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You must be imaginative, strong-hearted. You must try things that may not work, 

and you must not let anyone define your limits because of where you come from. Your only 

limit is your soul. What I say is true - anyone can cook... but only the fearless can be great. 
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Abstract 

Fuel cells are a promising alternative to the combustion engines in the 

automotive industry, allowing to reduce significantly the air pollution generated by cars. 

However, this new technology still presents some economic issues due to the cost involved 

in the production of the bipolar plates (main component of fuel cells). In order to reduce the 

production costs, the rubber pad forming has been adopted in the manufacturing of thin 

stamped bipolar plates. Since the plastic deformation of the sheet is induced by a pad of 

rubber like material, the numerical modelling of this manufacturing process requires a deep 

knowledge about the mechanical behaviour of rubber materials. 

The main objective of this study is the numerical modelling of rubber-like 

materials, which typically present a hyper-viscoelastic behaviour. Accordingly, the 

constitutive law currently implemented in the V-Biomech finite element code, used to 

describe the mechanical behaviour of rubbers, is presented in detail. Hence, the hyperelastic 

behaviour is described by the Mooney-Rivlin model, while the viscoelasticity is modelled 

by a series of Maxwell elements. Considering the case of uniaxial compression stress state, 

the closed-form solution is derived for the hyper-viscoelastic behaviour, which is posteriorly 

used in the procedure to identify the material parameters involved in the constitutive model. 

Two different polyurethane materials are experimentally evaluated by means of uniaxial 

compression tests and relaxation tests, allowing to identify the material parameters by fitting 

the numerical model to the experimental data. Then, these rubber materials are adopted in 

the numerical simulation of the rubber pad forming process, using the Abaqus software to 

study numerically the forming of metallic bipolar plates. 

Taking into account the experimental results from both the uniaxial compression 

tests and relaxations tests performed on two different polyurethanes, the viscosity effect is 

small considering the range of velocity applied, particularly for the rubber with lower 

hardness value. Moreover, the predicted mechanical behaviour of both rubbers is in good 

agreement with the experimental values. The numerical results of the rubber pad forming 

process show that the final thickness of the stamped bipolar plate is not significantly 

influenced by the rubber hardness. However, the predicted final thickness distribution is 

more uniform in comparison with the one obtained with the conventional stamping process. 
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The maximum value of thinning occurs always in the fillet radius of the rib, which is the 

zone with large plastic deformation. 

 

 

Keywords Metallic bipolar plates, Rubber pad forming, Numerical 
simulation, Synthetic rubber, Hyper-viscoelastic behaviour. 
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Resumo 

As células de combustível são atualmente uma alternativa viável ao uso de 

motores de combustão interna na indústria automóvel, permitindo uma redução significativa 

da poluição atmosférica gerada pelos automóveis. Ainda assim, esta tecnologia apresenta 

alguns problemas económicos devido ao custo de produção das placas bipolares 

(componente principal das células de combustível). De modo a reduzir o custo de produção, 

a conformação por borracha é adotada na produção das placas bipolares. Atendendo a que a 

deformação plástica da placa bipolar é conseguida através de um punção de borracha, a 

modelação numérica do processo requer um conhecimento profundo acerca do 

comportamento mecânico de borrachas. 

O principal objetivo deste estudo consiste na modelação da borracha, que 

tipicamente apresenta um comportamento hiper-viscoelástico. Assim, o modelo constitutivo 

implementado no software V-Biomech é apresentado em detalhe. Consequentemente, o 

comportamento hiperelástico é descrito pelo modelo constitutivo Mooney-Rivlin, enquanto 

que a viscoelasticidade é caracterizada por uma série de elementos de Maxwell. 

Considerando o estado de tensão de compressão uniaxial, a solução explicita é obtida para o 

comportamento hiper-viscoelástico, e posteriormente usada na identificação dos parâmetros 

do material. Dois provetes de poliuretano são avaliados experimentalmente através de 

ensaios de compressão uniaxial e de ensaios de relaxação, permitindo a identificação dos 

parâmetros do material através de uma aproximação entre os dados experimentais e o modelo 

numérico. Posteriormente, os referidos materiais são utilizados na simulação numérica do 

processo de conformação por borracha, utilizando o software Abaqus para estudar 

numericamente a conformação das placas bipolares metálicas. 

Considerando os dados experimentais obtidos através dos ensaios de compressão 

e de relaxação, efetuados nos dois provetes de poliuretano, o efeito da viscosidade é pequeno, 

considerando a gama de velocidade aplicada, particularmente para o provete com menor 

dureza. Adicionalmente, o comportamento mecânico obtido para os dois materiais está em 

conformidade com os resultados experimentais. Os resultados numéricos do processo de 

conformação por borracha mostram que a espessura final da placa bipolar não é 

significativamente afetada pela dureza da borracha. Ainda assim, a espessura final prevista 
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é mais uniforme em comparação com o processo de estampagem clássico. O valor máximo 

de redução de espessura ocorre sempre na curvatura superior da placa. 

 

Palavras-chave: Placa bipolar metálica, Conformação com borracha, 
Simulação numérica, Borracha sintética, 
Comportamento hiper-viscoelástico. 
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1. INTRODUCTION 

Nowadays, society deals with the most polluted air that has ever covered the 

earth, which translates in excessive harmful gases, particles and molecules for people, 

animals and earth itself. Since carbon monoxide gas from combustion engines is one of the 

main pollutants, society is paving the way for alternative solutions, such as electric engines 

and reduction of car weight to reduce fuel consumption. 

Today, proton exchange membrane (PEM) fuel cells are gathering major interest 

around the world as being one of the potential new sources of energy because of their high 

efficiency, fast start-up, potential of energy conservation, safety and environmental 

protection [1]. The main drawbacks are the high manufacturing cost and low durability, 

which prevented their widespread commercialization. One of the key components of these 

proton exchange membrane fuel cells are the bipolar plates, which are responsible for 

supplying a uniform distribution of reactant gases over the electrodes via flow channels, 

among other responsibilities [2]. Thus, giving a lot of importance to the desired flow field 

design, since it deals directly with the performance of fuel cells. Among the classic flow 

field design solution, the serpentine flow field is the most commonly used design in the 

commercial fuel cells [3]. Figure 1.1 shows the insides of this kind of fuel cells with the 

presence of a serpentine flow field. 

 

Figure 1.1. Proton exchange membrane fuel cells basic setup including the bipolar plates with a serpentine 
flow field design. 
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However, the current production cost of a fuel cell is 4-10 times higher than an 

internal combustion engine, with the bipolar plate representing 30-45% of the stack cost. 

Hence, the production of the bipolar plate is the largest bottleneck for its commercialization. 

From the three main types of bipolar plates (metallic, graphite and polymer-carbon 

composite), there is one with special interest due to its low cost, ease of production and 

excellent mechanical, electrical and thermal properties, which is the metallic bipolar plate. 

The high production rates associated with the stamping process make it adequate to 

manufacture metallic bipolar plates.  

As an alternative to the classic stamping process, this study will address the 

rubber pad forming process, which uses a rubber pad inside a container (rigid). This new 

method uses only one rigid die, which is placed underneath the sheet metal, and one rubber 

pad, which is placed on top of the sheet metal (see Figure 1.2). Note that the relative positions 

can be interchanged. The main advantages and disadvantages of this method, over the 

classical sheet metal forming processes can be found in Table 1.1. 

 

Table 1.1. Advantages and disadvantages of the rubber pad forming process. 

Advantages Disadvantages 

• Fewer components and lower tool cost 

for small series 

• Need for a higher capacity press 

machine 

• The rubber pad can be used for several 

different shapes of die 

• Rubber pad with limited lifetime 

• More uniform thickness distribution • Slow rate of production 

• Shorter set-up time, as no lining-up of 

tools is necessary 

• Restrict temperature range 

• No marks on the metal surface in 

contact with the pad 

 

• No lubrication needed, usually  
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Figure 1.2. Rubber pad forming scheme including the rigid die, sheet metal and rubber pad. 

1.1. Historical review of the rubber 

Before the advent of synthetic polymers, natural rubber obtained from trees was 

the only source of rubber [4]. Originally discovered in South America, the first rubber balls 

were brought to Europe by Christopher Columbus after his second voyage to the West Indies. 

Later on, scientists began to investigate such material because of its elasticity and 

waterproofing, and thus marking the rubber industry in Europe in the late 1700s. 

Whilst the rubber industry was quickly increasing in the soft weather of Europe, 

the US industry was dealing with its susceptibility to changes in temperature, representing 

difficulties for the early factories, since excessive temperatures made the products sticky. In 

1839, this problem was brought to Charles Goodyear, an American inventor, who became 

the discoverer of rubber vulcanization, solving the presented challenge by heating rubber 

with sulphur. 

From that time on, the natural rubber industry began to expand and was fuelled 

by additional supplies of rubber from the Far East. In 1888, John Boyd Dunlop re-invented 

the pneumatic tyre, thus giving birth to the future main consumer of natural rubber. The 

Second World War had a vast impact on rubber history. Since there was an interruption of 

natural rubber supply, developed countries took on the challenge of creating methods for 

bulk production, thus producing synthetic rubber. Nowadays, rubber materials are present in 

our daily life and can be found in the most common places, like automotive industry, 

footwear, foams, belting, seals, hoses, wires and so on.  
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1.2. Rubber characterization 

In the mid-1900s, physicians Melvin Mooney and Ronald Rivlin noticed that the 

relationship between stress and strain for rubber materials was non-linear, therefore 

contradicting the linear theory of elasticity, Hooke’s law, used since the 17th century. These 

two scientists presented the first constitutive laws used to describe rubber materials, thus 

opening doors to many others who would contribute to this investigation, like Raymond 

Ogden in 1972. 

From experimental observations, it has been shown that for nearly any material 

there is a certain amount of energy absorbing behaviour, thus contradicting purely elastic 

materials. A large class of dissipative materials are described by a time-dependent 

viscoelastic constitutive model, which have been studied since 1976 by Findley, Lai and 

Onaran [5]. These materials tend to show properties like relaxation, creep, time-dependent 

stiffness and strain-rate-dependent hysteretic behaviour. 

Today, it is known that, in order to correctly describe rubber behaviour, there is 

a need for understanding two different concepts: hyperelasticity and viscoelasticity. The 

hyper-viscoelastic model combines both formulations, in which the viscoelasticity is also 

dependent on the hyperelasticity, thus implying that the deformation history is of great 

importance. 

1.3. V-Biomech FEM code 

The adoption of open source finite element codes by the scientific community 

presents great advantages over the commercial finite element packages (e.g. Abaqus) 

because there is total access to source code. Accordingly, in the present study the in-house 

finite element software V-Biomech is adopted, which was developed by Alves et al [6] to 

simulate the hyper-viscoelastic behaviour of nearly incompressible materials (including soft 

tissues). This numerical tool allows the numerical simulation of soft tissues, isotropic and 

anisotropic hyperelasticity, muscle activation and short and long term viscous effects. It uses 

a total Lagrangian formulation and the solution approximation is obtained through a fully 

implicit time integration scheme. In order to characterize the behaviour of nearly 

incompressible soft tissues, it decomposes the deformation gradient into two parts: 

volumetric and deviatoric, assuming a u/P interpolation taking into account the displacement 

and pressure fields.  
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In this section there will be a brief introduction to the inputs and outputs of V-

Biomech, to understand what can be changed and what can we expect to obtain. As input, 

the program needs to read four different text files: 

1. BCID – contains information about the boundary conditions. 

2. BIO – defines maximum number of steps, convergence criterion, maximum number 

of iterations, maximum time increment, and information related to time history of 

loading and muscle activation.  

3. MSH – covers the spatial discretization (finite elements and nodes). 

4. Mater1 – gives information about material properties such as: constitutive model, 

bulk modulus, muscle activation and membrane criteria and viscous parameters. 

 

By definition, V-Biomech retrieves the following outputs: 

1. GID files with stress and strain measurements.  

2. Total force and displacement in surfaces with applied boundary conditions. 

3. Volume history. 

In order to obtain more output information, the user can use the input 

OUTdata.dat text file to requests for information about a given Gauss point, extracting extra 

stress tensors - second Piola-Kirchhoff and Cauchy; and Green-Lagrange deformation 

tensor.  

1.4. Objectives and dissertation outline 

The main objective of this study is the numerical modelling of rubber-like 

materials, which typically present a hyper-viscoelastic behaviour. In the present study the 

hyperelastic behaviour is described by the Mooney-Rivlin constitutive model, while the 

viscoelasticity is modelled by Maxwell elements. Accordingly, the identification of the 

material parameters requires experimental data, which is obtained from uniaxial 

compression tests and relaxation tests of two different polyurethanes. Finally, the goal is the 

numerical study of the rubber pad forming process applied in the manufacture of metallic 

bipolar plates. 
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The present dissertation has seven different chapters: “Introduction”, 

“Background theory”, “Constitutive model for rubber like materials”, “Finite element 

solution”, “Experimental tests”, “Rubber pad forming simulation”, and “Conclusions”. 

The present chapter, “Introduction”, provides a brief introduction about the 

innovative process of rubber pad forming applied in the manufacture of the metallic bipolar 

plates for fuel cells, which is the main focus of this work. The history of rubber 

industrialization, its characterization and the V-Biomech software, which will be used 

throughout this study, are presented. 

The second chapter, “Background Theory”, aims to help the reader revive some 

notions about finite strain theory and the applied finite element method with u/P formulation. 

This will be of extreme usefulness, in order to understand the deductions and calculations 

made down the road. 

The third chapter “Constitutive model for rubber like materials”, describes how 

rubber behaviour can be mathematically described by constitutive laws, defining the 

hyperelasticity and the viscoelasticity. Furthermore, closed-form solutions are proposed to 

evaluate the stress state for uniaxial compression assuming material incompressibility. 

The fourth chapter “Finite element solution”, shows that the proposed closed-

form solutions on the previous chapter match the solutions predicted by V-Biomech and 

Abaqus finite element codes, considering the uniaxial compression. 

The fifth chapter “Experimental Tests”, presents the experimental procedure and 

results from the uniaxial compression tests and relaxation tests carried out on two different 

rubber materials. Then, using that experimental data, the material parameters involved in the 

constitutive model are obtained by curve fitting. 

The sixth chapter, “Rubber Pad Forming”, contains the finite element analysis 

of the rubber pad forming process applied in the production of metallic bipolar plates, using 

the Abaqus software. The numerical model uses the mechanical behaviour of the rubbers 

analysed before, considering plane strain conditions to simply the analysis. The final goal is 

to compare the two different rubber materials in the rubber pad forming, as well as compare 

this new process with the conventional one. 

The last chapter, “Conclusions”, provides the conclusions from each chapter, not 

only describing the results acquired, but also highlighting some of the issue encountered. 

Finally, a brief summary of future works is included.  
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2. BACKGROUND THEORY 

2.1. Finite element method 

With its enormous importance to the engineering world, the finite element 

method has been object of study since the 1940s, marking the way engineers solve problems 

with the simple idea of dividing a complex system into a finite number of well-defined 

components. This leads to a discrete solution that represents an approximation, which 

hopefully approximates the real continuum solution as the number of discrete variables 

increases [7]. The finite element method can be found in an extensive variety of engineering 

applications such as project design, structural mechanics and even heat transfer and fluid 

flow. Time discretization becomes imperative in transient problems, like the ones addressed 

in this study (hyper-viscoelastic behaviour). Consequently, two different methods can be 

used to perform the time integration: implicit and explicit. The implicit method requires the 

solution of a system of non-linear equations in each increment, whereas the explicit method 

only solves a system of linear equations in each increment but requires much more 

increments to guarantee a stable an accurate solution.  

2.2. Mixed u/P formulation 

The standard displacement formulation can generate problems when the 

Poisson’s ration becomes higher than 0.4 (typical in rubbers). If the material behavior is 

considered incompressible or nearly incompressible, the Poisson ratio tends to 0.5 and the 

bulk modulus tends to infinity. This will lead to a volumetric strain tending to zero and 

generally results in null displacement solutions because displacement-based elements are not 

formulated to deal with this condition. This results in numerical difficulties and can exhibit 

overly stiff behavior caused by volumetric locking. The problem with using a standard 

displacement formulation lies with the calculation of the mean stress or pressure, which is 

related to the volumetric part of the strain, for isotropic materials. The principal stress can 

be divided into the hydrostatic stress (pressure), which accounts for volume changes, and the 

deviatoric stress, which accounts for shape changes (see Figure 2.1). 
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Therefore, the V-Biomech uses the u/P formulation, which is a well-known 

mixed method, allowing the evaluation of mechanical behaviour of incompressible or nearly 

incompressible materials. This mixed approach uses a two-field manner, where the 

displacement u and the pressure p are independent variables. The name of mixed u/P 

formulation reflects the use of separate interpolations for the displacements and the Cauchy 

(hydrostatic) pressure. 

3
2

1 p

3
p p

- p

1
- p

2
- p

Principal stress state Hydrostatic stress Deviatoric stress
 

Figure 2.1. Stress decomposition scheme into hydrostatic and deviatoric contributions. 

2.3. Finite strain theory 

In continuum mechanics, the finite strain theory is used to describe large 

deformations of a solid body [8][9]. In this case, the total displacement is seen as two 

different components: rigid-body displacement and deformation. In order to track the 

behaviour of a solid body, there is a need for some material coordinates that describe its 

movement. Thus, the displacement is defined by: 

 𝒙(𝑿, 𝑡) = 𝑿 + 𝒖(𝑿, 𝑡), (2.1) 

where 𝑿 represents the initial position, 𝒙 the position in a time instant 𝑡, and 𝒖 displacement 

vector. Another important concept is the deformation gradient tensor 𝐅, which describes the 

body’s local deformation allowing to relate the two configurations (initial and actual) 

independently of its rigid-body displacement: 

 𝑭(𝑿, 𝑡) =
𝜕𝒙

𝜕𝑿
=
𝜕𝑿 + 𝒖(𝑿, 𝑡)

𝜕𝑿
= 𝑰 +

𝜕𝒖

𝜕𝑿
 (2.2) 

Notice that the deformation gradient tensor can also describe the Jacobian, which 

is a measure of the local volume change: 
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 𝐽 = det(𝑭) (2.3) 

In order to define deformations in the reference configuration, the right Cauchy-

Green deformation tensor 𝑪 is adopted, which is defined by: 

 𝑪 = 𝑭𝑇𝑭 = 𝑼𝟐 (2.4) 

where 𝐔 denotes the right stretch tensor. The eigenvalues of the right stretch tensor U are 

the principal stretches 𝜆𝑖 and the eigenvalues of the right Cauchy-Green tensor C are the 

squares of the principal stretches, 𝜆𝑖
2. The invariants of 𝐂 are often used in the expressions 

for strain energy density functions. Accordingly, the invariants of 𝐂 are defined by: 

 𝐼1 = tr(𝑪) = 𝑪: 𝑰 = 𝜆1
2 + 𝜆2

2 + 𝜆3
2
 (2.5) 

 
𝐼2 =

1

2
(𝐼1
2 − 𝑪: 𝑪) = 𝜆1

2𝜆2
2 + 𝜆2

2𝜆3
2 + 𝜆3

2𝜆1
2
 

(2.6) 

 𝐼3 = det(𝑪) = 𝜆1
2𝜆2

2𝜆3
2
 (2.7) 

where the third invariant becomes equal to 1 for incompressible materials, since 𝐼3 =

det(𝑪) = [det(𝑭)]2 = 𝐽2 = 1, which represents the total volume changes.  

For nearly incompressible materials it is necessary to define volumetric (𝐽
1

3𝑰) 

and deviatoric (�̅� = 𝐽−
1

3𝑭) parts of the deformation gradient [10], as illustrated in Figure 

2.2. Therefore, total deformation gradient tensor can be rewritten as: 

 𝑭 = (𝐽
1
3𝑰) × (𝐽−

1
3𝑭) = (𝐽

1
3𝑰) �̅� (2.8) 

which is multiplicatively separated into a volumetric part (𝐽
1

3𝐈) and an incompressible 

deviatoric contribution, where det(𝑭) = 𝐽 and det(�̅�) = 1.  

 

 

Figure 2.2. Decomposition of deformation gradient tensor into volumetric and deviatoric components. 
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Taking into account the decomposition presented in equation (2.8), the same 

multiplicative decomposition can be applied to F, C and E, allowing to obtain measures of 

the modified right Cauchy-Green strain tensor: 

 �̅� = (�̅�)𝑇�̅� = 𝐽−
2
3𝑪 

(2.9) 

The principal invariants of the deviatoric right Cauchy-Green tensor �̅� are related to the 

principal invariants of the right Cauchy-Green tensor by the following relationships: 

 𝐼1̅ = 𝐽
−
2
3𝐼1 = �̅�: 𝑰 

(2.10) 

 
𝐼2̅ = 𝐽−

4
3𝐼2 =

1

2
(𝐼1
2 − �̅�: �̅�) 

(2.11) 

 𝐼3̅ = det(�̅�) = 1 (2.12) 

For uniaxial stress state, the stretch notation can be particularly useful since the 

stretches can be directly calculated from the initial and final body geometry. The Green-

Lagrange tensor is also easily defined with a given 𝑪 by: 

 𝑬 =
1

2
(𝑪 − 𝑰) =

1

2
(𝑼𝟐 − 𝑰) (2.13) 

which is one of the many outputs generated by the V-Biomech when analysing a Gauss point. 

Furthermore, the values of the three principal stretches 𝜆𝑖 can be evaluated in all increments 

for any predefined Gauss point.  

Another useful output information, in all increments for any predefined Gauss 

point, is the stress tensors provided by the finite element code: the Cauchy stress tensor  𝝈 

and the second Piola-Kirchhoff tensor 𝚷. The first Piola-Kirchhoff tensor 𝑷 can be easily 

calculated through the Cauchy stress tensor by: 

 𝑷 = 𝐽𝝈𝑭−𝑇 (2.14) 

and represents the ratio between the force in the deformed configuration and the non-

deformed area, while the second Piola-Kirchhoff tensor 𝚷 is defined by the force 

recalculated in the non-deformed configuration in the non-deformed area, which can be 

obtained by: 

 𝚷 = 𝐽𝑭−1𝝈𝑭−𝑇 = 𝑭−1𝑷 (2.15) 

Moreover, the Cauchy stress tensor can be related to the second Piola-Kirchhoff tensor by: 

 𝝈 = 𝐽−1𝑭𝚷𝑭𝑇 (2.16) 
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3. CONSTITUTIVE MODEL FOR RUBBER LIKE 
MATERIALS 

3.1. Hyperelasticity 

The linear relationship between stress and strain, observed in the elastic regime 

of metallic materials, is not present in rubber-like materials. In fact, they display a non-linear 

elastic behaviour for large values of deformation, which is usually described through a 

hyperelastic constitutive model based on a strain energy density function. Figure 3.1 shows 

that the hyperelastic material only presents a linear behaviour for small strains and non-linear 

behaviour for large strains. The most common examples for this kind of behaviour are 

rubber-like materials, filled and unfilled vulcanized elastomers, biological tissues and foams. 

 

Figure 3.1. Comparison between linear and non-linear stress – strain curves in elastic domain. 

Throughout this study, focus will be given to studying rubber materials with 

nearly incompressible and incompressible behaviour, therefore a great resistance to volume 

changes. The bulk and shear modulus can be described by the following expressions: 

 𝐾 =
𝐸

3(1 − 2𝜈)
 (3.1) 

 
𝐺 =

𝐸

2(1 + 𝜈)
 

(3.2) 
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3.1.1. Strain Energy Function 

In a hyperelastic framework, there is a need for postulating the existence of a 

strain energy function 𝑊(𝑪), defined per unit of reference volume, which is used in the 

definition of the second Piola-Kirchhoff stress tensor [11]. Considering isotropic 

hyperelastic materials, the strain energy function can be written in terms of the principal 

invariants of 𝑪: 

 𝑊(𝑪) = 𝑊(𝐼1, 𝐼2, 𝐼3) (3.3) 

The strain energy function can be defined by its 3 parts: total deviatoric strain 

energy, volumetric strain energy and the pressure balance that couples the mixed 

formulation: 

 𝑊(𝑪) = �̅�(�̅�) + �̅�𝐻(𝐽) + 𝑄
0(𝐽) (3.4) 

 𝑊(𝑪) = �̅�(�̅�) +
𝐾

2
(𝐽 − 1)2 −

1

2𝐾
(�̅� − 𝑝)2 (3.5) 

where 𝐾 is the initial and constant Bulk Modulus of the material, �̅� is the pressure computed 

from the displacement field (�̅�(�̅�)) and 𝑝 is the interpolated pressure from the pressure 

field, which is connected to the pressure degree of freedom associated with the u/P method. 

3.1.2. Mooney-Rivlin constitutive model 

In order to describe the strain energy density function, several constitutive 

models were developed, such as: 

1. Neo-Hookean 

2. Mooney-Rivlin 

3. Yeoh 

4. Ogden 

5. Arruda-Boyce 

6. Humphrey 

A comparative study of several constitutive models was made by Martins et al 

[12] using the uniaxial tension conditions of a silicone-rubber sample. Figure 3.2 presents 

the comparison between the experimental and the stress-stretch curves obtained by each 

model. Although most of the models capture accurately the experimental trend, the Neo-

Hookean model falls short on predicting the experimental behaviour, which would be 

expected since it is the simplest model (only one material parameter). 
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Figure 3.2. Comparison between experimental and numerical results of stress-stretch curves under uniaxial 
tension conditions for silicone-rubber material [12].  

Several experimental studies showed that the Mooney-Rivlin model is especially 

adequate for modelling the rubber behaviour [13][14]. Moreover, due to its simplicity, it is 

the constitutive model adopted in this study. Its general equation for the strain potential is 

given by: 

 �̅�𝑀𝑅(�̅�) = ∑ 𝐶𝑖𝑗(𝐼1̅ − 3)
𝑖(𝐼2̅ − 3)

𝑗

𝑁

𝑖+𝑗=1

 (3.6) 

and if 𝑁 = 1 (two material parameters), then: 

 �̅�𝑀𝑅(�̅�) = 𝐶10(𝐼1̅ − 3) + 𝐶01(𝐼2̅ − 3) (3.7) 

where 𝐶10 and 𝐶01 are the material parameters. Although two parameters (𝑁 = 1) seems to 

be enough to characterize some rubbers, more parameters are required if the stress-stretch 

curve presents one or two inflexion points [15]. Moreover, equation (3.6) can also deduce 

the Polynomial for 𝑁 = 2, where Mooney-Rivlin constitutive model uses 5 parameters with 

𝐶11, 𝐶20 and 𝐶02 as additional parameters: 

 
�̅�𝑀𝑅(�̅�) = 𝐶10(𝐼1̅ − 3) + 𝐶01(𝐼2̅ − 3) + 𝐶11(𝐼1̅ − 3)(𝐼2̅ − 3)

+ 𝐶20(𝐼1̅ − 3)
2 + 𝐶02(𝐼2̅ − 3)

2 

(3.8) 



 

 

Modelling the hyper-viscoelastic behaviour of synthetic rubbers applied to rubber pad forming  

 

 

14  2018 

 

3.1.3. Stress evaluation: second Piola-Kirchhoff  

The second Piola-Kirchhoff stress tensor is commonly adopted to describe the 

hyperelastic behaviour, not due to its definition but because it can be derived from the 

relation: 

 𝚷 =
𝜕𝑊

𝜕𝐄
 (3.9) 

which can be written in terms of the right Cauchy-Green deformation tensor: 

 𝚷 = 2
𝜕𝑊

𝜕𝐂
 (3.10) 

Notice that, in order to calculate the second Piola-Kirchhoff tensor, the pressure balance 

parcel should be ignored, since at the equilibrium the average pressure should be equal to 

the interpolated pressure. Thus, giving the following expression: 

 Π̅𝑘𝑙 = 2
𝜕[�̅�(�̅�) + �̅�𝐻(𝐽)]

𝜕𝐶𝑘𝑙
𝑘, 𝑙 = 1, 2, 3 (3.11) 

The partial derivative of the volumetric strain energy with respect to right Cauchy-Green 

deformation tensor is: 

 𝜕�̅�𝐻(𝐽)

𝜕𝐶𝑘𝑙
=
𝜕 (
𝑘
2
(𝐽 − 1)2)

𝜕𝐶𝑘𝑙
=
𝐾

2
𝐽(𝐽 − 1)𝐶𝑘𝑙

−1𝑘, 𝑙 = 1, 2, 3 
(3.12) 

which can be related to the average pressure, �̅�(= 𝑝), that, after some mathematical 

developments by Alves et al [6], was found to be equal to the hydrostatic pressure of the 

Cauchy tensor: 

 �̅� = −𝐾(𝐽 − 1) (3.13) 

However, the other partial derivative depends on the constitutive model adopted. Thus, 

considering the Mooney-Rivlin model defined by equation (3.7) with two parameters, the 

first partial derivative of the Strain Potential is: 

 
𝜕�̅�(�̅�)

𝜕𝐶𝑘𝑙
=
𝜕�̅�𝑀𝑅(�̅�)

𝜕𝐼1̅

𝜕𝐼1̅
𝜕𝐶𝑘𝑙

+
𝜕�̅�𝑀𝑅(�̅�)

𝜕𝐼2̅

𝜕𝐼2̅
𝜕𝐶𝑘𝑙

𝑘, 𝑙 = 1, 2, 3 (3.14) 

with: 

 
𝜕𝐼1̅
𝜕𝐶𝑘𝑙

= (−
1

3
𝐽−

2
3𝐼1) 𝐶𝑘𝑙

−1 + 𝐽−
2
3𝛿𝑘𝑙𝑘, 𝑙 = 1, 2, 3 (3.15) 

 𝜕𝐼2̅
𝜕𝐶𝑘𝑙

= (−
2

3
𝐽−

4
3𝐼2) 𝐶𝑘𝑙

−1 + 𝐽−
4
3
𝜕𝐼2
𝜕𝐶𝑘𝑙

𝑘, 𝑙 = 1, 2, 3 
(3.16) 
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 𝜕𝐼2
𝜕𝐶𝑘𝑙

= 𝐼1𝛿𝑘𝑙 − 𝐶𝑘𝑙𝑘, 𝑙 = 1, 2, 3 
(3.17) 

and: 

 
𝜕�̅�𝑀𝑅(�̅�)

𝜕𝐼1̅
= ∑ 𝐶𝑖𝑗𝑖(𝐼1̅ − 3)

𝑖−1(𝐼2̅ − 3)
𝑗

1

𝑖+𝑗=1

= 𝐶10𝑖, 𝑗 = 1 (3.18) 

 𝜕�̅�𝑀𝑅(�̅�)

𝜕𝐼2̅
= ∑ 𝐶𝑖𝑗𝑗(𝐼1̅ − 3)

𝑖(𝐼2̅ − 3)
𝑗−1

1

𝑖+𝑗=1

= 𝐶01𝑖, 𝑗 = 1 

(3.19) 

Assembly all parcels into only one, the second Piola-Kirchhoff stress tensor is 

given by: 

 
Π̅𝑘𝑙 = 2 {[(−

1

3
𝐽−

2

3𝐼1)𝐶𝑘𝑙
−1 + 𝐽−

2

3𝛿𝑘𝑙] 𝐶10 + [(−
2

3
𝐽−

4

3𝐼2)𝐶𝑘𝑙
−1 + 𝐽−

4

3(𝐼1𝛿𝑘𝑙 −

𝐶𝑘𝑙)] 𝐶01 +
𝑘

2
𝐽(𝐽 − 1)𝐶𝑘𝑙

−1} 𝑘, 𝑙 = 1, 2, 3  

(3.20) 

3.1.4. Uniaxial stress state under incompressible conditions  

Since the identification of the material parameters required for the constitutive 

models are usually obtained from simple experimental mechanical tests, the uniaxial 

extension of a test cube is considered in this section, as shown in Figure 3.3. The objective 

is to obtain a uniaxial stress state, which is present in the uniaxial tensile/compression tests. 

Besides, in order to simplify the stress evaluation, the material is assumed total 

incompressible. 

 

Figure 3.3. Initial and final configuration of a cube under uniaxial traction along 𝒙𝟏 direction. 
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Taking into account the cube length in each direction before and after loading, 

the stretch can be evaluated in each direction using the coordinate transformation given by 

𝑥𝑖 = 𝜆𝑖𝑋𝑖. Since the loading is performed along a global axis, the obtained stretch values are 

also the principal stretches 𝜆𝑖. Assuming uniaxial traction along direction 𝒙1 and 

incompressible isotropic material, the corresponding stretches are: 

𝜆1 = 𝜆 

 𝜆2 = 𝜆−
1
2 

(3.21) 

𝜆3 = 𝜆
−
1
2 

The deformation gradient tensor and the right Cauchy-Green deformation tensor are obtained 

using equation (2.2) and (2.4), respectively: 

 𝑭 = [

𝜆 0 0

0 𝜆−
1
2 0

0 0 𝜆−
1
2

] (3.22) 

 𝑪 = [

𝜆 0 0

0 𝜆−
1
2 0

0 0 𝜆−
1
2

] [

𝜆 0 0

0 𝜆−
1
2 0

0 0 𝜆−
1
2

] = [
𝜆2 0 0
0 𝜆−1 0
0 0 𝜆−1

] (3.23) 

Since the obtained right Cauchy-Green deformation tensor is a diagonal matrix, the 

invariants of 𝑪 are simply defined through the principal stretches using equations (2.5), (2.6) 

and (2.7): 

𝐼1 = 𝜆2 + 2𝜆−1 

 𝐼2 = 2𝜆 + 𝜆−2 (3.24) 

𝐼3 = 𝜆
2𝜆−1𝜆−1 = 1 

Considering the incompressibility assumption, equation (3.14) can be simplified to calculate 

the component of the second Piola-Kirchhoff stress tensor in the loading direction connected 

with the constitutive model, where 𝐶11
−1 = 𝜆−2. Thus, resulting in: 

 

𝜕�̅�(�̅�)

𝜕𝐶11
= [−

1

3
(𝜆2 + 2𝜆−1)𝜆−2 + 1] 𝐶10

+ [−
2

3
(2𝜆 + 𝜆−2)𝜆−2 + (𝜆2 + 2𝜆−1 − 𝜆2)] 𝐶01

=
2

3
(𝐶10𝜆 + 𝐶01)(𝜆

−1 − 𝜆−4) 

(3.25) 
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which relates the elastic potential with the principal stretch. The volumetric part of the 

second Piola-Kirchhoff stress tensor requires for more complex analysis. In [16] it is 

suggested to take in consideration the following decomposition of the Cauchy stress tensor: 

 𝝈 = 𝒔 + 𝒑 (3.26) 

where 𝒔 = dev[𝝈] is the deviatoric stress component, whereas 𝒑 = hyd[𝝈] is the hydrostatic 

part of the stress tensor. In this case the deviatoric stress can be seen as the constitutive model 

part, already simplified on equation (3.25), and the hydrostatic part as the volumetric strain 

energy part that has not been simplified yet. Both components can be further decomposed: 

 
𝒑 =

1

3
tr(𝝈)𝑰 

(3.27) 

 𝒔 = 𝝈 − 𝒑 (3.28) 

In case of uniaxial stress state the hydrostatic component is obtained from the zero transverse 

stress constrain, i.e. 𝜎22 = 𝜎33 = 0, which implies: 

 𝝈 = [
𝜎 0 0
0 0 0
0 0 0

] (3.29) 

Consequently, both deviatoric and hydrostatic parts can be rewritten as: 

 𝑠11 =𝜎11 −
1

3
𝜎11 =

2

3
𝜎11 (3.30) 

 
𝑝11 =

1

3
𝜎11 =

𝑠11
2

 
(3.31) 

which shows that the hydrostatic part is half value of the deviatoric part, meaning that 𝝈 =

3

2
𝒔 for the actual conditions. Accordingly, by joining equation (3.25) and (3.31), the second 

Piola-Kirchhoff component is defined as: 

 Π11 = 2(𝐶10𝜆 + 𝐶01)(𝜆
−1 − 𝜆−4) (3.32) 

Furthermore, this relationship can give information about other stress tensors like the first 

Piola-Kirchhoff and the Cauchy stress tensor. From equations (2.14) and (2.15) it is possible 

to establish a clear relation between those tensors for the principal stretch direction 11: 

 𝜎11 = 𝑃11𝜆 =
Π11𝜆

2

𝐽
 (3.33) 

Notice that in order to assume incompressibility 𝐽 = 1. This relation is used to obtain 

different stress quantities in the principal stress direction, which are listed in Table 3.1. 
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Table 3.1. Component of the stress tensors in the loading direction considering the Mooney-Rivlin 
constitutive model with 2 parameters. 

 Stress component 

Cauchy Stress 𝜎11 = 2(𝐶10𝜆 + 𝐶01)(𝜆 − 𝜆
−2) 

1st Piola Kirchhoff 𝑃11 = 2(𝐶10𝜆 + 𝐶01)(1 − 𝜆
−3)  

2nd Piola Kirchhoff Π11 = 2(𝐶10𝜆 + 𝐶01)(𝜆
−1 − 𝜆−4) 

 

The first Piola-Kirchhoff tensor can also be calculated by: 

 𝜕�̅�𝑀𝑅

𝜕𝜆
= 2(𝐶10𝜆 + 𝐶01)(1 − 𝜆

−3) (3.34) 

which implies that, considering equation (3.33), the second Piola-Kirchhoff stress 

component in the loading direction can be easily obtained by:  

 Π11 =
𝜕�̅�𝑀𝑅

𝜕𝜆

1

𝜆
= 2(𝐶10𝜆 + 𝐶01)(𝜆

−1 − 𝜆−4) (3.35) 

Bearing this in mind and remembering equation (3.6), it is easy to extract the same Mooney-

Rivlin conclusions for 5 parameters (see Table 3.2). 

 

Table 3.2. Component of the second Piola Kirchhoff stress tensor in the loading direction considering the 
Mooney-Rivlin constitutive model with 2 and 5 parameters. 

 Mooney-Rivlin 2nd Piola Kirchhoff 

2 parameters  Π11 = 2(𝐶10𝜆 + 𝐶01)(𝜆
−1 − 𝜆−4) 

5 parameters 

Π11 = 2(𝐶10𝜆 + 𝐶01)(𝜆
−1 − 𝜆−4)

+ 6𝜆−1(𝜆2 − 𝜆 − 1 + 𝜆−2 + 𝜆−3 − 𝜆−4)𝐶11
+ 4𝜆−1(𝜆3 − 3𝜆 + 1 + 3𝜆−2 − 2𝜆−3)𝐶20
+ 4𝜆−1(−𝜆−5 + 2𝜆 − 3 − 𝜆−2 + 3𝜆−3)𝐶20 

3.2. Viscoelasticity 

The time dependent deformation exhibited by the rubbers is described by the 

viscoelasticity. In order to describe this behaviour, the hyper-viscoelastic formulation can be 

represented by a rheological analogy – the generalized Maxwell model, represented in 

Figure 3.4. The generalized Maxwell model is composed by an elastic spring related to the 
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hyperelastic part, and a finite number of Maxwell elements that describe the viscoelasticity. 

Furthermore, each Maxwell element is composed by an elastic spring and a viscous Newton-

element. 

 

Figure 3.4. Rheological analogy approach representing the generalized Maxwell model. 

The deduction of the viscoelastic stress was first presented by Kaliske et al [17] 

and is given by: 

 ℎ𝑗
𝑛+1 = exp(−

Δ𝑡

𝜏𝑗
)ℎ𝑗

𝑛 + 𝑎𝑘𝑗

1 − exp (−
Δ𝑡
𝜏𝑗
)

Δ𝑡
𝜏𝑗

[𝜎0
𝑛+1 − 𝜎0

𝑛] (3.36) 

where ℎ𝑗
𝑛+1 represents the viscoelastic stress at increment n+1, while 𝜎0

𝑛+1 denotes the stress 

imposed by the hyperelastic behaviour. Furthermore, 𝑎𝑘𝑗 and 𝜏𝑗 are parameters related to 

the j Maxwell element, used to describe its behaviour. This phenomenon is described in V-

Biomech by using as inputs the relaxation time 𝜏 and the ratio: 

 𝑎𝑘𝑗 =
𝜇𝑗

𝜇𝑜
 (3.37) 

where 𝜇𝑗 denotes the j Maxwell element spring elastic constant, whereas 𝜇0 is related to the 

hyperelastic spring elastic constant. The stress relaxation is given by the following equation 

and its relaxation function: 

 �̂�(𝑡) = 𝜇0𝜖̂(0) +∑𝜇𝑗

𝑀

𝑗=1

exp (−
𝑡

𝜏𝑗
) 𝜖̂(0) = Γ̂(𝑡)𝜖̂(0) (3.38) 

 

Γ̂(𝑡) = 𝜇0 +∑𝜇𝑗

𝑀

𝑗=1

exp (−
𝑡

𝜏𝑗
) 

(3.39) 
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where M denotes the number of Maxwell elements. The relaxation function can be 

represented in its normalized form: 

 𝛾(𝑡) =
Γ̂(𝑡)

𝜇0
= 1 +∑𝑎𝑘𝑗

𝑀

𝑗=1

exp (−
𝑡

𝜏𝑗
) (3.40) 

3.3. Hyper-viscoelasticity 

The accurate description of the rubber behaviour requires two types of 

formulations: hyperelasticity and viscoelasticity. Furthermore, the viscoelasticity is also 

dependent from the hyperelasticity. The generalized Maxwell element provides an organized 

vision of the mechanical behaviour, defining both contributions together. Consequently, the 

second Piola-Kirchhoff stress tensor, evaluated in a given increment, is given by the sum of 

two components, specifically the stress produced by the hyperelastic behaviour (Π𝐻𝐸 ,) and 

the stress generated by each Maxwell element (Π𝑀𝑊𝑖
 ) given by equation (3.36): 

 Π𝑡𝑜𝑡𝑎𝑙 = Π𝐻𝐸 +∑Π𝑀𝑊𝑖

𝑀

𝑖=1

 (3.41) 

where the stress under each Maxwell element at the increment n+1 is: 

 Π𝑀𝑊𝑖

𝑛+1 = exp (−
Δ𝑡

𝜏𝑖
)Π𝑀𝑊𝑖

𝑛 +
𝑎𝑘𝑖𝜏𝑖
Δ𝑡

[1 − exp (−
Δ𝑡

𝜏𝑖
)] (Π𝐻𝐸

𝑛+1 − Π𝐻𝐸
𝑛 ) (3.42) 

and considering Δ𝑡 the respective time increment. 

3.3.1. Viscoelasticity modes in V-Biomech 

Since the viscoelasticity component of the Maxwell model takes into account the 

hyperelastic behaviour (Mooney-Rivlin), two different approaches can be adopted in the V-

Biomech finite element code. By accessing the (Mater1 file), the user can change the 

viscoelastic mode by changing the option “viscousLONG”, which will change the meaning 

of 𝜎0
𝑛+1 and 𝜎0

𝑛 in equation (3.36). In this study, mode I and mode III will be addressed. The 

mode I considers only the deviatoric stress component from the hyperelastic behaviour when 

calculating the viscoelastic part:  

 Π̅𝑘𝑙 = 2
𝜕�̅�(�̅�)

𝜕𝐶𝑘𝑙
 (3.43) 
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which is the formulation used by Abaqus. On the other hand, adopting the mode III both 

hydrostatic and deviatoric stress components resulting from the hyperelasticity are taken into 

account: 

 Π̅𝑘𝑙 = 2
𝜕[�̅�(�̅�) + �̅�𝐻(𝐽)]

𝜕𝐶𝑘𝑙
 (3.44) 

 

Figure 3.5. Scheme drawing of the 2 V-Biomech modes that sums the mechanical behaviour of each one. 

Figure 3.5 presents schematically the workflow used to evaluate the total stress 

in mode I and mode III of the V-Biomech. The mode III uses equation (3.31) as an 

assumption, making the relationship between the deviatoric and hydrostatic stress 

components of the hyperelastic behaviour constant. On the other hand, in the mode I, the 

relationship between the deviatoric and hydrostatic stress components is neither constant or 

linear. 

Considering the mode III, both deviatoric and hydrostatic stress components are 

taken into account in the calculations for the Maxwell element stress. Thus, the ratio between 

the stress components is constant in all Maxwell branches, therefore expanding the relation 

and keeping it constant in all system. However, in the mode I, only the deviatoric stress 

component enters in the calculation for the Maxwell element stress. Therefore, the only 

hydrostatic stress component in the system (dictated only by the hyperelasticity), which must 

Mode 1 Mode 3
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Viscoelasticity
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guarantee zero transverse stress, must balance the deviatoric stress components of all 

Maxwell elements. 

3.3.2. Mode I:  uniaxial compression  

In order to analyse the contribution of the hydrostatic and deviatoric stress 

components, the instantaneous uniaxial compression with relaxation afterwards is studied 

considering only one Maxwell element. Therefore, the total system stress can be written as: 

 𝜎𝑡𝑜𝑡𝑎𝑙 = 𝑠 + 𝑝 + 𝑠1 (3.45) 

where the deviatoric stress component of the Maxwell element (𝑠1) can be defined as a 

function of the deviatoric stress component given by the Mooney-Rivlin (hyperelasticity): 

 𝑠1 = 𝑠 (𝑎𝑘1exp (
−𝑡

𝜏1
)) (3.46) 

In order to satisfy the zero-transverse condition, the ratio between the total system deviatoric 

stress component, 𝑠𝑡𝑜𝑡𝑎𝑙, and the hydrostatic stress should be: 

 
𝑠𝑡𝑜𝑡𝑎𝑙
𝑝

=
𝑠 + 𝑠1

𝑝
= 2 (3.47) 

Accordingly, the hydrostatic stress component is: 

𝜎𝑡𝑜𝑡𝑎𝑙
𝑝

=
𝑠 + 𝑝 + 𝑠1

𝑝
⇔
𝑠𝑡𝑜𝑡𝑎𝑙
𝑝

=
𝑠 + 𝑠1
𝑝

⇔2 =

𝑠 (1 + 𝑎𝑘1exp (
−𝑡
𝜏1
))

𝑝
 

 
𝑝 =

𝑠 (1 + 𝑎𝑘1exp (
−𝑡
𝜏1
))

2
 

(3.48) 

Since the deviatoric stress component can be easily calculated assuming material 

incompressibility, the pressure is given by equation (3.48) in the relaxation test (constant 

value of stretch during the time). 

In order to establish a relationship between the hydrostatic and the deviatoric 

stress components during the uniaxial compression at constant speed of prescribed 

displacement, the deviatoric Maxwell stress is defined as a function of the hyperelastic 

deviatoric stress. The total stress is calculated using equation (3.41), which is described 

recursively for each increment: 
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𝜎𝑠
𝑛 = 𝜎𝐻𝐸

𝑛 + exp (
−Δ𝑡

𝜏𝑖
)𝜎𝑀𝑊

𝑛−1 +
𝑎𝑘𝜏

Δ𝑡
[1 − exp (

−Δ𝑡

𝜏
)] (𝜎𝐻𝐸

𝑛 − 𝜎𝐻𝐸
𝑛−1) =

= 𝑠𝐻𝐸
𝑛 [1 +

𝑎𝑘𝜏

Δ𝑡
(1 − exp (

−Δ𝑡

𝜏
))] + exp (

−Δ𝑡

𝜏
)𝜎𝑀𝑊

𝑛−1 + 𝑝𝐻𝐸
𝑛 +

𝑠𝐻𝐸
𝑛−1 [

𝑎𝑘𝜏

Δ𝑡
(exp (

−Δ𝑡

𝜏
) − 1)]  

(3.49) 

Notice that the total stress component from the hyperelasticity on the actual 

increment,𝜎𝐻𝐸
𝑛 , can be divided into two different parts: deviatoric stress (𝑠𝐻𝐸

𝑛 ) and 

hydrostatic stress (𝑝𝐻𝐸
𝑛 ). Moreover, the total Maxwell stress of the previous increment,𝜎𝑀𝑊

𝑛−1, 

only a deviatoric component (mode I). Considering equation (3.49), the total system stress 

in the current increment, 𝜎𝑠
𝑛, can be defined as a function of only the hyperelastic part, i.e. 

the deviatoric Maxwell stress defined as a function of the hyperelastic deviatoric stress. 

The explicit expressions for the total stress in three consecutive increments is 

given in the following, using only the stress component from the hyperelasticity: 

• For 𝑛 = 0 → 𝑠𝐻𝐸
0 = 0 → 𝜎𝑠

0 = 0  

• For 𝑛 = 1 → 𝑠𝐻𝐸
0 = 𝜎𝑀𝑊

0 = 0 → 𝜎𝑠
1 = 𝑠𝐻𝐸

1 [1 +
𝑎𝑘𝜏

Δ𝑡
(1 − exp (

−Δ𝑡

𝜏
))] + 𝑝𝐻𝐸

1  

• For 𝑛 = 2 → 𝜎𝑀𝑊
1 = 𝑠𝐻𝐸

1 [
𝑎𝑘𝜏

Δ𝑡
(1 − exp (

−Δ𝑡

𝜏
))] → 𝜎𝑠

2 = 𝑠𝐻𝐸
2 [1 +

𝑎𝑘𝜏

Δ𝑡
(1 −

exp (
−Δ𝑡

𝜏
))] + 𝑝𝐻𝐸

2 + exp (
−Δ𝑡

𝜏
) [

𝑎𝑘𝜏

Δ𝑡
(1 − exp (

−Δ𝑡

𝜏
))] 𝑠𝐻𝐸

1 +

𝑠𝐻𝐸
1 [

𝑎𝑘𝜏

Δ𝑡
(exp (

−Δ𝑡

𝜏
) − 1)] = 𝑠𝐻𝐸

2 [1 +
𝑎𝑘𝜏

Δ𝑡
(1 − exp (

−Δ𝑡

𝜏
))] + 𝑝𝐻𝐸

2 +

𝑠𝐻𝐸
1 [

𝑎𝑘𝜏

Δ𝑡
(−1 + 2exp (

−Δ𝑡

𝜏
) − exp (

−2Δ𝑡

𝜏
))] 

• For 𝑛 = 3 → 𝜎𝑀𝑊
2 = 𝑠𝐻𝐸

2 [
𝑎𝑘𝜏

Δ𝑡
(1 − exp (

−Δ𝑡

𝜏
))] + 𝑠𝐻𝐸

1 [
𝑎𝑘𝜏

Δ𝑡
(−1 + 2exp (

−Δ𝑡

𝜏
) −

exp (
−2×Δ𝑡

𝜏
))] → 𝜎𝑠

3 = 𝑠𝐻𝐸
3 [1 +

𝑎𝑘𝜏

Δ𝑡
(1 − exp (

−Δ𝑡

𝜏
))] + 𝑝𝐻𝐸

3 +

exp (
−Δ𝑡

𝜏
) [𝑠𝐻𝐸

2 [
𝑎𝑘𝜏

Δ𝑡
(1 − exp (

−Δ𝑡

𝜏
))] + 𝑠𝐻𝐸

1 [
𝑎𝑘𝜏

Δ𝑡
(−1 + 2exp (

−Δ𝑡

𝜏
) −

exp (
−2Δ𝑡

𝜏
))]] + 𝑠𝐻𝐸

2 [
𝑎𝑘𝜏

Δ𝑡
(exp (

−Δ𝑡

𝜏
) − 1)] = 𝑠𝐻𝐸

3 [1 +
𝑎𝑘𝜏

Δ𝑡
(1 − exp (

−Δ𝑡

𝜏
))] +

𝑝𝐻𝐸
3 + 𝑠𝐻𝐸

2 [
𝑎𝑘𝜏

Δ𝑡
(−1 + 2exp (

−Δ𝑡

𝜏
) − exp (

−2Δ𝑡

𝜏
))] + 𝑠𝐻𝐸

1 [
𝑎𝑘𝜏

Δ𝑡
(−exp (

−Δ𝑡

𝜏
) +

2exp (
−2Δ𝑡

𝜏
) − exp (

−3Δ𝑡

𝜏
))] 
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From the pattern obtained for three increments, a general formulation based only 

on the deviatoric stress component from the hyperelastic can be obtained. Accordingly, two 

different coefficients are defined: 

• A constant coefficient 𝑐1, which is multiplied by the actual deviatoric stress 

component given by the hyperelastic behaviour: 

 𝑐1 = 1 +
𝑎𝑘𝜏

Δ𝑡
(1 − exp (

−Δ𝑡

𝜏
)) (3.50) 

• A second coefficient 𝑐2
𝑛, which depends on the increment and is associated to every 

previous deviatoric hyperelastic stress: 

 𝑐2
𝑛 =

𝑎𝑘𝜏

Δ𝑡
(−exp (

−nΔ𝑡

𝜏
) + 2exp (

−(n − 1)Δ𝑡

𝜏
) − exp(

−(n − 2)Δ𝑡

𝜏
)) (3.51) 

Taking into account equation (3.50) and (3.51), the total stress of the system is given by: 

 𝜎𝑠
𝑛 = 𝑠𝐻𝐸

𝑛 𝑐1 + 𝑝𝐻𝐸
𝑛 +∑𝑠𝐻𝐸

𝑖 𝑐2
𝑛−𝑖+1

𝑛−1

𝑖=1

 (3.52) 

which is still an increment dependent formulation. In order to consider several (M) Maxwell 

elements these coefficients (equations (3.50) and (3.51)) should also be written in a general 

form, resulting in: 

 𝑐1 = 1 +∑
𝑎𝑘𝑖𝜏𝑖
Δ𝑡

(1 − exp (
−Δ𝑡

𝜏𝑖
))

𝑀

𝑖=1

 (3.53) 

 
𝑐2
𝑛 = ∑ [

𝑎𝑘𝑖𝜏𝑖
Δ𝑡

(−exp (
−nΔ𝑡

𝜏𝑖
) + 2exp (

−(n−1)Δ𝑡

𝜏𝑖
) − exp (

−(n−2)Δ𝑡

𝜏𝑖
))]𝑀

𝑖=1   
(3.54) 

where the constant M denotes the total number of Maxwell elements. 

In order to apply the same strategy previously adopted in the relaxation test, 

equation (3.52) must depend only on the deviatoric stress component from the 

hyperelasticity,𝑠𝐻𝐸
𝑛  in the actual increment. However, since the stress is highly nonlinear, it 

is impossible know the stress evolution from a single value in the previous increment.  

Four different approaches were studied, and, from that group, one clearly stood 

out as being the most effective at predicting the behaviour of the hydrostatic pressure. The 

four suggestions will be presented and tested on the next chapter, in order to prove our 

choice. 

1. Consider that equation (3.47) as valid to this kind of behaviour also. 
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2. Calculate the ratio using the sum of both coefficients. This suggestion assumes a 

relaxation condition which is that all the hyperelastic deviatoric stress have the same 

value for every increment. Therefore, leading to total stress: 

 𝜎𝑠
𝑛 = 𝑠𝐻𝐸

𝑛 [𝑐1 +∑ 𝑐2
𝑛−𝑖+1

𝑛−1

𝑖=1

] + 𝑝𝐻𝐸
𝑛  (3.55) 

Thus, suggesting that: 

 𝑝𝑛 =
𝑠𝐻𝐸
𝑛 [𝑐1 + ∑ 𝑐2

𝑛−𝑖+1𝑛−1
𝑖=1 ]

2
 (3.56) 

3. Use only the first coefficient and neglect the second one: 

 𝑝𝑛 =
𝑠𝐻𝐸
𝑛 𝑐1
2

 (3.57) 

4. Use the first coefficient 𝑐1 but with the total time instead of the increment of time: 

 
𝑝𝑛 =

𝑠𝐻𝐸
𝑛 (1 + ∑

𝑎𝑘𝑖𝜏𝑖
𝑡𝑛 [1 − exp (−

𝑡𝑛

𝜏𝑖
)]𝑀

𝑖=1 )

2
 

(3.58) 

In this case the sum is with respect to the number of Maxwell elements, M.  

Using this result, we can write the full expression for uniaxial compression, 

assuming material incompressibility. In this case the total second Piola-Kirchhoff should be: 

 Π𝑡𝑜𝑡𝑎𝑙 = Π𝐻𝐸 +∑Π𝑀𝑊𝑖
= 𝑠𝐻𝐸 + 𝑝𝐻𝐸 +∑Π𝑀𝑊𝑖

𝑀

𝑖=1

𝑀

𝑖=1

 (3.59) 

The hyperelastic deviatoric part is represented by equation (3.25), the hyperelastic 

hydrostatic part is approximated by equation (3.58), and finally the Maxwell stress is 

formulated by equation (3.42). Before writing the final expression, there is still some 

simplifications left to do in the hyperelastic part, since the deviatoric part plays a role in the 

hydrostatic part. Remembering equation (3.11): 

 

Π𝐻𝐸
𝑛 = 2(𝑠𝐻𝐸

𝑛 + 𝑝𝑛) = 2 [𝑠𝐻𝐸
𝑛 +

𝑠𝐻𝐸
𝑛 (1+∑

𝑎𝑘𝑖𝜏𝑖
𝑡𝑛

[1−exp(−
𝑡𝑛

𝜏𝑖
)]𝑀

𝑖=1 )

2
] = 𝑠𝐻𝐸

𝑛 (3 +

∑
𝑎𝑘𝑖𝜏𝑖

𝑡𝑛
[1 − exp (−

𝑡𝑛

𝜏𝑖
)]𝑀

𝑖=1 ) = [
2

3
(𝐶10𝜆 + 𝐶01)(𝜆

−1 − 𝜆−4)]
𝑛

(3 +

∑
𝑎𝑘𝑖𝜏𝑖

𝑡𝑛
[1 − exp (−

𝑡𝑛

𝜏𝑖
)]𝑀

𝑖=1 )  

(3.60) 

It should be noted that the Maxwell stress uses only the deviatoric part of the hyperelasticity 

we get to the final equation that the describes the total stress in second Piola-Kirchhoff: 
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Π𝑡𝑜𝑡𝑎𝑙
𝑛 = [

2

3
(𝐶10𝜆 + 𝐶01)(𝜆

−1 − 𝜆−4)]
𝑛

(3 + ∑
𝑎𝑘𝑖𝜏𝑖

𝑡𝑛
[1 − exp (−

𝑡𝑛

𝜏𝑖
)]𝑀

𝑖=1 ) +

∑ exp (−
Δ𝑡

𝜏𝑖
)Π𝑀𝑊𝑖

𝑛−1 +
𝑎𝑘𝑖𝜏𝑖

Δ𝑡
[1 − exp (−

Δ𝑡

𝜏𝑗
)] [(

4

3
(𝐶10𝜆 + 𝐶01)(𝜆

−1 −𝑀
𝑖=1

𝜆−4))
𝑛

− (
4

3
(𝐶10𝜆 + 𝐶01)(𝜆

−1 − 𝜆−4))𝑛−1]  

(3.61) 

This expression depends only on material parameters and stretch evolution, which is 

ideal for the next objectives in this thesis. 

3.3.3. Mode III:  uniaxial compression  

Considering the mode III, the relation between the deviatoric and hydrostatic 

stress components of the hyperelasticity is always constant. In section 3.1.4, it has been 

concluded that when the referred assumption is activated, equation (3.32) describes the total 

hyperelastic behaviour that also enters in the viscoelastic part, therefore leading to the 

following equation that reflects the total second Piola-Kirchhoff stress considering the 

Mooney-Rivlin constitutive model with 2 parameters: 

 

Π𝑡𝑜𝑡𝑎𝑙
𝑛 = [2(𝐶10𝜆 + 𝐶01)(𝜆

−1 − 𝜆−4)]𝑛 + ∑ exp (−
Δ𝑡

𝜏𝑖
)Π𝑀𝑊𝑖

𝑛−1 +𝑀
𝑖=1

+
𝑎𝑘𝑖𝜏𝑖

Δ𝑡
[1 − exp (−

Δ𝑡

𝜏𝑖
)] [(2(𝐶10𝜆 + 𝐶01)(𝜆

−1 − 𝜆−4))
𝑛
− (2(𝐶10𝜆 +

𝐶01)(𝜆
−1 − 𝜆−4)𝑛−1]  

(3.62) 

which depends only on the hyperelastic and viscoelastic parameters, time increment and 

stretch increment. 
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4. FINITE ELEMENT SOLUTION 

The purpose of this section is the comparison between the finite element 

prediction of the rubber like material behaviour with the solutions previously presented. 

Most of the finite element codes allows the modelling of hyper-viscoelasticity, such as the 

Abaqus (commercial) and the V-Biomech (academic). Since the closed-form solutions 

presented before are only valid for the uniaxial stress state, a case study comprising that 

stress state is proposed in order to evaluate the its accuracy.  

4.1. Case study: uniaxial stress 

The uniaxial compression test of a rubber like material is selected as case study. 

In order to describe the material behaviour, the Mooney-Rivlin constitutive model and long 

term viscous effects are considered. The Mooney-Rivlin constitutive model uses only 2 

parameters, while the viscosity is given by two Maxwell elements. The parameters adopted 

for the hyper-viscoelastic model are presented on Table 4.1, and the time and displacement 

history indicated in the input file BIO are listed in 

Table 4.2. Regarding the geometry of the deformable body, a unit cube is 

considered, as shown in Figure 4.1. Since the prescribed displacement on the top is 0.5 mm 

(see Table 4.2), the final stretch will be 0.5. The cube is discretized with 64 hexahedral finite 

elements using the GID software. 

Table 4.1. Parameters of the Mooney-Rivlin constitutive model (hyperelasticity) and for the two Maxwell 
elements (viscoelasticity). 

𝐶10 𝐶01 𝑎𝑘1 𝑎𝑘2 𝜏1 𝜏2 

0.12 0.03 5.5 3.3 10 1 

 

Table 4.2. Time and displacement history considered in the uniaxial compression test. 

Step 1 2 

Displacement [mm] 0 -0.5 

Time [s] 0 6 
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Figure 4.1. Discretization of the cube adopted in the numerical simulation of the uniaxial compression test 
and z displacement distribution after loading. 

Regarding viscoelastic behaviour, the Prony series (𝑔�̅�
𝑝 and 𝜏𝑖) are used in 

Abaqus to describe this behaviour, while the V-Biomech resorts to Maxwell element 

parameters (𝑎𝑘𝑖 and 𝜏𝑖). Prony series has the following formulation: 

 𝑔𝑅(𝑡) = 𝐺0 (1 −∑𝑔�̅�
𝑝

𝑁

𝑖=1

(1 − 𝑒
(
−𝑡
𝜏𝑖
)
)) (4.1) 

where (𝑔�̅�
𝑝 and 𝜏𝑖) are the parameters and N the number of Prony elements, which should 

be equal to the number of Maxwell elements. For 𝑡 = 0 → 𝑔𝑅(0) = 𝐺0 and for an infinite 

time 𝑔𝑅(∞) = 𝐺0(1 − ∑ 𝑔�̅�
𝑝𝑁

𝑖=1 ). Revisiting equations (3.39) (3.40), which describe 

Maxwell elements formulation, the same conclusions must be made giving that for 𝑡 = 0 →

𝛾(0) = 1 + ∑ 𝑎𝑘𝑖
𝑁
𝑖=1  and for an infinite time 𝛾(∞) = 1. Matching the two expressions for 

the initial time we obtain: 

 𝐺0 = 1 +∑𝑎𝑘𝑖

𝑁

𝑖=1

 (4.2) 

In order to obtain the Prony series parameters, both parcels of the relaxation 

function are multiplied by the following fraction: 

1

𝜇0 + ∑ 𝜇𝑗
𝑁
𝑗=1

 

After that, the following deduction attends to explain the achievement of those parameters: 
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Γ̂(𝑡) = 𝜇0 +∑𝜇𝑖

𝑁

𝑖=1

𝑒
(
−𝑡
𝜏𝑖
)
⇔ 

⇔ Γ̂(𝑡) (
1

𝜇0 + ∑ 𝜇𝑗
𝑁
𝑗=1

) = (𝜇0 +∑𝜇𝑖

𝑁

𝑖=1

𝑒
(
−𝑡
𝜏𝑖
)
)(

1

𝜇0 +∑ 𝜇𝑗
𝑁
𝑗=1

)⇔ 

⇔
Γ̂(𝑡)

𝜇0 + ∑ 𝜇𝑗
𝑁
𝑗=1

=
𝜇0

𝜇0 + ∑ 𝜇𝑗
𝑁
𝑗=1

+∑
𝜇𝑖

𝜇0 + ∑ 𝜇𝑗
𝑁
𝑗=1

𝑁

𝑖=1

𝑒
(
−𝑡
𝜏𝑖
)
⇔ 

⇔
𝛾(𝑡)𝜇0

𝜇0 + ∑ 𝜇𝑗
𝑁
𝑗=1

= 1 −∑
𝜇𝑖

𝜇0 + ∑ 𝜇𝑗
𝑁
𝑗=1

𝑁

𝑖=1

+∑
𝜇𝑖

𝜇0 + ∑ 𝜇𝑗
𝑁
𝑗=1

𝑁

𝑖=1

𝑒
(
−𝑡
𝜏𝑖
)
⇔ 

⇔
𝛾(𝑡)

𝜇0 + ∑ 𝜇𝑗
𝑁
𝑗=1

𝜇0

= 1 −∑𝑔�̅�
𝑝

𝑁

𝑖=1

+∑𝑔�̅�
𝑝

𝑁

𝑖=1

𝑒
(
−𝑡
𝜏𝑖
)
⇔ 

⇔
𝛾(𝑡)

1 + ∑ 𝑎𝑘𝑖
𝑁
𝑖=1

= 1 −∑𝑔�̅�
𝑝

𝑁

𝑖=1

(1 − 𝑒
(
−𝑡
𝜏𝑖
)
)⇔ 

⇔𝛾(𝑡) = 𝐺0 (1 −∑𝑔�̅�
𝑝

𝑁

𝑖=1

(1 − 𝑒
(
−𝑡
𝜏𝑖
)
)) 

 

(4.3) 

Thus, deducing that: 

 𝑔�̅�
𝑝 =

𝜇𝑖

𝜇0 + ∑ 𝜇𝑗
𝑁
𝑗=1

=
𝑎𝑘𝑖

1 + ∑ 𝑎𝑘𝑖
𝑁
𝑗=1

 (4.4) 

For the given case study: 

{
 

 𝑔1̅̅ ̅
𝑝 =

𝑎𝑘1
1 + 𝑎𝑘1 + 𝑎𝑘2

=
5.5

1 + 5.5 + 3.3
= 0.5612244898

𝑔2̅̅ ̅
𝑝 =

𝑎𝑘2
1 + 𝑎𝑘1 + 𝑎𝑘2

=
3.3

1 + 5.5 + 3.3
= 0.3571428571

 

 

Adopting the V-Biomech finite element code, the decomposition of the second 

Piola Kirchhoff stress into different components is presented in Figure 4.2 for the uniaxial 

compression test. The results are obtained using the material properties presented in Table 

4.1 and assuming the mode I of viscoelasticity. The axial stress component is negative 

because the cube is under compression, but the evolution is non-linear. In this case, since  

𝑎𝑘1 > 𝑎𝑘2 and 𝜏1 >𝜏2, the first Maxwell element has a larger impact in the solution in 
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comparison to the second one. On the other hand, the volumetric part of the hyperelasticity 

is higher than the deviatoric part, which contradicts equation (3.31) since it is only valid for 

the mode III of viscoelasticity. 

 

Figure 4.2. Contribution of each component composing the second Piola Kirchhoff stress in the uniaxial 
compression test. 

4.2. Nearly incompressible behaviour 

The formulation implemented in the V-Biomech finite element code only allows 

the modelling compressible and of nearly incompressible materials. By default, the bulk 

modulus, is given by: 

 𝐾 = 1000 × 2(𝐶10 + 𝐶01) (4.5) 

while the shear modulus can be calculated by:  

 𝐺 = 2(𝐶10 + 𝐶01) (4.6) 

The Poisson ratio can be evaluated through the ratio between the bulk and the shear modulus 

by: 

 𝜈 =
3𝐾/𝐺 − 2

6𝐾/𝐺 + 2
 (4.7) 

Table 4.3 presents the information about the Poisson ratio for some values of the ratio 

between bulk and the shear modulus. Since 𝐾/𝐺 = 1000 is assigned by default in V-

Biomech, the default Poisson ratio is 0.4995, which means nearly incompressible behaviour. 
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Table 4.3. Relationship between the ratio bulk /shear modulus and the Poisson ratio according to the V-
Biomech finite element code. 

𝐾/𝐺 Poisson ratio 𝜈 

10 0.452 

20 0.475 

50 0.490 

100 0.495 

1000 0.4995 

10000 0.49995 

 

In order to fully characterize the hyperelastic behaviour in Abaqus, besides the 

constitutive model parameters, 𝐶10 and 𝐶01, Abaqus also requests a parameter 𝐷 , which 

reflects the material’s Poisson ratio: 

 𝐷 =
2

𝐾
 (4.8) 

where K denotes bulk modulus. The incompressibility of the material is established when 

the parameter 𝐷 is equal to zero. On the other hand, considering the material parameters 

presented in Table 4.1 and assuming nearly incompressible material definition (identical to 

the on adopted by default in V-Biomech), the parameter 𝐷 should be: 

𝐷 =
2

𝐾
=

2

1000 × 2(𝐶10 + 𝐶01)
=

2

1000 × 2(0.12 + 0.03)
= 0.006667 

Although the material is assumed nearly incompressible in the finite element 

simulation, the closed-form solution obtained in the previous chapter for the hyperelastic 

behaviour (under uniaxial stress state) assumes that the material is incompressible. 

Neglecting the long viscous effects and considering the incompressible material behaviour, 

the second Piola-Kirchhoff stress in the loading direction defined by Mooney-Rivlin 

constitutive model is: 

 Π = 2(𝐶10𝜆 + 𝐶01)(𝜆
−1 − 𝜆−4) (4.9) 

The evolution of the second Piola Kirchhoff stress (axial component) in the 

uniaxial compression is presented in Figure 4.3, comparing the incompressible material 

behaviour (analytical) and nearly incompressible (V-Biomech simulation) assuming only 

hyperelastic behaviour (Mooney-Rivlin). Both solutions are almost coincident as highlighted 
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in Figure 4.3. The relative error is insignificant with an average value of 0.03%. Therefore, 

the presented closed-form solution for uniaxial compression of incompressible materials 

describes accurately the behaviour of nearly incompressible materials. 

 

 

Figure 4.3. Comparison between incompressible material (analytical) and nearly incompressible (V-Biomech 
simulation) in the uniaxial compression test assuming only hyperelastic behaviour (Mooney-Rivlin). 

4.3. Strain rate effect in viscoelasticity  

Since large strains are commonly involved in the rubber materials, the strain rate 

is not constant in the uniaxial tensile test if the prescribed displacement is applied with 

constant velocity. Nevertheless, the velocity of the applied prescribed displacement dictates 

the nominal strain rate of the material, i.e. the strain rate at the beginning of the test. The 

influence of the prescribed velocity on the resulting second Piola-Kirchhoff stress in uniaxial 

tensile test is evaluated in this section. Since the total stress is defined by the generalized 

Maxwell model, both the upper and lower limits of the second Piola-Kirchhoff stress can be 

derived from equation (3.62). The minimum magnitude of the second Piola-Kirchhoff stress 

is obtained when the prescribed displacement is applied in an infinite time (zero velocity), 

i.e. the energy of the springs associated to the Maxwell elements is completely dissipated by 

the dashpots. Thus, the mechanical response is only characterized by the hyperelastic 

component of the stress:  
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 Πmin = ΠHE (4.10) 

On the other hand, the maximum magnitude of the second Piola-Kirchhoff stress 

is obtained when the prescribed displacement is applied instantaneously (infinite velocity), 

i.e. the dashpots associated to the Maxwell elements do not dissipated the energy of the 

springs. Therefore, the second Piola-Kirchhoff stress of the system is defined by the response 

of M+1 springs in parallel, which can be described by: 

 Πmax = ΠHE(1 +∑𝑎𝑘𝑖

𝑀

𝑖=1

) (4.11) 

where M denotes the number of Maxwell elements. Taking into account equations (4.4) and 

(4.5), the maximum variation of the stress induced by the strain rate in the uniaxial 

compression test is directly proportional to the sum of 𝑎𝑘𝑖 of each Maxwell element.  

 

 

Figure 4.4. Influence of the prescribed displacement velocity on the predicted second Piola Kirchhoff stress 
considering the uniaxial compression test. 

The V-Biomech was used to perform the numerical simulation of the uniaxial 

compression test in order to obtain the second Piola-Kirchhoff stress at different values of 

velocity on the surface with prescribed displacement. Figure 4.4 presents the evolution of 

the second Piola-Kirchhoff stress for eight values of prescribed displacement velocity, 

including the upper and lower limits previously defined. The stress magnitude increases 
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when the strain rate increases, as highlighted in Figure 4.4. Comparing the magnitude of the 

two stress limits, the stress value increases about 890% only by changing the value of the 

strain rate on the material. 

4.4. Viscoelasticity modes in V-Biomech 

The viscoelasticity modes currently implemented in V-Biomech finite element 

code are analysed and discussed in detail, in this section. The mode III of viscoelasticity 

takes in account both deviatoric and hydrostatic components of the hyperelasticity, while 

adopting the mode I only the deviatoric component plays a role. Therefore, since the 

contribution of each Maxwell element is dependent of the hyperelastic contribution, different 

solutions are excepted in each mode. Figure 4.5 presents the decomposition of the second 

Piola Kirchhoff stress predicted in the uniaxial compression test into deviatoric and 

volumetric components, considering both the mode I and mode III of viscoelasticity. The 

deviatoric stress component from the hyperelastic behaviour is exactly the same in both 

modes, i.e. independent of the viscoelastic mode adopted. On the other hand, the volumetric 

stress component from the hyperelastic behaviour is largest in the mode I than in mode III. 

This results from the fact that the hydrostatic stress component in the mode III of 

viscoelasticity only balances the deviatoric stress component of the hyperelastic part, while 

considering the mode I the volumetric stress component must balance the total deviatoric 

stress (hyperelastic part and Maxwell elements). Therefore, adopting the mode III of 

viscoelasticity, the relationship between the deviatoric and volumetric stress components is 

always given by equation (3.31), independently of the Maxwell elements. 
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Figure 4.5. Deviatoric and volumetric stress components considering the mode I and mode III of 
viscoelasticity in the uniaxial compression test. 

Since the ratio between the deviatoric and volumetric stress components is 

constant during the entire uniaxial compression test using the Mode III, the hydrostatic stress 

component can be easily evaluated from the total stress component through equation (3.31). 

Nevertheless, using the Mode I, the ratio between the deviatoric and volumetric stress 

components is unknown, and it is not constant during the uniaxial compression test. 

Accordingly, four different ways to predict the volumetric stress component were presented 

in section 3.3.2. Figure 4.6 shows the comparison between different predictions to 

approximate the hydrostatic stress component in the uniaxial compression test considering 

the mode I of the viscoelasticity. The prediction of the hydrostatic stress component given 

by equation (3.58) provides the most accurate solution, when compared with the solution 

obtained with the V-Biomech. However, the error increases with the stretch imposed in the 

unit cube, probably due to some loss of history that might be related to the second coefficient, 

which happens because the non-linearity of the stress evolution with the stretch. 
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Figure 4.6. Comparison between different predictions for the hydrostatic stress component in the uniaxial 
compression test considering the mode I of the viscoelasticity. 

4.5. Hyper-viscoelastic behaviour  

The total stress (resulting from hyperelastic and viscoelastic) in the uniaxial 

compression test is evaluated considering both modes of viscoelasticity available in the V-

Biomech finite element code, namely mode I and mode III described in section 3.3. The 

numerical solution is compared with the closed-form solution, derived in the previous 

chapter, in order to assess its accuracy. The solution is given by a recursive formula 

involving only the stretch value and the current time, see equation (3.61) and equation (3.62) 

for mode I and mode III, respectively.  

Figure 4.7 presents the comparison of the second Piola Kirchhoff stress obtained 

by numerical simulation (V-Biomech) and predicted with equation (3.61) in case of mode I, 

and equation (3.62) in case of mode III. First of all, the numerical solution is different 

depending on the selected viscoelasticity mode (I or III). Although the mechanical behaviour 

is similar in both modes, the difference between them after loading (stretch of 0.5) is 

approximately 7% in the value of the second Piola Kirchhoff stress, as shown in Figure 4.7. 

Secondly, the solutions given by equations (3.61) and (3.62) are in good agreement with the 

finite element solutions. Indeed, the solution for the mode III presents an error inferior to 

0.1%, while considering the mode I the maximum relative error is about 1.5%. Therefore, 
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the closed-form solutions for the second Piola Kirchhoff stress in the uniaxial stress are in 

very good agreement with the numerical solution, particularly in the case of mode III. 

 

 

Figure 4.7. Comparison of the second Piola Kirchhoff stress obtained by numerical simulation (V-Biomech) 
and predicted with equation (3.61), in case of mode I and equation (3.62) in case of mode III. 

4.6. Comparison between V-Biomech and Abaqus  

Since the information about the viscoelasticity formulation implemented in 

Abaqus is not extensive and the source code is not available for the users, this section intends 

to compare numerical results obtained with Abaqus and V-Biomech. 

The objective is to understand which viscoelasticity mode (I or III) is 

implemented in Abaqus. Therefore, the case study described in section 4.1 is simulated by 

both finite element codes under the same conditions. Nearly incompressible material is 

assumed in Abaqus software with 𝐷 = 0,006667, as presented in equation (4.8). Although 

Abaqus allows the user to select several variables to be monitored during the simulation, the 

second Piola-Kirchhoff stress is not available. Thus, the component of the second Piola-

Kirchhoff stress tensor in the loading direction (33) can be obtained from the Cauchy stress 

tensor assuming nearly incompressible behaviour by:  
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 Π33 =
𝜎33𝐽

𝜆3
2  (4.12) 

where J denotes the Jacobian, which is evaluated by the multiplication of the three stretches. 

In order to calculate the stretch in each direction, Abaqus allows the extraction of logarithmic 

strain components, which are converted into stretch by:  

 𝜆3 = exp(LE33) (4.13) 

 

Figure 4.8. Comparison between the second Piola Kirchhoff stress predicted by Abaqus and V-Biomech 
(mode I and mode III) finite element codes in the uniaxial compression test. 

Figure 4.8 shows the comparison between the Abaqus and V-Biomech results in 

terms of second Piola Kirchhoff stress in the uniaxial compression test. From the results, it 

is clear that the formulation implemented in Abaqus is similar to the one implemented in V-

Biomech considering the mode I of viscoelasticity. Indeed, the difference between the 

second Piola Kirchhoff stress predicted by Abaqus and V-Biomech (mode I) is lower than 

0.1%. Therefore, the comparison of results from Abaqus should only be done with results 

from V-Biomech using the mode I.  
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5. EXPERIMENTAL TESTS 

This chapter presents the results of some experimental tests, namely the uniaxial 

compression of a cylindrical specimen and relaxation test for two different materials. The 

objective is to find the constitutive model parameters that characterize the available material 

and then replicate the experimental behaviour using V-Biomech and Abaqus software.  

5.1. Experimental procedure and results 

Two different polyurethane (PUR) sticks were acquired from “Norlene”, a 

Portuguese company that specializes in manufacturing and distributing technical plastics and 

rubber materials. Then, the polyurethane sticks (250 mm length and 18 mm of diameter for 

the orange PUR and 20 mm of diameter for the yellow PUR) were cut into cylindrical 

specimens with 18 mm of diameter and 25 mm of length, which are illustrated in Figure 5.1. 

The real dimensions and the hardness of both materials used in the experimental tests can be 

found in Table 5.1. 

 

Figure 5.1. Test specimens after being properly cut to their desired shape and ready to use in the 
experimental tests. 
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Table 5.1. Dimensions (nominal and real) and hardness of both materials used in the experimental tests. 

Test 

Specimens 

Nominal 

Diameter [mm] 

Real Diameter 

[mm] 

Nominal 

Height [mm] 

Real Height 

[mm] 

Hardness 

[°Sh A] 

Yellow 18 18.7 25 24.4 70 

Orange 18 18.4 25 24.4 95 

 

The accurate mechanical characterization of a given rubber material requires 

experimental data from different mechanical tests (tensile, compression, shear, biaxial, etc.). 

Thus, using only two types of test is not enough to have a good determination of the material 

parameters [18]. The Abaqus finite element code allows to model the mechanical behaviour 

directly from experimental data without given the material parameters of the constitutive 

model. However, it requires 4 different tests to evaluate the constants of the hyperelastic 

constitutive model: uniaxial test, volumetric test, planar shear test and biaxial test [19]. Since 

some of these tests might be difficult to carried out, in this dissertation the material 

parameters of the constitutive model are previously evaluated from only two tests, the 

uniaxial compression test and the relaxation test. 

The work plan of the experimental tests can be found in Table 5.2. For each 

material (Yellow PUR and Orange PUR) three uniaxial compression tests and one relaxation 

test for will be performed. Notice that the uniaxial compression tests will be carried out at 

different values of grip velocity, while the relaxation test is obtained for the largest velocity 

in the compression phase. Furthermore, the prescribed displacement will be equal to all tests 

(8.75 mm), which gives a maximum stretch of 0.65. Figure 5.2 presents the Shimadzu tensile 

testing machine (maximum capacity of 100 kN) used in the experimental setup, whereas 

Figure 5.3 presents the lubrication (glycerine) used to diminish friction between the rubber 

and the improvised compression plates. Note that the extra orange PUR specimen is only 

there to act as a replacement in case of failure and therefore will not be tested. 
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Table 5.2. Experimental tests summary including test specimen, type of test, loading velocity and time. 

Test number 
Test specimen Type of test Loading velocity Time 

- - mm/s s 

1 

Yellow PUR 
Compression test 

5 1.75 

2 0.5 17.5 

3 0.05 175 

4 Relaxation test 5 10000 

5 

Orange PUR 
Compression test 

5 1.75 

6 0.5 17.5 

7 0.05 175 

8 Relaxation test 5 10000 

 

Figure 5.2. Shimadzu tensile testing machine setup, combined with the yellow and orange PUR, and the 
improvised compression plates. 
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(a) (b) 

Figure 5.3. Experimental setup including: (a) the tests specimen, the lubrification used, the improvised 
compression plates and (b) the tensile testing machine. 

During the experimental tests the tensile machine provides three variables: time 

𝑡, force 𝐹 and displacement ∆𝑙, which can be easily used to obtain the evolution of the second 

Piola-Kirchhoff stress Π and the stretch 𝜆. Equation (4.12) provides the relation between the 

second Piola-Kirchhoff stress Π and Cauchy stress 𝜎, which is equal to the force divided by 

the actual area of specimen where the force is imposed. Assuming incompressibility, the 

area can be calculated by the volume conservation theory: 

 A𝑖𝑙𝑖 = A𝑓𝑙𝑓 (5.1) 

which relates the initial area with the actual area. Assuming that the displacement is negative, 

since it is a compression test, the actual area is calculated by: 

 A𝑓 =
A𝑖𝑙𝑖
𝑙𝑓

=
A𝑖𝑙𝑖
𝑙𝑖 + ∆𝑙

 (5.2) 

Furthermore, the stretch can be calculated with the following expression: 

 𝜆 =
𝑙𝑓

𝑙𝑖
 (5.3) 



 

 

  EXPERIMENTAL  TESTS 

 

 

Henrique Manuel Alferes Simões Vieira da Mota  43 

 

  

(a) (b) 

Figure 5.4. Experimental evolution of the second Piola Kirchhoff stress obtained from the yellow PUR 
experimental tests: (a) uniaxial compression tests at different values of grip velocity and (b) relaxation test. 

Figure 5.4 shows the experimental results obtained for the yellow PUR (softest 

material). In Figure 5.4 (a), the evolution of the second Piola-Kirchhoff stress as a function 

of the stretch is evaluated for three different values of prescribed velocity, from where it can 

be concluded that this rubber material is not very sensitive to the loading velocity. Thus, 

leading to three nearly coincident stress-stretch curves. Note that the experimental test at the 

highest grip velocity seems to diverge from the other two tests while the stretch increases. 

After loading, the second Piola-Kirchhoff stress for the highest grip velocity is -8.4 MPa, 

whereas for other velocities is -8.0 MPa. Regarding the relaxation test (see Figure 5.4 (b)), 

the material seems to withstand a maximum second Piola-Kirchhoff stress of -8.3 MPa, 

throughout its loading phase, which is in line with the highest grip velocity compression test. 

Afterwards, the material experiences a relaxion phase of 10000 seconds (about 2.5 hours), 

which lead to a minimum second Piola-Kirchhoff stress of -7.0 MPa. Thus, allowing to 

conclude that the material relaxes 1.3 MPa in 10000 seconds. 

Regarding the orange PUR (hardest material), Figure 5.5 (a) presents the 

evolution of the second Piola-Kirchhoff stress, as a function of the stretch, for three different 

values of prescribed velocity. These experimental compression tests prove that the loading 

behaviour is more complex, when compared to the softer yellow PUR material, with the 
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presence of an inflection point in each curve. Furthermore, Figure 5.5 (a) demonstrates that 

the orange PUR is much more sensible to the grip velocity, as shown through the distance 

between the three curves, but providing the same relative evolution. For the highest grip 

velocity, the orange PUR material presents a second Piola-Kirchhoff stress of -26.1 MPa for 

the final stretch of 0.65, whereas, for the slowest grip velocity, the material shows a second 

Piola-Kirchhoff stress of -23.7 MPa for the stretch value. As for the minimum second Piola-

Kirchhoff stress in the relaxation, the orange PUR reaches a value of -18.0 MPa, therefore 

providing a relaxation of 6.4 MPa in 10000 seconds. Moreover, Figure 5.5 (b) shows that 

the relaxation stabilizes much quicker, when compared to the yellow PUR material (see 

Figure 5.4 (b)). 

  

(a) (b) 

Figure 5.5. Experimental evolution of the second Piola Kirchhoff stress obtained from the orange PUR 
experimental tests: (a) uniaxial compression tests at different values of grip velocity and (b) relaxation test. 

5.2. Material parameters identification – curve fitting 

The experimental data previously presented is used in this section to calibrate 

the material parameters of the constitutive models adopted in the finite element simulation. 

The closed-form solutions for the uniaxial compression tests, obtained in chapter 3 for the 

mode I and III of viscoelasticity, are used in the identification of the material parameters. 

The main idea is the minimization of the difference between the experimental and the 
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numerical solution, using the stress-strain curves from the uniaxial compression test, as well 

as the relaxation test simultaneously. That procedure is carried out using the Microsoft Excel, 

specifically using the solver to obtain the set of material parameters that fits the experimental 

behaviour. Different options in terms of constitutive model are adopted in the present study 

in order to evaluate the accuracy of each one. Thus, regarding the hyperelasticity, the 

Mooney-Rivlin constitutive model is applied considering both 2 and 5 parameters. On the 

other hand, regarding the viscoelasticity, both 2 and 3 Maxwell elements are considered. 

Moreover, the curve fitting is performed for each material analysed and for the two different 

modes of viscoelasticity. Hence, four models are considered: 

1. Mooney-Rivlin constitutive model with 2 parameters and 2 Maxwell elements. 

2. Mooney-Rivlin constitutive model with 2 parameters and 3 Maxwell elements. 

3. Mooney-Rivlin constitutive model with 5 parameters and 2 Maxwell elements. 

4. Mooney-Rivlin constitutive model with 5 parameters and 3 Maxwell elements. 

Although the flexibility of the constitutive model increases using more material 

parameters, allowing to describe more complex mechanical behaviour, the amount of 

experimental data required to perform a reliable identification of the material parameters 

increases also. Therefore, a balance between complexity of the constitutive model and the 

available experimental data is essential. The resulting set of parameters is presented in Table 

5.3 for both materials (yellow PUR and orange PUR) and considering both viscoelasticity 

modes. The simplest model is adopted, i.e. the Mooney-Rivlin constitutive model with 2 

parameters and 2 Maxwell elements. 

Considering the yellow PUR, an accurate approximation of the mechanical 

behaviour is obtained using only 2 Mooney-Rivlin parameters and 2 Maxwell elements. On 

the other hand, the orange PUR presents an inflection point in the stress evolution during the 

uniaxial compression test, which was demonstrated in Figure 5.5 (a). Figure 5.6 (a) presents 

the comparison between the first and fourth combination methods for the orange PUR at the 

slowest velocity (v = 0,05mm/s). The relative error evolution between the experimental 

data and the first and fourth combination methods is presented in Figure 5.6 (b). Since the 

improvement in the accuracy obtained using 5 parameters in the Mooney-Rivlin constitutive 

model and 3 Maxwell elements is not significant, the Mooney-Rivlin with 2 parameters and 

2 Maxwell elements are adopted in order to simplify the numerical simulation. Notice that 

the other combinations were also analysed but did not retrieve any kind of advantage.  
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Table 5.3. Material parameters of the constitutive model (Mooney-Rivlin and Maxwell elements) identified 
for both materials and for both viscoelasticity modes. 

 Yellow PUR 

Mode I 

Yellow PUR 

Mode III 

Orange PUR 

Mode I 

Orange PUR 

Mode III 

𝐶10 1.67 1.67 5.55 5.56 

𝐶01 -0.22 -0.22 -1.30 -1.30 

𝑎𝑘1 0.056 0.055 0.259 0.259 

𝑎𝑘2 0.094 0.093 1.136 0.997 

𝜏1 3249 2897 142.1 134.6 

𝜏2 143.2 132.5 0.125 0.126 

  

(a) (b) 

Figure 5.6. Comparison between the experimental solution and the first and forth combination methods: 
(a) second Piola-Kirchhoff stress and (b) relative error. 

5.3. Numerical model accuracy 

The comparison between the experimental data and the results obtained by V-

Biomech and Abaqus simulations is analysed for each material and both viscoelastic modes. 

The material parameters of the constitutive model (Mooney-Rivlin with 2 parameters and 2 

Maxwell elements) listed in Table 5.3 are used in the finite element codes. Although the 

Abaqus have implemented only the mode I of viscoelasticity (see Figure 4.8), the set of 
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material parameters identified for the mode III is also used in the Abaqus for comparison 

purposes. The comparison between experimental and numerical evolution of the second 

Piola-Kirchhoff stress as a function of the stretch is presented in Figure 5.7 for both materials 

in the uniaxial compression test at 5 mm/s of velocity. Since the hardness of the yellow PUR 

is lower than the one of the orange PUR (see Table 5.1), the magnitude of the stress is lower 

in the yellow PUR for the same value of stretch. In fact, the stress in the orange PUR is about 

three times the value observed in the yellow PUR, as shown in Figure 5.7. The numerical 

results obtained with Abaqus and V-Biomech finite element codes are identical, while the 

effect of the viscoelasticity mode is not significant because different set of parameters are 

adopted for each mode (see Table 5.3). Although, all numerical solutions are in good 

agreement with the experimental ones, the modelling of the yellow PUR behaviour is more 

accurate than the orange PUR, which presents a more complex mechanical behaviour. 

Therefore, the modelling of the orange PUR can benefit from the adoption of more 

parameters in the Mooney-Rivlin constitutive model.  

 

 

Figure 5.7. Stress-stretch comparison between the experimental results and the different solutions 
obtained for each material and viscoelasticity mode, while considering the slowest grip velocity of the 

compression tests. 
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Table 5.4. Last increment analysis for the experimental tests and the four simulations at different grip 
velocities, including the different materials and viscoelasticity modes. 

  Second Piola-Kirchhoff stress Π of the last increment 

 Loading 

Velocity 
Experimental 

V-Biomech 

Mode I 

V-Biomech 

Mode III 

Abaqus 

Mode I 

Abaqus 

Mode III 

 mm/s MPa MPa MPa MPa MPa 

O
R

A
N

G
E

 5 -26.138 -25.535 -25.979 -25.545 -25.389 

0.5 -25.128 -23.549 -23.695 -23.558 -23.585 

0.05 -23.685 -21.697 -21.963 -21.704 -21.692 

Y
E

L
L

O
W

 5 -8.427 -8.084 -8.07 -8.087 -8.072 

0.5 -7.988 -8.052 -8.042 -8.055 -8.038 

0.05 -7.947 -7.825 -7.836 -7.828 -7.802 

 

Table 5.4 aims to highlight the difference between the simulation results, relating 

the second Piola-Kirchhoff stress in the final increment (stretch of 0.65). By analysing the 

last increment results, it is clear that Abaqus solution is much more related to V-Biomech 

mode I than the mode III. Moreover, it seems that the V-Biomech mode III might retrieve 

better results in approximating the experimental results. However, this results from  the curve 

fitting, which is better adjusted to the experimental data. 

Figure 5.8 presents the relaxation results comparison between the experimental 

tests and the simulations made for the different materials and different viscoelasticity modes. 

This analysis is coincident with the previous one, by demonstrating that the numerical 

solutions generate identical results. However, the accuracy of the finite element solution at 

the first 200 seconds of relaxation must be improved, particularly for the orange PUR. In 

fact, the stress relaxation is shower in the numerical solution than in the experimental 

measurements. 

Since the Abaqus finite element code is adopted in the simulation of the rubber 

pad forming, the parameters that correspond to the mode I will be the used (see Table 5.3). 

Indeed, the formulation implemented in Abaqus is the one corresponding to mode I in V-

bio, as shown in Figure 4.8. 
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Figure 5.8. Stress-stretch comparison between the experimental results and the different solutions 
obtained for each material and viscoelasticity mode, while considering the relaxation tests. 
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6. RUBBER PAD FORMING SIMULATION 

The application of the rubber pad forming in the production of metallic bipolar 

plates is analysed in this section. Focusing on the rubber pad forming of the bipolar plates, 

the desired geometry is obtained by plastic deformation induced by the three-way interaction 

between the sheet metal, the rubber punch and the die. Figure 6.1 presents the assembly of 

the three parts involved in the process and the contributions of each part. In this kind of 

forming process, there is no need for complex punch geometry since the die is the only tool 

that will shape the material. Therefore, the rubber pad that imposes the deformation in the 

sheet metal have a rectangular shape (cross section). Figure 6.2 shows the final geometry of 

the bipolar plate obtained by the conventional stamping.  

 

Figure 6.1. Rubber pad forming process assembly scheme: (a) original straight channel forming process and 
(b) the one used for finite element analysis. 

 

Figure 6.2. Sheet metal geometry in the conventional stamping for several channels. 

The geometry of the bipolar plate and the sheet metal used by Neto et al [20] in 

the conventional stamping process, is adopted in this study. However, Abaqus software 
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(standard) is used to simulate the rubber pad forming process, using the same die geometry 

and sheet metal. Two different rubber materials are considered for the pad, which mechanical 

behaviour is defined by the parameters found in Section 5. 

6.1. Finite element model 

Serpentine flow design consists of two main areas: the straight and the U-bend 

channel sections indicated in Figure 6.3. In this study we will focus our efforts on analysing 

only the straight channel section. Due to symmetry conditions, only half-channel is 

simulated under plane strain conditions, therefore simplifying the model. 

 

Figure 6.3. Example of a bipolar plate manufactured by forming. 

Table 6.1.Reference values for the main dimensions of the desired product. 

𝐰𝟏 𝒔 𝒉 𝒓 𝑹 

1.2 mm 1.2 mm 1.0 mm 0.3 mm 0.3 mm 

 

The considered sheet metal is an austenitic stainless steel SS304 with thickness 

of 0.15 mm, which is commonly used in the sheet metal forming of bipolar plates. 

Considering the boundary conditions adopted in the simulation, the sheet length is 1.7 mm. 
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Its elastic behaviour is considered isotropic and constant, with a Young’s modulus of 206.2 

GPa and a Poisson ration of 0.30. Its plastic response is described by Swift hardening law 

where the flow stress is given by: 

 𝑌 = 𝐾(ε0 + ε̅
𝑝)𝑛       with       ε0 = (

Y0

𝐾
)
1/𝑛

 (6.1) 

where ε̅𝑝 represents the equivalent plastic strain, while K, ε0 and 𝑛 are the material 

parameters, which can be found in Table 6.2. Regarding the mechanical behaviour of the 

rubber pad, nearly incompressible behaviour is assumed using 𝐷 > 0, which can be found 

by equation (4.8). The simulations will be made using the parameters corresponding with 

the first viscoelasticity modes and can be found on Table 5.3.. 

 

Table 6.2.Material parameters used in the isotropic Swift hardening law to describe the metallic material. 

𝐘𝟎 [MPa] 𝐊 [MPa] 𝒏 

255.02 1481.84 0.508 

 

Concerning the rubber pad process simulation, typically the die is assumed as 

rigid in numerical simulation, whereas the sheet metal is described by an elasto-plastic 

material model and the rubber punch by hyper-viscoelastic laws. Both the blank sheet and 

the rubber material are discretized with 2D linear finite elements (4 nodes), using a selective 

reduced integration technique in the sheet and hybrid integration (u/P formulation) for the 

rubber. Since the rubber pad is quite larger than the sheet metal, more elements are used in 

the zone in contact with the sheet metal because the Abaqus student edition only allows 

simulations with no more than 1000 nodes. Finally, the rubber pad has a height of 1.7 mm, 

which is yet another characteristic designed to keep the node count below the required by 

the student edition. 
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Figure 6.4. Rubber pad geometry and mesh used in the finite element analysis. 

 

Figure 6.5. Sheet metal geometry and mesh used in the finite element analysis. 

Figure 6.4 shows the Polyurethane rubber pad mesh, which is composed by 476 

elements and 552 nodes and seven layers of elements with zone concentration in the contact 

area. Figure 6.5 presents the sheet metal mesh, which contains 285 finite elements and 348 

nodes. Thus, our total assembly simulation presents 900 nodes. The contact conditions 

between parts are described by Coulomb’s law, with a friction coefficient of 0.1. Due to 

symmetry conditions, the displacement of the nodes located in both extremities (left side and 

right side of the model) are constrained in the x-direction.  

The numerical results from the rubber pad forming will be compared with the 

results from the conventional process simulation. Since both rubber materials characterized 

in Section 5 are used in the numerical simulation of the rubber pad forming, different values 

of prescribed displacement are required for each material due to the difference in the material 

hardness. Accordingly, in order to keep the loading velocity equal for both simulations, 

Table 6.3 defines the required time history and rubber displacement to accomplish full 

contact, while avoid further unnecessary compression. Note that desired bipolar plate 



 

 

  RUBBER PAD FORMING SIMULATION 

 

 

Henrique Manuel Alferes Simões Vieira da Mota  55 

 

geometry is achieved for 0.8 mm of displacement for the yellow PUR, while for the orange 

PUR the desired geometry is achieved for 0.62 mm of prescribed displacement. 

 

Table 6.3. Loading velocity, time history and rubber displacement for both rubber materials. 

Test Specimens 
Loading velocity 

[mm/s] 
Time history [s] 

Rubber 

displacement [mm] 

Yellow PUR 0.2 5 1.0 

Orange PUR 0.2 3.5 0.7 

 

6.2. Results and discussion 

The numerical results of the rubber pad forming obtained with the Abaqus finite 

element code are compared with the ones from the conventional stamping presented in [20]. 

Hence, the main results analysed are: the final thickness distribution, maximum thinning, the 

punch force and equivalent plastic strain. 

Figure 6.6 presents the predicted von Mises stress distribution in the sheet and 

rubber at four different instants of the rubber pad forming considering the orange PUR 

rubber. The same figure presents three important points: (1) refers to the upper corner, where 

is expected to occur maximum thinning; (2) attends to the lower corner and (3) to the contact 

point on the left. Moreover, the stress imposed in the metal sheet is much higher than the 

rubber pad stress, and it reaches its maximum in the upper corner, i.e. point (1). The fillet 

radius of the flow channel is the last portion of the geometry to be shaped. 
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Figure 6.6. Predicted von Mises stress distribution in the sheet and rubber at four different instants of the 
rubber pad forming considering the orange PUR in the rubber. 

(3)

(1)

(2)
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Figure 6.7. Comparison of final thickness distribution as function of the initial x coordinate, considering two 
different rubbers in the rubber pad forming and the conventional stamping process. 

 

Figure 6.7 shows the final thickness distribution as a function of the initial x 

coordinate, comparing the results of the rubber pad forming (considering two different 

materials for the rubber) with the results from the stamping process. Considering the rubber 

pad forming, the largest thickness reduction occurs near point (1). Moreover, from the three 

simulations, the orange PUR material is the one that enforces larger thickness reduction in 

point (1), with the yellow PUR showing thickness results similar to the conventional 

stamping process. Since the orange PUR presents higher stiffness in comparison with the 

yellow PUR, the required force applied is also higher (see Figure 6.8). Therefore, for the 

same value of friction coefficient in both PUR materials, the friction forces are higher in 

orange PUR, which restrains the sliding between rubber and sheet, as well between sheet 

and rigid die. This can be the reason why the final thickness in the curvature (1) is lower 

adopting the orange PUR, while in curvature (2) the final thickness is higher using the orange 

PUR, as shown in Figure 6.7. Finally, the rubber pad forming provides less overall thickness 

reduction, when compared to the classic stamping process. Indeed, the thickness near the 

curvature (2) is significantly improved using the rubber forming simulation, for both rubber 

materials. 
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Figure 6.8. Evolution of the maximum thinning and punch force for both rubber material in the rubber pad 
forming of a bipolar plate and comparison with the conventional stamping. 

 

Figure 6.8 shows the evolution of the predicted maximum thinning and force 

applied as a function of the displacement. Note that the indicated displacement refers to the 

prescribed displacement on the rubber upper surface, while in the conventional stamping 

simulation refers to the punch displacement. Thus, we cannot directly relate the displacement 

of the rubber with the punch, which does not allow a direct comparison between the variable 

in axis Y. The required forming force is higher in the rubber pad forming since the force 

required to deform the metal sheet is joined by the extra force required to compress the 

rubber material. Looking back, the use of such a small rubber pad (height of 1.7 mm) might 

have not been an adequate choice because the small pad height requires more deformation 

(compression) to achieve the desired geometry of the bipolar plate. Therefore, in the rubber 

pad forming the predicted force presents a sudden increase, which occurs when the sheet 

metal begins contact with the rigid die at point (3). Moreover, there is a clear correlation 

between the force and maximum thinning evolutions, i.e., when a sudden increase of the 

force is generated, the maximum thinning stabilizes. From this analysis one could 

extrapolate that, if an infinite large rubber pad was used, the force applied in the rubber pad 

simulation would converge to the force applied in the conventional stamping process.  
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Figure 6.9. Predicted von Mises stress distribution in the rubber at the end of the forming process 
comparing two different materials for the rubber. 

 
Figure 6.9 shows the comparison between the orange and yellow PUR in terms 

of Cauchy stress distribution after forming. As expected, the orange PUR presents the higher 

stress values when compared to the softer yellow PUR. The maximum second Piola-

Kirchhoff stress value attained in the experimental uniaxial compression tests (chapter 5) are 

listed in Table 5.4, which is for the yellow PUR 8.427 MPa, and for the orange PUR is 

26.138 MPa. These stress values can be easily converted to Cauchy stress, resulting in a 

maximum stress of 3.56 MPa for the yellow PUR and 11.08 MPa for the orange PUR. 

Comparing these experimental values with the maximum stress values predicted by 

simulation, the stress is much higher in some rubber zones. Thus, the level of compression 

is higher in the simulation process, which indicates that the experimental material 

characterization might not be totally corrected. On the other hand, increasing the pad height 

leads to a reduction of the strain in the rubber. 

Orange PUR SimulationYellow PUR Simulation
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Figure 6.10. Equivalent plastic strain distribution on both rubber pad process simulation and the 
conventional stamping process. 

 
Figure 6.10 presents the equivalent plastic strain distribution of the sheet at the 

end of forming, comparing the rubber pad forming with the conventional stamping process. 

The predicted equivalent plastic strain is related with the final thickness distribution (Figure 

6.7), i.e. small plastic deformation leads to small thickness reduction. Regarding the point 

(3), the plastic deformation in the conventional stamping process is clearly smaller s in 

comparison with the rubber pad processes, which is in agreement with the higher thickness. 

On the other hand, the plastic deformation in the curvature zone (2) is higher in the 

conventional stamping, which justifies the thickness difference both forming processes. 

Finally, both the plastic deformation and the final thickness are similar in the curvature (1). 
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7. CONCLUSIONS 

In the last years, the fuel cells emerged as one promising candidate to replace 

internal combustion engines in the automotive industry. The key components of a proton 

exchange membrane fuel cell are the bipolar plates, which can be manufactured by forming 

processes. This study presents a comprehensive analysis of the rubber pad forming process, 

which is a promising technology to replace the conventional stamping of metallic bipolar 

plates. Accordingly, the mechanical behaviour of the rubber pad involved in this forming 

process is a key point in the finite element simulation. Hence the hyper-viscoelastic 

behaviour of the rubber like materials is presented in detail, where the hyperelastic behaviour 

is described by the Mooney-Rivlin model, while the viscoelasticity is modelled by series of 

Maxwell elements. 

Considering the uniaxial stress state, the closed-form solutions are derived for 

the mechanical modelling of synthetic rubbers. Since two different viscoelasticity modes are 

currently implemented in the V-Biomech finite element code, the closed-form solution is 

presented for each one. In mode I, the stress associated to the Maxwell elements is derived 

only from the deviatoric component of hyperelasticity, while mode III takes into account the 

total hyperelastic stress (deviatoric and hydrostatic contributions). Regarding the mode III, 

the proposed closed-form is in total agreement with the finite element solution, while the 

predicted hydrostatic stress, in the mode I, is slightly overestimated. However, mode III 

seems to establish a more reasonable way to include the viscoelasticity component. 

In order identify the material parameters of the constitutive model, both the 

uniaxial compression of a cylindrical specimen and the relaxation test were carried out for 

two different materials (polyurethanes). From experimental data, the studied rubber 

materials are not very sensitive to the loading velocity, particularly the yellow PUR. 

Moreover, the stress level in the uniaxial compression test obtained for the orange PUR is 

about three times higher when compared with the yellow PUR. For both rubber materials 

analysed, the predicted behaviour is in good agreement with the experimental values, 

specifically the stress-strain curves from the uniaxial compression test and the relaxation 

test. Nevertheless, the experimental behaviour of the orange PUR is more complex than the 
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one of the yellow PUR, requiring more advanced constitutive models to achieve the same 

level of accuracy. 

The production of bipolar plates by means of the rubber pad forming process is 

numerically analysed using plane strain conditions. The results are compared with the ones 

obtained from the conventional stamping process. This innovative process allows for a more 

uniform final thickness distribution, when compared to the classic stamping method. 

Nevertheless, the maximum thinning at the end is approximately the same in both forming 

processes. On the other hand, the forming forces are significantly higher in the rubber pad 

forming, presenting a sudden increase when the sheet contacts the rigid die in the channel 

bottom. Furthermore, the numerical results of the rubber pad forming process show that the 

final thickness of the stamped bipolar plate is not significantly influenced by the rubber 

hardness. Moreover, the maximum value of thinning occurs always in the fillet radius of the 

rib, which is the zone with large plastic deformation. 

Finally, the proposed future objectives regarding the rubber forming project are: 

expand the experimental characterization of the available rubbers to fully characterize its 

mechanical behaviour, numerical simulation of the rubber pad forming using the full model 

of the bipolar plates and develop an experimental prototype of the setup. 
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