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Resumo

Computação quântica é uma área de grande desenvolvimento hoje em dia e isso traz

uma necessidade para desenvolver hardware e software. Uma vez que o hardware

dispońıvel é muito pouco e o software precisa de ser testado, existe uma necessidade

de uma boa plataforma para testar as soluções de software. Simular um computador

quântico num computador clássico não é ideal, contudo é uma resposta viável a esta

necessidade, para um pequeno número de qubits. Além disso, os computadores

quânticos necessitam dos computadores clássicos de forma a criar um sistema real

prático, isto apresenta-se como uma excelente oportunidade para testar técnicas

de programação clássica para melhorar a programação quântica. Esta tese propõe

o uso de programação clássica para melhorar a implementação de um algoritmo de

adição modular usando transformadas de Fourier quânticas. Os principais objectivos

deste trabalho são: simular um circuito quântico; testar um algoritmo quântico

e compará-lo com o seu equivalente clássico; implementar o algoritmo de adição

modular, usando as capacidades de aceleração de computação das transformadas de

Fourier quânticas e optimizá-lo; Testar e implementar códigos quânticos de correcção

de erros; fazer um teste num computador quântico real.

De forma a testar a linguagem e comparar um algoritmo quântico com um clássico,

fez-se um teste ao algoritmo de Shor que está dispońıvel de raiz na plataforma

LIQUi |〉 . Apesar do algoritmo de Shor ter, teoricamente, uma dependência de

tipo polinomial com a dimensão do problema, os testes realizados mostraram que o

tempo de computação tem um comportamento exponencial. Simular um algoritmo

quântico num computador clássico requer tempo de computação que cresce de forma

exponencial, pois é necessário armazenar e processar todos os estados do sistema,

que é um espaço de Hilbert de dimensão 2n.

O algoritmo de adição modular usando transformadas de Fourier quânticas foi im-

plementado na plataforma LIQUi |〉 . Seguidamente fizeram-se melhorias e opti-

mizações. O número de operações teórico é O(n2). Contudo, depois de fazer mel-
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horias ao circuito, removendo gates desnecessárias para casos espećıficos, o número

de operações passa a ter um valor mı́nimo de Ω(n). Com este tipo de alterações o

sistema pode apresentar melhorias no que respeito ao tempo de simulação até um

factor de ordem 10. Isto mostra que programar um algoritmo quântico tendo em

conta casos espećıficos pode melhorar imenso o desempenho da simulação.

Os códigos de correção de erros quânticos foram implementados num circuito sim-

ples, com as ferramentas dispońıveis na plataforma LIQUi |〉 , e obteve-se um sistema

que consegue lidar com erros com probabilidade inferior ou igual a 2%, com uma

taxa de sucesso na sua correção de 95%. Contudo são necessários circuitos muito

grandes, pouco exeqúıveis.

A plataforma disponibilizada pela IBM para fazer testes num computador quântico

real, foi utilizada para testar o algoritmo de adição modular e adição normal (com

carry bit). Uma vez que esta plataforma tem um número limitado de gates, reforça

a ideia de que se deve otimizar os algoritmos tendo em conta casos particulares.

Os resultados destes testes mostram também que é importante utilizar correcção

de erros quânticos, mas para que isso seja viável é necessário que haja mais qubits

dispońıveis ou outro tipo de códigos.

Palavras-Chave: Simulação de Circuitos Quânticas, Transformada de Fourier

Quântica, Adição Modular, Algoritmo de Shor, Correcção de Erros Quânticos,

LIQUi |〉 , IBM Q
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Abstract

Quantum computation is a great area of development nowadays, so there is a great

need to produce hardware and implement and create new software. Since hardware is

very limited, and the software needs to be tested, there is a real need for a platform

to test software solutions. Simulating a quantum computer in a classical one is

not ideal, but is a viable answer to test quantum software with a small number of

qubits as input. Also, since quantum computers need classical computers in order

to become a real system, this is an opportunity to test techniques using classical

and quantum programming together. This master thesis uses classical computation

to improve a quantum addition algorithm based on quantum Fourier transforms

(QFT). The main objectives of this work are: to simulate a quantum circuit; to test

a quantum algorithm and to compare it with a classical equivalent; to implement a

modular addition algorithm using the speedup capabilities of QFT and to optimize

it; to test Quantum Error Correction (QEC) implementation; to run a simplified

version of the modular addition algorithm in a real quantum computer.

A test to the Shor’s algorithm, available in LIQUi |〉 , was made in order to test the

language and compare the algorithm with a classical one. Even though Shor’s algo-

rithm has a polynomial dependence with the size of the problem, the tests showed

that regarding computing time, it performed in an exponential way. Simulating a

quantum algorithm in a classical computer will take exponential time because it

needs to store and process all the states of the system, a Hilbert space of dimension

2n.

Using QFT, the algorithm of modular addition was implemented in LIQUi |〉 . It

was then improved, and all versions were optimized. The theoretical values for the

number of gates is O(n2). However, improving the circuit by eliminating gates in

cases where they are not necessary, can bring the gate number down to Ω(n) in the

best cases. This approach can reduce the simulation time by an order of magnitude.

This shows that programming a quantum algorithm analysing specific cases can
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improve considerably the simulation efficiency.

QEC codes were implemented in a simple circuit using the tools available in LIQUi |〉 ,

and we got a system that can handle a probability of errors of 0.02, maximum, with

95% success rate. However, the number of qubits of this circuit will be very signifi-

cant.

The web service IBM Q Experience was used to make a test, in a real quantum com-

puter, with the algorithm for modular addition, as well as the algorithm for normal

addition (that is, including a carry bit). Since the IBM Q Experience had a limited

set of available gates and entry qubits, it reinforced the idea that it is important

to optimize algorithms considering specific cases for which the circuits can be sim-

plified. The results also show the importance of QEC codes, they are fundamental

to have a proper functional system. Its implementation, however, requires a much

larger number of entry qubits or the development of optimized QEC codes.

Keywords: Quantum Circuit Simulation, Quantum Fourier Transform, Modular

Addition, Shor’s Algorithm, Quantum Error Correction, LIQUi |〉 , IBM Q
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Introduction

Quantum computers are having great improvements on both hardware and soft-

ware fronts. However, the physical computers available today are still few, and the

ones that exist are very limited because they only have a small number of qubits

to compute (of the order of ten or less than ten). Meanwhile, software for quan-

tum machines needs to be improved and tested for the near future, when quantum

computers are expected to have a number of qubits exceeding 50. So, software de-

velopment needs to be tested using another physical platform: quantum simulation

in a classic computer is the answer. Simulating a quantum algorithm in a classic

computer allows testing and the development of optimization methods. In addition,

since quantum computers need classical computers to become a real system, this

is an opportunity to test techniques using classical and quantum programming to-

gether. The main objectives of this work are: to simulate a quantum circuit; to test

a quantum algorithm and to compare it with a classical equivalent; to implement

a modular addition algorithm using the speedup capabilities of quantum Fourier

Transforms and to optimize it; to test Quantum Error Correction (QEC) imple-

mentation; to run a simplified version of the modular addition algorithm in a real

quantum computer.

Chapter 2 will present the basic concepts to understand quantum computation and

the algorithm that will be implemented. Those concepts are important to under-

stand how quantum computation can have outstanding performances to solve some

problems, namely using the Quantum Fourier Transforms (QFT).

In chapter 3 the simulation algorithm will be discussed, as well as the environment

that was chosen for this work, LIQUi |〉 . A small test for one of the LIQUi |〉 available

algorithms, Shor’s algorithm, will be performed and compared with a similar test

for a classical factoring algorithm.

Chapter 4 is central to the objectives of this work. It concerns the programming

and testing of modular addition using QFT, which is the objective of this master
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thesis. This means writing all the functions from scratch, including QFT, inverse

QFT (IQFT) and all the other operations needed to implement the algorithm. The

operations of the algorithm will use the basic gate set available in LIQUi |〉 , although

some of the gates need to be adapted from other gates and functions available. An

effort was made to optimize the implementation of the algorithm and understand

how classical computers can be used in the process.

Chapter 5 is devoted to QEC codes, which are essential to assure that the quantum

system is reliable enough to produce good results. This codes will be explored,

namely, the way they work and how they are implemented in LIQUi |〉 . There will

be tests to see how the stabilizer environment works, and which are the benefits of

using it.

Lastly, after implementing a modular addition algorithm, testing it, and under-

standing the QEC role in quantum computation, it’s time to make a quick test in

a real quantum computer, and verify how reliable the results are. This tests will be

performed in the IBM Q Experience, which is the subject of chapter 6.

1.1 Motivation

The theme of this master thesis was self-proposed because I have a big interest in

this area of research. It’s a fast developing area and now is the right time to start

learning its basic principles, in order to aspire to make some valuable work in the

future.

As this is a first approach to the area of quantum computation, this thesis may not

follow a classic outline. Instead, this thesis will have more introductory concepts

than it’s usual in an Engineering Physics thesis, since one of its main goals is to

provide the understanding of essential concepts in order to work in this area in

the future. Therefore, it will explore areas of quantum computation that are not

essential to perform a quantum algorithm simulation. The most important and

relevant details are explored in chapter 4, however, Quantum Error Correction codes

are explored as well, but only to get accustomed to them.

The theme itself is very interesting. Quantum computation has some marvellous

characteristics, such as quantum parallelism which allows some computing problems

to be solved faster. However, in order to be able to use these characteristics, there

is a need for algorithms to be optimized for efficiency. Algorithm developers have

always found answers to the problems using the most elegant and smart solutions
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to design them. The use of QFT in addition algorithms is one example, as is the

use of quantum parallelism to improve algorithm efficiency.

It may seem unusual at first sight to perform a basic operation, such as the ad-

dition, using a complex tool, like the QFT, since classical Fourier transforms need

addition operations themselves. However, due to the nature of the Quantum Fourier

transform, only Hadamard and Rotations gates are needed to implement the QFT,

making it in an ideal method to perform an addition in the transform domain. In

this domain, the addition is simply achieved with the use of controlled rotations

without the need of any carry bits.

Furthermore, the available simulation platforms for quantum software are now a re-

ality that works, giving good results. There are even options to implement quantum

circuits into real quantum computers using a cloud service.

Without any doubt, quantum computation will become a very important area of

physics in a not so distant future, and this is the ideal time to start working on it.

It’s an opportunity to be part of the group of people that contribute to developing

a new computation area.

1.2 State of the Art

Quantum computation is an area with an amazing pace of development. On one

side we have the hardware part, having great investment from the private and public

sector, and is showing some impressive results. There are different approaches for

implementing a physical quantum computer. Qubits can be based on particle spins,

or on photons and even on superconductors systems for example [1]. In a near

future, we might have a reliable quantum computer with enough qubits (more than

50) to implement algorithms for different applications. We are already seeing some

examples of its use [3, 4] and plans to solve problems in the future [5, 6].

On the other side, we have the software, with an even more impressive pace of de-

velopment. On the late 90′s algorithm design was progressing rapidly but quantum

languages were missing. When the first appeared, they were an important contribu-

tion [7, 8]. The software development of quantum computation, and also the whole

quantum computation itself, were in a low pace of developing for the first decade

of 2000. However, in the last few years, it’s having a speedup that suggests it’s

going in the right direction and getting good results. So the number of available

languages started to increase, in a matter of a few years, the software landscape
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changed its form. The comparison between an article from 2011 reviewing the scene

and talking about a few languages [9], with a review article from 2017 [2], shows that

software languages can become outdated very quickly in this area. Actually, since

the beginning of this thesis work, there are some new additions to the language list.

Even within the same company, namely Microsoft, a new language is being devel-

oped to replace LIQUi |〉 [10], IBM Q environment is also causing a loss of interest

in LIQUi |〉 . Algorithms that are already published are being tested, optimized,

and sometimes modified to improve their implementation [11, 12]. Simulation is an

important part of this process.

The available tools to simulate a quantum circuit are various and at present there is

even the possibility to work with real quantum computers: in the IBM Q experience,

a quantum computer is accessible from the cloud [13]. But it’s no longer unique in the

market, the Chinese Centre of Excellence in Quantum Computation has announced

a cloud service to test their quantum computer of 11 qubits [14]. This center is from

the same group that has already implemented 712 km of a quantum communication

secure line that uses quantum encryptation [15]. Intel is also interested in this

market and has announced the production of a 49 qubit quantum chip[16].

Quantum computation landscape is changing and shaping itself rapidly. Since the

private sector started to invest on it, a race has begun to ensure a supremacy of one

company over the others. At present, some of the big names of classical computation

are on the race. In many ways, quantum computation is following the steps of

classical computation: the preliminary algorithm design and the companies race to

present the best initial products are some examples. However, quantum computation

has its own concepts and challenges, namely the difficulties to implement a real

system. Nevertheless, in the long term, positive results will outweigh the difficulties.

Regarding the quantum algorithm design, in the 90’s there was a huge development

triggered by the Shor’s algorithm, published in 1994 [17]. It increased the interest in

quantum computation since it is devoted to a problem with important applications

in cryptography and its theoretical efficiency exceeds its classical equivalent.

The addition operation is one of the basic and most important operations used in

computation and in our lives. We are exposed to the addition algorithm since the

very early stages of our learning process. However, implementing this algorithm

using a machine may not be as simple as we learn as infants. Nevertheless, there are

ancient implementations of the addition algorithm such as the Abacus instrument.

The first quantum addition algorithm appeared only in 1996 proposed by Vedral

Barenco and Ekert [18], two years after Shor’s algorithm. In 1998 a new variant for
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a quantum addition algorithm was proposed by Gosset [19]. Both used the concept

of a classic well-known addition algorithm but adapted for reversible computation.

Each one of them used its own variation for the manipulation of the carry bit. In

the year 2000 Drapper publishes the article ”Addition on a Quantum Computer”[20]

presenting a completely new idea, being the first algorithm to perform a modular

addition using a Quantum Fourier Transform. Just like the software, the algorithm

design had a slow pace of development during the following decade. However, in

recent years new interesting ideas showed up. In 2017, Perez and Garcia-Escartin

published an article [11] suggesting some modifications to the Drapper addition

algorithm in order to implement non-modular addition with only one carry bit,

disregarding the number of entry qubits. Furthermore, they suggested to generalize

this algorithm to perform more arithmetic operations, such as multiplications and

averages.
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Basic Principles for Quantum

Computation

2.1 Concept of Quantum Computer

2.1.1 Turing Machines

The concept of Turing Machines was introduced in 1936 by Alan Turing, and it’s

the starting point for the other computational models. So, it’s very important that

we understand this model in order to learn how algorithms work in a general way.

2.1.1.1 Classic model

The simplest model for a Turing Machine (figure (2.1)), only has the following

components [1, 21]:

1. a program (set of sequential instructions);

2. a finite state control (q1...qm);

3. a tape, which works like a traditional memory;

4. a read-write tape-head (reads/writes in the tape).

The Turing machine follows the sequential instructions, varies the position in the

tape and alters the state, that’s the basic principle. The state control has a finite

number of states of the system (q1...qm), plus the special states qs (starting state),

that represents the initial state, and qh (halting state) that points out when the

system has stopped, that is, halted. The state control processes the information that

comes in and goes out of the system by changing the states in the tape. Basically, the
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Figure 2.1: Schematics of a Turing Machine with the basic components present.
Source:[1]

state control runs the execution of the program, in a similar way as the information

is processed in a computer.

In the tape, there is an infinite number of squares (this is a perfect, theoretical

machine), which are small places to store the states. There are a finite number of

symbols, namely, in this case, 0,1,b, .. The symbol . represents the beginning of

the tape, and is always located in the first square, 0 and 1 are bits and b represents

the empty squares.

The program for this machine has a specific formatting type for commands. The code

lines will have the format: < q,x,q′,x′,s >, which are sequential instructions that

the program will then execute. The symbols ”<” and ”>” represent the beginning

and the end of the line. The first letter, q, corresponds to the current state of the

internal system. The x represents the latter state read from the tape; q′ and x′ are

the new internal states and tape symbols respectively. The s will tell the read-write

tape-head the direction to go next.

We saw how the code lines work, now let’s see how the system operates. The program

executes the commands in sequential order. It will search the code for the exact line

with the current states, the letter q being the internal state and the letter x being

the state written in the tape, at that moment. When the program finds the line

that starts by q,x, it executes the orders of the second half of the line, changes the

internal state to q′ and the symbol in the tape to x′. If s is +1,− 1 or 0 it changes

the tape-head to the right, left or does not change the position, respectively. For

example, the system searches sequentially for the line < qs, ., qm,1, + 1 > when it

starts, since upon start the initial state will be qs and the tape will have .. Then

it changes the state to qm and the symbol to 1. Lastly, it changes the tape-head to

8



2. Basic Principles for Quantum Computation

the right square and searches for the next line which will start with < qm,1,... >.

If the machine can’t find a line with the right state and symbol, the program will

halt. This may not be the most efficient way to execute the program, since it has

to search line by line, sequentially, until finding the right one, every cycle. So, the

code has to be written with special care. For example, to execute the last line of

written code it needs to search all the others first, which consumes time and may

execute the wrong line if there is an error. However, if the programmer writes the

code carefully it will be executed without any errors. This simple process allows us

to write all kinds of functions, which gives the Church-Turing thesis:

The class of functions computable by a Turing Machine corresponds exactly to the

same class computable by an algorithm.

Besides, a Turing Machine is perfectly capable of reproducing any other machine,

this is the origin of system simulation. In order to simulate any system with a Turing

Machine that can compute any algorithm, we need a global Turing machine that

can reproduce a different machine and all its states, which is a Universal Turing

Machine [22].

Let us consider the case of a probabilistic machine, which brings a certain random

factor to the system. The first discussed model reads code lines in sequence so the

states of the system will be in succession. This is called a deterministic machine

model. In a non-deterministic model every possible state of the system has

several possible ”paths” of action. This means that if every state has 2 possibilities

(paths), then after only two cycles we will have 4 paths and so on. This is an

enormous increase in possibilities, it’s an exponential growth, which means it takes

a lot of computational power and it will be impossible to know all the possible

paths at the same time. But if we introduce a random factor, like a coin toss, it

can make the path decision faster. In short, it is introduced a certain level of chaos

(randomness) in the system that can make computation run faster. A common

example of this model is described as the coin toss model. To execute it in a

deterministic Turing machine, it will need to compute every possible path of the

system. With the probabilistic model, it just has a certain probability of choosing

one specific path, hence being faster. From this, we go to the strong Church-Turing

thesis:

Any computational model can be simulated on a Probabilistic Turing Machine with

at most a polynomial increase in the number of elementary operations required [1].
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2.1.1.2 Quantum model

A reversible machine is a device for which we can recover the information of the

initial state from the recorded information of the final state, that is, the process is

reversible. An isolated quantum system it’s a dynamic system where it is guaranteed

the reversible principle without any ambiguity [21]. Bennioff created a scheme for

the reversible Turing machine and this particular model contributed to the under-

standing and evolution of quantum computing. Nevertheless, the model used today

is the circuit model, which is equivalent to the Turing machine model but simpler.

It doesn’t need an exhaustive representation which makes it a better option to work

with.

The Quantum Turing Machine (QTM) has some differences when compared with

the classical model [22]. The operations of reading, writing and position changing

are made by processes based on quantum mechanics principles. Besides, the tape

has the ability to register non-classical states. This means that the machine can

have superposition states, a mixed state between a zero and one classical states,

which is unknown until a measurement is made. This particular feature allows a

Quantum Turing Machine to make a lot of internal operations at the same time,

which translates into faster information processing. However, this quantum system

has a problem of information loss after measurement. In order to use the model in

a real situation and since the state will no longer be in a superposition, there is a

need to make measurements to the tape states. These states will lose information

as they will settle as one or zero. When we talked about a probabilistic machine we

mentioned the probability of the machine choosing one particular path. In the QTM

model, the system will compute all the different paths at the same time, and then

after measurement, we, the users, will know the final state. It is possible to describe

the state of the system as c0|0 > +c1|1 >, where the probability of finding the system

in a certain state after measurement is given by the square of the corresponding

amplitude, cn, with n = 0,1. For example, the probability of obtaining a state |0〉
after measurement is |c0|2. Also, since this is a quantum system, the bits, which in

a quantum system are called qubits, can be entangled. In simple words, this means

that qubits can have a special correlation between them which will influence the

measurement output. In a system with more than one qubit, measuring one qubit

will determine its state and the state of the other or other qubits to which the first

one is entangled, without measuring the latter.

The after effects of making a measurement are far more serious in a quantum than

in a classical machine, where the measurement has no consequence at all. So, the
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decision to measure and when is of great importance. Besides, we should also have

into account other important details, such as the fact that the probability factors

c are complex numbers. The addition of some of the factors can indeed cancel or

amplify the final states probability. This is quantum interference, similar to what is

described by a classical model to study waves.

2.2 Basic Concepts

2.2.1 Qubit

The most basic concept of classical computation is the bit, which is the representa-

tion of information using the binary base. Bits only have two different and unique

states, |0〉 and |1〉 1. That is enough to represent all kinds of information, and it’s

easy to use to make simple operations such as read, write and delete data without

changing the state in question. So the basic mathematical operations are possible

to implement with some ease.

The quantum domain has adopted the binary base from its classical predecessor,

although in some quantum systems a different basis could have been adopted. Since

the quantum states obey quantum mechanic laws, the state of the system is

indeed a superposition of the states |0〉 and |1〉. This is the quantum state

called qubit:

|ψ〉 = α |0〉+ β |1〉 (2.1)

where α and β are amplitudes given by complex numbers such that

|α|2 + |β|2 = 1 (2.2)

The equation (2.2) just states that the probability of obtaining the system either

in state |0〉 or in state |1〉, after a measurement, is one. The superposition of the

states comes from the wave-like behaviour of the particles. In the classical domain,

the information described in binary is either a |0〉 or a |1〉. The qubit can be in

any combination of states |0〉 and |1〉, since α and β can have any complex value.

1The Dirac notation is used here despite discussing bits, because it’s the notation used in
quantum computation even when the qubits are only bits. Note that in classical computation bits
don’t require this notation, are only represented by 0 and 1.

11



2. Basic Principles for Quantum Computation

Once a measurement is made the qubit is destroyed, becoming a bit, and

reducing the number of possibilities available. This means that measurements are an

extremely important operation to work within the quantum domain. They impose a

strong limitation to quantum computation, unlike the classical measurements which

don’t affect the bit whatsoever.

Another consequence of the measuring process, is that it makes it impossible to

know the initial state from the knowledge of the final state (after measurement).

For example, obtaining the state |1〉 after measurement means, in classical bits,

that the initial state was |1〉, but in quantum bits we can only conclude there was a

non zero probability of getting |1〉 after measurement.

Gates are used in order to perform basic operations to qubits, similarly to what

is done in classical computation. In contrast to measurements, the gates have the

characteristic of not destroying the qubit, this will be discussed in the subsection

(2.2.3), devoted to quantum gates.

The physical implementation of a qubit needs a quantum system of two possible

states in order to have a binary base. The reference model are particles with spin

1/2, which have as possible spin states the so called up and down states, that

respectively means positive and negative spin projection in a given direction. The

commonly adopted notation is to associate the spin up to the state |0〉 and the spin

down to the state |1〉, both spins in the z direction. There are other choices of

physical systems to implement the states |0〉 and |1〉. The vertical and horizontal

polarization of a photon or two electronic states of an atom are common examples.

The choice of the physical system to implement qubits is a subject of intense research

work. However, the rules to manipulate the information are the same as long as it’s

a quantum system.

Looking back to the equation (2.1), α e β are complex numbers, and therefore we

can rewrite it as:

|ψ〉 = A eiγ |0〉+B eiδ |1〉

where A,B, γ and δ are real numbers. If we consider the angle φ = δ − γ, we can

rearrange the equation into:

|ψ〉 = eiγ(A |0〉+B eiφ |1〉)

Now, since the term eiγ is a global phase with no physical observable effect on the
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system, we can disregard it. Using the condition of normalization from equation

(2.2), A2 +B2 = 1. Writing A = cos θ
2

and B = sin θ
2

we can have the final form:

|ψ〉 = cos
θ

2
|0〉+ eiφ sin

θ

2
|1〉 (2.3)

This will simplify the expression, converting a four real variable expression into a

two real variable expression. This allows representing a qubit as shown in the figure

(2.2), which is much more practical to visualize. The angles θ and φ are the spherical

coordinates of a specific point in the unitary radius sphere, called Bloch sphere.

Representing quantum states as points in the Bloch sphere is very useful to see the

effects that operations have on the one-qubit states. We can see that the basis states

|0〉 and |1〉 are in the top and bottom of the z − axis, respectively. This is known

as the z basis or standard basis.

When the system has more than a single qubit, the Bloch sphere cannot be used to

represent the system.

Figure 2.2: Representation of one qubit in the Bloch sphere. Source: [1]
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2.2.2 System of N Qubits

Having more than one qubit will make the system more complex, since the superpo-

sition will still hold for the complete system. As the number of qubits gets larger, the

number of combinations of superposition states grows with 2n, n being the number

of qubits. As will be discussed during chapter 3, this behaviour has very important

effects on the simulation of a quantum system.

For systems with more than one qubit, the qubits can be entangled. In other

words, the qubit states can have a non-classical correlation. For a two-qubit system

this means that when someone measures one of the qubits of the entangled pair,

those who know the result of the measurement will automatically know the state of

the other one, even if they are far apart. This is the basic principle behind quantum

teleportation, one of the most important applications of quantum computation.

2.2.2.1 Tensor Product

In order to study systems with multiple qubits, we need to introduce the concept of

tensor product first. The tensor product will make vector spaces larger, joining mul-

tiple vector spaces together. This is an important concept in quantum mechanics,

when we work with systems with multiple particles, in this case qubits. The tensor

product multiplies the dimension of the vector spaces. In a case with two vector

spaces with dimension 2, the final tensor product, represented by the symbol ⊗, will

have dimension 2× 2 = 4. The final vector space will be computed as follows:

(
a

b

)
⊗

(
c

d

)
=


ac

ad

bc

bd


We multiply the first element from the first matrix with the second matrix elements

line by line, and then repeat with the second element of the first matrix. For

example, for the tensor product with 3 vectors of dimension 2, we have:
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(
1

0

)
⊗

(
0

1

)
⊗

(
0

1

)
=


0

1

0

0

⊗
(

0

1

)
=



0

0

0

1

0

0

0

0


This is the basic concept of the tensor product. Its properties will not be discussed

here, for more information see [1, 23].

Now that we understand the basic principle of the tensor product, we can explore its

use in quantum computers. When there is more than one qubit, the tensor product

will be used to construct the vector space.

2.2.2.2 Example of a 2 Qubit System

First, let’s consider the vectors for the basis states, represented as:

|0〉 =

(
1

0

)
; |1〉 =

(
0

1

)
(2.4)

As in classical computation, a 2 qubit system will have four possible state combina-

tions. The four combinations are known in quantum computation as the computa-

tional basis states:

|0〉 |0〉 = |00〉 ; |0〉 |1〉 = |01〉 ; |1〉 |0〉 = |10〉 ; |1〉 |1〉 = |11〉

The basis states are given by a tensor product between the basis states of the two

particle spaces, V1 ⊗W2:

|00〉 = |0〉 ⊗ |0〉 ; |01〉 = |0〉 ⊗ |1〉 ; |10〉 = |1〉 ⊗ |0〉 ; |11〉 = |1〉 ⊗ |1〉

For example: |01〉 =

(
1

0

)
⊗

(
0

1

)
=


0

1

0

0
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Therefore, we get the vectors for the computational basis states of a two-qubit

system:

|00〉 =


1

0

0

0

 ; |01〉 =


0

1

0

0

 ; |10〉 =


0

0

1

0

 ; |11〉 =


0

0

0

1


The four combinations together make an identity matrix. Since it uses the binary

base, it can be seen that the first one, corresponds to the number zero, the second

one to the number one, the third to the number two and the fourth to the number

three, as in classical computation.

A two-qubit system can, and probably will, have a superposition of states, just as

the case of a single qubit. This means the system state will be, in general:

|ψ〉 = α00 |00〉+ α01 |01〉+ α10 |10〉+ α11 |11〉

As before, the probability amplitudes αij, obey a normalization condition:

|α00|2 + |α01|2 + |α10 + |α11| = 1

2.2.2.3 The case of a 3 qubit system

We have seen that the 2 qubit system has 4 possible combinations of single qubit

basis states. With 3 qubits, we will have 8 possible combinations, as follows:

|0〉 |0〉 |0〉 ; |0〉 |0〉 |1〉 ; |0〉 |1〉 |0〉 ; |0〉 |1〉 |1〉

|1〉 |0〉 |0〉 ; |1〉 |0〉 |1〉 ; |1〉 |1〉 |0〉 ; |1〉 |1〉 |1〉

Using the same notation for the system used before, we can consider:

|000〉 ; |001〉 ; |010〉 ; |011〉 ; |100〉 ; |101〉 ; |110〉 ; |111〉
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The tensor product for a vector space with 3 qubits has dimension 8, this means

that to calculate it for all the combinations becomes laborious, for example:

|101〉 =

(
0

1

)
⊗

(
1

0

)
⊗

(
0

1

)
=



0

0

0

0

0

1

0

0


Note that |101〉, in binary basis, represents the decimal number 5. Also, the number

1 is placed after 5 zeros in the corresponding vector array. In the following ordered

list, the first state vector represents the number 0 and the last one the number 7:

|000〉 =



1

0

0

0

0

0

0

0


; |001〉 =



0

1

0

0

0

0

0

0


; |010〉 =



0

0

1

0

0

0

0

0


; |011〉 =



0

0

0

1

0

0

0

0



|100〉 =



0

0

0

0

1

0

0

0


; |101〉 =



0

0

0

0

0

1

0

0


; |110〉 =



0

0

0

0

0

0

1

0


; |111〉 =



0

0

0

0

0

0

0

1



2.2.2.4 Final Notes about N qubit systems

As discussed for the 2 qubit example, if the system is in a state superposition and

we measure the first qubit, the result will have, in the most general case, only half of
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the terms. For example, if we have a two-qubit system and we get 0 as the result for

the first qubit, then there are only two possibilities left: |ψ〉 = α00|00〉+α01|01〉√
|α00|2+|α01|2

. Note

that, unless α00 or α01 is zero, we still do not know the state of the second qubit,

but half of the final state options are already destroyed. That is why this equation

needs the denominator part, in order to obey the normalization condition.

Now lets consider a special state, named as a Bell state (or EPR) of the form:

|ψ〉 =
1√
2

(|00〉+ |11〉) (2.5)

This state is fully normalized, and it has the interesting property of only being

dependent on two possible state combinations while having two qubits. As already

seen, with two qubits in superposition, the state will have, in general, contributions

from 4 basis states, because of the tensor product result. However, in this case, it

is easy to check that the two qubit state cannot be written as a tensor product of

two independent one qubit states:

|ψ〉 =
1√
2

(|00〉+ |11〉) 6= |ψ1〉 ⊗ |ψ2〉

Instead, we have:

|ψ〉 =
1√
2

(|0〉A ⊗ |0〉B + |1〉A ⊗ |1〉B)

This state, discussed in detail in [23], is entangled. Being entangled means there is a

strong correlation between the final state measurements of the two qubits: no matter

how far apart the qubits are, the result of measuring the first qubit correlates with

the result of the second qubit. This is in contrast with the non-entangled system,

where a measurement of the first qubit does not provide information on the state

of the second qubit. In the example of equation(2.5), if the measurement gives the

state |0〉 as a result, the second qubit will be |0〉 as well.

The Bell states are vastly used in quantum computation, they are the basis to make

some complex systems. The most famous example is the quantum teleportation

system, which uses entanglement. Bell states can be made of other combinations,

as listed below:

|β00〉 =
1√
2

(|00〉+ |11〉)
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|β01〉 =
1√
2

(|01〉+ |10〉)

|β10〉 =
1√
2

(|00〉 − |11〉)

|β11〉 =
1√
2

(|01〉 − |10〉)

2.2.3 Quantum Gates

Quantum gates are the representation of the logical operations used to construct

algorithms. A quantum gate is not a measurement, it changes the qubit but does

not convert it into a bit. The gate output is still, in general, a superposition of states.

The concept of gates comes from classical computation. They are nothing more than

operators that transform an entry state into an exit state. However, while classical

are just constrained to perform a logic operation, quantum gates have additional

requirements such as the condition to preserve the norm of the qubits and being

reversible. Note that, quantum gates operations don’t destroy the superposition of

states.

The physical implementation of quantum gates depends on the physical nature of

the qubits and it is a complex research area that exceeds the scope of this thesis.

However, we can discuss the mathematical description of the gates, that is, the effect

that they have on the entry states, and why that is so useful. It is a very important

subject to discuss, the mathematical theoretical approach is convenient to predict

the expected results from a certain system, and its efficiency. Therefore, the study

of algorithms, gates and circuits, has developed independently from the physical

systems. Actually, some of the algorithms are more than 20 years old, whereas the

corresponding physical systems just became possible to implement in recent years,

for systems with a few qubits.

Regarding mathematical single qubits gates, they are represented by a transforma-

tion matrix (2.6), which acts upon a qubit (the so called entry vector) (2.7) and

gives as a result an exit vector, the output of the system (2.8). For example, the

NOT operation is represented by the matrix:

X =

[
0 1

1 0

]
(2.6)
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If the entry of the system is:

α |0〉+ β |1〉 =

[
α

β

]
(2.7)

Then, the output of the NOT operation on the entry is:[
0 1

1 0

][
α

β

]
= α |1〉+ β |0〉 =

[
β

α

]
(2.8)

It’s important to mention again that quantum gates must obey the following con-

ditions: they must be reversible and they must be represented by a unitary

operator.

Being reversible means that from the output of the system we can recover the input.

This question is extremely important in quantum computers, since laws of physics

are reversible. Therefore quantum computers must also process information in a

reversible way, to be able to simulate a real quantum system inside a quantum

computer. This property is useful since quantum states can’t be copied and any

measurement destroys them. Being reversible allows us to recover the initial state

which was not previously duplicated nor saved anywhere. Classical computation

must also obey the laws of physics and still is usually performed in an irreversible

way. It does not violate the laws of physics since there is a change in entropy [24].

This irreversibility has a cost in information loss that quantum computation wants

to avoid.

The condition that gates are represented by an unitary operator relates to the need

to preserve the norm of the state vector. Since the state of the system is quantum

it must be normalized, as already discussed. As the quantum gates perform a logic

operation on the state, it must assure that it keeps it normalized. This condition is

assured if the gate is represented by an unitary operator. In linear algebra, a matrix

is unitary if its conjugate transpose (named as its Hermitian conjugate in an Hilbert

space) is equal to its inverse, i.e. A†A = A−1A = I.

Figure (2.3) as some examples of gates. Gates X, Y and Z, are the Pauli operators.

Hadamard and rotation gates are extremely important in quantum computation.

If the Hadamard gate is applied twice it doesn’t affect the qubit, since the inverse

of the Hadamard is equal to itself, H = H−1 = H†. The phase and π/8 gates

are merely special cases for the general rotation gate. The phase gate, also called

S, causes a relative phase change of π/2 whereas π/8 gate, also called T , causes a
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Figure 2.3: Representation of some important quantum gates. The first column
has the gate name, the second its circuit representation and the third the matrix
operator of the gate. This image was adapted from [1]

relative phase change of π/4. The examples mentioned above are all single-qubit

gates.

Multiple qubit gates are very interesting because they may introduce important

relations between qubits. An important example in figure (2.3) is the controlled-

NOT operation, the CNOT gate. For two qubits entries, CNOT gate applies the

NOT operation on the second qubit, controlled by the first one. If the first qubit is

|1〉, then the second qubit will be inverted. If the first qubit is |0〉 the second will

suffer no change at all. This means that if the input of the system are bits, the gate

behaves like the classic gate XOR. If the state is in a superposition state, the result

will be more complex, in general it will be an entangled state. The figure (2.4) has
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the CNOT gate with the entry states |A〉, controlling the operation, and |B〉, where

it is applied. The output states are |A〉 and the modulo 2 addition |A⊕B〉, which

is the result of the operation discussed above. Modular addition is an important

concept which will be discussed and used in chapter 4. From the output qubits,

we can reverse the circuit to recover the input information. It’s possible to do so

because we have in the output both the information about the original |A〉 and the

relation between A and B.

If the input entries of the CNOT gate are both bits and |B〉 = 0, the output will

be a copy of the input bit |A〉. This is similar to the copy operation in a classical

system. However, if |A〉 is in a superposition state, that is if |A〉 = α |0〉+ β |1〉 and

|B〉 = 0 then the output will be |ψ〉 = α |00〉 + β |11〉, which is an entangled state.

Since an entangled state cannot be separated in two independent single qubit states,

no copy was produced. Thus, we can produce a copy of a bit but not of a qubit.

This conclusion can be proved in general and is known as the no-cloning theorem,

see subsection (2.2.3.1).

Figure 2.4: CNOT gate. Note that the out-
put, (B⊕A), is the addition modulo 2 oper-
ation.

Figure 2.5: The general con-
trolled U operation, where U is
a general unitary operation.

Since CNOT works with two qubits, it has a wire connecting both qubits. The

control qubit will have the closed dot symbol, and the target qubit, the one which

changes if the control is |1〉, will have the cross symbol, or target symbol. If we need

an inverted CNOT, this is, a CNOT that only changes the qubit when the control

qubit is |0〉, then the closed dot is represented by an open dot. In the gate list of

figure (2.3), we can see the Tofolli gate with two control qubits and one target. The

controlled Rotation has a control qubit, and the target is the rotation, so instead of

the cross symbol, it has the rotation gate symbol.

The concept of the controlled operation is very important and can be described

for a general U operation being controlled by a qubit |A〉, as represented in the

figure (2.5). If the control qubit is |1〉, then the operation U will act on qubit |B〉,
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otherwise, it does nothing. This controlled-U operation can be generalized to a

controlled-U operation controlled by n qubits.

There is an infinite number of possible gates. As the number of gate entries increases,

the corresponding matrices become huge. However, there is a small set, called

Universal set of gates ( H, S, T and CNOT) that can be used to build any

computation process, disregarding the number of qubits at the entry of the circuit.

All the large and complex processes can be built using this reduced number of gates,

included in figure (2.3).

In classical computation, there is also a set of gates that can perform any operation.

Gates like XOR, OR and NAND, represented in the figure (2.6), are extremely

important in today’s computation and they all have equivalent gates in the quantum

realm.

The Tofolli gate is also an important gate because of its ability to reproduce classic

gates using quantum reversible gates. This gate is the only one on the figure (2.3)

with 3 qubits, and we can see that the matrix already has a considerable size. It

behaves like a CNOT, but with an extra control qubit, only changing the state of

the third qubit when both of the previous ones are |1〉. It can be used to make the

classical NAND and FANOUT gates. With this two classical gates, it is possible then

to simulate the other classic gates, allowing a conversion of classical non-reversible

into quantum reversible gates.

23



2. Basic Principles for Quantum Computation

Figure 2.6: Representation of classical Logic Gates

2.2.3.1 No-Cloning Theorem

Cloning a qubit means to produce a similar copy of its state to another qubit. So,

in order to clone a qubit with unknown superposition represented by the state |ϕ〉,
we need another general qubit |s〉 ready to get the information from the first one.

That way we have a two-qubit system:

|ϕ〉 ⊗ |s〉

Assuming the existence of a perfect unitary operator U which can clone a qubit, the

following operation is possible:

|ϕ〉 ⊗ |s〉 U
GGGGGAU(|ϕ〉 ⊗ |s〉) = |ϕ〉 ⊗ |ϕ〉

Now, let’s assume the operator U also acts on another system, in order to do the

same cloning process. In the end, we would have two qubits perfectly cloned, that
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is two identical |ϕ〉 states and two identical |ψ〉 states:

U(|ϕ〉 ⊗ |s〉) = |ϕ〉 ⊗ |ϕ〉

U(|ψ〉 ⊗ |s〉) = |ψ〉 ⊗ |ψ〉

However, if we take the inner product from the previous expressions, we get:

〈ϕ|ψ〉 = (〈ϕ|ψ〉)2

In order this condition to be true, either 〈ϕ|ψ〉 = 1 or 〈ϕ|ψ〉 = 0, for all the possible

|ϕ〉 and |ψ〉. In other words, this means that either |ϕ〉 = |ψ〉 or |ϕ〉 and |ψ〉 are

orthogonal. That is true for bits |0〉 and |1〉 but not for qubits, in general. Therefore,

it is impossible to clone qubits, unless they are bits.

2.2.4 Quantum Circuits

A quantum circuit implements a given operation and is an equivalent to a Quantum

Turing Machine. They have the same goals, but circuits are easier to work with and

to understand. As already mentioned, the operations performed on the quantum

states are quantum gates, but it is important for the quantum computer to work

with classical computers too. So, the circuit will include a series of quantum gates

in order to make the necessary operations to the qubit. In the end, it will measure

the qubit, and the output will be processed by the classical part of the system.

Therefore, quantum computers are always hybrids, they still include classical parts,

before (for state preparation) and after.

Let’s examine a very simple quantum circuit, represented in the figure (2.7). The

first thing worth mentioning are the lines, they are called wires, and represent con-

nections on the system. However, it may not be a physical wire, it may also represent

the passage of time or the movement of a certain particle. The circuit is always read

from the left to the right. Each qubit entry in the system is represented at the left

and then starts its own individual horizontal wire.

Wires connect operations, that is, gates. Gates are usually represented by a box in

the wire with its own symbol. In figure (2.7) we can see gate CNOT and the gate

Hadamard.

Lastly, at the right of the circuit, the boxes with an analogic measuring symbol,
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Figure 2.7: Example of a quantum circuit, includes an Hadamard gate and a
CNOT gate. At the end, has the measurement operations.

represent the measure of the qubit. Of course, after the measurement the qubit will

be destroyed, becoming only a bit. After this, the circuit needs to be connected to

a classical computer in order to work with the bits.

2.2.5 Quantum Algorithms

The objective of quantum computation is the development of quantum algorithms

and its implementation in a quantum computer. Quantum algorithms explore new

solutions in order to be able to compute problems that are very complex and nearly

impossible to compute in useful time, with classic computation algorithms.

Quantum algorithms are methods to solve difficult problems, such as the prime

factorization of an odd positive integer (Shor’s algorithm), using quantum gates

and making quantum circuits.

Quantum algorithm design is an area of intense research effort, with good develop-

ments. It is a fairly complex thing to do, arranging the best mathematical way to

solve a problem in an efficient way that can be implemented physically.

Some quantum algorithms already exist for decades, and only now we are starting

to be used in quantum computers with capabilities to implement them. They are

elegant ways to solve a problem, but sometimes quantum algorithms need to be

improved in order to be more efficient. The field of quantum algorithms is constantly

advancing despite being extremely complex.

There are two big classes regarding quantum algorithms, represented in the figure

(2.8). One is the Quantum search class, introduced by Grover, which improves the

classic search-based algorithms adopting some of its principles, but can perform with

a quadratic speedup.
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Figure 2.8: Quantum algorithm group tree. Two big groups are represented:
Quantum Fourier Transforms and Quantum Search. Source:[1]

The other big class of quantum algorithms uses the Quantum Fourier Transform

(QFT) and includes the very important Shor’s algorithm. The QFT is the quantum

variation of the Fourier Transform, which already has great importance in classical

algorithms. Using QFT is very useful for problems of factorization, providing an

exponential speedup over classical algorithms with the same objective. It can also be

very advantageous for cryptography systems, which are having a huge development

nowadays.

QFT is the class of algorithms studied in this thesis, being the basis to construct

the modular addition algorithm and the Shor’s algorithm.

2.2.5.1 Quantum Fourier Transform

One useful way to solve complex problems is to transform the problem into one that

already has a solution. This method is used extensively in classical computation.

Fourier Transform is one of the most used techniques to do it. For example, a

complicated convolution operation can be simplified by doing the multiplication in

the transform domain.

So, if used properly, the Quantum Fourier Transform, will have enormous speedup

benefits to solve problems that otherwise would be extremely hard to compute.

In order to comprehend how the QFT works, we start with the classical discrete
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Fourier Transform expression, represented by the equation (2.9).

yK ≡
1√
N

N−1∑
j=0

xje
2πijk/N (2.9)

Where xj are the input of the equation and yk, represents a transform of domain.

N = 2n, n being the number of bits. In Fast Fourier transforms, it commonly

changes from the time domain into the frequency domain.

The QFT can be viewed as a discrete Fourier Transform of the amplitudes of a

quantum state. If the input states are the basis states, |j〉, the QFT can be defined

as the map:

|j〉 −→ 1√
N

N−1∑
k=0

e2πijk/N |k〉 (2.10)

The QFT operator is unitary (for a demonstration see [1]). Since it is a unitary

operation, we can construct a general circuit for the QFT. Using some algebra, it

is possible to demonstrate (see [1]) that the general circuit for QFT of a n qubit

system is the one represented in figure (2.9). The operator Rn in figure (2.9) is:

Rn =

[
1 0

0 e2πi/2
k

]
(2.11)

Figure 2.9: Circuit representation of QFT for a general n qubit system.

.

In order to understand better how the QFT works, let’s see a 3 qubits example.

First, let’s understand how a binary number is represented as a qubit. Let a be an

integer number which is a binary representation, it has 3 bits a3, a2 and a1:

|a〉 = |a3 a2 a1〉 = |a3〉 ⊗ |a2〉 ⊗ |a1〉 (2.12)
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The number a, in a decimal representation is given by:

a = a3 22 + a2 21 + a1 20 (2.13)

For example, if a = 3, the binary representation is 011, which relates to the decimal

three by 3 = 0× 22 + 1× 21 + 1× 20. Therefore, |3〉 = |011〉 = |0〉 ⊗ |1〉 ⊗ |1〉

In order to make it concise, let’s adopt the binary fraction notation (0.ak ak−1 · · · a1)
as follows:

(0.ak ak−1 · · · a1) =
ak
21

+
ak−1
22

+ · · ·+ a1
2k

(2.14)

Now lets see the 3 qubit circuit, and analyse its output.

Figure 2.10: Circuit representation for a 3 qubit system.

Considering the entry |a1〉 in the circuit of figure (2.10), only one Hadamard gate

applies. If a1=0, then H |a1〉 = 1√
2
(|0〉+ |1〉). If a1 = 1, H |a1〉 = 1√

2
(|0〉−|1〉). Both

results can be written in a concise form as:

|φ1〉 =
1√
2

(|0〉+ eπ i a1 |1〉) =
1√
2

(|0〉+ e2π i (0.a1) |1〉) (2.15)

For the qubits |a2〉 and |a3〉, we must also consider the operators R2 and R3:

R3 =

(
1 0

0 eiπ/4

)
R2 =

(
1 0

0 eiπ/2

)

As represented in the circuit, the qubit |a2〉 will have a controlled rotation (R2) after

an Hadamard gate operation. The total operation is represented by R2(H |a2〉) and
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we can write the final state as:

|φ2〉 =
1√
2

(|0〉+ e2π i(
a2
2
+
a1
4
) |1〉) =

1√
2

(|0〉+ e2π i (0.a2 a1) |1〉) (2.16)

Note the differences between the equations (2.15) and (2.16). The term of the

expression that relates to the Hadamard operation has the entry bit as a factor in

the phase (a1 bit in the case of equation (2.15); a2 bit in the case of equation (2.16)).

The term that relates to the controlled rotation has the bit which is controlling the

rotation as a factor in the phase (a1 bit in the case of equation (2.16)). Now, the

third qubit has an additional controlled rotation R3 after Hadamard and controlled

rotation R2, giving the result shown in equation (2.17).

|φ3〉 =
1√
2

(|0〉+ e2π i(
a3
2
+
a2
4
+
a1
8
) |1〉) =

1√
2

(|0〉+ e2π i (0.a3 a2 a1) |1〉) (2.17)

This example of three qubits can be generalized to the QFT circuit in figure (2.9),

for n qubits.

The general circuit of the QFT (figure 2.9) only uses the controlled rotation gate

and Hadamard gates. For each of the n qubits, seen on the left, starting in the basis

|an〉, the first operation applied to every qubit is the Hadamard gate. The Rotation

gate Rn (n = 2 to n) is controlled by |aj〉 with j = n − 1 to j = 1. Note that

there are other notations for the binary fractions regarding which bit is defined as

the most significant bit (an or a1) , which causes a change in the order of the input

bits in the circuit relative to the circuits considered here. In those cases, a SWAP

operation needs to be applied at the end of the circuit to get the same order. We can

understand the effect of QFT by observing the final states of the circuit, which have

the bits jn in the qubits phase. It is a very powerful tool if it’s used in a problem

where operation can be performed more easily in the phase domain, for example,

phase estimation.

It is important to mention that Inverse Quantum Transform (IQFT), as the name

says, is the operation that will take us from the phase domain into the original

domain. For the 3 qubit example given, we have the final states given by the

expressions (2.15) to (2.17). The IQFT will bring us back to the initial states |a1〉,
|a2〉 and |a3〉. The operations are the algebraic inversions of the ones given. Note

that the gate order is not the same as before since (AB)−1 = B−1A−1. Note also

that the inverse of the Hadamard is the Hadamard itself (H = H−1 = H†). The

IQFT circuit for three qubits is represented in figure 2.11.
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Figure 2.11: Circuit representation of the 3 qubit IQFT.

2.2.5.2 Shor’s Algorithm

What is today called Shor’s Algorithm, was introduced by Shor in 1994 [17] as a

method to solve the factoring problem of large integer numbers. It is one of the

most important algorithms in quantum computation and its speedup capability is

due to the use of QFT to solve the problem. Its importance derives from the utility

of prime number factorization, which is used in the RSA cryptosystem. It’s not

possible to obtain the private key of the RSA protocol in useful time with a classical

computer. However, Shor’s algorithm suggests that it could be possible with a

quantum computer. This meant that an incredible desire to build a fully functional

quantum computer started to grow [25], and now it’s starting to give some results.

Shor’s algorithm is not a single algorithm, is a sequence of algorithms (subroutines).

It decomposes the factoring problem into an order-finding problem which uses a

phase estimation tool. QFT is really good at doing phase estimation for periodic

states, and this makes it possible to use it in this algorithm, giving a speedup

advantage.

First things first: factorization of an integer number N means to discover the largest

prime number k which divides exactly N , which can’t be equal to 1 or N . If we keep

dividing the previous division result by another factors, we will eventually have a

number N factored by a product of different factors ki.

The phase estimation is the process of estimating the phase ϕ in the eigenvalue

e2πiϕ. This is the eigenvalue of the eigenvector |u〉 of the unitary operator U , that is

U |u〉 = e2πiϕ |u〉. To do the estimation we need some kind of black box 2, to prepare

the state and perform the controlled U2j gate. We also need two registers of qubits.

The first register has a number of qubits t in the state |0〉. The second register has

the initial state |u〉 represented by as many qubits as the process needs. Now, the
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first register will suffer the action of Hadamard gate into all the qubits. After the

Hadamard, the first register acts as the controller for the U operations. After these

two operations the states from the first register, go from |0〉 to:

1

2t/2

2t−1∑
k=0

e2πiϕk |k〉

This is the state of the qubits from register one, which means the register that

started as |0〉 now has the information about the phase of the system. We can see

that the state is similar to the state after a QFT (equation (2.10)), so if we apply

the inverse QFT, we will get the value of ϕ.

The order-finding problem tries to find the solution to xr = 1( mod N). First,

this implies modular arithmetic, which will be discussed in the modular addition

chapter 4. The order that we are talking about is the number r. Having a number

x, another N and the condition of x < N , the order will be r, for the operation

x modulo N . One example would be, with x = 5 and N = 21, the r that makes

the equation 5r mod 21 = 1, which is r = 6. Now we can see how order-finding

subroutine works.

This subroutine uses the phase estimation as the way to solve the problem, applies

this algorithm with an unitary operator U which must be implemented efficiently.

The unitary operator U will give us the states we desire, with 0 ≤ y ≥ N − 1:

U |y〉 ≡ |xy( mod , N)〉

This being true, we can apply the operator U to the |us〉 states. This states are

represented by:

|us〉 ≡
1√
r

r−1∑
k=0

e
−2πisk

r |xk mod N〉

Now, applying the U operator, we get the result that matters to the problem:

U |us〉 ≡
1√
r

r−1∑
k=0

e
−2πisk

r |xk+1 mod N〉 = e2πi
s
r |us〉

2A black box, can also be called oracle, is an abstract way of describing an operation. It is used
in an algorithm that includes a process that does a particular job and we are not interested in
detailing how the job is done. The operation in the oracle can be described in detail later, with
some physical implementation in mind.
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Thus, us is an eigenstate of U with eigenvalue e2πi
s
r . From this point, if we have a

state |us〉, we can just use the phase estimation problem in order to see the result

for the eigenvalue, which has the order r in it. However, in order to do this step, we

need to have a state |us〉, but this state is unknown and can’t be prepared to meet

this conditions. Fortunately, the condition:

1√
r

r−1∑
s=0

|us〉 = |1〉

allows us to initiate the states from the second register on the state |1〉. The proof

of this condition will not be discussed here, see [26] for more information.

The only thing that is left is to retrieve the order r after measurement since the

eigenvalue is a fraction. When measuring the first register the result will be approx-

imately s/r, then another algorithm is needed to retrieve r from the fraction, see

[1].

The Shor’s Algorithm will transform the problem of factoring a number N , in the

order finding problem, and this will transform it into the phase estimation problem.

It does this process with two theorems that come from number theory, which will

not be discussed here, we will just state the conclusions. First, it’s the theorem

that says that we can always find a factor of N if we find a non-trivial solution for

the equation x2 = 1( mod N). Then, at least one of the greatest common divisor

between (x− 1,N) or the gcd(x+ 1,N) is a non-trivial factor of N . Now, according

to the second theorem, if we choose randomly a number y, co-prime with N , the

probability of this number having an order r that is even and a non-trivial solution

to the equation mentioned above, is quite high. This means that x ≡ yr/2(modN).

At this point, the problem can be included in the other algorithms. This algorithm

can factor a number per run, the only thing that is needed to find the other factors,

is to re-run the algorithm. The image (2.12) shows us the circuit representation

for the order-finding problem. In terms of the circuit, this is equivalent to Shor’s

algorithm, because the first part of the problem can be made in a classical computer.
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Figure 2.12: Circuit representation of the algorithm for the order-finding problem,
hence also the circuit for the algorithm of Shor.

As we can see in the circuit, the first register gets the order r, more precisely the

fraction s/r, after the IQFT. That’s why upon measuring, it gives an estimative

that need to use the continued fractions algorithm to give the real value r. The

controlled operation U , is represented by xj mod N , because is the operation that

it maps. The operator has an eigenstate which is in the second register and its

eigenvalue is e2πi
s
r .

It’s important to note that the operation xj mod N is applied in the transform

phase domain to the first register. So, logic dictates to implement QFT at the

begging of the circuit, in order to transform into phase domain. However, since the

initial states are all |0〉 in the first register, the QFT operation is simplified into only

the Hadamard gates. The controlled rotations will have no effect. Note that at the

end of the circuit the IQFT is applied.

The general outline of the algorithm is represented in figure (2.13).
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General outline for Shor’s Algorithm

Input: Integer N.

Output: Factor of N.

Principal Stages:

1. First thing to do is verify if the number N can be factorized by a classical process.
If it is an even number the first factor will be 2, and in some cases it is simpler to
do the factorization using a classical algorithm.

2. At this point, the true algorithm begins, so it’s time to choose a number x in the
range of 1 to N − 1.

3. Time to use the order-finding subroutine. Solve the equation xr = 1( mod N), find
r.

4. Start the first register with t qubits in the state |0〉 and start the second register
with N qubits in the state |1〉.

5. Apply the general circuit of the figure (2.12), using H, controlled-U and IQFT
operations.

6. Measure the first register to obtain an approximation of s/r.

7. Use a subroutine to get the best estimation of r. Output FAIL, if no good values
for r were found.

8. If the order r makes xr/2 not even or trivial, output FAIL. If gcd(xr/2 − 1,N) or
gcd(xr/2+1,N) is a non-trivial factor of N , output SUCCESS and the factor. Else,
output FAIL.

9. Repeat the algorithm for the other factors of N .

Figure 2.13: General outline for the Shor’s Algorithm.

2.3 Some basic principles of Computational Sci-

ence

2.3.1 Quantifying Computational Resources

The great objective of quantum computers is to be able to run algorithms in a short

amount of time. That’s the fundamental question of the computation science, always

improving the algorithms and the hardware to do more in less time. However, it’s

not that easy to quantify the time that takes an algorithm to run, since a classical

computer has a lot of factors that might affect the running time, and so does a

quantum computer. For the study of algorithms, what really matters is the general

behaviour of the algorithm, namely, how the running time scales with the size of the
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problem. So, there is the need to quantify the efficiency of the algorithms, that’s

why there is the asymptotic notation.

Using the asymptotic notation, the only thing that matters is not the time itself,

but how many time steps the algorithm takes to solve the problem. Time steps are

the operations that take time to execute, this is, the operations needed to do the

algorithm. In the case of quantum computation these operations are gates. If we

see a circuit of a quantum algorithm, the only thing that takes important amounts

of time are the gates. These operations are executed, usually with computational

steps that take almost always the same time. So analysing the number of operations

is a good way to understand how the function behaves as it grows.

In order to understand how the function grows, we want to have it dependent on

one of its variables. For example, adding two numbers of n bits. The algorithm may

take 24n + 2[log n] + 16 operations to give a solution. Well, in the grand scheme

of things, the n term is the most important because it’s the biggest one, log n does

not grow as fast. Constant values are not really important, so we might say that

this algorithm depends on n, and scales with it.

We already established how the basic principle of this notation works. Now let’s

consider the three different symbols used:

O (big O) gives the absolute maximum of the number of operations that the func-

tion requires, it’s the upper bound. Giving one example of its use, if we have

two functions, f(n) and g(n), we can say that f(n) belongs to the class of

functions O(g(n)) as long as the function f is always smaller or equal to the

g function times a constant. This is the same as saying that g(n) is the upper

bound of the function f(n), i.e. it’s the worst performance possible for that

function. This is a very useful tool for the analysis of algorithm performance.

Ω (big Omega) notation is used to refer to the lower bounds of functions, in the

same line of thought as the big O scenario, but this time, the function g(n)

acts as the lower bound for the f(n) function. The notation is used exactly

in the same way, we can say that the function f is of the kind of Ω(g(n)),

where for large n, the performance will be the performance of g. It’s a best-

case scenario, this algorithm can’t have better results than this without any

improvements.
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Θ (big Theta) notation is used to indicate one function with the same behaviour

of another. In this case, the function g(n) will not be upper bound nor lower

bound, they will have the same performance. It is used like before, if f is of

Θ (g(n)) then g is both the upper and lower bound, which makes it O(g(n))

and Θ(g(n)).

2.3.2 Computational Complexity

It was said that quantum computers will overpower their classical peers. However,

it’s hard to evaluate how much difference there is and how it will be translated into

more efficient problem-solving. That’s why it is important to the know the classes

of problems that can have efficient solutions and the time they require. It’s rather

important that we study the resources of space and time that each algorithm takes

in order to understand which one will be better for each use.

Computational complexity is the area devoted to the study of the time and

space resources. It’s very important and allows us to understand how hard can it

be to compute an algorithm in a classical or quantum computers. It can make it

easier to analyse the question of which algorithms will perform best in which kind

of computers.

This area of study is intrinsically connected to the design of algorithms, since one

of its fundamental steps is to define the most efficient way to do the algorithm,

regarding resources. So, the computational complexity theory provides us with

the answer for the lower bounds of the time and space resources of the algorithm.

This is an area that started in classical computation and it’s used today in quantum

computation. Quantum computation complexity has some unique classes, as can be

seen in [27].

It’s important to define a complexity class, but we will only describe them briefly.

This is a huge area of study, and exceeds the scope of this thesis. For more infor-

mation on computational complexity, is suggested the complexity zoo [28], which is

a gathering of complexity classes in a form of a zoo, or the book [29].

A complexity class can be seen as a group of problems that will take the same amount

of resources to be solved. Since this is a theory to help designing algorithms, it takes

sometimes the Turing machine as the problem-solving machine, because it is a per-

fect theoretical way to understand the needed resources. The problems may also

make use of the terminology of formal languages. A complexity class is defined based
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on three different aspects: the type of resource (time, space); the type of problem;

and the computational model. Some important complexity classes are:

P group of problems that can be computed in a short amount of time with a clas-

sical computer. A short amount of time is relative. In this case, it means it

can solve the problem in polynomial time.

NP problems, for which the solution can be checked quickly in a classical computer.

It’s not the same class as P. NP includes problems that can’t be solved on a

classical computer in a polynomial time, but their solution can be checked in

such time.

PSPACE refers to the physical space needed to solve problems. Includes all prob-

lems that can be solved with a polynomial number of bits without time limits.

This means that they can be solved in a relatively small hardware, even if it

takes very long time to solve.

BPP this class includes all the problems that can be solved with algorithms using

random methods in a polynomial time, as long as they can have a 1/4 of error

probability to the solution. This can use a probabilist Turing machine, already

discussed.

BQP So far the classes discussed were all classical. This class is the quantum com-

plexity class equivalent to the BPP class.

As an example, we go back to the problem of factoring a prime number again. We

can say that this is not solvable in a classical computer in polynomial time, in fact,

it requires exponential time. So, it’s believed that this problem does not belong to

P class. However, we can check if a specific factor of the solution is correct in a

classical computer, so it belongs to NP.

It is not yet proven that NP and P classes are all that different, it’s hard to prove

that P 6= NP. In theory P is a subset of NP, since that in order to solve a problem

it is needed to check for its solution. In the example above, even though there is not

a solution for factoring in polynomial time in a classical computer, it is not proven

38



2. Basic Principles for Quantum Computation

that it can’t be done. So, there is a possibility that they are the same class [1].

PSPACE may be larger than NP, which makes it a bigger set of problems with

NP as subset and P as sub-subset. How large is PSPACE and if this class has

problems that are not from P is not known.

This theoretical discussion of classes and subsets of classes has a lot of undefined

boundaries and a specific number of problems. It raises important questions con-

cerning quantum computers, which problems it may solve in which class, and which

boundaries it may break.

BQP has an undefined boundary, it is somewhere between P and PSPACE.

Quantum computers can be efficient to solve the problems of P, but none out of

PSPACE. So it’s rather important to explore quantum computer algorithm design

to understand what is exactly the scope of quantum computers.

Since this discussion is mostly theoretical, it’s not required to fully understand all the

complexity classes or their boundaries. It’s important to discuss it to understand

how these tools work in a general way, and to see what may be the benefits of

quantum algorithms.

In a more practical way, the discussion in algorithm design lies in a classification

of exponential versus polynomial. These terms are used to roughly describe the

behaviour of the function when the number of entries grows to infinity. There are

cases where the function grows faster than expected for a polynomial behaviour,

but still not quite as fast as expected for an exponential behaviour. However, it is

considered as an exponential type function. This is an easy and fast way to confront

the performance of algorithms, and understand how efficient they may be.

As we will discuss in the next chapter, the polynomial algorithms may not be always

more efficient than the exponential ones. In fact, for small values of the variables,

most of the times the exponential type algorithm may work better. However, as

the variables grow to infinity it becomes evident that polynomial behaviour is the

answer. That’s why quantum computers are developed, to complement classical

computers in order to solve some problems for large values of the function variables.

Let us now consider the performance of the QFT and the Shor’s algorithm, since

now we have the tools to classify their efficiency.

The QFT needs 1 + 2 + · · · + n = n(n + 1)/2 = n2/2 + 1/2 gates to perform the

circuit. Using the rules discussed above, this means the algorithm has boundaries
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of Θ(n2). There is an approximated QFT algorithm [20] that improves the original

version to use only n log2(n) operations.

The best classical Fourier Transform is the Fast Fourier Transform which needs

n2n gates, thus is described by Θ(n2n). Looking to this expressions, the classical

algorithm is of exponential type and the QFT is of polynomial type. And, as already

discussed, the QFT is particularly useful for some specific applications.

Regarding Shor’s algorithm, the best classical algorithm uses exp(Θ(n1/3 log2/3 n))

operations, which means, that this is the maximum number of operations. The

quantum algorithm version, discussed before, can accomplish the same result with

only a maximum of Θ((logN)3) operations. The classical algorithm is exponential,

while the quantum version reduces it to a polynomial version. That’s why factor-

ing prime numbers in a classical computer is very hard, the time needed increases

exponentially with the size of the number to be factorized.

2.3.3 Quantum Parallelism

Quantum computation can overcome classical computation using some remarkable

features, one of the most important is quantum parallelism. This is the ability to

compute more than one variable at the same time. Unlike classical parallelism,

which uses parallel circuits running at the same time, here we have true parallelism.

The variables are computed at the same time, using the superposition of states.

The Deutsch’s algorithm was the first quantum algorithm that proved to be able to

evaluate more than one entry at the same time.

Using a two-qubit example, represented in the figure (2.14), with an operation U

performed by a black box, we have an input of two qubits |x〉 and |y〉. The output

for this particular operation will be the qubit |x〉 and the state |y ⊕ f(x)〉, ⊕ means

addition modulo 2, involving the generic function f(x).

Figure 2.14: Circuit that relates the values of f(0) and f(1) at the same time, has
|x〉 and |y〉 as input.

The input state |x〉 will suffer the effect of the Hadamard gate, into a superposition

of states |0〉+|1〉√
2

. The final state of the system will be very interesting, with the
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addition modulo 2:

|ψ〉 =
|0,f(0)〉+ |1,f(1)〉√

2

This result contains the information about f(x) as supposed, but since |x〉 is in

superposition, the final state will have information regarding the value of f(0) and

f(1). The final state has two different values of the function f(x), even though the

operation was made only once. This is true parallelism, the values f(0) and f(1)

were computed at the same time. However, the final state is still in superposition,

which means measuring the final state will only give one of the values, |0,f(0)〉 or

|1,f(1)〉.

This was an example for two qubits, but can be done with n qubits, giving the final

state expression:

|ψ〉 =
1√
2n

∑
x

|x〉 |f(x)〉

The method to retrieve information from the final state, is using the Deutsch’s

algorithm. Let’s see the circuit implementation of the algorithm:

Figure 2.15: Circuit for the Deutsch’s algorithm, inputs are |0〉 and |1〉. The
output of the system is |ψf〉.

The figure (2.15), has input states |0〉 and |1〉, which is already different from the

previous circuit. Now, applying the Hadamard gate to both states, we get the

state |ψ〉 = [ |0〉+|1〉√
2

][ |0〉−|1〉√
2

], just before the U operation. After the U operation, and

applying an Hadamard gate to the first qubit, we get the final state:

|ψf〉 =

± |0〉 [
|0〉−|1〉√

2
] , if f(0) = f(1)

± |0〉 [ |0〉−|1〉√
2

] , if f(0) 6= f(1)

This can be written in a more concise form with the help of the modulo 2 operation,

becoming the final state:

|ψf〉 = |f(0)⊕ f(1)〉 [ |0〉 − |1〉√
2

]

So, having both the states |x〉 and |y〉 in superposition, we can obtain this final
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state, which upon one measurement yields f(0) ⊕ f(1). This result obtained after

measurement contains a relation between the values f(0) and f(1), obtained with a

single evaluation of f(x).

The Deutsch’s algorithm was the first demonstration that quantum parallelism can

be used to process information in a more efficient way than a classic algorithm. It

can retrieve information from multiple values of a function with only one evaluation,

which is not possible in classical computation.
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LIQUiD Language and

Performance

3.1 Simulation

One important step of the process of designing and implementing an algorithm is

its simulation, since it allows to verify results, to debug code and to discover new

insights. This is the focus of this thesis: simulate a quantum circuit, in order

to verify the expected results. Since constructing a quantum computer is still a

huge endeavour, not to mention its cost, the feasible solution is to test a quantum

algorithm in a classical computer. The results are limited but can lead us to the

right path.

First of all, let us clarify the meaning of simulation. It should not be confused

with the process called quantum simulation, which is the process of simulating a

physical quantum system with a quantum device. Since a physical quantum system

is fairly complex, it turns out that a classical computer is a really bad tool to

simulate it, since it needs a lot of memory to store the information, which grows

exponentially with the size of the system. Richard Feynman proposed in 1982 [30]

that we could simulate a quantum system in a quantum device since they use the

same physical laws and the resources needed will grow linearly with the size of the

problem. Quantum simulation is used to understand complex systems, namely in

quantum chemistry.

The original Moore’s Law for classical computers is one of the reasons why is so

important to invest in quantum computers. The Heisenberg principle gives Moore’s

law a limit [31] so there is the need to have an alternative, which is quantum com-

puters. The original Moore’s law states that the power of classical computers will

double every two years, at least. However, simulating a quantum system in a classi-
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cal computer has an exponential need for resources, which means computers would

need to increment their power in half the time. Quantum computers only need to

add one qubit every two years in order to have a similar power increase. Sometime

in the future quantum simulation will overpower completely corresponding tasks in

classical computers.

Quantum simulation will not be the focus of this thesis. Here the word simulation

stands for the simulation of a quantum circuit. A quantum computer needs a code

in order to implement a circuit. There are multiple layers of software between the

algorithm and the hardware that are fundamental to the operation of the system.

Even though simulating a quantum system in a classical computer is costly in terms

of resources, it can tell us how the final algorithm will work and if there are any

errors.

Circuit Simulation is available on classical computers via simulation environ-

ments, existing in a vast range of languages and libraries, and it’s important to

choose an effective environment. A quantum computer is a hybrid system, in the

sense that it needs two different types of systems to work. It needs classical comput-

ers to help implementing the circuit, to control other secondary systems and to work

with the results of the measurements, and a quantum part to run the circuits. In

figure (3.1) we have a schematics of how a quantum computer system works, namely

a stack of layers from the software to hardware. The algorithm is implemented in

high-level languages in classical computers, and then it needs both systems running.

The quantum part will be responsible to implement the algorithm into a circuit,

after optimizing it and correcting errors using the Quantum Error Correction(QEC)

code. Simulating environments will handle a small number of qubits but can per-

form all the tasks required prior to the hardware implementation. Since debugging

a quantum code is hard and can have many different kinds of errors, it’s very im-

portant to use simulation to optimize algorithms. The Microsoft research group

has already made corrections to some theoretical algorithms using the environment

they created, named LIQUi |〉 [32]. Their work also led to optimizations of the Shor’s

algorithm using Toffoli gates [12].

Reference [2] is a good review of available programming languages for quantum code,

and how the whole system works in quantum computers. It’s worth to note that

this is a very active field, with constant changes. This article is from September

2017, but new tools are being developed every day. The article [33] has a good

insight in software details, such as the optimization of code for error correction
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Figure 3.1: Representation of the software to hardware flow, and the place of
simulation environment as a viable option to explore some of the parts of hardware
stack. Adapted from [2].

implementation and the topological optimization, which consists in reducing the

volume of the circuits without affecting its function. The master thesis [34] is also a

good review for the available languages at the time of its publication (2012), focusing

on their performance.

The tool of choice for the circuit simulation in this thesis was the Microsoft library

LIQUi |〉 [35]. It’s a library based on the language F#, developed by the Microsoft

research group, QuArC. When this decision was made, it was believed that it was

the best choice available. However, shortly after this, the IBM quantum computer

became available in the cloud with its own language. Later in the year, Microsoft

announced a new language for quantum computers, the Q# [10]. So, it is likely

that in the near future the LIQUi |〉 language, or better said, this library, will not

be largely used. That does not affect the relevance of this work since it can be

translated to a different programming language. It should be noted that despite the

great development in recent years, quantum languages are still in their infancy.
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3.2 The LIQUi |〉 Performance

3.2.1 A Brief Overview of the Language

LIQUi |〉 is a highly optimized language, which makes it a good option to run sim-

ulations. Since it’s not completely open-source we don’t have access to some of the

explanations of optimizations. However, we have enough information to work with

the language, make new functions and test them, so it’s a pretty versatile option.

All data types and functions are fully documented, we just don’t have access to

some of the code behind it.

It uses data types from quantum computation, which makes it easier to work with.

For example, it has the data type of a classical Bit, and a Qubit, the fundamental

unit of quantum computers. It has a set of most used gates already defined, and

allows the definition of new ones, which is a very powerful option. It works with

circuit modes, allowing the drawing, parallelization and optimization of the written

algorithm. Since is based primarily in F#, it’s a powerful language, because it allows

high optimization regarding the mathematical functions, used mostly in academic

domain and in industry.

LIQUi |〉 uses all the quantum properties already discussed, and has some useful

tools that allows us to know the state of an entangled qubit without changing it.

There is no need to measure the qubit if we only need to know its state, since the

measurement causes a loss of information when the qubit becomes a bit.

There are three simulators, see the manual for more details [36]:

Hamiltonian Simulator , which was not used in this work. It’s used to simulate

quantum systems (namwly in quantum chemistry applications).

Universal Simulator is the most versatile of the three, it enables a huge range of

possibilities, allowing the addition of new gates and functions. It was used as

the main simulator.

Stabilizer Simulator allows a great deal of optimization, using the so-called sta-

bilizers. It can handle tens of thousands of qubits, since it groups them making

a smaller circuit, and allows the usage of Error Correction Codes. This simu-

lator was used in one part of this thesis work. We can adjust a circuit, built
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and tested in the Universal mode, to this one, optimizing it.

The code may be written in Visual Studio, and then run by LIQUi |〉 with multiple

ways to test it. There is the option to run the code inside the Visual Studio, linked

to the LIQUi |〉 library, or load the file into the LIQUi |〉 executable file. This runs

the code with the tag [< LQD >] in the terminal (figure 3.2).

Figure 3.2: Simulation example of one of the test modules. Here the Shor’s
Algorithm is being simulated to calculate the factors of the number 111 in the
LIQUi |〉 terminal. Note that it gives the time of simulation in minutes.

The algorithms expressed by the code may be run in various ways. There is a test

mode with some predefined algorithms to run. The script mode runs from a script

file. More interesting is the function mode, it calls the functions of the code. Lastly,

the circuit mode, which compiles the code into a circuit and then runs it. This mode

has the advantage of using some circuit manipulation tools.

3.2.2 Testing the Shor’s Algorithm

Having chosen the language, the first goal was to do a first ”hands-on” test to

evaluate the performance and to get used to the program. The test chosen was to

run the Shor’s algorithm, since it is a good example, as already discussed, as is part

of the LIQUi |〉 library.

The LIQUi |〉 paper [35] talks about the performance of the system. It says that

a 32 Gb of RAM on a computer should be able to run 30 qubits in the universal

simulator, and it takes a petabyte of main memory to simulate 45 qubits. As al-

ready mentioned, quantum algorithm simulation on a classical computer needs a lot
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of resources, the growth rate is impressive. The biggest number ever factored with

a quantum simulator used LIQUi |〉 , a 14-bit number using 50 Gb of memory for 31

qubits, and took 30.1 days to process. That’s a huge time to make this simulation, a

classical computer can execute a classical algorithm to perform the same operation

in a shorter computing time. Still, this is a good achievement for a quantum algo-

rithm simulation, and it has a very optimized circuit running. The research group

behind the language did various stages of optimization, rewriting packages. After

the changes, a 13-bit number that would need three years to compute was done in

four days. That’s a huge improvement regarding simulation environments.

We also want to compare the results obtained with LIQUi |〉 to the output from a

classical algorithm. So, we will run tests in LIQUi |〉 for factoring integers between

111 and 525 using Shor’s algorithm, and, we will also run the classical algorithm

Pollard’s Rho.

The best classical algorithm for factoring integers is known to be the general number

field sieve [37]. However, at the time it was easier to do a fast implementation

of Pollard’s Rho algorithm [38] in Java, which still is very optimized for classical

computers, and perfectly suitable for this test.
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3.3 Results

Figure (3.3) has the main results for the simulation of the Shor’s algorithm. It has

the results for the factorization of numbers from 111 to 525, with multiple runs in

each one. The final plot represents the average of the results and its associated error.

The fastest simulation corresponded to a minimum time registered of 0.63 min. The

maximum time was a total of 76 min. Above this, the running time increases to

non-practical values and it’s not easy to run this kind of simulations unless we have

a dedicated system, which is not the case.

Figure 3.3: Results for factoring integer numbers up to 525 using Shor’s algorithm,
simulated in LIQUi |〉 . The y − axis is in logarithmic scale for better visualization
and represents the computer running time t in min. The x − axis represents the
number to factorize.

The logarithmic scale on the y − axis allows us to retrieve some information from

this graph. The figure clearly shows three distinct regions: numbers lower than 220,

will be relatively fast to compute; numbers between 220 and 513 reveal a step in

the time duration, but not that much of an increment; for numbers higher than

513, however, the time needed to simulate the system increases a lot. The three

regions correspond to three different time scales. If we analyse the data carefully,

we conclude that the step increase, registered in the transition of regions, is related

to an increase in the number of bits needed to represent the number being factorized.

For example, the number 111 needs 7 bits to be represented, whereas the number

155 will need 8. It’s important to note that in the same region the time variation is

49



3. LIQUi |〉 Language and Performance

very small.

Figure 3.4: Factorization using a classic algorithm, the Pollard’s Rho implemented
in Java. Both x and y − axis are in log scale. The number to factorize is in the
x− axis, and the time t in ns is in the y − axis.

Figure 3.4 has the corresponding results of the classic algorithm Pollard’s Rho,

programmed and run in Java. Both of the axes are in logarithmic scale, for clarity.

It’s important to note that the unit of time here is the nanosecond, not the minute.

Secondly, the numbers factorized went all the way up to values of the order of 109

to be able to see some difference in time. The maximum values were numbers in

the order of 1016 and the corresponding time of execution was of the order of the

second. This result exemplifies what we already discussed in chapter 2, classical

algorithms have better results than the quantum ones when running on a classical

computer. In the graph, with the logarithmic scale, we can clearly see that it has

a linear progression, which corroborates the conclusion that the classical algorithm

leads to an exponential behaviour with the size of the problem.

Since we concluded that the transition regions in figure (3.3) are due to an increment

in the number of bits needed to represent the number, we should analyse the time

growth as a function of the qubit growth for the Shor’s algorithm. In figure (3.5)

the running time of the algorithm is plotted as as function of the number of qubits.

The graph at the left and the one at the right have the same data, the difference is

that the one on the right has the y − axis in a logarithmic scale of base 2.
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Figure 3.5: Representation of the LIQUi |〉 simulation, as a function of the number
of qubits. the number of qubits is in the x− axis whereas the computing time t in
min is in the y − axis.The difference between the top and the bot plots is that in
the latter the y − axis is in log2 scale. The lines are a fitting to the data using the
expression y(x) = a ∗ 2b∗x.

func : y(x) = a ∗ 2b∗x σy(x)
a = 6.57e−6 ±3e−6

b = 2.34 ±0.005

Table 3.1: Representation of the values of the fitting for the curve of the figure
(3.5).

In figure (3.5) we can see that the data is well described by an exponential function

of the type y(x) = a ∗ 2b∗x. The exponential behaviour is evident in the bot plot

since log2(y(x)) = log2(a ∗ 2b∗x) = log2(a) + b ∗x and the data log2(y) shows a linear
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behaviour. The slope of the linear regression will be the factor b = 2.34 ± 0.005.

The corresponding fitting parameters are represented in table (3.1).

These test results show that the running time of the Shor’s algorithm evolves with

O(22.34n) (n is the number of qubits), larger than the theoretical value that we

discussed in section 2, Θ((logN)3). However, we must note that the quantity plotted

in the graphic is computing time. The theoretical value for the algorithm efficiency

evaluates the number of operations, since the time for each operation should be a

constant that varies with the computing device. Nevertheless, in order to obtain

the time evolution we should only need to multiply by the time constant, and the

growth behaviour should be similar. This would be valid for a quantum computer.

However, in order to simulate an n qubit system in a classic computer, we need to

store and process 2n amplitudes of the states (we are working in the Hilbert space),

which requires computing time and memory. Since the system grows exponentially,

so does the time it takes to handle all the states [39]. The simulator needs to prepare

all the states at the beginning of the test and then to perform the operations on

them.

3.4 Important Insights

Comparing the results from this quantum simulation to a similar simulation pre-

sented in the master thesis of Johan Brandhorst-Satzkorn [34], we can say that the

LIQUi |〉 language provides better results. He only could make factorizations up to

the number 399, we had factorizations until 525. Regarding his maximum values,

the times were between 31.8 min for the LibQuantum language and 74.6 min for

the Quantum Computer Language. The number 399 is still on our second region of

the figure (3.3). It has running times in the order of a little more than 10 min. The

main reason for this difference is that LIQUi |〉 is a much more optimized language.

However, the reason for which his tests reach only a maximum of 399 can be mostly

explained by an older system with less memory. We can conclude that the choice of

using this language was the right one at the time, since it is an environment more

adequate for simulations, comparing with the previous ones.

One important idea explored in chapter 2, concerning quantum complexity was that

the exponentially behaving classical algorithm (represented in the figure (3.4)) can

be more efficient than the quantum one, as long as it only works with small numbers.

The present results also show that the running time of a quantum algorithm has an

exponential behaviour when simulated in a classic computer. In, addition, the values
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of time are some orders of magnitude larger than those obtained for the classical

algorithm. The classical algorithm was capable of factoring numbers in the order of

1016 in only one second. Whereas the quantum algorithm needed 76 min to compute

the factors of the number 525. This is an abysmal difference, which illustrates how

much better a classical algorithm can perform in this scenario. It would be much

more appropriate to compare the classical algorithm running in a classic computer,

with a quantum algorithm running in a real quantum computer. This is explored

in the article [40], where the results of a classic algorithm are confronted with the

predictions of Shor’s algorithm in a quantum computer. It predicts that a number

of 375 binary digits, that takes hours in a classical computer to factorize, would be

factorized in a matter of seconds in a quantum computer with a similar clock rate,

exactly the reverse result that we get in our simulation.

Although the running time of our simulation has a behaviour of O(22.34n), this

simulation environment already gives solid results. It needs to simulate all the

quantum system, but it does it in an optimized way, though we don’t know the

details of LIQUi |〉 optimization process. This test proves that quantum simulation

is not easy to achieve since it needs to handle 2n amplitudes of states of n qubits.

That’s one more reason why optimizing this process is such an important feature.

Quantum systems, however, can handle this kind of information with ease.

Regarding the memory usage, for numbers larger than 513, the algorithm needs 23

qubits and this requires 2 Gb of RAM from the system, where the CPU is being used

approximately at 100% during all the simulation, taking more than 70 mins. This

may be a problem in terms of temperature of the computer device in a long-term

use. Without a dedicated system with an adequate cooling system, the simulation

has big limitations. All the simulations of this thesis were made with the personal

laptop mentioned in the appendix C. All of them, except, of course, the ones from

the IBM cloud.
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4

Modular Addition Using Quantum

Fourier Transforms

4.1 Modular Arithmetic

Modular arithmetic is very useful and vastly used in computation as the remainders

of divisions. Dividing the integer x by the integer y, we get the quotient Q and the

remainder R, where Q and R are both integers.

x

y
= Q remainder R (4.1)

That is:

x = Q× y +R (4.2)

If our interest is in the remainder of the division, we deal with the arithmetic of

remainders and we use the modulo operator (abbreviated as ”mod”), defined as

x mod y = R (4.3)

For example,

2 mod 3 = 5 mod 3 = 8 mod 3 = 11 mod 3 = 2

since 2, 5, 8 and 11 when divided by 3 all have a remainder of 2. For the number

5, for example, 5/3 = 1.6(6). If we use the integer part of the result, 1, we have

1 ∗ 3 = 3, and 5− 3 = 2 = R which is the result of the mod operation.

Modular arithmetics is sometimes called the math of clocks. A clock with the 12th

number replaced by 0 gives us the x mod 12 operation. For example: 1 mod 12 = 1,

10 mod 12 = 10, 12 mod 12 = 0. After a complete turn, the clock is reset. So, if

x = 13, we count until 13 on the clock, which gives R = 1, that is 13 mod 12 = 1.
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We can do most operations using modular mathematics, as we do in normal math-

ematics. In this work we are mainly interested in the simple modular addition.

4.1.1 Modular Addition

Modular addition is the extension of normal addition:

(x+ y) mod C = (x mod C + y mod C) mod C (4.4)

where x, y and C are integers. For example, for x=2, y=3 and C=2 we have:

(2 + 3) mod C = 5 mod 2 = 1

where we used the left side of the equation (4.4). Using the right side of the same

equation, we get

(2 mod 2 + 3 mod 2) mod 2 = (0 + 1) mod 2 = 1

This result exemplifies the rule that the remainder of the addition of two integers

equals the remainder of the addition of the individual remainders.

The modular addition is particularly useful if the number C is related to x and y.

If we have the relation of C = 2n, n being the number of bits to represent both x

and y. The modular addition becomes:

(x+ y) mod 2n (4.5)

Now, let’s see the example for x = 2 and y = 2, being n = 2 bits. The modular

addition is (2 + 2) mod 22 = 4 mod 4 = 0, where 4 is a 3 bit number. However, if

we make x = 1 and y = 2 we get (1 + 2)mod 4 = 3 which is the same result as the

normal addition. So, as long as the number of bits needed to represent (x + y) is

the same as n, the modular addition gives the same result as the normal addition.

However, if the number of bits exceeds n, the result of the modular operation is

the remainder. In other words, it is what is needed to add to C in order to get

the normal addition result. For example, consider the case x = 6 and y = 7. We

have n = 3, and the operation becomes (6 + 7) mod 8 = 5. Since we know that

6 + 7 = 13, we can see that the remainder plus C gives the result of 13 (5 + 8 = 13).

In a common addition in computation, the numbers will be represented in binary,
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when the result of the operation needs more bits than the original numbers, the

addition algorithm needs to carry the information of extra bits. Modular addition

is used to help solving this need of extra bits.

Arithmetic operations are very important for computation systems. After all, the

purpose of some of the first computers was to help in the process of mathematical

operations, so it makes sense to study the first basic ways to do the same operations

in quantum computers. Since quantum computers evolved from the classical ones,

some of the first algorithms were created with the same basic principle as their

classical equivalents. However, these algorithm had some modifications in order to

be fully reversible, a requirement of quantum computers. These algorithms use at

least 3n qubits.

Quantum Fourier Transform (QFT) can be used to improve the efficiency of arith-

metic operations, namely the addition of two or more numbers, which can be con-

verted in a modular operation. The use of QFT in an addition algorithm was first

introduced by Draper in 2000 [20], it was a huge improvement and boosted the use

of QFT in this kind of operations. The addition with QFT used in this thesis follows

the Draper’s QFT adder. However, there are some variations to this adder, using

carry bits1, introduced by Perez[11], which is also used in chapter 6.

4.2 Algorithm for Addition with QFT

The basic principle behind the QFT addition of two numbers is to work in the phase

domain, first, by encoding the qubits of one number with QFT and then performing

a group of phase rotations, that are controlled by the bits of the other number in

the addition. The general circuit for this algorithm is represented in the figure (4.1).

In more detail, having the numbers x and y with n bits, we can use the notation

discussed in the equations (2.13) and (2.12) to deal with binary numbers. x is

represented by the bits x1,x2 . . . xn, and y by y1,y2 . . . yn. So, using quantum bits,

we can represent x and y states by:

|x〉 = |x1〉 ⊗ |x2〉 ⊗ · · · ⊗ |xn〉

|y〉 = |y1〉 ⊗ |y2〉 ⊗ · · · ⊗ |yn〉
1A carry bit is the information generated in the addition that is transferred to a more significant

digit. For example: to add 13 + 9, first we add 9 + 3 = 12, the digit 1 is transferred, as a carry bit,
to the most significant one 1 + 1 = 2, making the addition 13 + 9 = 22.
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The QFT will only act on the state |x〉, while |y〉 will remain unchanged. So QFT

does the transformation:

QFT |x〉 = |φ(x)〉 =
1√
N

N−1∑
k=0

e
i2πxk
N |k〉

with N = 2n. At this point the xi bits are in the phase domain, so the rotations

controlled by the bits of y will perform the addition of their bits into the phase of

|φ(x)〉, giving |φ(x+ y)〉. After this point, the addition is already performed, but

the information is in the phase domain. We need to apply an inverse QFT (IQFT),

to perform the operation IQFT |φ(x+ y)〉 = |x+ y〉. Since y is a bit number and

stays unchanged, this circuit shows a way to add classical information to a quantum

state.

The controlled rotations in the circuit will perform an operation represented by:

Rk =

[
1 0

0 e
i2π

2k

]
(4.6)

In the section of QFT, (2.2.5.1), we have studied the effect of a QFT circuit. Now,

we can use the results presented in that section in order to understand this addition

algorithm. We can start with the states given by equations (2.15),(2.16) and (2.17),

in the example of a 3 qubit QFT. The next step is to apply the necessary rotations

for the modular addition operation. As in the QFT section, we start by considering

the state which has fewer operations, that is, the output of |x1〉 state after a QFT

operation, which will be: :

|φ1〉 =
1√
2

(|0〉+ eπ i (x1) |1〉) =
1√
2

(|0〉+ e
2π i x1

2 |1〉)

A rotation R1 =

[
1 0

0 eiπ

]
is applied to this state, controlled by |y1〉, which is a bit

number (1 or 0). The result of this operation can be written as:

|φ(x+ y)1〉 = R1 |φ1〉 =
1√
2

(|0〉+ eπ i (x1+y1) |1〉) =
1√
2

(|0〉+ e
2π i (x1+y1)

2 |1〉)

Following the same logic, after the QFT, the state |x3〉 will be in the state:

|φ3〉 =
1√
2

(|0〉+ e2π i(
x3
2
+
x2
4
+
x1
8
) |1〉)
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The modular addition operation is performed using three controlled rotations, R1,

R2 and R3, controlled by the bits |y3〉, |y2〉 and |y1〉 respectively. The final state,

after the controlled rotations, will be:

|φ(x+ y)3〉 =
1√
2

(|0〉+e2π i(
x3
2
+
x2
4
+
x1
8
+
y3
2
+
y2
4
+
y1
8
) |1〉) =

1√
2

(|0〉+e2π i (0.x3 x2 x1+0.y3 y2 y1) |1〉)

This example can be generalized to two numbers of n qubits, x and y, giving the

state:

|φ(x+ y)n〉 =
1√
2

(|0〉+ e2π i(
xn
2k

+
xn−1

2k+1 +...
x1
2n

+ yn
2k

+
yn−1

2k+1 +...
y1
2n

) |1〉)

=
1√
2

(|0〉+ e2π i (0.xn xn−1 ... x1+0.yn yn−1 ... y1) |1〉) (4.7)

The second line in the previous equation is the representation using the binary

fraction, defined in equation (2.14). The state |φ(x+ y)n〉 has the information on

x + y in the phase domain. Applying the IQFT, the state |φ(x+ y)n〉 is converted

into the final state |x+ y〉, which has the information on (x+y) mod 2n. The circuit

for modular addition is shown in figure (4.1).

Figure 4.1: Circuit representation for the modular addition (x+ y) mod 2n of two
n bit numbers, x and y, using QFT.

This is the basic structure of the algorithm which is implemented in this work,

as discussed in the next sections. It’s the original circuit version presented in the

article from Draper [20]. The output coincides with normal addition if x + y has

the same number of bits of x and y, that is n bits. When the solution has more

bits than n, the output is the modular addition. It’s important to stress that this
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algorithm does not need any intermediate carry bits, which is in great contrast with

the classical algorithm where all the intermediate carry bits have to be transported

and used. The first quantum addition algorithms use 3n qubits as input to perform

the operation for two n qubit numbers, since it needs to manipulate intermediate

carry bits. The Draper algorithm uses only 2n qubits, i.e., just the two numbers to

be added, each with n qubits.

The addition algorithm using QFT requires that the numbers to be added are in

binary representation. As discussed in the section (2.3.2), the theoretical number of

gates needed for the QFT is obtained summing the number of gates in all the lines,

which in this case corresponds to the series 1+2+ · · ·+n = n(n+1)/2 = n2/2+n/2.

The addition algorithm takes a QFT, and IQFT, which means doubling the number

of gates. The addition part of the circuit follows the same reasoning, requiring

also n/2(1 + n) gates. This makes the total number of gates for this algorithm

3n/2(1 + n) = 3/2n2 + 3/2n. Therefore, this algorithm is of the form O(n2).

The elegance of this algorithm comes from the absence of carry bits. However, it has

the limitation discussed before that the result is only a modular addition in cases

where x+ y has a number of bits larger than n. There is a modification that can be

made to the circuit in order to provide a normal addition even in those cases, which

was suggested by Perez, [11]. Adding only a line on top of the circuit, with the state

|0〉, the final state will be |(x+ y)n+1〉, which is the carry bit for the most significant

digit. This allows the normal addition of two numbers in all cases. This extra line is

on top of the circuit, the rest is exactly the same, as represented in the figure (4.2).

This circuit only needs one more entry qubit, in a total of 2n+ 1. It needs the same

number of gates as before, plus n, that is 3/2n2 + 3/2n+ n = 3/2n2 + 5/2n number

of gates.

Figure 4.2: Representation of a circuit to do an addition of two numbers x and y
with n qubits each. The first state is the carry bit and starts as |0〉.
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4.2.1 LIQUiD implementation

Following the Draper addition circuit, the code was implemented in the LIQUi |〉 envi-

ronment. The first thing to do was to implement the QFT and IQFT functions, not

originally available by LIQUi |〉 .

In this particular case, we used the universal simulation engine of LIQUi |〉 , the

most versatile one, which allows the implementation of various functions. Inside

this simulation engine, there are a few different ways to work, hence the versatility.

However, this function mode its not the best for optimizing the code, so in order

to use the optimization options, we will work both with the function mode and the

circuit mode, exploring the best options in both.

4.2.1.1 Function Mode

This is the mode of working with LIQUi |〉 which resembles a classical environment,

where we implement functions which are run consecutively. It has a wide range of

gates available and can be expanded.

In this particular case, we will work with QFT and IQFT. These operations are

not originally available in LIQUi |〉 , so we will create them as functions, but they

can also be saved as gate operations. Saving them as gates may be done using the

matrix of the operation, or the function itself. We decided to implement directly

the function since we will work extensively in function mode. Saving as a gate does

not seem to influence the speed of the computation. However, it can be very useful

for future use with other programs, since it can be saved to be accessed later. The

code implemented to do a QFT is as follows:

1 l et q f t ( qs : Qubits )=

2 // l e t =k . S i n g l e ( )

3 // l e t qs=k . Qubits

4 l et n=qs . Length

5 l et mutable z=0

6 for q in qs do

7 H [ q ]

8 l et mutable q i=z+1

9 for i in 2 . . (n−z ) do

10 Cgate (R i ) [ qs . [ q i ] ; q ]

11 qi<−q i+1

12 z <−z+1

13 z<−0
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14 // l e t mutable z=0

15 // f o r q in qs do

16 // whi l e z<n/2 do

17 // l e t g=(n−z )−1

18 // //show ” t e s t + z:% i ” z

19 // SWAP [ q ; qs . [ g ] ]

20 // z<−z+1

21

The Hadamard gate is applied to all the qubits, followed by the controlled rotation

gates. The second half of the code is deactivated because it was not used in this

scenario. It represents the SWAP part of the QFT, which is not always needed.

The IQFT function is based on the same principle of the QFT, but since it needs

to invert the order of the gates, it is a little trickier to implement.

Since LIQUi |〉 is based on F#, it is an indented language. It does not use curly

brackets, which can facilitate mistakes. The gates that are predefined are represented

by their name, for example, the Hadamard gate is H. Variables are not mutable by

nature, so they need to be declared to be mutable. Cgate is the operation to control

gates. It must be used with caution to avoid errors, because of the parameters it

needs in order to work. Stopwatch() function allows us to get the running time of

the simulation. LIQUi |〉 stores qubits in kets and the command Dump(showInd)

gives the state of the qubits even if they are entangled, without changing its state.

The simulation engine in this mode is useful but it’s not the most optimal option.

In order to improve with optimization, we run the circuit mode.

4.2.1.2 Circuit Mode

The circuit mode transforms the functions previously created into a circuit. Using

this mode the circuit can be printed into an image or LaTeX file, and we can do

circuit optimization with some simple functions. It’s an independent mode, which

means it doesn’t need the function mode to run in order to be able to run the

circuit. In fact, the simulation can be done directly in circuit mode. The computing

times when running circuit mode directly, or running the function mode first will

be discussed in the next section.

Circuit mode needs to be compiled, by the function Circuit.Compile. Since a

circuit can be broken into parts, our modular addition has one QFT, one adder

and one IQFT. Each function can be compiled individually and then make a bigger
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circuit. There is an option to compile all the functions at once. However, this

only works in some circumstances, depending on the code cycles and variables.

For example, RenderHT () will draw the circuit into an HTML file. The figure

(4.3) is the representation of the QFT given by the program, generated by the

implementation into circuit mode of the code discussed above.

Figure 4.3: The circuit for a QFT of 3 qubits given by the LIQUi |〉 circuit mode
with the qft function.

The Fold() command manages the gates to display in the circuit image, since some

can be grouped. GrowGates() is the function that optimizes the circuit already

compiled. This is a great feature using an algorithm to group gates and wires. It

aggregates unitary gates into larger ones, making a larger matrix instead of many

matrices, which makes it faster to run. We can see one example in figure (4.4),

where it shows that it grouped all the 7 gates required to run the circuit on the left

into 1 bigger gate with a internal code and 3 wires, on the right.

Figure 4.4: Representation of the circuit with x = 2 and y = 2, a 3 qubit circuit.
On the right is the optimization of the circuit done with the GrowGates() function.
y is not displayed.

Some of the most important parts of the code will be on appendix (A) and are

enough to understand how the circuit simulation was done. The total code is too

long and therefore is not shown.

Figure (4.5) represents an example where we have two 3 qubit numbers being added.

In this case all bits of y are |1〉, that is, |y〉 = |7〉 = |1〉 |1〉 |1〉. The figure is the result

of the code done to implement the algorithm. It’s important to mention that the

number y is not represented in the circuit. In this circuit, all the controlled gates

are present. If the bits from y are |1〉, then the rotation operations controlled by y

must appear in the circuit. But if they are |0〉, the program will not represent them,

because they have no effect in the circuit. However, controlled rotations belonging to
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Figure 4.5: Representation of the 3 qubit circuit for modular addition. The bits
corresponding to the number y = 7 (y1 = y2 = y3 = 1) are not represented.

the QFT and IQFT part of the circuit are controlled by x, which is an entry bit. The

code will implement the controlled gates even if they are controlled by x = 0, this

means still appear in the circuit, even though they have no effect. That’s something

that can be optimized. So, we improved the algorithm code for QFT and IQFT

by considering controlled rotations on x only if x is not |0〉 at that instance. This

saves time and resources. An example can be seen, in the appendix (A.3), to better

understand the improvement made, comparing the figure (A.3), the normal circuit,

to the figure (A.4), the improved circuit. The last one has much less gates, being

much faster to compute.

4.2.2 Results

In order to understand how the algorithm and the available optimization options

work, we have run simulations with the code described, in its various forms. We

simulated the different configurations multiple times and recorded the time that took

to compute, the number of gates and the computer resources, namely the memory

and CPU usage.

All the tests simulate the algorithm in function mode without optimizations. Then

we run the circuit mode with optimizations, and without them. After that we can

run the algorithm improved by us, optimizing the number of gates, this can be run

in function and circuit modes, the last one with an option for optimizations. This

is a sort of doubly optimized simulation.

There are two main sets of tests that were made, the first set was regarding the gate

evolution and the second regarding the time evolution. The first set had the intention

to see how the number of gates grew in order to compare it to the theoretical values.

So, there are two main options to test: the case where y = 2n−1, will give the results

for the minimum gate number (figure (4.6)); the case with y = Ones, that is when

all the bits from y are 1 , which gives the results for a maximum number of gates

(figure 4.7). In the case where all the y bits are one, all the controlled rotations will
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have an effect on the circuit.

Figure (4.6) shows the case y = 2n−1, using simple function mode, optimizations,

improved circuit and respective optimizations. For example, since y = 2n−1, n = 3

implies y = 4, which is |y〉 = |100〉 in binary form. From the circuit in figure (4.1)

we can conclude that it will only have one controlled rotation, R1, with an effective

role. This is the minimum number of gates possible. The expected number of gates

will then be the gates from QFT plus IQFT plus one gate, which gives a total of

n(1 + n) + 1 = n+ n2 + 1. Using our algorithm optimization in QFT and IQFT, a

gate is not included if no effect is expected in the circuit. The expected minimum

value of gates in QFT and IQFT correspond to the case when only Hadamard gates

apply, so we should only have n gates for QFT/IQFT and the total minimum should

be 2n+ 1 gates.

Figure 4.6: Graphical representation of the number of gates growth with the
number of qubits for a circuit with y evolving with 2n−1. 2n−1 represents the normal
circuit for y = 2n−1, and 2n−1opt represents the LIQUi |〉 optimization of this circuit.
2n−1inprov is the improvement done to the circuit. 2n−1inprovopt represents the
LIQUi |〉 optimized version of the improved circuit.

Fit values of the graph (4.6) are represented in the table (4.1). From this table

we can see that the fit expression for the improved version of the circuit, h(n), is

a linear expression of the form 2n + 3, making the algorithm of the form Ω(n).

Comparing it with the theoretical value, we see that the obtained results have two

extra gates. This is justified by the fact that this test was run with x = 2n−2, which

65



4. Modular Addition Using Quantum Fourier Transforms

2n−1 g(n) = a1n2 + b1n+ c1 σg(n) 2n−1opt y(n) = an+ b σy(n)

a1= 1 ±4e−017 a= 4.11 ±0.05
b1= 1 ±1e−015 b= -40.44 ±0.80
c1= 1 ±5e−015

2n−1inprov h(n) = tn+ f 2n−1inprovopt yy(n) = aa ∗ n+ bb σyy(n)

t= 2 aa= 0.31 ±0.0091
f= 3 bb= -0.35 ±0.13

Table 4.1: Expressions of the fit for the graph 4.6

means that the QFT will get an extra gate, the controlled R2, so the IQFT will have

another gate too. This makes for the extra two gates, which means we can verify

the theoretical value with these results.

The case of 2n−1opt gives a linear fit, as the improved case, but the slope is twice as

big (4.11). Considering the optimization to our improvement, the linear expression

will be affected by a factor of 10, the slope becomes 0.31, which is a significant

improvement. Note that for the optimization tests, the number of gates will be one

if n is smaller than 8. The fit to the graphics regarding the optimized runs was only

made for the part where it grows, that’s why we can justify the value −40.44 of the

2n−1opt. This fit expression is only valid for n ≥ 8, if n < 8, then y(n) = 1. For

the optimization of the improvement, the fit is only valid if n ≥ 9, if n < 9 then

yy(n) = 1.

The graph of the figure (4.7) has the representation of the case of x = y = Ones,

which gives the maximum number of gates (n2/2 + n/2), discussed above in the

theoretical discussion of this section. The case with only y = Ones is intended to

illustrate that in this case our improvement strategy has no effect on the number of

gates, but LIQUi |〉 optimization is effective.

Table (4.2) has the expressions and parameters of the fit of the figure (4.7). From

the expression for the case x1y1, we can see that the parameters of 1.5n2+1.5∗n are

exactly what we were looking for, the parameter C can be considered as zero since it

is too small. The optimization fit gives a linear expression t(n) = 2.86∗n−17.63. If

we compare it with the previous case, with the improvement version, we see that the

slope 2.86 is close to 2, which means that the optimization for a maximum number

of gates case gave a similar result to an improvement version for a minimum case.

However, this result reflects only the LIQUi |〉 strategy to aggregate gate operations,

we analyse the impact of this strategy on computation time as well.

66



4. Modular Addition Using Quantum Fourier Transforms

Figure 4.7: Representation of the gate evolution with the number of qubits for the
case where y is always Ones, that is, in terms of binary numbers always represented
by an array of bits of 1. x1y1 is the case for both x and y being Ones, for y1 only y
is Ones, they represent the same number of gates at all times; the opt versions are
the Liquid optimized versions of the previous cases.

x1y1 y(n) = a ∗ n2 + b ∗ n+ c σy(n) x1y1opt t(n) = r ∗ n+ p σt(n)

a= 1.5 ±2.7e− 015 r= 2.86 ±0.069
b= 1.5 ±3.8e− 014 p= -17.63 ±0.94
c= 7.44e-012 ±3.15e− 014

Table 4.2: Fitting functions for graph 4.7

It is important to note that when a algorithm uses QFT all the corresponding gates

are displayed and cannot be discarded because in general the control is done by

qubits, not bits like in a addition algorithm. Therefore, we usually have a consider-

able number of gates as the qubit number increases. That’s why our improvement

to the addition circuit is important, reducing the gate number. Figure (4.8) summa-

rizes the major cases for gate growth we analysed before, considering only our gate

reduction strategy for improvement (without system optimizations). This graph al-

lows us to verify, once again, the effect of the improvement in a best-case scenario,

confronted with the maximum and minimum cases. Between this two latter cases,

there is also a noticeable difference in the growth rate, since the linear and quadratic

parameters are 1.5 for maximum case, while the corresponding parameters are 1 for

the minimum case.
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Figure 4.8: This represents the true gate evolution with the qubit number for 3
different cases without optimization. x1y1 is the already discussed case of x and y
being Ones. 2n−1 y evolves with 2n−1. And the 2ninpr is the improved version of
the previous one. This last one is an specific case with outstanding results.

Now let’s see the results of the second main set of tests, regarding the time evolution

as a function of the number of qubits. The tests were made considering the same

cases as before, with the same kind of optimizations.

There are four graphics for the representation of all possible cases, concerning the

time evolution. Since this is a simulation on a classical computer, we expect in all

cases an exponential behaviour of the form a ∗ bn for the running time, as discussed

in chapter 3.

Figure (4.9) shows the running time as a function of the number of qubits for the case

y = 2n−1, using the three different modes provided by LIQUi |〉 . It shows that the

optimized circuit mode gives a huge advantage in running time when compared with

function and circuit mode. Figure (4.10), shows the running time as a function of

the number of qubits using our improved circuit strategy when y = 2n−1. Comparing

the two graphics, we can see that the original function without improvements, has

a maximum order of 350000 ms for the same number of qubits. The version with

improvements has an order of 35000 ms. The difference between them is a factor

of 10, which is a great gain. Comparing the optimized version in both cases we

can verify that the results go from the order of 50000 ms to 15000 ms. Comparing
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the normal case from the first graphic, with the optimized improved version of the

second graph, we see a reduction in the running time of 95.7%, which is an abysmal

difference.

Figure 4.9: The running time of the case with y = 2n−1 with n being the number
of qubits. It has represented the 3 ways of running it: the function mode(func), the
circuit mode (circ) and the optimized circuit mode (opt). It has a close up of the
initial qubits in order to see the difference between the function and circuit mode.
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Figure 4.10: This figure has the graph of the running time for y = 2n−1, with the
improved versions of the same graph as represented in figure (4.9).

func y(n) = a ∗ bn σy(n)
a = 0.00235 ±0.00004
b = 2.271 ±0.002

circ y2(n) = a2 ∗ b2n σy2(n)
a2 = 0.00232 ±0.00004
b2 = 2.272 ±0.002

opt y1(n) = a1 ∗ b1n σy1(n)
a1= 0.00019 ±0.000006
b1= 2.304 ±0.003

Table 4.3: Fitting functions
of figure (4.9).

func y(n) = a ∗ bx + c σy(n)
a = 0.00071 ±0.00001
b = 2.166 ±0.002
c = 21.78 ±4.664

circ y2(n) = a2 ∗ b2n + c2 σy2(n)
a2 = 0.00061 ±1e−5

b2 = 2.171 ±0.002
c2 = 23.56 ±3.30

opt y1(n) = a1 ∗ b1n σy1(n)
a1= 5.57e−5 ±7.85e−6

b1= 2.31 ±0.01

Table 4.4: Fitting functions
of figure (4.10).

Table (4.3) has the expression and respective parameters for the fitting functions

in figure (4.9); Table (4.4) has a similar content, but related to figure (4.10). The

first thing to notice is that the expressions in the tables corroborate our choice for

exponential fitting functions. With the exception of y(n) and y2(n) in table (4.4),

none has a correction factor c, indicating that the exponential behaviour is dominant.

The main difference between the original and the improved algorithms is a factor

of the order of 10 reduction in the running time. This reduction is only noticeable
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for qubit numbers above n = 10, creating the need for the correcting term c in the

improved function mode and improved circuit mode expressions. Because the initial

values for these modes will have a bigger weight for the fit. The original optimized

mode already has a drastic reduction of the a1 parameter, the initial values are very

small and therefore the improved version doesn’t need a correcting term c.

From the values in table (4.3) it is evident that the function and circuit modes have

a similar behaviour whereas the optimized mode leads to a reduction in the running

time of a factor of 10, expressed in the a1 factor. In table (4.4) the parameters ak,

also show a reduction by a factor of 10 between the original and improved versions,

for all the test modes. Again, when considering the running time for simulation, the

improved version has astonishingly good results.

The last two cases that will be considered in the study of the time growth are the

case named y = One, represented in figure (4.11), and the case named x = One

and y = One, represented in figure (4.12). The first one is the situation where the

number y has an array of bits which all equal to one (|y〉 = |11 . . . 1〉). This means

we get the maximum number of gates, which at first sight should correspond to a

maximum in time. However, if we consider the case when x = One and y = One,

meaning |x〉 = |11 . . . 1〉 and |y〉 = |11 . . . 1〉, we have the same number of gates

as in the y = One case, but since x is only ones, all the gates of the circuit need

to be computed and this is expected to be the theoretical maximum value for the

simulation time. This agrees with what we see in figure (4.11), the case with x = One

and y = One has a larger maximum for the running time (of the order of 450 000

ms for 23 qubits), while the case y = One (figure (4.12)) has the maximum in the

order of 400 000 ms, for the same number of qubits. This seems to be the expected

result. However, in contrast with the previous study of the gate growth as a function

of qubit number, the circuit and optimized modes do not seem to show differences

between the original and improved performances.
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Figure 4.11: Running time as a function of the number of qubits for the case when
the number y is always binary Ones. The 3 modes of execution are represented. The
function and circuit mode have similar performances. Small differences are evident
only for small qubit numbers, as shown in the inset plot.

func y(n) = a ∗ bn + c σy(n)

a = 0.00284 ±6e−5

b = 2.254 ±0.002

circ y2(n) = a2 ∗ b2n + c2 σy2(n)

a2 = 0.00232 ±6e−5

b2 = 2.275 ±0.003

opt y1(n) = a1 ∗ b1n + c1 σy1(n)

a1= 0.000162 ±2e−6

b1= 2.3118 ±0.001

Table 4.5: Fitting functions
of figure 4.11.

func y(n) = a ∗ bn + c σy(n)

a = 0.0021 ±0.0002

b = 2.297 ±0.007

circ y2(n) = a2 ∗ b2n + c2 σy2(n)

a2 = 0.0034 ±0.0003

b2 = 2.237 ±0.009

opt y1(n) = a1 ∗ b1n + c1 σy1(n)

a1= 0.000161 ±4e−6

b1= 2.322 ±0.002

Table 4.6: Fitting functions
of figure 4.12.

Table (4.5) has the fit expressions and respective parameters for the graph of figure

(4.11). Table (4.6) has the same information regarding figure (4.12). As mentioned

above, the function mode maximum will be higher for the x = One, y = One case.

However, the parameter a for the y = One case is larger than for x = One and

y = One case, a feature that was not expected. Nevertheless, since the parameter b
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Figure 4.12: Running times as a function of the number of qubits for the case
where x and y are binary Ones , using the three different modes of execution. Since
this is the most heavy case to compute, the overall time is larger. The inset plot
shows the difference between the function and circuit modes for small qubit numbers.

is a little larger for the x = One, y = One case, it dominates the overall effect for

large qubit numbers.

The circuit mode parameter a2 of the second graph is bigger than the one of the

first graph. However, the first case will have slightly larger maximum values than

the other case, because of the parameter b2. This was not the expected outcome,

but it’s not a relevant difference since both graph maximums will be slightly under

400 000 ms. Which justifies the observations from the graph, discussed above.

Comparing the function and circuit mode within the same graph, we see that for

large qubit numbers the circuit mode performs better than the function mode in a

heavy operation circuits, such as the x = One, y = One. However, in the case of

y = One the function mode performs slightly better than the circuit mode for large

qubit numbers. For small qubit numbers, the circuit mode is slightly better than

function mode in both x = One, y = One and y = One.

Concerning the optimization mode, its parameters are the same, within errors,

for both x = One, y = One and y = One cases. This suggests that for the

LIQUi |〉 optimization there is no apparent difference between running one case or

the other. Comparing optimization mode with function and circuits modes, the for-
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mer has always the best performance and its particularly evident for large n, when

the effect of b parameter dominates.

Now that we have seen all the separate cases regarding running time, it is instructive

to review them all in the same graph. Figure 4.13 has the profiles for the previously

discussed cases without optimizations, whereas figure 4.14 is a similar plot for the

optimized cases. We can see that the optimization provided by LIQUi |〉 leads to

important gains in performance but the optimized improved version can reduce the

running time even further. These results emphasize the importance of the improve-

ments made to the algorithm. These graphs also show that, without any doubt, the

case with x = One, y = One it’s the most heavy to compute.

Figure 4.13: Running times for all the cases without optimized versions as a
function of the number of qubits. The only case that stands out is the improved
version of 2n.

74



4. Modular Addition Using Quantum Fourier Transforms

Figure 4.14: Similar to fig(4.13), but now with the optimized versions of the
graphs. Once again the optimized version of the improved case was the one worth
mentioning.

4.3 Discussion

We have seen from the graphs that the computation time has always an exponential

behaviour with the number of qubits. The number of gates, however, has a poly-

nomial dependence which may be quadratic at maximum and linear at minimum.

So, the time to run a simulation on a classic computer increases exponentially, even

if the gate count does not. This is because a classic computer will have to spend

resources to make the operations which scale exponentially with the qubit number,

as already discussed in section (3.3). Regarding time, the simulation behaves as

O(bn). The worst case is for x and y having all bits equal to one, for which the

running time is described by 0.0021 × 2.3n, where n is the number of qubits. The

best case occurs for y = 2n−1 in a version which is both optimized and improved, for

which the form of the running time is described by the function 0.000057 × 2.31n.

The exponential behaviour is similar, but the pre-factor 0.000057 is about an order

of magnitude smaller than corresponding factor for the worst case, which attenuates

the exponential.

Concerning the option between function and circuit modes, we can say that the

differences are relevant only in some cases, as discussed above. The graphs of sim-

75



4. Modular Addition Using Quantum Fourier Transforms

ulation times have insets of the running times for the first 9 qubits. This is where

there is a visible difference between both modes, the function mode takes clearly

more time to run. However it becomes a very small difference as n grows, the circuit

mode is faster, but not by much. When we analyse the graph for the worst case

to simulate, x = Ones and y = Ones (figure (4.7)), there is a noticeable difference

between the circuit and function mode. The latter will have reduced terms for the

exponential 0.0021 × 2.297n, comparing to the 0.00284 × 2.54n. As discussed, the

differences between these two modes of simulation may not be extremely relevant,

and in some cases using function modes might have some advantages. Comparing

the graphs for x = One, y = One and y = One, we get the impression that in

LIQUi |〉 environment it is different to represent the gates in function mode or actu-

ally have their effects on the circuit, in circuit mode, because of the way the function

mode works with the matrices.

Figures 4.13 and 4.14 allows us to compare directly all the cases regarding running

time, and put an emphasis on the fact that the improved version of the circuit has

much better results. Comparing the case which grows with 2n−1 and the improved

version, we get a reductio factor of 10, corresponding to a 90% improvement, which

is an outstanding result. If we compare it to the optimized version of 2n−1, we get

a reduction to roughly 12000 ms, which accounts for an additional factor of 3 (97%

of the original value) of time reduction. These results are much better than we

ever imagined. This proves that improving a circuit with classical computer, before

running it in a quantum computer, might speed up the process, and save resources.

The original function took roughly 6 minutes to run, the optimized improved version

took less than one minute, 37 seconds. The improved version uses the algorithm

with the minimum number of gates possible.

The simulations were made several times for each qubit. However, the simulation

terminal was not restarted for each one of them. Instead, we run the program mul-

tiple times, resetting the variables we needed. One interesting thing that happened

was that for small qubit numbers, the simulation time varied a lot. For example,

for 3 qubits, using this method and running the simulation 10 times, the first time

may take 47 ms to run, whereas the next ones 0 ms. The number is zero when

the program don’t have enough resolution to indicate smaller values. When the

qubit number is large enough (> 10), this stops happening. This may be because

of how the program works: in the first simulation it needs to load all the libraries

and variables, but in the second time and so on, it doesn’t need to load anything,

only to reset the variables. This is just an interesting detail but it has almost no

influence on the growth profile. However, some fitting variables may have larger
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errors because of this effect.

Full circuits for the cases with n = 23 qubits, may be seen in the appendix A.3.

4.4 About Memory Usage

The amount of resources used in these tests is of major significance since it tells

us how far we can achieve with quantum algorithm simulation within a classical

computer. The LIQUi |〉 program did not allow simulations larger than 23 qubits

because of the memory needed. We did not run out of memory in the simulations.

However, the allocated memory was probably not optimized, since Windows needs

to run a lot of services in the background. Windows needs almost 2 Gb of RAM only

to run the system, when using programs and libraries it will require more. So, the

truth is the available memory is not the same as the physical RAM of the computer.

We can get information about the used RAM, using native tools from windows.

However, since LIQUi |〉 runs in a specific terminal with language packages in the

background, we may not be able to see all the RAM that is being used. The

LIQUi |〉 dump files provide the memory usage for the cases where it becomes impor-

tant. We monitored the RAM usage with Windows and saw that this information,

and the one given by the program is not always exactly the same. However, the

Windows’ tools are enough to see how the memory varies.

A graph of the memory usage provide by LIQUi |〉 dump files is shown in figure

(4.15).

We can clearly see the exponential behaviour of the function as the memory starts to

increase for large qubit numbers. The yellow line is the fit, used to demonstrate that

the dependence is exponential. Even though the fit is not perfect, it is good enough

to see the exponential behaviour. Interesting enough, the case which requires more

memory is the improved circuit. Since it needs to run more processes and to store

more information, it needs more memory. But most of that memory increase is for

classical operations, which makes it pay off in the computation time, so it’s worth

it.

Regarding the CPU usage, we monitored it, and it usually spikes around 15 qubits,

to very high values. When working with a large number of qubits, the CPU uses

100% of its capacity most of the time. If the code is more demanding, as the case

for the improved circuit, the CP usage may spike earlier. The major concern with
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Figure 4.15: Memory usage in the simulations for all the different cases. The
yellow line represents the fit to the data of 2nimprov case, which is described by f(x) =
8.4e−8 ∗ 2.8x + 347.

the CPU usage is the heat, for long computations it may become a problem.

For this reasons, using a system dedicated only to this simulation, with a proper

cooling system may give very good results, and since it is much cheaper than the

quantum hardware, it is a viable solution.
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Quantum Error Correction

5.1 Basic Principle

The most serious problem of a quantum computer is the loss of coherence of quantum

states with time. It is known that the coherent states of qubits are extremely

fragile, and the larger the system, the more fragile it is, as it loses the coherence

more rapidly. The quantum computer uses physical gates that can introduce errors

themselves. There are different sources of errors in quantum information that need

to be corrected. A qubit may not only have bit flip errors (which can be described

as the effect of gate X) but also has phase flip errors (gate Z). Note that in a Bloch

Sphere, any undesired rotation, no matter how small, is an error to the system.

However, knowing that Y = iXZ and that any rotation can be described as a

combination of these three gates (X,Y,Z), by correcting the two types of errors

described X and Z gates corrects any rotation. This is the goal of Quantum Error

Correction (QEC) codes.

QEC codes started by adapting the classical error correction techniques. From that

point, it evolved to more complex codes with the objective of making the quantum

computer a fault tolerant system[41]. The most basic code is the 3-qubit code.

5.1.1 3-Qubit Code

The principle behind this algorithm comes from classical computation. It only needs

three qubits per original qubit of the system. A classic computer works with bits,

and the only error that can occur is a bit 0 becoming 1 or vice versa. To be sure

that the data doesn’t have any errors of that kind we can try to encode it, work

with it and decode it in the end. For example, the bit |0〉 becomes the logical zero,
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|0L〉 = |000〉1 , that is, the bit is repeated three times. Now, we may have some error

inserted in the logical qubit along the way, as described in (5.1). In the example,

the logical zero end up with an error in the second qubit (|1〉 instead of |0〉). In

order to know how to correct this state, we must know which qubit is the right one.

Using the method of majority voting, the majority of qubits in the same state must

be the right ones, as long as the error probability is small enough2.

|0L〉 = |000〉 Error Introduction
GGGGGGGGGGGGGGGGGGA |010〉 (5.1)

The first step of the 3 qubit code is to encode the qubits into the logical states. We

must notice that the no cloning theorem prevents the cloning of quantum states,

unlike the digital classical realm where copies of data can be made. The circuit in

the figure (5.1) is able to create a logical state |ψL〉 without cloning the input state.

The other states have similar information as the original state, in a redundant way,

but are not the same as the original state.

Figure 5.1: Representation of the circuit needed to encode a qubit in the state |ψ〉
into the logical state |ψL〉.

If the initial state is |ψ〉 = |0〉 then the CNOT gates don’t act and in the end we

have 3 identical qubits |000〉. If the initial state is |ψ〉 = |1〉 then the CNOT flips

the 2 ancilla qubits to |1〉. The general state becomes: |ψ〉 = a |0〉+ b |1〉 A |ψL〉 =

a |000〉+ b |111〉.

After the encoding, we need to have a circuit to verify if there is an error and

where. This is called the syndrome measurement. This measurement gives us

information on which bit there was an error, but it doesn’t give any information

about the state nor changes it. The operators listed bellow, are used to perform the

1As we represent the logical zero as |0L〉 = |000〉, we can do the same to represent the logical
qubit 1 |1L〉 = |111〉.

2In this case a small enough probability means that only one error is allowed to appear in
three bits logical state. If it appears more than one, then this method to correct the error does
not work. The majority voting with two wrong bits gives the wrong bit as if it was correct.
Being p the probability of flipping one bit, then the probability of error in more than one bit is
Pe = 3p2(1− p) + p3 = 3p2 − 2p3 we need to assure that Pe < p which happens if p < 1/2.
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syndrome measurement on a 3 qubit code for bit flip, applying them to the encoded

state and see where the error happened.

P0 = |000〉 〈000|+ |111〉 〈111|

P1 = |100〉 〈100|+ |011〉 〈011|

P2 = |010〉 〈010|+ |101〉 〈101|

P3 = |001〉 〈001|+ |110〉 〈110|

For example, the state |ψ〉 = α |010〉 + β |101〉 has an error in the second qubit. In

order to detect it with the syndrome measure, we apply the operators, as shown

below:

p(0) = 〈ψ|P0 |ψ〉 = 0

p(1) = 〈ψ|P1 |ψ〉 = 0

p(2) = 〈ψ|P2 |ψ〉 = 1

p(3) = 〈ψ|P3 |ψ〉 = 0

The syndrome measurement gives the result p(2) = 1, so we conclude the error is in

the second bit. The next step is to correct it by applying an inverting operation on

that qubit.

This syndrome measure can also be implemented in the circuit mode, represented

on the figure (5.2). With the syndrome circuit, there is no need to use the operator

projection described above, it only needs to compare the qubits. With 2 ancilla

qubits 3and using CNOT gates, it compares the parity of the qubits, thus detecting

the error. The comparison process goes like this:

|ψ1〉 = |ψ2〉 and |ψ1〉 = |ψ3〉 no error
|ψ1〉 6= |ψ2〉 and |ψ1〉 6= |ψ3〉 error on |ψ1〉
|ψ1〉 6= |ψ2〉 and |ψ1〉 = |ψ3〉 error on |ψ2〉
|ψ1〉 = |ψ2〉 and |ψ1〉 6= |ψ3〉 error on |ψ3〉

Table 5.1: Representation of the syndrome measurement possible outcomes

After that, we measure the ancilla qubits, which will give the syndrome result. In

turn, they will classically control a gate X to revert the error in the proper qubit.

3Ancilla qubits are qubits with a known initial state, usually |0〉, used to perform some auxiliary
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Figure 5.2: Circuit to perform the syndrome measurement with two ancilla qubits.
After measuring this two ancilla qubits it performs a X gate with classic control to
correct the error.

In the classical digital world, there are only bit flip errors. In the quantum domain,

however, we may have both bit and phase flip errors4. This method only corrects

bit flip errors. In addition, if there is more than 1 error, the syndrome measurement

will not be able to identify with success which data bits contain errors. It assumes

no error in the ancilla qubits nor in the CNOT gates, they are considered perfect

qubits and gates, this method is therefore very limited. Let’s examine the algorithm

to correct the other type of errors, the phase flip.

5.1.2 3 Qubit code with phase errors

A phase flip error doesn’t have an equivalent in classical computation. In a phase

flip error, the state a |0〉 + b |1〉 becomes the state a |0〉 − b |1〉. This kind of errors

can be corrected with the introduction of a different gate in the circuit, the gate Z.

If we apply a gate Z to the state (|0〉+ |1〉)/
√

2, often called the state |+〉, the result

will be the state (|0〉− |1〉)/
√

2, the so called state |−〉. There is a resemblance with

the bit flip circuit and the classical bit flip, since applying the gate Z to the state

|+〉 flips it to the state |−〉. So, this can be treated as a bit flip, but not in the basis

|0〉 and |1〉 but in the basis |+〉 and |−〉. This means that the error detection for the

phase flip can be converted to a simple bit flip with the same 3 qubit code. All it is

needed to do is encode the qubits from the state |0〉 or |1〉 to the states |+〉 or |−〉
respectively. To do this, first we do the encoding as before into the logical states,

and then we apply a Hadamard (H) gate. The Hadamard gate acts on the basis |0〉,
|1〉 to change them into |+〉, |−〉, represented in the figure (5.3).

operations. In this case the ancilla qubits are the register to the syndrome measure results.
4Any unwanted rotation in the Bloch sphere is viewed as an error, but correcting bit flip and

phase flip errors is enough to get the right state.
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Figure 5.3: Representation of the circuit needed to encode a qubit in the state |ψ〉
into a logical state prepared for correcting errors of phase flip.

The error detection and correction will be done the same way as in the bit flip code,

after adding a H gate to the circuit, put after the CNOT gate. The error probability

must be the same as before.

5.2 The 9 Qubit Code (Shor)

The Shor’s code of 9 qubits was one of the first most complete QEC codes because

it can correct both bit and phase flip errors in the same circuit. It is a combination

of the both codes already discussed. The phase flip runs first and needs 3 qubits

to be encoded. After that, it needs 3 more qubits for each one, to run the bit flip

code. So, the total number of qubits in the circuit for encoding is 9, hence the name.

This is the basic principle behind the Shor’s code. As long as there isn’t more than

1 error per qubit, the code can correct it. This code is catalogued as a degenerate

code because it doesn’t need to know in which qubit the error appeared, all it needs

is the block of qubits in question. The encoding process is represented in the figure

(5.4), the qubits will be encoded in the phase domain, as discussed in the phase

code, that is, the states |0〉 become |+ + +〉 and |1〉 become |− − −〉. After the bit

encoding the logical states of the system become:

|0L〉 ≡
(|000〉+ |111〉)(|000〉+ |111〉)(|000〉+ |111〉)

2
√

2

|1L〉 ≡
(|000〉 − |111〉)(|000〉 − |111〉)(|000〉 − |111〉)

2
√

2

For the error detection and correction, this code uses a similar principle to the

previous codes syndrome measurement. For the bit flip, the syndrome circuit is

applied to each block of three qubits independently, comparing each qubit with the

others of the same block, as the circuit in figure (5.2). This code can have up to one
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Figure 5.4: Representation of the circuit needed to encode a qubit in the state |ψ〉
into a logical state prepared for the 9 qubit Shor code.

error in each block, a total of three errors of bit flip.

For the phase flip, the error detection is done comparing the sign of the three blocks

of qubits. Since the phase encoding is the first stage of the code, if there is a phase

error in either of the three phase encoded qubits, then all the qubits in that block

will get the same error sign. So, the syndrome measurement compares between

blocks of qubits. First, it is made a comparison between the first two blocks, and

later between the second and third block.

Comparison between blocks Sign Block Error
1st: |000〉 − |111〉
2nd: |000〉+ |111〉 different

1st
2nd: |000〉+ |111〉
3rd: |000〉+ |111〉 same

1st: |000〉+ |111〉
2nd: |000〉 − |111〉 different

2nd
2nd: |000〉 − |111〉
3rd: |000〉+ |111〉 different

1st: |000〉+ |111〉
2nd: |000〉+ |111〉 same

3rd
2nd: |000〉+ |111〉
3rd: |000〉 − |111〉 different

Table 5.2: Possible combinations to detect the phase error in the 9 qubit code.

This means that for example, if the first and second blocks have different signs and

the second and third blocks have the same sign, then the error is in the first block.
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All the possible combinations of the syndrome measurement for the phase flip are

represented in the table (5.2). The implementation of this kind of circuit is the same

as discussed previously, using CNOT gates to compare between blocks and H gates

to work in the phase domain.

5.3 Liqui|〉 and the Quantum Error Correction

(QEC) Codes

In the previous section we discussed the basic principle needed to understand the

error correction codes. QEC codes are a hot topic nowadays and they are progress-

ing. Even when using the basic codes, making QEC circuits for complex systems

needs a large number of qubits. In order to implement the Shor’s code it takes 9

qubits just for the encoding of a single qubit. It’s worth reinforcing the idea that

the objective of this chapter isn’t to explore with great detail the QEC, instead to

be somehow familiarized with them.

The implementation of the QEC codes can make the circuit very heavy, so it’s better

to work with solutions that make this process lighter. LIQUi |〉 has a suite for error

correction code simulation. Using this mode of simulation, we can encode the states,

then simulate the introduction of errors and its correction, and lastly check if the

results are the ones expected. The error introduction is done by inserting gates

in certain points of the circuit randomly. There is a certain probability of error

introduction that is defined. So, an interesting analysis may be to test the ability

of the circuit to correct errors as a function.

As was mentioned QEC codes need a lot of resources, one of the things that may

need some improvement. For this reason, the LIQUi |〉 QEC suite doesn’t use the

Shor’s code of 9 qubits, which need many qubits. Instead, it uses a more robust

code, the Steane 7 qubit code.

5.3.1 Steane 7 qubit QEC

The Steane 7 qubit code belongs to the class of CSS codes (Calderbank-Shor-Steane)

and is a QEC code used in a different category from the ones discussed so far,

the category of stabilizers. However, it can be established without the stabilizer

formalism, which is how it was created. In order to understand this code origin, it

is needed to study classical linear codes which is not the scope of this thesis, see the
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references [1, 42] and [43] for more details. However, it is important to highlight

some features. A linear code C that encodes k bits into an n bit code, does that

using a generator matrix G (n by k), which is made of zeros and ones. The parity

check matrix H makes Hx = 0 (x being a codeword), is used to perform the error-

correction. This matrix is related to the matrix G. The concept of dual code is also

important for CSS codes. Having a code C with matrices G and H, its dual would

be defined as C⊥, which has the transpose matrices of G and H.

The Steane 7 is a CSS dual code. The code C1 is a [7,4,3]5code, known as the

Hamming Code (see [1] for details), and the code C2 = C⊥, a [7,3,3] code. The

Steane 7 is constructed with this two codes, as a [n,k1 − k2,d]=[7,1,3] code. Which

means that each 1 qubit is encoded by 7 qubits. The distance between basis states

of 3 provides that the code can correct 1 error, according to equation (5.3). The

logical states of the code are derived from the parity check matrix of the Hamming

code [44], which are:

|0L〉 =
1√
8

(|0000000〉+ |1010101〉+ |0110011〉+ |1100110〉

+ |0001111〉+ |1011010〉+ |01111000〉+ |1101001〉)

(5.2)

|1L〉 =
1√
8

(|1111111〉+ |0101010〉+ |1001100〉+ |0011001〉

+ |1110000〉+ |0100101〉+ |1000011〉+ |0010110〉)

5.3.1.1 Stabilizer Formalism

This formalism uses operators to describe the quantum state instead of the state

himself. It can be used to perform various operations, and it’s not limited to er-

ror correction. However, is particularly useful for error correction because it can

simulate the system with fewer resources.

The stabilizer formalism uses the concept that an operator K stabilizes a state |ψ〉,
5[n,k,d] is the set of parameters that specify the code, which means that n qubits encode a k

logical qubit, with d distance. The distance refers to how many qubits need to change in order to
a codeword to become another different codeword, which translates the number of errors (t) it can
correct.

t = [
d− 1

2
] (5.3)
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as long as this state is a +1 eigenstate of K with:

K |ψ〉 = |ψ〉

If we consider the EPR state |ψ〉 = |00〉+|11〉√
2

, we see that this state is stabilized by

the operators K1 = X1 ⊗X2 = X1X2 and K2 = Z1Z2 (the subscript numbers refer

to the qubit each operator acts upon), which belong to the Pauli group of operators.

This translates into X1X2 |ψ〉 = |ψ〉 and Z1Z2 |ψ〉 = |ψ〉. These two operators are

enough to stabilize this state, which means we only need the operators to refer to

the state. In a computation perspective, it means it is only needed to save the group

of operators and not all the state amplitudes. This is the great advantage of using

stabilizer formalism, it becomes lighter to compute. For the Steane 7 code, we have

a group of six operators:

K1 IIIXXXX
K2 IXXIIXX
K3 XIXIXIX
K4 IIIZZZZ
K5 IZZIIZZ
K6 ZIZIZIZ

Table 5.3: The group of six generators (operators) for the Steane 7 code.

It’s worth mentioning that the operators have a similar structure to the parity

check matrix that was used to construct the Steane 7 code. These operators are

able to represent the logical states of the code, in the equation (5.2), but in a more

compact representation. The stabilizer formalism establishes a subspace of reduced

dimension. The Hilbert space for the encoded 7 qubits is 27, the subspace has the

size of the number of qubits subtracted by the number of operators, giving a total

subspace of 27−6 = 2. The stabilizer formalism works in a subspace that only has

dimension 2 to work with seven qubits.

We saw how the stabilizer formalism works and how the Steane 7 code is defined

within this formalism, now we must inspect the preparation of the logical states.

Since the encoded logical states for the code are +1 eigenstates for the six operators,

we need to assure this when encoding the qubits.

The encoding process uses a dedicated circuit. Theoretically, in order to prepare the

logical state |0L〉, we start by preparing the states |0〉⊗n and an ancilla qubit in the

state |0〉. The ancilla will have an Hadamard gate applied and then it controls the

general operator K applied in the state system. After this, the ancilla has another
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Hadamard gate and then it’s measured. The outcome of this measurement makes

the state an +1 eigenstate of K if the measure is |0〉, or −1 if it measures |1〉. The

−1 eigenstates can be converted to the expected +1 eigenstates with the use of Z

gates. This process projects the initial state, making it stabilized by the operator

K, so it needs to be done for all the operators.

In practical terms, we can use more than one ancilla to accelerate the operator

measurement process. So, for the Steane 7 code, we use three ancilla qubits for

the three operators at the same time. It only needs to use the first three operators

(regarding gates X). That’s because when encoding the logical |0L〉, we initiate a

state |0〉⊗7, which is already an eigenstate of the other three operators (regarding Z

gates).

Steane 7 logical qubits can be prepared by a circuit using only Hadamard and

CNOT gates. The circuit of the figure (5.5) is the preparation circuit for the Steane

7 logical qubit |0L〉. Note that the figure (5.8) has the same circuit but was drawn

directly with the LIQUi |〉 program, it is compacted. The bottom three qubits are

the ancilla qubits. All the qubits of the circuit started in the |0〉 state. This circuit

can do the logical preparation with only 7 qubits, while the theoretical example

discussed above needs 10 qubits. Attending to the fact that the encoded operator X

is X̄ = X1X2X4, then we can encode the logical state using the rearranged operators

K1 = X5X6X7; K
2 = X3X6X7 and K3 = X3X5X7. Since the states start as |0〉,

it can be guaranteed that they will be a +1 eigenstate of the operators. After this

part, the circuit itself can be implemented, including the error-correcting part.

Figure 5.5: Preparation circuit for the Steane 7 code logical qubit |0〉.

One error in the system may be translated by an operator E. This error correcting

code can correct errors of the type ofX and Z operators, plus the operator Y = iXZ.

Since the state is stabilized with the operator K, then the state with error will satisfy
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the equation:

KE |ψ〉L = ±E |ψ〉L

The state is a +1 eigenstate if the error operator commutes with the stabilizer and

-1 if it anti-commutes. What this means, in practical terms is that we can detect

this types of errors simply by measuring the operators of the code, and detecting

the anti-commuted eigenstate.

The errors of type Z anti-commute with the operators K1, K2 and K3. The errors of

the type X anti-commute with the operators K4, K5 and K6. This makes the errors

of the type Y anti-commute with both kinds of operators, since it is a X and Z

combination. So, similar to the state preparation, we measure all the operators [41].

With the result, we know in which qubits there is an error, so applying the proper

operators X and Z to the circuit corrects the error. This process needs to be done

multiple times to correct all the errors, in a circuit that has multiple operations.

In order to be fault-tolerant, we can do this process after every operation to the

circuit. To measure the operators of the circuit we need 6 ancilla qubits, one for

each operator. This circuit is represented in the figure (5.6), which has the first

part to detect the type Z errors. The first ancilla qubit is relative to the operator

K1, the second to the operator K2 and so on. Note that, once again, the first three

operators (regarding X gates) can be implemented with the CNOT operations. The

last three ancilla qubits control the operators of Z gates, which detect X errors.

After measuring the ancilla qubits, we implement the error-correction, with the

proper X and Z gates controlled by the measure results. These controlled operations

are represented by two lines since it’s a classical control. This can be seen in the

figure (5.10), which has the syndrome measurement and correcting circuit from

the LIQUi |〉 program. Note that the syndrome is the first part of the circuit,

before measures, and is the same as represented in the figure (5.6) but in a compact

representation.

5.3.2 Programming QEC

LIQUi |〉 has a library for QEC that is called Quantum Error Correction Codes

(QECC). More precisely it has a Steane7 class that implements the Steane 7 code

with [7,1,3].

This class needs to work in the Circuit mode, this means the circuit must be compiled

and then converted to the Steane 7 environment and only then do the simulations.

In order to obtain results, it is needed to run the compiled circuit. The run method
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Figure 5.6: The syndrome circuit for the Steane 7 code. The first part detects
type Z errors, and the second part detects X errors.

will change the qubits values in their own kets, this means that for the simulation

we will need two identical kets. With one we run the normal function and with the

other, we run the simulation with error introduction. In the end, we compare the

results to see if the error-correction was successful.

5.3.2.1 Limitations

The LIQUi |〉 documentation has an example of how the steane7 class is done, in

order to understand how it works. However, in code implementation, the only thing

that is needed is to work directly with the class constructor and its methods. The

constructor will encode the qubits, as discussed in the previous section, and then

will compile the circuit already made into this class.

The QECC class has its own methods to transform the normal gates into gates

prepared for the logical qubits. Steane7 is a different class that inherits all the

QECC library, and his constructor will prepare the gates via Transverse operation

into 7 qubits gates. From the steane7 example we know that it only supports the

following gates: H,S,X, Y, Z, I,M . M is the measurement operation, the others

are all single-qubit gates. Also supports the CNOT gate, a 2 qubit gate, since is a

controlled operation.

All the initial qubits in the circuit need to begin in the state |0〉, in order to work

with the steane7 class. This means that in the case of the addition or QFT circuit,

only simple operations with |0〉 are possible, for example, the 0+0 addition.

Since the QFT and addition functions have a controlled rotation that isn’t supported

natively by the steane7 class, we will need to do it manually. This means, convert
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the QFT circuit with the transverse function. However, some complications were

met trying to do this operation. Since the initial state needs to be |0〉 and the

addition function has other limitations, it becomes a very complex circuit rapidly.

Then it was decided that, since the main objective of this chapter was to explore

and do some simulations with the QECC and steane7 class, the circuit used must

be simplified. The final circuit that was used in the simulation was a QFT with

only 2 qubits (figure (5.7)). This is enough to explore the error correction since the

2 qubit code has the basics to simulate the system, and it becomes a big circuit in

the end.

Implementing the QFT function with more than 2/3 qubits will be a very large

circuit, which is one of the biggest limitations of quantum error correction in general.

The resources needed are frequently larger than the ones available.

Figure 5.7: Qft circuit with 2 qubits implemented with steane7

5.3.2.2 Code

The full code used to implement the QECC will be in the appendix A, in this

subsection we will explore some of the basic commands needed to simulate the

steane7 class.

In order to measure the time of the simulation, we used the Stopwatch() function

from the System.Diagnostics as represented in line 3 from the code. As already

said the program will need 2 identical kets, initiated in the state |0〉, in this code

they will be called k and b.

The first step is to compile the tqft circuit of 2 qubits, with the respective qubit

lists. The compile function will prepare the circuit mode. In this mode, there are

some interesting operations, namely the render function which will print the circuit

to file. It’s important to refer that Circuit mode only changes the ket states upon

the run command. The tqft function is the same as QFT only simplified to 2 qubits,

as follows:

1 l et t q f t ( qs : Qubits )=

91



5. Quantum Error Correction

2 l et n=qs . Length

3 l et mutable z=0

4 for q in qs do

5 H [ q ]

6 l et mutable q i=z+1

7 for i in 2 . . (n−z ) do

8 S [ q ]

9 qi<−q i+1

10 z <−z+1

11 z<−0

Next, the compiled circuit will be implemented in the steane7 class. let s7 =

Steane7(qc) command will prepare the qubits into logical ones with 7 qubits each

and then convert the circuit gates to transverse ones. Now the circuit is prepared

to do the error simulation.

The s7.prep command selects the encoding part of the circuit that can be rendered

(figure 5.8). In order to render the encoding or syndrome part of steane7, the circuit

needs to be compiled, as before. However, the Circuit.Compile command needs a

qubit list, on which it operates. This means that to encode the circuit it needs a 7

qubit long list, but so far the qs list only has a length of 2. So, we created a new

qubit list with 7 qubits with the code line: let si = Ket(7).Qubits. In the case of

the syndrome circuit, it needs 7 qubits plus 6 ancilla qubits for the measurement

operations.

Figure 5.8: Circuit for logical qubit encoding in Steane 7 code.

At this point in the program, the circuits for the error correction are prepared, but

there are no errors yet. The errors are injected with a probability p defined in the

function calling section. This command line is let err,stats = s7b.Injectp, and the

Inject command will introduce the error. This will make a new circuit, which is

stored in the err variable. The stats variable stores how many errors and which
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types the circuit will have.

The error circuit is a very long one because the algorithm runs each syndrome

measurement and correction for each gate in the circuit. So, in this case, we are

talking about 3 times the same sequence. But this method allows for the errors to

be detected in different parts of the circuit. The full circuit is represented in the

Figure B.1, in the appendix B.2.

Figure 5.9: Detail of the figure B.1.The error gate X is highlighted in yellow.

The final step of the program is to run the circuits, both original and corrected,

and display the results data. s7f.Runs7.Ket.Qubits command will run the circuit

without errors. The stopwatch will be started and stopped to measure the time, and

after this, the program will display the data with the dump and show commands.

Figure 5.10: Circuit to perform syndrome measurement after encoding.
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5.4 Results

In order to analyze the results, the data was treated in excel using macros in visual

basic language, because the data from the LIQUi |〉 program, which was saved in a

log file, has a lot of information non useful for this case. It was decided to run the

program with a total of 11 different probabilities, 50 times each. So, in excel with

the proper macros, the log files were cleaned to select the essential data. One of the

test cases, with probability 0.009 is represented in the appendix B.3 as an example.

The graph from the figure (5.11) has the results from the simulations, and shows the

success rate of the error correction as a function of the probability of error injection.

When analysing the results, it’s important to keep in mid that a change in the global

phase has no physical meaning and does not represent an error.

Figure 5.11: Representation of success rate as a function of the probability of error
insertion. Includes a linear regression to show that it has a roughly linear behaviour.

It shows clearly that higher the probability of an error injection the worst the suc-

cess of the correction. With a probability of 0.009, we have a 0.98 rate of success

(49 of 50 cases). Increasing the probability to 0.02, the success rate will drop to

0.96. This probability is the limit in order to have results with 5% error. The first

conclusion from the data is that the error correction method is only reliable for an

error probability not larger than 2%. In theory, a realistic model for error correction

should work with an error probability between 0.0001 and 0.001. There are theoret-

ical values for some models which can deal with an error probability of 0.01 - 0.03
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[45]. The simulation results indicate that this model has a good performance, sinc

it is able to make corrections with an uncertainty of 5% with a maximum p = 0.02.

The QEC starts to fail when more than 2-3 error gates are introduced in the system,

even if the probability of error in the gate will be only 0.02 for this case. Classical

gate operations are extremely reliable, even without error correction, with one error

in 1017 operations. So, maybe it is more efficient to make the physical gates more

reliable, instead of creating long circuits to correct errors.

In this case, with a 2 qubit circuit, each encoding needs 7 qubits, and the syndrome

measurement needs 6 more qubits, giving a total of 20 qubits to correct Z and X

errors. Most of the physical systems available right now, only have qubits in the

order of 10 to 20. For example, the IBM computer only has 5 qubits available

for the public (16 by code platform) and 20 qubits to clients. In most cases the

quantum computer circuits have to be implemented without error correction. It’s

an area that needs further development. The memory used to store each qubit grows

exponentially with 2n, with n being the qubit number. So, the running time of the

simulation increases compared to the version without error correction, because the

circuit doesn’t need to be compiled and is much smaller.

Regarding the time of computation, there isn’t a visible relation between the prob-

ability of error and the time elapsed. All the computations took longer than 208

and less than 450 ms. The variation here was not significant, because only one run

took more than 350 ms. And this small variation was because of some shifts in the

system, namely the background tasks running in the CPU. The figure (5.12) shows

that there is no relation between the error probability and the elapsed time for this

case scenario.
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Figure 5.12: Representation of execution time (ms) as a function of the probability
p.

5.5 Stabilizer Simulator

LIQUi |〉 has a different kind of simulation engine included, which can be the answer

to some problems of memory and time that it takes to run the steane7 class. It is

called stabilizers simulator. It has a different way to store and run circuits so it can

give better results. They have the limitation of only working with a reduced list of

gates and can’t convert any others. The gates are the same ones as steane7, plus a

few operations that may be useful, for example a controlled X gate [36]. Besides,

the states need to be |0〉 or a state reachable within the gate list operations. This

means the simulator is limited and only exists to analyse certain systems. Having

the addition function as an example, in order to be implemented with this simulator

it would need some serious change, including the derivation of controlled rotation

gates into other gates from the list. This would make the circuit very complex to

work with. However, the error correction is one of the things that can benefit from

this simulator, because as the qubits are stored in a different way, it can handle a

lot more qubits without expending the resources.

The stabilizer simulator uses the methods described in the article [46]. We have

described its basic principles in previous sections. It’s not the scope of this thesis to

discussed these to their full extent. However, one of its benefits, for computation,

is storing the qubit state in one tableau that can be read back. This is used by the

simulator, and after the operations it gives a tableau representing the state of the

system. Since it can handle thousands of qubits at once it can be exhausting trying
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to read and work with it.

As already discussed the stabilizer formalism, which includes the Steane 7 code,

represents the state of one qubit by operators and not by amplitude. It must obey

the condition that the state must be an eigenstate of the operator with eigenvalue

+1. So, if the operators are represented in a tableau it may help significantly some

simulations. This formalism, of writing the tableau of the unitary matrix that

stabilizes the state, may not be the easiest to read or even the most efficient. It

may take many bits to be stored classically, however, it can be simulated much

faster. Plus, the system used by the LIQUi |〉 library uses an improved version of

the stabilizer group. It changed the measurement operation so it only needs O(n2),

instead of the previous n3, this means it can handle more qubits faster. Noting that

each generator needs to specify the state |ψ〉 expending n(2n+1) bits, plus 2 bits for

each n Pauli matrix and1 for the phase. The tableau will be representing the state

stabilizer with binary values, so it can be faster for the simulation. When the system

is asked for the state it will give a tableau (figure (5.13)) with the representation of

the operators and a dot for each 0.

The code is available in the appendix A. It uses similar tools as the ones already

described but redirected to the stabilizer simulator. The command let stab =

Stabilizer(err,s7b.Ket) converts the circuit made with errors, into the simulator,

and stores it in the variable stab. The Stopwatch needs to be reset and then the

circuit is run in the stabilizer simulator. ShowState prints the tableau for the state,

and after that, the various show lines, print data from the system.

The biggest advantage of the stabilizer simulator can be seen in the graph of the

figure (5.14). It’s the representation of the runtime in milliseconds of 100 simulations

with the steane7 algorithm in the stabilizer simulator. Most of the runs had the

same time, 2 ms, but there are some exceptions, a few spikes. These were related to

the CPU and the operating system or to the fact that it was the first run. Actually,

the simulation was initiated twice with 50 runs each, and each time the simulation

started, the time was a bit longer, in the order of 25 ms. Two of the spikes in the

graph, the first and the 51th are for this reason.

Those results are indeed a great improvement related to the non-stabilizer simu-

lation, reminding that those times were in the order of hundreds of milliseconds,

more specifically 208- 450 ms. These are 104 to 225 times bigger than the stabilizer

results. So, it’s an outstanding result. Note that the stabilizer simulation did the

same operations as the steane7, it’s the same circuit, only optimized in a different

simulator. As discussed previously, the Steane 7 code is of the category of stabiliz-
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Figure 5.13: Representation of the tableau for the state of the system after the
error correction.

Figure 5.14: Representation of the time of 100 runs with the stabilizer simulator.

ers but can be defined without them. The LIQUi |〉 main simulator uses the class
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steane7 based in the stabilizer formalism. It prepares the circuit with this logic as

described, but creates the circuit with the state amplitudes. The stabilizer simulator

only works with the operators instead of the state, so it is working in the subspace

of dimension 2.

The stabilizers are a very powerful simulation environment, however, are very lim-

ited, as proved. It’s hard to retrieve the state to the normal simulator without

any measures (decoding the state), so it becomes hard to do some kinds of circuits.

Still, is a very interesting and useful tool in the LIQUi |〉 library. With some work in

deriving gates, it can be used to simulate complex circuits with much less memory

and computation time.

99



5. Quantum Error Correction

100



6

The IBM Q Experience

6.1 Introduction

The IBM Q Experience was open to the public in 2016 [13], and it was widely used

during the year 2017, making it an excellent choice to do quantum experiments.

This experience is based on the IBM Cloud. This means that we can write the code

and run it in a simulator, or in the real quantum computer of IBM Research, via the

internet platform. This platform has a circuit composer, which works by dragging

the gates needed to the circuit, and then running it. At present it’s also available a

platform to write your own code. The Quantum Information Science Kit (QISKit),

allows the use of the OpenQASM language based on Python.

Using the Composer is intuitive, but has many limitations, namely the reduced

number of gates available. However, since they include the universal set of gates, we

can decompose any gate into them. Writing the code may make this process easier.

At present, the IBM Q has 3 quantum computers available, two of them with 5

qubits, and one with 16 qubits. The latter is only accessible via the QISKit platform.

There are two quantum chips with 20 qubits only accessible to partners of IBM,

and in the near future, these might have 50 qubits. All of the chips are based on

superconductor technology.

This is a unique opportunity to make some tests in a real quantum computer, so we

implemented the addition algorithm in the Composer, in order to test it.

6.2 The Experience

Since the IBM Q uses a different language from LIQUi |〉 , we will not go into the

code writing process, that might be for a future work. We only want to see how
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the process works, and the results it gives. Having access to a 5 qubit quantum

computer, we are limited to an addition of two numbers of two qubits each. This

means that we are left with an extra qubit, so it’s possible to make an addition with

a carry bit. With two qubits and a carry bit available, we decided to implement the

most common example of addition : 2 + 2 = 4.

Figure 6.1: Representation of the circuit for the classic two bits adder.

Figure (6.1) shows the classic circuit for the addition of two bit numbers. One of

the outputs will be the carry bit. This circuit uses only XOR and AND gates in a

total of 7 gates to form a non-reversible circuit.

Using the quantum algorithm discussed, to make the addition of two numbers of

two qubits, we get the circuit of the figure (6.2). This circuit has 9 gates, which is

bigger than the classical one, however it’s fully reversible. Besides, when comparing

with a classic addition circuit, the gain of gates in the quantum addition circuit is

only evident for a large number of qubits. So, up to now, the quantum circuit has

more gates than the classic circuit, but using the improvement for the case we want,

2 + 2 = 4, we can reduce it.

Figure 6.2: The circuit for the addition of two qubit numbers, following the quan-
tum algorithm.

We want x = 2 and y = 2, so we have the quantum bits |x〉 = |10〉, and |y〉 = |10〉.
This means that y1 = x1 = 0 and y2 = x2 = 1. With these input bits, the QFT part
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of the circuit will have no rotations, and the adder will only have the effect of the R1.

So there is no need to represent the gates that have no effect on the circuit. Note

that the IBM Q Composer doesn’t have the general Rn gates, however, we must

remember that R1 = Z and R2 = S which are available. Thus, we can implement

the shorter circuit to perform the operation 2 + 2 = 4 in the IBM Q composer (see

figure (6.3)). This circuit has only a total of 7 gates, and two of them are there

to convert the state |0〉 into |1〉, since all the inputs in the IBM Q are the state

|0〉. All the qubits must be measured, in contrast with the LIQUi |〉 simulation

environment. It is important to note that, after improvement, the entries y1 and y2

could be omitted. However, it is instructive to keep them to evaluate the impact of

errors on them in the real quantum computer circuit.

The addition 2 + 2 = 4 written in binary is 10 + 10 = 100. The result has three bits

so the modular addition is expected to give (2 + 2) mod 4 = 0.

Figure 6.3: Circuit implementation for the modular addition of two qubit numbers.
The X gate is used to convert |0〉 to |1〉. The qubit mapping of this circuit is made
clear by the input and output labels. The bottom line, named C, contains the
order of the output qubit register. In this case, from top to bottom, the qubit
measurement register order is 0,1,2,3, which means that the top qubit will be the
first to be measured, and the first entry bit of the result register. In other words,
it will be the least significant bit of the result, that is the bit located at the far
right in the output register. In this case, the output register is expected to be
| q[4] (x+ y)1 (x+ y)2 y1 y2〉 = |00001〉.

Since the result of the addition 10+10 = 100 has an extra qubit, we can implement it

using a carry bit, as discussed in chapter 4 (figure (6.4)). This way, we can compute

the usual addition 2 + 2 = 4. The circuit using one carry bit was implemented

using only gates that have an effect on the circuit, and is shown in the figure (6.5).

Note that this circuit has a different order of the qubits, but it represents the same

principle. Only the final register is affected by this order.

The carry bit, in figure (6.5) is represented by the qubit q[2], that starts as |x3〉 = |0〉.
In general, changing from modular addition to common addition, requires only one
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Figure 6.4: The circuit for the addition of two qubit numbers with carry bit,
following the quantum algorithm for the use of carry bit.

Figure 6.5: Implementation of the addition circuit with carry bit. The qubit q[0]
is the carry bit: its input state is |0〉, the output will be |(x+ y)3〉 = 1. The output
register is expected to be |(x+ y)1 (x+ y)2 (x+ y)3 y1 y2〉 = |01001〉.

extra line in the circuit, disregarding the number of entry qubits. This extra line will

be on top of the QFT, adder and IQFT lines, converting a n qubit circuit into a n+1

circuit, but forcing the additional entry qubit to be |xn+1〉 = |0〉. The |yn+1〉 = |0〉
is not necessary since y qubits are used for control and a gate controlled by |0〉 has

a null effect.

6.3 Results

Before running the circuits in the quantum computer, we have to run them in

the IBM simulator to check for errors. Since there is a waiting queue to do the

simulations, this process saves time.

The results for the simulation of modular addition (2 + 2) mod 4 are in figure

(6.6). The expected result is (2 + 2) mod 4 = 0. As explained in the caption

of figure (6.3), this should correspond to an output register 00001 with probability

100%, as observed in the simulation. The results of the quantum computer for the

same circuit are in figure (6.7). The outcome is similar, but with noise. The register

is 00001 with a probability of less than 75%. It’s important to note that this is a

real quantum computer with no error correction code implemented, so it’s expected
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Figure 6.6: Output for the simulation of modular addition. The y-axis represents
the probability of getting the bit register in the state shown in the x-axis.

Figure 6.7: Output for the results of the modular addition circuit in a real quantum
computer. The y-axis represents the probability of getting the bit register in the
state shown in the x-axis.

to have noise in the system. All the states are measured at the end of the circuit.

While the simulator engine measures the circuit 100 times, the quantum computer

runs and measures the circuit 1024 times, which is a much larger number.

It is interesting to analyse which are the most frequent errors. Considering the

outputs with error, we can say the most likely errors are the ones that affect only

one qubit. This means they can be corrected by a QEC code, as discussed earlier.

The corresponding register strings for the biggest error probability are, ordered from

the higher to the lower error probability: 00000 (error in y2), 01001 (error in (x+y)1)

and 00101 (error in (x+ y)2) . The observed very low probability of one single error

in the bit y1 (output string 00011) is not surprising, since there is no gate operation

on y1. But there seems to be no simple correlation between the error rate and the
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gate number. The most frequent error is one single error in y2, which is an entry

submitted to only one gate operation. These errors that affect only one qubit have

a total probability of approximately 0.27.

Figure 6.8: Output for the simulation of addition with carry bit. The y-axis
represents the probability of getting the bit register in the in the state shown in the
x-axis.

Figure 6.9: Output for the results of the circuit for addition with carry bit in a real
quantum computer. The y-axis represents the probability of getting the bit register
in the state shown in the x-axis.

We expect that an addition 2 + 2 gives a result of 4 when the carry bit is included.

The output for the number y will be the same as before, y2 = 1 and y1 = 0. For the

number x, we expect (x+ 1)3 = 1, (x+ 1)2 = 0 and (x+ 1)1 = 0, which corresponds

to an output register 01001 (see figure (6.5) for the bit order). Figure (6.8) presents
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the results of the simulation, where it gives 100% probability of getting an output

register 01001, as expected. The figure (6.9) has the results for the real quantum

computer, which gives a smaller probability for the expected register output (around

58%).

As in the previous case, it is interesting to analyse which are the most likely errors.

The most significant register with errors, in order, are: 11001 (error in y1); 00001

(errors in y2); 01011 (error in (x + y)2); and 01000 (error in (x + y)3). These four

register strings together have a probability of approximately 30%. Concerning the

group of four registers discussed, we can see that the error that appears more often

is an error that affect only one qubit. Errors that affect more qubits have much less

probability (at least half probability of the lower error register). In contrast with

the previous case, now the qubit with fewer operations ( y1) has the biggest error,

and the qubit with more operations ((x+ y)3), has the lower error.

6.4 Conclusions

The success rate of the computation in the modular addition was around 75% and in

the addition with carry bit was around 58%, which is smaller. This is considerably

high error rate in the results suggest that there are errors related with gate opera-

tions. However, our results do not allow to extract any simple correlation between

the error rate and the gate number or the type of gate. It is possible that the the

lack of stability in this quantum computer also plays a role, as suggested in the

literature [47]. These quantum computers are fairly new, and need to improve the

overall stability of the system. However, it’s a good sign that most of the registers

with error, only had one qubit affect by the error. It means they could eventually

be corrected.

The IBM Q system does not give constant results over time. I.e., doing one sim-

ulation at two different occasions, may give entirely different results. Besides, we

found that when changing the order of the qubits (figure (6.4), the results would

vary. This means the qubits of the system are not equivalent.

Although the case 2 + 2 = 4 is of no practical interest, it was an opportunity to see

how the algorithm works in a real quantum computer. We could get a result quickly

unless there were many people in the waiting queue. However, the results do have

a significant error rate.

This was a real application to a real system, so it was good to see how the opti-
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mizations we made in the modular addition section worked well. Using classical

computers to simulate quantum circuits allows us to create a simplified version be-

fore implementing the circuits in a real quantum computer. In this case, we only

applied the gates that had some impact on the system, ignoring the ones controlled

by |0〉. That simplification meant that we didn’t have to apply large rotations.

The presence of errors in the real system is the reason why we need QEC codes.

However, we only had 5 qubit entries. In order to implement a simple QEC code in

a 2 qubit system, we need a total of 20 qubits. QEC codes need to be optimized in

order to use less qubits. The QEC implementation in this circuits, with mostly one

qubit errors, may be of great help.

Since the Composer also generates the QASM code, we post it here for the modular

addition case, to complete this section. It’s pretty straightforward to follow.

1 IBMQASM 2 . 0 ;

2 i n c lude ” q e l i b 1 . inc ” ;

3 qreg q [ 5 ] ;

4 creg c [ 5 ] ;

5 x q [ 0 ] ;

6 measure q [ 0 ] −> c [ 0 ] ;

7 measure q [ 1 ] −> c [ 1 ] ;

8 x q [ 2 ] ;

9 h q [ 2 ] ;

10 h q [ 3 ] ;

11 z q [ 2 ] ;

12 h q [ 2 ] ;

13 h q [ 3 ] ;

14 measure q [ 2 ] −> c [ 2 ] ;

15 measure q [ 3 ] −> c [ 3 ] ;
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Conclusions

This work was structured in four different chapters, starting with a simple test on

Shor’s algorithm, and evolving to the core of this thesis, which is the simulation of

a quantum algorithm for modular addition. After that, there was the study of how

QEC works. Finally, a real implementation in the IBM Q quantum computer. The

improvements in the modular addition circuit led to very good results, and there

were some interesting insights emerging from this work.

The test of Shor’s algorithm showed the algorithm runs in a classical computer

simulation with a O(bn) behaviour, a lower performance than predicted by the

theory. An important conclusion of this test was that Shor’s algorithm does not

perform in a polynomial way but in an exponential way, when running on a classical

computer. The theoretical comtyplexity class of Shor’s algorithm is based on gate

number, whereas the test evaluates the time of execution. Since Shor’s algorithm

works with qubits, which belong to a Hilbert space of dimension 2n, in order to

simulate the system in a classical computer all the 2n amplitudes of the states need

to be stored, causing an exponential increase of the execution time. When using

a real quantum computer, instead of a simulation on a classical computer, this

exponential time increase is not expected.

The quantum modular addition using QFT increases the performance of addition,

when compared with the traditional addition algorithm. The simulation results

show that the number of gates behaves as expected in theory, described by O(n2).

However, improving the circuit by disregarding gates that are not used in specific

cases, can lead to a Ω(n) behaviour in the best case scenario. The change in time,

from the best to the worse optimized simulation, is an order of magnitude, although

both have an exponential behaviour with execution time. This difference is clearly

evident in the result graphs of running time as a function of the number of qubits.

Results also showed that the simulation execution time also depends on LIQUi |〉 op-

eration mode. Circuit mode is faster than function to run a small number of qubits,
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and complex circuits. However, this difference is not very significant most of the

times. The optimization of the circuit will always have the best results, especially

for the most arduous simulations, making it the better choice.

Improving the circuit by identifying the cases where some gates are not necessary

and removing them in those scenarios, leads to an interesting conclusion. Our perfor-

mance results show that improving the circuit this way, followed by an optimization

in LIQUi |〉 , leads to running time reductions between 90% to 97%. A simulation

that used to take 6 min to run, now takes about 37 seconds. These results are im-

pressive and make simulation possible with a much larger number of qubits if there

is enough memory available.

The LIQUi |〉 way of implementing QEC codes only supports circuits with simple

operations, and the results show that we need 20 qubits to implement QEC codes

in a two-qubit circuit. Using a version of a two-qubit QFT with QEC tells us that

the system can effectively correct errors with a probability of 0.02 with 95% success

rate. This ensures that the final results of computations are correct, but it makes

the circuit so big it may not justify QEC implementation, if the system fidelity is

reasonable. The stabilizers environment is very powerful but has a limited number

of available gates. It can handle many qubits with very small simulation times.

Implementing a circuit to perform the basic 2 + 2 operation in a real quantum

computer allowed us to demonstrate the benefit of disregarding gates that are not

used in specific cases. As the quantum computer lacks stability and gate fidelity,

adding more gates to the system would increase errors. Implementing QEC codes

would need a quantum computer with more qubits than the ones available today.

The implementation without the QEC codes was an opportunity to observe the error

rate in a real implementation, and its effects, which is a valuable result by itself.

This thesis was a first experience in quantum computing programming. Using the

LIQUi |〉 environment was a good experience. Since programming a quantum com-

puter is a very different experience from a classical one, it required learning its logic,

including working with entangled state results. There was the need to create sev-

eral functions, including those necessary for QFT, IQFT in order to implement the

algorithm. Only a reduced set of built-in gates from the library was used, even the

controlled rotation needed to be adapted from functions available in the platform.

This was a valuable experience that will be useful in the future. The results of

the work were good, the fact that a quantum circuit can be improved considering

specific cases, using the classical programming and the system input information is

a very valuable lesson. The fact that quantum computers are always dependent on
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a classical system can be used to optimize operations in a quantum computer.

7.1 Future Works

This work may be used in the future as a starting point experience in quantum

computation. Using the experience in improving circuits, there is the possibility of

trying to implement it to more complex systems.

Basic operations were studied and implemented in this thesis, and now algorithms

can be explored to solve problems using them. For example, as discussed in reference

[11], there is the possibility to implement algorithms that use the same principle

as the ones we studied here. Quantum circuits for multiplications and weighted

averages using QFT are two examples of circuits that could be explored, but it can

easily be extended to the large class of problems that use QFT. Understanding how

to improve this circuits using a classical computer, as we did in this thesis, is also

important. Machine learning uses weighted averages and may benefit from this kind

of algorithms optimization.

For the future work in this field, the kind of problems discussed above may be

explored, with an implementation in available quantum computers like IBM Q.

There is also the need to explore new languages, as, for example, the new Q# from

Microsoft. We already know that LIQUi |〉 is great for simulations, so probably this

next generation languages will be even better. Using quantum computers will also

raise the need to find a good algorithm to implement QEC codes using the minimum

possible number of qubits.

This area of investigation is vast and in great expansion. There is a lot of work to be

done, and this is the perfect point to start working in this field, namely in problems

like machine learning. Nevertheless, there are other areas that could be explored

as well, namely quantum cryptography, which is used for cryptocurrency. This is a

hot topic at the moment, and there are already some applications using quantum

computer algorithms [48].
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A

Modular addition

A.1 Code for simple modular addiction

1 l et modular ( k :Ket , b :Ket)=

2 l et sw=System . D iagnos t i c s . Stopwatch ( )

3 l et =k . S i n g l e ( )

4 l et qs=k . Qubits

5 l et =b . S i n g l e ( )

6 l et bb=b . Qubits

7 show ”−−−−−−−−−−−−−−be f o r e x=”

8 k .Dump( showInd )

9 show ”\n−−−−−−−−−−−−−−−−−−−−−−−−−−−−−y=”

10 b .Dump( showInd )

11 sw . Sta r t ( )

12 q f t qs

13

14 M >< bb

15 l et n=qs . Length

16 for i in 0 . . (n−1) do

17 l et cb=bb . [ i ]

18 for j in 1 . . ( n−i ) do

19 BC (R ( j ) ) [ bb . [ j−1+i ] ; qs . [ i ] ]

20

21 q f t i qs

22 sw . Stop ( )

23 show”−−−−−−−−−−−−−−−−−−− a f t e r i q f t ”

24 k .Dump( showInd )

25 show ”\nTime e lapsed= %d ms” ( sw . E lapsedMi l l i s e conds )
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A. Modular addition

A.2 Code for circuit mode for modular addition

with optimizations

1 l et modularcom ( k :Ket , b :Ket)=

2 l et sw=System . D iagnos t i c s . Stopwatch ( )

3 l et =k . S i n g l e ( )

4 l et qs=k . Qubits

5 l et =b . S i n g l e ( )

6 l et qb=b . Qubits

7 l et qf=Circuit . Compile q f t qs

8 l et q f i=Circuit . Compile q f t i qs

9 show ”−−−−−−−−−−−−−−be f o r e x=”

10 k .Dump( showInd )

11 show ”\n−−−−−−−−−−−−−−−−−−−−−−−−−−−−−y=”

12 b .Dump( showInd )

13

14 M >< qb

15 l et n=qs . Length

16 l et sum ( q : Qubits )=

17

18 k .Dump( showInd )

19 //show” qb s=%i ” qb . Length

20 for i in 0 . . (n−1) do

21 l et cb=qb . [ i ]

22 for j in 1 . . ( n−i ) do

23 BC (R ( j ) ) [ qb . [ j−1+i ] ; q . [ i ] ]

24

25 l et sumc=Circuit . Compile sum qs

26 l et CF=Circuit . Seq [ q f ; sumc ; q f i ]

27 l et numgates= CF. Fold ( t rue ) . GateCount ( )

28 CF. Fold ( ) . RenderHT( ”Sumf . html” )

29 show ”Gate Count= %i ”numgates

30 show ” Optimizing−−−−−−−−−−”

31 l et CFG=CF. GrowGates ( k )

32 sw . Sta r t ( )

33 CFG.Run qs

34 sw . Stop ( )

35 l et numgates= CFG. Fold ( t rue ) . GateCount ( )

36 CFG. Fold ( ) . Render ( ”SUMF. html” )

37 show ”\nTime e lapsed= %d ms” ( sw . E lapsedMi l l i s e conds )

38 show ”Gate Count= %i ”numgates

39 show”−−−−−−−−−−−−−−−−−−− a f t e r i q f t ”

40 k .Dump( showInd )
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A. Modular addition

A.3 Full Modular Addition Circuits

Figure A.1: The full circuit for modular addition for the case with y=Ones, without
any optimization nor improvements. n=23 qubits. Horizontal orientation.
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A. Modular addition

Figure A.2: Full circuit for the modular addition with n=23 qubits and the case
with y=Ones. It includes optimization, so we can see that it needs much less gates.
And that the gates names have a proper organization, the circuit symmetry is similar
to the one without optimization.
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A. Modular addition

Figure A.3: Full circuit for the modular addition with 23 qubits and for the case
with y = 2n−1. We can verify that there is only one rotation controlled by y applied
to the circuit. The QFT and IQFT controlled rotations are all applied, even though
x = 2n−2.
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A. Modular addition

Figure A.4: The improved circuit with 23 qubits for the case where y = 2n−1 and
x = 2n−2. We can see that all the non-essential gates were deleted. Comparing to
the circuit of the figure (A.3), we can see exactly the improvements done, in the
QFT and IQFT parts.
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B

Quantum Error Correction

B.1 Full QEC code

1 l et QEC ( k :Ket , b :Ket , p : f l o a t , v : Boolean )=

2 l et sw=System . D iagnos t i c s . Stopwatch ( )

3 l et =k . S i n g l e ( )

4 l et qs=k . Qubits

5 l et =b . S i n g l e ( )

6 l et bb=b . Qubits

7 i f ( v=true ) then

8 show ”−−−−−−−−−−−−−−be f o r e x=”

9 k .Dump( showInd )

10 show ”\n−−−−−−−−−−−−−−−−−−−−−−−−−−−−−y=”

11 b .Dump( showInd )

12 l et qc=Circuit . Compile t q f t qs

13 l et qb=Circuit . Compile t q f t bb

14 i f ( v=true ) then

15 qc . Fold ( ) . Render ( ” q f t . html” )

16 l et ccnt=7

17 l et s7=Steane7 ( qc )

18 l et s7b=Steane7 ( qb )

19 // l e t t t=Transverse 7 (CR 2 . ) qs

20 l et pr=s7 . Prep

21 l et s i=Ket(7 ) . Qubits

22 l et q f t s 7= Circuit . Compile pr s i

23 // q f t s 7 .Dump( showInd )

24 // q f t s 7 . Fold ( ) . Render (” q f t s7p rep . html ”)

25 l et sy=s7 . Syndrome

26 l et acc=Ket(6+7)

27 l et cc=Circuit . Compile sy acc . Qubits

28 // cc . Fold ( ) . Render (” qec c c c . html ”)

29 // l e t ns7= s7 . Replace (H qs )

30 l et s 7 f= s7 . Circuit

31 l et s7 fb=s7b . Circuit

125



B. Quantum Error Correction

32 l et err , s t a t s=s7b . I n j e c t p

33 i f ( v=true ) then

34 e r r . Fold ( ) . Render ( ” q f t e r r o r s . html” )

35 s 7 f .Run s7 .Ket . Qubits

36 sw . Sta r t ( )

37 e r r .Run s7b .Ket . Qubits

38 sw . Stop ( )

39 show ”−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−FINAL”

40 show ”\n−−−−−−−−−−−−−−x=”

41 s7 .Ket .Dump( showInd )

42 show ”\n−−−−−−−−−−−−−−y=”

43 s7b .Ket .Dump( showInd )

44 show ”\n I n j e c t e d e r r o r s : ”

45 show ”X gate s : %i ” s t a t s . [ 0 ]

46 show ”y gate s : %i ” s t a t s . [ 1 ]

47 show ”z gate s : %i ” s t a t s . [ 2 ]

48 show ” f i x e s needed : %i ” s7b . NumFixed

49 show ” gate number= %5d” ( e r r . GateCount ( t rue ) )

50 show ” time e lapsed= %dms” ( sw . E lapsedMi l l i s e conds )

51 i f ( v=true ) then

52 s 7 f . Fold ( ) . Render ( ” qec f . html” )

53 l et stab= S t a b i l i z e r ( err , s7b .Ket)

54 sw . Reset ( ) 4

55 sw . Star t ( )

56 stab .Run( )

57 sw . Stop ( )

58 stab . ShowState showInd 0

59 l et b i t 0=s7b . Log2Phys 0 // |> s7b . Decode

60 l et b i t 1=s7b . Log2Phys 1 // |> s7b . Decode

61 l et , b i0=stab . [ 0 ]

62 l et , b i1=stab . [ 1 ]

63 show” qubit 0=\n”

64 ( b i0 .Dump( showInd ) )

65 for q in b i t 0 do

66 show ”%s ” ( q . ToString ( ) )

67 show” qubit 1=\n”// ( b i t 1 . ToString ( ) )

68 for q in b i t 1 do

69 show ”%s ” ( q . ToString ( ) )

70 show ”\n I n j e c t e d e r r o r s : ”

71 show ”X gate s : %i ” s t a t s . [ 0 ]

72 show ”y gate s : %i ” s t a t s . [ 1 ]

73 show ”z gate s : %i ” s t a t s . [ 2 ]

74 show ” f i x e s needed : %i ” s7b . NumFixed

75 show ” time e lapsed= %dms” ( sw .

E lapsedMi l l i s e conds )
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B. Quantum Error Correction

B.2 Full circuit of error correction

Figure B.1: Full circuit for the Steane7 error correction code, with probability or
errors of 0.009
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B. Quantum Error Correction

B.3 Tables
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C

Computer Characteristics

CPU Intel Core i7-4710MQ
Speed 2.5GHz-3.5 Ghz (Overclock)
RAM 1 slot 8 GB DDR3 (1333MHz)

Available RAM ∼ 5.9GB
Graphic Card Intel HD Graphics 4600

Dedicated Graphic Card NVIDIA GeForce GTX 960 M
Memory 2.0 GB

Core Speed 1097 MHz
Hard Drive SSD Micron M600 128 GB

Sequential Read 560 Mb/s
Sequential Write 400 Mb/s
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