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Resumo

Ataques de paragem card́ıaca são hoje em dia um problema de saúde pública, re-

sponsáveis por um número substancial de mortes tanto na Europa como nos Es-

tados Unidos da América. Apesar de as taxas de sobrevivência serem extrema-

mente baixas, verifica-se um aumento significativo destas com a aplicação de ressus-

citação cardiopulmonar. O intervalo de tempo existente desde o ińıcio do ataque até

ao ińıcio do procedimento de ressuscitação, bem como a aplicação de compressões

toráxicas ininterruptas são dois dos principais determinantes de sobrevivência e de

complicações que possam surgir após o ataque. No entanto, ainda é necessário re-

alizar pausas para a verificação da presença de pulso durante o procedimento, de

modo a determinar se existe retorno de circulação espontânea. O método principal

de avaliação da presença de pulso é a palpação manual, uma técnica que consiste na

colocação de um dedo por cima de uma artéria que se encontre próxima da superf́ıcie

da pele. Contudo, este procedimento apresenta várias limitações: é faĺıvel a erros,

altamente subjetivo e muitas vezes moroso. Assim sendo, existe a necessidade de

uma técnica de deteção e caracterização de pulso automática que seja objetiva e de

confiança. Esta técnica precisa ainda de ser de fácil aplicação, de modo a evitar

demoras no ińıcio ou na continuação das compressões.

O uso de um sensor de acelerómetro (ACC), colocado na superf́ıcie da pele acima

da artéria carótida, surge como uma abordagem interessante para este problema.

Estes sensores ainda que baratos e de baixa potência, apresentam alta sensibilidade

e portabilidade.

De modo a estudar a viabilidade do uso destes sensores, num cenário de ressus-

citação, foi constrúıdo um protocolo com o intuito de simular, num ambiente con-

trolado, caracteŕısticas presentes numa situação real. Usando-se este protocolo foi

criada uma base de dados com sinais de 12 voluntários saudáveis. Para cada su-

jeito procedeu-se à medição śıncrona de dois sinais ACC, eletrocardiograma e fo-

topletismograma. Adicionalmente, estava dispońıvel uma base de dados de um
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estudo prévio, composta por sinais de 5 pacientes medidos em situações reais de

ressuscitação, possibilitando comparar o comportamento dos sinais simulados com

os sinais reais. Usando-se estas duas bases de dados foram desenvolvidas soluções

técnicas, com o uso de dois diferentes classificadores para a discriminação de arte-

factos, compressões, presença e ausência de pulso.

A primeira abordagem, baseada num estudo prévio, consiste num classificador em

cascata que inicialmente classifica cada janela de 3 segundos com uma medida de

atividade, seguidamente realizando outra classificação, esta por sua vez, com o uso

de uma medida de periodicidade. Uma extensão deste trabalho foi concetualizada

e implementada usando-se novas caracteŕısticas que se baseiam no conhecimento do

domı́nio e informação fundamental do sinal. As caracteŕısticas foram retiradas tanto

de uma representação no domı́nio do tempo, como da reconstrução do espaço de

fase do sinal. Para determinar que caracteŕısticas utilizar na discriminação em cada

passo do classificador em cascata foi usada uma técnica de redução de caracteŕısticas.

Apesar de cada classificador individual apresentar bons resultados, a sua combinação

em cascata apresentou desempenhos baixos devido à acumulação de erros, intŕınseca

desta abordagem.

A segunda abordagem, baseada no uso de um classificador multi-classe, revelou ser

bem sucedida na melhoria do desempenho. Para este classificador, a seleção de car-

acteŕısticas foi realizada testando-se todas as combinações posśıveis, escolhendo-se

aquela que apresentasse um desempenho ótimo. Observaram-se melhorias gerais

dos resultados, com os classificadores testados nos dados simulados a apresentarem

exatidões finais médias de 89% e 97%. Contrariamente, os resultados apresenta-

dos relativamente aos testes nos dados reais são piores, apresentando exatidão final

média de 57%. Os desafios existentes no trabalho realizado consistem no acesso

limitado de dados reais, bases de dados pequenas e o facto da anotação dos sinais

ter sido realizada sem opinião cĺınica.

Palavras-chave: Acelerómetro, Deteção de Pulso, Ressuscitação Cardiopulmonar,

Engenharia de Caracteŕısticas

xii



Abstract

Cardiac arrest is a major health problem accounting for a substantial number of

deaths in both Europe and the United States. Despite survival rates being extremely

low, delivery of Cardiopulmonary Resuscitation (CPR) has been proven to have a

significant survival benefit. The interval from collapse to initiation of CPR, as well

as maintaining uninterrupted compressions are two of the major determinants in the

survival outcome and the complications as follow-up after the event. Nevertheless,

pulse checks are still necessary interventions to assess return-of-spontaneous circu-

lation. The Golden Standard for pulse assessment is manual palpation, a method

which consists of placing a finger above an artery that is close to the skin surface.

This procedure has several limitations: it is unreliable, highly subjective and often

takes too long. Hence, there is a need for a reliable, objective and automatic pulse

detection and characterisation technique for CPR scenarios. This technique needs to

be easy to apply avoiding delays in initiation or continuation of chest compressions.

The use of accelerometer (ACC) sensors above the carotid artery, provide an inter-

esting approach to this problem. They are characterised for being inexpensive and

low power, nonetheless presenting high sensitivity and portability.

In order to study the basic feasibility of these ACC sensors in a resuscitation sce-

nario, a protocol was designed with the aim of simulating characteristics present

in a real-life scenario under controlled conditions. Using this protocol, a dataset

of 12 healthy volunteers’ signals was created. For each subject two ACC signals,

electrocardiogram (ECG) and photoplethysmography (PPG) were measured syn-

chronously. Additionaly, a dataset from a previous study of 5 patients undergoing

real-life CPR was available allowing for a comparison between the behaviour of the

simulated acquired data with real-life signals. Using these two datasets, techni-

cal solutions were developed with two different classifiers discriminating artifacts,

compressions, pulse and absence of pulse.

The first approach was based on a previous study, consisting in a two-step cascade
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classifier which initially classified each 3-second window based on an activity measure

and followed by using on a periodicity measure. An extension of this work was

conceptualised and implemented using extra features based on domain knowledge

and fundamental information of the signal. Features were both extracted in a time

domain representation as well as in the phase space reconstruction of the signal. A

feature selection score was used to determine the features for each internal classifier

of the algorithm. Despite the good results of each classifier individually, their cascade

combination performance performed poorly due to accumulation of errors which is

intrinsic to such an approach.

The second approach based on a sole multiclass showed successfully an improved

performance. For this classifier, feature selection was performed using a wrapper

approach which allowed for the selection of the combination of features which per-

formed optimally. General improvement of the results was observed, with the clas-

sifiers tested in the protocol data showing exceptional results, with final accuracy

averages of 89% and 97%. Conversely, results in the real-life data were poorer, with

the final accuracy averaging 57% . Challenges in the work comprise limited access

to real-life data, small datasets and annotation of the signals which was performed

without medical expertise.

Keywords: Accelerometer, Pulse Detection, Cardiopulmonary Resuscitation, Fea-

ture Engineering
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Introduction

1.1 Contextualisation and Motivation

The main goal of this thesis is to explore the use of low-intrusive, simple and cheap

accelerometer (ACC) sensors for pulse detection in Cardiopulmonary Resuscitation

(CPR) settings. For this end, an acquisition protocol was established, with the

purpose of simulating expected characteristics present in a real-life resuscitation

scenario, and technical solutions were built and tested in this dataset, as well as in

already existent real-life data.

Cardiac arrest is a major health problem accounting for a substantial number of

deaths in both Europe[6] and the United States[7]. The number of patients who suf-

fer from OHCA (Out-of-Hospital Cardiac Arrest) annually in these two parts of the

world have been reported to be approximately 275,000 and 356,000 respectively.[8][7]

Despite survival rates of cardiac arrest being extremely low, delivery of CPR has

been proven to exert a significant survival benefit[9, 10]. Nevertheless, quality of

chest compressions, which has been observed to be sub-optimal[11], in addition to

other several factors can hinder the efficiency and outcome of the resuscitation effort.

Duration of the ressuscitation is one of the major determinants already identified

by previous studies. It can be defined as the sum of two distinct intervals: (1) no-

flow interval , i.e. interval from collapse to initiation of CPR; (2) low-flow interval,

i.e. interval from start of CPR to return of the spontaneous circulation (ROSC)

or termination of resuscitation. It has been proven that there is a strong correla-

tion between the first interval and the survival status[12]. Therefore, the longer the

no-flow interval, the lower the survival rates and the worse the sequelae suffered

from the cardiac event are. On the other hand, uninterrupted compressions are

strongly emphasised by current resuscitation guidelines. Even short interruptions

to chest compressions can prove disastrous for outcome and every effort must be
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1. Introduction

made to ensure that continuous chest compressions are maintained during the re-

suscitation attempt, making only brief interruptions for specific interventions, such

as pulse checks. Manual pulse palpation is still the Golden Standard for assessment

of pulse presence in unconscious patients for professional rescuers[13]. However, this

method presents some challenges, which consequently also affect the efficiency of

the resuscitation process. One of the major challenges in palpation is that pulse

detection takes too long(often 25s or more[14, 15, 16]) and is very unreliable as well

as highly subjective, with a reported sensitivity of 90% and specificity of 55%[17].

Nonetheless, pulse detection is still perceived by the resuscitation community as a

fulcral technique for the assessment of the need for CPR in an emergency situation

and is recommended for Advanced Life Support (ALS) rescuers[13]. Therefore, a

need for a reliable, objective and automatic pulse detection and characterization

technique for CPR scenarios can be identified. Such a technical solution should also

be characterised by ease of application on the patient and use by emergency medical

services (EMS) personnel, thus improving the responsiveness and the efficiency of

the resuscitation process.

Accelerometry presents itself as a technology which offers great interest and promise

for this end. Accelerometer sensors are inexpensive and low power, nevertheless

presenting high sensitivity and portability, which make for the detection of pulses

readily possible[1, 18]. Thus, the aim of this thesis is to explore the use of ac-

celerometer sensors as an information source for the development of reliable and

viable mechanisms to support resuscitation techniques.

1.2 Thesis Structure

The current document is divided into the following chapters:

Chapter 2 - Physiological and Measurement Background - description of all the

physiological background required for understanding the work developed.

Chapter 3 - State of the Art - where previous developed work related to accelerom-

etry and cardiopulmonary resuscitation is presented and assessed with respect to

limitations and challenges.

Chapter 4 - Experimental Setup and Study Protocol - description of the experimental

setup used for the data acquisition process. The protocol designed is explained with

a brief data analysis presented for the two different datasets. Annotation of the

measured signals is also discussed.
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Chapter 5 - Pulse Detection using Accelerometer Signals from the neck area with

carotid artery underneath - feature engineering and the approaches developed for

automatic classification of four different classes present in CPR scenarios are dis-

cussed. Results are obtained using a Leave-One-Out validation, with tests being

performed independently on each dataset.
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Physiological and Measurement

Background

In this chapter, all the concepts concerning the Physiological and Measurement

Background necessary for a correct understanding and elaboration of the research

work are presented.

2.1 Cardiovascular System

The cardiovascular system is a system of vital importance in the human body, con-

sisting of three interrelated components (heart, blood and blood vessels). It permits

the transportation of oxygen, carbon dioxide, nutrients and hormones to and from

body cells without which all the different organ systems present in the human body

could not function. It is also a major contributor to the regulation of the body pH

and temperature as well as playing an active role in the immune response[3].

Blood, one of the three interrelated components of the system, is the body fluid in

which several substances are transported throughout the body. It is also responsible

for the regulation of several life processes and for protection against external fac-

tors. The heart, on the other hand, is the muscular organ responsible for pumping

the blood allowing circulation through pressure gradients. The circulation occurs

in an unidirectional way through the blood vessels, the final component of the sys-

tem. These provide the structures necessary for the flow of blood to and from the

heart, each vessel belonging to one of two different interconnected circulations: the

pulmonary circulation and the systemic circulation. In the former, blood from all re-

gions of the blood is pumped from the the right ventricle into the pulmonary trunk,

arriving at the lungs where carbon dioxide present in the blood is released and oxy-

genation occurs. Afterwards, it returns to the heart where the systemic circulation
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begins. Blood reenters through the left atria, passing into the left ventricle and it

is pumped to all the body tissues. Here it releases different materials necessary for

the cells normal functionality (e.g. oxygen, hormones and nutrients) and receives

cell waste, such as carbon dioxide, returning to the heart through the right atria,

once again restarting the cycle[3][2].

It is important to note that deoxygenated blood, i.e., the blood circulating in the

pulmonary circulation, is called venous blood, while the blood circulating in the

systemic circulation is named arterial blood.

Figure 2.1: Pulmonary and Systemic circulations. Right side pumps venous blood
through the pulmonary circulation, whilst the left side sends arterial blood through
the vessels of the systemic circulation[2]

When exiting the heart, the blood is sent through arteries, blood vessels which

present thicker muscular walls as to withstand the higher values of pressure caused

by the blood flow. After travelling through the body, it returns to the heart in veins,

vessels which are less muscular than arteries. In most veins, valves are also present

in order to prevent backflow of the blood[2].

2.1.1 The Heart (Cardiac Cycle)

The heart is a muscular organ, located near the midline of the thoraxic cavity,

between the lungs with about two thirds of its mass lying to the left side of the
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Figure 2.2: Internal anatomy of the heart. Right side depicted blue to represent
the flow of venous blood and left side red for representation of arterial blood flow
[3]

body[3]. As is depicted in Figure 2.2, the heart is divided into 4 separate chambers,

two atria(superior chambers) and two ventricles(inferior chambers). Internally, the

atria are separated by the interatrial septum and the ventricles by the interventric-

ular septum, thus meaning that the heart is divided in a right and left side. The

thickness of each chamber’s myocardium (the muscle component in the heart wall)

is adjusted to its function. On one hand, the atria which receive blood in the heart

and send it into the adjacent ventricles, have thin walls. The ventricles however,

having to pump blood to parts of the body have thicker myocardium. The left

ventricle, being involved in the systemic circulation and having to send blood to all

body has a thicker wall than the right ventricle which is involved in the pulmonary

circulation. Other structural components involved, which play an important role in

the unidirectional flow are the valves. The mitral and triscupid valves are located

between the atria and the ventricles, preventing blood from returning to the atria

when pumped into the ventricles. The pulmonar and aortic valves prevent return of

the blood to the heart after being pumped into the arteries[3][2].

The heart’s contraction and relaxation movements are efficiently controlled by a sys-

tem of electrical stimuli originated from specialised cardiac muscle fibers: autorhyth-

mic fibers. By providing a path for each cycle of cardiac excitation to progress in
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the heart, it ensures that the chambers contract in a coordinated manner.[3] The

conduction system is an intrinsic one, meaning there is no need for external nervous

simulation in order for the heart to beat. Nodal tissue, i.e., tissue with both nervous

and muscular characteristics, is then responsible for the heartbeat. It is found in

two regions of the heart: located in the upper posterial wall of the right atrium is

the sinoatrial node (SA), and in the base of the right atrium close to the septum is

the atrioventricular node (AV)[2]. The SA is called the pacemaker as it plays a vital

role in keeping the hearbeat regular.

All events which occur during one heartbeat constitute the cardiac cycle. Although

there are separate sides of the heart, the contraction events occurs simultaneously.

First the two atria contract, followed by the contraction of the two ventricles. As

there are movements of contraction, or systole, there also movements of relaxation

called diastole. It is this cycle of coordinated and efficient movements that allow the

effective circulation of the blood through the heart and body[2].

Figure 2.3: Stages in the cardiac cycle[2]

2.2 Blood Pressure Regulation

Atria and ventricles’ movements of contraction and relaxation create pressure gra-

dients which allow blood flow to occur. The blood flows from regions of higher

pressure to regions of lower pressure with blood flow directly proportional to the

pressure difference. Blood pressure (BP) is the pressure created by the blood flow

against a blood vessel wall[3]. As show in Figure 2.4, systemic blood pressure (SBP)
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decreases progressively with distance to the left ventricle. It reaches its lowest value

in the venae cavae because they are farthest from the left ventricle.

As can be observed in Figure 2.4, blood pressure fluctuates between systolic blood

pressure and diastolic blood pressure (DBP). The former corresponds to the pres-

sure against the arterial walls after a left ventricle contraction, whilst the latter

corresponds to the pressure before the left ventricle contraction. In the systemic

circulation the expected BP oscillates 120 mmHg (SBP) and decays to 80 mmHg

(DBP), while in the pulmonary circulation SBP is approximately 25 mmHg and

DBP 10 mmHg[2].

Figure 2.4: Blood Pressure during systemic circulation[2]

Different physiological factors can lead to changes in arterial blood pressure. These

include heart rate, cardiac output(volume ejected from the heart per unit of time)

and venous return(blood volume which flows back to the heart). Blood viscosity

and peripheral resistance(the friction between the blood and the walls of vessels)

also affects blood pressure, with greater resistance leading to greater BP[19].

Blood pressure regulation is dependent on the interconnection of the nervous and

endocrine systems which cause fluctuations in numerous physiological aspects such

as the ones mentioned above. These variations allows the body’s performance to be

optimised to the different conditions and scenarios to which it is exposed[3][2].
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2.3 Electrocardiogram and Photoplethysmography

An Electrocardiogram (ECG) is the recording of the electrical signals, generated by

the action potentials propagation through the heart during a cardiac cycle. In a

typical recording it is possible to observe three characteristic waves, each relating

to a moment of the heart’s cycle: The P wave, the QRS complex and the T wave

(see Figure 2.5). The P wave represents atrial depolarization, while the QRS com-

plex represents the rapid ventricular depolarization. Finally the T wave represents

ventricular repolarization, occuring just as the ventricles are starting to relax[3].

Analysis of the ECG allows for extraction of several diagnostic and prognostic fac-

tors which reflect the cardiac condition, thus proving useful in a wide range of

applications[20][21]. However, ECG-only analysis has its limitations and for a bet-

ter understanding of relevant cardiac function and hemodynamics variables present

it is necessary to use signals-fusion techniques, extracting some values such as the

pre-ejection period(PEP) or the pulse arrival time(PAT).

Figure 2.5: Normal representation of ECG with reference points[3]

A Photoplethysmogram (PPG) is an optical measurement technique which uses

a light source(invisible infrared light) and a photo-detector[4]. The PPG signal

reflects the cardio-vascular pulse wave that propagates throught the blood vessels

by measuring the amount of backscattered light which corresponds to the variation

of the blood volume[4, 22, 23]. The signal can be divided into a systolic wave

and a diastolic wave, as seen in Figure 2.6. Despite the wave countour’s simplicity

several physiological important features can be extracted such as the pulse rate, left

ventricle ejection time, stifness index and reflection index[22]. As inflections can

prove hard to detect in an original PPG, the PPG’s first and second derivative are
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also commonly used.

Figure 2.6: Normal representation of a PPG wave[4]

2.4 Carotid Pulse

In the aortic arch, the continuation of the ascending aortha, there are three major

arteries which branch out. As visible in Figure 2.7 these are the brachiocephalic

trunk, the left common cartery and the left subclavian. The brachiocephalic trunk

will then further branch out into the right common carotid artery and the right

subclavian artery. Each of the carotid arteries will separate in an internal and

external artery, being responsible for the supply of blood to the face, eyes, neck and

brain[3].

Figure 2.7: Some of the major arteries and its branches[3]

The expansion and recoil of elastic arteries occurring with alternation after a systole

of the left ventricle generates a traveling pressure wave. This wave is denominated
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pulse, and is strongest in the arteries closest to the heart due to the loss of pres-

sure when blood is flowing through the vessels. It can be felt in several arteries

that lie near the surface of the body, such as the carotid artery[3]. In this case,

the pressure wave observed is called carotid pulse and it can present a specific mor-

phology characterised by a smooth, relatively quick upstroke and a smooth, more

gradual downstroke[24]. The pulse rate is normally the same as the heart rate[3],

and in literature pulse presence is considered when an attainable pulse in the carotid

measures 60 mmHg or higher[1].

2.5 Cardiopulmonary Resuscitation

Cardiopulmonary resuscitation is the procedure employed in case of cardiac arrest.

In such an event survival rates are very low[6][7] even when CPR is employed.

However, this method does improve the possibility of achieving ROSC[8][9][10]. It

is vital that the response is quick and effective, starting CPR as soon as possible

in order, as the no-flow period(the amount of time between the cardiac event and

the start of CPR) has been proven to demonstrate correlation with the survival

rate[12]. Through the execution of chest compressions in an uninterrupted manner,

with the appropriate depth and rate of around 100-120 bpm, blood perfusion to the

heart and brain is attainable. Performance quality of the procedure, subjectivity

of certain associated procedures and yet not completely understood physiology are

some of the factors with hinders CPR’s efficiency and leave to wonder that there is

still room for further development and improvement of the method[25].

Chest compressions move blood during cardiac arrest and the resuscitation by two

distinct mechanisms identified as the cardiac pump and the thoracic pump. In the

first mechanism a forward blood flow from the left ventricle is generated by the

external chest compressions causing the heart to be squeezed between the sternum

and the spine. The second mechanism operates due to a global rise in intrathoracic

pressure which is observed during the chest compressions. This rise is sufficient to

create a blood flow from the pulmonar blood vessels to and through the heart and

into the periphery[26].

Two different heart rhythms are associated with scenarios of cardiac arrest: shock-

able rhythms and non-shockable rhythms. Despite the ALS cardiac arrest algorithm

being applicable to all scenarios of cardiac arrest, understanding the individual sit-

uation present allows for the performance of additional interventions[13].
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2.5.1 Shockable rhythms

When observing the heart rhythm using an ECG, the first monitored rhytmn in

about 20% of both in-hospital and out-of-hospitals cardiac arrests, is a shockable

rhytmn, meaning it corresponds to ventricular fibrillation(VF) or pulseless ventricu-

lar tachycardia(pVT). In such a scenario there exists the possibility of using an elec-

trical defibrillator which highly increases the survival prospects of the resuscitation

effort. However chest compressions still play an important part in the resuscitation

procedure and should be commenced as soon as cardiac arrest is confirmed and only

interrupted in between for the shocks and other necessary interventions. Even a

slight delay between the pausing of the chest compressions and the delivery of the

shock(preshock pause) can reduce the chances of survival[13].

2.5.2 Non-shockable rhythms

There exist two observable non-shockable rhythms, pulseless electric activity(PEA)

and asystole. PEA is present when the ECG presents electrical activity which would

normally be associated with a palpable pulse. Patients displaying this condition

often have mechanical myocardial contractions, but these are not strong enough

to produce detectable pulse or blood pressure. Thus the ECG alone, does not

allow for pulse assessment and it is for this reason that pulse checks are still a

necessary procedure during CPR. Asystole on the other hand corresponds to the

lack of electrical activity from the heart. These conditions are often present due to

reversible causes, and survival following cardiac arrest when non-shockable rhythms

are displayed is unlikely unless the reversible cause is found and treated[13].

It is also important to remark that even though initially a non-shockable rhythm can

be observed, this one can transition into VF/pVT at some stage during resuscitation,

in which case defibrillation can be attempted.

2.6 Accelerometer Signal on the Carotid Artery

Accelerometers are small sensing devices that measure the acceleration applied to

the sensor, thus also measuring the accelerations applied to the body to which the

sensor is attached. They are already found in use in a great number of consumer

applications and nowadays an accelerometer sensor which is small, inexpensive and

low power presenting high sensitivities, is easily available[27].
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On the focus of this thesis, by applying an accelerometer attached to the skin above

the underlying carotid artery, it is possible to measure a pulse signal[27]. When the

heart ejects blood it creates a pulse pressure wave which causes the dilatation of

the artery’s wall, consequently generating an acceleration. As depicted in Figure

2.8, along with the pulse signal, the sensor will also measure the gravitational accel-

eration component, noise (i.e., all artifacts from moving, swallowing, talking, etc),

along with physiological signals[28].

Figure 2.8: Components of the accelerometer signal obtained at the carotid

The gravitational component corresponds to the offset of the different axes which

can be observed during moments of static conditions, or during steady state non-

rotational movement. This components allows for the determination of the sensor’s

orientation relative to the vertical plane. This knowledge can be interesting from

a signal processing perspective as it allows to compare changes of position by the

gravitational component and changes in signal morphology[28].

Besides the pulse signal some other physiological signals appear in the obtained sig-

nal, such as the ballistocardiogram (BCG) and respiratory movements. The former

is observed because of the vibrations created by the heart momentum when ejecting

blood. The latter is observed due the thoraxic movements existent during the res-

piratory cycle[29]. These generate vibrations on the body which logically create an

acceleration which is also measured with the sensor. While these signals can be of

interest for signal fusion approaches, in order to optimise algorithms it is important

to understand how one can supress its influence if necessary.

Noise in the signal can appear from several body functions and motion artifacts[30].

Examples can be: swallowing, neck movements, arm movements, rotation, among

others. These can complicate the extraction of the desired vital signal parameters

which consequently compromises the utility of accelerometers in healthcare scenar-

ios.
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2.7 Conclusion

This chapter aimed both to introduce the physiological background necessary for the

complete understanding of the work developed in this thesis, as well as to explain

and contextualise the cardiopulmonary resuscitation procedure and the signal which

is to be expected when using an accelerometer in the carotid artery for medical

applications.
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State of The Art

In this chapter, the focus will be on showing current uses of accelerometers, explain-

ing how such a sensor presents a wide array of possibilities and how it can apply to

pulse detection and characterisation. Present literature regarding cardiopulmonary

resuscitation and its advantages, disadvantages and challenges for future works will

also be discussed.

3.1 Accelerometry

Accelerometers have already found widespread use in several consumer applica-

tions, particularly tablets, smartphones but also wrist watches[31]. Consequently,

there exists a high volume of literature regarding their use and processing anal-

ysis. Their size and low-cost permits its incorporation in a wide range of other

uses and they have been recurrently studied as major components of Body Sensor

Networks(BSN)[32]. These sensing networks have emerged as a revolutionary tech-

nology in many application domains such as fitness, health-care, smart cities and

many other compelling Internet of Things(IoT). The technology is transitioning to

multi-device synchronous measurement environments using data-fusion to directly

impact application perfomance[32].

3.1.1 Activity Recognition Applications

Accelerometry based activity recognition is one of the main areas of study with

several different potential applications. Chung et al. in [33] used a data-fusion ap-

proach of an ECG signal and a tri-axial accelerometer signal to develop a signal

monitoring and analysis method for the homecare of elderly persons or patients. In

their prototype application ECG is used for extraction of physiological related fea-

tures, whilst the accelerometer provides feedback on the activity being performed,
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specifically running and walking. Curone et al. in their paper[34] also use ECG

and one accelerometer data for development of a device which aims to recognise

activities in rescuers. Using this data features are extracted to differentiate between

physical activities, intensities and postures. The aim is to identify potentially dan-

gerous states in the rescuers such as ”subject motionless lying down” or ”subject

resting with abnormal heart rate”. Their routine was tested in data recorded on

seven healthy adult subjects performing activity in laboratory settings, meaning

that, despite the adequate results obtained further studies are necessary to validate

the model. A different approach was taken by Tapia et al.[35] which combined a

wireless heart rate monitor and five accelerometers not only for recognition of phys-

ical activities, but also their intensities. They used data from 21 people obtaining

a recognition accuracy performace of 96.4% using subject-dependent training and

56.3% using subject independent training, thus showing that uniformization of data

proves to be a challenge in itself. They also aimed to show the effect on the results

when adding the heart rate data. Improvements were low with subject-dependent

recognition accuracy improving by 1.2% and subject-independent accuracy by 2.1%.

Wang et al.[36] opted for the development of a Hidden Markov Model-based recog-

nition method, aiming to classify between six human daily activities using only data

from a single waist-worn tri-axial accelerometer. The results obtained were very op-

timistic with the classifier demonstrating a good generalisation capacibility, whilst

having low computational complexity. This raises the idea that use of feature learn-

ing techniques for feature extraction can be an interesting solution for the process of

feature engineering with ACC signals. Regardless data used for training and testing

consisted of uncontaminated segments of each activity and data was acquired from

few subjects with low variability in age and health conditions.

3.1.2 Extraction of physiological parameters

Healthcare applicability of accelerometers is varied with literature found study-

ing the potential use in a range of different problems[32]. Phan et al.[37] use

an accelerometer attached to a belt around the chest for measurement of cardio-

respiratory activity. The respiratory waveform is calculated using the inclination

of the chest accelerometer, presenting a slow periodic variation(< 1 Hz) with weak

amplitude. It is important to note that this waveform is easily mixed with body

movements. The heart rate is based on the detection of the vibration peaks mea-

sured by the accelerometer in the chest, with the challenge that the vibration shape

varies among individuals. Nevertheless, in a still vertical or horizontal posture re-
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sults were positive, with the accelerometer signal showing potential for identification

of arrhythmia or respiratory malfunction. Another potential use was analysed by

Morillo et al.[38], which presented a body-fixed-sensor-based approach to assess po-

tential sleep apnea patients. Different signals were retrieved synchronously, with

an accelerometer placed in the neck being used for extraction of both respiratory

rate and snore pitch information. The respiratory component was compared to the

airflow signal acquired from a polysomnography thermistor, presenting a strong cor-

relation with it. As many algorithms in the literature in this topic are based solely

on the airflow, this result is quite interesting and further studies are required. Con-

cerning the detection of pitch, which was benchmarked against the pitch measured

by an high quality microphone, although it lead to promising results, it is not a

trivial challenge and some limitations were found. During long-time apnea episodes

the ACC signal recorded information which contaminated the pure snoring compo-

nents. This fact, allied to the pseudoperiodicity characteristics of snores leads to an

increase in complexity of the problem.

Ballistocardiograms and seismograms signals can also be measured by use of an

accelerometer attached to the skin. Inan et al.[39] on a review regarding these

methods presents different wearable applications using accelerometers.

Several limitations are present when using accelerometers in healthcare applications.

Due to their high sensitivity, these sensors are highly prone to artifacts. Silva et

al. in [30] developed a simple threshold algorithm for artifact detection in ACC

signals. After performing feature extraction and selection it was found that just

by using the energy of the signal it was possible to achieve interesting results in

artifact reduction. However, as in other studies, the dataset was limited, with

future validation in extended datasets being necessary for definitive conclusions.

The threshold established was also optimised for the existent data which presented

high-amplitude artifacts, with the author inferring that with different datasets the

value could suffer alterations.

Another limitation which must be considered is the heterogeneous signal morphol-

ogy present when using accelerometer sensors. The signals acquired are highly de-

pendent of the positioning, thus the algorithms used have to reflect this problem.

Atallah et al. [40] analyse this limitation regarding activity monitoring in wearable

applications, studying how sensor positioning can affect identification of different

activity types. Their results show that the correct choice of position(depending on

the final aim) is reflected on the classification results achieved.

19



3. State of The Art

3.2 Cardiopulmonary Resuscitation

Cardiopulmonary resuscitation has recurrently been studied in literature. Being an

important procedure for achieving ROSC after cardiac arrest, and with its efficiency

and responsiveness directly correlated to the sequelae observed after a cardiac event

it is vital to attain a better understanding of the topic and explore possibilities which

provide improvement to the already existing guidelines, thus improving survival rates

which remain low[6][7]. Objects of study are quite varied including assessment of

the quality of chest compressions[11], review on existent techniques and devices for

improvement of quality of care [25] and development of new methods (automatic or

not) for pulse detection. The latter is the focus of the thesis and so works presented

will mainly relate to this objective.

Manual palpation is still the Golden Standard for assessment of pulse, despite being

prone to error and being relatively time consuming. In order to achieve better

survival rates no-flow interval and interruptions in chest compressions should be

minimal, thus existing a need for improving detection of ROSC in unconscious,

pulseless patients[1].

In the literature studied the only commercially available solution found for pulse

assessment was the CardiAid, CPR Check(California, United States). It works

by using a resonant non-linear inductive-capacitive sensor to track both pulse and

respiration. The pulse wave and the respiration lead to a variation in the surface

of the tissue that affects the resonance circuit. allowing for the acquisition of an

electrical signal and consequently its monitoring [41]. Aarts et al. in [31] performed

a basic feasibility study to compare the performance of an accelerometer based pulse

detection approach versus the CardiAid. Both approachs aimed to detect Motion

or in the lack of it, Pulse or No Pulse. The accelerometer approach presented better

sensitivities, ease of placement and the decision time for the classifier was lower.

However, it is important to note that it presented limitations in the aspect that

data used for comparison is from healthy subjects therefore, data regarding absence

of pulse was not present.

The potential of PPG for pulse monitoring during CPR was studied in a porcine

study by Wijshoff et al. [42]. Data consisted of PPG and arterial blood pressure,

measured directly from the pigs’ nose and from the aortic arch respectively. In this

work by observation of the PPG time traces and the frequencies spectrograms it was

possible to infer pulse presence, demonstrating that this approach shows promise

for the future. However, it is important to note that this study presents some
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limitations. The data is collected from animals and the PPG signals are measured

from the nose, which does not represent a good clinical practice. Hence, it is not

possible to directly transpose these results for clinical cases.

End-tidal carbon dioxide(ETCO2) measurement is an estabilished method for mon-

itoring circulation during cardiopulmonary resuscitation. The measured signal de-

pends on cardiac output and blood flow during the return of the blood to the heart

in the pulmonary circulation, thus reflecting CPR quality and allowing prediction of

ROSC[43]. Lui et al. in their paper[44] aimed to evaluate the diagnostic accuracy of

an abrupt and sustained increase in the ETCO2 values for indication of ROSC. Their

results showed a sensitivity of 33% and a specificity of 97% which despite showing

a potential in the scenario, require improvement. Results might also be influenced

by class imbalance as they had 117 ”No ROSC” events compared to 60 ”ROSC”

events. Information on temporal behaviour is also lacking in the article[43].

Other pulse monitoring methods include bioelectrical, ultrasonography, bioleletrical

impedance and sphygmomanometry, however, all of the existing techniques men-

tioned present some limitations particularly regarding to size, cost, accuracy and

ease of application in a resuscitation scenario. Accelerometers present an interest-

ing approach for CPR scenarios diminishing some of common limitations having

high sensitivity, portability, ease of application and low cost[1].

Muehlsteff et al., having previously showed basic feasibility of the use of the ac-

celerometer signal on the carotid for pulse presence and pulse strength assessment[27],

developed an algorithm for pulse presence tracking using the data of 27 patients sub-

mited to head-up tilt-table(HUTT) test[18]. The ACC signal is transformed into a

waveform which presents a similar look to that of a PPG using a proprietary algo-

rithm. From this signal features are extracted from the peaks whilst an ”activity”

level is also calculated based on the variance of the ACC signal. These features are

fed into a selectable(either Linear or Support Vector Machine) classifier, which will

then classify each 10 second window into Pulse, No Pulse or Motion. It was observed

that the placement of the accelerometer at the carotid artery compromises signal

quality for pulse assessment in conscious individuals as it is very suscetible to motion

artifacts. Nevertheless, in scenarios where motion is diminished or inexistent, pulse

presence was accurately monitored. Seen that in CPR scenarios motion is more lim-

ited, this approach might exhibit potencial for pulse detection during resuscitation.

Silva et al. developed an algorithm for pulse presence/absence classification using a

simple feature based on the correlation between synchronous measurements of ECG

and ACC signal on the carotid[45]. Despite the results attained being promising, it
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is important to notice that the dataset used was of HUTT patients, and the pulse

absence segments were introduced artificially in the signals as this segments were

not present originally. These were simulated by attaching the sensor to the back of

the hand where no pulse is detected. This however does not necessarily represent a

real life scenario.

On a more direct approach to the resuscitation scenario Dellimore et al. in their

study[1] developed an algorithm for pulse presence tracking, using data from patients

undergoing CPR. Their approach consisted in a two step classification. First activity

based classification was performed and posteriorly periodicity based classification,

attributing to each 3 seconds window a label of Pulse, No Pulse, Compression or

Artifact. Activity classification generally performed with high sensitivity and speci-

ficity and the compression periodicity classification also yielded acceptable results.

On the other hand, pulse periodicity classification produced variable results across

the different subjects, with further improvements being necessary. It is important

to note that the data set was very limited with only 5 patients. Also an impor-

tant remark is that results presented were not based on automatic classifiers but on

patient specific thresholds, which also influences the results.

3.3 Conclusions

In this chapter an overview on accelerometry applications was discussed as well as

a review on cardiopulmonary resuscitation approaches. Challenges and limitations

were presented, in order for a better understanding of the difficulties present in this

work.
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Experimental Setup and Study

Protocol

In this chapter all the work regarding the data acquisition process will be presented.

The two datasets used in the work will be introduced. Annotation of the data and

its analysis, including challenges and limitations faced will also be discussed.

4.1 Introduction

Cardiopulmonary Resuscitation is an important procedure and it should be promptly

started in case of cardiac arrest or unconsciousness[13]. In the aim of this thesis to

study the use of an accelerometer attached above the carotid for pulse detection

during CPR, it was necessary to develop a protocol for simulated data acquisition

as it was not feasible to perform real-life acquisition. The objective of this protocol

was to simulate expected characteristics from a real-life scenario in a laboratory

setting, thus allowing for data exploration and feature engineering with more control

and knowledge. Additionally, data from a previous study[1] composed of 5 patients

undergoing CPR in an hospital setting was made available, allowing for a comparison

between the two datasets and providing a more realistic insight into the problems

present in a real-life scenario.

4.2 Simulated Data Acquisition

4.2.1 Experimental setup

Accelerometer signals in a controlled study with subjects mimicking CPR phases

were acquired using the SENSATRON device. This multi-parameter battery oper-
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ated device (Figure 4.1) was developed by Philips[5] and allows synchronous mea-

surement of ECG, impedance cardiography, near-infrared PPG, infrared PPG, tho-

racic inductive plethysmogram, sound signals and up to three tri-axial accelerome-

ters.

Figure 4.1: SENSATRON device and its components, central unit, battery and
charger[5]

In this work, the device was used for measurement of ECG, PPG and two accelerom-

eter signals. Sound signals were also retrieved as during the acquisitions an external

loud noise was made to support the annotation of the data. Sampling rates vary

with the ECG being extracted at 250 Hz, PPG at 62.5 Hz, sound signals at 4000 Hz

and ACC signals at 125 Hz. All signals are acquired with 16 bit ADC resolution. In

this work only the accelerometer signal is used. However, emphasis was put on de-

signing a protocol from which the data acquired can be used for future investigation

of other hypotheses as well.

Data acquisition was performed with the subject lying down on an air mattress, with

the two accelerometers positioned above the left external carotid artery. As seen

in Figure 4.2 one accelerometer was positioned above the other, with pulse being

palpable in both positions chosen.

The study was approved by the Ethics Committee of the Faculty of Medicine of the

University of Coimbra.

4.2.2 Protocol

To test and develop algorithms a data collection study was performed with 12

healthy volunteers (Table 4.1). The protocol was designed to simulate typical phases

and artifacts present during a resuscitation event. During CPR some body move-

ment, although brief and stochastic are expected. On the one hand, intensity of
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(a) Example of the position-
ing of the two sensors

(b) Acquisition setup

Figure 4.2: Experimental setup

chest compressions can lead to whole body movements and on the other hand the

rescuers’ intervention can also lead to motion artifacts being present in the signal.

Since the accelerometer is positioned in the neck area, and patients are lying down

during the intervention the body members whose movement more directly affects

the ACC signal obtained are the neck and the arms. Thus, the protocol consisted

of six distinct phases, specifically: lying down, neck movements, arm movements,

compressions, compressions with neck movements, compression with neck and arm

movements. Each phase had a duration of 30 seconds and the transitions in be-

tween had variable length. An outline of the protocol implemented can be observed

in Table 4.2.

As it is not safe nor recommended to apply chest compressions in a healthy per-

son, compressions are applied at the subject’s chest level on the air matress. By

generating a fluctuation on the mattress at the normal compression rate(100-120

compressions per minute), the subject will also oscillate and a periodical component

at the adequate rate of compression will appear in the signal.

Table 4.1: Biometric information of the healthy volunteers

# of Subjects Age [years] BMI [kg/m2] ∆accelerometers [mm]
12 22.750± 0.866 21.899± 1.691 32.750± 3.793
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Table 4.2: Outline of the protocol

tbeginning tend Phase ECG

00:00 00:10 Transition Yes

00:10 00:40 Lying Down Yes

00:40 00:50 Transition Yes

00:50 01:20 Neck Movements Yes

01:20 01:30 Transition Yes

01:30 02:00 Arm Movements Yes

02:00 02:10 Transition Yes

02:10 02:40 Compressions Yes

02:40 02:45 Transition Yes

02:45 03:15 Compressions with Neck Movements Yes

03:15 03:20 Transition Yes

03:20 04:10 Compressions with Neck and Arm Movements Yes

04:10 04:40 Lying Down Lose cable

04:40 04:50 Transition Unstable

04:50 05:20 Neck Movements Unstable

05:20 05:30 Transition Unstable

05:30 06:00 Arm Movements Unstable

06:00 06:10 Transition Unstable

06:10 06:40 Compressions Unstable

06:40 06:45 Transition Unstable

06:45 07:15 Compressions with Neck Movements Unstable

07:15 07:20 Transition Unstable

07:20 07:50 Compressions with Neck and Arm Movements Unstable

07:50 08:10 Transition (BCG) Unstable

08:10 08:40 Lying Down Unstable

08:40 08:50 Transition Unstable

Considering the aim of testing other hypotheses with this dataset in future works,

in the penultimate transition phase of the protocol the bottom accelerometer was

transfered to the forehead allowing for the extraction of a BCG signal. Initial feasi-

bility tests on the use of Independent Component Analysis methods were involved

in the decision of extracting this signal.

In Figure 4.3 it is possible to observe one example of the two acceleration signals

measured synchronously by the two sensors from one run of the simulated protocol.
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Figure 4.3: Example of unfiltered accelerometer signals obtained in the simulated
data acquisitions. Upper diagram shows tri-axial ACC signal obtained from the
top accelerometer. Lower Diagram shows tri-axial signal obtained from the bottom
accelerometer

4.3 Data Analysis

Understanding challenges and limitations of the protocol established and the sensing

modality used is vital for a complete understanding of the results obtained and

future developments in the area. It is also important to observe how the protocol

data behaves in order to compare the simulation to the signal obtained in a real life

CPR scenario. Certain frequency characteristics are expected, shown in Table 4.3.

Table 4.3: Assumed frequency characteristics of Pulse and Compression

Rate Interval Frequency Interval
Pulse 60 - 100 [bpm] 1 - 1.66 [Hz]
Compression 100 - 120 [cpm] 1.66 - 2 [Hz]

One of the major limitations faced when using an ACC sensor is that the morphology

of the signal measured is very dependent on the positioning of the sensor. This can

be observed visually in Figures 4.4, 4.6 and 4.7, where it is clearly observable that

the signal measured by the top accelerometer is more contaminated by artifacts.

For one, the pulse peaks are not as prominent in the signals from this sensor loca-

tion as they are in the bottom accelerometer(Figure 4.4). This visual observation is
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corroborated by the frequency analysis of the 10 second window depicted in Figure

4.4. In Figure 4.5 it is possible to observe that the fundamental frequency of the

pulse signal and its harmonic (visible in the periodogram of the ECG) are more

present in the bottom accelerometer, whilst in the top accelerometer other frequen-

cies contaminate the signal.

Figure 4.4: Example signals for subject 1- Upper diagram: Signal measured by
the z -axis of the top accelerometer; Middle diagram: Signal measured by the z -axis
of the bottom accelerometer; Lower diagram: ECG signal; All signals were acquired
synchronously

Figure 4.5: Periodogram of the signals presented in Figure 4.4- Upper diagram:
Periodogram of the top accelerometer; Middle diagram: Periodogram of the bottom
accelerometer; Lower diagram: Periodogram of the ECG signal
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It is also observable that Compression segments are more stable in the bottom

sensor(Figure 4.7), with artifacts contaminating the morphology during these seg-

ments in the top accelerometer(Figure 4.6). This contamination is also visible in the

periodograms depicted in 4.8. The compression fundamental frequency and its har-

monics are not as determined as in Figure 4.9, which concerns the periodograms in

the bottom ACC. Hence, the position chosen for the bottom accelerometer provides

a higher quality signal.

Figure 4.6: 10 seconds of Compressions - Top Accelerometer, z -axis

Figure 4.7: 10 seconds of Compressions - Bottom Accelerometer, z -axis
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Figure 4.8: Periodogram of the signals from Figure 4.6 - Top Accelerometer

Figure 4.9: Periodogram of the signals from Figure 4.7 - Bottom Accelerometer

Despite a more stable signal being present in the bottom accelerometer, is still

important to note that pulse morphology easily changes between subjects(Figure

4.10) and so algorithms developed need to take in consideration this variability

and a generalised solution needs to be constructed and tested in a wide dataset to

guarantee functionality.

The loss of quality when using a higher position for the accelerometer can be un-

derstood when considering that the higher the point of measurement is in the neck,
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Figure 4.10: Averaged pulse beat morphology for each subject(using 20 manually
selected beats) measured by the z -axis of the Bottom Accelerometer

the bigger the dislocation(thus, bigger acceleration) caused by neck movements will

be, leading to more noise contamination in the signal measured.

Regarding the capacity of the designed protocol to simulate characteristics visible in

real life data it is possible to infer that periodic behaviour was correctly simulated.

Looking at Figures 4.8 and 4.7 it is observed that the fundamental frequency is in

the expected interval which is suggested by resuscitation guidelines, i.e., [1.66 - 2]

Hz. On the other hand morphology behaviour of these segments was not similar to

that observed in the real-life data (depicted in Figure 4.11). Higher amplitude, and

a more peaky signal is observed in real ACC signals, which can be derived from the

CPR procedure directly affecting perfusion to the brain. In spite of this, the correct

simulation of periodicity can help in development of feasible technical solutions.

However, some challenges are present in this dataset. One identified challenge in

data acquisition regards the body movements and compressions with movements

phases. The initial intention for the introduction of these segments was to simulate

stochastic artifacts which could appear in a resuscitation scenario. Nevertheless,

by making these movements last for 30 seconds the subjects’ natural tendency was

to induce a certain periodicity in the movements performed. Also adding these

movements during compressions does not present a realistic scenario, as depicted

in Figure 4.12. Periodic artifacts were present for example during neck movements
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Figure 4.11: 10 seconds of Compressions - Real Life Data, z -axis

phases in the bottom accelerometer which are depicted in Figure 4.13. On the top

accelerometer this phases presented a more stochastic behaviour once again showing

that different positioning of the sensor lead to very different characteristics(Figure

4.14). However, it is important to emphasise that the replication of movements did

not occur in the most realistic manner.

Figure 4.12: Ending of compression phase with beginning of compression with
neck movement - Bottom Accelerometer, z -axis
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Figure 4.13: Neck movements in simulated data - Bottom accelerometer, z -axis

Figure 4.14: Neck movements in simulated data - Top accelerometer, z -axis

4.4 Data Annotation

4.4.1 Protocol Data

For the building of supervised classifiers and for the testing of the performance of the

different algorithms implemented, it is necessary to annotate the signal accordingly
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with the intended classes. Since the data acquisition was done on healthy subjects,

absence of pulse is not present, therefore in the protocol dataset only three distinct

labels can be found:

• Pulse

• Compression

• Artifact

Two different annotations were made for the dataset. Initially a sample-by-sample

annotation was performed, marking the beginning and ending of each segment con-

taining distinct labels. With this method, future labeling of different window sizes

to the one used in the algorithms developed can be easily performed by selecting

the mode of the different labels present in the window. However, this method is

prone to error. A window contaminated by artifact could still be labeled as pulse if

the duration of the artifact was small. Hence, to diminish imprecision and ease the

interpretability of the analysis, a second annotation was made where every 3-second

window was labeled manually. In this case, windows which corresponded to tran-

sitions and therefore had mixed characteristics with ambiguous labeling were also

marked so that when training and testing the algorithms implemented only ”clean”

windows were considered.

It’s quite important to remark that labeling without medical expertise is not the

most adequate action and undoubtedly it will affect the results obtained and pro-

vide a source of error. In this dataset however the main challenges in annotation

were related to the distinction between Compression and Artifact windows. As the

protocol includes segments of compressions with added movements and the intensity

and periodicity of these movements was varied subject to subject it provided a chal-

lenge as some windows were ambiguous. This challenge was mostly observed in the

top accelerometer, due to its already mentioned noise contamination and unstable

behaviour.

4.4.2 Accelerometer data acquired during real-life cardiopul-

monary resuscitation

Similarly to the laboratory acquired dataset it was necessary to annotate the data

from real-life CPR scenarios, so as to allow evaluation of the performance of the

algorithms developed. In this dataset however, as the data was acquired in five
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patients undergoing cardiopulmonary resuscitation in a hospital setting, four distinct

labels were present:

• Pulse

• No Pulse

• Compression

• Artifact

Manual annotation was done sample-by-sample. Besides the accelerometer signals,

other vital signals were available, such as the arterial blood pressure, one-lead ECG

and the capnogram. BP was measured from a catheter inserted in the radial artery.

These are particularly helpful for discriminating between Pulse and No Pulse seg-

ments. However, not all patients had the same secondary signals available and in two

patients annotation was performed solely based on the ACC signal. As previously

mentioned, this dataset is the same as the one used in [1] and the labels established

at the time were available. For this study a more restrictive approach was taken

with the main difference corresponding to the annotation of artifact segments. In

the studies’ labels a segment was identified as artifact if it corresponded to a high

intensity noise. However, there were segments of the signal where no pulse informa-

tion was available with lower intensity artifacts present which were not identified(see

Figure 4.15). After the sample-by-sample annotation, the label for each window was

chosen by the mode of all the samples’ labels present in the window. Contrary to

the protocol acquired data transitions were not excluded.

It is important to mention that data imbalance was present, as seen in table 4.4.

Table 4.4: Number of windows of each class in the real life data

Patient #
Number of 3 second windows

Pulse No Pulse Compression Artifact
1 61 90 135 36
2 776 62 82 80
3 372 11 167 20
4 467 21 34 41
5 150 19 177 78
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Figure 4.15: Low-intensity artifacts - Real Life Data, z -axis

4.5 Discussion and Future Work

Acquisition of real life data in resuscitation scenarios is complicated. Thus, it’s

vital to study how to complete real-life datasets by simulated data acquired under

controlled conditions, in order to permit further development of technical solutions

which can improve care given in resuscitation events. The protocol designed for this

study manages to mimic some characteristics adequately and provides a stepping

stone for future research by providing a initial database of 12 healthy volunteers,

each with synchronous measurements of different vital signals, making it possible to

test related hypotheses regarding pulse detection and pulse characterisation. Three

possible future works would be:

• Pulse Peak Detection: development of a algorithm for pulse rate extraction,

evaluating the results using the heart rate extracted from the ECG

• Pulse Wave Velocity: Feasibility of using two accelerometers positioned along

the carotid for calculation of PWV

• Pulse Strength Assessment: Study how pulse signal characteristic correlate

with PAT, with the ground truth values calculated from PPG and ECG signal;

From the acquired dataset it is also possible to infer that sensor positioning plays a

vital role in signal quality, with the bottom accelerometer presenting a higher quality
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signal with less artifact contamination. Pulse frequency is more present in the

signals measured by this sensor, and the signal is more well defined, with relatively

consistent behaviour between the subjects available. Hence, a more extended study

to establish a relatively optimal placement and a guideline which allows for sensor

positioning in a quick and effective manner might be of interest. This way, further

data collection would present higher quality signals allowing for a better study of

the signal’s characteristics.

Annotation for both datasets was also performed, providing initial labels for the

protocol data and a review on the previously done labels of the real life patients’

signals. It is important to emphasise that there were differences in the approach

taken for the annotation to the previous study. The main alterations consisted of

selection of artifact segments which previously were labeled either as pulse or no

pulse segments. These alterations and the fact the labeling did not have medical

contribution have to be taken in consideration when analysing the results.

4.6 Conclusion

The data acquisition resulted in a dataset of 12 healthy volunteers which will be

used for the development of pulse detection algorithms. It also provides a testing

ground for future hypotheses. From the data analysis some conclusions can be

drawn. Nevertheless, the dataset needs to be extended for validation and preferably

signals from subjects with more varied characteristics should be measured.

The bottom accelerometer presents less artifact contamination and a more consistent

morphology, thus it can be expected that results achieved for the signals measured

by this sensor will be better. It also demonstrates the morphology’s dependency to

the sensor position which needs to be taken in consideration during development of

techniques.

Success was achieved in simulating some of the characteristics present in real life

situations. However the protocol could suffer some alterations for better simulation.

One possible alteration would be the reduction of the duration of artifact segments,

which would allow for a more stochastic behaviour to be present. Annotation of

the data was also provided, though it lacks reviewing. Nevertheless, for analysis of

results achieved this fact will be taken in consideration.
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5

Pulse Detection using

Accelerometer Signals from the

neck area with carotid artery

underneath

5.1 Introduction

Manual Palpation is still nowadays the most common pulse assessment technique, de-

spite being prone to error and often taking too long compromising patient outcome[13][1].

Thus, there is a clear need of improvement in this intervention. Automatic pulse

detection is a solution which could potentially save precious time in resuscitation

events and objectify pulse measurement, taking the subjectivity factor from rescuers’

palpation. Accelerometers provide a sensing modality with feasibility for pulse de-

tection already proven for healthy subjects via signals from the chest area or at

the neck, besides being of easy implementation, cheap and low power, nevertheless

presenting high sensitivities[27].

As depicted in Figure 5.1, following preprocessing of the data and extraction of dif-

ferent features, two distinct supervisioned pulse detection algorithms were developed

in this work. The first approach consisted in a two-step cascading classifier similar

to the one developed by Dellimore et al., which is depicted in Figure 5.2. A first

classifier serves to identify a window as Pulse/No Pulse or Compression/Artifact,

with a second and third classifier providing the final classification of each window.

This algorithm is built on the assumption that the different classes present distinct

characteristics in activity and in periodicity which allows for their sequential sepa-

ration. However, this method naturally leads to an accumulation of errors seen that

a window which is misclassified in the first step will never be correctly classified in
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Figure 5.1: Outline of the flow of the algorithm development

Figure 5.2: Cascade Classifier Logic[1]

the final step. Thus, aiming to diminish this source of error, a second approach was

developed consisting of a sole multiclass classifier. For each algorithm, a diferent

approach to feature selection was taken. For the cascading classifier a filter ap-

proach was used, meaning that feature selection for each step of the final classifier

was performed through the use of a feature score parameter. On the other hand, a

wrapper approach was chosen for the multiclass classifier, meaning all combinations

of features and classifier were tested and using a chosen metric the best combinations

were found and presented. For the evaluation of the performance of the algorithms,

Leave-One-Out (LOO) validation was performed in the sense that one subject was

left out for testing while the remaining were used for training. The procedure was
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repeated for all the subjects and the results were averaged, allowing for observation

of the behaviour of the solutions developed for each subject and for all of the data.

It is important to mention that besides having a tri-axial accelerometer, calculations

were mainly focused on the use of the z -axis, as this axis as been found by previous

related studies to be the most significant for the pulse detection problem[30].

5.2 Methods

5.2.1 Feature Engineering

For the development of the classification algorithms it was necessary to extract

different features from the accelerometer signal. Preprocessing consisted only of a

Butterworth bandpass filter in the range [0.5 30] Hz. The high pass component

removed low frequency components such as respiratory movements present, while

the high pass component was selected after visual inspection (see Figure 5.3) of the

effect of different values in the pulse signals available.

Figure 5.3: Prominence representation(red line in the middle peak)[1]

Feature extraction was performed on non-overlapping 3 seconds windows, with some

features being extracted directly in the time domain representation and others from

the Phase Space Reconstruction(PSR) of the signal. The latter approach constitutes
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a non-linear dynamic signal processing technique and has provided good results

on ECG characterisation[46] and Heart Sound Classification[47]. Its applications

in accelerometry has also achieved effectiveness when applied to activity and gait

recognition[48]. However, its use for accelerometer based pulse detection is a novel

contribution.

Feature engineering is usually defined as the process of extracting information from

the data source which is able to adequately compress the domain. There are at least

the following approaches for feature engineering:

• Extraction of features based on domain knowledge: this process is usually

applied in contexts where the processes involved in the signal generation are

reasonably known and it is possible to define specific features to capture rele-

vant characteristics of the signal.

• Extraction of features not based on domain knowledge: in this approach the

aim is to capture fundamental information which might prove useful, using

different feature extraction techniques. Afterwards, feature reduction tech-

niques(such as a feature selection score) are usually applied to simplify the

feature sphere.

• Feature learning: In this situation a data-domain approach is followed to au-

tomatically identify relevant features using techniques such as auto-encoders

or deep learning.

In this work, the first two approaches were used, as commonly techniques related to

feature learning require large amounts of data to effectively represent the data. Iden-

tified relevant domain knowledge in the context of this thesis are activity level and

periodicity. Pulse and No Pulse are usually low amplitude signals, whilst Artifacts

and Compression are commonly higher amplitude signals. Pulse and Compression

segments are also usually characterised by their periodicity, with the latter present-

ing common values of periodicity in the interval [60 100] beats per minute and the

former in the interval [100 120] compressions per minute. With the introduction

of each feature a brief explanation on the reasoning behind its extraction will be

presented.

5.2.1.1 Time Domain Representation

Ten features were extracted from the time domain representation:

• Standard Deviation(STD) - Mean of the standard deviation of every sample
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in the window. The mean of the signal is not subtracted in the formula for

it is assumed that it equals zero, as the signal is filtered in the range [0.5 30]

Hz. With this feature activity of the window is measured.

STD[wdw] =

√√√√ 1

Nwdw

n∑
k=n−Nwdw+1

acc2z[k] (5.1)

• Teager Energy(TE) - Mean of the teager energy operator value for all the sam-

ples in the window. This feature both presents a measure of amplitude as well

as introducing a frequency component as the calculated value for each sample

uses both the previous and next sample amplitude. It is a very interesting

feature in this context as both compressions and pulse have a well defined

TE[wdw] =
1

Nwdw − 1

n−1∑
k=n−Nwdw+2

(acc2z[k]− accz[k − 1]accz[k + 1]) (5.2)

• Prominence(PM) - measured by extracting the peak prominence of the highest

peak in the autocorrelation of the signal in the window. The prominence of a

peak is calculated by creating two lines to each side of the peak until said lines

again cross the signal, establishing two intervals. Afterwards the minimum

of each interval is found and the maximum of the two values is established

as the reference. The difference between the peak’s height and the reference

corresponds to the prominence(see Figure 5.4).

Figure 5.4: Prominence representation(red line in the middle peak)[1]

The autocorrelation function of the signal presents a measure of similarity of

the signal with a delayed version of itself in function of the time delay. When

used on periodic signals it is an important tool for assessing periodicity, as

it will itself present a periodic behaviour with a higher correlation measured

at the time delays associated with the period. By measuring the prominence

of the highest peak, we are measuring how relevant this peak is compared to

other neighouboring peaks in the function.
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• Module of the lag of the highest peak in the autocorrelation of the window

signal(LHP) - By measuring the time delay which corresponds to the highest

value of the autocorrelation function, the aim is to calculate the inverse of the

estimated fundamental frequency of the window. This assumption is based on

the expected autocorrelation from a periodic signal. As seen in Figure 5.5,

despite the fact that this feature does not present a discriminative behaviour

for all the classes in Pulse and Compression windows the value is relatively

stable, leading to the inference of its utility for rate characterisation.

Figure 5.5: Boxplot of the LHP calculated in all the real-data patients

• Average Power of the 4 highest peaks of the window signal’s periodogram(P4Peaks)

- The periodogram presents an estimate of the power spectral density of the

signal. Thus, it allows for a frequency analysis of the signal, with frequencies

most present in the signal having more power. In a periodic signal the fun-

damental frequency and its harmonics will present a higher power than other

frequencies. Hence, by averaging the power of the four highest peak of the

periodogram of each window a frequency characterisation is being performed.

• Standard Deviation of the cross-correlation(τdelay = 0) between the ACC’s

x and z axis(STDxz) - Despite the z -axis being the most relevant for pulse

detection, other axis also present relevant information(see Figure 5.6). The

reasoning behind the extraction of this feature was that in periodic movements

the correlation between axis will present less dispersion compared to when

stochastic noise is present, as periodic components will be present in all axis
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with similar behaviour.

Figure 5.6: Pulse and Artifact Segment - Changes in the correlation over the
different axis

CCFτdelay=0 = accx[wdw] ∗ accz[wdw] (5.3)

STDxz[wdw] =

√√√√ 1

Nwdw

n∑
k=n−Nwdw+1

(CCFτdelay=0[k]− CCF τdelay=0)2 (5.4)

• Standard Deviation of the cross correlation(τdelay = 0) between the ACC’s y

and z axis(STDyz) - calculated identically to STDxz

• Standard Deviation of the ACC signal derivative(STDacc′) - A measure of the

stability of the dispersion of the derivative signal. Uncontaminated segments

will present a more stable behaviour

STDacc′ [wdw] =

√√√√ 1

Nwdw

n∑
k=n−Nwdw+1

(acc′z[k]− acc′z[wdw])2 (5.5)

• Skewness(SK) - Studying the third standardised moment allows for the analy-

sis of the assimetry of the probability distribution of the samples in the window
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SK[wdn] =
1

Nwdn

∑n
k=n−Nwdw+1(accz[k]− accz[wdn])3

(
√

1
Nwdn

∑n
k=n−Nwdw+1(accz[k]− accz[wdn])2)3

(5.6)

• Kurtosis(KU) - The fourth standardised moment, as the third also allows

for the analysis of a property of the probability distribution of the values.

However, in this case it presents a measure of the shape of the tails of the

distribution.

KU [wdn] =
1

Nwdn

∑n
k=n−Nwdw+1(accz[k]− accz[wdn])4

(
√

1
Nwdn

∑n
k=n−Nwdw+1(accz[k]− accz[wdn])2)2

(5.7)

5.2.1.2 Phase Space Reconstruction

PSR is a technique used for the representation of the non-linear characteristics of a

dynamic system[49]. It can be achieved by two different methods, delay coordinates

or derivative coordinates[47]. In this work the former method was adopted with a

N-point time series {x1, x2, ..., xN} being reconstructed into each phase-space vector

Xi as follows:

Xi = [xi, xi+τ , xi+2τ ,...,xi+(m−1)τ ] (5.8)

In 5.8 τ corresponds to the reconstruction delay and m to the embedding dimension.

The embedded matrix will then correspond to a M ×m matrix, where M = N −
(m− 1)τ .

For successful extraction of features of the PSR it is necessary to choose the param-

eters of its composition accordingly, with the delay parameter being chosen before

the dimension. An optimal τ should be computed so as to not have a value which is

neither too small, being equivalent to a large correlation between xi and xi+τ , or too

big, resulting in the two vectors being completely independent. The optimisation of

this value can then be performed using the mutual information between xi and xi+τ

I(τ) =
N−τ∑
n=1

p(xi,xi+τ )log2
p(xi,xi+τ )

p(xi)p(xi+τ )
(5.9)

where I(τ) is the mutual information, and p the probability. The value chosen

corresponds to the first minimum that occurs in mutual information. Since the data

presents different dynamics the optimal value was calculated for each window and
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in the end the average was calculated, with the value of τ = 4 being found for both

the Top and Bottom accelerometer data.

Figure 5.7: Reconstruction delay parameter calculation for one 3 second window
of Top(blue) and Bottom(red) accelerometer data

Figure 5.8: Example of a bi-dimensional PSR

Corcerning the embedding dimension, a value of m = 2 was chosen initially, in order

to simplify the interpretation of the phase space in a graphical aspect(see Figure
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5.8). However, for one feature it was decided that optimisation of this parameter

was necessary. The method used was the well known Cao’s method[50]. According

to this method if a value of m is the true embedding dimension of the reconstructed

vector, the two points which are closer in the m dimensional phase space will remain

closer in the m+ 1 dimensional phase. Cao’s method embedding function is defined

as

E(m) =
1

N −mτ

N−mτ∑
i=1

ai(m) (5.10)

with ai(m) defined as follows

ai(m) =
||Yi(m+ 1)− Yn(i,m)(m+ 1)||

||Yi(m)− Yn(i,m)||
(5.11)

where Yn(m,i) represents the nearest neighbour of Yi(m) in the m-dimensional space.

Computation of the nearest neighbour is based on a measure of distance which uses

the maximum norm function. In order to model the variation from m to m+ 1 it is

necessary to define another function

E1(m) =
E(m+ 1)

E(m)
(5.12)

which converges to 1 in case of a finite dimensional attractor. However, as this may

occur even with random signals it is necessary to define another function which al-

lows to distinguish between deterministic and random data. This function is defined

as follows

E2(m) = E∗(m+ 1)E∗(m) (5.13)

with

E∗ =
1

N −mτ

N−mτ∑
i=1

|xi+mτ − xn(i,m)+mτ | (5.14)

In case of a random signal a constant value of one will be present in E2(m) for

all different values of m. If at least for one value of m the value is different from

one the signal is found to be deterministic. The embedding dimension for PSR is

set to a minimum embedding dimension. Once again, as different dynamics were

present in the signal the optimal m was calculated for each window and averaged

for computation of the final value of m = 4 for both datasets of the protocol data.

Depicted in Figure 5.9 is an example of the computation of the embedding dimension.

48



5. Pulse Detection using Accelerometer Signals from the neck area with carotid
artery underneath

Figure 5.9: Reconstruction embedding dimension parameter calculation for one 3
second window of Top and Bottom accelerometer data

Having the reconstructed phase space parameters determined it is then possible to

extract different features from each PSR of a window. It is important to mention

that the signal was not normalised as very different amplitudes limited the feature

extraction, and for this work manually defined limits were set for the phase space.

If points were of bigger amplitude than that of the limit they were not considered

for the calculations of the features. The limits were set, after visual inspection of

the data, so that outliers in the signals were removed, as follows

limittop/bottom = accztotal ± 5 ∗ σtotal (5.15)

limitreal = accztotal ± 8 ∗ σtotal (5.16)

with accztotal corresponding to the concatenated vector of all different subjects’ z -axis

signals of each sensor. In 5.10 and Figure 5.11 a visualisation of the concatenated

filtered signals and limits is depicted.
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Figure 5.10: Concatenated signals from all subject of the simulated data with
PSR limits shown. Upper Diagram: Top ACC; Lower Diagram: Bottom ACC

Figure 5.11: Concatenated signals from all subject of the real-life data with PSR
limits shown

The features extracted, which aimed to study the distribution of points in the PSR

and their closeness, were then:

• Spatial Filling(SF) - Consider the two-dimensional PSR of the accelerometer

50



5. Pulse Detection using Accelerometer Signals from the neck area with carotid
artery underneath

signal x(1),x(2),...,x(n). The A matrix is obtained as

A =


x(1) x(1 + τ)

x(2) x(2 + τ)
...

...

x(n− τ) x(n)

 (5.17)

By dividing this phase space into a grid g(i,j) of small squares, a phase space

matrix C can be generated in which each element C(i,j) is equal to the number

of phase space points falling into the grid g(i,j). Afterwards, a new matrix P

can be obtained by dividing each element of C by the sum of all the points

present in the initial phase space:

P =
1

M
C, M =

N∑
i,j=1

C(i,j) (5.18)

Hence, the P matrix represents the probability of a space point falling into a

certain element of the grid. By squaring this matrix, the R matrix is deter-

mined. Considering S as the sum of all points of R, the spatial filling index

can finally be computed as

SF =
S

N2
(5.19)

• Area of the C-column average Curve(AUCC−curve) - By calculating the average

of each column of the C matrix, a curve which characterises the distribution

of the points in the phase space is obtained and the relative area of the right

extremity was used as feature. This extremity was selected by analysing the

mean of all the curves for each class, depicted in Figure 5.12.

• Entropy(EN) - Calculated using the P matrix previously mentioned, as follows

EN =

Nsquares∑
i,j=1

P (i,j)log2(
1

P (i,j)
) (5.20)

• Simplicity(SM) - all the previously features were calculated using the bi-

dimensional phase space, however for the calculation of the simplicity the

embedding dimension was four as calculated by the Cao’s method. Hence,

having the 4-D phase space X4D the feature is calculated based on the entropy

of the normalised eigenvalues of X4D. For this end, the covariance matrix is
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Figure 5.12: Average of the C-Column average Curve for each class

initially obtained by

Cov = XT
4DX4D (5.21)

where T denotes the transpose of the matrix. Let λ1,λ2,...,λm be the eigenval-

ues of the covariance matrix and λ̂1,λ̂2,...,λ̂m the normalised eigenvalues,the

entropy of the normalised eigenvalues, H, is calculated by

H = −
m∑
i=1

λ̂ilog2λ̂i, λ̂i =
λi∑m
k=1 λk

(5.22)

Finally, simplicity is calculated from the entropy

SM =
1

2H
(5.23)

5.2.2 Classifiers for Pulse Detection using accelerometers in

the neck area

5.2.2.1 Cascading Classifier

The first algorithm developed in this work, was an extension on previous work by

Dellimore el al.[1]. It was on this previous study that the real-life dataset was col-
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lected and studied for the first time, with the researchers performing a first analysis

on the use of a accelerometer sensor in the carotid for pulse detection solutions dur-

ing cardiopulmonary resuscitation. In said analysis only two simple features were

used, specifically Standard Deviation and Prominence(also used in this work). As

depicted in 5.2 the classifier logic was built on the assumption of higher activity lev-

els of Compression and Artifact windows and the lack of periodicity in No Pulse and

Artifact segments. Hence, the two features selected, with STD providing a measure

of activity and PM a measure of periodicity. Relevant results were achieved with ac-

tivity classification performing with high sensitivity and specificity and compression

periodicity also showing acceptable results. However, pulse periodicity classification

lacked consistency. It’s important to mention that the study performed a subject-

dependent analysis with thresholds for both features being defined optimally. Thus,

maintaining the classifier logic, interest was found in introducing more features as

well as training and testing automatic classifiers using a LOO validation, i.e., per-

forming a subject-independent analysis.

The algorithm developed was trained and tested in the two existent datasets, with

the limitation that in the laboratory acquired data there was no data without pulse.

Thus, in the two sensors of this dataset the cascade classifier logic only comprised

two classifiers as depicted in Figure 5.13.

Figure 5.13: Cascade Classifier Logic on the protocol data

Feature selection for each classifier in the algorithm was executed by a filter ap-

proach, using a Feature Selection Score(FSS) which combines relevance measured

by the area under the receiver operating characteristic (ROC) curve (AUC) and re-

dundancy computed by Spearman’s rank correlation coefficient(RCC)[22]. Initially
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only the feature with the highest AUC is present in the subset with subsequent fea-

tures being added according to the highest FSS in each iteration[51]. The formula

for the score is as follows

FSSi = AUC(fi)−
|
∑

fj∈S RCC(fi, fj)|
|S|

(5.24)

with AUC(fi) representing the AUC of the ith feature, RCC(fi,fj) the Spearman’s

RCC between two features, S the subset of features at each iteration and |S| its

cardinality.

The FSS scores for each sensor and dataset can be found in Tables 5.1, 5.2 and 5.3,

with the features selected for each classifier represented in bold.

Table 5.1: FSS for each classifier - Top Accelerometer

Pulse VS (Compression & Artifact) Compression VS Artifact
Feature FSS AUC Feature FSS AUC
STDxz 0.9962 0.9962 Simplicity 0.8455 0.8455
Skewness 0.5659 0.6152 Teager Energy 0.6032 0.6947
STDacc′ 0.6085 0.9851 Kurtosis 0.5721 0.7499
Kurtosis 0.5356 0.7108 Prominence 0.7152 0.7943
Simplicity 0.7006 0.8330 Skewness 0.5527 0.6557
Spatial Filling 0.6210 0.9931 STDacc′ 0.5213 0.7042
Entropy 0.8445 0.9944 LHP 0.4447 0.4942
Teager Energy 0.7218 0.9865 Entropy 0.2661 0.5642
P4Peaks 0.6236 0.9932 AUCC−curve 0.1946 0.6041
STDyz 0.5571 0.9918 STD 0.0968 0.5605
LHP 0.5263 0.5747 STDxz 0.047 0.5098
STD 0.5522 0.9943 STDyz -0.0506 0.4812
Prominence 0.4721 0.5762 Spatial Filling -0.1258 0.4198
AUCC−curve 0.3226 0.7886 P4Peaks -0.0156 0.4460
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Table 5.2: FSS for each Classifier - Bottom Accelerometer

Pulse VS (Compression & Artifact) Compression VS Artifact

Feature FSS AUC Feature FSS AUC

STD 0.9991 0.9991 Prominence 0.8920 0.8920

Skewness 0.4441 0.5044 STDxz 0.7837 0.8024

Kurtosis 0.642 0.9378 Skewness 0.7738 0.8185

Simplicity 0.9293 0.9361 LHP 0.7824 0.8154

STDacc′ 0.767 0.9891 STDacc′ 0.6282 0.8562

Teager Energy 0.6115 0.9917 Kurtosis 0.5634 0.6866

Prominence 0.5321 0.5572 Teager Energy 0.5206 0.8443

STDyz 0.5731 0.9987 Simplicity 0.4268 0.5308

Spatial Filling 0.5043 0.9985 STDyz 0.3798 0.7870

Entropy 0.6663 0.9991 Spatial Filling 0.3182 0.7829

STDxz 0.6009 0.9976 Entropy 0.4552 0.7801

P4Peaks 0.5499 0.9985 AUCC−curve 0.3521 0.7493

LHP 0.4678 0.6368 STD 0.2741 0.7057

AUCC−curve 0.2624 0.7553 P4Peaks 0.1996 0.6594

Table 5.3: FSS for each classifier - Real Life Data

(Pulse & No Pulse) VS (Compression & Artifact) Compression VS Artifact Pulse vs No Pulse
Feature FSS AUC Feature FSS AUC Feature FSS AUC
STDyz 0.9376 0.9376 Spatial Filling 0.9199 0.9199 Prominence 0.7381 0.7381
Kurtosis 0.6465 0.6795 LHP 0.6482 0.6505 LHP 0.4320 0.4843
LHP 0.5966 0.6616 Teager Energy 0.8277 0.8509 STDacc′ 0.6925 0.7054
Spatial Filling 0.6948 0.9348 AUCC−curve 0.8668 0.8822 Simplicity 0.4314 0.4957
STDxz 0.9225 0.9339 Entropy 0.8616 0.9078 Kurtosis 0.3904 0.6537
Entropy 0.7851 0.9299 Prominence 0.6919 0.8448 Spatial Filling 0.3694 0.5803
Skewness 0.6557 0.6624 Kurtosis 0.6117 0.6710 Entropy 0.5543 0.5857
P4Peaks 0.6808 0.9303 P4Peaks 0.6117 0.8642 Skewness 0.4025 0.5724
STD 0.5842 0.9361 Skewness 0.5446 0.662 STDyz 0.3409 0.4561
Simplicity 0.5000 0.6577 Simplicity 0.5389 0.5522 STD 0.2307 0.4472
Teager Energy 0.4958 0.9029 STDyz 0.5843 0.8191 STDxz 0.1513 0.4400
STDacc′ 0.4402 0.9004 STDacc′ 0.4986 0.8531 P4Peaks 0.0728 0.4247
Prominence 0.3963 0.5787 STD 0.4523 0.8381 AUCC−curve 0.0166 0.4996
AUCC−curve 0.3981 0.9081 STDxz -0.2667 0.1659 Teager Energy -0.1354 0.2920

5.2.2.2 Multiclass Classifier

The second algorithm developed consists of using a sole multiclass classifier for the

problem at hand. Seen that the cascade classifier naturally leads to an error accu-

mulation there was interest in understanding how this limitation can be surpassed
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and if this source of error can be diminished. Once again the algorithm was trained

and tested in both datasets available using a LOO validation for the results. Since

the feature selection score used for each classifier of the cascade approach is built for

selection of features in a binary classification problem, a different path was under-

taken with feature selection being performed by a wrapper approach. This means

all possible feature combinations were tested and a metric of performance was used

to select the best combination. The limitation of this approach is that it demands a

higher amount of computational power to select the features for the final classifiers

used, so in order to diminish this effect combinations which contained features that

presented a correlation of over 90% were excluded from the start. A flow diagram

of the feature selection process can be seen in Figure 5.14 with one iteration of the

LOO validation in this approach depicted in Figure 5.15.

Figure 5.14: Wrapper Approach for feature selection

The results obtained for each combination are the general accuracy and sensitivities

and specificities for each class calculated as described in 5.27, 5.28 and 5.29. In or-

der to decide which combination of features presented the best results, the average

geometric mean(GM) was used. This metric has the advantage of relating the sensi-

tivity and specificity, allowing to choose a classifier which presents the best balance

between these two metrics. It was initially calculated for each class of each subject

and then averaged in the subjects, and again averaged among classes to present the
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Figure 5.15: One iteration of the LOO algorithm using the sole multiclass classifier

final metric of the classifier. The combination chosen was the one which measured

the maximum final GM. For each class the calculation is performed as follows:

GMclass =
√
SensitivityclassSpecificityclass (5.25)

5.3 Results

5.3.1 Cascading Classifier

A summary of the features chosen for each classifier can be found in Table 5.4. To

perform LOO validation, one subject composed the test set whilst the remaining

composed the training set. This process was repeated iteratively until all subjects

had been part of the test set. An iteration of the LOO validation is depicted in

Figure 5.16. During training features for each classifier were normalised with the

Z-Score formula as in 5.26 with fi representing the raw value of a feature, µi the

mean of the same feature in all the windows selected and σi the standard deviation.

The mean and standard deviation of each normalisation were posteriorly used for

the correspondent z-scoring in the test data.

zi =
fi − µi
σi

(5.26)
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Table 5.4: Features selected by a FSS for each internal classifier of the cascade
approach

Classifier 1 Classifier 2 Classifier 3

Protocol - Top ACC STDxz
Simplicity

Teager Energy
-

Protocol - Bottom ACC STD
Prominence

STDxz
-

Real-Life Data
STD y z
Kurtosis

Spatial Filling
LHP

Teager Energy

Prominence
LHP

STDacc′

Figure 5.16: One iteration of the LOO validation, when using the cascade classifier
approach

From this approach several measures of performance were extracted, specifically:

• Using the confusion matrix(size 3x3 for protocol data, and 4x4 for real life

data) obtained when comparing the final labels provided by the whole cascade

classifier with the ground truth labels, it is possible to extract the general

accuracy of the algorithm(Accufinal), and a general sensitivity and specificity

for each class. Before doing so however, it is necessary to multiply the matrix

by the inverse of the real probability of a window of each class appearing, in

order to diminish the error brought forward by the class imbalance present

in the data. By doing so, the confusion matrix becomes virtually balanced

providing a unskewed analysis of the behaviour of the solutions developed. An

example of a possible confusion matrix, is depicted in Figure 5.17, with true
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positives(TP), false positives(FP), true negatives(TN) and false negatives(FN)

showed for class 1. General accuracy, sensitivity for each class and specificity

for each class were then calculated as follows in 5.27, 5.28 and 5.29 respectively:

Accufinal =

∑nclass

class=1 TPclass∑nclass

class=1(TPclass + FNclass)
(5.27)

Sensitivityclass =
TPclass

TPclass + FNclass

(5.28)

Specificityclass =
TNclass

TNclass + FPclass
(5.29)

Figure 5.17: Example of a confusion matrix

• Accuracy, Sensitivity and Specificity for each individual classifier used inside

the cascade classifier logic. These calculations were performed so that indi-

vidual analysis of the performance of each step was possible, with the effect of

errors from previous steps unaccounted. Since each of the classifiers represents

a binary classification problem, calculations are made with the commonly used

formulas

Accuracy =
TP + TN

TP + FN + TN + FP
(5.30)

Sensitivity =
TP

TP + FN
(5.31)

Specificity =
TN

TN + FP
(5.32)

The results obtained on the acquired data can be found in Tables 5.5 and 5.7,

whilst the results pertaining the real life data set are depicted in Tables 5.6 and 5.8.

Observation of the results in the time domain allows to perform a better analysis of
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the limitations of the algorithm with an example of a full signal classification visible

in Figure 5.18.

Figure 5.18: Protocol Data: Subject 4 - Full Signal Output of the cascade classifier.
Black line represents the ground truth label and red the predicted output

Table 5.5: Results for the internal classifiers of the algorithm - Protocol Data

Patient #
Classifier 1

Pulse vs (Compression & Artifact)
Classifier 2

Compression vs Artifact
Accu. Sens. Spec. Accu. Sens. Spec.

1
Top 0.9604 1.0000 0.9208 0.7600 1.0000 0.5200
Bottom 1.0000 1.0000 1.0000 0.9430 1.0000 0.8861

2
Top 0.9740 1.0000 0.9479 0.6500 0.3000 1.0000
Bottom 1.0000 1.0000 1.0000 0.9472 0.9500 0.9444

3
Top 0.8925 1.0000 0.7849 0.9269 0.8889 0.9469
Bottom 1.0000 1.0000 1.0000 0.9527 1.0000 0.9054

4
Top 0.8700 1.0000 0.7400 0.9146 1.0000 0.8293
Bottom 0.9588 1.0000 0.9175 0.9494 1.0000 0.8987

5
Top 0.8608 1.0000 0.7216 0.8685 0.7857 0.9512
Bottom 0.9255 1.0000 0.8511 0.9196 0.9444 0.8947

6
Top 0.9612 1.0000 0.9223 0.8418 0.7778 0.9059
Bottom 0.9802 1.0000 0.9604 0.9940 1.0000 0.9880

7
Top 0.9895 1.0000 0.9789 0.8056 0.6111 1.0000
Bottom 0.9844 1.0000 0.9688 0.9252 0.8889 0.9615

8
Top 0.8150 0.9667 0.6633 0.9097 0.9444 0.8750
Bottom 0.9309 1.0000 0.8617 0.8527 0.8000 0.9054

9
Top 0.9375 1.0000 0.8750 0.8590 1.0000 0.7179
Bottom 0.9947 1.0000 0.9895 0.8990 0.8889 0.9091

10
Top 0.8687 1.0000 0.7374 0.8810 1.0000 0.7619
Bottom 0.9625 0.9667 0.9583 0.9250 1.0000 0.8500

11
Top 0.9947 1.0000 0.9894 0.5227 0.0417 1.0000
Bottom 1.0000 1.0000 1.0000 0.9075 0.8421 0.9730

12
Top 0.9348 1.0000 0.8696 0.8919 1.0000 0.7838
Bottom 1.0000 1.0000 1.0000 0.8896 0.8333 0.9459

Mean±std
Top 0.92± 0.06 0.99± 0.01 0.85± 0.11 0.81± 0.12 0.78± 0.31 0.84± 0.16
Bottom 0.98± 0.03 0.99± 0.01 0.96± 0.05 0.93± 0.04 0.93± 0.08 0.92± 0.04
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Table 5.6: Results for the internal classifiers of the algorithm - Real Data

Patient #
Classifier 1

(Pulse & No Pulse) vs (CPR & Artifact)

Classifier 2
Compression vs Artifact

Classifier 3
Pulse vs No Pulse

Accu. Sens. Spec. Accu. Sens. Spec. Accu. Sens. Spec.
1 0.8932 0.9735 0.8129 0.7602 0.8815 0.6389 0.4788 0.2131 0.7444
2 0.7408 0.9940 0.4877 0.6534 0.7317 0.5750 0.5374 0.6070 0.4677
3 0.9520 0.9896 0.9144 0.9440 0.9880 0.9000 0.5641 0.4919 0.6364
4 0.7533 1.0000 0.5067 0.9146 1.0000 0.8293 0.6195 0.7152 0.5238
5 0.8813 0.9822 0.7804 0.8241 0.9944 0.6538 0.5237 0.1000 0.9474

Mean ± std 0.84± 0.09 0.99± 0.01 0.70± 0.19 0.82± 0.12 0.92± 0.12 0.72± 0.14 0.54± 0.05 0.43± 0.26 0.66± 0.19

Table 5.7: Final Results of the cascade classifier - Protocol Data

Patient # Accu Final
Pulse Compression Artifact

Sens. Spec. Sens. Spec. Sens. Spec.

1
Top 0.6667 1.0000 0.8267 1.0000 0.6733 0 1.0000

Bottom 0.6892 1.0000 0.5288 0.2222 0.9494 0.7342 1.0000

2
Top 0.4088 1.0000 0.4618 0.2000 0.6645 0.0526 1.0000

Bottom 0.5648 1.0000 0.4306 0 0.9514 0.7639 1.0000

3
Top 0.6574 1.0000 0.7230 0.9722 0.7632 0 1.0000

Bottom 0.8604 1.0000 0.8311 1.0000 0.9324 0.5270 1.0000

4
Top 0.4074 1.0000 0.3245 0.2222 0.7866 0 1.0000

Bottom 0.5359 1.0000 0.3291 0 0.9684 0.5949 1.0000

5
Top 0.6667 1.0000 0.5000 1.0000 1.0000 0 1.0000

Bottom 0.7081 1.0000 0.5819 0.5556 0.9605 0.4737 0.9722

6
Top 0.4630 1.0000 0.4212 0.2778 0.7176 0 1.0000

Bottom 0.7965 1.0000 0.6948 0.6667 1.0000 0.7229 1.0000

7
Top 0.7205 1.0000 0.8777 0.8333 0.6883 0.2987 1.0000

Bottom 0.8917 1.0000 0.8846 0.7222 0.9936 0.9231 0.9444

8
Top 0.6667 1.0000 0.7437 1.0000 0.7563 0 1.0000

Bottom 0.7743 1.0000 0.8176 0.8500 0.9324 0.5000 0.9250

9
Top 0.6667 1.0000 0.8269 1.0000 0.6731 0 1.0000

Bottom 0.8764 1.0000 0.8701 0.8889 1.0000 0.7403 0.9444

10
Top 0.6000 1.0000 0.7071 0.8667 0.7262 0 1.0000

Bottom 0.5708 1.0000 0.4563 0.1875 0.8875 0.5000 1.0000

11
Top 0.6515 1.0000 0.8314 0.9545 0.6458 0 1.0000

Bottom 0.8487 1.0000 0.7137 0.6316 1.0000 0.7432 0.9737

12
Top 0.6667 1.0000 0.7770 1.0000 0.7230 0 1.0000

Bottom 0.8729 1.0000 0.8784 0.8889 0.9797 0.7162 0.9444

Mean±std
Top 0.60± 0.11 1.00± 0.00 0.67± 0.19 0.78± 0.33 0.73± 0.09 0.03± 0.09 1.00± 0.00

Bottom 0.75± 0.13 1.00± 0.00 0.67± 0.20 0.55± 0.36 0.96± 0.03 0.66± 0.14 0.97± 0.03

Table 5.8: Final Results of the cascade Classifier - Real Data

Patient # Accufinal
Pulse No Pulse Compression Artifact

Sens. Spec. Sens. Spec. Sens. Spec. Sens. Spec.
1 0.4736 0.6393 0.5944 0.2667 0.7502 0.9778 0.9574 0.0000 0.9926
2 0.4501 0.9639 0.4683 0.0323 0.9605 0.7439 0.8179 0.0000 1.0000
3 0.5277 0.8844 0.6359 0.1818 0.8633 0.9940 0.8543 0.0000 1.0000
4 0.5435 0.9358 0.5993 0.2857 0.8404 1.0000 0.9675 0.0000 1.0000
5 0.5481 0.5533 0.7584 0.5789 0.7656 1.0000 0.8534 0.0000 1.0000

Mean±std 0.51± 0.04 0.80± 0.19 0.61± 0.10 0.27± 0.20 0.84± 0.08 0.94± 0.11 0.89± 0.07 0.00± 0.00 1.00± 0.00
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5.3.2 Multiclass Classifier

Using the feature selection wrapper approach described previously, it was possible to

select the combinations which provided the maximum GM. The features chosen for

each sensor tested are summarised in Table 5.9. Using these combinations general

accuracy, sensitivities and specificities of each classifier were also calculated with the

results depicted in Tables 5.10 and 5.11. A time domain output of the classifier is

displayed in Figure 5.19.

Table 5.9: Features selected for the multiclass classifer of each sensor

Features
Protocol Data - Top ACC STD , PM, STDxz, SF, SIM
Protocol Data - Bottom ACC PM , LHP , STDxz , STDyz , KU , SK , STDacc′ , EN , SIM
Real Life Data TE , Prominence , STDyz , STDacc′ , SF

Figure 5.19: Protocol Data: Subject 4 - Full Bottom ACC Signal Output of
the multiclass classifier. Black line represents the ground truth label and red the
predicted output
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Table 5.10: Final results of the multiclass approach - Protocol Data

Patient # Accufinal
Pulse Compression Artifact

Sens. Spec. Sens. Spec. Sens. Spec.

1
Top 0.9600 1.0000 0.9867 1.0000 0.9533 0.8800 1.0000

Bottom 0.9916 1.0000 1.0000 1.0000 0.9873 0.9747 1.0000

2
Top 0.8702 1.0000 0.9803 0.6500 1.0000 0.9605 0.8250

Bottom 0.9907 1.0000 1.0000 1.0000 0.9861 0.9722 1.0000

3
Top 0.9264 1.0000 0.9386 0.9722 0.9649 0.8070 0.9861

Bottom 0.9595 1.0000 1.0000 1.0000 0.9392 0.8784 1.0000

4
Top 0.8780 1.0000 0.9695 1.0000 0.8476 0.6341 1.0000

Bottom 0.9705 1.0000 0.9873 1.0000 0.9684 0.9114 1.0000

5
Top 0.8397 1.0000 0.9268 0.7143 0.9756 0.8049 0.8571

Bottom 0.9561 1.0000 0.9737 1.0000 0.9605 0.8684 1.0000

6
Top 0.9473 1.0000 0.9824 0.8889 0.9941 0.9259 0.9444

Bottom 0.9880 1.0000 0.9819 1.0000 1.0000 0.9639 1.0000

7
Top 0.9259 1.0000 1.0000 0.7778 1.0000 1.0000 0.8889

Bottom 0.9757 0.9655 0.9808 1.0000 1.0000 0.9615 0.9828

8
Top 0.8889 0.8667 0.9750 1.0000 0.9250 0.8000 0.9333

Bottom 0.9124 0.9412 0.9730 0.8500 0.9853 0.9459 0.9103

9
Top 0.8958 0.9310 0.9936 1.0000 0.8846 0.7564 0.9655

Bottom 0.9913 1.0000 1.0000 1.0000 0.9870 0.9740 1.0000

10
Top 0.8452 1.0000 0.9107 1.0000 0.8571 0.5357 1.0000

Bottom 0.9389 0.9667 0.9938 0.8750 0.9938 0.9750 0.9208

11
Top 0.7570 0.9667 0.9931 0.3182 1.0000 0.9861 0.6424

Bottom 0.9717 0.9667 1.0000 0.8750 0.9938 0.9750 0.9208

12
Top 0.9324 1.0000 1.0000 1.0000 0.8986 0.7973 1.0000

Bottom 0.9955 1.0000 1.0000 1.0000 0.9932 0.9865 1.0000

Mean±std
Top 0.89± 0.06 0.98± 0.04 0.97± 0.03 0.86± 0.21 0.94± 0.06 0.82± 0.14 0.92± 0.11

Bottom 0.97± 0.03 0.99± 0.02 0.99± 0.01 0.97± 0.05 0.98± 0.02 0.95± 0.04 0.98± 0.03

Table 5.11: Final results of the multiclass approach - Real Data

Patient # Accufinal
Pulse No Pulse Compression Artifact

Sens. Spec. Sens. Spec. Sens. Spec. Sens. Spec.
1 0.5526 0.1639 0.9222 0.4111 0.7268 0.7185 0.9870 0.9167 0.7674
2 0.4790 0.2577 0.7289 0.2419 0.8899 0.8415 0.9333 0.5750 0.7533
3 0.5832 0.2554 0.9207 0.5455 0.6220 0.9820 0.9991 0.5500 0.9024
4 0.6829 0.6274 0.8568 0.5238 0.8161 0.9706 0.9837 0.6098 0.9206
5 0.5619 0.12 0.9444 0.5789 0.7056 0.8305 0.9744 0.7179 0.7918

Mean±std 0.57± 0.07 0.28± 0.20 0.87± 0.09 0.46± 0.14 0.75± 0.10 0.87± 0.11 0.98± 0.03 0.67± 0.15 0.83± 0.08

5.4 Discussion

5.4.1 Feature Engineering

An extensive feature engineering process was done in this work, with some different

features than those used in previous works being extracted and tested. By obser-

vation of the tables referring to the feature selection process (5.1, 5.2 and 5.3) it

is possible to observe that different features have different behaviour depending on

the binary classification problem to which they are applied and also on the sensor

being used. Success was achieved in obtaining features with high AUC for almost all

the problems at hand. Nevertheless, redundancy was found between some features

and for the binary problem of Pulse/No Pulse feature engineering proved partic-
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ularly demanding. For one, there was a lack of No Pulse data available, which is

understandable, when considering the challenges in performing real-life acquisitions.

However, this lack of data makes it difficult to adequately study the characteristics

of the signal when this state is present. It is also necessary to have in considera-

tion that the lack of medical expertise for the annotation of the data might also

be affecting the results. Despite pulse presence or its absence being defined by the

arterial blood pressure, not always was there a secondary signal which measured

this value and also due to the intensity of the scenario at hand, contamination of

the data might have influenced the interpretation of the existent signals. In Figure

5.20 an ambiguous case is depicted with both sides, i.e., signal pre-compressions

and post-compressions being labeled as pulse, despite the fact the pre-compression

signal is considerably lower in amplitude.

Figure 5.20: Real Data: Subject 2 - Segment Output of the cascade classifier.
Black line represents the ground truth label and red the predicted output. Pulse
segment, followed by compressions and afterwards pulse signal

Nevertheless, interesting developments are brought forward by the feature extraction

performed in this work. For the first time in a accelerometer pulse detection problem,

PSR features were extracted. This non-linear signal processing technique proved to

be important with its features presenting very good AUC for different classification

problems and were included in the final solutions developed for some of the sensors.

Further study of the technique and extraction of features from the phase space might

yet allow for further advances.
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5.4.2 Classification

Firstly, regarding the protocol data acquired and its classification differents points

can be discussed. By observation of Table 5.5 it is immediately visible that the

bottom accelerometer presents better and more stable results as compared to the

top accelerometer. This corroborates the conclusions of the previous chapter where

this sensor was found to present a higher signal quality. Naturally, a higher quality

signal allows for a more stable feature extraction. This effect is also visible, in

Table 5.7 which shows the final results of the cascade classifier algorithm and in

Table 5.10, relative to the multiclass classifier results. Although good results are in

general present in the internal classifiers, when applying the full cascade classifier

algorithm, there is a natural accumulation of error which diminish the performance

considerably. Features selected for the first step of the algorithm in both sensors

of this dataset are features of activity, so if a window corresponding to a lower

activity artifact or compression than those present in the signals used for training

is misclassified in this first step it will never present a correct result in the end,

affecting both the pulse specificity and the sensitivity of the class to which it belongs.

However, this effect is almost completely diminished when the multiclass classifier

approach is used, which comes to prove that using a sole classifier might allow for

a better characterisation of the classes present in the dataset than working with

assumptions of activity and periodicity that might not always be linear. In Figure

5.21 it is possible to observe the misclassification of lower activity artifact windows.

Figure 5.21: Protocol Data: Subject 8 - Segment Output of the cascade classifier.
Black line represents the ground truth label and red the predicted output
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Table 5.12: Results achieved by Dellimore et al.[1] using the real-life data

Patient #
Activity classification

Compression Periodicity
classification

Pulse periodicity
classification

Sens. Spec. Sens. Spec. Sens. Spec.
1 1.0000 0.8390 0.7210 0.9140 0.3680 0.8330
2 1.0000 0.8333 0.9380 0.7880 0.7000 0.4000
3 0.9770 0.9180 0.9650 0.8940 1.0000 0.2350
4 1.0000 0.8690 1.0000 0.8240 0.2590 0.8000
5 0.9960 0.9220 0.9930 0.8460 0.7310 0.6580

The results achieved when training and testing with the real-life dataset are not

as optimistic. In Table 5.6, which refers to the results of the internal classifiers of

the first algorithm, it is observed that relatively good sensitivities and specificities

are present in both the first and the second classifier. Conversely, poor results are

achieved in the classification of Pulse and No Pulse windows. The results achieved

in the previous work by Dellimore et al., presented in the Table 5.12, present higher

sensitivities and specificities in all the classifiers. However, it is necessary to take in

consideration that in the previous work subject-dependent optimal thresholds were

used, instead of automatic classification by a trained classifier which undoubtedly

influences the results positively. This practice is not applicable in a real-life situation

as prior knowledge of each subject undergoing CPR is non existent. It is also worth

noting that, while performing data annotation some of the prior labels were altered

which also influences the results. Most of these alterations were related to low

activity artifacts, which were unidentified, leading to the existence of high activity

and low activity artifact labels in the dataset. By training with both of these present

in the signal it is possible to see in Table 5.8, which refers to the final results of the

cascade classifier, that the sensitivity for artifact detection is zero. If it has a high

activity it is labeled as Compression and if it presents a low activity it is immediately

misclassified in the first step of the algorithm(depicted in Figures 5.22 and 5.23).

It’s worth mentioning though that Compression classification presents both high

sensitity and specificity, whilst Pulse classification shows a high sensitivity and low

specificity.

When testing with the second algorithm, i.e., the multiclass classifier, Artifact sen-

sitivities are drastically increased, whilst also presenting high specificity. However,

this increase leads to a drastic decrease in pulse sensitivity. Pulse and No Pulse

classification still present limitations, which are to be expected as lack of absence of

pulse data and data imbalance made it difficult to adequately study the problem.

Compression classification maintains high sensitivity and specificity.

It’s also important to remember that tests in the protocol data were performed on
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Figure 5.22: Real Data: Subject 1 - Segment Output of the cascade classifier.
Black line represents the ground truth label and red the predicted output. Low
activity artifact misclassified

Figure 5.23: Real Data: Subject 1 - Segment Output of the cascade classifier.
Black line represents the ground truth label and red the predicted output. High
activity artifact misclassified

”clean” windows, i.e., transitions were marked during annotation and were removed

from training and testing. This was not done in the real-life dataset annotation.

Certainly, the very good results obtained in the acquired data are also influenced

by this aspect and the results on the real-life dataset suffer, as data contamination

by noise is present.
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5.5 Conclusion and Future Work

Automatic pulse detection is no easy task, even more so when trying to do it in

a cardiopulmonary resuscitation scenario. As discussed in the previous chapter a

protocol was designed and data acquisition of 12 healthy volunteers took place in

order to create a database, which along with a real-life data set composed of 5

patients undergoing CPR, was used to develop technical solutions.

Regarding the extensive feature engineering performed, success was achieved in find-

ing new features which accurately characterise the domain space for several of the

existent classification problems. The most interesting contribution arises from the

extraction of features from the PSR of the signal.

In this chapter two approaches were developed not only for Pulse/No Pulse classifi-

cation but also for classification of other common classes present in such a scenario,

specifically Compressions and Artifacts. The first approach consisted of a cascade

classifier, with two or three internal classifiers(depending of the dataset used). This

approach proved not to be the best, due to the error accumulation that is intrinsic to

it. To diminish this effect a sole multiclass classifier was also trained and tested, and

it succeeded in improving some results in all datasets, with its effect in the protocol

data being tremendous leading to exceptional results. This leads to the conclusion

that it might be the best approach to develop future studies in this area.

The major conclusion derived from the simulated data is that sensor positioning

is vital for signal quality and consequently to the results obtained with the data.

Hence, further studies on the positioning of the sensor should be performed in order

to estabilish a relative optimal position. This would allow for more consistent data

which would allow for a more correct analysis of the properties of the signal.

Pulse presence and absence detection in the real-life signals did not show particularly

good results. However, this was to be expected as data imbalance and the lack of

No Pulse data available are main limitations in the dataset used. Nevertheless,

low activity segments of the signal are easy to identify as shown by results of the

internal classifiers of the first approach, and further signal processing techniques on

these segments, such as running a pulse peak algorithm might provide interesting

results. A multiclass classifier might also provide classification potential in this

problem. Additionally, further studies in blood pressure assessment using ACC

signals from the carotid also constitute an important step, as this is the vital sign

which determines presence or absence of pulse.
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It’s important to take in consideration that the size of both datasets was limited and

so no conclusions are definitive with further testing in an expanded dataset being

necessary.
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Conclusions

The aim of this thesis was to explore the use of accelerometers positioned in the

neck area along the carotid for the development of pulse detection algorithms during

cardiopulmonary resuscitation. Motivation for this study arises from the fact that

current pulse assessment methods during resuscitation events are still prone to error,

take too long and do not provide an objective measure of pulse. Hence, there is a

need for a pulse detection technique which improves on the current State-of-the-

Art techniques. Focus was also put on classifying different classes which are present

during these interventions, namely compressions and artifacts. Being able to identify

the different conditions would allow for a more optimal resuscitation process and

improve low survival outcomes.

Since acquisition of accelerometer signals in real-life CPR scenarios in this thesis

was not possible, a study with healthy volunteers was organised. The first challenge

was to design a protocol for data acquisition which allowed for the simulation in

controlled conditions of characteristics present in a real-life event. Using this proto-

col a dataset of 12 healthy volunteers was built. For each subject two accelerometer

signals positioned along the carotid artery were measured synchronously with ECG

and PPG. Although the work focused on the use of the accelerometer data, build-

ing a complete dataset is vital for allowing future research using the acquired data.

Possible future work using the acquired dataset:

• Pulse Peak Detection: development of a algorithm for pulse rate extraction,

evaluating the results using the heart rate extracted from the ECG. Com-

pression Rate could also be extracted. This knowledge could be useful for

providing feedback to rescuers allowing them to improve the care given.

• Pulse Wave Velocity: Feasibility of using two accelerometers positioned along

the carotid for calculation of PWV

• Pulse Strength Assessment: Studying how pulse signal characteristic correlate
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with PAT, with the ground truth values calculated from PPG and ECG signal;

Additionaly, a dataset of 5 patients undergoing CPR in a real-life scenario was

available allowing comparison between the clinical data and the simulated data.

It was found that the developed protocol was able to accurately introduce periodic

components simulating compression rate. Nevertheless, limitations were also found

in the data with periodic artifacts being present instead of stochastic changes, which

does not represent a realistic situation. It was possible to infer initially that sensor

positioning at the neck plays an important role in the sensitivity of the measured

signal content. In the acquisition of the simulated data two sensors were positioned

in different positions in the neck area on the carotid artery, with one sensor being

a higher position than the other. The bottom sensor demonstrated having a higher

quality, with frequency components being more established in the signals measured.

A more stable morphology throughout the different subjects was also evident. Future

work on this would allow for higher quality signals, which in turn would allow

for better study of signal’s characteristics, as well as diminishing the morphology

heterogeneity depending on sensor position.

Feature engineering based on domain knowledge and on fundamental information

was performed in two different representations: the time domain and the phase

space reconstruction of the signal. The latter presented a novel contribution on

pulse detection applications and the features extracted in this representation showed

potential in solving this detection problem.

Two approaches were implemented for the pulse detection classification and tested

in both datasets. Regarding the use of a cascading classifier in the protocol data, it

was found that despite relatively good performance being achieved in the individual

steps of the method, the overall performance of this algorithm was relatively low

for both sensor positions. Final accuracy averaged 60% and 75% for the top and

bottom ACC respectively. The reason for this is that this approach suffers from

intrinsic accumulation of error as a window misclassified in the first step will never

be correctly classified in the end. Nevertheless, it was possible to observe that the

bottom accelerometer signals presented better and less heterogeneous results which

corroborates the previous insight on the signal quality of this sensor. When the

second approach, i.e., the multiclass classifier was used on this data the effect was

drastic with an average final accuracy of 89% in the top accelerometer data and

97% in the bottom accelerometer. Sensitivity and Specificity for each class in the

bottom ACC all averaged ≥ 95% with standard deviations ≤ 0.05%. However, it is

important to note that transitions windows were excluded from training and testing
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in this dataset, thus possibly improving the results.

Concerning the behaviour of a cascading classifier approach in the real life data it

was found that due to the aforementioned source of error in this approach, all of

the artifact windows were misclassified. This changes when using the multiclass

classifier, with the average sensitivity of this class increasing to 67%. However,

in this approach average artifact specificity decreased from 100% to 83%, which

affected pulse sensitivity which becomes very low, averaging a value of 28%, whilst

on the cascade classifier it averaged 89%. Nevertheless, this approach provided some

interesting results and shows classification potential for the problem.

Pulse and No Pulse discrimination proved to be a difficult task with its performance

in both approaches being fairly poor. However, it is important to note limitations

faced: 1) there was a lack of data regarding absence of pulse ; 2) real-life signals

are fairly contaminated with noise; 3) annotation was performed without medical

expertise; 4) no windows were excluded from training and testing. Due to all of

these no definitive conclusions can be taken from the results obtained.

Further work is necessary before a concrete viable solution is found as the limita-

tions are various. Due to the limited datasets, it is difficult to study the problem

thoroughly. Extension of the existing datasets is necessary, with the main require-

ment being the extraction of more data with absence of pulse. However, real-life

data acquisition is difficult to arrange, hence suitable alternatives should be studied.

Further work on simulated data and on the relation of pulse accelerometer signal

with blood pressure(the physiological factor which determines presence or absence

of pulse) could provide more insights on this problem.

In summary, despite several limitations imposed by the small datasets, the main goal

of contributing with further knowledge for the innovation of the care given during

CPR has been achieved.
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