
Guilherme Pedro Antunes Carvalhas Gabriel
Coelho

COMPUTATIONAL DISCOVERY OF DRUG-TARGET
INTERACTION

September 2018

Thesis submitted to the Faculty of Science and Technology of the University
of Coimbra for the degree of Master in Biomedical Engineering with

specialization in Clinical Informatics and Bioinformatics, supervised by
Prof. Dr. Bernardete Ribeiro and Prof. Dr. Joel Arrais.

Guilherme Pedro Antunes Carvalhas Gabriel Coelho

Computational Discovery of Drug
Target Interaction

Thesis submitted to the
University of Coimbra for the degree of

Master in Biomedical Engineering

Supervisors:
Prof. Dr. Joel P. Arrais (University of Coimbra)

Prof. Dra. Bernardete Ribeiro (University of Coimbra)

Coimbra, 2018

This research has been funded by the Portuguese Research Agency FCT, through
D4 - Deep Drug Discovery and Deployment (CENTRO-01-0145-FEDER-029266)

ii

Esta cópia da tese é fornecida na condição de que quem a consulta reconhece que os
direitos de autor são pertença do autor da tese e que nenhuma citação ou informação
obtida a partir dela pode ser publicada sem a referência apropriada.

This copy of the thesis has been supplied on condition that anyone who consults
it is understood to recognize that its copyright rests with its author and that no
quotation from the thesis and no information derived from it may be published
without proper acknowledgement.

iii

iv

”Everything should be made simple as possible, but not simpler.”

Albert Einstein

v

vi

Resumo

A descoberta de antibióticos foi rapidamente seguida por um aumento da resistência
bacterial aos mesmos. Esta resistência torna necessária a descoberta de novos
fármacos, cujo processo requer tempo e esforços financeiros. O reposicionamento
de fármacos foi proposto como a abordagem mais adequada para contornar esta
dependência e permitir o desenvolvimento de novos fármacos. O maior desafio para
o reposicionamento de fármacos prende-se com a identificação da posśıvel interação
entre fármacos conhecidos e os seus alvos. Conseguir prever a interação entre um
fármaco e uma determinada entidade biológica, através de métodos computacionais,
permite reduzir tanto o tempo necessário como os custos atualmente gastos em in-
vestigação farmacológica e testes cĺınicos.

O sucesso das abordagens tradicionais para a previsão da interação entre um fármaco
e o seu alvo depende excessivamente das variáveis usadas para descrever os dados.
Contudo não existe um consenso que determine quais as variáveis que têm maior
impacto aquando da previsão. Assim sendo, os métodos tradicionais de machine
learning tornam-se numa abordagem ineficaz. Neste trabalho, de forma a conseguir
prever corretamente esta interação, desenvolveu-se um modelo baseado numa ar-
quitetura de deep learning, dada a sua capacidade de priorizar, durante o treino, as
variáveis com maior capacidade de classificação. De forma a construir um modelo
eficaz os vários parâmetros da arquitetura foram ajustados.

A arquitetura proposta atingiu uma accuracy de 0.90, demonstrando melhor re-
sultados que outros trabalhos na área, baseados em modelos tradicionais. Estes
resultados sugerem que o modelo constrúıdo, poderá ser usado posteriormente tanto
para prever a interação entre um novo fármaco e um determinado alvo biológico,
como entre um fármaco existente e um novo alvo. De facto, o modelo poderá ser
inserido no processo de reposicionamento de fármacos, indicando quais os melhores
candidatos, o que resultaria numa redução tanto dos custos como do tempo que
requer este processo.

vii

Resumo

viii

Abstract

The discovery of antibiotics was quickly followed by the emergence of bacterial an-
tibiotic resistance. This resistance, makes the discovery of new drugs an urgent
need. De novo drug discovery process is an expensive and time consuming task.
Drug repositioning has been proposed as the best approach for this issue. Iden-
tifying interaction between known drugs and targets is a major challenge on drug
repositioning. In silico prediction of drug target interactions has significant poten-
tial to bring down the time and cost of the awfully expensive drug discovery research
and clinical development.

Traditionally, the performance of drug target interaction prediction models depends
heavily on the descriptors used, and there is no widely agreement on which drug
and target descriptors have the best predictive power. This makes the use of tra-
ditional machine learning algorithms a rudimentary approach. In this work, to
accurately predict new drug target interactions, we developed a deep learning based
architecture, capable of understanding, during training, the best descriptors for the
classification. Different parameters inside the architecture were tuned so we could
construct the best model.

The proposed model reaches an accuracy of 0.90, outperforming current state-of-the-
art methods based on shallow architectures. The results obtained suggest that the
model could be further used to predict whether, the interaction between a new drug
and an existing target, or between a new target and some existing drug. Actually,
the model may be used on the identification of new leads for drug repositioning and
so significantly improve the actual drug discovery process.

Keywords: deep learning, drug target interaction prediction, drug discovery, arti-
ficial neural network

ix

Abstract

x

List of Acronyms

ACC accuracy.
AI artificial intelligence.
ANN artificial neural network.
API Application Programming Interface.
AUC area under ROC curve.

CADD computer aided drug design.

DL deep learning.
DNN deep neural network.
DT decision tree.
DTI drug target interaction.

ML machine learning.

PCA Principal Component Analysis.

QSAR quantitative structure-activity relationship.

ReLU rectified linear unit.
RF random forest.

SMILE simplified-input line-entry.
SVM support vector machine.

TF TensorFlow.
TPR true positive ratio.

xi

List of Acronyms

xii

List of Figures

2.1 Main steps of the drug discovery flow 7
2.2 Process of Drug Repositioning . 8
2.3 A comparison of traditional de novo drug discovery and development

versus drug repositioning . 9
2.4 Areas of computer-aided drug discovery 10
2.5 Artificial intelligence, machine learning and deep learning 15
2.6 Machine learning as a new programming paradigm 16
2.7 Flowcharts about different AI disciplines 18
2.8 Deep learning and its data transformation 19
2.9 Scheme of a perceptron . 20
2.10 Generic neural network . 21
2.11 Scheme of Deep Learning flow . 22

3.1 Data set construction . 32
3.2 Scheme of k-fold cross validation . 35
3.3 Deep feed forward network concepts 38
3.4 Geometrical view of an error function 39
3.5 Neural network step-by-step . 41

4.1 2D visualization of the data set . 48
4.2 Baseline architecture . 49
4.3 Model performance according to the number of epochs 52
4.4 The flowchart of the proposed deep learning pipeline 55

xiii

List of Figures

xiv

List of Tables

4.1 Different types of descriptors for targets 47
4.2 Different types of descriptors for drugs 47
4.3 Dispersion of feature 700 between the two classes 49
4.4 Set of possible values for number of epochs, batch-size and optimizer

used on the grid-search . 52
4.5 Grid-search results for number of epochs, batch-size and optimize . . 53
4.6 Final parameters used on the model constructed 54
4.7 Trainable parameters (weights and biases) for the model 54
4.8 Evaluation metrics results for 100 runs 56
4.9 Confusion matrix for one run . 56

xv

List of Tables

xvi

Contents

List of Acronyms xi

List of Figures xiii

List of Tables xv

1 Introduction 1
1.1 Context . 1
1.2 Motivation . 2
1.3 Goals . 3
1.4 Research Contributions . 4
1.5 Document Structure . 4

2 State of the art 5
2.1 Drug discovery . 5

2.1.1 Drug discovery process . 6
2.1.2 Drug repositioning . 7
2.1.3 Computer aided drug design 10
2.1.4 Drug target interaction prediction 11

2.2 Deep learning . 14
2.2.1 Artificial intelligence . 15
2.2.2 Machine Learning . 16
2.2.3 The ”deep” in deep learning 17
2.2.4 How deep learning works - neural networks 19
2.2.5 Deep learning applications . 23
2.2.6 The rise of Deep Learning for Drug Discovery 24

3 Methods 29
3.1 Data preparation . 29

3.1.1 Positive data set construction 29

xvii

Contents

3.1.2 Negative data set construction 30
3.1.3 Final data set construction . 31
3.1.4 DTI descriptors . 31

3.2 Data analysis . 32
3.2.1 Data exploration . 32
3.2.2 Data pre-processing . 33
3.2.3 Data visualization . 33
3.2.4 Data splitting . 34

3.2.4.1 K-fold cross validation 34
3.3 Feature engineering . 34
3.4 Classification model implementation 36

3.4.1 Frameworks . 36
3.4.2 Deep feed forward network . 36
3.4.3 Parameter optimization . 38
3.4.4 Hyper-parameter tuning . 41

3.4.4.1 Grid-search . 42
3.4.5 Model improvement . 43

3.5 Evaluation metrics . 43

4 Results and Discussion 47
4.1 Drug target space treatment . 47
4.2 Baseline approach . 49
4.3 Architecture decisions . 50
4.4 Network regularization . 54
4.5 Evaluation metrics . 56
4.6 Final remarks . 57

5 Conclusion 61

Bibliography 63

xviii

1
Introduction

1.1 Context

One of the biggest medical breakthroughs of the twentieth century was the discov-
ery of antibiotics, which was immediately followed by the unfortunate emergence
of bacterial antibiotic resistance [1]. Nowadays antibacterial resistance is becom-
ing more frequent and is a major concern that many are trying to address. Since
2012, resistance to multiple antibiotics has been steadily increasing and its already
high globally, being considered as an emergent global disease and one of the main
public health problems [2, 3]. Development of antibacterial resistance is the result
of a cascade of events triggered by continued selective pressure, which creates the
ideal scenario for the rapid dissemination of resistant microorganisms and horizontal
transfer of resistance genes.

Furthermore, in the long run, antibacterial resistance also have a financial negative
impact. The annual economic burden associated with the treatment of antibiotic
resistant infections has been estimated to be between $21,000 and $34,000 million
in the United States alone, and around e15,000 million in Europe [4].

The current global threat of antimicrobial resistance and the urgent need to control
it and to find new antibacterial products has prompted the different stakeholders to
take action in integrating research and public health. There is a need to circumvent
the current situation and create measures to achieve this goal. Besides the need
of all the stakeholders being involved in order to correct the current situation, the
task falls on the shoulders of academia due to the fact that pharmaceutical industry
has ceased investing in antibiotic discovery owing to high cost, lengthening devel-
oping cycles, complexities and low profits. Policy makers, public health authorities,
regulatory agencies, pharmaceutical companies, all should work together to achieve
strong regulatory modifications and revert de situation.

1

1. Introduction

Thus we are facing a major medical and pharmaceutical challenge. Today, more than
ever, is necessary to develop new antibiotics or drugs able to neutralize antimicrobial
resistant pathogens.

1.2 Motivation

The traditional pipeline for drug discovery and deployment is very complex and
slow. The entire process, from drug conceptualization to market entrance, can take
up to 15 years and reach a total cost of $1,000 million. Furthermore, there is no
warranty the identified compound will enter the market and generate revenue.

The drug discovery process depends heavily on its first three stages: target identi-
fication, lead discovery, and lead optimization. One of the crucial steps in narrow-
spectrum antibiotics development is target identification [5].

In the pharmaceutical industry, early to mid phase drug discovery efforts concen-
trate on advancing therapeutically relevant small molecules and bringing candidate
compounds into clinical trials. In order to be a good candidate, a drug target must
be efficacious in blocking or promoting a biological event of interest, safe and meet
clinical and commercial needs [6].

Drugs fail in the clinic for two main reasons; the first is that they do not work and
the second is that they are not safe. As such, one of the most important steps in
developing a new drug is target identification and validation [7].

Computational methods are mostly, but not exclusively, applied during the early
phase of drug discovery. This computational analysis help on the decision making
process, allowing to reduce the number of candidates compounds to be evaluated
experimentally. Many computational techniques have been applied to this field of
study improving substantially the entire drug discovery process. Since new tech-
nologies and computational approaches are always emerging, such as Deep Learning
(DL), there is a need to understand how this techniques would behave on this par-
ticular field.

Deep learning has been successfully used on many topics. Drug discovery, despite
the use of many computational techniques on the process, is still lacking on models
capable of understanding precisely biological data. The fact that only very few deep
architecture were applied to drug discovery, should be motivational enough to study
it.

2

1. Introduction

1.3 Goals

The main goal of this work is to study new computational techniques, in particularly
deep learning, to the field of drug discovery, more specifically on the drug target
interaction (DTI) prediction.

Deep learning is an emerging computational technique, which has became state-of-
the-art in many subjects, such as image or speech recognition. On the field of DTI,
other techniques have been applied, such as tree based algorithms which are more
traditional methods. There is still room to improve this kind of prediction with DL,
since these type of techniques have been improving research on other fields.

The goal of this work is to understand how DL techniques behave on DTI data when
compared to standard methods. Try different models, explore among many possible
architectures, assess them towards external data and picking and build the best one,
are also objectives to achieve.

DL represents a broad class of techniques, in which, one of the main challenges
in applying them is selecting the appropriate architecture for a specific task. It
requires a complete study of the data available and an understanding of its statistical
behaviour, in order to choose the right architecture. Furthermore, deep learning is a
hot topic so, frequently, there are new hypothesis showing up, which makes it hard
to be fully contextualized about the state-of-the-art of such techniques.

To achieve this goal we had to learn DL from scratch, dive into this exciting field,
understand how it works, what models could be applied to our problem and build
them.

At the end, we expect to create a pipeline for DTI prediction, using deep learning
techniques. Applying some feature engineering and choose the right parameters will
help to build the best model, which will be compared to other works on this field.
Furthermore, the capability of generalization of the model must be understood, in
order to conclude about the future usage of this recent techniques on the field of
drug discovery.

With the pipeline complete, we want to prove DL effectiveness on DTI challenge and
understand if traditional methodologies already applied are outperformed. Another
main goal is to reinforce the need for deep learning study on other fields, such as
drug discovery, which is a new topic for many researchers and biologists.

To sum up, on the course of this work we want to find answers for the following

3

1. Introduction

questions:

• What is the value of using deep learning approaches on drug discovery process?

• Which is the best deep learning architecture to perform drug target interaction
prediction?

• Should the academia and companies focus on developing deep learning based
solutions for drug discovery?

1.4 Research Contributions

The work developed during this thesis resulted in the following contribution:

• Guilherme P. Coelho, Joel P. Arrais, Bernardete M. Ribeiro. ”Deep Learning
for Drug Target Interaction Prediction”. RECPAD 2018, 24th Portuguese
Conference on Pattern Recognition (submitted).

1.5 Document Structure

The remainder of this document is organised as follows: in Chapter 2 we provide
some useful information related to the subjects that are the basis of this work along
with several research works from the drug discovery field. Then, Chapter 3 describes
the methods carried out on to perform this work and Chapter 4 presents the obtained
results as well as its discussion. Finally, Chapter 5 concludes the thesis and presents
some possibilities for future work.

4

2
State of the art

In this section we will go into further detail on the topic of drug discovery, with a
particular focus on the drug target interaction subject. Later we will talk about deep
learning and understand its current state. To finish this chapter the possibilities of
applying deep learning techniques to drug discovery will be analysed.

2.1 Drug discovery

The discovery of novel drug targets is a huge challenge in drug development. Al-
though the human genome comprises approximately 30,000 genes, proteins encoded
by fewer than 400 are used as drug targets in the treatment of diseases [8].

To date, the discovery and development of new drugs have relied heavily on the use
of preclinical animal models. It is widely recognised that this reliance on animal
models, does not represent effectively the human systems behaviour, which leads
to some limitations on the drug discovery process [9]. Besides that, computational
approaches are an integral part of the interdisciplinary drug discovery research. The
truth is that remains weakness in the methods developed so far [7]. The bottom
line is if computational approaches are capable to work around the issue related to
using animal models, and help on increasing the efficiency on this obsolescent drug
discovery process.

Furthermore, when a candidate drug enters clinical trials there is a probability of
90% that, later, it fails to demonstrate sufficient safety and efficacy to gain the
regulatory approval needed. This happens mainly as a result of insufficient efficacy
and/or unacceptable toxicity, due to the limited predictive value of preclinical studies
[10]. Although new drugs approval reached a 66-year high in 2015, a new 6-year low
was reached in 2016 resulting on the approval of only 22 new medicines [11] later
released to the end user. This amount of failures are expensive and indicate our

5

2. State of the art

inability to entirely characterize the efficacy or to realize the potential liabilities of
candidate compounds. The process is lacking of a method to mislead candidates
that later will fail.

Understandably, the traditional drug discovery and development process is complex,
time and money consuming. Fortunately, the experimental efforts over the past
years, allowed the compilation of public databases, which enhanced the probability
of developing efficient computational methods [12]. For this reason, computational
methods could improve significantly this complex process.

2.1.1 Drug discovery process

A drug discovery programme starts because there is a clinical condition without a
suitable and proper medical product available. This undiscovered clinical need is the
underlying driving motivation for the process. De novo experimental drug discovery
is composed by a series of processes which the outcome is the identification of the
drug compounds for a specific treatment or control of disease target. It starts with
the screening a large number of chemical compounds to optimize the disease targets.
In order to perform this, we need insight information about the structure of drug
receptor (target).

Drug discovery process begins with the understanding of the disease. We must
understand what are the causes and what biological mechanisms are related to it.
Only by this way we will be able to design a drug to target that specific disease.
The process consists on the following steps [13]:

1. Candidate drug discovery

• Target identification

• Lead discovery

• Lead optimization

2. Pre clinical and clinical trials to evaluate the safety, efficacy and adverse effects
of the drug

• Animal studies

• Clinical trials

3. Regulatory agencies approval process for the newly discovered drug and bring-
ing the drug to market for public use

6

2. State of the art

• Additional post marketing testing

• Further improvement of the drug

In Figure 2.1 we can see a diagram of the main components of the drug discovery
process.

Figure 2.1: Main steps of the drug discovery flow. Adapted from Pratik Swarup
Das et al. [13].

As previously stated, one of the most important steps in developing a new drug
is target identification and validation [6]. A target is a broad term which can be
applied to a range of biological entities which may include for example proteins,
genes (DNA) and RNA. These entities vary according to the disease or clinical
condition that is been studied. A good target needs to be, above all, ‘druggable’. A
‘druggable’ target is accessible to the putative drug molecules, which means both
entities will interact and create the desired output.

This work will focus on the first step, candidate drug discovery. Besides being
a extremely relevant phase, it is the one where new computational methods can
substantially improve all the efforts behind it.

2.1.2 Drug repositioning

Biopharmaceutical companies attempting to increase productivity on drug discov-
ery have been investing in novel discovery techniques. Such techniques have failed
to achieving the desired results. Actually, novel and promising techniques, like the
widely used structure-based drug design, combinatorial chemistry, high-throughput
screening (HTS) and genomics, have failed to delivery the improvement of produc-
tivity expected. This problem has forced the drug developers to search for innovative

7

2. State of the art

ways of redo the process, such as finding new uses for existing drugs or create im-
proved versions of them [14]. This is called drug repositioning.

In recent years, drug repositioning or drug repurposing has become an increasingly
popular trend in drug discovery.

Figure 2.2: Process of Drug Repositioning. When an approved drug causes a
different effect from the original, there is a possibility to turn these into main effects
and generate a new use for that specific drug, which will later be submitted to
experimental validation [15].

By focusing on one of the undesired effects of an already commercialized drug in an
attempt to make it the main effect, it is possible to reposition that drug for new
uses, as shown in Figure 2.2. Recent literature reveals that many drugs often possess
the so-called promiscuity property [16]. This property represents the drug ability to
act on other off-target proteins in addition to the original target. This theoretical
evidence provides a strong support for drug repositioning.

There are several examples of successfully repositioned drugs for uses different from
their original indications. Sildenafil is probably the most popular example, which
was initially used to treat hypertension, then angina, and currently is used for erec-
tile dysfunction [17, 16]. Drug repositioning can be achieve by different strategies,
from using computational methodologies to exploring the micro-organism genome
information. Computational drug repurposing approaches, invariably make use of
previously known drug-target associations, which is the methodology under study on

8

2. State of the art

this work. Such computational methodologies allow rapid and inexpensive screening
of a broad spectrum of drugs and targets, either by screening ligands for a certain
drug-target, or screening potential drug-targets for a specific ligand, with the objec-
tive of finding alternative targets for known drugs.

Repositioning existing drugs for new indications could deliver the productivity in-
creases that the industry needs. This method have low risk associated due to the
fact that repositioning candidates have often been through several stages of clini-
cal development and therefore have well-known safety and pharmacokinetic profiles,
which will reduce the probability of not getting the final approval to enter the mar-
ket. Furthermore, by using this method it is possible to create shorter route to
the clinic, because many phases, such as chemical optimization, toxicology, have, in
many cases, already been completed and can, therefore, be bypassed. To sum, drug
repositioning allows substantial reduction of risk and costs on the pathway of drug
discovery.

In Figure 2.3 we can understand the differences of de novo drug discovery and
development when compared to drug repositioning strategy.

Figure 2.3: A comparison of traditional de novo drug discovery and development
versus drug repositioning. a: It is well known that de novo drug discovery and
development may take 10 to 17 years, from idea to market, and has a success rate
lower than 10%. b: Drug repositioning can reduce time and risk as several common
phases can be bypassed [14].

Drug repositioning have been emerging in recent years and the interest on it has been
growing, both from pharmaceutical or biotech companies and venture capitalist [14].

9

2. State of the art

Its advantages are recognized and the activity on the area has increased dramatically.
The unique challenge is related to the repositioning strategies, which demand for
creative approaches. Once again innovative computational methods could help on
this repositioning exploratory task. On this work we will, precisely test new technical
approaches to help on drug repositioning.

2.1.3 Computer aided drug design

Discovery and developing a new medicine is a long, complex, costly and highly risky
process that has few peers in the commercial world. This is why computer aided drug
design (CADD) approaches are being widely used in the pharmaceutical industry
to accelerate the process. In Figure 2.4 we see in which areas of drug discovery
process, computer-aided methods are involved. Various computational approaches
are already employed in this, highly complex and resource intense, process. CADD
provides several tools and techniques that help in various stages of drug design.

Figure 2.4: Areas of computer-aided drug discovery. Computer aided approaches
are being using on several phases of the drug discovery flow [7]. ADME - absorption,
distribution, metabolism, and excretion; SAR - structure-activity relationship.

10

2. State of the art

Only due to the amount of data gathered throughout the years with in vivo exper-
iments is possible to accurately develop and implement the referred computational
methodologies. If adjusted correctly, these methods improve the ability to identify
and evaluate potential drug molecules. Focusing on the identification of drug tar-
get interactions towards targets of biological interest, either to stop or enhance a
determined molecular function, dedicated models for protein simulation and DTI
prediction are crucial to speed up the actual process and to reduce the costs associ-
ated with it.

Data mining of available biomedical data has led to a significant increase in discovery
candidate drugs. On this particular topic, data mining refers to the use of an
informatic approach to help identifying, selecting and prioritize potential drugs.
The available data comes from a variety of sources and contains different types of
information related to the biological entities under study. Machine learning (ML)
and data mining methods have been widely used on the computational biology and
bioinformatics area.

The growing ubiquity of predictive models across drug discovery phases, from tar-
get identification to the clinical set, has helped to significantly change the current
situation.

2.1.4 Drug target interaction prediction

As previously stated, computational methods are mostly, but not exclusively, used
on the early stage of drug discovery. On this phase the main efforts are to deciphering
disease-related biology, prioritizing drug targets, and identifying and optimize new
chemical entities for therapeutic intervention [7].

Specifically the systematic assessment of drug target interactions is one the areas
that have, recently, witnessed a great improvement, due the amount of data avail-
able. In silico prediction of unknown DTIs has become a popular tool for drug
repositioning and drug development. On this subject, predictive models of target
activity can be derived on the basis of compound activity classes using machine
learning methods. Systematic accounts of ligand target interactions have made it
possible to predict unwanted side effects of drugs or candidates [18].

There is a need to reduce the number os candidates compounds that are evaluated
experimentally, which can be achieve with computational analysis. This analysis
may provide essential help when it comes to decide which are the candidate drugs.

11

2. State of the art

Since the failure rates on clinical trial are extremely high, the major challenge is
trying to pick the best possible candidates and consequently reduce their number
and the failure rates.

Dedicated computational methods for DTI are crucial for speed up and reduce the
costs associated with drug discovery, because they allow to select new leads for drug
repositioning [19]. Identifying the interactions between drugs and target proteins is a
key step in drug discovery. This not only aids to understand the disease mechanism,
but also helps to identify unexpected therapeutic activity or adverse side effects of
drugs.

Nowadays, many in silico approaches have been developed to identify new drug
target interaction. Ligand-based and structure-based are two of the most used com-
putational approaches for this field. Related to ligand-based methodology, many car-
ried out the strategy of applying quantitative structure-activity relationship (QSAR)
to predict the bioactivity of a molecule on a target. QSAR is based on the hypoth-
esis that molecules with similar structure have similar bioactivity [20]. Despite all
the times is was successfully used, the performance of these models decreases if the
number of known active molecules of a target is not enough. Furthermore with each
QSAR model we can only predict activity against one solely target. These disad-
vantages led the researchers to shift to other alternatives. Structure-based methods
can only be applied when the three-dimensional (3D) structure of a target is known
and available resulting on molecular docking.

Yang et al. [21], in an attempt to address the DTI prediction problem of being
mainly focused on relate genomic and chemical data, systematically integrate large-
scale chemical, pharmacological, genomic and functional data and DTI network
information into a unified framework. This led to the implementation of a condi-
tional random field (CRF) method, which integrates all that information. The CRF
is a probabilistic graph model capable of encoding the drug target network for DTI
prediction. To train the model, they apply a stochastic gradient ascent approach
and the contrastive divergence algorithm. At the end they could identify the hidden
associations between drugs and targets [21]. The tests performed to evaluate the
model show that it could achieve excellent prediction performance with the area
under the precision-recall curve (AUPR) up to 0.949. The approaches performed on
this work might have potential when applied to reposition certain drugs. Although
using functional similarity data might dismiss its use for drug repositioning in in-
fectious diseases [19]. The most likely result of using functional similarity for this
purpose would be the prediction of an antibacterial drug that would continue the

12

2. State of the art

selective pressure in the target microorganism, perpetuating antibacterial resistance.

In the work by Cheng et al. [22], three inference methods were developed to predict
new DTI: drug based similarity inference (DBSI), target-based similarity inference
(TBSI) and network-based inference (NBI). Four benchmark data sets were used
to assess the performance of all the methods and NBI always end up with the best
evaluation values, suggesting that it would be the one with highest predictive ability.
The network-based inference method, uses known drug target bipartite network
topology similarity to predict new and unknown DTI. Some of their predictions
were validated by in vitro assays, confirming that five drugs had pharmacological
effects on different and alternative targets. The average area under ROC curve
(AUC) value of NBI method by the 30 simulation times of 10-fold cross validation,
among all biological entities, was 0.934 [22]. The biggest disadvantage of NBI is
that it could not be applied to the new drugs without any known target information
in the training set.

He et al. [23] also developed a different approach for in silico predictions of DTI.
To achieve this, drug compounds were encoded with functional groups and proteins
by biological features including biochemical and physicochemical properties. They
have created a positive dataset from public information of experimental trials. The
corresponding negative data set was derived from the above positive datasets via
the following steps: (1) separate the pairs on the positive dataset into single drugs
and proteins; (2) re-couple these singles into pairs in a avoiding repeating them on
the positive dataset; (3) randomly picked the negative pairs thus formed until they
reached the number two times as many as the positive pairs. The representation of
drug was achieved by selecting 28 common functional groups. Proteins description
was formulated as a 139-D vector, according to their components. With all samples
represented by a feature vector, a predictor using a machine learning approach was
developed. The nearest neighbour) algorithm is quite popular in pattern recognition
community, and so was the algorithm chosen. They soon realized a better feature set
could improve prediction performance. Some features could be correlated and others
did not bring relevant information for the prediction power. After using maximum
relevance minimum redundancy to do feature evaluation, the dataset was smaller.
Although there were more feature for target than for drug, more drug features
came as a result of feature evaluation, showing the important role of drugs. Many
features selected for the protein were related to its secondary structure. Instead
of classifying the proteins as a whole family, target proteins were divided into four
groups: enzymes, ion channels, G-protein- coupled receptors and nuclear receptors.
At the end, the overall success rates of cross-validation tests achieved with the four

13

2. State of the art

predictors were 85.48%, 80.78%, 78.49%, and 85.66%, respectively [23].

Coelho et al. approach the DTI challenge with a random forest (RF) classification
model [19]. They developed a computational pipeline able to discover putative leads
for drug repositioning that could be applied to any microbial proteome. After a
five-fold cross-validation for internal validation and a test of external data, 99% and
91% was achieved for the AUCs, respectively. This approach was based solely on the
primary sequence of the protein and the simplified-input line-entry (SMILE) of the
ligand. In addition molecular docking experiments were performed to validate the
DTI predictions obtained. The docking results indicated the validity of the proposed
architecture.

On more recent works, novel computational approaches have been developed. Par-
ticularly on the work by Wang et al. [24], a model for predicting DTIs was created
under the theory that each pair could be represented by the structural properties
from drugs and evolutionary information derived from proteins. To achieve this
representation, protein sequences were encoded as position-specific scoring matrix
descriptor, which contains the information of biological evolutionary. Similarly to
other works drugs were encoded by representations of specific functional groups of
fragments. The prediction model was established with rotation forest model and
applied on four datasets, enzymes, ion channels, G protein-coupled receptors and
nuclear receptors. The proposed architecture achieved a prediction accuracy (ACC)
of 91.3%, 89.1%, 84.1% and 71.1% for four datasets respectively [24].

This work focus on applying innovative computational methodologies particularly
to the drug target interaction phase, which will be a complement to the decision
making process of picking the best drug candidates and for drug repositioning. The
main goal is to predict whether or not a specific drug will positively interact with a
target, based only on the primary sequence of the protein and the SMILE system
of the ligand.

2.2 Deep learning

Inventors have long dreamed of creating machines that think. This desire dates back
to at least the time of ancient Greece [25]. Digital data, in all shapes and sizes, is
growing exponentially, everyone have probably heard about big data and about the
explosion of electronic devices with tremendous computational power. The fact that
almost every process in our world uses kind of software is giving us massive amounts

14

2. State of the art

of data every minute. The high demand of exploring and analysing big data has
encouraged the use of data-hungry machine learning algorithms like deep learning.

In the past few years, artificial intelligence (AI) has been a subject of intense media
hype. Machine learning, deep learning and AI come up in countless articles, mainly
due to the amount of data that recently become available.

Deep learning is a particular field of machine learning and consequently of artificial
intelligence. DL is a new approach to learn representation of given data. These
techniques represent a remarkable step forward taken by machine learning, in recent
decades, with, never seen results, on several topics, and as previously stated will be
the computational techniques explored for the field of drug discovery on this work.

2.2.1 Artificial intelligence

Artificial Intelligence was born in the 1950s by the creative minds of a group of pio-
neers who wonder whether computers could be made to ”think”. A concise definition
of this field would be ”the effort to automate intellectual task normally performed by
humans”. As such, AI is a wider subject that includes both machine learning and
deep learning, as shown in Figure 2.5.

Figure 2.5: Artificial intelligence, machine learning and deep learning.

The term is frequently applied to the project of developing systems with the same

15

2. State of the art

intellectual characteristic of humans, such as the ability to reason, discover meaning,
generalize, or learn from past experience [26].

2.2.2 Machine Learning

Machine learning is a sub-branch of AI, and even among machine learning practi-
tioners there is not a well accepted definition of what is and what is not machine
learning. Machine learning represents the ability of a computer to go beyond ”what
we know how to order it to perform” and learn by its own how to perform so it can
accomplish a specific task.

Machine learning means that, rather than programmers defining rule by hand the
computer will automatically learn these rule by just looking at the data. Machine
learning allows, in opposite to classical program, to give data and answers as input
and expect the rules as an outcome. In Figure 2.6 we can see these two opposite
programming strategies.

Figure 2.6: Machine learning as a new programming paradigm.

Machine Learning is actually a current application of AI based around the idea
that we should really just be able to give machines access to data and let them
learn for themselves. A machine learning algorithm is trained instead of explicitly
programmed. The algorithm takes as an input many examples relevant to a task,
and finds patterns within the data receive. This discovered patterns will eventually
allow the system to come up with rules for automating the task.

A system based on machine learning, may, on the basis of the observation of previ-
ously processed data, improve its knowledge, so it can, in the future, achieve better
results or, produce an output closer to the one expected for that specific problem
[27].

16

2. State of the art

Although machine learning only started to flourish in the 1990s it quickly deserved
the attention of many enthusiasts. Nowadays, machine learning is the most popular
and successful subject of AI.

2.2.3 The ”deep” in deep learning

There are many reasons that led to deep learning being developed and becoming
the centre of machine learning in the recent years. The first, and perhaps the main
one, is related to the progress we have witnessed in hardware. Mainly, graphics
processing units (GPU) contribute to making possible to training deep learning net-
works. GPU’s have greatly reduced the time needed to run a this kind of networks,
lowering them by a factor of 10 to 20 [27]. Other reason focus on what we have al-
ready stated, the amount of data that become available recently. We have numerous
datasets, with a high dimensionality as an input data, and a technique capable of
dealing with it was needed. So, facilitated by the intersection of inexpensive com-
puting power, unprecedented large data sets, and clever computational statistics
advances, deep learning algorithms are driving an artificial intelligence revolution.

Many tasks on the machine learning field can be solved by just designing the ap-
propriate feature space and giving them to a machine learning algorithm. Although
there are other task in which the difficulty to understand the features that have a
strong predictive power and should be extracted becomes a problem. For example,
if we want to detect a car on a picture we might like to use the presence of a wheel
as a feature. Disappointingly, in terms of pixel values, it is even a bigger problem
to describe how a wheel looks like. One solution to this is create algorithms capable
of discovering not only, the mapping to turn input data into the desired output, as
on machine learning methods, but also the representation of the input data itself
[25]. This innovative approach to the problem is known as representation learning.
These new methodologies often result in much better performance when compared
to hand-designed representation. Deep learning belongs to the representation learn-
ing set of methods and solves this issue of data representation. In Figure 2.7 are
shown different flowcharts, where is possible to understand the contrast between
Deep Learning and other machine learning methods in terms of data representation.

Deep learning is based on the way the human brain process the information and
learn to respond to certain stimuli. This recent approach is related to a learning
method based on successive layers of increasingly meaningful representations for
the data. This methodologies uses artificial neural networks (ANN) which contains

17

2. State of the art

Figure 2.7: Flowcharts showing how the various AI disciplines related between
each other. Shaded boxes indicate components which can be learned from raw data.
Adapted from Goodfellow et al. [25].

many layers, the reason behind the word deep. Curiously this meaning has changed
with time. While 4 years ago, 10 layers were enough to call a network deep, nowadays
when we refer to deep learning we are talking about hundreds of layers [28].

So, deep learning methods aim at learning feature hierarchies with features from
higher levels of the hierarchy formed by the composition of lower level features [29].
By learning features at multiples levels of abstraction it is possible for a system to
create complex functions and relate the input data with the desired output, develop-
ing a map between them, without depending completely on human-crafted features.
From the raw input image data into the desired output, which is its description,
data is transformed, layer by layer, into gradually higher levels of representation
representing more and more abstract functions of the input data, e.g., edges, local
shapes, object parts, among others. In practice, the “right” representation for all
these levels of abstractions is not known, we have to trust the model with this task.
Deep learning enables the computer to build complex concepts out of simpler con-

18

2. State of the art

cepts. In Figure 2.8 we can see an example of this feature construction carry out by
a deep learning method.

Figure 2.8: The transformation of raw input data into gradually higher levels of
its representation [29].

This ability of automatically learn powerful features will become increasingly impor-
tant as the amount of data and range of applications to machine learning methods
continues to grow [30].

As stated, in deep learning these layered representation are learned through models
called neural networks, structured in literal layers stacked on top of each other. The
term neural networks is a reference to neurobiology. In faction some important fact
behind deep learning were inspired from our understanding of how the human brain
works.

2.2.4 How deep learning works - neural networks

The development of neural networks has been fundamental to get closer to the goal
of teaching computers to think and understand the world in the way we, humans,
do, while retaining the innate advantages they hold over us such as speed, accuracy
and lack of bias [31].

19

2. State of the art

Deep learning involves stacking these straightforward little algorithms called artifi-
cial neurons together to solve problems. Neurons are the basic unit of a deep learning
model. The first artificial neuron developed was a perceptron and was created by
the scientist Frank Rosenblatt. A perceptron is a unit that takes several binary
inputs, x1,x2,x3,. . . , and produces a single binary output.

Figure 2.9: Scheme of a perceptron.

Rosenblatt proposed a simple rule to compute the output. He introduced weights,w1,w2. . . ,
real numbers expressing the importance of the respective inputs to the output. The
neuron’s output is binary, either 0 or 1 and is determined by whether the weighted
sum ∑

j wixi is less than or greater than a specific threshold value, as shown on
2.1. The threshold, used on the other side of the function becomes the perceptron
bias. Today, it’s more common to use other and more complex models of artificial
neurons. The most used neuron model is one called the sigmoid neuron.

output =

0, if ∑
j wixi ≤ threshold

1, otherwise.
(2.1)

By combining many artificial neurons, on many layer and with different weights
and thresholds we can get diverse neural networks. Deep learning is, in fact, a
class of neural networks characterized by a significant number of layers of neurons,
which gain the ability to learn rather complex models, based on progressive levels
of abstraction.

If a network has many layers and neurons, it is called multilayer perceptron (MLP),
which is a generic neural network, such as in Figure 2.10. Every network has an input
layer, one or more intermediate layer, also known as hidden layers and the output
layer. As on the perceptron, on this network we also have weighs. A mathematical
function called the activation function is then applied to the sum to form the new
value of the neuron. The specification of what a layer does to the data it receives
it stored on the layer weights, which is, no more, than a bunch of numbers. The
transformation performed on each layer is parameterize by its weights. On this

20

2. State of the art

context, learning means to achieve the best values for the weights of all the layers
of the network. With this set os values the network will be able to correctly map
input data into de desired output.

At the beginning of training task, we have no clue about what should be the best
values for the weights and so these values are randomly selected. Although it must
be a way to control them and understand if we are getting closer to all goal of achieve
the best weights to represent our data. In fact, there is a method to measure how far
the output is from what we expected, and consequently to measure the performance
of the set of weights. This is the job of loss function of the network. This functions
takes the predictions of the network and the true target and computes a distance
score. This score represents how well the network has performed.

Figure 2.10: Generic neural network.

The fundamental trick in deep learning is to use this score as a feedback signal, and
accordingly to it, adjust the network parameters in such way, that the score of the
loss function will decrease [32]. This small adjustment is the job of the optimizer
which implements what is called the backpropagation algorithm. This concepts are
summarized in Figure 2.11.

Initially, the weights of the network are randomly setted and so it is merely a series
of random transformations. Naturally, at this point, the output is far from the
expected one, and consequently the score from the loss function will be higher.
Although, iteration after iteration the weights will be adjusted a little into the
correct direction and the loss function will decrease. To properly adjust the weight
vector, the learning algorithm computes a gradient vector that, for each weight,
indicates by what amount the error would be affected, of the weight were increased
by a tiny amount. To this amount, by which the weight is changed, we give the

21

2. State of the art

Figure 2.11: Schema of Deep Learning flow. The loss score is used as a feedback
signal to adjust the weights [32].

name on learning rate. In practice, many developers are using a procedure called
stochastic gradient descent (SDG) [30]. This is called the training loop, which,
repeated many times, will minimize the loss function and optimize our output.

But the traditional artificial neural network (ANN) method suffered from problems
such as overfitting, diminishing gradients, among others, and was largely replaced by
other machine learning algorithms like support vector machine (SVM) and random
forest. The recent development of DL has given ANN a renaissance. The major
difference between DL and traditional ANN is the scale and complexity of the NNs.
DL uses larger numbers of hidden layers whereas traditional ANNs normally can
only afford one or two hidden layers owing to the limitation of computer hardware
in the early days.

There are also many algorithmic improvements in DL, for example using the dropout
and earlystop methods to address the overfitting problem or applying rectified linear
unit (ReLU) to avoid vanishing gradients, for example. With the rise of DL also
came new architectures such as convolutional and pooling layers as novel network
architectures to enable the usage of large number of input variables and recurrent
neural networks for sequential data.

A standard neural network (NN) consists of many simple, connected processors
called neurons, each producing a sequence of real-valued activations. Neurons be-

22

2. State of the art

come active due to weighted connections from previously active neurons. According
to the activation function some neurons may influence the environment by trigger-
ing actions. Learning is about finding weights that make the NN exhibit desired
behaviour. Depending on the problem and on the model architecture, obtaining
the desired output may require extensive and progressive iterations of the model.
On each computational stage the aggregate function of the network is transformed
[33]. Deep Learning is about accurately assigning values across such transformation
stages.

2.2.5 Deep learning applications

Deep learning took off so quickly due to, manly, two reasons. First, it offered
better performance on many problems when compared to traditional machine learn-
ing methodologies. Along with that, these architectures also make problem-solving
much easier, because it completely automates one of the most crucial step on ma-
chine learning workflow: feature engineering. These two essential characteristics of
deep learning made this approach so famous which has dramatically improved the
state-of-the-art in speech recognition, visual object recognition, object detection and
many others technological subjects.

On the subject of image recognition, since 2012 that deep convolutional neural
network is the state-of-the art. This breakthrough carry out by Krizhevsky et al.
[34] used a convolutional net to almost halve the error rate for object recognition and
precipitated the rapid adoption of deep learning by the computer vision community.
The neural network, which has 60 million parameters and 650,000 neurons was
used to classify the 1.2 million high-resolution images in the ImageNet LSVRC-
2010 contest into the 1000 different classes. This work was also one of the first to
successfully implement the dropout method to avoid overfitting.

On the topic of speech recognition, deep learning has seen its first major indus-
trial application. On a joint paper from the major speech recognition laborato-
ries [35] they all agree that deep neural networks, contain many hidden layers and
trained with new methodologies have shown to outperform, until then, state-of-the-
art methods on a variety of speech recognition benchmarks, and sometimes, by a
large margin.

Also on the biomedical filed, deep learning has made some interesting contributions,
although its adoption has been slow. As explained earlier, deep learning techniques
are promising in extracting high level abstractions from the raw data of very large,

23

2. State of the art

heterogeneous, high-dimensional data sets. This is exactly the type of data biology
now has to offer [36]. For example on the topic of genomics, the implementation
of next generation sequencing has contributed to the creation of massive amount of
genomic data. Particularly on the topic of metagenomics there are several informatic
challenges,being the major related to functional analysis of sequence data. Using
deep learning architecture, specifically deep belief networks and recurrent neural
networks, has allowed metagenomics classification and provided the ability to learn
hierarchical representations of a data set [37].

Besides these refereed topics, deep learning has also made some interesting, and
some time curious, improvements on the following fields [38, 36]:

1. Computer vision;

2. Restore colours on black and white images and videos;

3. Real-time pose estimation;

4. Describing photos;

5. Real-time analysis of behaviours;

6. Translation;

7. Computer games;

8. Self-driving cars;

9. Robotics;

10. Music composition;

11. Replications of painting styles;

12. Writing computer code;

13. Handwriting;

14. Deep Dreaming.

2.2.6 The rise of Deep Learning for Drug Discovery

In the past few years, DL has been attracting the attention of academic community
and large pharmaceutical industries, as a viable alternative to aid in the discovery
of new drugs [39].

24

2. State of the art

Computational drug biology and biochemistry are broadly applied on almost every
stage in drug discovery, development, and repurposing, as shown before. Worldwide
many research groups have been developing different computational approaches for
these fields and have successfully reduced time and resource consumption. Despite
the implementations of these methods, none are yet optimal, having some limitation
[36]. Furthermore, several studies now show that deep learning is an important
approach to consider and explore.

Feature-based methods take their inputs in the form of feature vectors, representing
a set of instances (i.e. drug-target pairs) along with their corresponding class labels
(i.e. binary values indicating whether or not an interaction exists). Decision tree
(DT), RF and support vector machines (SVM) are typical feature-based methods
to build classification models based on the labeled feature vectors.

Deep architectures describe the data more precisely by encapsulating the most rel-
evant higher-level abstractions. However, the efficient implementation of deep net-
works is still a major concern, since most of the current methods require solving a
complex and non-convex optimization problem. On the other hand, extreme learn-
ing machines deal very efficiently with large-scale data, achieving fast learning speed
and good performance, but employ a single hidden layer feedfoward network, not
benefiting from the stacked generalization principle.

In fact, one of the first works in which DL was successfully applied was to solve prob-
lems related to QSAR on the machine-learning challenge posted by Merck. Surpris-
ingly the proposed deep learning architecture improved Merck’s in-house systems of
approximately 14% on accuracy. QSAR models uses neural networks and is used in
the pharmaceutical industry for predicting on-target and off-target activities. Such
predictions help prioritize the experiments during the drug discovery process. Since
2012 QSAR models have been substantially improved, and inclusive have been en-
hanced with more recent deep learning techniques, such as deep neural networks
[40]. On this work deep neural network (DNN) showed slightly better performance
in 13 of the total 15 targets than the standard RF method. Along with this im-
provement the study also allowed to conclude about some characteristics of these
architectures, such as [41]:

(i) DNNs can handle thousands of descriptors without the need of feature selection;
(ii) dropout can avoid the notorious overfitting problem faced by a traditional ANN;
(iii) hyper-parameter (number of layers, number of nodes per layer, type of activa-
tion functions, among others) optimization can maximize the performance of the
algorithm;

25

2. State of the art

Koutsoukas et al. [42], on his recent work, compared a DNN model with some
commonly used machine learning methods such as SVM, RF, among others and
proved that DNNs can outperform other machine learning methods.

One of the most important task on drug discovery, and the one under study on this
work, is drug target interactions, which is still a major challenge in drug reposition-
ing. Although there has been no explicit comparison with other machine learning
methods the results indicated that DL can achieve a better performance.

Segler et al. [43] on his work on reaction prediction used 3.5 million reactions, taken
from the collective published knowledge, as the training set for DNN, achieving a
top-ten accuracy of 97%. The goal is to learn patterns in the molecules’ functional
groups that allow the machine to generalize to molecules it has not seen before. It
is a multiclass problem, since there was previously named reaction that the network
has to learn.

The first time that a deep learning method was employed to predict DTIs was last
year by Wen et al. [20]. In this work an effective deep learning method – deep belief
network (DBN) was developed and applied to accurately predict new DTIs between
FDA approved drugs and targets. The drugs and targets data were extracted from
the DrugBank database (https://www.drugbank.ca/) [44]. This resource, from
2008, is a unique bioinformatics and cheminformatics database, which gather de-
tailed information about drugs and drug-target interaction. DrugBank database
was been used by many researchers on a variety of works, which makes easy to com-
pare results. The method was called DeepDTIs. The approach uses a DBN model
to effectively abstract raw input vectors and accurately predict DTIs. The features
used on this case, for drugs and targets were automatically extracted from sim-
ple chemical sub-structure and sequence order information. DeepDTIs was tested
against more conventional methods such as random forest, Bernoulli Näıve Bayesian
and decision tree. The hyper-parameters for the network were determined by grid-
search and the AUC, accuracy, sensitivity and specificity of test set were 0.9158,
0.8588, 0.8227 and 0.8953, respectively. When compared to the other classification
models, DeepDTIs performed better because the number of positive DTIs is much
fewer than that of negative in drug target space. Since the purpose of the model
was to predict the true positive DTIs, true positive ratio (TPR) is a more important
evaluation metric among the four evaluation metrics. For five positively predicted
drug target interaction, the authors did not find any experimental evidence, from
other databases or literature, that could support the result. However these predic-
tions still have potentiality to be true positive DTIs, which indicates that the model

26

https://www.drugbank.ca/

2. State of the art

is practically useful in predicting novel DTIs and in drug repositioning.

Drug target interactions are fundamental to renovate current drug discovery pro-
cesses. Identifying the interaction between a drug and a specific biological entity
will help to reduce the time and costs associated to it. Furthermore will contribute
significantly to drug repositioning, which is a topic that have been targeted by
many academic researchers and companies. The recent success demonstrates that
deep learning methods are well suited for modelling complex biological data to sup-
port drug discovery and toxicological research. There is a need for more work on
the area, with new approaches to keep on exploring this hot topic on a field that
deserves many attention.

The applications of DL representations in the proteomics field are still few and recent
and are still in the proof-of-concept stage with not many companies having been able
to successfully apply these models for cost savings in drug discovery. Despite being
successful when used, the full potential of deep architectures in the pharmacological
field is yet to be shown, meaning there is still room for improvement. The availability
of training data and collaborative efforts to collect data will be the game changer
for deep learning on the topic of drug discovery.

27

2. State of the art

28

3
Methods

Throughout the course of this work, we tried to develop a deep learning architecture
do predict drug-target interactions. On this section, we will describe all the methods
performed for the application of deep learning techniques, on Python 2.7, to the field
of drug discovery. Topics from data collection and preparation to the evaluation
metrics will be covered.

3.1 Data preparation

To perform the association study, data from different publicly sources has been
gathered. In order to be able to easily compare the results with previously works on
the area, very common DTI data bank were used. As previously stated, this work
is based on the work carried out by Coelho et al. [19], and so the pipeline for data
creation was the same. Again, we are facing a binary classification problem. We
must predict if a specific pair of drug target, will or not interact, and there is a need
to construct a dataset containing labeled data both for the positive and negative
examples.

3.1.1 Positive data set construction

Known DTI data, meaning positive drug target interaction data, was collected from
two different sources: (1) DrugBank [44] and (2) from a previous work on the field,
a DTI prediction study by Yamanishi et al. [45].

The DrugBank database has been widely used to facilitate in silico drug target
discovery, drug interaction prediction and other pharmaceutical fields. It provides
detailed, up-to-date, curated, quantitative, analytic or molecular-scale information
about drugs, drug targets and the biological or physiological consequences of drug

29

3. Methods

actions. First released in 2006, this database has been updated over the years, which
makes it the centre of many studies. The version used was 4.3.

All DTIs were conveniently represented as a list of pairs. For each target the protein
sequence was also extracted and the SMILE format for each drug. SMILE stands for
simplified molecular-input line-entry systems, which is a line notation for entering
and representing chemical structures and reactions. SMILES contains the same
information as an extended connection table and is very compact relative to other
methods of representing chemical structures. Any drug or protein for which the
SMILE representation or protein sequence was missing or invalided, was just deleted.

From the SMILE representation, related to drugs, the chemical structure data and
physicochemical descriptors were retrieved and encoded. From the primary protein
sequence for the targets, a variety of physico-chemical descriptors were retrieved. All
of these descriptors were used to generate our initial feature vectors that represent
each DTI pair.

The second source of information, comprises DTI data from many different works,
and has been used as a gold standard in several DTI studies. One database used on
Yamanishi’s work was DrugBank, so it was necessary to remove all the duplicated
data between both databases.

On opposite to some works, here we disregarded the specific classes of protein tar-
gets. Some studies developed different models for each target type and assess it
accordingly to that division. Here we considered the target as one single type,
instead of divide into enzymes, G-protein, ion channels and nuclear receptors.

The number of unique drugs in our positive data sets was 2,118, being 1,328 from
the DrugBank database and 790 from the Yamanishi’s gathered data. Respectively
to targets, the number is 2,077 (706 for DrugBank and 1,371 from Yamanishi). This
makes a total of known positive DTI pairs of 10,736.

3.1.2 Negative data set construction

Ideally, the construction of negative data set should be, as well as the positive, based
on known negative interaction between a drug and its target. However, there are
very few authors publishing results for non-interacting DTI data, as these works are,
naturally, associated with the failure of the hypothesis under study.

In order to overcome this issue, we considered drug target pairs with experimental
bioactivity values greater than 10 µM, since for this range of values the pair is

30

3. Methods

considered to possess weak binding activity. So we screened the BindingDB [46]
and BioLip [47] databases for drug target pairs that would fulfil this requirement.
All the data was merged, duplicated were eliminated, resulting on 16,209 unique
negative DTIs.

3.1.3 Final data set construction

In Figure 3.1 is shown a schema of the data set construction for this work.

By gathering data from different sources we could be making the mistakes of con-
struct a data set without discriminative power. To test this, we used OpenBabel
to extract the molecular fingerprints of the drugs in our data sets and to perform a
comparison on their chemical similarity. With this analysis we could mislead cases
of redundant information within our dataset.

OpenBabel is an open-source chemical toolbox that speaks the many languages of
chemical data [48] which presents a solution to the proliferation of multiple chemical
file formats.

In fact, less than 1% of all possible drug-target pairs had a sequence similarity score
greater than 0.85, which means that the approach assumed so far might help to
achieve the goal of developing a prediction mechanism. So, both data from positive
and negative data set were combined to construct the final DTI space.

3.1.4 DTI descriptors

Descriptors for both drugs and targets were gathered using PyDPI [49]. PyDPI is a
python package and a powerful open source for the extraction of features of complex
molecular data. It computes 6 protein feature groups composed of 14 features that
include 52 descriptor types and 9890 descriptors, 9 drug feature groups composed
of 13 descriptor types that include 615 descriptors.

PyDPI allows to computing commonly used structural and physicochemical features
of proteins and peptides from aminoacid sequences, molecular descriptors of drug
molecules from their topology, and protein-protein and protein-ligand interaction
descriptors. A more detailed explanation of these descriptors is given in the original
paper for this package [49].

We finish the drug target space with a total of 26,945 entries, described by 755
features.

31

3. Methods

Figure 3.1: Data set construction based on the work by Coelho et al. [19].

3.2 Data analysis

Once gathered all the data, the next step was to analyse it. Some pre-processing
techniques were applied to the data set before its splitting for further model training.
In order to understand its behaviour and some possible correlation, some efforts were
made in order to visualize the data, despite its high dimensionality.

3.2.1 Data exploration

Our data set is already on the form of floating-point data and was constructed in
a way to avoid both missing and duplicate values, characteristics that saved many
time on the data processing phase.

Even so, some hand-written functions were developed to ensure this preposition.
We had to certify that no duplicates were present in the data set in order to avoid

32

3. Methods

redundancy, which could lead to major issues when classifying. On the course of
this work we used NumPy, which is the fundamental package for scientific comput-
ing with Python, Scikit-learn, which is a free software machine learning library for
the Python programming language and Pandas an open source library providing
high-performance, easy-to-use data structures and data analysis tools. All these
frameworks are essential for any machine learning exercise.

Analysing the dispersion of a specific feature (maximum and minimum values,
uniques, among others), calculate balance ratio between both classes, compare two
features space were some of the functions created to exploit the dataset.

3.2.2 Data pre-processing

Data exploitation allowed us to discover the differences between all features. In fact,
some features had range values between 0 and 1000 when others were ranging from
-1 to 1.

In general, feeding a deep learning architecture with a feature set containing either,
large values and heterogeneous data will harm the model [32]. Doing so can trigger
large gradient updates, which will difficult the convergence of the model. So, a
common practice to deal with it is to do feature-wise normalization. To achieve this,
for each feature we subtracted its mean to all values and divided by the standard
deviation. This makes the features centered around 0 and with a unit standard
deviation.

In order to perform the normalization we used Scikit-learn function StandardScaler
which standardize features by removing the mean and scaling to unit variance. The
normalization of the test set is done using values from the training data to keep test
data completely unused.

Since the data set did not include missing values or duplicates, the normalization
task was the only performed on the pre-processing step.

3.2.3 Data visualization

Our data set has a total of 26,945 entries, meaning drug-target pairs, and 755
descriptors. Being a numeric data set, and due to its high dimensionality, the best
way to visualize all the data was applying a Principal Component Analysis (PCA)

33

3. Methods

so we could reduce the dimensionality in order to visualize it. PCA is a technique
widely used for some applications, including dimensionality reduction.

By performing a PCA we will extract a set of new orthogonal variables of our
dataset, called the Principal Components, that are able to represent the important
information in a chosen number of vectors, called the eigenvalues. With PCA we
are constructing new features, based on all the data, that we believe to have the
best predictive power.

Since the goal was to be able to visualize the data, we applied PCA for computing
two principal components. PCA could also be used for feature selection in some
other cases. For more understanding on how PCA works please consult the work by
Bro et al. [50].

3.2.4 Data splitting

Evaluating a model always boils down to splitting the available data into two dif-
ferent sets, train and external validation. The train set is used for training the
model and the validation set to evaluate its performance. Once the model is ready
for prime time, it is tested again with never seen data. So, this was the approach
carried out on the course of this work.

3.2.4.1 K-fold cross validation

K-fold cross validation approach, could help to achieve even better performance for a
model. It requires splitting the data into K partitions of equal size. Each partition
is then divided into K parts again, and the model is trained with K-1 parts and
assessed with 1 part. This process is repeated for all K divisions and the final score
is the average of the K scores obtained.

In Figure 3.2 we can see an example of a four-fold validation, where the painted
part represents the data subset used to evaluate the model performance, for each of
the K partitions.

3.3 Feature engineering

Two of the most important aspects of machine learning models are feature extraction
and feature engineering. Those features are what supply relevant information to

34

3. Methods

Figure 3.2: Scheme of k-fold cross validation [51]. The coloured sections represents
the set of data used to evaluate the model.

the machine learning models. Actually, Scikit-learn already provides a function to
directly select the k-best features for a specific model, which makes this task much
easier.

Deep learning is changing feature engineering reality, according to its promoters.
With deep learning, one can start with close to raw data, as features will be auto-
matically created by the neural network as it learns. The ability to create gradually
more abstract representations of data, makes feature engineering a less important
step when developing deep learning architectures. In fact, some works on the area
have proved that these kind of architectures can handle thousands of descriptors
without compromising the model performance [41].

Before deep learning, feature engineering used to be a crucial step on machine learn-
ing tasks, because classical shallow algorithms did not have the ability to learn useful
features by themselves, like deep learning does. Fortunately deep learning removes
this need, because neural network can, without human intervention, understand
which features have more predictive power, from the raw input data. This approach
reduces drastically the need for a a priori engineering of more sophisticated descrip-
tors of the data [52].

Based on these assumptions, and because on DTIs prediction problem there is not
an understanding on what biological characteristics could help the most on the
classification task, we decided to used the entire dataset as an input to our model.
With this approach we can actually infer if, in fact, our architecture is capable to
determine by itself what features are more important and achieve satisfied results.

35

3. Methods

3.4 Classification model implementation

Having the complex task of predicting whether a drug target pairs will interact
or not, using the previously mentioned features, our main goal was to provide a
classifier, based on a deep learning architecture, with a good perform and the ability
to generalize to new data, never seen before.

Our approach was to first develop a baseline for the prediction problem and check
its results. Then understand how we could improve the model, until achieving the
best one used to predict on novel data.

3.4.1 Frameworks

In order to build, train and test a deep learning architecture we decided to use
TensorFlow (TF) and Keras, both technologies compatible with Python.

TF is, nowadays, the most popular framework among many others, such as Torch,
Caffe or Theano. We’ve found that TensorFlow, in particular, is easy to use, debug
and monitor during and after training, and so it was our choice. This software
library was developed by Google Brain Team for the purpose of conducting machine
learning and deep neural network research. The name comes from the ability of
working with tensors, which are multi-dimensional arrays.

Keras provides a high level Application Programming Interface (API) to build deep
learning models. Keras can be used on top of other library, such as TensorFlow,
and uses an object oriented design, resulting in a clean and user friendly interface.
Furthermore, everything is well documented, which makes it one of the best tools
to start with deep learning. As its creator François Chollet said: ‘The library was
developed with a focus on enabling fast experimentation. Being able to go from idea
to result with the least possible delay is key to doing good research.’

One of Keras’ biggest advantages when compared to other APIs is its modularity.
Keras turns a model into a sequence of standalone modules that can be combined
together.

3.4.2 Deep feed forward network

There are many types of learning machines and many version of each. For this work
we decided to used a deep feed-forward network. This network, is an example of a

36

3. Methods

deep learning model.

Since our data was numerical, and did not had a sequential correlation between the
examples this seamed the best approach. Furthermore, this kind of architecture
have proved to perform well on extracting, sequentially, abstract representations of
raw data, which applies to the problem we are targeting. DNN are also used to
supervised learning classification problems, which is our case.

The goal of a feed-forward network is to define a non linear function, capable of
mapping the input data into the desired output, as

y = f(x : θ)

and to learn the value of all parameters θ belonging to the network, in order to
achieve the best function approximation [25]. These networks are typically repre-
sented by composing together many different functions.

The network is composed of several layers, and each layer of many neurons. A
neuron combines input from the data with a set of coefficients, called weights, that
either amplify or dampen that input, thereby assigning significance to inputs for
the task the algorithm is trying to learn. These input-weight products are summed
and then pass through a activation function which determines whether and to what
extent that signal progresses further through the network to affect the ultimate
outcome. This is how the information is passed between layers. On Equation 3.1 is
represented the output of a neuron, called activation, which depends, as explained,
on the activations of the neurons on the previously layer. Activations of one layer,
determines the activations on the next layer.

aj =
N∑

i=1
xiwij + wj0 (3.1)

where N represents the number of neurons on the previous layer j-1. We shall refer
to the parameters wij as weights and the parameters wj0 as biases. The quantities
aj are the activations. Each of them is then transformed using a differentiable, non-
linear activation function, before being used as input for the next layer. Activation
functions are responsible for enhance the model to achieve non-linear functions.
Rectified linear unit (ReLU) is the most popular activation function in deep learning,
although there are much more such as Sigmoid (Sigm)or Tanh. On 3.3 we can see
an resume of all this concepts.

37

3. Methods

Figure 3.3: a Example of a feed forward network with two hidden layers and
multiple neurons. b A schema of the mathematical formulation for each neuron of
a DNN. c Popular neurons activations functions [42].

In order to achieve the desired output, we need to measure how far, from it, is the
model performing. This control is established by the loss function, defined by the
following mathematical formulation. We’ll call E(w) the quadratic cost function;
it’s also sometimes known as the mean squared error or just MSE.

E(w) = 1
2n

∑
x

||y(x)− a||2 (3.2)

Here, w denotes the collection of all weights and biases of the network, n is the
total number of training inputs, a is the vector of outputs from the network when
x is input, and the sum is over all training inputs, x. This is the typically used loss
function for linear regression models. When related to deep architectures, this loss
function must be chosen accordingly to the problem to be solved.

In summary, there is a natural choice of both output unit activation function and
matching error function, according to the type of problem. On our case, for binary
classifications, logistic sigmoid outputs and a cross-entropy error function are the
most common choices.

3.4.3 Parameter optimization

We turn next to the task of finding a weight and biases vector w which minimizes
the chosen function E(w). At this point, it is useful to have a geometrical picture

38

3. Methods

of the error function, which we can view as a surface sitting over weight space as
shown in Figure 3.4.

Figure 3.4: Geometrical view of the error function E(w) as a surface sitting over
weight and biases space. We can see a local minimum and the global minimum,
which is the point where the cost function will be lower, and so the model perfor-
mance the best. At any point wC , the local gradient of the error surface is given by
the vector ∇E [51].

In order to reduce the loss function output, we used the so called gradient descent
algorithm, which iteratively adjusts parameters, gradually finding the best combi-
nation of weights and bias to minimize loss. Gradient descent is one of the most
popular algorithms to perform optimization and by far the most common way to
optimize neural networks. A general function E(w), may be a complicated function
of many variables, not like the one in Figure 3.4, and it won’t usually be possible
to just eyeball the graph to find the minimum. There is a need for an algorithm to
gradually achieve this minimum.

If we make a small step in the weight and bias space from w to w + δw, then
the change on the error function is δE ' δ wT ∇E(w). The gradient vector point
into the direction of greatest rate of increase of the error function. Since the error
function is a continuous function of the weight and bias space, its smallest value,
and our goal, will occur at a point that the gradient of the error function is null, so
that:

∇E(w) = 0 (3.3)

39

3. Methods

While this is not achieved the model should make a small step in the direction of
-∇E(w), which is the direction where the error function decreases quicker. The
parameter related to this small step is the learning rate. The learning rate is intro-
duced as a constant, normally step as a very small value, which force the weights
to get updated, accordingly to the error, in a very smoothly and slowly way, in or-
der to avoid big steps and chaotic behaviour. After each such update, the gradient
is re-evaluated for the new weight vector and the process repeated. High learning
rate means faster learning, but with higher chance of instability. Also to define the
correct value for learning rate a study is necessary. Along with learning rate we
have momentum, which controls how much to let the previous update influence the
current weight update.

There are three variants of gradient descent, which differ in how much data we use to
compute the gradient of the objective function. Depending on the amount of data,
we make a trade-off between the accuracy of the parameter update and the time
it takes to perform an update. Batch gradient descent or vanilla gradient descent,
stochastic gradient descent (SGD) and mini-batch gradient descent are the three
most used variants of gradient descent.

Backpropagation algorithm, which is a fast way of computing the gradient of the
cost function, allow to pass the partial derivative of the error with respect to each
parameter in a backward pass through the network. This algorithm, also known as
backprop, allows the information from the cost functions to flow backward through
the network, in order to compute de gradient and update the parameters. Actually,
back-propagation is nothing else, than the method for computing the gradient.

The update performed on the weight and bias space depends on several methods
called optimisers Adagrad, Adam, RMSprop [53]. The delta rule is using the most
simple and intuitive one, however it has several draw-backs.

Furthermore, the batch size, which is the number of examples, or the number of
patterns, used in one iteration, that is, one gradient update of model training, also
needs to be assigned. For example, the batch size of SGD is 1, while the batch size
of a mini-batch is usually between 10 and 1000. Batch size is usually fixed during
training and inference.

The full data set can also be shown to model, during the training process, several
times. The number of epochs is, precisely, the number of times that the entire
training data set is presented to the model.

In Figure 3.5 we can see a schema of all the parameters that were referred before

40

3. Methods

and that together, explains how a deep neural network perform.

Figure 3.5: Step-by-step of how a neural networks performs and all its constituent
parameters [54].

We end up with many parameters, from number of layers and neurons, to acti-
vations functions and learning rates, which all together complete the network we
are developing. All of these parameters were integrated on our work, in order to
achieve a complete and empowered model. As already stated, correctly assign these
parameters is a challenging task with great influence on the model’s performance.
On this work, and in order to achieve the best set of parameters we performed a
hyper-parameter tuning.

3.4.4 Hyper-parameter tuning

One main aspect of deep neural network are their main hyperparameters. These
can be either architectural, such as the number of layers and neurons, the activation
function among others, optimization types, such as the learning rates or regular-
ization such as the dropout probabilities. Hyper-parameter tuning is the process of
finding the optimal combination of those parameters that minimize the cost function.

The reason is that neural networks are notoriously difficult to configure and there
are a lot of parameters that need to be set. On top of that, individual models can
be very slow to train. Optimization all these aspects on such architectures is, in
general, extremely challenging due to the large number os parameters to evaluate.

41

3. Methods

This is definitely the most difficult and time consuming task when building a deep
learning model.

One way of achieve this is trial and error method, which was our first approach.
Quickly we realise how hard and time-consuming it would be, and so, the strategy
was changed.

3.4.4.1 Grid-search

The best way to find the best set of parameter for our model was through grid-search
method, and Scikit-learn has a proper function to do so. This strategy consists on
creating a grid on the space of possible parameters and systematically check for
each grid vertex what the value assumed by the cost functions is. In other others,
parameter are divided into buckets, and many different combinations are tested. In
the end, we can understand which set of parameters best fit our model. In order
to do a search, we need to define a hyper parameter space, that is, all the hyper
parameters we want to test and their possible values.

In this work we performed a grid-search for hyper parameter tuning on many the
parameters involved on the model construction. Due to the time that the grid-
search required to run, the parameters had to be split into groups. These groups
were constructed taking into account that some parameters might be connected
and influence together the model. For example, there is a dependency between
the amount of learning per batch (learning rate), the number of updates per epoch
(batch size) and the number of epochs, and so, the grid-search to compute the best
set of these parameters should perform at once.

For every grid-search a different script was written. The choice of the best value
for each parameter was achieved comparing the results of accuracy for 10-fold cross
validation, between all possible combination of parameters. All the following pa-
rameters were define based on a grid-search, where the possible range for them was
constructed based on theory and some manual tuning done previously.

1. Batch size;

2. Number of epochs;

3. Training optimization algorithm;

4. Learning Rate;

5. Momentum;

42

3. Methods

6. Weight Initialization;

7. Neuron activation function;

8. Number of neurons;

9. Number of hidden layers;

10. Loss function.

In the end, we get the set of parameters that best fit the model, in order to achieve
the lower cost function, and consequently achieve better results. With these param-
eters our deep feed forward network was concluded and ready to be tested.

3.4.5 Model improvement

Besides all the tuning methods we also performed some strategies to improve model
performance and avoid overfitting. Between many methods for model control, we
decided to use dropout method, recently proposed by Geoff Hinton’s group.

The methodology used was dropout regularization, which is commonly used on neu-
ral networks. Dropout regularization works by removing a random selection of a
fixed number of the units in a network layer for a single gradient step. The more
units dropped out, the stronger the regularization is. This is analogous to training
the network to emulate an exponentially large ensemble of smaller networks. This
prevents units from co-adapting too much, during training, and has been shown to
improve model performances [55] also on computational biology. One of the draw-
backs of dropout is that it increases training time. A dropout network typically takes
2-3 times longer to train than a standard neural network of the same architecture.

Along with dropout methods, and since we are facing a binary classification problem,
we also investigate what should be the appropriate threshold for consider an example
as positive. Some works on the area have imposed this threshold, instead of 0.5 as
normal, to much higher values, such as 0.9. Changing this will make much less pairs
of drug target to be classified as positive.

3.5 Evaluation metrics

Four of the most frequently used evaluation metrics are: area under the receiver
operator characteristic curve (AUC), accuracy (ACC), true positive ratio (TPR)

43

3. Methods

which is also known as sensitivity or recall and true negative rate (TNR), known
as specificity. All these metrics were used to assess our model performance, since
we are towards a binary classification problem. The calculation of the formulas of
ACC, TPR and TNR are the following:

Accuracy = TP + TN

TP + TN + FP + FN
(3.4)

Sensitivity = TP

TP + FN
(3.5)

Specificity = TN

TN + FP
(3.6)

where TP, FP, TN and FN are true positive, false positive, true negative and false
negative, respectively. In our binary classification problem, the output is labeled as
positive or negative. If the prediction and actual value are all positive, it is called
TP, otherwise if the prediction value is positive while the actual value is negative it
is called a FP. The same for when the prediction is negative. With this values we
also computed a confusion matrix, which, itself is relatively simple to understand
and summarize all the results.

Besides this four metrics, we also include F1 score known as balanced F-score or F-
measure as an evaluation metric. With F-score we can considerer both precision and
recall. While recall expresses the ability to find all relevant instances in a dataset,
precision expresses the proportion of the data points our model says to be relevant
and actually are.

Recall is calculated through Equation 3.5. Precision is defined by the following
formulation:

Precision = TP

TP + FP
(3.7)

F1 score is the harmonic mean of precision and recall taking both metrics into
account in the following equation:

F1 = 2 ∗ precision ∗ recall
precision+ recall

(3.8)

We use the harmonic mean instead of a simple average because it punishes extreme

44

3. Methods

values. For unbalanced data, this F1 score is usually considered to be a better
criterion to assess the prediction performance, since it can punish more false positive
examples.

We also computed a confusion matrix, which is a table that is often used to describe
the performance of a classification model on a set of test data for which the true
values are known. The confusion matrix itself is relatively simple to understand and
uses TP, FN, TN and FN.

45

3. Methods

46

4
Results and Discussion

4.1 Drug target space treatment

Using PyDPI we calculated 755 descriptors for each DTI. 432 of these descriptors
where related to proteins and 323 to drugs.

The target descriptors are shown in Table 4.1 and drug descriptors in Table 4.2.

Type of descriptors Number

Aminoacid composition 20

Moran autocorrelation 240

Physicochemical 141

Table 4.1: Different types of descriptors for targets.

Type of descriptors Number

Molecular constitutional 30

Molecular connectivity 23

Molecular property 6

Shape attributes 7

Electronic (charge) 12

Molecular Access System 166

E-state fingerprints 79

Table 4.2: Different types of descriptors for drugs.

47

4. Results and Discussion

We end up with a drug target space of 26,945 pairs, described through 755 fea-
tures. Example of non-interacting pairs represented 60% of the data set, which
approximates to a balanced data, and so facilitating the classification problem.

In order to visualize the data set, we applied PCA to reduce it to a 2D problem, so
we could plot the points accordingly to its label. In Figure 4.1 we can see the result.

Figure 4.1: 2D visualization of the data set, after applying PCA.

Apart from the points where first principal component is high, the spectrum of
points seams to overcome. We quickly realise that many points are together and
even overlapping. Its is impossible to identify locations for each label or any kind of
cluster. This result proves that DTI prediction is not a linear problem and that some
traditional classification methods may fail, reinforcing the need for studying deep
learning techniques on this field, due to its ability of learn abstracts representations
of the data.

This non-linearity of the data was also verified when analysing the dispersion of
some features among the classes. In Table 4.3 we can see how a specific binary
feature behaves within the different classes and see that there is not a clear division
of the data. Like this feature, many other had a similar distribution.

Since we had more examples for the negative instances, each instance of this data
set was randomly selected and append to one of the positive data sets, beginning
with Yamanishi and then DrugBank, until all instances were attributed. With this

48

4. Results and Discussion

0 1

Positive 1198 9714

Negative 1170 6036

Table 4.3: Dispersion of feature 700 between the two classes.

procedure we kept the positive negative ratio. This led us to a training data set of
18,118 instances, being 7,206 from the Yamanishi data and 8,827 pairs for external
validation.

4.2 Baseline approach

The first goal for building the deep learning model was to define a baseline. This
baseline would serve as a reference point for comparing how well our model is per-
forming. A baseline helps to quantify the minimal, expected performance on a
particular problem. Our baseline is a naive and simple approach to DTI prediction
problem. In Figure 4.2 is shown the structure of our baseline model.

Figure 4.2: Baseline architecture.

We used 4 fully connected layers, called dense layers. The input layer, naturally had
755 neurons, one for each of the features, both hidden layers had 10 neurons and

49

4. Results and Discussion

the output had only one, because we want the output to be a probability. Input
and intermediate layers use ReLU as their activation function and the final layer
use a sigmoid activation in order to output a probability between 0 and 1. The loss
function chosen was binary crossentropy, since we are facing a binary classification
problem, although its not the only viable choice. The model was trained using Adam
was the optimizer, 20 as the number of epochs and batches of 1000 samples.

Surprisingly our baseline achieved an AUC of 0.86 on the external data, which is
close to the results of other works on the area. In fact, such a simple approach almost
evened the results of other authors, which made as thinks that, by improving the
baseline could lead to excellent results.

4.3 Architecture decisions

Model improvement can be achieved by changing its architecture. There are two
key architecture decisions to be made for a stack of dense layers. Firstly the number
of layers to use and then the number of hidden units, or neurons, to include in each
layer. So we start with these two parameters.

Having more hidden units allows the network to learn more complex representations
of the data, but it makes the network more computationally expensive and may
lead to learning unwanted patterns. Such patterns may increase the performance
on training data but not on the test data.

We did not find an efficient method that could help on the discover of the best
number of layers and neurons for each layer at once. Our first approach was to
manually try deeper networks, with many layers, and wider networks, with many
neurons per layer. We soon realize that the best performance was achieved with a
balance of this two characteristics. In fact, by creating a deeper or wider networks
the improvements of model performance were minimal and a complex model is more
conducive to overfitting.

We managed to separately use grid search, described on 3.4.4.1, for both number
of layers and neurons. On this method, we define a set of possible values for these
parameters and test all possible matches. In order to extract meaningful conclusions
from these methods, we used 10-fold cross validation when assessing all the possible
combinations.

Since we had no clue about the correct value for each parameter, the range of

50

4. Results and Discussion

possibilities was wide, so it could include both smaller and higher values. We used
the following strategy to determinate number of layers and neurons parameters:

1. Grid-search for the number of neurons for input layer;
2. Grid-search for the most suitable number of hidden layers;
3. Grid-search the remaining numbers of neurons for each layer.

For the first step, the result of the grid-search showed that input layer should have
25 neurons, achieving an accuracy of 0.956. This seemed a small number, when
compared to the input size, which is composed by 755 features. This discrepancy
might indicate that many features do not have prediction power. In fact, increasing
the number of neuron for the input layers affected negatively the model performance.

After defining the input layer, with 25 neurons, and the output layer, with, naturally,
one neuron, we start the search for the best number of hidden layers. Once again,
grid-search showed us that 3 hidden layers would be enough to construct our model
and get an accuracy of 0.974. This makes a total of 5 layers.

The next step was to determinate the most suitable number of neurons for these 3
hidden layers. A sequence of grid-search showed that the number of neurons for all
the 3 hidden layers should be: 50, 100 and 10, achieving an accuracy for each of
0.974, 0.975, 0.976, respectively. On 1st and 2nd hidden layers the number of neurons
increases, what might suggest that the model is learning abstract representation of
the data, and on 3rd the number decreases before passing the information to the
output layer, which has only one neuron. The accuracy of the model, based on
10-fold cross validation increases gradually, step by step.

So, we implement a model with such characteristics, and continue to analysing other
parameters, always considering these architecture as a base.

When it comes to decide the best number of epochs, we plot the accuracy behaviour,
on the training set, accordingly to the number of epochs, so we could understand
the best value for this parameter. This is possible due the Keras callback function,
which keeps a history of the model training. In Figure 4.3 we can see the result.

51

4. Results and Discussion

Figure 4.3: Model performance according to the number of epochs.

We decided to move forward with 50 as the number os epochs, since the accuracy
performance stabilizes around this value. A higher number of epochs could lead to
overfitting.

For the batch size and optimizer we decided to use, once again, grid-search method.
Along with batch size and optimizer, we decided to include the number of epochs,
since these parameters are related, and might influence each other. In Table 4.4 we
can se the set of values chosen for each parameter.

Parameter Range of possible values

Number of epochs [30, 40, 50]

Batch-size [50, 100, 250, 500, 1000]

Optimizer [’adam’, ’SGD, ’rmsprop’]

Table 4.4: Set of possible values for number of epochs, batch-size and optimizer
used on the grid-search.

The results for the grid-search are summarized in Table 4.5. This set of parameters
achieved a mean accuracy for 10 fold cross-validation of 0.976. As we can see the
grid-search output for number of epochs was the same as we previously defined in
Figure 4.3, which validate both approaches.

With the optimizer Adam chosen, we move forward into understand be best learning
rate and momentum for it. Grid-search showed that the best learning rate would be
0.001 and momentum 0.4. With all the parameters defined so far, our model presents

52

4. Results and Discussion

Parameter Grid-search output

Number of epochs 50

Batch-size 50

Optimizer ’adam’

Table 4.5: Grid-search results for number of epochs, batch-size and optimizer.

a 0.976 accuracy for 10-fold cross validation. Since the performance is already very
high, the influence of the parameters is almost null.

Weight initialization was the last parameters defined through grid-search. As ex-
pected the accuracy for ten-fold cross validation did not improve, but the initializa-
tion with better result was lecun-uniform which is a method that can avoid main of
the backpropagation limitations.

The activation function for the output layers was kept as a sigmoid function, and
the remaining layers as ReLU, which is less prompt to errors, and proved to be the
best by our grid-search method. The loss function also remained the same as our
baseline, binary entropy, because is widely recognized for binary classification, this
is the best function to use on backpropagation algorithm.

The grid search for parameters were computed in groups constructed taking into
account that some parameters might be connected and influence together the model.
These procedure might not be most correct one since, all parameter should be grid
searched all together. Is the entire set of parameters that completes the model, and
splitting them could lead to miss the best combination of all parameters. We are
inferring the results of one grid search to the other.

Despite the efforts of performing a single grid search, taking into account all the
parameters, referred below, computational power was not sufficient.

With all the parameter correctly assigned we finish the construction of our architec-
ture. On Table 4.6 all the parameters used are summarized.

Besides all the parameters referred above, which are defined, and keep the same
throughout the training process, our model is also composed of many other param-
eters, that are trained on the process. On Table 4.7 we can see all these trainable
parameters and its distribution between layers. Among all this 26,321 parameters
are the weights of each connections between neurons and its biases.

53

4. Results and Discussion

Parameter Value used

Number of Layers 5

Total number of neurons 186

Batch-size 50

Number of epochs 50

Optimizer adam

Learning Rate 0.001

Momentum 0.4

Weight initialization ’lecun uniform’

Activation function ReLU

Loss function ’binary entropy’

Table 4.6: Final parameters used on the model constructed.

Layer type Output shape Trainable parameters #

Dense 25 18900

Dense 50 1300

Dense 100 5100

Dense 10 1010

Dense 1 11

Table 4.7: Trainable parameters (weights and biases) for the model.

With many tuning, and adapting all the parameters to the data, the model could be
overfitting. Being all the parameters tuned for the training set, despite of using 10-
fold cross validation, model could be memorizing the data shown, instead of learning
new representations for it. In order to ensure that this was not the case, and that
our model would performance well on new data we applied dropout method.

4.4 Network regularization

Drop-out rate allows model regularization in an effort to limit overfitting and im-
prove its ability to generalize. To get good results, dropout was best combined with

54

4. Results and Discussion

a weight constraint such as the maximum norm constraint. This weight constrain
function allows setting constraints, for example non-negativity on network parame-
ters during optimization. We applied grid-search for dropout percentages between
0.0 and 0.9, 1.0 does not make sense, and maximum norm weight constraint values
between 0 and 5.

The penalties are applied on a per-layer basis. Although, grid-search showed that
dropout would improve the model if applied only on the first two layers. And so
we did. We add dropout regularization to the input layer with a rate of 0.2 and a
maximum norm weight constraint of 4, and for the second layer 0.1 and 4. In fact,
we could improve 10 fold cross-validation to 0.979.

We are facing a binary classification problem so we decided to inspect the threshold
used as a criterion that is applied to a model’s predicted score in order to separate
the positive class from the negative class. Normal binary classification would use
0.5 to make this division, although on our case this threshold was worth to explore.

Since our dataset has 60% of negative examples, by increasing the threshold, we
would expect to get better results, because it would be harder to label a example as
positive. In fact, after some manual search for the best, we conclude that a threshold
of 0.8 would improve the model.

In Figure 4.4 we can see a structure of the entire pipeline, from data gathering to
the final model capable of predict the interaction between a drug and a target.

Figure 4.4: The flowchart of the proposed deep learning pipeline..

55

4. Results and Discussion

4.5 Evaluation metrics

In order to fully assess the performance of the model we calculated many evaluation
metrics. So we could get more robust results, we run the model 100 times and
calculated accuracy, recall, specificity, AUC and F1 for each run. In Table 4.8 we
represent the mean and standard deviation for each of the evaluation metrics. All
the metric, were calculated after using the model to predict novel DTIs pairs, never
used before.

Evaluation metric Mean Standard deviation

Accuracy 0.904 0.003

Sensitivity 0.771 0.008

Specificity 0.990 0.002

Area under the ROC curve 0.880 0.004

F1-score 0.863 0.005

Table 4.8: Evaluation metrics results for 100 runs.

We also computed a confusion matrix to have a better visualization of the model
classification. In Table 4.9 we can see an example of a confusion matrix for one run.

Classification accuracy is the number of correct predictions made as a ratio of all
predictions made. In our case, the dataset is almost balanced so this metric can,
actually infer about model’s performance and give us a general overview. Achieving
90% of accuracy is a great insight that our model satisfies the goal of correctly
predict if a drug and a target will interact. The best comparison, is the work by
Wen et al., referred on section 2.2.6, in which other DL architecture was applied to
the same database, achieving an accuracy of 85,9%. The proposed model managed
to achieve a higher accuracy, and so prove its value.

Predicted label

0 1

True label
0 5130 65

1 725 2609

Table 4.9: Confusion matrix for one run.

56

4. Results and Discussion

Recall or sensitivity is, in fact, the lowest evaluation metric for our model. Ideally we
would want to maximize both sensitivity and specificity. Although there is always
a trade-off. In our case we have a specificity of 99%. We decided to do so, in
order to develop a method capable of avoiding false alarms. Since the main goal of
the proposed architecture was to mislead candidates drugs that later will fail, the
percentage of false positives must be lower.

AUC is a commonly used for binary classification methods by comparing true and
false positive rates which shows the ability to discriminate between positive and neg-
ative classes. The achieved result is great, although some other traditional methods,
applied to DTI also achieved this range of values. Probably experimenting other
DL techniques, or exploring better and different way to tune the model, could lead
to better results and, consequently outperform classic approaches.

The F-measure can be interpreted as a weighted harmonic mean of the precision
and recall. With a value of 86% is also, demonstrative of the prediction power of
our model.

The results obtained suggest that the proposed deep learning architecture can be
used in the identification of new leads for drug repositioning, and should be used to
improve drug discovery process. The results also prove that DL techniques could,
as in many other fields, easily become state-of-the-art for drug target interactions
prediction.

4.6 Final remarks

Deep learning is now starting its implementation on drug discovery field, and many
works on this area will soon show up. Here we proved that DL techniques can
outperform traditional methods when predicting the interaction of a drug and its
target, like happens in other areas. We are also confident that our pipeline could
be implemented on a drug repositioning flow, causing a reduction of the time and
efforts usually associated with it. On a practical usage of our model we could screen
through many drugs for different targets, prediction their interactions and identify
putative candidates for drug repositioning.

Concerning the work developed here, more data could be collected. The quality of
DL models is generally constrained by the quality of our training data. Furthermore
DL techniques get better with more data, so the more data the best.

57

4. Results and Discussion

The construction of our baseline was an important step for the remaining work.
First of all, it was our first contact with the frameworks used and helped us to
dive into DL world. Secondly the quality of the results achieved with a simple
approach encouraged to keep on with the study of applying deep architectures to
drug discovery.

Our assumption on not to perform feature selection, due to the robustness of DL
techniques to unrelated data, might have influenced the performance. The true is,
network will use a near zero weight and sideline the contribution of non-predictive
attributes. In fact, we saw that the optimal number of neurons for the input layer
was 25, when the input consists on 755 features. This could suggest that, after all,
many features are useless for the problem. Despite this ability of outwit unimportant
features, there is always weights and training cycles used on data not needed. It
could be interesting to perform some feature selection, based on some analytical
tests, reduce the drug target space and understand if the performance of the model
increases.

The hyper-parameter tuning was a really demanding task. As a matter of fact,
constructing the model, with the all the tools provided, is relatively simple. The hard
task is on tuning the model for all the parameters. A big part of the time dedicated
to the practical component of this work was spent on all the tuning process. There
are more than ten parameters to evaluate, understand how they affect the network
and if they are correlated. Recent Python packages facilitate this process such as
Hyperas or Deepreplay which allows even to visualize the tuning process. It was
not possible to integrate any of this tools on the work pipeline, which made tuning
a more iterative and complex process. Despite the efforts to do so, not making a
single grid-search for all the parameter might also compromised the final results, due
to the inner connection parameters might have. Still we tried to group parameters
that we know to be correlated, such as the number of layers with the number of
neurons, the number of epochs with the batch-size and so on. Another approach for
model tuning could be studied and maybe lead to better results.

Overfitting is a very common problem when training a deep network. Here, in order
to work this issue around, we decided to apply dropout methods. Although using
dropout method was proved to improve out model other techniques for control the
model could have been developed, such as early stopping or weight decay. Dropout
method have proved to improve model performance and is the most used method
to avoid overfitting, although alternative approaches could have been tested.

The accuracy achieved, which provides an overall evaluation of the model was, in

58

4. Results and Discussion

fact, quite good and better when compared to other works on the area. Due to
the threshold changes, specificity values were near 100%, which results in a model
capable of avoiding false alarms. This means that, when our model predicts an
interaction between a drug and a target as positive, there is a high probability
of being, actually, positive. Using our classification model on a practical flow for
drug discovery, would decrease the rate of drug failures on the clinical trials, and
consequently the resource and financial efforts behind the entire process. Despite
the great results achieved, we believe other deep architectures could even perform
better

On general DTI prediction problem there is also, many room for improvements. The
field is lacking on methodologies applying other DL architectures such as, convo-
lutional or recurrent neural networks. We still do not know how other DL archi-
tectures will behave on DTI challenge. Furthermore, drug discovery could benefit
largely from the ability of DL to perform on unsupervised environments. In fact,
deep learning can be widely unsupervised once set in motion and even learn intricate
patterns from high-dimensional raw data with little guidance.

Who knows if these other architectures could, instead of only predicting if a drug
target pair will interact, understand what kind of interaction would most probably
happen, or properties of such interaction, like epoxidation. We could turn the
problem into a multiclass one and definitely a more challenging one.

Traditionally, the performance of DTI prediction depends heavily on the descriptors
used to represent the drugs and the target proteins, which is contradictory with the
fact of not existing an agreement on which characteristics of a target and a drug
could make them interact, and once again deep learning could help with that. Using
deep learning as a feature selection method changes the actual paradigm. DL can
understand which are the features that describe the data the best, or even construct
new representation for it, with a great prediction power.

Not everything is good, the fact that deep learning represent data into gradually
more abstract ways, it is many times called black-box. This name is given because
we can not understand what the algorithm itself is doing, how it is transforming
the data and which feature are important, ending up losing the ability to extract
meaningful biological conclusions. This drawback has been the main reason for the
delayed adoption of deep learning on biomedical topics.

To sum, over the past three to four decades, the use of computational methods
in drug discovery settings has steadily increased and computations have become

59

4. Results and Discussion

an integral part of discovery research. Although drugs are not discovered and de-
veloped solely through in silico experiences, and predictions can not alleviate the
need for experimental work, computational approaches make valuable contributions
to the highly complex discovery process at different levels. Hence, understanding
opportunities of popular in silico approaches, such as deep learning should be of
considerable interest to a wide drug discovery and development audience, and this
work contributes as a support for the interest that already exists and for what will
come.

60

5
Conclusion

In 2016 and 2017 Kaggle was dominated by two approaches: gradient boosting
machines and deep learning. Although, deep learning adoption on biomedicine has
been slow and so this works intends to contradict this resistance by showing the
potential of deep learning, more particularly on the field of drug discovery.

SNS Telecom & IT estimates that Big Data investments in the healthcare and phar-
maceutical industry will account for nearly $4.7 Billion in 2018 alone. Led by a
plethora of business opportunities for healthcare providers, insurers, payers, govern-
ment agencies, pharmaceutical companies and other stakeholders, these investments
are further expected to grow at a CAGR of approximately 12% over the next three
years.

Furthermore, a significant contribution to disease research roadmap would be sup-
port for measures such as tools and databases to integrate and share information,
encouraging open access publication and data sharing. For maximum utility and
applicability, it is also essential that data is shared so that all information can be
used to improve biological modelling. The handling and curating of big data needs
improving and depends heavily on these factors. Of course, drug discovery could
benefit from this standardization of data across the globe. Many are trying to de-
mocratize data, to structure all databases across the global and create a standard
registry for drug discovery, in order to keep the homogeneous of the data. With more
amount of data becoming accessible, deep learning becomes even more important
on this field, due to the fact that it is the approach which deals the best with big
data.

Last but not least, as the big data era enters drug discovery research, the devel-
opment of novel computational concepts for analysis, organization, integration, and
utilization of biological and chemical data will be essential. Going forward, cloud
computing is expected to play a major role in handling big data. These are chal-
lenging and exciting times for computer-aided drug discovery.

61

5. Conclusion

Everything indicates that the future of computer-aided drug discovery will be promis-
ing. In general, such methods have the greatest potential to be widely applied in the
practice of drug discovery, a pre-requisite for success. If we consider that computer-
aided drug discovery continues to be driven by experts, as discussed above, a major
step forward for this field would indeed be, the generation of chemically intuitive
and robust computational methods that become an integral part of day-to-day dis-
covery efforts. The results obtained here prove that our model can be further used
to predict whether, the interaction between a new drug and an existing target, or
between a new target and some existing drug. Deep learning, like suggested on the
course of this work, will have a major role on this revolution. It is necessary to
continue exploring this techniques possibilities and how could be applied to drug
discovery.

But deep learning reality is already changing. DL was born as the intention to
replicate human behaviour on a machine, although unlike these systems, humans
learn to actively perceive patterns by sequentially directing attention to relevant
parts of the available data. Near future deep NNs will do so, too. When this
happens, many doors will open on the drug discovery field, because most of the
time is difficult to collect big amount of data, and so, if NN manage to understand
patterns with few examples, huge improvements will be achieved.

To sum up, it is a great time for deep learning enthusiasts and the future can only be
promising. DL developers have been neglecting the field of drug discovery, despite
having no reasons to do so. We will definitely witness a huge improvement on the
primitive process of drug discovery on the upcoming years.

62

Bibliography

[1] C. Walsh, “Antibiotics: Actions, origins, resistance,” Protein Science, vol. 13,
pp. 3059–3060, jan 2009.

[2] European Centre for Disease Prevention and Control, “Annual epidemiologi-
cal report 2014. Antimicrobial resistance and healthcare-associated infections,”
Ecdc, p. 28, 2014.

[3] I. Roca, M. Akova, F. Baquero, J. Carlet, M. Cavaleri, S. Coenen, J. Cohen,
D. Findlay, I. Gyssens, O. E. Heure, G. Kahlmeter, H. Kruse, R. Laxminarayan,
E. Liébana, L. López-Cerero, A. MacGowan, M. Martins, J. Rodŕıguez-Baño,
J. M. Rolain, C. Segovia, B. Sigauque, E. Taconelli, E. Wellington, and J. Vila,
“The global threat of antimicrobial resistance: Science for intervention,” New
Microbes and New Infections, vol. 6, no. January 2015, pp. 22–29, 2015.

[4] European Centre for Disease Prevention and Control, The bacterial challenge :
time to react, vol. 6 July 201. 2009.

[5] C. W. Nichole Louise Haag, Kimberly Kay Velk, “Potential Antibacterial Tar-
gets in Bacterial Central Metabolism,” Int J Adv Life Sci., vol. 6, no. 8, pp. 21–
32, 2013.

[6] J. P. Hughes, S. S. Rees, S. B. Kalindjian, and K. L. Philpott, “Principles of
early drug discovery,” British Journal of Pharmacology, vol. 162, pp. 1239–1249,
mar 2011.

[7] J. Bajorath, “Computer-aided drug discovery,” F1000Research, vol. 4, p. 630,
2015.

[8] D. Emig, A. Ivliev, O. Pustovalova, L. Lancashire, S. Bureeva, Y. Nikolsky,
and M. Bessarabova, “Drug Target Prediction and Repositioning Using an In-
tegrated Network-Based Approach,” PLoS ONE, vol. 8, p. e60618, apr 2013.

63

Bibliography

[9] G. R. Langley, I. M. Adcock, F. Busquet, K. M. Crofton, E. Csernok, C. Giese,
T. Heinonen, K. Herrmann, M. Hofmann-Apitius, B. Landesmann, L. J. Mar-
shall, E. McIvor, A. R. Muotri, F. Noor, K. Schutte, T. Seidle, A. van de Stolpe,
H. Van Esch, C. Willett, and G. Woszczek, “Towards a 21st-century roadmap
for biomedical research and drug discovery: consensus report and recommen-
dations,” Drug Discovery Today, vol. 22, no. 2, pp. 327–339, 2017.

[10] R. M. Plenge, E. M. Scolnick, and D. Altshuler, “Validating therapeutic tar-
gets through human genetics,” Nature Reviews Drug Discovery, vol. 12, no. 8,
pp. 581–594, 2013.

[11] F. K. Brown, F. Kopti, C. Chang, S. A. Johnson, M. Glick, and C. L. Waller,
“Data to Decisions: Creating a Culture of Model-Driven Drug Discovery,” The
AAPS Journal, no. 5, 2017.

[12] J. J. Irwin and B. K. Shoichet, “ZINC − A Free Database of Commercially
Available Compounds for Virtual Screening ZINC - A Free Database of Com-
mercially Available Compounds for Virtual Screening,” J. Chem. Inf. Model,
vol. 45, no. December 2004, pp. 177–182, 2005.

[13] P. S. Pratik Swarup Das, “A Review on Computer Aided Drug Design in Drug
Discovery,” World Journal of Pharmacy and Pharmaceutical Sciences, no. June,
pp. 279–291, 2017.

[14] T. T. Ashburn and K. B. Thor, “Drug repositioning: Identifying and developing
new uses for existing drugs,” Nature Reviews Drug Discovery, vol. 3, no. 8,
pp. 673–683, 2004.

[15] N. U. Sahu and P. S. Kharkar, “Computational Drug Repositioning: A Lat-
eral Approach to Traditional Drug Discovery?,” Current topics in medicinal
chemistry, vol. 16, pp. 2069–77, may 2016.

[16] S. Ekins, A. J. Williams, M. D. Krasowski, and J. S. Freundlich, “In silico
repositioning of approved drugs for rare and neglected diseases,” apr 2011.

[17] J. T. Dudley, T. Deshpande, and A. J. Butte, “Exploiting drug-disease rela-
tionships for computational drug repositioning,” Briefings in Bioinformatics,
vol. 12, pp. 303–311, jul 2011.

[18] E. Lounkine, M. J. Keiser, S. Whitebread, D. Mikhailov, J. Hamon, J. L. Jenk-
ins, P. Lavan, E. Weber, A. K. Doak, S. Côté, B. K. Shoichet, and L. Urban,
“Large-scale prediction and testing of drug activity on side-effect targets,” Na-
ture, vol. 486, pp. 361–367, jun 2012.

64

Bibliography

[19] E. D. Coelho, J. P. Arrais, and J. L. Oliveira, “Computational Discovery of
Putative Leads for Drug Repositioning through Drug-Target Interaction Pre-
diction,” PLoS Computational Biology, vol. 12, no. 11, pp. 1–17, 2016.

[20] M. Wen, Z. Zhang, S. Niu, H. Sha, R. Yang, Y. Yun, and H. Lu, “Deep-
Learning-Based Drug-Target Interaction Prediction,” Journal of Proteome Re-
search, vol. 16, no. 4, pp. 1401–1409, 2017.

[21] F. Yang, J. Xu, and J. Zeng, “Drug-target interaction prediction by integrating
chemical, genomic, functional and pharmacological data,” Pac Symp Biocom-
put, pp. 148–159, 2014.

[22] F. Cheng, C. Liu, J. Jiang, W. Lu, W. Li, G. Liu, W. Zhou, J. Huang, and
Y. Tang, “Prediction of drug-target interactions and drug repositioning via
network-based inference,” PLoS Computational Biology, vol. 8, no. 5, 2012.

[23] Z. He, J. Zhang, X.-H. Shi, L.-L. Hu, X. Kong, Y.-D. Cai, and K.-C. Chou,
“Predicting Drug-Target Interaction Networks Based on Functional Groups and
Biological Features,” PLoS ONE, vol. 5, no. 3, p. e9603, 2010.

[24] L. Wang, Z.-H. You, X. Chen, X. Yan, G. Liu, and W. Zhang, “RFDT: A
Rotation Forest-based Predictor for Predicting Drug-Target Interactions Using
Drug Structure and Protein Sequence Information,” Current Protein & Peptide
Science, vol. 19, pp. 445–454, mar 2018.

[25] A. C. Ian Goodfellow, Yoshua Bengio, Deep learning. MIT Press, 2016.

[26] B.J. Copeland, “Artificial intelligence,” 2018.

[27] Giancarlo Zaccone, Getting Started With TensorFlow. 2017.

[28] A. Gulli and S. Pal, Learning Deep Learning with Keras. 2017.

[29] Y. Bengio, “Learning Deep Architectures for AI,” Foundations and Trends® in
Machine Learning, vol. 2, no. 1, pp. 1–127, 2009.

[30] Y. Lecun, Y. Bengio, and G. Hinton, “Deep learning,” Nature, vol. 521,
no. 7553, pp. 436–444, 2015.

[31] B. Marr, “What is the difference between artificial intelligence and neural net-
works?,” 2017.

[32] F. Chollet, Deep Learning with Python. 2017.

[33] J. Schmidhuber, “Deep Learning in neural networks: An overview,” Neural
Networks, vol. 61, pp. 85–117, 2015.

65

Bibliography

[34] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet Classification with
Deep Convolutional Neural Networks,” Advances In Neural Information Pro-
cessing Systems, pp. 1–9, 2012.

[35] G. Hinton, L. Deng, D. Yu, G. E. Dahl, A.-r. Mohamed, N. Jaitly, A. Senior,
V. Vanhoucke, P. Nguyen, T. N. Sainath, and B. Kingsbury, “Deep Neural
Networks for Acoustic Modeling in Speech Recognition,” Ieee Signal Processing
Magazine, no. November, pp. 82–97, 2012.

[36] P. Mamoshina, A. Vieira, E. Putin, and A. Zhavoronkov, “Applications of Deep
Learning in Biomedicine,” Molecular Pharmaceutics, vol. 13, no. 5, pp. 1445–
1454, 2016.

[37] G. Ditzler, R. Polikar, and G. Rosen, “Multi-Layer and Recursive Neural Net-
works for Metagenomic Classification,” IEEE Transactions on NanoBioscience,
vol. 14, pp. 608–616, sep 2015.

[38] Y. Hadad, “30 amazing applications of deep learning - Yaron Hadad,” 2017.

[39] J. C. Pereira, E. R. Caffarena, and C. N. Dos Santos, “Boosting Docking-Based
Virtual Screening with Deep Learning,” Journal of Chemical Information and
Modeling, vol. 56, no. 12, pp. 2495–2506, 2016.

[40] J. Ma, R. P. Sheridan, A. Liaw, G. E. Dahl, and V. Svetnik, “Deep neural
nets as a method for quantitative structure-activity relationships,” Journal of
Chemical Information and Modeling, vol. 55, no. 2, pp. 263–274, 2015.

[41] H. Chen, O. Engkvist, Y. Wang, M. Olivecrona, and T. Blaschke, “The rise of
deep learning in drug discovery,” Drug Discovery Today, vol. 23, no. 6, pp. 1241–
1250, 2018.

[42] A. Koutsoukas, K. J. Monaghan, X. Li, and J. Huan, “Deep-learning: Investi-
gating deep neural networks hyper-parameters and comparison of performance
to shallow methods for modeling bioactivity data,” Journal of Cheminformat-
ics, vol. 9, no. 1, pp. 1–13, 2017.

[43] M. H. Segler and M. P. Waller, “Neural-Symbolic Machine Learning for Ret-
rosynthesis and Reaction Prediction,” Chemistry - A European Journal, vol. 23,
no. 25, pp. 5966–5971, 2017.

[44] D. S. Wishart, C. Knox, A. C. Guo, D. Cheng, S. Shrivastava, D. Tzur, B. Gau-
tam, and M. Hassanali, “DrugBank: A knowledgebase for drugs, drug actions

66

Bibliography

and drug targets,” Nucleic Acids Research, vol. 36, no. SUPPL. 1, pp. 901–906,
2008.

[45] Y. Yamanishi, M. Araki, A. Gutteridge, W. Honda, and M. Kanehisa, “Predic-
tion of drug-target interaction networks from the integration of chemical and
genomic spaces,” Bioinformatics, vol. 24, no. 13, pp. 232–240, 2008.

[46] X. Chen, M. Liu, and M. K. Gilson, “BindingDB: a web-accessible molecular
recognition database.,” Combinatorial chemistry & high throughput screening,
vol. 4, pp. 719–25, dec 2001.

[47] J. Yang, A. Roy, and Y. Zhang, “BioLiP: a semi-manually curated database
for biologically relevant ligand–protein interactions,” Nucleic Acids Research,
vol. 41, pp. D1096–D1103, oct 2012.

[48] N. M. O’Boyle, M. Banck, C. A. James, C. Morley, T. Vandermeersch, and
G. R. Hutchison, “Open Babel: An open chemical toolbox,” Journal of Chem-
informatics, vol. 3, no. 1, p. 33, 2011.

[49] D. S. Cao, Y. Z. Liang, J. Yan, G. S. Tan, Q. S. Xu, and S. Liu, “PyDPI: Freely
available python package for chemoinformatics, bioinformatics, and chemoge-
nomics studies,” Journal of Chemical Information and Modeling, vol. 53, no. 11,
pp. 3086–3096, 2013.

[50] R. Bro and A. K. Smilde, “Principal component analysis,” Anal. Methods, vol. 6,
pp. 2812–2831, apr 2014.

[51] M. Jordan, J. Kleinberg, and B. Schölkopf, “Pattern Recognition and Machine
Learning,” tech. rep.

[52] E. Gawehn, J. A. Hiss, and G. Schneider, “Deep Learning in Drug Discovery,”
Molecular Informatics, vol. 35, no. 1, pp. 3–14, 2016.

[53] S. Ruder, “An overview of gradient descent optimization algorithms,” sep 2016.

[54] A. Moawad, “Neural networks and backpropagation explained in a simple way,”
2018.

[55] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov,
“Dropout: A Simple Way to Prevent Neural Networks from Overfitting,” Jour-
nal of Machine Learning Research, vol. 15, pp. 1929–1958, 2014.

67

	List of Acronyms
	List of Figures
	List of Tables
	Introduction
	Context
	Motivation
	Goals
	Research Contributions
	Document Structure

	State of the art
	Drug discovery
	Drug discovery process
	Drug repositioning
	Computer aided drug design
	Drug target interaction prediction

	Deep learning
	Artificial intelligence
	Machine Learning
	The "deep" in deep learning
	How deep learning works - neural networks
	Deep learning applications
	The rise of Deep Learning for Drug Discovery

	Methods
	Data preparation
	Positive data set construction
	Negative data set construction
	Final data set construction
	DTI descriptors

	Data analysis
	Data exploration
	Data pre-processing
	Data visualization
	Data splitting
	K-fold cross validation

	Feature engineering
	Classification model implementation
	Frameworks
	Deep feed forward network
	Parameter optimization
	Hyper-parameter tuning
	Grid-search

	Model improvement

	Evaluation metrics

	Results and Discussion
	Drug target space treatment
	Baseline approach
	Architecture decisions
	Network regularization
	Evaluation metrics
	Final remarks

	Conclusion
	Bibliography
	Blank Page

