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Resumo

Navegação autónoma tem sido desenvolvida e apresentada tanto para a terra como ar. No entanto,

autonomia para veı́culos de superfı́cie marı́tima tem provado algumas dificuldades. Para desenvolver

um veı́culo autónomo de superfı́cie aquático (ASV), é necessário um sistema de orientação, navegação

e controlo (GNC) totalmente operacional. Esta tese apresenta uma parte deste sistema GNC para o

ASV com um enfase em algoritmos para evitar colisão, com o maior foco na deteção das regras do mar

a seguir, COLREGS, e da sua aplicação.

Para os algoritmos para evitar colisão, dois sub-módulos foram implementados, sendo o Dynamic

Window Approach (DWA) para obstáculos estáticos, e um algoritmo que segue as regras COLREGS

para situações de cruzamento de veı́culos, sendo definidos com perı́metros de segurança. Algumas

modificações foram introduzidas relativamente ao algoritmo original de DWA, de modo a melhor re-

sponder às condições apresentadas, como um reset da variável de obstáculos, quando estes se en-

contram fora do perı́metro interno, de modo a reduzir o esforço computacional requerido. O algoritmo

que segue as regras COLREGS implementado, é capaz de detetar qual a regra a seguir e gera o novo

conjunto de orientações e velocidades de modo a evitar colisão e cumprir as regras do mar. Sensores,

como um IMU e um sistema GNSS, são responsáveis pela representação das posições e estados do

veı́culo, em que por outro lado, o Lidar e um sistema AIS, são responsáveis pela representação dos

obstáculos e seus atributos. ROS foi introduzido como o middleware para o ASV, o que evita a neces-

sidade de desenvolver código para muitos aspetos do controlo do veı́culo. As simulações realizadas no

Gazebo demonstraram que o sistema de evitar colisão consegue dar resposta a obstáculos estáticos

e dinâmicos, na condição que os obstáculos dinâmicos sejam veı́culos com sistemas AIS integrados.

Foi demonstrado que este algoritmo é capaz de detetar a respetiva regra a seguir e proceder com uma

nova trajetória de modo a evitar colisão.

Palavras-chave: ASV, Autonomia, COLREGS, DWA, Evitar Colisão, Gazebo, ROS.
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Abstract

Autonomous navigation has been successfully presented and developed both on ground and air. Though,

autonomy on maritime surface vehicles has proven to be more challenging. In order to have an Au-

tonomous Surface Vehicle (ASV), it ought to have a completely functional Guidance, Navigation and

Control (GNC) system. This work presents part of the GNC system for the ASV giving special emphasis

on collision avoidance and as the main focus the COLlision REGulationS (COLREGS) mode detection

and it’s application.

For collision avoidance, two submodules were implemented, being the Dynamic Window Approach

(DWA) for static obstacles, and a COLREGS compliant algorithm for multi-vehicle encounters, which are

set with perimeters of safety. Slights modifications to the original DWA algorithm were introduced in order

to better suit the conditions presented, such as the reset of the array of obstacles, when thus are outside

of the inner perimeter, in order to reduce computational effort. The COLREGS algorithm implemented is

able to detect the COLREGS rule to follow and to generate a new combination of heading and velocity

to both, avoid collision and to correspond to the rules requirements. Sensors, such as an IMU and a

GNSS system, were responsible to provide total knowledge of the vehicle’s position and state, whereas

a Lidar and an AIS system, were responsible for the representation of the obstacles and it’s attributes.

ROS has been employed as the middleware for the ASV, which avoids the need to develop your own

code for many aspects of robot control. The computer simulations with Gazebo showed that the collision

avoidance system could handle static and dynamic obstacles, with the condition that such dynamic

obstacles were vessels with an AIS system integrated. It was demonstrated that the algorithm was

capable of detecting the respective rule to follow and thus proceed with a new course which would lead

to avoid collision.

Keywords: ASV, Autonomy, Collision Avoidance, COLREGS, DWA, Gazebo, ROS.
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Chapter 1

Introduction

1.1 Motivation

Throughout the years, the deep sea has been an area unknown to humans. High pressures, pitch

black darkness and extreme temperatures are some of the obstacles that result in a near-impossible

exploitation so far. Even though the ocean covers more than 70% of the planet’s surface, NOAA (National

Oceanic and Atmosferic Admnistration (NOAA), 2000) estimates that up to 95% of the world’s oceans

are unexplored and unseen by human eyes. In 2009, (Ministry of defence of Portugal, 2009) there was

a submission for a proposal to extend the Portuguese continental shelf, which being accepted, will result

in Portugal to become 3% of land and 97% of opportunities (figure A.1 in appendix A).

Automation greatly contributed to the huge leaps in the evolution of modern society. While the first

automative processes were developed to reduce working load and save time, nowadays automation is

crucial for safety, cost-effective solutions and quality. Even though humans have the ability to adapt and

to apply judgment, they are inconsistent and are subjected to human errors. This necessity led to the

implementation of autonomy on surfaced vehicles.

Autonomous Surface Vehicle (ASV), also known as Unmanned Surface Vehicles (USV), are vessels

which operate on the water surface without any operator and crew. In (Liu et al., 2016) are presented

the main ASV developments all around the world from 1985 to 2016. However, most ASVs presented

could be named as merely “semi-autonomou” ASVs. Largely due to the challenges in automated and

reliable guidance, navigation and control (GNC) functions which were not capable of withstanding all

the diverse operating conditions, in face of sophisticated and hazardous environments, and due to the

sensors, actuators and communication systems presented at the time. With further developments of

these systems and hardware, it is now conceivable the development of “fully-autonomous” ASVs which

is a prerequisite in order to have more effective, safe and reliable solutions. Collision avoidance is

an important part of such system and compromises a vital component of the self-navigation of the

unmanned surface vehicle.

The different uses for ASVs are scientific research, environmental missions, exploitation of ocean

resources, military uses and other applications. (Liu et al., 2016) presents a specific description of each

1



with examples of some prototypes developed. The purpose of the present thesis is for a specific appli-

cation of scientific research, the bathymetric survey, which is the study of the underwater depth of lakes

and ocean floors. Fully autonomous ASVs are the best choice for most missions, as it was compared

in (Liu et al., 2016), where the performance of ASVs against other vehicles1 2 demonstrated a clear

advantage in most parameters overall, table 1.1. However, when presented with a semi-autonomous

ASV, where an operator must control the course and prevent collisions throughout the mission, a more

rudimentary technique can be more cost effective, thus there is the need to confer autonomy to the

ASVs.

Table 1.1: Comparison of ASV/USV performance with other vehicles. Adapted from (Liu et al., 2016).

Clear advantage of ASVs Near parity Clear disadvantage of ASVs

Attributes UUVs Float Platforms Satellites Manned Ships UAVs Manned Aircrafts

Endurance

Payload Capacity

Cost

Maneuverability

Deployability

Water depth measurement

Autonomy requirement

1.2 Obstacles in Collision Avoidance

Obstacle prevention is the major problem facing the deployment of ASV missions, thus the necessity of

implementing a fully autonomous system. Collision challenges for ASVs can be differentiated in both

dynamic and static obstacles.

In (Tan, 2006), collision avoidance is defined as “the ability of a vehicle to detect and avoid colliding

with both static and dynamic obstacles, while still attempting to accomplish the current mission objective.”

As presented in (Byrne et al., 2012), obstacle prevention involves more than just other vessels. An

ASV has the potential to be caught in static obstacles such as buoys, lobster traps, fishing nets, ice and

natural debris. Keeping an operational ASV out of all possible entanglements while conducting coastal

environmental monitoring or task performance can prove to be challenging.

When referring to dynamic obstacles, the grand majority are other vessels. The main issue with

other vessels is not only to generate a safe route, which would prevent collision, but to also comply with

the maritime rules. As there are rules for the roads on land, rules for the sea also exist and must be

complied. Hence the main focus of this thesis, a collision avoidance structure that follows the laws of

COLREGS (COLision REGulationS) (chapter 2.1.1) and ensures safety for both our ASV and others.

1UUV - Unmanned Underwater Vehicle.
2UAV - Unmanned Aerial Vehicle.
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1.3 Autonomy

ASVs are tasked with more and more complex missions and are expected to operate in diverse weather

conditions. In order to not increase the operator’s workload and maintain high levels of safety, a higher

level of autonomy is therefore required. Providing such autonomy to a vehicle means being capable of

sensing its environment and being able to navigate without human input, thus the need for a completely

functional GNC. The Guidance framework is responsible to continuously generate and update smooth,

feasible, and optimal trajectory commands to the control system, according to the information provided

by the navigation system, assigned missions, vehicle capability and environmental conditions. The

Navigation framework concentrates on identifying the ASVs current and future states (such as position,

orientation, velocity, and acceleration) and its surrounding environment, based on the past and current

states of the ASV, as well as environmental information including the ocean currents and wind speed

obtained from its on-board sensors. The Control framework focuses on determining the proper control

forces and moments to be generated in conjunction with instructions provided by the guidance and

navigation systems, while at the same time satisfying desired control objectives.

1.4 Objectives

The overall objective of this thesis is to present an autonomous system for an ASV to be able to navigate

safely in both static and dynamic situations. To successfully achieve this main objective, the following

goals were set:

• Background literature review on Path Planning and Collision Avoidance algorithms, autonomy lay-

ers and proximity sensors.

• Background literature review on technologies for measuring and mapping and present the most

adequate solution.

• Take advantage of AIS system for an augmented safety for Collision Avoidance.

• Create a system which comprises reactive methods for obstacle detection and avoidance, following

COLREGS rules for dynamic obstacles, and non-compliant for static obstacles.

• Integrate this system in the open source Robot Operating System and make full use of the libraries

and packages available.

• Take advantage of Gazebo software to test the vehicle and implement the algorithms.
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1.5 Scope and Limitations

1.5.1 Thesis Structure

The outline of the thesis is organized as follows:

Chapter 1: Present the motivation which led to the pursuit of this thesis and delineate the objectives,

the structure and the limitations.

Chapter 2: Present a literature review on the algorithms and sensors needed to provide autonomy.

Chapter 3: Present and explains the functions for the COLREGS compliant algorithm.

Chapter 4: Present the middleware and virtual simulator proposed. Explanation of some of the

technical procedures on the work with an overview of the system architecture.

Chapter 5: Present the results.

Chapter 6: Conclusion and proposed future work.

1.5.2 Limitations

In order to allow an initial conceptualization of the collision avoidance system for an ASV, some assump-

tions and thus simplifications were applied in this thesis:

• It is assumed that all vehicles are Power-Driven Vessels, disregarding vessels of different types

such as sailing vessels.

• It is also assumed that all vehicles have an AIS system fully operational, in order to permit message

exchange for COLREGS collision avoidance manoeuvres. No faulty communications occur.

• No state uncertainty is considered. Both vehicles share each position, heading and pose assuming

no error with proprioceptive sensors.

• All ROS simulations were done in a computer Intel@CoreTMi7-3540M CPU @ 3.00GHz × 4.
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Chapter 2

Literature Review

2.1 Obstacle Detection and Avoidance

The Obstacle Detection and Avoidance (ODA) module, which integrates the guidance framework, has

the function of generating the route for the vehicle. An ODA module is usually presented with two sub-

modules, one for path generation, and another for reactive collision avoidance.

The path generation can be approached with search algorithms for path planning like the ones pre-

sented in (González et al., 2016), which describe the different types of algorithms, mentioning each with

its advantages and disadvantages. Path planning algorithms are needed to generate a sequence of

actions from a start position to a pre-specified goal position. (Campbell et al., 2012) describe the group

of algorithms which belong collectively to a family of grid-searching techniques with each associated

heuristic cost functions. Most search algorithms are best first search, which means if there exists one

path, it will find the best possible path. However, this demands heavy computation power and, depending

on the map, may take several seconds to compute. The purpose of the current work contemplates ASVs

for missions where the corresponding paths are defined through waypoints. The path generation can be

set up with waypoint following or path following guidance laws (Breivik and Fossen, 2009, chapter 4).

After evaluating the alternatives, it can be deemed that the Path following solution may be the best when

compared with waypoint following, taking into account the purpose of the mission, thus ensuring a better

following autopilot (Ceccarelli and Rasmussen, 2010) is essential for bathymetry missions. Therefore,

this needs to be implemented in the ASV, however it does not contemplate the main focus of the thesis.

For more reference, (Fossen, 2011) should be read.

The other sub-module is the reactive collision avoidance which is the main purpose of this work. A

reactive ODA, also known as a local method and as collision avoidance, considers only the immedi-

ate environment of a vehicle and does not take into account the environment currently not covered by

the sensors. This property makes it excellent for dynamic environments, allowing the system to adapt

readily to changes. (Kunchev et al., 2006) presents a review on the most renowned collision avoidance

algorithms. A reactive algorithm has the function of modifying the trajectory of the ASV in real time

when a collision is detected, and thus avoided. In this reactive sub-module, a distinction of COLREGS
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collision avoidance for vessels and non-COLREGS collision avoidance for static obstacles is defined

through perimeters as explained in section 4.6.

2.1.1 COLREGS

The International Rules were formalized in the Convention on the International Regulations for Prevent-

ing Collisions at Sea, in 1972, and became effective on July 15, 1977, including 41 rules divided into

five sections and four annexes, covering the conduct that vessels must have in order to reduce the risk

of collision.

The rules which are the most correlated to the work done throughout this thesis are the rules from

part B (Steering & Sailing Rules), with special emphasis in section II - Conduct of vessels in sight of one

another, as presented in (Ventura, 2005):

• Rule 13 (Overtaking): (a) “Notwithstanding anything contained in the Rules of Part B, Sections I

and II, any vessel overtaking any other shall keep out of the way of the vessel being overtaken.”

(b) “A vessel shall be deemed to be overtaking when coming up with another vessel from a direction

more than 22.5 degrees abaft her beam, that is, in such a position with reference to the vessel she

is overtaking, that at night she would be able to see only the stern light of that vessel but neither

of her sidelights.” (c) “When a vessel is in any doubt as to whether she is overtaking another,

she shall assume that this is the case and act accordingly.” (d) “Any subsequent alteration of the

bearing between the two vessels shall not make the overtaking vessel a crossing vessel within the

meaning of these Rules or relieve her of the duty of keeping clear of the overtaken vessel until she

is finally past and clear.”

Figure 2.1: Crossing and Overtaking situations.

• Rule 14 (Head-on situation): (a) “When two power-driven vessels are meeting on reciprocal or

nearly reciprocal courses so as to involve risk of collision each shall alter her course to starboard

so that each shall pass on the port side of the other.” (b) “Such a situation shall be deemed to exist

when a vessel sees the other ahead or nearly ahead and by night she would see the mast head

lights of the other in a line or nearly in a line and or both sidelights and by day she observes the

corresponding aspect of the other vessel.” (c) “When a vessel is in any doubt as to whether such

a situation exists she shall assume that it does exist and act accordingly.”
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Figure 2.2: Head On representation.

• Rule 15 (Crossing situation):

“When two power-driven vessels are crossing so as to involve risk of collision, the vessel which

has the other on her own starboard side shall keep out of the way and shall, if the circumstances

of the case admit, avoid crossing ahead of the other vessel.”

• Rule 16 (Action by give-way vessel):

“Every vessel which is directed to keep out of the way of another vessel shall, so far as possible,

take early and substantial action to keep well clear.”

• Rule 17 (Action by stand-on vessel): (a) (i) “Where one of two vessels is to keep out of the way

the other shall keep her course and speed.” (ii) “The latter vessel may however take action to

avoid collision by her manoeuvre alone, as soon as it becomes apparent to her that the vessel

required to keep out of the way is not taking appropriate action in compliance with these Rules.”

(b) “When, from any cause, the vessel required to keep her course and speed finds herself so

close that collision cannot be avoided by the action of the give-way vessel alone, she shall take

such action as will best aid to avoid collision.” (c) “A power-driven vessel which takes action in

a crossing situation in accordance with sub-paragraph (a)(ii) of this Rule to avoid collision with

another power-driven vessel shall, if the circumstances of the case admit, not alter course to port

for a vessel on her own port side.” (d) “This Rule does not relieve the give-way vessel of her

obligation to keep out of the way.”

2.1.2 Dynamic Window Approach

For ASVs, the dynamic window approach (DWA) (Fox et al., 1997) is the most commonly used, as it

takes into account the dynamics of the vehicle by reducing the search space to the velocities which

are reachable under the dynamic constraints. In addition to this restriction, only the velocities that are

deemed safe with respect to the obstacles are considered. This correction of the search space is done

in the first step of the algorithm. In the second step, the velocity which maximizes the objective function

from the remaining velocities is chosen.

A simplified presentation of the different parts of the dynamic window approach is presented below.

For a complete explanation of the algorithm, (Fox et al., 1997) should be read.
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Different parts of the dynamic window approach

Search space: The search space of the possible velocities is reduced in three steps.

Vr = Vs ∩ Va ∩ Vd (2.1)

(a) Circular trajectories: The dynamic window approach considers only circular trajectories (curva-

tures) uniquely determined by pairs (v, w) of translational and rotational velocities. This results in

a two-dimensional velocity search space.

(b) Admissible velocities: The restriction to admissible velocities ensures that only safe trajectories

are considered. A pair (v, w) is considered admissible if the robot is able to stop before it reaches

the closest obstacle on the corresponding curvature.

Va = {(v, w)|v ≤
√

2× dist(v, w)× v̇b ∧ w ≤
√

2× dist(v, w)× ẇb} (2.2)

(c) Dynamic window: The dynamic window restricts the admissible velocities to those that can be

reached within a short time interval given the limited accelerations of the robot.

Vd = {(v, w)|vε[va − v̇ × t, va + v̇ × t] ∧ wε[wa − ẇ × t, wa + ẇ × t]} (2.3)

Optimization: The objective function is maximized.

G(v, w) = σ(α× heading(v, w) + β × dist(v, w) + γ × vel(v, w)) (2.4)

With respect to the current position and orientation of the robot this function trades of the following

aspects:

(a) Target heading: heading is a measure of progress towards the goal location. It is maximal if the

robot moves directly towards the target.

(b) Clearance: dist is the distance to the closest obstacle on the trajectory. The smaller the distance

to an obstacle the higher is the robot’s desire to move around it.

(c) Velocity: vel is the forward velocity of the robot and supports fast movements.

The function σ smooths the weighted sum of the three components and results in more side-

clearance from obstacles.
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2.2 Sensors

A vital part of an ASV are the sensors implemented in order to be able to navigate fully autonomous

through waypoints and obstacles, which can only be achieved by continuous measurements. The sen-

sors can be defined as proprioceptive, which measure values internally to the system, and as extero-

ceptive, which are used for the observation of the environment.

2.2.1 Proprioceptive Sensors

The proprioceptive sensors implemented in the ASV are an Inertial Measurement Unit (IMU) and a global

navigation satellite system (GNSS). The IMU is an electronic device which provides the data that enables

an automated driving system to not only know where it is, but also how it is moving to all requesting

devices. It uses a combination of accelerometers and gyroscopes to measure both acceleration and

angular rates of the ASV. The GNSS collects position reports from orbiting satellites and measures the

time delay of the updates to estimate its own global position. The combination of the GNSS system and

the IMU, provides an accurate and reliable odometry estimation of the ASV’s position, attitude, heading

and speed over time.

2.2.2 Exteroceptive Sensors

The exteroceptive sensors implemented in the ASV are a ranging and measurement device and an

Automatic Identification System (AIS).

Technologies for measuring and mapping

The three types of technology commonly used to measure and map are: Radar, Sonar, and Lidar. The

name of these technologies were given to imply the usefulness of each technology:

• Radar: ra(dio) d(etection) a(nd) r(anging)

• Sonar: so(und) na(vigation) (and) r(anging)

• Lidar: li(ght) d(etection) a(nd) r(anging)

For these sensors, the same principle applies: a wave of its type is emitted and, when encountering

an object, it is reflected back. Knowing the speed of the wave type and the time it took to be bounced

backwards, the distance of the object can be estimated.

Due to the properties of each technology, some are more suitable in some environments than others.

Table 2.1 presents some advantages and disadvantages.

Even though many applications with Lidar in autonomous vehicles have been developed and docu-

mented, some examples of ASVs with radar and sonar based collision avoidance have been pursued,

(Almeida et al., 2009) and (Heidarsson and Sukhatme, 2011) respectively.
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Table 2.1: Advantages and limitations of the detection and ranging sensors with application to ASVs (Liu
et al., 2016).

Sensors Advantages Limitations

Radar
1) Long detecting range; 1) Skewed data from fast

turning maneuvers;
2) Provides nearly all-weather
and broad-area imagery;

2) Limited small and dynamic
targets detection capability;

3) High depth resolution and
accuracy.

3) Susceptible to high waves and
water reflectivity.

Lidar
1) Good at near range
obstacle detection;

1) There exists sensor noise and
calibration errors;

2) High depth resolution and
accuracy.

2) Sensitive to environment and
USV motion.

Sonar 1) No visual restrictions; 1) Limited detecting range in
each scanning;

2) High depth resolution and
accuracy.

2) Impressionable to the noise
from near-surface.

Surface

When surfaced, Lidar has been increasingly chosen compared to others, with the main reasons

being that the measurements are more precise, and the speed and accuracy of the laser pulses from

Lidar sensors, in which data can be collected faster and with utmost accuracy. These reasons make it

preferred in high capacity and data intensive applications. In this work, the technology for measuring

and ranging is applied for near range collision avoidance, (as described in section 4.6), and thus the

choice for the Lidar. The greatest flaw for Lidar is that it is adversely affected by smoke, rain and fog.

When using a Lidar, we must have this flaw in mind as it might restrict the operation.

Radar on the other hand, can operate in cloudy weather. Another characteristic of Radar technology

is that it has a longer operating distance, although it takes a longer time to return data regarding the

distance of the object. The main flaws of Radar are the fact that it does not allow the detection of smaller

objects due to longer wavelength, it cannot distinguish multiple targets within a surface that are closely

entangled together, and since it is not a beam, but a wave, it is susceptible to water reflectivity.

The use of Radar in a ASV should be used as a complement of the Lidar for adverse weather

situations and to further expand the map/grid.

Underwater

In the underwater domain, radio waves and vision suffer from inherent limitations. Radio waves

are virtually useless underwater due to their high attenuation, while vision effectiveness is restricted

to a range of a few meters, and highly dependent on the turbidity of the water. This is caused by the

scattering effect of light by suspended matter. One method could be employing a higher intensity light

source to offset the light attenuation, but this only results in a massive power drain, thus both Radar and

Lidar technologies are discarded for this domain.

Unlike radio-waves and optical energy, sound transmission is the single most effective means of

directing energy transfer over long distances in sea-water. Consequently, Sonar is largely employed

underwater.
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The Automatic Identification System

The Automatic Identification System (AIS) is a tracing and tracking system that allows a vessel to post

information about itself and receive information about other vessels in the area. The typical range of

the AIS depends on the altitude of the external antenna, being a reference to have a range of 15 − 20

nautical miles1 for an altitude of 15 meters. The international Maritime Organization (IMO) defined that

commercial ships above 300 tons under international navigation, all passenger ships and fishing ships

above 16 meters in length are all obliged to have an AIS integrated (United States Coast Guard, 2017).

Due to the AIS’s droppage in price and aptitude for collision avoidance, there has been an increase in its

usage. The AIS transmits both dynamic and static information, with some of the information consisting

(MarineTraffic, 2017b):

• Dynamic information:

– Navigation status – “at anchor”, “under way using engine(s)”, “not under command”, etc.

– Rate of turn

– Speed over ground

– Positional accuracy

∗ Longitude

∗ Latitude

– Course over ground

– Heading

• Static information:

– Name – 20 characters to represent the name of the vessel

– Navigational status

– Type of ship/cargo

– Dimensions of ship – to the nearest meter

An example of a typical AIS Class A position report could be:

!AIV DM, 1, 1, , A, 13u?etPv2; 0n : dDPwUM1U1Cb069D, 0 ∗ 24

The data string contains different fields of data segregated by commas. A complete description of

each field is presented in (Raymond, 2016), and for a detailed description on the AIS system and the

types of data that are transmitted (MarineTraffic, 2017a) should be read.

Several online AIS decoders exist2, providing tools to interpret AIS messages, where the user can

paste a raw AIS string and receive the underlying data in a readable format.

In this work, for simulation and testing, ROS topics and messages were used with the correspond-

ing AIS information with a message exchange of 1Hz which is the typical frequency for dynamic AIS

messages exchange.
11 nautical mile = 1.85200 kilometers
2An example: http://www.maritec.co.za/tools/aisvdmvdodecoding/
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Chapter 3

COLREGS Collision Avoidance

The AIS system presented in subsubsection 2.2.2 provides information about the position, pose and

speed, allowing the sharing of information between vehicles equipped with AIS. The three data mes-

sages mentioned are the most important for the collision detection modes as will be presented.

Having a representation of both our vehicle, which will be, from now on, addressed as ownship, and

the obstacle vehicle, which will be addressed as contact, it is possible to detect whether a collision is in

risk of occurring and which COLREGS rule to follow. The terms and algorithms presented through this

chapter were adapted from (Raymond, 2016).

The AIS position data shared are in latitude and longitude, which then need to be converted to a

local x-y coordinate in meters, where < x, y > εR2. The heading is given in degrees, where θ ε [0, 360) in

the Earth-fixed reference frame (subsection D.3.1), with the reference being North. The speed is given

in meters per second, with v ε R.

Figure 3.1 represents both ownship and contact with each local coordinates, heading and velocity.

The heading for each case is the direction that the vehicle is pointing and not the direction the vehicle

is moving, which could be different due to external forces such as in wind and current situations. As

pointed out in subsubsection 2.2.2, the dynamic information exchanged with an AIS system is roughly

1Hz, which guarantees reliable instantaneous data from both vessels.

Figure 3.1: Ownship and contact with each local coordinates, heading and velocity, represented with
yellow and red color respectively. Adapted from (Raymond, 2016).
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3.1 Useful Operators on Heading Values

The heading values for each vehicle can be presented in the interval range of [0, 360) or [−180, 180).

However sometimes they are presented outside these domains. The following conditions guarantee the

necessary conversion to the desired domain and limit, using the floor function condition ”b c” 1.

[θ]360 =

 θ − b θ
360c × 360 (θ ≥ 0)

θ + (b −θ360c+ 1)× 360 otherwise
(3.1)

[θ]180 =

 θ − b θ+180
360 c × 360 (θ ≥ 0)

θ + (b−θ+180
360 c+ 1)× 360 otherwise

(3.2)

Another definition which helps to simplify some work is the heading deviation, which gives the abso-

lute value of the difference between two directions.

δ(θ1, θ2) = |[θ1 − θ2]180| (3.3)

3.2 Range, Absolute Bearing and Relative Bearing

In order to define the distance between the vehicles, the bearing of ownship to contact, and of contact

to ownship, the following terms are essential:

• range between ownship and contact : roscn

• absolute bearing from ownship to contact : bngoscn

• relative bearing from ownship to contact : relbngoscn, or simply β

• absolute bearing from contact to ownship: bngcnos

• relative bearing from contact to ownship: relbngcnos , or simply α

Figure 3.2: Bearing relations for ownship and contact represented with yellow and red color respectively.
Adapted from (Raymond, 2016).

1Floor function - function that takes as input a real number θ and gives as output the greatest integer less than or equal to θ
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Range is the linear distance between the vehicles at the current instance of time, and is thus de-

fined as the the Euclidean distance between both vehicles position, which is directly obtained from

Pythagorean theorem:

range = roscn =
√

(xos − xcn)2 + (yos − ycn)2 (3.4)

The absolute bearing is the angle of one vehicle to the other’s position, regardless of the reference

vehicle orientation, with the North reference being 0 degrees and East 90 degrees. The absolute bearing

from ownship to contact is obtained as follows:

bngoscn =



0 (xos = xcn) and (yos ≤ ycn)

180 (xos = xcn) and (yos > ycn)

90− tan−1(
|yos − ycn|
|xos − xcn|

) ∗ 180

π
(xos < xcn) and (yos ≤ ycn)

tan−1(
|yos − ycn|
|xos − xcn|

) ∗ 180

π
+ 90 (xos < xcn) and (yos > ycn)

270− tan−1(
|yos − ycn|
|xos − xcn|

) ∗ 180

π
(xos > xcn) and (yos > ycn)

tan−1(
|yos − ycn|
|xos − xcn|

) ∗ 180

π
+ 270 (xos > xcn) and (yos ≤ ycn)

(3.5)

The relative bearing is similar to the absolute bearing, however the reference is now the vehicle’s

orientation. The relative bearing from ownship to contact can then be calculated:

relbngoscn = β = [bngoscn − θos]360 (3.6)

Both equations 3.5 and 3.6 are similarly used to calculate from contact to ownship, inverting the local

coordinates respectively.

3.3 Range Rate and Bearing Rate

Other terms of utmost importance are the range rate, which represents how quickly the two vehicles

are moving towards or away from one another, and the bearing rate, which is the rate of change in

the relative bearing, from ownship to contact, in degrees per second. Both are given by the following

equations:

range rate = ṙ = voscn + vcnos (3.7)

Being voscn the velocity of ownship in the direction of contact’s current position and vcnos the velocity of

the contact in direction of ownship’s current position.

vcnos = cos(α)× vos (3.8a) voscn = cos(β)× vcn (3.8b)

bearing rate = β̇ = −(vostn + vcntn )× 360

2rπ
(3.9)

Being vostn and vcntn the ownship and contact speed in the direction of the tangent heading conse-

quently.

vostn = cos(θostn)× vos (3.10a) vcntn = cos(θcntn )× vcn (3.10b)
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The tangent heading is the heading given the current ownship to contact absolute bearing, plus 90

degrees:
θtn = [bngoscn + 90]360 (3.11)

Therefore, the speed of ownship and contact in the tangent heading is given by:

θostn = δ(θos, θtn) (3.12a) θcntn = δ(θcn, θtn) (3.12b)

3.4 Relative Boolean Positions

3.4.1 Fore and Aft

The boolean variables define whether the vehicles are either in front or behind the other.

foreoscn =

 false 90 < α < 270

true otherwise
(3.13a) aftoscn =

 true 90 ≤ α ≤ 270

false otherwise
(3.13b)

forecnos =

 false 90 < β < 270

true otherwise
(3.13c) aftcnos =

 true 90 ≤ β ≤ 270

false otherwise
(3.13d)

3.4.2 Port and Starboard

The boolean variables define whether the vehicles are in port side or starboard side from one another.

portoscn =

 false 0 ≤ α ≤ 180

true otherwise
(3.14a) staroscn =

 true 0 ≤ α ≤ 180

false otherwise
(3.14b)

portcnos =

 false 0 ≤ β ≤ 180

true otherwise
(3.14c) starcnos =

 true 0 ≤ β ≤ 180

false otherwise
(3.14d)

3.4.3 Representations

For better understanding of the boolean conditions, two representations are given in figures 3.3(a) and

3.3(b).

(a) Fore and Aft (b) Port and Starboard

Figure 3.3: Boolean examples of ownship and contact, represented with yellow and red color respec-
tively. Adapted from (Raymond, 2016).

In figure 3.3(a), it is represented a situation where ownship is aft of contact, aftoscn = true, and contact

is fore of ownship, forecnos = True. In figure 3.3(b), is represented a situation where ownship is port of

contact, portoscn = true, and contact is in starboard of ownship, starcnos = true.
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3.5 Crossing Relationships

To decide whether a crossing maneuver is to be executed, three boolean relationships are necessary,

thus the following terms are presented.

The ownship gamma heading θosγ is the direction from ownship making a 90 degree angle to the

contact’s bow-stern line.

θosγ =

 [θcn + 90]360 portoscn

[θcn − 90]360 otherwise
(3.15)

The ownship gamma velocity vosγ is the velocity at which ownship closes on contact’s bow-stern line.

vosγ = cos(θos − θosγ )× vos (3.16)

The ownship gamma range rγ is the current range between ownship and the contact’s bow-stern

line.

rγ = r × cos(θosγ − relbngoscn) (3.17)

3.5.1 Boolean Relationships

The three boolean relationships can thus be defined.

The first is crossosxcn, which is true only when the ownship crosses the contact’s bow-stern line, re-

gardless of whether it is aft or fore, given the current position and linear trajectory of both vehicles.

crossosxcn =


true (α = 0) or (α = 180)

true (vosγ > 0)

false otherwise

(3.18)

Another boolean relationship is crossosxcnb, which is true only when the ownship crosses the contact’s

bow-stern line, and is fore of the contact at the moment of crossing, given the current position and linear

trajectory of both vehicles.

crossosxcnb =



true (α = 0)

true (vosγ > 0) and (portoscn) and (β̇ > 0)

true (vosγ > 0) and (staroscn) and (β̇ < 0)

false otherwise

(3.19)

The last is crossosxcns, which is true only when the ownship crosses the contact’s bow-stern line, and

is aft of the contact at the moment of crossing, given the current position and linear trajectory of both

vehicles.

crossosxcns =



true (α = 180)

true (vosγ > 0) and (portoscn) and (β̇ < 0)

true (vosγ > 0) and (staroscn) and (β̇ > 0)

false otherwise

(3.20)
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3.5.2 Numerical Relationships

The crossing numerical relations are necessary for the collision mode algorithms. It comprises of range

and time values.

The ownship crossing time tosγ is the time in seconds in which the ownship will cross the contact.

tosγ =
rγ
vosγ

(3.21)

Knowing the ownship’s crossing time, it is possible to calculate the distance that the contact travels,

in the time between now and up to the time that the ownship crosses the contact’s bow-stern line, rxcnε ,

and also the distance that ownship travels in this same time, rxosε , in direction of the contact’s heading.

rxcnε = tosγ × vcn (3.22)

rxosε = tosγ × voscnh (3.23)

Depending on the active crossing boolean relation, the range of crossing the contact’s bow or stern

is calculated.

The ownship crossing bow range rosxcnb is the range in which the ownship crosses the contact’s bow.

rosxcnb =

 rxosε − (rε − rxcnε ) crossosxcnb

−1 otherwise
(3.24)

The ownship crossing stern range rosxcns is the range in which the ownship crosses the contact’s

stern.

rosxcnb =

 (rε − rxcnε )− rxosε crossosxcns

−1 otherwise
(3.25)

3.6 Passing Relationships

Just as the crossing relationships defined above, it is necessary to define passing relationships, thus the

following terms are required.

The ownship epsilon heading θosε is the ownship heading perpendicular and toward the contact’s

beam.

θosε =

 [θcn + 180]360 foreoscn

θcn otherwise
(3.26)

The ownship contact velocity voscnh is the speed of ownship in the direction of contact’s heading.

voscnh = cos(θos − θosε )× vos (3.27)

The ownship epsilon velocity vosε is the speed at which ownship is closing on the contact’s beam.

vosε =

 vcn + voscnh foreoscn

voscnh − vcn otherwise
(3.28)

The ownship epsilon range rε is the current range between both vehicle’s beam.

rε = r × cos(θosε − relbngoscn) (3.29)
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3.6.1 Boolean Relationships

The three boolean relationships can thus be defined.

The first is passoscn, which is true only when the ownship crosses the contact’s beam, regardless of

port or starboard, given the current linear trajectory of both vehicles.

passoscn =

 true (vosε > 0)

false otherwise
(3.30)

Another boolean relationship is passoscnp, which is true only when the ownship crosses the contact’s

port beam, given the current position and linear trajectory of both vehicles.

passoscnp =


true aftoscn and passoscn and (β̇ > 0)

true foreoscn and passoscn and (β̇ < 0)

false otherwise

(3.31)

The last is passoscns, which is true only when the ownship passes the contact’s starboard beam, given

the current position and linear trajectory of both vehicles.

crossoscns =


true aftoscn and passoscn and (β̇ < 0)

true foreoscn and passoscn and (β̇ > 0)

false otherwise

(3.32)

3.6.2 Numerical Relationships

Likewise the crossing numerical relations, the passing numerical relations are necessary for the collision

mode algorithms.

The ownship passing time tosε is the time in seconds in which the ownship will pass the contact.

tosε =
rε
vosε

(3.33)

The distance travelled by the ownship in the direction of θosγ , perpendicular to the contact’s bow-stern

line, is represented with rposγ which is useful in calculating the range between ownship and contact at

the moment of passing.

rposγ = tosε × vosε (3.34)

Depending on the active passing boolean relation, the range of passing the contact’s port or star-

board is calculated.

The ownship passing port range rospcnp is the range at which the ownship passes the contact’s port

beam.

rospcnp =


rγ − rposγ portoscn and (rposγ ≤ rγ)

rposγ − rγ staroscn and (rγ > rposγ )

−1 otherwise

(3.35)
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The ownship passing starboard range rospcns is the range at which the ownship passes the contact’s

starboard beam.

rospcns =


rγ − rposγ staroscn and (rposγ ≤ rγ)

rposγ − rγ portoscn and (rγ > rposγ )

−1 otherwise

(3.36)

3.7 Closest Point of Approach

The closest point of approach (CPA) is the point where ownship and contact have minimal range during

the course of a maneuver. On ships, CPA is often reported with range, time, and bearing components,

but here it is used with the terms CPA and rCPA as the range at the time of CPA. This value is directly

calculated once the time of CPA (tCPA) is known, by the following:

CPA = r(tCPA) =
√
k2 × tCPA2 + k1 × tCPA + k0 (3.37)

tCPA =

 0 ṙ ≥ 0

−k1
2×k2 otherwise

(3.38)

Where k0, k1 and k2 are given by the following equations:

k2 =

cos2(θos)× v2os − 2× cos(θos)× vos × cos(θcn)× vcn
+ cos2(θcn)× v2cn + sin2(θos)× v2os−

2× sin2(θos)× vos × sin(θcn)× vcn + sin2(θcn)× v2cn

(3.39)

k1 =

2× cos(θos)× vos × yos − 2× cos(θos)× vos × ycn − 2× yos × cos(θcn)× vcn+

2× cos(θcn)× vcn × ycn + 2× sin(θos)× vos × xos−

2× sin(θos)× vos × xcn − 2× xos × sin(θcn)× vcn + 2× sin(θcn)× vcn × xcn

(3.40)

k0 = y2os − 2× yos × ycn + y2cn + x2os − 2× xos × xcn + x2cn (3.41)

3.8 Risk of Collision

Other vital definitions are r̆cpa and r̂cpa, which represent the thresholds in which beyond it is considered

to be or not to be in risk of collision respectively.

In (Vujicic et al., 2017), it is presented a research with the aim of determining the CPA for the ideal

distance to initialize the safety maneuver and the minimum distance the vessels should approach one

another. This research included only ship officers and captains with, at least, one year of navigation,

and thus led to some conclusions. Mcpa,min should be between [1.6− 2.5] and for implementation it will

be used as Mcpa,min = 2. Mcpa should be between [5.1− 8.0], and for implementation it will be used as

Mcpa = 6.5.
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With the AIS data transferred from the contact, we obtain the vehicle length. The r̆cpa and r̂cpa can

then be obtained as follows:

r̆cpa = rcpa,min = Mcpa,min × Lengthcontact (3.42)

r̂cpa = rcpa,max = Mcpa × Lengthcontact (3.43)

3.9 Collision Avoidance Modes

Once all the parameters are established, it is possible to distinguish the encounter type. The possible

modes and the respective COLREGS rules being followed (subsubsection 2.1.1) are:

• GiveWayOT, or GiveWay Overtaking Mode (Rules 13 and 16)

• HeadOn Mode (Rule 14)

• StandOnOT, or StandOn Overtaken Mode (Rules 13 and 17)

• GiveWayX, or GiveWay Crossing Mode (Rules 15 and 16)

• StandOnX, or StandOn Crossing Mode (Rules 15 and 17)

• CPA, or Closest Point Approach Mode

• Null

The corresponding algorithms for each were adapted from (Raymond, 2016) and presented in ap-

pendix B.

3.10 Collision Avoidance Objective Functions

After having the COLREGS mode defined, an objective function must be applied in order to determine

the most suitable combination of heading and velocity. For the Stand On modes, the heading and velocity

should be maintained. As for the others, an objective function is applied.

The objective function has two parameters: the risk function and the heuristic function. The target is

to generate the ideal combination of heading and velocity by maximizing the function’s value.

f(θ, v) = g(cpa(θ, v))× h(θ, v) (3.44)

For all the combination of admissible headings and velocities, the CPA function defines the r(CPA)

which being greater than r̂cpa, the risk function outputs the max value (100). Being less than r̆cpa, the

output is 0, meaning it is a combination of heading and velocity that must not be pursued. When in

between r̆cpa and r̂cpa, the output value is now a linear interpolation from these limits.

g(x) =


100 x ≥ r̂cpa
0 x ≤ r̆cpa
x− r̆cpa

(r̂cpa − r̆cpa)
otherwise

(3.45)
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In case that the objective function only contains the risk function, the output combination of heading

and velocity would present the least risk. However, it could not be complying with COLREGS rules.

When not following the rules, both vehicles could give away to the same direction and then collide, thus

the heuristic function, which constrains the possible headings to be only mode compliant.

The heuristic function depends on the COLREGS mode defined. If the COLREGS mode is CPA

mode, the heuristic presents all values in the array with value 1, as it is the critical situation and disre-

gards the heuristic component. On the other hand, Crossing mode, Head On mode and Passing mode

have each its unique function.

3.10.1 The GiveWay Overtaking Heuristic Function

The heuristic function for GiveWay Overtaking mode also has submodes. For the combination of heading

and velocities, which have the boolean conditions of passoscnp and in port submode, or passoscns and in

starboard submode, the heuristic outputs the true condition of 1. Otherwise, it would be disrespecting

the COLREGS rules, and thus the false condition of 0.

h(θ, v) =


1 (submode = port) and passoscnp

1 (submode = starboard) and passoscns

0 otherwise

(3.46)

3.10.2 The Head-On Heuristic Function

The Head-On Heuristic function only has the condition of whether the ownship is crossing the con-

tact’s port beam. For the combination of heading and velocities making the boolean condition true, the

heuristic also defines as true with output 1.

h(θ, v) =

 1 passoscnp

0 otherwise
(3.47)

3.10.3 The GiveWay Crossing Heuristic Function

The GiveWay Crossing Heuristic function, like the Passing heuristic function, depends on two sub-

modes, the Bow submode and Stern submode.

Bow Submode

h(θ, v) =

 0 turnosstar and !crossosxcnb

1 otherwise
(3.48)

Stern Submode

h(θ, v) =


0 turnosport

0 crossosxcnb

1 otherwise

(3.49)
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Chapter 4

Implementation

The solution presented, takes advantage of the power of a middleware and a virtual simulator in order to

apply the control module and to implement the collision avoidance algorithm. Autonomous robots, such

as ASVs, are complex systems that require an interaction between numerous heterogeneous compo-

nents (software and hardware). The increase in the complexity of robotic applications and the diverse

range of hardware available, has led to the choice of a robotic middleware, which has the advantages

such as: it is usually designed to manage the complexity and heterogeneity of the hardware and ap-

plications; promote the integration of new technologies; simplify software design; hide the complexity

of low-level communication; make use of different heterogeneity of sensors; improve software qual-

ity; reuse robotic software infrastructure across multiple research efforts; and reduce production costs.

(Magyar and Sincak, 2015) presents the main robotics middleware available, comparing each perks and

flaws. Robot Operating System (ROS) can be said to be the most popular robotic middleware, having

more components and supporting more robots than other middlewares. Some weaknesses of ROS are

the fact that Windows is not among the supported operating systems, and the fact that it does not have

a graphical IDE. Such factors, led to the choice of using ROS with the operating system being Linux, an

Ubuntu version 16.04.

4.1 Robot Operating System

The Robot Operating System (ROS) is an open-source middleware used for robotics, which provides

services, tools, and libraries for obtaining, building, writing and running code across multiple computers.

With an increasing community, several packages which aid the implementation of autonomy to the ve-

hicle such as tf and navigation stack are implemented in this work. Some concepts and language are

needed, in order to understand some of the technical descriptions used throughout the work presented

on this thesis are:

• Nodes: Nodes are independent processes that perform computation. A robot/vehicle has several

nodes which communicate with each other over topics. A sensor becomes a node, which is inde-

pendent, and communicates with whoever subscribes to the topics that the sensor is publishing.
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• Messages: Nodes communicate with each other by passing messages. A message is simply a

data structure, comprised of typed fields, such as integer, floating point, boolean, etc..

• Topics: Messages which are routed via a transport system with a publish/subscribe semantics.

Topics is the name which is used to identify the content of the message.

• Services: A Request/Reply structure used by nodes with a defined pair of messages structures.

• Master: The ROS Master provides name registration and look-up to the rest of the Computation

Graph. Without the Master, nodes would not be able to find each other, exchange messages, or

invoke services. Example on figure 4.1.

• Package: Software in ROS is organized in packages. A package might contain ROS nodes, a

ROS-independent library, a dataset, configuration files, a third-party piece of software, or anything

else that logically, constitutes a useful module. The goal of these packages is to provide this useful

functionality in an easy-to-consume manner, so that software can be easily reused (Open Source

Robotics Foundation, 2015).

Figure 4.1: ROS technical representation. The node on the left publishes messages to a determined
topic and advertises to the Master. The node on the right asks the Master the path to the desired topic
and, knowing the path, it is thus subscribed.

Programming in the ROS framework can be said to be generally language-independent, with the

most popular languages being C++ and Python, (Open Source Robotics Foundation, 2018b).

A list of tutorials presenting detailed information about each concept can found in (Open Source

Robotics Foundation, 2018a).
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4.2 Gazebo

Having the autonomous system built, a virtual simulator such as Gazebo is essential to permit further

tests and to debug the algorithms employed. Gazebo is the most compatible virtual simulator for ROS,

being both from the Open Source Robotics Foundation. In Gazebo’s home page1, the reason presented

for Gazebo’s usage, is that “Robot simulation is an essential tool in every roboticist’s toolbox”. Being

open-source, it contributes to an increasing community, and the fact that it is easily integrated with

ROS, provides a powerful simulating environment to promptly test the algorithms, design robots, perform

regression testing, and train AI systems using realistic scenarios.

When using Gazebo, multiple scenarios were created with an open sea as the environment. Static

and dynamic obstacles were implemented in order to assess and authenticate the various circumstances

that a vehicle can encounter. Gazebo was used in order to test and debug the algorithms while being

confident that, when applied in the physical model, the algorithms behaviour will be exactly the same.

4.3 Obstacles

The obstacles implemented in the Gazebo simulation are either vessels or static objects, as presented

in section 1.2. These obstacles can be seen in figure 4.2.

Figure 4.2: Obstacles used in the simulation. Static obstacle in the left, representing all static obstacles,

the ownship in the middle, and the contact vehicle in red in the right, representing the dynamic obstacle.

For simplicity, the static obstacles are represented as buoys, which will occupy an area in the map

and thus will need the corresponding collision avoidance system to work. These buoys are geometrically

simpler and thus have a reduced computational impact compared to other static obstacles. Moreover,

the buoys can represent any other obstacle, such as icebergs and debris.

The Contact vehicle is a copy of the Ownship vehicle, having been coloured red for distinction. In

some simulations, it will have the same collision avoidance behaviour as the Ownship, while on others it

1gazebosim.org
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will act without the correct behaviour in order to further verify the capacity of the developed algorithms.

The dimensions and velocity of the Contact vehicle were, in some simulations, also changed.

The detection of these obstacles is realized with the exteroceptive sensors, such as the AIS and the

Lidar, and the collision avoidance method is thus defined with perimeters of safety, established around

the Ownship vehicle.

4.4 Perimeters of safety

Having different types of obstacles led to the implementation of three perimeters of safety, as is depicted

in the figure 4.3, having a fourth perimeter for Head On collision mode, as will be further explained.

Figure 4.3: Perimeters of safety.

The inside perimeter, which was named Critical Perimeter, has a fixed diameter of 15 meters. What-

ever obstacle that enters this perimeter and is detected by the Lidar, or any other detecting and ranging

equipment available, is treated as an imminent risk of collision for the vehicle, thus leading to the re-

active collision avoidance DWA, which will avoid the obstacle disregarding the COLREGS rules. This

critical perimeter is defined mainly for static obstacles, which have no need of maritime rules compliance

and also for cases of AIS malfunctioning or non-equipped vessels, where the critical situation demands

immediate effects.

In the same manner there are behaviour rules for vehicles on land, rules for the sea also exist

in multiple vehicle situation. In order to apply COLREGS based behaviour on the vehicle, the other

two perimeters are required. An outer perimeter and a middle perimeter were defined, respectively

named start maneuver and minimum distance admissible, and are used for dynamic obstacles (other

vehicles) situations exclusively. These perimeters have non-static diameters which are dependent on

the vehicle’s dimensions. As the name implies, the start maneuver perimeter is the perimeter in which,

when a contact vehicle is detected and is deemed in risk of collision, the collision avoidance maneuver

starts. The minimum distance admissible defines the limit as to which the Contact vehicle can approach
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the Ownship vehicle. These radius are the limits by which the algorithm implemented will behave. These

radius can be obtained following the equations 3.42 and 3.43. A special case is when the vehicles are in

a head on situation, in which they approach each other faster than the other modes. Consequently, the

perimeter at which the vehicle will start the evasion will be double the normal start maneuver perimeter.

For cases that the critical perimeter is breached with a COLREGS mode already defined, the perimeter

will disregard the breaching up to 5 meters inside. The exchange of data is secured by the AIS system,

which for the simulation, the exchange of data between the vehicles, is simulated with ROS messages.

4.5 AIS message

An AIS system, when in movement, shares it’s own vehicle data in order to facilitate collision avoidance

to the other vehicles. For simulation, the main message data with relevance for the algorithm were

simulated as ROS messages as in table 4.1.

Table 4.1: ROS message simulating AIS messages.

AIS.msg
Data Type Variable Name Unit

uint32 mmsi -
uint8 status -

float64 SOG [m/s]
float64 longitude [deg]
float64 latitude [deg]
float64 COG [deg]
float32 length [m]

The mmsi stands for Maritime Mobile Service Identity and it is a series of nine digits to uniquely

identify the ship. The algorithm developed needs to know its own mmsi number in order to filter and

remove its own AIS publications.

The status is used as the current mode of collision avoidance. The modes can be: [0] Null, [1] CPA,

[2] GiveWayOT, [3] Head On, [4] StanOnOT, [5] GiveWayX and [6] StandOnX. The Null mode is the free

mode, where no collision risk was detected so far, and the vehicle is following the mission plan. The

CPA is the critical situation where no mode is recognized or the vehicle is inside the minimum perimeter

of approach, thus leading to disregard of rules and immediate retreat to the most promising path. The

other modes are the possible situations the vehicle can encounter, as explained in 3.9 and the algorithms

presented in appendix B.

The parameters which allow the algorithm to detect the mode are: the SOG, which stands for speed

over ground (referenced as only speed); the COG, which stands for course over ground (mainly ref-

erenced as heading); and the local coordinates, which are obtained with the latitude and longitude

variables, and are thus transformed. The length variable is also vital for the algorithm, in order to define

the non-static perimeters of safety.
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4.6 System Architecture

The Obstacle Detection and Avoidance module, as presented in section 2.1, is comprised of three parts.

Before proceeding to the results, a description of the collision avoidance process helps to provide a

better understanding of how the system globally works.

With the waypoints defined in a global map, the vehicle navigates through the route between the

waypoints. In this part, the proprioceptive sensors localize the vehicle and represent the vehicle in

the map. The exteroceptive sensors on the other hand are continuously searching for both static and

dynamic objects. Then three2 perimeters layers (section 4.4) are defined. The AIS is then responsible

for the detection and exchange of the data between the ownship and the contact, which, when in range,

proceed as follows:

1. Estimation/Update of ownship and contact states.

2. Assessment of whether a risk of collision exists.

2.1. In case no risk of collision is detected: no alteration in the course is made, however proceed

with surveillance on the contact.

2.2. In case a risk of collision is detected: (a) With AIS data exchanged (position and heading)

determine the applicable COLREGS rule. (b) Apply the constraints associated with the cor-

responding COLREGS rule to the motion planning algorithm.

An inner perimeter is also defined (critical area), in which collision avoidance is applied disregarding

COLREGS rules. The Lidar is the sole detection mechanism for this layer. This inner perimeter is for

static obstacles which need no COLREGS rules and for vehicles in cases that the AIS is malfunctioning

or no AIS system is presented in the contact vessel and an immediate response is needed.

4.6.1 Estimation/Update of states

With the combination of both GNSS and IMU data, which are treated as ROS messages, the odometry

is produced. The message now handles both pose and twist type messages. With twist type, the velocity

in all axis is obtained and converted to linear velocity, producing SOG. With pose data, the quaternions

are converted to euler angles, and thus the yaw obtained is converted to the heading, also known as

COG. With GNSS data, the latitude, longitude and altitude are treated, and the local coordinates are

then obtained. Therefore, all the states are available to its own vehicle. In order to get the other vehicle’s

parameters, the AIS is continuously subscribed, and in case the mmsi number in the message is different

than the ownship’s mmsi, the data is saved as the opposing vehicle states.

4.6.2 Risk and heuristics

The next step is the assessment of whether the vehicle is in risk of collision or not, applying the equation

3.37, and using the perimeters defined in section 4.4. Being in risk, the algorithm will now compute all

the equations from chapter 3. These values will enter the mode algorithms (appendix B), thus the mode
2The third perimeter is doubled for the Head On mode.
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is determined. A loop is now entered, ranging from the space of conceivable velocities, and ranging in all

the heading values, [0; 360[. The functions computed inside the loop are the necessary to calculate the

CPA value (equation 3.37), and then follow the equations from section 3.10. It is also given preference

to the group of velocities and headings, the most similar to the previous, in cases where the function

output is equal. In the end of the function, a desired velocity and a desired heading is ready to be sent

to the control module. However, the input available is velocity and yaw, thus a conversion from heading

to yaw is made before sending.

4.6.3 AIS publishing

After sending the desired input to the control module, the main loop function is not yet complete. It is

crucial to also broadcast the actualized states of the vehicle as an AIS message, in order to permit the

others to know our location and take measures to initialize theirs own collision avoidance procedures.

4.6.4 Inside critical perimeter

As explained in both sections 4.4 and 4.6, in case the Lidar system detects obstacles within 15 meters

of the vehicle, and no COLREGS mode is already defined, the Dynamic Window Approach algorithm,

described in subsection 2.1.2, is employed as the primary function. The vehicle already knows its own

parameters from the estimation/update part of the algorithm. The number of rays emitted from the 2D

Lidar used are also knowable, either by defining manually or by analyzing the size of the data array

obtained from the measures. With the heading from the vehicle, and the position and range of the ray,

the obstacle is then represented on the system as an array of local coordinates. Having the goal defined,

and with the obstacles array, the system loops now in the DWA functions, which take into account the

search space of the possible velocities as defined in subsubsection 2.1.2, the new desired heading, and

the distance between the vehicle and the obstacles in the trajectory. All these components are used in

an objective function, being the desired output to maximize the loop instance. In case there is a mode

already defined, the DWA switch will only be made when the Lidar detects the obstacle within 5 meters.

Figure 4.4: ASV with critical perimeter in blue, defined with the Lidar rays, and detecting a static obstacle.
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Chapter 5

Simulation and Results

In order to verify the capability of the algorithm developed, different scenarios were used. Scenarios

with other vehicles as obstacles ought to follow COLREGS rules, such as:

• Head On

• Overtaking

• Crossing

These simulations have the Ownship always following COLREGS rules. The Contact on the other

hand, has in some cases to be COLREGS compliant, while on others it can be non-compliant, in order

to further verify the algorithm.

It is also considered two other scenarios:

• Multi-static obstacle

• Big static obstacle

In the different scenarios, variations in the initial velocity and dimension of obstacles are applied, in

order to further test and to meet conditions.

5.1 Head On

The Head On simulations comprises two vehicles, the Ownship and the Contact, which have the same

length (roughly 3 meters) and the same cruising velocity (1.5 meters per second). What will differ in the

following simulations is whether the Contact will also follow COLREGS behaviour or not, maintaining the

same heading and velocity.

The Head On mode (algorithm 3 in appendix B), has the absolute release check different than the

other modes, which is the double of rcpa max, also defined in the algorithms as rpwt. Thus, is due to

the vehicles being in the same orientation but the opposing direction, approaching faster than the other

modes. The entry mode criteria is that α and β are less or equal than φ value, which is the relative

bearing of each vehicle to the other. The value used was φ = 18o.
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5.1.1 Contact with COLREGS behaviour

Having the contact also using the same algorithm, the results are presented in table 5.1, where the

values of the local coordinates, course over ground (COG), speed over ground (SOG), and the respective

collision avoidance mode are presented with a time step of 5 seconds.

Table 5.1: Results for HeadOn Simulation with a 3 meters COLREGS compliant Contact.

Ownship Contact

x (EAST) [m] y (NORTH) [m] COG [deg] SOG [m/s] mode x (EAST) [m] y (NORTH) [m] COG [deg] SOG [m/s] mode

t00 -10.85 -27.00 200.21 1.50 0 -35.86 -81.10 19.97 1.50 0
t05 -13.48 -33.60 214.50 1.58 3 -32.45 -72.62 23.02 1.15 3
t10 -17.90 -38.90 238.90 0.78 3 -30.56 -68.34 37.57 0.96 3
t15 -22.72 -40.78 254.69 1.02 3 -27.61 -64.46 52.76 0.93 3
t20 -27.83 -42.13 255.80 1.02 3 - 22.69 -61.03 70.77 0.97 3
t25 -33.21 -44.55 229.36 1.62 0 - 19.05 -59.70 60.41 1.25 0
t30 -39.67 -52.63 210.21 1.50 0 - 11.56 -54.03 30.71 1.32 0

To better visualize the results from table 5.1, images were taken from the Gazebo simulation (figure

5.1), which allows a better vision of the trajectory taken by both vehicles. The images are also presented

with a time step of 5 seconds, having the figure 5.1(h) the complete trajectory.

(a) t00 (b) t05 (c) t10 (d) t15

(e) t20 (f) t25 (g) t30 (h) Complete path

Figure 5.1: Ownship HeadOn simulation with a 3 meters COLREGS compliant Contact.

Analyzing the results, it is observable that both vehicles started in Null mode, and with a velocity of

1.5 meters per second. At the same time step, both vehicles had already switched from Null mode to

the Head On mode (t05), and started the maneuver, reducing the speed while changing the heading.

Applying the equations 3.37 to 3.41 for the time step t05, we get the following results: k0 = 1882.42,

k1 = −235.23, k2 = 7.38, tCPA = 15.94 s and CPA = 2.83 m. Applying the equation 3.42, rcpamin =

2 × contactlength = 2 × 3 = 6 m. Thus, being CPA < rcpamin
, we are indeed in risk of collision. The

entry condition for Head On mode was that both α and β needed to be below φ which was defined as

18o. Applying equations 3.5 and 3.6, we obtain α = 2.91o and β = 8.57o which are both below the
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φ value. When the algorithm deemed that the Head On mode was complete (t25), the mode changed

again to Null, and the speed stabilized again to the cruise speed of 1.5 meters per second. The release

check for the Head On mode is that r > r̆cpa and ṙ > 0, which applying the equation 3.42, rcpamin =

2 × contactlength = 2 × 3 = 6 m, and applying the equations 3.7, 3.8a and 3.8b, vcnos = −0.07 m/s,

voscn = −0.29 m/s and ṙ = 0.36 m/s. The distance between the vehicles is obtained from equation

3.4, r =
√

(−33.21− (−19.05))2 + (−44.55− (−59.70))2 = 20.74 m, thus the absolute release check is

verified with both conditions.

5.1.2 Contact with non-COLREGS behaviour

The second Head On simulation comprised two vehicles, the ownship and contact, having the same

length (roughly 3 meters) and the same cruising velocity (1.5 meters per second). However, contrary to

the previous simulation, the contact was non-COLREGS compliant. The results are shown in table 5.2.

Table 5.2: Results for HeadOn Simulation with a 3 meters non-COLREGS compliant Contact.

Ownship Contact

x (EAST) [m] y (NORTH) [m] COG [deg] SOG [m/s] mode x (EAST) [m] y (NORTH) [m] COG [deg] SOG [m/s] mode

t00 -11.24 -33.75 199.97 1.50 0 -33.16 -73.89 19.99 1.50 0
t05 -14.38 -39.10 236.14 1.53 3 -30.89 -68.13 20.01 1.50 0
t10 -22.27 -41.78 264.78 2.49 3 -28.90 -62.57 19.99 1.50 0
t15 -33.11 -42.26 258.23 1.77 3 -26.37 -55.34 20.00 1.50 0
t20 -39.80 -46.10 193.53 1.78 0 -23.36 -46.83 19.99 1.50 0
t25 -40.82 -54.52 184.78 1.53 0 -21.87 -42.73 20.00 1.50 0

To better visualize the results from table 5.2, images were taken from the Gazebo simulation (figure

5.2), which allows a better vision of the trajectory taken by both vehicles. The images are also presented

with a time step of 5 seconds, having the figure 5.2(g) the complete trajectory.

(a) t00 (b) t05 (c) t10 (d) t15

(e) t20 (f) t25 (g) Complete path

Figure 5.2: Ownship HeadOn simulation with a 3 meters non-COLREGS compliant Contact.
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Analyzing the results, it is observable that both vehicles started in Null mode, and with a velocity of

1.5 meters per second. At the time step t05, the ownship switched from mode Null to the Head On mode,

starting the maneuver. Contrary to the previous simulation, the contact vehicle maintained the heading

and speed. Due to this, at time step t10 it can be observed an increase in the speed in order to make

up for the stand on contact. At time step t20, the ownship had already passed the contact, and, thus, it

switches to Null again, having the velocity converge to the cruising speed of 1.5 meters per second.

5.2 Overtaken

Similarly with the Head On simulations, the overtaken simulations also comprise two vehicles, the own-

ship and contact. In the overtaken mode exists two submodes: port and starboard. The submode

depends on the passoscns boolean condition (as can be seen in algorithm 2 in appendix B), being star-

board in case the condition is true, and port otherwise.

The first two cases presented are port and starboard submode with the contact vehicle having a

length of roughly 3 meters, whereas on the last, it is presented a starboard submode with the contact

vehicle with 7.5 meters. The ownship vehicle has a cruising velocity of 1.5 meters per second, while the

contact, in every simulation, has a velocity of 0.5 meters per second, in order to allow being overtaken.

5.2.1 Port Submode

Having the COLREGS algorithm running in both vehicles, the results are presented in table 5.3.

Table 5.3: Results for Overtaking Simulation. Ownship overtaking in port submode and Contact being
overtaken.

Ownship Contact

x (EAST) [m] y (NORTH) [m] COG [deg] SOG [m/s] mode x (EAST) [m] y (NORTH) [m] COG [deg] SOG [m/s] mode

t00 -18.77 -38.96 100.85 1.58 0 1.11 -35.75 74.99 0.50 0
t05 -5.84 -38.47 79.82 2.92 2(1) 2.83 -34.71 75.00 0.50 4
t10 12.10 -27.28 87.16 2.49 0 3.83 -34.06 75.00 0.50 0
t15 16.60 -27.64 94.18 2.04 0 5.19 -33.35 75.11 0.50 0
t20 24.83 -28.16 96.77 1.68 0 7.58 -32.95 75.00 0.50 0

To better visualize the results from table 5.3, images were taken from the Gazebo simulation, figure

5.3, which allows a better vision of the trajectory taken by both vehicles. The images are also presented

with a time step of 5 seconds, having the figure 5.3(f) with the complete trajectory.

Analyzing the results, we can observe that both vehicle started in Null mode. Having the contact

enter the outer perimeter of the ownship at roughly t05, the mode switched to GiveWayOT with the

submode being port. It can be verified that, when applying the equations 3.37 to 3.41 for the time step

t05, we have the following results: k0 = 89.31, k1 = −44.37, k2 = 5.87, tCPA = 3.78 s and CPA = 2.33m.

Applying the equation 3.42, rcpamin
= 2 × contactlength = 2 × 3 = 6 m. Thus, we are indeed in risk

of collision, being CPA < rcpamin . The entry condition for the Overtaking mode is that α cannot be

greater than 247.5o or less than 112.5o, which is true, being α = 171.56o, and the boolean condition

passoscn must be true, which is verified by applying the equation 3.13a, and the equations from section

3.6: foreoscn = True, θosε = 75o, voscnh = 2.91 m/s, vosε = 3.41 m/s, and passoscn = True. Having checked

the GiveWayOT mode entry, it now needs to define the submode, which is defined as Starboard in case
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(a) t00 (b) t05

(c) t10 (d) t15

(e) t20 (f) Complete path

Figure 5.3: Ownship GiveWayOT simulation in port submode, with a StandOnOT COLREGS compliant
Contact.

passoscns is True and Port submode otherwise. In this case, with equation 3.13b having aftoscn = False and

applying equation 3.32, the output is passoscns = False which leads to Port submode. The loop through

the space of possible headings and velocities, in order to reduce the risk function value (equation 3.45),

led to a heading variation and an increase in speed in order to help the overtaking situation. On the

other hand, the contact verifies the StandOnOT situation and maintains both heading and velocity. At

time step t10, both vehicle switched to mode Null as the overtaking was deemed complete, due to the

fact that the ownship was now ahead of Contact. Thus leads to verify the condition of ṙ > 0, which

releases the vehicle from the mode condition. The ṙ condition is obtained from equations 3.7, 3.8a and

3.8b: vcnos = −2.00m/s, voscn = 0.46m/s and ṙ = 1.55m/s. From time step t10 to t20, the ownship’s surge

speed decreased, converging to the cruising velocity.

5.2.2 Starboard submode

Having the COLREGS algorithm running in both vehicles, the results are presented in table 5.4.

Table 5.4: Results for Overtaking Simulation. Ownship overtaking in starboard submode and Contact

being overtaken.

Ownship Contact

x (EAST) [m] y (NORTH) [m] COG [deg] SOG [m/s] mode x (EAST) [m] y (NORTH) [m] COG [deg] SOG [m/s] mode

t00 -31.15 -48.06 79.98 1.53 0 -12.89 -38.64 125.00 0.50 0

t05 -22.80 -47.83 101.74 2.42 2(2) -11.65 -39.87 125.00 0.50 4

t10 -12.79 -58.94 129.58 2.47 2(2) -9.57 -48.95 124.99 0.50 4

t15 -2.36 -56.40 103.52 1.89 0 -6.78 -43.02 125.00 0.50 0

t20 4.48 -57.74 94.37 1.69 0 -5.18 -44.09 125.00 0.50 0

t25 13.68 -57.79 86.49 1.51 0 -2.46 -45.78 125.00 0.50 0
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To better visualize the results from table 5.4, images were taken from the Gazebo simulation, figure

5.4, which allows a better vision of the trajectory taken by both vehicles. The images are also presented

with a time step of 5 seconds, having the figure 5.4(g) with the complete trajectory.

(a) t00 (b) t05

(c) t10 (d) t15

(e) t20 (f) t25

(g) Complete path

Figure 5.4: Ownship GiveWayOT in starboard submode simulation with a StandOnOT COLREGS com-

pliant Contact.

Analyzing the results, we can observe that both vehicle started in Null mode. Having the contact

enter the outer perimeter of the ownship at roughly t05, the mode switched to GiveWayOT, with the

submode being starboard. As opposing to the previous simulation, following the same procedure, the
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passoscns boolean condition is now set to True. An increase in speed is verified in order to help the

overtaking situation and the corresponding heading variation as well. On the other hand, the contact

verifies the StandOnOT situation and maintains both heading and velocity. At time step t15, both vehicles

switched to mode Null as the overtaking was deemed complete, due to the fact that the ownship was now

ahead of contact (ṙ > 0). From time step t15 to t25, the ownship’s surge speed decreased, converging

to the cruising velocity.

5.2.3 Starboard submode with 7.5 meters long contact

Contrary to the previous simulation, the contact vehicle’s length was changed to 7.5 meters. The results

are presented in table 5.5.

Table 5.5: Results for Overtaking Simulation with a 7.5 meters long contact. Ownship overtaking in
starboard submode and Contact being overtaken.

Ownship Contact

x (EAST) [m] y (NORTH) [m] COG [deg] SOG [m/s] mode x (EAST) [m] y (NORTH) [m] COG [deg] SOG [m/s] mode

t00 -45.94 -79.26 59.80 1.44 0 -13.38 -41.23 84.98 0.58 0
t05 -38.82 -75.24 70.17 2.27 2(2) -10.24 -40.99 85.00 0.58 4
t10 -25.77 -72.00 86.86 3.20 2(2) -7.84 -40.71 85.00 0.58 4
t15 -8.17 -78.69 85.94 3.34 2(2) -5.86 -40.65 84.99 0.58 4
t20 7.02 -69.53 81.15 2.44 0 -3.04 -40.54 84.99 0.50 0
t25 15.26 -66.82 58.48 2.38 0 -0.35 -40.23 85.00 0.50 0
t30 29.08 -58.51 59.46 1.95 0 3.13 -39.83 85.00 0.50 0
t35 36.00 -54.12 59.86 1.69 0 5.62 -39.68 85.81 0.50 0
t40 43.16 -58.32 59.94 1.59 0 7.78 -39.39 85.00 0.50 0
t45 49.30 -46.77 59.96 1.50 0 10.06 -39.21 85.00 0.50 0
t50 55.41 -43.25 60.01 1.50 0 12.09 -38.98 85.81 0.50 0

To better visualize the results from table 5.5, images were taken from the Gazebo simulation, figure

5.5, which allows a better vision of the trajectory taken by both vehicles. The images are also presented

with a time step of 5 seconds, having the figure 5.5(l) with the complete trajectory. This time, the contact

vehicle is represented as a huge rectangular brick, in order to reduce computational effort.

(a) t00 (b) t05

(c) t10 (d) t15
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(e) t20 (f) t25

(g) t30 (h) t35

(i) t40 (j) t45

(k) t50 (l) Complete path

Figure 5.5: Ownship GiveWayOT in starboard submode simulation with a StandOnOT COLREGS com-

pliant Contact with 7.5 meters length.

Analyzing the results, we can observe that both vehicle started in Null mode. Having the contact

enter the outer perimeter of the ownship at roughly t05, the mode switched to GiveWayOT with the

submode being starboard. Comparing the results from tables 5.4 and 5.5, we can verify the increase of

the radius in the perimeters of safety, as expected, due to the increase in the contact’s length. Having

a length of 3 m in the previous simulation, the start of maneuver was set to start at 3 × 6.5 = 19.5 m

apart from each other. On the other hand, a contact’s length of 7 m, led to a start of maneuver of

7×6.5 = 45.5m, which in time step t05, is verified that the distance between vehicles is r = 44.61m. After

entering the overtaking mode, an increase in speed occurred, in order to help the overtaking situation,

and the corresponding heading variation occurred as well. On the other hand, the contact verifies the

StandOnOT situation and maintains both heading and velocity. At time step t20, both vehicle switched

to mode Null as the overtaking was deemed complete. The ownship regained the course heading and

speed, which converged to its initial conditions.
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5.3 Crossing

The Crossing simulations comprises two vehicles, the ownship and contact, which have the same length

(roughly 3 meters) and the same cruising velocity (1.5 meters per second).

Having the contact also using the same algorithm, the results are presented in table 5.6, where the

values of the local coordinates, course over ground (COG), speed over ground (SOG) and the respective

collision avoidance mode are presented with a time step of 5 seconds.

Table 5.6: Results for Crossing Simulation. Ownship crossing and Contact on StandOn.

Ownship Contact

x (EAST) [m] y (NORTH) [m] COG [deg] SOG [m/s] mode x (EAST) [m] y (NORTH) [m] COG [deg] SOG [m/s] mode

t00 -20.02 -35.50 149.77 1.51 0 -25.96 -59.04 59.90 1.50 0
t05 -14.24 -41.93 97.94 1.72 5(3) -19.53 -55.37 59.96 1.50 6
t10 -6.49 -41.15 73.33 2.00 5(3) -14.33 -52.14 59.95 1.50 6
t15 1.36 -38.71 72.37 2.03 5(3) -9.30 -49.17 59.96 1.50 6
t20 13.57 -34.82 72.29 2.04 5(3) -0.14 -43.82 59.95 1.50 6
t25 20.56 -32.71 85.74 1.60 0 5.00 -40.74 59.95 1.50 6
t30 31.48 -35.34 125.00 1.53 0 13.88 -35.47 60.00 1.50 0

To better visualize the results from table 5.6, images were taken from the Gazebo simulation (figure

5.6), which allows a better vision of the trajectory taken by both vehicles. The images are also presented

with a time step of 5 seconds, having figure 5.6(h) the complete trajectory.

(a) t00 (b) t05 (c) t10

(d) t15 (e) t20 (f) t25

(g) t30 (h) Complete path

Figure 5.6: Ownship GiveWayX simulation with a StandOnX COLREGS compliant Contact.

Analyzing the results, it is observable that both vehicle started in Null mode, and with a velocity of

roughly 1.5 meters per second. At the time step t05, the Ownship switched to crossing mode GiveWayX,
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with the Bow submode, while the Contact changed to StandOnX mode. The entry for GiveWayX mode

requires that the conditions α < 247.5o and β > 112.5o are not met, which is verified by having an

α = 38.48o, and β = 103.55o. For determining the submode, in case crossosxcnb is set True and rosxcnb >

(r̂cpa + r̆cpa)/2, the Bow submode is defined, being otherwise Stern submode. In order to verify the

entry condition, some pre-calculations ought to be made: from equations 3.9, 3.10a and 3.10b, vostn =

−1.67m/s, vcntn = −0.93m/s and β̇ = 10.34o/s; from equations equations 3.14a and 3.14b, portoscn = True

and staroscn = False; applying the equations from section 3.5, θosγ = 149.96o, vosγ = 1.06m/s, rγ = 8.99m,

crossosxcn = True and crossosxcnb = True; and the equations from the numerical crossing subsection

(subsection 3.5.2), tosγ = 8.49 s, rxosε = 11.51 m, rxcnε = 12.74 m and rosxcnb = 12.95 m. These conditions

make the entry to Bow submode. In order to avoid collision, the ownship redefined the heading, and

increased its velocity. At time step t25, the ownship deemed there was no risk of collision and switched to

mode Null. At last in time step t30, both vehicles were in Null mode, going back to the initial conditions.
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5.4 Static Obstacles

The static obstacles simulations comprise the ownship travelling with a velocity of roughly 1.75 meters

per second, encountering buoys with diameters of 5 meters. These buoys represent any type of static

obstacle, as explained in section 4.3, in order to reduce the computational necessity in the simulation.

These buoys will be displayed in two different dispositions: scattered around the map or closely together,

in order to represent an even bigger obstacle. The algorithm employed will be the Dynamic Window

Approach, where the critical perimeter set for the Lidar response is 15 meters, which, when violated,

sets the boolean danger variable to be True. In the images taken from the Gazebo simulation, the Lidar

rays will appear as a more intense blue, which represent the range of 15 meters, and when in contact

with an obstacle, an even darker blue appears around.

5.4.1 Scattered Obstacles

Having the obstacles scattered, the results are presented in table 5.7, where the values of the local

coordinates, course over ground (COG), speed over ground (SOG), and boolean information of danger

are presented with a time step of 5 seconds.

Table 5.7: Results for multi-static collision avoidance.
x (EAST) [m] y (NORTH) [m] COG [deg] SOG [m/s] Danger x (EAST) [m] y (NORTH) [m] COG [deg] SOG [m/s] Danger

t00 -15.13 -31.27 115.90 1.71 True t30 -21.12 -73.13 116.21 1.99 False
t05 -17.00 -37.59 90.16 1.78 True t35 -27.11 -80.51 128.21 1.59 False
t10 -16.99 -41.20 87.74 0.91 False t40 -34.10 -88.79 135.13 1.78 True
t15 -18.33 -48.57 112.30 1.92 False t45 -38.36 -92.99 137.13 1.72 True
t20 -21.23 -55.57 105.33 1.75 True t50 -45.00 -100.00 139.83 1.70 False
t25 -22.10 -65.02 86.58 1.85 False

To better visualize the results from table 5.7, images were taken from the Gazebo simulation (figure

5.7), which allows a better vision of the trajectory taken by the vehicle. The images are also presented

with a time step of 5 seconds, having figure 5.7(l) the complete trajectory.

Analyzing the results, it is observable that, since time step t00 to t05, there was already an obstacle

inside the critical perimeter, having the danger set to True. At time step t10, danger exited to False and

the vehicle tried to regain the mission course, reducing it’s velocity and adjusting the heading. However,

at time step t20, another obstacle entered the perimeter, thus reducing slightly the velocity, compared

to the previous time step. From time step t25 to t35, no other obstacle was detected, adjusting now the

heading to the goal of the mission. At time step t40, the last obstacle entered the perimeter. This time,

even though there was danger, the vehicle had slightly no change in its course as avoidance was not

needed. The goal was then reached, being the local coordinates (−45.00;−100.00).
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(a) t00 (b) t05 (c) t10

(d) t15 (e) t20 (f) t25

(g) t30 (h) t35 (i) t40

(j) t45 (k) t50 (l) Complete path

Figure 5.7: Multi-static collision avoidance.
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5.4.2 Big Obstacle

Having a big obstacle in the middle of the course, the results are presented in table 5.8, where the values

of the local coordinates, course over ground (COG), speed over ground (SOG), and boolean information

of danger are presented with a time step of 5 seconds.

Table 5.8: Results for big static obstacle collision avoidance.
x (EAST) [m] y (NORTH) [m] COG [deg] SOG [m/s] Danger x (EAST) [m] y (NORTH) [m] COG [deg] SOG [m/s] Danger

t00 -16.00 -33.43 116.29 1.75 False t20 -33.14 -49.70 167.87 1.14 True
t05 -19.65 -40.82 116.15 1.75 True t25 -39.59 -53.20 125.54 1.83 True
t10 -24.04 -47.34 155.25 1.29 True t30 -44.79 -61.32 107.70 1.86 True
t15 -29.14 -48.95 170.14 1.07 True t35 -47.04 -68.24 100.94 1.99 False

To better visualize the results from table 5.8, images were taken from the Gazebo simulation (figure

5.8), which allow a better vision of the trajectory taken by the vehicle. The images are also presented

with a time step of 5 seconds, having figure 5.8(i) the complete trajectory.

(a) t00 (b) t05 (c) t10

(d) t15 (e) t20 (f) t25

(g) t30 (h) t35 (i) Complete path

Figure 5.8: Big static obstacle collision avoidance.
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Analyzing the results, it is observable that the vehicle started with the same velocity and heading until

time step of t05, where the obstacle enters the critical perimeter, having the danger boolean condition

set to True, maintaining it until time step t30, when it passes the big obstacle and resumes the mission.

From time step t10 to t20, the reduction of velocity was in order to facilitate the change in heading, in

order to avoid collision.
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Chapter 6

Conclusions

The ability to autonomously avoid collision, of both static and dynamic vehicles following the maritime

rules, has been successfully implemented on the tested ASV. The algorithm developed is capable of

working in any other maritime vehicle, in the condition that the inputs and outputs match the requirements

specified throughout this document, and specifically explained in appendix D. The implementation of

ROS on the ASV makes it much more versatile, and it is believed that it will facilitate the integration of

other systems, such as the ones proposed in this thesis (section 2.2).

The Lidar was preferred compared to other ranging and measurement systems. Reason being that

the ASV can run into situations which demand specially speed and accuracy.

The Dynamic Window Approach has been implemented for static obstacles, which are detected and

mapped with the Lidar lasers. Some modifications were made on the algorithm in order to facilitate the

implementation with ROS and also to reduce the computational effort. The obstacles detected with the

Lidar lasers were represented as an array of coordinates for the DWA algorithm to loop and search the

best path to take. In order to reduce the computational effort, that a huge array of obstacles would leave,

all obstacles outside of the critical perimeter are deleted from the array.

The COLREGS node implemented for collision avoidance with other vehicles, follows the COLREGS

rules. Regarding the fundamental part of detecting the mode which the vehicle should behave, the

formulation presented in chapter 3 went through some changes compared to the cited paper. For the

main logic of the node algorithm, a completely new one was developed, in order to better suit the ASV

in test.

The choice for Python usage in most algorithms is due to being a high-level, interpreted and general-

purpose dynamic programming language which focuses on code readability. In addition, there are pure

Python client libraries developed for ROS integration. However, compared to C++, which is a native

programming language, the Python programming language takes more time to run the same algorithm.

45



The usage of Gazebo simulation was of utmost importance, providing a space to debug and test

the algorithm. Using Gazebo, which provides the simulated inputs, such as the IMU and GPS data,

and receives the outputs from the algorithm, such as the desired velocity and heading, it is certain that

switching to the physical model with the respective sensors, the algorithm would behave exactly the

same.

In summary, the implemented system has a completely functional GNC: the Guidance framework

provides the desired trajectory commands to the control system, such being provided by the collision

avoidance algorithms or the path following algorithm; the Navigation framework estimates and updates

the ASV’s current and future states, with help of the sensors; the Control framework determines the

proper control forces and moments, to be generated in conjunction with instructions provided by the

guidance and navigation systems.

6.1 Future Work

At present, the system has only been tested in a virtual simulator. It is now essential to further test it in

the physical world, where external forces for the control system might prove challenging.

This work had the assumption that every vessel possessed an AIS system integrated. In the case

that no AIS system was integrated, only the DWA algorithm would be employed and the COLREGS

rules would be disregarded, thus, an algorithm for vehicles with no AIS system should be implemented.

Detecting the vehicle with a Lidar, and ascertain whether the obstacle is in fact a vehicle, could be

a starting approach. In case heading, velocity, and position could be measured, the main algorithm

provided in this thesis could be promptly used. Otherwise, a new algorithm to detect the mode of

collision avoidance would be needed.

The author would like to advise that some modules in the algorithm should be changed to C++,

in order to reduce the computational power needed. The objective function loops trough the space of

heading and velocities available. With the computer used, some loops could take up to 1 or 2 seconds

which is not ideal.

A Radar system is also advisable to be implemented, because some weather conditions may cause

the Lidar system to restrict the operation, due to it being adversely affected by smoke, rain, and fog, thus

the Radar system could be a complement.

The author would also like to advise that the implementation of SLAM (Simultaneous Localization and

Mapping) algorithms, which were not used in this thesis as there was no necessity to generate a map of

the world with obstacles in it should be made. However, if a SLAM algorithm is implemented, specially

ROS SLAM packages (such as Hector-SLAM), it would improve the accuracy of the coordinates for the

obstacles.
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Appendix A

Extended Continental Shelf of

Portugal

Figure A.1: Map of the outer limits of the extended continental shelf of Portugal. (Ministry of defence of
Portugal, 2009)
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Appendix B

Mode Algorithms

The ModeAlgorithm function is executed in every iteration, called by the MainAlgorithm (function pre-

sented in algorithm 8 in appendix C). The function starts with a mode that is already defined from the

previous loop. The displayed conditions, allow the algorithm to enter every loop in case the mode is

defined as Null, CPA, or in the same mode it is going to check. For example, in case the mode at the

beginning of the function is StandOnX, it will only enter the algorithm 6. In case no mode is defined at

the end of the function, it will check if there is really any risk with CheckModeCPA function.

Algorithm 1: Determining COLREGS Major Mode

1 Function ModeAlgorithm(): // Executed each iteration of the behavior

2 if mode ε {Null, CPA,GiveWayOT} then
3 mode← CheckModeGiveWayOT () // Algorithm 2
4 end
5 if mode ε {Null, CPA,HeadOn} then
6 mode← CheckModeHeadOn() // Algorithm 3
7 end
8 if mode ε {Null, CPA, StandOnOT} then
9 mode← CheckModeStandOnOT () // Algorithm 4

10 end
11 if mode ε {Null, CPA,GiveWayX} then
12 mode← CheckModeGiveWayX() // Algorithm 5
13 end
14 if mode ε {Null, CPA, StandOnX} then
15 mode← CheckModeStandOnX() // Algorithm 6
16 end
17 if mode ε {Null, CPA} then
18 mode← CheckModeCPA()

19 end
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The following algorithms are the corresponding check mode functions. Each have a part 1, being

the absolute release check, a part 2, being the check release condition from the mode, and a part 3,

which is the entry mode criteria. For those modes with submodes, there also exists a part 4, in order to

determine the entry submode. These parts are presented in sequence with corresponding return calls,

in case the conditions are met, thus, for the algorithm to reach the entry check condition, it must fail both

the absolute release and the check release.

Algorithm 2: COLREGS GiveWayOT Mode

1 Function CheckModeGiveWayOT(): // Called from within MainModeAlgorithm()

2 if (r > rpwt) then // Part 1: Absolute Release check

3 return Null
4 end
5 if (mode == GiveWayOT ) then // Part 2: Check release from GiveWayOT

6 if ((α > 337.5) or (α < 22.5) or (ṙ > 0)) then // GiveWayOT completed

7 return CPA
8 if ((submode == Port) and (180 < β < 355)) then // Switch submode

9 return GiveWayOT, Starboard
10 else if ((submode == Starboard) and (β < 5)) then // Switch submode

11 return GiveWayOT, Port
12 else // Mode/Submode unchanged

13 return GiveWayOT
14 end

15 end
16 if ((α > 247.5)or(α < 112.5)or(¬passoscn) then // Part 3: Check GiveWayOT entry

criteria

17 return CPA;
18 end
19 if (passoscns) then // Part 4: Determine entry submode

20 return GiveWayOT, Starboard; // GiveWayOT entry case A

21 else
22 return GiveWayOT, Port; // GiveWayOT entry case A

23 end
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Algorithm 3: COLREGS Head-On Mode

1 Function CheckModeHeadOn(): // Called from within MainModeAlgorithm()

2 if (r > (2× rpwt)) then // Part 1: Absolute Release check

3 return Null
4 end
5 if (mode == HeadOn) then // Part 2: Check release from HeadOn

6 if (r > r̆cpa) and (ṙ > 0) then // HeadOn completed

7 return CPA
8 else if aftoscn then // Ownship passed Contact

9 return CPA
10 else if staroscn and starcnos then // Port-Port may be no longer advisable

11 βδ ← (β − φ)

12 αδ ← (α− φ)

13 if ((βδ > φ
2 ) or (αδ > φ

2 ) or ((βδ + αδ) >
2×φ
3 )) then

14 return CPA
15 end

16 else // Mode unchanged

17 return HeadOn
18 end

19 end
20 if ((mode == HeadOn) or (mode == Null)) then // Part 3: Check HeadOn entry

criteria

21 if (|[α]180| ≤ φ) and (|[β]180| ≤ φ) then
22 return HeadOn;
23 else
24 return CPA;
25 end

26 end
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Algorithm 4: COLREGS StandOn Overtaken Mode

1 Function CheckModeStandOnOT(): // Called from within MainModeAlgorithm()

2 if (r > rpwt) then // Part 1: Absolute Release check

3 return Null
4 end
5 if (mode == StandOnOT ) then // Part 2: Check release from StandOnOT

6 if (ṙ > 0) then // StandOnOT completed

7 return CPA
8 else
9 return StandOnOT

10 end

11 end
12 if ((β < 112.5) or (β > 247.5) or (¬passcnos )) then // Part 3: StandOnOT entry criteria

13 return CPA;
14 else
15 return StanOnOT
16 end

Algorithm 5: COLREGS GiveWay Crossing Mode

1 Function CheckModeGiveWayX(): // Called from within MainModeAlgorithm()

2 if (r > rpwt) then // Part 1: Absolute Release check

3 return Null
4 end
5 if (mode == GiveWayX) then // Part 2: Check release from GiveWayX

6 if (r > r̆cpa) and (ṙ > 0) then // GiveWayX completed

7 return CPA
8 else if (α ≤ 180) then // Ownship on Contact starboard side

9 return CPA
10 else // Mode/Submode unchanged

11 return GiveWayX
12 end

13 end
14 if ((α < 247.5) or (β > 112.5)) then // Part 3: GiveWayX entry criteria

15 return CPA;
16 if ((crossosxcnb) and (rosxcnb > (r̂cpa + r̆cpa)/2)) then // Part 4: Determine Submode

17 return GiveWayX, Bow;
18 else
19 return GiveWayX, Stern
20 end
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Algorithm 6: COLREGS StandOn Crossing Mode

1 Function CheckModeStandOnX(): // Called from within MainModeAlgorithm()

2 if (r > rpwt) then // Part 1: Absolute Release check

3 return Null
4 end
5 if (mode == StandOnX) then // Part 2: Check release from StandOnX

6 if (ṙ > 0) then // StandOnX completed

7 return CPA
8 else // Mode/Submode unchanged

9 return StandOnX
10 end

11 end
12 if ((α > 112.5) or (β < 247.5) or (ṙ ≥ 0)) then // Part 3: StandOnX entry criteria

13 return CPA;
14 else
15 return StandOnX
16 end
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Appendix C

Main Algorithm

Algorithm 7: Vehicle Top-level behaviour

1 Define reference values ref // headOn angle, lat and lon reference values, ...

2 While ROS is running : // Top level behavior

3 Contact← Subscribe Contact AIS data // Section 4.5

4 Convert Contact’s latitude and longitude into local coordinates (x, y)

5 r̂cpa ; r̆cpa ← Define dynamic perimeters of safety // Section 4.4

6 Ownship← Subscribe Ownship data // Subsection 4.6.1

7 mode, submode, θdesired, vdesired, yawdesired ←
MainAlgorithm(Ownship ;Contact ; r̂cpa ; r̆cpa ; ref) // Algorithm 8

8 Publish vdesired and yawdesired to the control module
9 Publish to AIS the vehicle updated data and intentions

Algorithm 8: Determining desired heading and velocity

1 Function MainAlgorithm(): // Second level entry behavior

Input: Ownship updated data ; Contact updated data ; r̂cpa ; r̆cpa ; ref

// Explained in section 4.6

2 Update Ownship and Contact parameters // Loop through functions in chapter 3

3 Assess risk of collision and Start Manoeuvre Boolean Condition
4 mode, submode← ModeAlgorithm() // Algorithm 1

5 if (mode ! = Null) then
6 Set risk function and heuristic function // Heuristic depends on the mode. Loops

through the space of heading and velocities. For each, updates the vehicle

parameters

7 Set Objective function and determine desired heading and velocity // Section 3.10

8 else // Proceed with mission

9 Keep mission control heading and velocity
10 end
11 Convert heading to yaw
12 Send desired yaw and velocity to control module
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Appendix D

Software Set-Up and Installation

This appendix presents the necessary steps to implement the collision avoidance system to run in a

vehicle. Some prerequisites are needed, such as a vehicle able to function with ROS as will be further

explained in the following sections.

D.1 Installing ROS and Ubuntu

For this section it is needed the following:

• Laptop/computer with Ubuntu installed

• Vehicle able to take in ROS commands (optional)

D.1.1 Ubuntu and ROS on your personal computer

The version used and tested was Ubuntu 16.04 (Xenial Xerus) and can be downloaded from the Ubuntu’s

main page1.

After having Ubuntu installed, it is time to install ROS. The version used and tested for the algorithm

which was presented is ROS Kinetic2.

The need to install ROS in the computer can be, either to use a simulated vehicle in a software such

as Gazebo (Open Source Robotics Foundation, 2014), or in case the user is in possession of a vehicle

able to also run ROS, for a debugging phase and to exchange information.

D.2 Getting started with ROS

It is not the purpose of this thesis to point out how to build a robot or vehicle. The intention is to specify

the necessary inputs needed from the system and the type of outputs which it gives out to the control

frame. Some packages are mentioned throughout the thesis and some will also be mentioned here.

1https://www.ubuntu.com/download/desktop
2http://wiki.ros.org/kinetic
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The following commands create a personal workspace on ROS, in case one is not yet created.

Create the workspace:

1 $ mkdir -p ~/catkin_ws/src

2 $ cd ~/catkin_ws/src

3 $ catkin_init_workspaces

In order to source the workspace each time a new terminal is opened, the following command open

the bashrc-file:

1 $ sudo gedit ~/.bashrc

Then, the following line should be added at the bottom of the bashrc-file:

1 $ source gedit ~/catkin_ws/build/setup.bash

D.3 Package installation

The installation of the algorithms nodes can be done via git clone:

1 $ cd ~/catkin_ws/src

2 $ git clone https://github.com/uc2013171665/asv_colregs.git

3 $ cd..

4 $ catkin_make

After this step, the following files are added to the working directory:

62



catkin ws

build

devel

src

ASV messages

msg

AIS.msg

debug.msg

desired.msg

debug2.msg

CMakeLists.txt

package.xml

ASV

launch

ASV.launch

ASV2.launch

src

Ownship vehicle.py

Contact vehicle.py

lidar.py

COLREGS utils

functions.py

lat lon convert.py

main algorithm.py

mode algorithm.py

quat euler yaw.py

CMakeLists.txt

package.xml

CMakeLists.txt

In this repository, there also exists the contact node, used for test and debugging. Both nodes are

called from the ASV.launch file and are generated from the Ownship vehicle.py and Contact vehicle.py

files respectively.

Both of these, utilize the python files from within COLREGS utils folder. The functions.py has the

functions presented in chapter 3. The lat lon convert.py has the conversion of latitude, longitude and

altitude, given by the GNSS, into the local coordinates used in the algorithm. The main algorithm.py, as

the name indicates, is the main algorithm (algorithm 8). The mode algorithm.py possesses all the mode

63



algorithms (algorithm 1 and appendix B). The quat euler yaw.py has two conversions: the conversion of

quaternions into euler angles, from which we get yaw; and the conversion from yaw to heading.

The Ownship vehicle.py and Contact vehicle.py, mainly call the main algorithm.py and subscribe and

publish to other nodes, which are the inputs and outputs of the algorithm developed.

D.3.1 Inputs and Outputs

The physical vehicle, or the simulated vehicle, must have working sensors (described throughout this

thesis), such as the proprioceptive (subsection 2.2.1) and the exteroceptive (subsection 2.2.2) sensors.

Thus, the inputs needed are: a viable odometry, GNSS data, and AIS data from other vehicles. For

outputs, the algorithm produces data for the control module, AIS data, and debugging data. All these

are published and subscribed with the respective topic names. Thus, in order to implement in other

vehicle, open the Ownship vehicle.py file, and change the topic names to the ones used by the vehicle,

and take into account the message used by the topic.

Odometry

The Odometry is essential to know the ownship’s position, heading, and velocity, which are necessary

for the algorithm. Usually, odometry is used with the message type nav msgs/Odometry. It is also this

type of message used in order to set up the robot with the navigation package (Open Source Robotics

Foundation, 2016). The name of the topic can be set to the preferred, having to be consistent with the

one used by the vehicle.

GPS

The GPS data, from the GNSS system, is used to get the local coordinates, as previously explained.

GNSS and sensors data are frequently used with the message type sensor msgs/NavSatFix. Again, the

name of the topic can be set to the preferred, having to be consistent with the one used by the vehicle.

AIS

The AIS is subscribed and published by the Ownship node. In the algorithm, the current topic name is

“chatter”, with the message type being ASV messages/AIS.

Control module

The control block is accountable for the calculation of the necessary forces/moments to be passed on

to the thrusters, and to achieve the control objective, which consists of ensuring that the ASV follows

the desired path as accurately as possible. A reduction to the six-DOF3 model can be made to only

consider motion in surge/forward, sway/lateral and heading/yaw, neglecting both roll, pitch, and heave

as to maintain model simplicity (Fossen, 2011).

3Degrees Of Freedom
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To derive the motion equations describing the ASV kinematics, the definition of two reference frames

is mandatory. The notation that will be used from now on is the one defined by SNAME (SNAME The

Society of Naval Architects and Marine Engineers, 1950), with slight differences as in (Fossen, 2011).

• The body-fixed {b} is the non-inertial frame, composed by the axes {xb, yb, zb}, and the Ob is

chosen, for simplicity, to coincide with the Center of Gravity (CG) of the ASV.

• The local NED (North-East-Down) {n} is the inertial reference frame, composed by the orthonor-

mal axes {xn, yn, zn}, and the origin is represented by On.

In order to determine the position and orientation of the vehicle, three independent coordinates are

needed, namely (x, y, ψ), expressed in the inertial frame, {n}. For linear and angular velocity, the three

coordinates are (u, v, r), and (X,Y,N ) for control forces/moments, both expressed in the non-inertial

frame, {b}. The three motion components can be expressed as in Table D.1, or, in the vector form, as:

• η = [x y ψ]T expressed in the {n} frame;

• v = [u v r]T expressed in the {b} frame;

• τ = [X Y N ]T expressed in the {n} frame;

Table D.1: Corresponding notation following SNAME.

Forces/moments linear/angular speeds positions/angles

Motions in the x-direction (surge) X u x

Motions in the y-direction (sway) Y v y

Rotations about the z-axis (yaw) N r ψ

Figure D.1: Earth-Fixed and Body-Fixed reference frames. Adapted from (Fossen, 2011).

A control frame ought to be implemented. If in need to know how to create the frame, (Fossen, 2011)

is a complete reading on control for maritime vehicles.

The ownship node publishes 4 arguments which the control block is subscribing: desired.yaw; de-

sired.velocity; desired.vid; Reset. Therefore, the control frame of the vehicle must subscribe to a topic
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with these arguments as the input. The name of the topic can be defined as preferred, taking into ac-

count that both node and the vehicle must have the coherent topic name, and the message arguments

have to be as detailed.

The desired.yaw and desired.velocity are as the names imply. The desired.vid was introduced in

order to identify which vehicle was publishing the data in the simulation, as both ownship and contact

published to the same topic, thus the need to introduce this reference. The Reset is a boolean variable

which when set true, the values sent are reseted by the control module.

Debugging

A debugging message is essential to facilitate corrections and to understand the anomalies which appear

through the development. The Ownship node publishes a topic named “DEBUG” with the message type

being ASV messages/debug. The debug.msg arguments are as presented in table D.2

Table D.2: ROS debug message.

debug.msg

Data Type Variable Name Unit

int32 counter -

int32 mode cn -

int32 mode cn -

float64 lat cn [deg]

float64 lon cn [deg]

float32 SOG cn [m/s]

float32 COG cn [deg]

int32 length cn [m]

float32 x cn [m]

float32 y cn [m]

int32 mode os -

int32 mode os -

float64 lat os [deg]

float64 lon os [deg]

float32 SOG os [m/s]

float32 COG os [deg]

int32 length os [m]

float32 x os [m]

float32 y os [m]

float64 Start Evasion [m]

float64 r [m]
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Laser scan

For static obstacles, the Lidar is used to scan data in order to detect and generate an array of obstacles

for the algorithm. A Lidar system or a simulated laser scan data, are needed for the subscription by the

algorithm, having the topic being /mybot/laser/scan, with the msg type being sensor msgs.msg.

Debugging 2

A debugging message was also implemented when debugging the DWA algorithm, brought by the lidar

node. The lidar node publishes a topic named “DEBUG2” with the message type being ASV messages/debug2.

The debug2.msg arguments are as presented in table D.3

Table D.3: ROS debug2 message.

debug2.msg

Data Type Variable Name Unit

int32 counter -

bool danger -

float32 v [m/s]

float32 w [rad/s]

float32 yaw [rad]

float32 x [m]

float32 y [m]

float32 dist to goal [m]

D.4 Launch the program

As can be seen in the directory tree (subsection D.3), the directory /catkin ws/src/ASV/launch has the

file ASV.launch and ASV2.launch. The launch file documentation can be seen in (Open Source Robotics

Foundation, 2017), which describes the XML format used for roslaunch .launch files. The launch file has

most of the arguments in comment as default, as it will depend on its use. It can be used to launch a

Gazebo simulation, define the vehicle properties, or it could be used to launch the physical vehicle. In

the ASV.launch, the only argument not in comment is the COLREGS node launch, which is independent

of the case, whereas in the ASV2.launch it is the LIDAR node. The COLREGS algorithm and the DWA

algorithm were separated to facilitate the testing and debugging.

Having defined the arguments in the desired launch file, the launch is done following one of the

command:

1 $ roslaunch ASV ASV.launch

1 $ roslaunch ASV ASV2.launch
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D.5 rqt graph

The rqt graph provides a GUI plugin for visualizing the ROS computation graph (Open Source Robotics

Foundation, 2014). Figure D.2 has a cropped part of the outputs of the rqt graphs from COLREGS and

DWA algorithms, providing a better visualization of the nodes and topics used. The nodes are presented

in circular geometries, and the topics are in boxes.

In figure D.2(a), we have in the middle two nodes, the /Ownship node and the /Contact node, which

are subscribing to the respective GPS and odometry topic, and both subscribe and publish to the /chatter

topic which has the AIS messages. The output for the control is not visualized in this rqt graph, however

it is send and treated in the control module which then produces the commands for the thrusters, which

are on the left side of the rqt graph with the topic names /cmd drive1 and /cmd drive2. Because the test

and debugging is realized on a virtual simulator (Gazebo), they are being subscribed by Gazebo’s node,

/gzserver, which is also responsible for publishing the sensor topics. For debugging, in the simulation, a

node is subscribing to the /DEBUG topic, published by the /Ownship node with the message debug.msg.

In figure D.2(b), the main node is now called /LIDAR which is subscribing to the odometry topic. With

a Lidar system implemented, the node is now subscribing to the data from the laser scan, which is in

the topic /mybot/laser/scan. The output for the control is also not visualized in this rqt graph, however it

is send and treated in the control module which then produces the commands for the thrusters, which

are on the left side of the rqt graph with the topic name /cmd drive. Gazebo is again used, where the

input for thrusters are being subscribed by Gazebo’s node (/gzserver), which is also responsible for

publishing the sensor’s topics. For debugging, in the simulation, a node is subscribing to the /DEBUG2

topic, published by the /LIDAR node with the message debug2.msg.
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(a) COLREGS (b) DWA

Figure D.2: Rqt graph.
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