would be required skilled professionals to apply the neural networks 

resorting to the PowerShell.  

Initially, it was developed a Graphical User Interface in C++/CLI, however, due to 

time limitations to finish this dissertation, a C++ console application was developed on 

Microsoft Visual Studio (MVS) prompting the user to choose options within several menus. 

Although the third version of YOLO was implemented in the final stages of this 

dissertation, the main neural network architecture used was YOLOv2, which is included in 

the dnn module of OpenCV library. However, instead of implementing the method resorting 

to this library, which is very restrict regarding architectures and functionalities, it was 

included the darknet dynamic link library (dll) into the project. 

The first step towards the inclusion of darknet into the console application project is 

to go to the directory “C:\darknet\build\darknet” and open and compile the project 

“yolo_cpp_dll.vcxproj” that generates the necessary dll’s. This project is then added on MSV 

to the console application project, thus requiring to be linked to the main project, which is 

achieved by selecting the console application project and add a reference to “yolo_cpp_dll”. 

Other essential additions are “yolo_v2_class.hpp” to the header files and “yolo_cpp_dll.dll”, 

“pthreadGC2.dll” and “pthreadVC2.dll” to the project itself. Besides these steps its 

necessary to check whether the solution configuration is release and the platform x64 as well 

as the inclusion of all the required directories and libraries in the solution properties, which 

are the following: 

• Platform Toolset Visual Studio 2015(v140), as shown in Figure 5.19, because 

the compiler of MVS 2017 is different and is not able to successfully compile the darknet; 

• OpenCV include and library directories in VC++ Directories (Figure 5.20); 

• “C:\opencv_3.0\opencv\build\include” as an additional include directory in 

C/C++ >General; 

• Additional library directories shown in Figure 5.21; 

• Additional dependencies shown in Figure 5.22. 
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Figure 5.19- Platform Toolset property. 

Figure 5.20- OpenCV include and library directories. 



 

 

Sorting Surgical Tools from a Cluttered Tray – Object Detection and Occlusion Reasoning  

 

 

62  2018 

 

 

Figure 5.22- OpenCV additional dependencies. 

Figure 5.21- OpenCV and pthreads additional library directories. 
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After the setup of the MVS environment it was built a function for each menu 

presented in Figure 5.23. 

 

Whenever the application is launched the menu displayed in Figure 5.23(a) is shown. 

If users choose the option 1 then Figure 5.23(b) is displayed, whereas if options 2, 3 or 4 are 

chosen the menu from Figure 5.23 (c) appears. 

The first menu lists all the currently loaded files. For that, it was created a struct 

named network_data with name, configuration and weight file names as attributes and 5 

instances of the struct (one for object detection and four for occlusion reasoning of each 

instrument) were defined with the respective attributes. After the user choose one of the first 

5 options of the menu Figure 5.23(c) and insert the name of the new file, the attribute 

correspondent of the previous selected option on Figure 5.23(a) menu in the respective 

instance indicated by the selected option on Figure 5.23 (c) will be modified. 

 Both the option Change files in Figure 5.23(b) and Return in Figure 5.23(c) lead to 

the Figure 5.23(a) menu and the current menu remains until a valid option is inserted. 

 The main menu, Figure 5.23(b), has two principal options: 

• Detect objects, which supports both video and images returning the 

classification of every object detected in the image as well the respective confidence score; 

(a) 

(b) 

(c) 

Figure 5.23- Console application menus (a) Files loaded (b) Main menu (c) Change files menu. 
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• Run solution, than only works for images and besides detecting object it 

implements occlusion reasoning as well to indicate which tool should be firstly removed. 

The code for detect_objects function was adapted from the open source 

“yolo_console_dll.cpp” from AlexeyAB darknet repository, in which optical flow tracking 

is enabled. An example of the output the function detect_objects can be found on Figure 

5.24, printing on the console the classes detected and respective confidence scores with a 

threshold of 0.6, which means that only detections with a confidence score higher than 0.6 

are shown. 

 

 

The essential code lines for obtain and show the surgical tools detections in an image 

are presented in Code Snippet 5.3. 

 

Detector detector(dataset.cfg_file, dataset.weights_file); 

getline(cin, filename); 

cv::Mat original = cv::imread(filename); 

std::vector<bbox_t> result_vec = detector.detect(original, 0.6); 

draw_boxes(original, result_vec, obj_names); 

cv::namedWindow("Detections", CV_WINDOW_AUTOSIZE); 

cv::imshow("Detections", original); 

show_console_result(result_vec, obj_names); 

Code Snippet 5.3- Main lines of code responsible for obtaining and showing instrument detections in an 
image. 

Figure 5.24- Example of “Detect Objects” applied to an image.  



 

 

   

 

 

Diana Martins Lavado  65 

 

In order to fully understand the Code Snippet 5.3, it is important to clarify the following: 

• “Detector” is a class defined on the header file “yolo_v2_class.hpp”; 

• “dataset” is an instance of a network_data struct previously mentioned and 

cfg_file and weights_file are respective attributes; 

• “bbox_t” is a struct with information regarding a detection such as x and y 

coordinates of the top left corner of the bounding box, as well as width, 

height, confidence score, class id, track id and frame counter; 

• “result_vec” is a vector in which the bbox_t of all detections with confidence 

scores higher than 0.6 are stored; 

• “draw_boxes”, as the name indicates, is a function that overlaps the bounding 

boxes and respective labels with the original image; 

• “show_console_result” is the function for displaying the detections class and 

confidence scores onto the console. 

Regarding the solution_img function, the first step is to detect the instruments present 

in the image resorting to the code lines shown in Code Snippet 5.3. Afterwards, it is applied 

a function to sort the detections with decrescent order of confidence score and the result list 

of detections has the name sorted_vec. In accordance with the scheme of Figure 5.18, the 

next step is to choose the first two detections of sorted_vec (with higher confidence score) 

and for each segment the original image is segmented at the bounding box coordinates and 

it was applied the respective occlusion reasoning network, as shown in Code Snippet 5.4. 

Due to memory limitations there could only be one occlusion reasoning detector, alternating 

between the neural networks correspondent to each class as need. 

for (int i = 0; i < max_num; i++) 
{ 
 Detector occlusion_detector(list_net_data[sorted_vec[i].obj_id].cfg_file, 
list_net_data[sorted_vec[i].obj_id].weights_file); 
 
 //Segment original image at sorted_vec[i] coordinates 
 Rect ROI(sorted_vec[i].x, sorted_vec[i].y, sorted_vec[i].w, sorted_vec[i].h); 
 Mat mask(original.size(), CV_8UC1, Scalar::all(0)); 
 mask(ROI).setTo(Scalar::all(255)); 
 original.copyTo(cropped_img, mask); 
 
 //execute the respective occlusion detector and store the results 
 std::vector<bbox_t> result_vec2 = occlusion_detector.detect(cropped_img, 
0.6); 
 std::vector<bbox_t> sorted_vec2 = sort_vector(result_vec2); 
 result_occlusion.push_back(sorted_vec2[0]); 
} 

Code Snippet 5.4- Part of the algorithm for occlusion reasoning 
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The max_num is set to 2 because it is intended have two options (if possible) of tools 

to be removed from the tray at the end of the algorithm and implement a voting system in 

order to choose the best one, however this value can be changed by the user, thus the 

algorithm implements foolproof conditions, e.g. the max_num need to be lower than the 

number of detections on the image, otherwise max_num takes the value of  total number of 

detections. It is important to mention that the higher the value of max_num, the greater is the 

computational power required and, consequently, the higher the running time of the 

algorithm.  

 For the first max_num (in this dissertation has the value 2) detections of the sorted 

list, the occlusion detector respective to the instrument class of the detection is initialized, 

the image is segmented in order to remove the background, easing the detecting and 

improving the accuracy of the classification as top (not occluded) of bottom (occluded). If 

the tool is classified as bottom, then it is discarded as a valid option and in the end, all the 

top valid detections can be assessed through the multiplication between the object detection 

confidence score and occlusion reasoning confidence score. Therefore, the instrument 

detection with the highest value resultant from this multiplication corresponds to the surgical 

tool to be removed by the robot. 
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6. RESULTS 

 

 

6.1. Classical Approach Results 

 

As previous discussed in Section 4.1.3, the following figures present the final 

watershed models and contours for each tool. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(a) (b) 

Figure 6.1- Scalpel nº4 (a) contours (b) watershed model. 
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(a) (b) (c) (d) 

Figure 6.3- Straight Dissection Clamp (a) contours (b) watershed model (c) profile contours 
(d) profile watershed model. 

(a) (b) 

Figure 6.2- Straight Mayo Scissor (a) contours (b) watershed model. 
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6.2. Modern Approach Results 

 

6.2.1. Object Detection Results 

 

After the training of the neural networks it is necessary to choose the iteration of 

which weights are responsible for achieving the best results and the first step is to plot the 

precision-recall curve. 

The precision-recall curve is a good method for assessing the classifier 

performance by analyzing the precision and recall evolution as the threshold change, 

however besides requiring high computational power and memory, the process to compute 

the values for each weigh iteration is too time consuming. Therefore, it was only generated 

the data to plot the curve with weights respective 100 000, 150 000 and 200 000 iterations. 

(a) (b) 

Figure 6.4- Curved Mayo Scissor (a) contours (b) watershed model. 
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In order to understand the meaning of precision and recall it is necessary to 

introduce the concept of a confusion matrix which is represented on Table 6.1. 

 

Table 6.1- Symbolic confusion matrix. 

 Prediction Class 

Positive Negative 

A
ct

u
al

 C
la

ss
 

Positive 
True Positive 

(TP) 

False Positive 

(FP) 

Negative 
False Negative 

(FN) 

True Negative 

(TN) 

 

The precision represents the percentage of correct detections of a class and are 

actually correct and its expression is given by Equation 6.1, whereas the recall indicated the 

proportion of a determined class that was identified correctly through Equation 6.2. 

 

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
                                                  (6.1) 

 

𝑟𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑃

𝑇𝑃+𝐹𝑁
                                                     (6.2) 

 

Neither the pjreddie or the AlexeyAB repositories for darknet have a function to 

obtain the necessary data, hence, it was added on detector.c the code presented in Annex B 

to allow the plot of precision-recall curves by a matlab script.  

The acquisition of the precision and recall for each value of threshold (varying 

from 0 to 1 in intervals of 0.01) can be achieved by typing “./darknet detector PRcurve path-

to-data path-to-cfg path-to-weight” onto the Ubuntu terminal. 

The precision-recall curve of weights respective to the iterations 100000, 150000 

and 200000 is shown in Figure 6.5, in which we can observe that the best results are achieved 

by the weights of 100000 iteration, which indicate that by the iteration number 200000 the 

neural network may be overfitted, due to “memorization” of images losing its generalization 

ability. From the same graph, the extremity point of each curve is chosen, and its 

correspondent threshold value is found and used in the following analysis step.  
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Therefore, threshold values for 100000, 150000 and 200000 iterations are 

respectively 0.35, 0.45 and 0.45. 

The next step is to find the iteration number which achieves the best mAP and IOU 

results on the test group, because training the network too much leads to a memorization of 

images and a decreased ability of generalization and, on the other hand, not training enough 

results in a method, which performance could be improved. In order to acquire the necessary 

data, it is used the AlexeyAB fork of darknet, because it has a function that returns the 

required values in a text file per weight, which are then organized and analyzed by a 

developed matlab function. This data could be achieved through typing “./darknet detector 

map path-to-data path-to-cfg path-to-weighs -thresh threshold_value” on the ubuntu 

terminal however, since it was necessary to follow this procedure for several weight files, it 

Figure 6.5- Precision-recall curve of weights respective to 100 000, 150 000 and 200 000 iterations. 
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was developed a python script that has the minimum, maximum and interval of weights as 

an input, and automatically executes the respective command on the terminal with thresholds 

according to the ones found through the precision-recall curve.  

Firstly, to assess the round value of the ideal iteration number, it was executed the 

python script previously described for every five thousand iterations between 75 000 and 

200 000 iterations, in which if the current iteration number was equal or higher than 150 000, 

the threshold value was 0.45, whereas if it was inferior, then the threshold was 0.35. After 

the generation of the data, the text files were converted to winfiles and loaded to matlab, 

which enabled a better data visualization easing the iteration choice through the analysis of 

Figure 6.6.  

The best iteration number is the one presenting higher mAP and IOU values, which 

corresponds to the point closer to the top right corner of Figure 6.6.  

 

From the analysis of this graph, it is possible to conclude that the choice of the best 

iteration number is between two points, assigned respectively to 100000 (blue) and 185000 

(yellow) iterations. The difference of both mAP values corresponds to 0.01%, whereas the 

Figure 6.6- Plot of IOU in function of mAP for every five thousand iterations between 55000 
and 200000 iterations. 
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difference of the IOU parameters is 0.17%, thus they are approximately at the same distance 

of the top right corner. Therefore, the optimal iteration number is located near 100 000 

iterations, because in bin-picking applications it is preferable to have an improved 

localization detection of the tools at the cost of 0.01% in the mAP value. 

In order to find the exact optimal iteration number, the process was repeated for every 

thousand iterations between 75 000 and 125 000 iterations, and the results are shown in 

Figure 6.7. 

  

Once again, the decision of the exact optimal iteration number lies in the choice 

between two points, respective to 100000 (green) and 117000 (yellow) iterations, in which 

the mAP difference is 0.02% and the IOU difference is 0.12% however, instead of following 

the logic previously described, it is chosen the closest point to the corner which is the yellow, 

meaning that YOLOv2 achieves the best performance detecting surgical tools with the 

weights of 117 000 iterations, accomplishing a IOU of 72.62% and a mAP of 90.06%, which 

is discriminated per each class in Table 6.2. 

 

 

Figure 6.7- Plot of IOU in function of mAP for every thousand iterations between 75000 and 
125000 iterations. 
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Table 6.2- Discrimination of average precision per class corresponding to 117000 iterations during training. 

 

 

 

 

 

 

From the observation of Table 6.2, it is possible to verify that the scalpel has the 

highest average precision amongst the tested surgical tools, which is due to being the most 

different from the other instruments. 

Another measure usually used to assess the model performance is F1 score, which 

balances precision and recall and its formula can be found on Equation 6.3 applied to 117000 

iterations. 

 

𝐹1 = 2 ×
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛×𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
× 100 = 2 ×

0.88×0.95

0.88+0.95
 × 100 =  91.4%         (6.3) 

 
Finally, in order to classify the type of error of the neural network it was used the 

methodology of Hoiem [149]. However, to apply that method it was necessary the IOU, 

predicted class and actual class of each detection on the test group. To acquire that data, the 

map function (named validate_detector_map) from the AlexeyAB darknet repository was 

modified with the addition of the code “printf(“ IOU = %f, prob = %f, class_id = %d, 

truth_id = %d \n”, box_iou(dets[i].bbox, t), prob, class_id, truth[j].id);” and afterwards the 

framework was recompiled. 

 The data was analyzed resorting to matlab, in which the detections were classified 

with the following categories: 

• Correct: correct class and IOU≥0.5; 

• Localization: correct class and 0.1<IOU<0.5; 

• Similar: class is similar (both scissors) and IOU>0.1; 

• Other: class is wrong and IOU>0.1; 

• Background: IOU<0.1. 

Surgical Tool Average Precision (%) 

Scalpel nº4 90,66 

Straight Dissection Clamp 89,42 

Straight Mayo Scissor 90,40 

Curved Mayo Scissor 89,75 
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The Figure 6.8 displays a pie chart with the percentages of each error for detections 

with a confidence score higher than 60% (threshold) in a total of 1721 detections, using the 

weights after 117000 iterations of training. 

 

 

6.2.1.1. Cross Validation 

 

The importance of cross validation and respective split of the dataset into train and 

test groups is described in Section 5.3.1, and the results analysis is the same as detailed in 

the previous section.  

 The precision-recall curve for cross-validation weight correspondent to 100 000, 150 

000 and 200 000 iterations is displayed in Figure 6.9, and it can be verified that it is in 

accordance with Figure 6.5. 

Resembling the previous section, the best iteration number for training during cross-

validation is found through Figure 6.10, which shows lower mAP and IOU values in 

comparison with Figure 6.7, however, still evidencing the good performance of the neural 

network. From the analysis of the graph, the ideal iteration number is 140 000 iterations, 

which is the closest point to the top right corner, presenting a mAP of 89.13% and a IOU of 

67.28%. 

57%

1%

5%

17%

20%

Error Analysis YOLOv2

Correct

Localization

Similar

Other

Background

Figure 6.8- Pie chart with the discrimination of YOLOv2 errors for object detection. 
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Figure 6.9- Precision-recall curve of cross-validation weights respective to 100 000, 150 000 and 200 000 iterations. 
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6.2.1.2. YOLOv3 

 

During the last stages of writing this dissertation, the architecture of the third version 

of YOLO was implemented and trained for 50 000 iterations with the learning rate of 0.0001, 

which is in accordance with the previous learning rates. The default value for the learning 

rate of YOLOV3 is 0.001 however, after being tested it was concluded that this value was 

too high and that 0.0001 was more suitable. 

The precision recall curve was not plotted because each curve requires a high amount 

of computational power and time, which was limited at this point, hence, it was preferable 

to assess the training iteration number with best mAP and IOU and to perform an error 

analysis. 

In Figure 6.11, it is possible to find the iteration number until 50000 that achieves 

higher performances with the YOLOv3 architecture, which corresponds to iteration 49000, 

due do being the closest point on the graph to the top right corner and the discriminated 

Figure 6.10- Plot of IOU in function of mAP for every thousand iterations between 75000 and 125000 iterations. 
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results can be consulted on Table 6.3, allowing to confirm the higher performance of 

YOLOv3 in comparison with the previous version. 

 

Table 6.3- YOLOv3 results discrimination for resultant weights of 49000 iteration of training. 

 

The Figure 6.12 displays a pie chart with the percentages of each error for detections 

with a confidence score higher than 60% (threshold) in a total of 1869 detections, using the 

weights after 49000 iterations of training. The main difference between this YOLO version 

and the previous is the percentage of correct detections is approximately 1% lower for 

YOLOv3, however, it is important to mention that this method identifies almost more 150 

detections the YOLOv2, thus the confident scores of each detection are much higher for the 

most recent version. 

mAP IOU F1 Scalpel AP 
Straight Dissect. 

Clamp AP 

Straight Mayo 

Scissor AP 

Curved Mayo 

Scissor AP 

91,98% 78,93% 94% 90,03 % 90,72 % 90,47 % 96,68 % 

Figure 6.11- Plot of IOU in function of mAP for every thousand iterations between 1000 and 50000 iterations for 
YOLOv3. 
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6.2.2. Occlusion Reasoning 

 

With regard to the 4 occlusion reasoning neural networks, the respective data is 

severely imbalanced, due to the existence of a significant higher quantity of examples in 

which each tool is on top of the pile (or does not present occlusion) rather than on the bottom 

(being occluded). 

 The precision-recall curve is usually not significantly affected by imbalanced data, 

however, this graph is not applicable to the data generated through darknet due to the uneven 

split of data per each class (top or bottom). 

 The neural networks aiming to overcome the occlusion challenge were trained for 

50 000 or 60 000 iterations, due to time limitations of this dissertation, therefore, the optimal 

iteration number was not found and the weights resultant from training that achieved the best 

performance are respective to the last iteration number, which can be verified by analyzing 

Figure 6.13, Figure 6.14, Figure 6.15, Figure 6.16, in which the last point is closer to the top 

right corner in every graph. The respective mAP and IOU can be found in Table 6.4. 

56%

1%

5%

19%

19%

Error Analysis YOLOv3
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Background

Figure 6.12- Pie chart with the discrimination of YOLOv3 errors for object detection. 



 

 

Sorting Surgical Tools from a Cluttered Tray – Object Detection and Occlusion Reasoning  

 

 

80  2018 

 

 

Figure 6.14- Plot of IOU in function of mAP for every thousand iterations between 10000 and 50000 iterations 
for straight dissection clamp occlusion reasoning.    

Figure 6.13- Plot of IOU in function of mAP for every thousand iterations between 10000 and 60000 iterations 
for scalpel occlusion reasoning. 
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Figure 6.16- Plot of IOU in function of mAP for every thousand iterations between 15000 

and 60000 iterations for curved mayo scissor occlusion reasoning. 

 

Figure 6.15- Plot of IOU in function of mAP for every thousand iterations between 10000 and 60000 
iterations for straight mayo scissor. 
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Table 6.4- mAP and IOU relative to the weights of the last trained iteration for the occlusion reasoning 
network of each instrument. 

 

 

 The results of error analysis for the occlusion reasoning neural networks, resembling 

the one described in Section 6.2.1, can be found in Table 6.5. In this table there is not a 

“similar” category, because the two classes (top and bottom) that these networks distinguish 

are very different, and the occlusion reasoning performance of the scalpel neural network is 

higher, because this surgical tool is the most unalike with the other instruments. Through the 

same reasoning, it is possible to justify the slightly lower performance of both types of 

scissor, due to their similarities. 

 

Table 6.5- Error analysis for each occlusion reasoning neural network respective to each surgical tool. 

 Scalpel 

Straight 

Dissection 

Clamp 

Straight Mayo 

Scissor 

Curved Mayo 

Scissor 

#detection>55% 315 318 293 356 

Correct 95,23 % 93,71 % 92,49 % 88,76 % 

Location 0,00 % 0,31 % 1,71 % 1,69 % 

Other 4,44 % 5,03 % 3,07 % 4,49 % 

Background 0,32 % 0,94 % 2,73 % 5,06 % 

 

 

 

 

 

 

Surgical Tool Mean Average Precision (%) IOU(%) 

Scalpel nº4 89,09 79,35 

Straight Dissection Clamp 91,82 74,59 

Straight Mayo Scissor 90,57 74,05 

Curved Mayo Scissor 90,46 73,21 
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6.2.3. Image Results 

 

The images in this section intend to display some object detection results and the 

respective comparison between YOLOv2 trained for 117 000 iterations and YOLOv3 trained 

for 49 000 iterations. 

 

 

 

(a) 

(b) 

Figure 6.17- Object detection and respective confidence scores resorting to (a) YOLOv2 (b) YOLOv3. 
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Figure 6.17 and Figure 6.18 allow to observe that YOLOv3 detects more objects in 

the image and performs better localization, as well as it always presents a much higher 

confidence score in comparison with YOLOv2. 

 

 

 

 

(a) 

(b) 

Figure 6.18- Object detection and respective confidence scores resorting to (a) YOLOv2 (b) YOLOv3. 
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Both versions of YOLO are robust to clutter, as shown in Figure 6.19 and Figure 

6.20 and, once again YOLOv3 demonstrated its performance superiority. In Figure 6.20, it 

is possible to verify a detection error by YOLOv2, which mistook a straight mayo scissor 

for a curved mayo scissor. 

 

 

 

(a) 

(b) 

Figure 6.19- Object detection and respective confidence scores resorting to (a) YOLOv2 (b) YOLOv3. 
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(a) 

(b) 

Figure 6.20- Object detection and respective confidence scores resorting to (a) YOLOv2 (b) YOLOv3. 
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Figure 6.21 and Figure 6.22 show the performance of the two latest version of YOLO 

in poor lit conditions. 

 

 

 

 

(a) 

(b) 

Figure 6.21- Object detection and respective confidence scores resorting to (a) YOLOv2 (b) YOLOv3. 
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(a) 

(b) 

Figure 6.22- Object detection and respective confidence scores resorting to (a) YOLOv2 (b) YOLOv3. 
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Figure 6.23 intends to prove that these methods can be implemented on surgical 

tools with a different background from the training images and still achieve great results. 

 

 

 

(a) 

(b) 

Figure 6.23- Object detection and respective confidence scores resorting to (a) YOLOv2 (b) YOLOv3. 
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The output of developed algorithm is displayed in Figure 6.24, in which Figure 

6.24(a) represents the two best choices of instruments to be first removed, and Figure 6.24(b) 

shows the respective output on the console. 

(a) 

(b) 

Figure 6.24- (a) two choices resultant from the developed algorithm (b) console output of the 
respective algorithm implementation with YOLOv3 for object detection and YOLOv2 for 
occlusion reasoning. 
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7. FUTURE WORK 

 

The overall challenges addressed in this dissertation can be divided into several 

stages such as detection, occlusion reasoning, grasping point detection, pose estimation and 

kit assembly. However, in this research the focus was on the first stage and trying to prove 

that the occlusion reasoning was possible using neural networks. 

Regarding object detection, the network architecture YOLOv3 achieved promising 

results surpassing YOLOv2 and can be further improved by continuing the training of the 

neural network, because according to Figure 6.11, the networks does not show signs of 

overtraining (decrease in the IOU-map relation). Another way of increasing the performance 

of the system is to approximate the grabbed instrument to the camera for validation of the 

object classification or to attach the camera to the robot and move it closer to the instrument, 

however the first approach should achieve better results due to distance between the surgical 

tool removed and the background clutter. 

The performance of occlusion reasoning using neural networks, with resemblance of 

the object detection with YOLOv3, could be improved by training the respective neural 

networks more time since none achieved the overtraining stage. When testing the several 

learning rates for the occlusion reasoning network trained with images of all four classes of 

surgical tools, the loss graph correspondent to the learning rate of 0.00003 (Figure 5.13(c)) 

looks promising despite the reasonable recall, therefore it would be interesting to train for 

further iterations to better assess if it successfully detects whether a tool is on top or at the 

bottom. 

A possible future work for both object detection and occlusion reasoning is to test 

other network architectures such as Faster R-CNN, which in the literature has a higher mean 

average precision at the cost of increased running and training speed and YOLOv3 (for 

occlusion reasoning). 

The stage of grasping point detection was not developed, however, it is suggested to 

label all the images for each class with the bounding box around the ideal grasping point and 

to train the neural networks. For grasping point refinement, it could be used a pixel-voting 
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system similar to hough voting to determine the orientation of the tool and consequently, of 

the robotic arm. 

As for the type of gripper, one of the most used in bin-picking is a vacuum-gripper, 

but it is not suitable for surgical tools because it requires planar surfaces and the exact 

orientation of the tool. The second most popular gripper for this type of applications is a 

magnetic gripper, however, different instruments have different weighs, and if the magnetic 

force is too big, then it will grab more than a tool. Hence, it is proposed the use of an 

electromagnetic gripper whose magnetic force is controlled through the definition of a 

current, according to the instrument detected class. 

The console application of this dissertation is still in its early stages of development, 

which justifies shortcomings such as the code instability and inefficient memory allocation, 

that can be the focus of further development. Thus, an important future work suggested is 

the creation of an intuitive graphical user interface, as well as some addition of some 

conditions to the algorithm for example to lower the detector threshold value if no surgical 

tool is detected in the image or video frame. 

Another essential part of the system that needs to be developed is the enabling of a 

real time connection with the camera and implementation of the algorithm. Currently, in this 

dissertation, the algorithm does not run is real-time, because it takes between 5 and 10 

seconds to determine which tool should be removed, however, those values do not negatively 

impact the system due to being lower than the necessary time for the robot to grab the 

selected surgical tool and place it the appropriate place. Nevertheless, the algorithm run-time 

can be significantly improved by acquiring better hardware, such as graphics cards with 

more dedicated memory, because it would allow the continuous parallel running of different 

detectors, as well as leading to an increased running speed. 

All the neural networks were trained with the built dataset, however their 

performance could be further improved by enlarging the dataset and apply data augmentation 

techniques, despite YOLO already perform data augmentation during the training. 
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8. CONCLUSIONS 

 

This dissertation proposes a methodology based on deep learning neural networks to 

identify the surgical tools present in a cluttered tray and execute occlusion reasoning for the 

two detections with higher confidence score, thus indicating the instrument to be removed.  

In the presented work, it is possible to conclude that the main objectives were 

successfully achieved, accomplishing the following results: 

• a mean average precision of 91,98% and IOU of 78,93% for object 

classification through YOLOv3 after 49000 iteration of training; 

• a mean average precision of 89,09% and IOU of 79,35% for scalpel occlusion 

reasoning through YOLOv2 after 60000 iteration of training; 

• a mean average precision of 91,82% and IOU of 74,59% for straight 

dissection clamp occlusion reasoning through YOLOv2 after 50000 iteration 

of training; 

• a mean average precision of 90,57% and IOU of 74,05% for scalpel occlusion 

reasoning through YOLOv2 after 60000 iteration of training; 

• a mean average precision of 90,46% and IOU of 73,21% for scalpel occlusion 

reasoning through YOLOv2 after 60000 iteration of training; 

• the running of each detector of the neural networks above mentioned takes 

around 0.2 seconds for an image or video frame, which allows real-time 

monitoring; 

• the running of the overall algorithm to select the tool to be removed takes 

around 10 seconds, with the hardware mentioned on Table 3.1. 

Although the results already are promising, there is still room for improvement, 

which can be performed by implantation of the suggestions in Section 7. 
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ANNEX A 

 

In this annex it could be found all the required commands on the terminal to intall all 

the necessary software, packages and libraries on Ubuntu. 

 
sudo apt update 

sudo apt dist-upgrade 

python -V 

python3 -V 

 

# if it doesn't have, install python 

sudo apt-get install python-pip 

pip install numpy pandas scipy matplotlib scikit-learn 

pyparsing 

 

# update NVIDIA drivers 

 

sudo apt-get purge nvidia* 

sudo add-apt-repository ppa:graphics-drivers/ppa 

sudo apt update 

sudo apt install nvidia-390 

lsmod | grep nvidia 

 

# CUDA 

 

#sudo apt install nvidia-cuda-toolkit (version 7.5) 

# download from internet 

cd Transferências 

sudo dpkg -i cuda-repo-ubuntu1604-9-1-local_9.1.85-

1_amd64.deb 

sudo apt-key add /var/cuda-repo-9-1-local/7fa2af80.pub 

sudo apt-get update 

sudo apt-get install cuda 

echo 'export PATH=/usr/local/cuda/bin:$PATH' >> 

~/.bashrc 

echo 'export LD_LIBRARY_PATH= 

/usr/local/cuda/lib64:$LD_LIBRARY_PATH' >> ~/.bashrc 

source ~/.bashrc  
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# cuDNN (linux library) 

 

tar xvf cudnn-9.1-linux-x64-v7.tgz 

sudo cp -P cuda/lib64/* /usr/local/cuda/lib64/ 

sudo cp cuda/include/* /usr/local/cuda/include/ 

echo 'export LD_LIBRARY_PATH= 

"$LD_LIBRARY_PATH:/usr/local/cuda/lib64:/usr/local/cuda/extra

s/CUPTI/lib64"' >> ~/.bashrc 

echo 'export CUDA_HOME=/usr/local/cuda' >> ~/.bashrc 

echo 'export PATH="/usr/local/cuda/bin:$PATH"' >> 

~/.bashrc 

source ~/.bashrc 

cat /usr/local/cuda/include/cudnn.h | grep CUDNN_MAJOR -

A 2 

 

# OpenCV 

 

sudo apt-get update 

sudo apt-get upgrade 

sudo apt-get install build-essential cmake pkg-config 

sudo apt-get install libjpeg8-dev libtiff5-dev 

libjasper-dev libpng12-dev 

sudo apt-get install libavcodec-dev libavformat-dev 

libswscale-dev libv4l-dev 

sudo apt-get install libxvidcore-dev libx264-dev 

sudo apt-get install libgtk-3-dev 

sudo apt-get install libatlas-base-dev gfortran 

sudo apt-get install python2.7-dev python3.5-dev 

sudo apt install cmake gcc g++ git libjpeg-dev libpng-

dev libtiff5-dev libavcodec-dev libavformat-dev libswscale-

dev pkg-config libgtk2.0-dev libopenblas-dev libatlas-base-

dev liblapack-dev libeigen3-dev libtheora-dev libvorbis-dev 

libxvidcore-dev libx264-dev sphinx-common libtbb-dev yasm 

libopencore-amrnb-dev libopencore-amrwb-dev libopenexr-dev 

libgstreamer-plugins-base1.0-dev libavcodec-dev libavutil-dev 

libavfilter-dev libavformat-dev libavresample-dev ffmpeg 

wget https://github.com/opencv/opencv/archive/3.4.0.zip 

-O opencv-3.4.0.zip 

wget 

https://github.com/opencv/opencv_contrib/archive/3.4.0.zip -O 

opencv_contrib-3.4.0.zip 
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unzip opencv-3.4.0.zip 

unzip opencv_contrib-3.4.0.zip 

cd opencv-3.4.0 

mkdir build 

cd build 

cmake -DCMAKE_BUILD_TYPE=Release -

DCMAKE_INSTALL_PREFIX=/usr/local -

DOPENCV_EXTRA_MODULES_PATH=../../opencv_contrib-3.4.0/modules 

-DWITH_CUDA=ON -DOPENCV_ENABLE_NONFREE=True .. 

make -j4 

sudo make install 

sudo ldconfig 

 

# Darknet 

 

git clone https://github.com/pjreddie/darknet.git 

cd darknet 

# change make file 

make 
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ANNEX B 

 

Configuration file of YOLOV2 for object detection 

 

 

[net] 

# Testing 

#batch=1 

#subdivisions=1 

# Training 

batch=64 

subdivisions=16 

height=480 

width=640 

channels=3 

momentum=0.9 

decay=0.0005 

angle=0 

saturation = 1.5 

exposure = 1.5 

hue=.1 

 

learning_rate=0.0001 

#burn_in=1000 

max_batches = 200000 

policy=steps 

steps=40000,60000 

scales=.1,.1 

 

 

[convolutional] 

batch_normalize=1 

filters=32 

size=3 

stride=1 

pad=1 

activation=leaky 

 

[maxpool] 

size=2 

stride=2 

 

[convolutional] 

batch_normalize=1 

filters=64 

size=3 

stride=1 

pad=1 

activation=leaky 

 

[maxpool] 

size=2 

stride=2 

 

 

[convolutional] 

batch_normalize=1 

filters=128 

size=3 

stride=1 

pad=1 

activation=leaky 

 

[convolutional] 

batch_normalize=1 

filters=64 

size=1 

stride=1 

pad=1 

activation=leaky 

 

[convolutional] 

batch_normalize=1 

filters=128 

size=3 

stride=1 

pad=1 

activation=leaky 
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[maxpool] 

size=2 

stride=2 

 

[convolutional] 

batch_normalize=1 

filters=256 

size=3 

stride=1 

pad=1 

activation=leaky 

 

[convolutional] 

batch_normalize=1 

filters=128 

size=1 

stride=1 

pad=1 

activation=leaky 

 

[convolutional] 

batch_normalize=1 

filters=256 

size=3 

stride=1 

pad=1 

activation=leaky 

 

[maxpool] 

size=2 

stride=2 

 

[convolutional] 

batch_normalize=1 

filters=512 

size=3 

stride=1 

pad=1 

activation=leaky 

 

[convolutional] 

batch_normalize=1 

filters=256 

size=1 

stride=1 

pad=1 

activation=leaky 

 

[convolutional] 

batch_normalize=1 

filters=512 

size=3 

stride=1 

pad=1 

activation=leaky 

 

[convolutional] 

batch_normalize=1 

filters=256 

size=1 

stride=1 

pad=1 

activation=leaky 

 

[convolutional] 

batch_normalize=1 

filters=512 

size=3 

stride=1 

pad=1 

activation=leaky 

 

[maxpool] 

size=2 

stride=2 

 

[convolutional] 

batch_normalize=1 

filters=1024 

size=3 

stride=1 

pad=1 

activation=leaky 

 

[convolutional] 

batch_normalize=1 

filters=512 

size=1 

stride=1 

pad=1 

activation=leaky 

 

[convolutional] 

batch_normalize=1 

filters=1024 
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size=3 

stride=1 

pad=1 

activation=leaky 

 

[convolutional] 

batch_normalize=1 

filters=512 

size=1 

stride=1 

pad=1 

activation=leaky 

 

[convolutional] 

batch_normalize=1 

filters=1024 

size=3 

stride=1 

pad=1 

activation=leaky 

 

 

####### 

 

[convolutional] 

batch_normalize=1 

size=3 

stride=1 

pad=1 

filters=1024 

activation=leaky 

 

[convolutional] 

batch_normalize=1 

size=3 

stride=1 

pad=1 

filters=1024 

activation=leaky 

 

[route] 

layers=-9 

 

[convolutional] 

batch_normalize=1 

size=1 

stride=1 

pad=1 

filters=64 

activation=leaky 

 

[reorg] 

stride=2 

 

[route] 

layers=-1,-4 

 

[convolutional] 

batch_normalize=1 

size=3 

stride=1 

pad=1 

filters=1024 

activation=leaky 

[convolutional] 

size=1 

stride=1 

pad=1 

filters=45 

activation=linear 

 

 

[region] 

anchors =  1.3221, 

1.73145, 3.19275, 

4.00944, 5.05587, 

8.09892, 9.47112, 

4.84053, 11.2364, 

10.0071 

bias_match=1 

classes=4 

coords=4 

num=5 

softmax=1 

jitter=.3 

rescore=1 

 

object_scale=5 

noobject_scale=1 

class_scale=1 

coord_scale=1 

 

absolute=1 

thresh = .6 

random=1
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Configuration file of YOLOv3 for object detection

[net] 

# Testing 

#batch=1 

#subdivisions=1 

# Training 

batch=64 

subdivisions=64 

width=640 

height=480 

channels=3 

momentum=0.9 

decay=0.0005 

angle=0 

saturation = 1.5 

exposure = 1.5 

hue=.1 

 

learning_rate=0.0001 

#burn_in=1000 

max_batches = 100000 

policy=steps 

steps=40000,45000 

scales=.1,.1 

 

[convolutional] 

batch_normalize=1 

filters=32 

size=3 

stride=1 

pad=1 

activation=leaky 

 

# Downsample 

 

[convolutional] 

batch_normalize=1 

filters=64 

size=3 

stride=2 

pad=1 

activation=leaky 

 

[convolutional] 

batch_normalize=1 

filters=32 

size=1 

stride=1 

pad=1 

activation=leaky 

 

[convolutional] 

batch_normalize=1 

filters=64 

size=3 

stride=1 

pad=1 

activation=leaky 

 

[shortcut] 

from=-3 

activation=linear 

 

# Downsample 

 

[convolutional] 

batch_normalize=1 

filters=128 

size=3 

stride=2 

pad=1 

activation=leaky 

 

[convolutional] 

batch_normalize=1 

filters=64 

size=1 

stride=1 

pad=1 

activation=leaky 

 

[convolutional] 

batch_normalize=1 

filters=128 

size=3 

stride=1 

pad=1 

activation=leaky 
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[shortcut] 

from=-3 

activation=linear 

 

[convolutional] 

batch_normalize=1 

filters=64 

size=1 

stride=1 

pad=1 

activation=leaky 

 

[convolutional] 

batch_normalize=1 

filters=128 

size=3 

stride=1 

pad=1 

activation=leaky 

 

[shortcut] 

from=-3 

activation=linear 

 

# Downsample 

 

[convolutional] 

batch_normalize=1 

filters=256 

size=3 

stride=2 

pad=1 

activation=leaky 

 

[convolutional] 

batch_normalize=1 

filters=128 

size=1 

stride=1 

pad=1 

activation=leaky 

 

[convolutional] 

batch_normalize=1 

filters=256 

size=3 

stride=1 

pad=1 

activation=leaky 

 

[shortcut] 

from=-3 

activation=linear 

 

[convolutional] 

batch_normalize=1 

filters=128 

size=1 

stride=1 

pad=1 

activation=leaky 

 

 

 

[convolutional] 

batch_normalize=1 

filters=256 

size=3 

stride=1 

pad=1 

activation=leaky 

 

[shortcut] 

from=-3 

activation=linear 

 

[convolutional] 

batch_normalize=1 

filters=128 

size=1 

stride=1 

pad=1 

activation=leaky 

 

[convolutional] 

batch_normalize=1 

filters=256 

size=3 

stride=1 

pad=1 

activation=leaky 

 

[shortcut] 

from=-3 

activation=linear 
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[convolutional] 

batch_normalize=1 

filters=128 

size=1 

stride=1 

pad=1 

activation=leaky 

 

[convolutional] 

batch_normalize=1 

filters=256 

size=3 

stride=1 

pad=1 

activation=leaky 

 

[shortcut] 

from=-3 

activation=linear 

 

[convolutional] 

batch_normalize=1 

filters=128 

size=1 

stride=1 

pad=1 

activation=leaky 

 

[convolutional] 

batch_normalize=1 

filters=256 

size=3 

stride=1 

pad=1 

activation=leaky 

 

[shortcut] 

from=-3 

activation=linear 

 

[convolutional] 

batch_normalize=1 

filters=128 

size=1 

stride=1 

pad=1 

activation=leaky 

 

[convolutional] 

batch_normalize=1 

filters=256 

size=3 

stride=1 

pad=1 

activation=leaky 

 

[shortcut] 

from=-3 

activation=linear 

 

[convolutional] 

batch_normalize=1 

filters=128 

size=1 

stride=1 

pad=1 

activation=leaky 

 

[convolutional] 

batch_normalize=1 

filters=256 

size=3 

stride=1 

pad=1 

activation=leaky 

 

[shortcut] 

from=-3 

activation=linear 

 

[convolutional] 

batch_normalize=1 

filters=128 

size=1 

stride=1 

pad=1 

activation=leaky 

 

[convolutional] 

batch_normalize=1 

filters=256 

size=3 

stride=1 

pad=1 

activation=leaky 
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[shortcut] 

from=-3 

activation=linear 

 

# Downsample 

 

[convolutional] 

batch_normalize=1 

filters=512 

size=3 

stride=2 

pad=1 

activation=leaky 

 

[convolutional] 

batch_normalize=1 

filters=256 

size=1 

stride=1 

pad=1 

activation=leaky 

 

[convolutional] 

batch_normalize=1 

filters=512 

size=3 

stride=1 

pad=1 

activation=leaky 

 

[shortcut] 

from=-3 

activation=linear 

 

[convolutional] 

batch_normalize=1 

filters=256 

size=1 

stride=1 

pad=1 

activation=leaky 

 

[convolutional] 

batch_normalize=1 

filters=512 

size=3 

stride=1 

pad=1 

activation=leaky 

 

[shortcut] 

from=-3 

activation=linear 

 

[convolutional] 

batch_normalize=1 

filters=256 

size=1 

stride=1 

pad=1 

activation=leaky 

 

 

 

[convolutional] 

batch_normalize=1 

filters=512 

size=3 

stride=1 

pad=1 

activation=leaky 

 

[shortcut] 

from=-3 

activation=linear 

 

[convolutional] 

batch_normalize=1 

filters=256 

size=1 

stride=1 

pad=1 

activation=leaky 

 

[convolutional] 

batch_normalize=1 

filters=512 

size=3 

stride=1 

pad=1 

activation=leaky 

 

[shortcut] 

from=-3 

activation=linear 

[convolutional] 
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batch_normalize=1 

filters=256 

size=1 

stride=1 

pad=1 

activation=leaky 

 

[convolutional] 

batch_normalize=1 

filters=512 

size=3 

stride=1 

pad=1 

activation=leaky 

 

[shortcut] 

from=-3 

activation=linear 

 

[convolutional] 

batch_normalize=1 

filters=256 

size=1 

stride=1 

pad=1 

activation=leaky 

 

[convolutional] 

batch_normalize=1 

filters=512 

size=3 

stride=1 

pad=1 

activation=leaky 

 

[shortcut] 

from=-3 

activation=linear 

 

[convolutional] 

batch_normalize=1 

filters=256 

size=1 

stride=1 

pad=1 

activation=leaky 

 

[convolutional] 

batch_normalize=1 

filters=512 

size=3 

stride=1 

pad=1 

activation=leaky 

 

[shortcut] 

from=-3 

activation=linear 

 

[convolutional] 

batch_normalize=1 

filters=256 

size=1 

stride=1 

pad=1 

activation=leaky 

 

[convolutional] 

batch_normalize=1 

filters=512 

size=3 

stride=1 

pad=1 

activation=leaky 

 

[shortcut] 

from=-3 

activation=linear 

 

# Downsample 

 

[convolutional] 

batch_normalize=1 

filters=1024 

size=3 

stride=2 

pad=1 

activation=leaky 

 

[convolutional] 

batch_normalize=1 

filters=512 

size=1 

stride=1 

pad=1 

activation=leaky 
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[convolutional] 

batch_normalize=1 

filters=1024 

size=3 

stride=1 

pad=1 

activation=leaky 

 

[shortcut] 

from=-3 

activation=linear 

 

[convolutional] 

batch_normalize=1 

filters=512 

size=1 

stride=1 

pad=1 

activation=leaky 

 

[convolutional] 

batch_normalize=1 

filters=1024 

size=3 

stride=1 

pad=1 

activation=leaky 

 

[shortcut] 

from=-3 

activation=linear 

 

[convolutional] 

batch_normalize=1 

filters=512 

size=1 

stride=1 

pad=1 

activation=leaky 

 

[convolutional] 

batch_normalize=1 

filters=1024 

size=3 

stride=1 

pad=1 

activation=leaky 

 

[shortcut] 

from=-3 

activation=linear 

 

[convolutional] 

batch_normalize=1 

filters=512 

size=1 

stride=1 

pad=1 

activation=leaky 

 

[convolutional] 

batch_normalize=1 

filters=1024 

size=3 

stride=1 

pad=1 

activation=leaky 

 

[shortcut] 

from=-3 

activation=linear 

 

####################

## 

 

[convolutional] 

batch_normalize=1 

filters=512 

size=1 

stride=1 

pad=1 

activation=leaky 

 

[convolutional] 

batch_normalize=1 

size=3 

stride=1 

pad=1 

filters=1024 

activation=leaky 

 

[convolutional] 

batch_normalize=1 

filters=512 

size=1 

stride=1 
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pad=1 

activation=leaky 

 

[convolutional] 

batch_normalize=1 

size=3 

stride=1 

pad=1 

filters=1024 

activation=leaky 

 

[convolutional] 

batch_normalize=1 

filters=512 

size=1 

stride=1 

pad=1 

activation=leaky 

 

[convolutional] 

batch_normalize=1 

size=3 

stride=1 

pad=1 

filters=1024 

activation=leaky 

 

[convolutional] 

size=1 

stride=1 

pad=1 

filters=27 

activation=linear 

 

[yolo] 

mask = 6,7,8 

anchors = 10,13,  16,30,  

33,23,  30,61,  62,45,  

59,119,  116,90,  

156,198,  373,326 

classes=4 

num=9 

jitter=.3 

ignore_thresh = .5 

truth_thresh = 1 

random=1 

 

[route] 

layers = -4 

 

[convolutional] 

batch_normalize=1 

filters=256 

size=1 

stride=1 

pad=1 

activation=leaky 

 

[upsample] 

stride=2 

 

[route] 

layers = -1, 61 

 

[convolutional] 

batch_normalize=1 

filters=256 

size=1 

stride=1 

pad=1 

activation=leaky 

 

[convolutional] 

batch_normalize=1 

size=3 

stride=1 

pad=1 

filters=512 

activation=leaky 

 

[convolutional] 

batch_normalize=1 

filters=256 

size=1 

stride=1 

pad=1 

activation=leaky 

 

[convolutional] 

batch_normalize=1 

size=3 

stride=1 

pad=1 

filters=512 

activation=leaky 
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[convolutional] 

batch_normalize=1 

filters=256 

size=1 

stride=1 

pad=1 

activation=leaky 

 

[convolutional] 

batch_normalize=1 

size=3 

stride=1 

pad=1 

filters=512 

activation=leaky 

 

[convolutional] 

size=1 

stride=1 

pad=1 

filters=27 

activation=linear 

 

[yolo] 

mask = 3,4,5 

anchors = 10,13,  16,30,  

33,23,  30,61,  62,45,  

59,119,  116,90,  

156,198,  373,326 

classes=4 

num=9 

jitter=.3 

ignore_thresh = .5 

truth_thresh = 1 

random=1 

 

[route] 

layers = -4 

 

[convolutional] 

batch_normalize=1 

filters=128 

size=1 

stride=1 

pad=1 

activation=leaky 

 

[upsample] 

stride=2 

 

[route] 

layers = -1, 36 

 

[convolutional] 

batch_normalize=1 

filters=128 

size=1 

stride=1 

pad=1 

activation=leaky 

[convolutional] 

batch_normalize=1 

size=3 

stride=1 

pad=1 

filters=256 

activation=leaky 

 

[convolutional] 

batch_normalize=1 

filters=128 

size=1 

stride=1 

pad=1 

activation=leaky 

 

[convolutional] 

batch_normalize=1 

size=3 

stride=1 

pad=1 

filters=256 

activation=leaky 

 

[convolutional] 

batch_normalize=1 

filters=128 

size=1 

stride=1 

pad=1 

activation=leaky 

[convolutional] 

batch_normalize=1 

size=3 

stride=1 

pad=1 
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filters=256 

activation=leaky 

 

[convolutional] 

size=1 

stride=1 

pad=1 

filters=27 

activation=linear 

 

[yolo] 

mask = 0,1,2 

anchors = 10,13,  16,30,  

33,23,  30,61,  62,45,  

59,119,  116,90,  

156,198,  373,326 

classes=4 

num=9 

jitter=.3 

ignore_thresh = .5 

truth_thresh = 1 

random=1 
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ANNEX C 

 

Code adapted from AlexeyAB darknet repository to obtain the data for precision-

recall curve. 

 

void validate_detector_PRcurve(char *datacfg, char *cfgfile, char *weightfile) 
{ 
    list *options = read_data_cfg(datacfg); 
    char *valid_images = option_find_str(options, "valid", "Dataset-top-
scalpel/test.txt"); 
    network *net = load_network(cfgfile, weightfile, 0); 
 
    set_batch_network(&net, 1); 
    fprintf(stderr, "Learning Rate: %g, Momentum: %g, Decay: %g\n", net-
>learning_rate, net->momentum, net->decay); 
    srand(time(0)); 
 
    list *plist = get_paths(valid_images); 
    char **paths = (char **)list_to_array(plist); 
 
    layer l = net->layers[net->n-1]; 
    int classes = l.classes; 
 
    int j, k; 
    box *boxes = calloc(l.w*l.h*l.n, sizeof(box)); 
    float **probs = calloc(l.w*l.h*l.n, sizeof(float *)); 
    for(j = 0; j < l.w*l.h*l.n; ++j) probs[j] = calloc(classes+1, sizeof(float *)); 
 
    int m = plist->size; 
    int i=0; 
 
    float iou_thresh = .5; 
    float nms = .4; 
  
    for(float thresh = 0; thresh < 1; thresh = thresh + 0.01){  
 int total = 0; 
        int TP = 0, FP = 0; 
        int proposals = 0; 
     float avg_iou = 0;  
 for(i = 0; i < m; ++i){ 
  char *path = paths[i]; 
  image orig = load_image_color(path, 0, 0); 
  image sized = resize_image(orig, net->w, net->h); 
  char *id = basecfg(path); 
  network_predict(net, sized.data); 
  get_region_boxes(l, sized.w, sized.h, net->w, net->h, thresh, probs, 
boxes, 1, 0, .5, 1); 
  if (nms) do_nms(boxes, probs, l.w*l.h*l.n, 1, nms); 
 
  char labelpath[4096]; 



 

 

Sorting Surgical Tools from a Cluttered Tray – Object Detection and Occlusion Reasoning  

 

 

124  2018 

 

  find_replace(path, "images", "labels", labelpath); 
  find_replace(labelpath, "JPEGImages", "labels", labelpath); 
  find_replace(labelpath, ".png", ".txt", labelpath); 
  find_replace(labelpath, ".jpg", ".txt", labelpath); 
  find_replace(labelpath, ".JPEG", ".txt", labelpath); 
 
  int num_labels = 0; 
  box_label *truth = read_boxes(labelpath, &num_labels); 
  for(k = 0; k < l.w*l.h*l.n; ++k){ 
      if(probs[k][0] > thresh){ 
   ++proposals; 
      } 
  } 
  for (j = 0; j < num_labels; ++j) { 
      ++total; 
      box t = {truth[j].x, truth[j].y, truth[j].w, truth[j].h}; 
      float best_iou = 0; 
      for(k = 0; k < l.w*l.h*l.n; ++k){ 
   float iou = box_iou(boxes[k], t); 
   if(probs[k][0] > thresh && iou > best_iou){ 
       best_iou = iou; 
   } 
      } 
      avg_iou += best_iou; 
      if(best_iou > iou_thresh){ 
   ++TP; 
      } 
  } 
  FP = proposals - TP; 
 
  free(id); 
  free_image(orig); 
  free_image(sized); 
 } 
 fprintf(stderr, "Thresh:%.4f\tRecall:%.2f%%\tPrecision:%.2f%%\n", thresh, 
100.*TP/total, 100.*TP/(TP+FP)); 
    } 
} 

 

 

 

 

 

 


