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Abstract

In this thesis, an attitude sensor is used to compensate for rotational motion, and to
generate virtual images to simulate a pure translation movement. The compensation
of rotational motion is made possible by the combination of inertial and earth field
magnetic sensors within a package which provides an absolute orientation measure-
ment, and by a calibration routine to determine the rotation between the camera and
inertial sensor frames. The objective is to facilitate vision-based tasks such as navi-
gation over smooth terrain, 3D point cloud registration, generation of image mosaics
and digital elevation maps, and plane segmentation. In the rotation-compensated,
pure translation case, homographies are reduced to planar homologies, which are
used to recover the relative pose between two views. In the particular case where the
ground plane is horizontal, the relative pose between two views can also be recovered
by directly finding a rigid transformation to register corresponding scene coordinates.
These pure translation models perform fairly accurately especially regarding the esti-
mation of the vertical motion component. The results include recovering trajectories
of hundreds of meters for an airship UAV and comparison with GPS data. The
accuracy of the height estimation was evaluated against ground truth through ex-
periments in controlled environments. The rotational motion and the vertical and
horizontal components of translational motion are measured or estimated separately,
which should facilitate the integration of other sensors in the future, although only
orientation measurements and image pixel correspondences have been used in this
thesis. The rotation-compensated images and the pixel correspondences are further
exploited to perform plane segmentation and to generate sparse Digital Elevation
Maps and image mosaics. The visual odometry is also fused with GPS position fixes,
improving the recovered trajectory locally. These gains are further exploited to im-
prove the tracking accuracy of a target moving on the ground which is tracked in a 2D
frame of reference in actual metric units, in the airship and urban people surveillance
scenarios. Orientation estimates are also used to rotate 3D point clouds obtained by
ranging devices such as stereo cameras or Laser Range Finders to a stabilized frame
of reference, and the problem of registration of these point clouds is reduced to the
determination of the remaining translation vector, taking into account the character-
istics of the ranging device which generated the point clouds. The appendix presents
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the technical characteristics of the UAV platform utilized for dataset recording, a re-
motely piloted airship, as well as requirements towards future extension for automatic
flight.



Resumo

Nesta tese, um sensor de orientação é usado para compensar o movimento rotacio-
nal, e para gerar imagens virtuais, simulando um movimento de translação pura. A
compensação do movimento rotacional se torna possível devido à combinação de sen-
sores inerciais e de campo magnético, de forma a fornecer uma medida de orientação
absoluta, e à uma rotina de calibração para determinar a rotação entre os sistemas
de cordenadas da câmera e do sensor inercial. O objetivo é facilitar tarefas basea-
das em visão como navegação sobre superfícies planas, registro de nuvens de pontos
3D, geração de mosaicos de imagens e mapas digitais de elevação, e segmentação de
planos. Com a rotação compensada, supondo-se um movimento de translação pura,
homografias são reduzidas à homologias planares, que são usadas para recuperar a
pose relativa entre duas vistas. No caso particular onde o plano do chão é horizon-
tal, a pose relativa entre duas vistas também pode ser recuperada pela estimação de
uma transformação rígida que registre coordenadas correspondentes na cena. Estes
modelos considerando translação pura obtêm resultados mais precisos especialmente
ao estimar a componente vertical da trajetória. Os resultados incluem a recuperação
de trajetórias de centenas de metros para um UAV dirigível com comparação com
dados de GPS. A estimação da altura foi avaliada também em ambientes controlados,
onde a altura real é conhecida com precisão. O movimento rotacional e os compo-
nentes horizontais e verticais do movimento translacional são medidos ou estimados
separadamente, o que deve facilitar a integração de outros sensores no futuro, embora
apenas medidas de orientação e correspondências entre os pixels das imagens foram
usadas nesta tese. As imagens com rotação compensada e as correspondências entre
os pixels das imagens são exploradas ainda para realizar segmentação de planos e
para gerar mapas de elevação digital esparsos e mosaicos de imagens. A odometria
visual é também fundida com leituras de posição do GPS, melhorando localmente a
trajetória recuperada. Estas melhorias são ainda exploradas para aumentar a acurá-
cia do seguimento de um alvo que se move no plano da terra, que é seguido em
coordenadas 2D considerando as unidades métricas reais, nos cenários do dirigível e
de vigilância urbana de pessoas. As estimativas de orientação também são usadas
para rodar nuvens de pontos 3D, obtidas por sensores de mapeamento por medida de
distância como cameras estéreo e Laser Range Finders, em um sistema de coordena-
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das estabilizado. Então o problema de registro destas nuvens de pontos é reduzido à
determinação de um vetor de translação, levando em consideração as características
do sensor que gerou as nuvens de pontos. O apêndice apresenta as características téc-
nicas da plataforma UAV, um dirígivel pilotado remotamente, usada para gravar os
datasets utilizados, bem como requisitos para extender a plataforma para a realização
futura de vôos automáticos.
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Chapter 1

Introduction

1.1 Motivation

This thesis combines orientation measurements from an Attitude Heading Reference
System (AHRS) and computer vision techniques, exploiting this combination in prob-
lems related with the determination of the relative pose of successive views taken by
a mobile observer, such as an Unmanned Aerial Vehicle (UAV). It includes results
obtained from datasets acquired by the remotely piloted unmanned airship of figure
1.1, which carries both a camera and an AHRS. The covered problems are trajectory
recovery for navigation above leveled terrain, registration of 3D point clouds acquired
by the mobile observer, image mosaicing and 3D mapping with monocular cameras,
and tracking of moving objects in the ground plane. This thesis explores the benefits
obtained when the orientation estimates allow the rotational motion to be compen-
sated, and imagery or 3D point clouds to be reprojected into a stabilized reference
frame.

The limits of computer vision or sensorial data fusion alone have already been
explored, and it is already known that some limits may be overcome by combining
them. This combination has been made possible by recent technological advances,
such as the development of small scale sensor packages (AHRS) which output ab-
solute orientation estimates. A modern AHRS outputs geo-referenced orientation
measurements, using accelerometers which measure the direction of gravity and mag-
netometers which measure the earth magnetic field. The AHRS firmware fuses and
filters information from its internal sensors, freeing the main CPU for higher level
tasks and generating outputs at a larger frequency than the frame rate of typical
digital cameras.

The experiments reported in is thesis utilize a small, micro-machined AHRS which
is fixed rigidly to a digital camera, providing a geo-referenced estimate of the camera
orientation. To generate this estimate the rigid transformation between the camera

1
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(a) (b)

Figure 1.1: The DIVA airship, during taking off (a) and approaching to land (b).

and inertial sensor frames must be known. This transformation is estimated by a
recently developed calibration procedure [Lobo and Dias, 2007], eliminating the need
for precise mechanical assembly. This has already been used to improve robustness
on image segmentation and 3D structure recovery from stereo [Lobo and Dias, 2003,
Mirisola et al., 2006] or independent motion segmentation [Lobo et al., 2006].

The development of vision-only or inertial-only algorithms are certainly worthy
research goals by themselves and are suited to applications where only one of them
is available. Nevertheless, the technological development, producing higher quality
digital cameras and inertial and magnetic sensors at smaller sizes, weights and costs
increase the range of applications where both are available together. For these latter
applications it is already becoming clear that many important problems can be solved
more efficiently, accurately, or with better scalability, with the combination of both
sensor modalities.

1.2 State of the Art

This section reviews recently reported research on the area of relative pose recovery
and navigation, using computer vision, sensorial data, and especially the fusion of
both. The related problems of image mosaicing, 3D map registration and tracking
are also covered.
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1.2.1 Visual navigation & 3D mapping
In [Hygounenc et al., 2004], a stereovision-only approach is used to build a 3D map of
the environment from stereo images taken by a remotely controlled airship, keeping
estimates of the camera pose and the position of automatically detected landmarks
on the ground. The landmarks are found by interest point algorithms applied on the
aerial images. It was not their aim to integrate inertial measurements.

Again utilizing stereo images taken by a UAV, the trajectory can be recovered by
registering successive sets of triangulated 3D points calculated for each stereo frame.
Trajectories of hundred of meters have been recovered [Kelly et al., 2007], although
the UAV height is limited to a few meters due to stereo baseline size. An earlier work
focused on estimating the height above the ground plane using efficient sparse stereo
techniques [Corke et al., 2001].

Images from a moving camera can also be used to track a sparse set of 3D points
in the environment using triangulation and interest points matched across the image
sequence and considered as natural landmarks. These estimates of observed land-
marks, combined with measurements from inertial sensors, were used to estimate the
landmark poses and the camera trajectory for a ground vehicle carrying an omni-
directional camera through a large trajectory [Strelow and Singh, 2004]. Matched
interesting points in images with broad baseline were used to generate stochastic
epipolar constraints which were used to minimize drift in the position estimate from
inertial-based navigation [Diel, 2005].

Image mosaicing was performed for an unmanned submarine navigating above flat
sea-bottom, using only images from a monocular camera as input for the calculation
of relative poses [Gracias, 2002]. The most recent vehicle orientation estimate was
used to reproject the images onto a stabilized plane, avoiding using direct measures
from inertial sensors. The vehicle pose is estimated, and a mosaic of the sea-bottom
is generated, which in turn is used for navigation. Although it involved elaborate
optimization steps, the registration converges only if the vehicle has restricted move-
ment and shows minimal variation in roll and pitch angles. These results indicate a
limitation for vision-only approaches.

A UAV trajectory can also be estimated by fusing GPS and on-board inertial
data and considering a dynamic vehicle model. Given accurate vehicle poses, im-
ages taken from a high-flying airplane are reprojected onto the ground plane thus
achieving one-pixel accuracy with no need for image-based registration techniques
[Brown and Sullivan, 2002]. At high altitudes a relatively flat area can be safely as-
sumed to be planar.

Combined inertial and vision data were used to keep pose estimates in an under-
water environment, navigating a robot submarine above a large area [Eustice, 2005],
with no access to a beacon-based localization system. Relative pose measurements
from the images were used to avoid divergence of the tracked vehicle pose, and an
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image mosaic was generated as a byproduct.
In the context of an aerial vehicle, even without utilizing the available GPS data,

inertial measurements and observations of artificial landmarks on images can be fused
together to provide a full 6-DOF pose estimate, performing localization and map-
ping, and incorporating recent advances on filtering. Inertial sensors and barometric
altitude sensors can also compensate for inaccurate GPS altitude measurements or
satellite drop-outs [Kim, 2004].

The trajectory of a mobile observer can be recovered from images of a planar
surface using interest point matching and the well known planar homography model.
Various geometric constraints have been proposed to recover the right motion among
the four solutions of the homography matrix decomposition [Caballero et al., 2006].
This has been already performed for an airship by using clustering and blob-based
interest point matching algorithms, building an image mosaic which in turn is used as
a map for navigation. The relative pose estimation involved homographies calculated
from images of a planar area taken by a UAV [Caballero et al., 2006] and image
sequences taken by various UAVs [Merino et al., 2006].

The trajectory of a UAV can also be recovered by tracking known fixed targets
on the ground, which requires modifying the environment [Saripalli et al., 2003].

Another example of usage of inertial data to aid vision tasks are ego-motion al-
gorithms without using pixel correspondences [Makadia and Daniilidis, 2005], where
gravity vector measurements compensate for two rotational degrees of freedom, de-
creasing the dimensionality of the unknown parameter space.

Visual servoing schemes based on the relative pose obtained by decomposing ho-
mographies could also be improved with the homology model [Suter et al., 2002],
especially when depth ratios calculated from the homography matrix are directly
utilized.

Aerial vehicles have been utilized to produce 3D maps of the ground using a variety
of different sensors. Stereo images were used to build a dense 3D map of the ground
surface, in the form of a DEM (Digital Elevation Map), in the work already cited above
[Hygounenc et al., 2004]. Stereo imagery has also been combined with other vision
techniques such as color segmentation [Huguet et al., 2003]. Airborne range sensing
devices such as laser range finders or radars have also been extensively used to build
3D maps actually exploited in domains such as geology [Cunningham et al., 2006].

1.2.2 Image Mosaicing

Image mosaicing consists on registering a set of images of a surface in the world,
producing a single, larger image of this surface. The mosaic ideally images the union
of the areas imaged by the individual images.

Many of the image mosaic results existing so far register images taken at the
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same position, but with the camera looking at different directions, i.e., a pure ro-
tational movement. In this case, the mosaicing surface is the plane at infinity, or
the sphere of directions. Disregarding differences on the camera intrinsic parameters,
the transformation needed to register any pair of images is an infinite homography,
as there is not translation. For the specific pure-rotation case, there are commercial
software products which take as input a set of images, and output a single mosaiced
image, which is called a panorama [Brown, 2006]. The solutions available take into
account differences on the camera intrinsic parameters [Brown and Lowe, 2003], illu-
mination [Eden et al., 2006], and include optimization steps to reach a final registra-
tion, plus processes to produce a visually clean image by eliminating misregistered
images of the same object which appear repeated in the mosaic, called “ghosts”
[Szeliski, 2005, Szeliski, 2004, Brown and Lowe, 2003].

Image mosaicing also can be done above a planar surface, allowing the camera to
freely translate, and there are also solutions available for this case, including bun-
dle adjustment, N-view interest point matching, and automatically reprojecting the
images with an infinite homography in a direction that minimizes the projective dis-
tortion [Capel, 2001]. The number of images registered on such mosaics range from
a handful to less than a hundred images.

1.2.3 3D Depth map registration

3D mapping with color images and a rotating LRF was already performed
[Ohno and Tadokoro, 2005], but without any calibration process to calibrate the ro-
tation between the sensor frames, and using only ICP to register the point clouds.
Rotating LRFs were also used to recover 3D range scans, that were matched to build
maps, in room scale with small mobile robots [Kleiner et al., 2005].

Large terrestrial 3D mapping [Triebel et al., 2006] was performed using laser scan-
ners mounted on a car, and registered on the world frame with the aid of fused infor-
mation from on-board GPS, inertial systems and odometry. Before being integrated
into a new representation for the global map, local laser scans were registered together
with ICP algorithms, with no help from image or inertial data.

The ICP (Iterative Closest Point) algorithm [Besl and McKay, 1992], and its vari-
ations, has been widely used for the registration of pairs of 3D point clouds. It is
based on picking a subset of 3D points from each point cloud, and associating each
such point to the closest point in the other point cloud. Then, a transformation is
found to register these corresponding pairs of points. The process is repeated until
no significant progress is made. This process is vulnerable to convergence into local
minima, particularly when the initial position is far from the correct one. Applying
ICP after the processes defined in this thesis remain a possibility, depending on the
application.
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Results on visual odometry from stereo images associate 3D points obtained from
stereo images with interest points detected on the images. By matching the inter-
est points on images taken successively, the sets of 3D points derived from these
images are registered, recovering the full 6-DOF relative pose between two views
[Cheng et al., 2006, Sünderhauf and Protzel, 2007]. The error on stereo triangulation
is considered, leading to different weights to each constraint depending on the posi-
tion of the 3D points relative to the cameras. The case of translation-only movement
the registration reduces to solve a weighted average [Matthies and Shafer, 1987].

The processes of interest point matching and stereo imaging are used in the reg-
istration of point clouds, but they usually output wrong estimates for some pixels,
which are called outliers. To detect and eliminate these outliers, robust estimation
techniques such as RANSAC [Fischler and Bolles, 1981] may be used, or geometric
constraints can be exploited, avoiding iterative techniques. An example are the two
constraints proposed by [Hirschmüller et al., 2002], which exploit the fact that the
transformation is rigid. Given a pair of 3D points which have correspondences on
the other point cloud, the first constraint checks if the distance between the two 3D
points remains the same after the transformation. The second constraint checks if the
pair of 3D points is rotated by an angle too large, given a maximum possible rotation
between both point clouds.

A comprehensive comparison of different approaches for the registration of stereo
point clouds is still missing in the literature, as it was noted in a recent survey paper
[Sünderhauf and Protzel, 2007].

1.2.4 Surveillance and Tracking
The Unscented Transform [Julier and Uhlmann, 1997] has been used to propagate
uncertainty in the moving camera position and orientation, and from the target de-
tected position in the image, to the target position on the ground plane. Then from a
series of successive observations of the same static target, a final estimate of its posi-
tion was obtained, taking into account the anisotropic uncertainty of each observation
[Merino et al., 2005].

Uncertainty in the camera orientation estimate is often the most important source
of error in tracking of ground objects imaged by an airborne camera [Redding et al., 2006],
and its projection in the 2D ground plane is usually anisotropic even if the original
distribution is isotropic.

1.3 Objectives
This thesis aims to perform trajectory recovery from a sequence of images reprojected
in a stabilized frame where the rotation is compensated with the aid of AHRS ori-
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entation estimates. In the particular case where the ground plane is horizontal, the
relative pose between two views can also be recovered by directly finding a rigid trans-
formation to register corresponding scene coordinates. Additionally, for a sequence of
images of a planar area, the transformation that relates corresponding pixel coordi-
nates in two images is a planar homography, which is reduced to a planar homology
in the pure translation case. Some preliminary results using the homology model
have already been obtained [Michaelsen et al., 2004], but a comprehensive evaluation
of these pure translation models with aerial images is still missing in the literature.

In our experiments, the camera trajectory is recovered without recourse to artificial
landmarks and using only a monocular camera instead of depending on stereo imaging.
The method depends on orientation measurements, which are obtained only from the
AHRS sensor package, without considering any model of the vehicle dynamics. GPS
is utilized only for comparison, and not on the trajectory recovery process itself,
except in the experiments where both GPS and visual odometry are fused.

As it is shown in some of the works reviewed, incorporating GPS measurements
or considering a dynamic vehicle model in the estimation of the camera orientation
could improve the orientation estimate. Moreover, the models shown here has per-
formed reasonably or at least better than image only approaches even with a relatively
low-cost and inaccurate AHRS. More expensive and accurate AHRS models should
provide more accurate estimates.

Differently of the UUV utilized to perform navigation and mosaicing [Gracias, 2002],
the airship used in this thesis has large variations on roll and pitch during its flight,
which is typical behavior for airships [de Paiva et al., 2006]. The orientation esti-
mates compensate for these variations, and overcome that limitation of the vision
only approach.

Some of the works reviewed also utilize the reprojection of images into a virtual
stabilized plane. Nevertheless, the homography model is still used. It may still be
necessary to recover the residual rotation for some applications, but the pure trans-
lation models presented here are certainly an option, and appear to be especially
suitable to estimate the vertical motion component. Moreover, with the pure transla-
tion models the extraction of the translation vector up to scale has a unique solution.
In contrast, with the homography model, the recovered matrix must be algebraically
decomposed into rotational and translational components, yielding four possible so-
lutions, of which only one is the real relative pose [Ma et al., 2004].

Additionally, the homology model explicity separates the vertical and the hori-
zontal components of the translation, facilitating the fusion of other measurements of
these specific motion components in the future. For example, GPS north-east velocity
or optical flow could be used to measure the direction of horizontal translation.

This work deals mainly with the calculation of relative pose between successive
camera poses, and the trajectory recovered is only a concatenation of the relative
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poses, with Kalman Filters employed to reduce errors. It also includes results from
the fusion of visual trajectory recovery and GPS position fixes. But this relative pose
measurement could be incorporated in localization and mapping schemes such as the
ones reviewed before, using artificial landmarks placed on the environment or natural
landmarks found by interest point matching.

This thesis also provides a method for obtaining 3D maps from the stabilized
imagery, using the images and a FOE estimate to estimate the height or the 3D
points imaged by some image pixels. This map is less accurate and much coarser
than the ones obtained by other sensors such as airborne LRFs and radars or stereo
imagery, but it is very fast to obtain, and it requires only images from a monocular
camera.

While this thesis do not develop new algorithms in the image mosaicing domain, it
quantifies the gains obtained with the usage of camera orientation estimates to repro-
ject images on a virtual horizontal plane, and present an image mosaic as an example.
These gains are related with the gains of affine invariant interest point algorithms,
when compared with similar algorithms invariant only to rotation, translation, and
illumination [Mikolajczyk and Schmid, 2004, Mikolajczyk et al., 2005]. Other navi-
gation works have already used inertial data or image based measures in the same
way [Gracias, 2002, Brown and Sullivan, 2002, Eustice, 2005], but to our knowledge
it was not clearly quantified what is gained with the reprojection of images into a
stabilized plane.

In the 3D point cloud registration domain, it is necessary to find the relative pose
between successive camera poses. The rotational components of these relative poses
may be directly compensated by exploiting the AHRS orientation estimates. Fur-
ther, the translational components may be more efficiently estimated when dealing
with rotation-compensated point clouds. This thesis leverage results in visual odom-
etry and interest point matching and applies them into the registration of 3D maps
obtained by stereo cameras and laser range finders (LRF), always exploiting AHRS
orientation estimates, and detailing the specific coordinate frames and sensor models
utilized in each case. A comparison with ICP based algorithms is also provided for
some results, aiming to determine under which conditions it is advisable to employ
the the method described here instead or together with ICP.

This thesis also showns that the improvements in trajectory recovery for the cam-
era also translate into improvements in the accuracy of the tracking of a moving object
in the ground. The recovered target trajectory becomes smoother or more accurate,
due to the improvements in the camera pose estimation and because the parameters
of the filters involved in the tracking are defined in the actual metric units related
to the target motion, which is also tracked in a metric frame. In contrast, when the
tracking is performed directly on the image, in pixel coordinates, the scene suffers
projective distortion and the relation between pixel units and metric distances in the
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ground changes with the camera height and these distortions are often not taken into
account. Two scenarios are covered: aerial surveillance with the airship, and urban
people surveillance with a moving camera.

1.4 Experimental Platform
The trajectory recovery algorithms were tested on data obtained from a remotely
controlled blimp, the DIVA non-rigid airship. Figure 1.2 shows an image of the
airship, which has a helium filled envelope with 18[m3] volume. It is 9.4[m] long, with
1.9[m] diameter and the maximum speed attained is around 70[km/h]. Typically, the
maximum height reached during our remotely piloted flights reached 200[m] above
the ground, corresponding to an altitude of approximatelly 300[m].

Figure 1.2: The DIVA airship, with details showing the vision-AHRS system and
GPS receiver mounted on the gondola.

It is propelled by two internal combustion motors with propellers, and controlled
by standard aeromodel equipment. Servo motors are used as actuators, to control the
motors acceleration and steer the airship with the flaps mounted in the back of the
envelope. A human pilot with a radio control unit sends commands to an on-board
radio control receiver to control the servo motors.

The combustion motors and electronic equipment are mounted on the gondola,
below the envelope, which may have a maximum weight of 13.5[kg]. Thus discount-
ing the weight of the mechanical structure of the gondola, motors and aeromodel
equipment, the payload available for electronic equipment and sensors is about 7[kg].

The blimp carries a digital camera, rigidly mounted with an AHRS, and a GPS
receiver, among other sensors, plus an embedded CPU with flash memory storage to
read and store sensor data and images, and radio Ethernet equipment to communicate
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with the ground. Figure 1.2 also shows details of the camera inertial system and the
GPS receiver.

A ground station, consisting of a laptop connected to a wireless Ethernet access
point with a 7[dB] antenna, receives telemetry data during the flight, and displays
it to the operator, who is able to check the operation of all sensors before taking off
and monitor the telemetry data during the flight.

The datasets used in the experiments of chapters 3 and 5 were acquired with this
platform, remotely piloted. Appendix A provides a more detailed description of the
onboard platform and the ground station, considering both software and hardware
components.

The sensor specifications most relevant for the experiments of chapters 3 and 5
are:

Digital Camera: Model Point Gray Flea [Point Grey Inc., 2007], a digital camera
with a bayer color CDD array with resolution of 1024x768 pixels and Firewire
IEEE 1394 interface, weighting 40[g] without lens.

GPS receiver: Model GARMIN GPS35 [Garmin Int. Inc., 2007], a 12 channel GPS
receiver unit, which outputs 3D position and velocity at 1[Hz] rate, and weights
130[g]. DGPS correction was not utilized in this thesis.

Inertial System: The last experiments used a XSens MTi, and the first ones a
XSens MTB-9 [XSens Tech., 2007]. Both AHRS sensor suites have 3-axis ac-
celerometer, inclinometer and gyroscope. They contain also a thermometer, and
output calibrated and temperature-compensated sensor readings, plus filtered
absolute orientation at maximum 100[Hz] rate. The weights are 35[g] (MTB-9)
and 50[g] (MTi). If the sensor is static, then the manufactures states that the
error in its orientation estimate has standard deviation of 3[◦] for the MTB-9
and for the MTi of 0.5[◦] in the pitch and roll angles and of 1[◦] in the heading
direction. In dynamic conditions this error should be larger.

1.5 Thesis summary
The next chapter reviews concepts, sensor models and frames of reference which
will be needed in the rest of the thesis. It also reviews the calibration camera in-
ertial utilized plus some important results in computer vision including the case of
translation-only movement.

Chapter 3 presents models and results for trajectory recovery with rotation-
compensated imagery, including experiments using the DIVA blimp. The chapter
opens with the reprojection of the images on the virtual horizontal plane, a process
that will be used in the next chapters too.
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Then, chapter 4 covers Image Mosaicing and Mapping. The mapping experiments
include point cloud registration with stereo cameras and LRFs, and mapping from
monocular cameras. The latter includes mapping from rotation-compensated imagery
taken by the DIVA UAV, and plane segmentation experiments.

The trajectory recovery results are extended to the tracking of an object inde-
pendently moving on the ground plane which is observed by the moving camera, in
chapter 5.

The conclusions and discussion of results are presented in chapter 6. After the
conclusions, the appendix A present a more detailed view of the DIVA airship, in-
cluding system characteristics and pre-requisites for future expansion, and hardware
and software architecture. Finally some mathematical proofs and formulae are left to
appendix B.

1.6 Publications
The following publications resulted of the work leading to this thesis:

Book chapters

• Mirisola, L. G. B., Dias, J. “Tracking a Moving Target from a Moving Camera
with Rotation-Compensated Imagery” In “Intelligent Aerial Vehicles”, I-Tech
Publishing, Vienna, Austria, 2008
A more complete version of the results in tracking of a moving object on the
ground after the camera trajectory is recovered are published in this paper,
including the airship and people surveillance scenarios (chapter 5) and including
the fusion of GPS and visual odometry.

• Moutinho, A, Mirisola, L. G. B., Azinheira, J., Dias, J. “Project DIVA: Guid-
ance and Vision Surveillance Techniques for an Autonomous Airship” In “Re-
search Trends in Robotics” (preliminary book title), NOVA Publishers, 2008.
This book chapter covers part of the trajectory recovery and mapping results
using imagery taken by the DIVA airship, which appear in chapter 3 and section
5.2.

Conference Papers

• Mirisola, L. G. B., Lobo, J., and Dias, J. “Stereo vision 3D map registration
for airships using vision-inertial sensing.” The 12th IASTED Int. Conf. on
Robotics and Applications (RA 2006), Honolulu, HI, USA, August 2006.
This paper presents the 3D depth map registration using a stereo camera, as
presented in section 4.4.
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• Mirisola, L. G. B. and Dias, J. M. M. “Exploiting inertial sensing in mosaicing
and visual navigation.” 6th IFAC Symposium on Intelligent Autonomous Vehi-
cles (IAV07), Toulouse, France, September 2007.
In this paper were published, with less detail, the mosaicing results of section
4.2, and the earliest experiments with the homology model: the tripod height
determination of section 3.4.1.1 and the recovery of altitude for the blimp flight
(part of section 3.4.4).

• Mirisola, L. G. B., Lobo, J., and Dias, J. “3D Map Registration using Vi-
sion/Laser and Inertial Sensing” European Conference on Mobile Robots (ECMR07),
Freiburg, Germany, September 2007.
The 3D map registration algorithm (section 4.4) was adapted and applied for
the LRF setup, with the introduction of the weighted averaging and comparison
with ICP.

• Mirisola, L. G. B., Dias, J. M. M. and Traça de Almeida, A. “Trajectory Re-
covery and 3D Mapping from Rotation-Compensated Imagery for an Airship.”
In International Conference on Intelligent Robots and Systems (IROS 07), San
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Chapter 2

Sensor Modeling

2.1 Projective Camera model
The pinhole camera model, shown in figure 2.1 represents the central projection of
points in space onto a plane. The center of projection, called camera center, is the
origin of an Euclidean coordinate system called the camera frame and denoted as
the {C} frame. The plane z = f is called the image plane, and f is called the focal
length. A point in space with homogeneous coordinates X = (X, Y, Z, 1)T in the
camera frame is mapped to the homogeneous image point x = (x, y, 1). Considering
a line joining the point X to the camera center, the image point x is where this line
intersects the image plane. The line that passes through the camera center and is
perpendicular to the image plane is the optical axis, and the intersection of the optical
axis and the image plane is called the principal point.

The mapping is defined by the following equation:

x = K[I|0]X (2.1)

where I is the identity matrix, 0 the zero vector, and K is the camera calibration
matrix, or intrinsic parameter matrix, that is defined by:

K =

 fx s x0

0 f y y0

0 0 1

 (2.2)

where fx and f y represent the focal length of the camera in terms of pixel dimensions
in the x and y directions respectively. As fx and f y are often very close, in this thesis

13
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Figure 2.1: The pinhole camera model.

f is considered as the average of its two components, although this approximation is
not strictly necessary. The variables x0 and y0 are the principal point coordinates in
terms of pixel dimensions, and s is the skew parameter, very small for most cameras.
In this thesis digital cameras with CCD sensors are used, where the image plane is
considered as the plane of the CCD surface with its array of light sensors.

Each camera have its lens fixed and is calibrated, i.e., its intrinsic parameter matrix
K is determined. Besides that, the calibration process finds the parameters which
define lens camera distortion - deviations from the camera projective model caused
by the optical properties of the lens geometry. Through all this thesis, all cameras
are calibrated, and all images are corrected for lens distortion. Single cameras were
calibrated by the Camera Calibration Toolkit [Bouguet, 2006], and stereo cameras by
the SVS Calibration Software [Konolige, 1997].

In this thesis all camera intrinsic parameters and the matrix K are given in pixel
units unless it is explicity defined otherwise. The dimension of each sensor on the
CDD sensor array, i.e., the pixel size in millimeters, is given in the camera manual.
In this thesis the pixel dimension is denoted as (dpx, dpy) and used to transform
distances in the image plane from pixels to a metric scale when needed. Alternatively,
a calibration target with known dimensions can be used to calibrate the camera to
find the components of K in metric units.

2.1.1 Stereo Cameras

The stereo camera consists on two identical cameras rigidly mounted with near parallel
optical axes. The distance between the optical centers of both cameras is called
baseline, denoted by B. When both cameras image the same 3D point P , this point
will be projected on different positions on the two image planes, xL and xR, referring
to the projections on the left and right camera, respectively, as shown in figure 2.2.
The difference xL − xR is called disparity, and the depth of the point P is related to
the disparity by:



2.2. IMAGE FEATURES & HOMOGRAPHIES 15

Figure 2.2: The ideal stereo model of disparity for binocular cameras.

Z =
B · f

xL − xR

(2.3)

The SVS (Small Vision System) [Konolige, 1997] is utilized to generate a disparity
image (a disparity value is calculated for every pixel which can be associated with a
corresponding pixel in the other camera), and to calculate a set of 3D points CP|i,
defined in the left camera frame {C}. This set is called a point cloud. Each 3D point
has a color c given by the corresponding pixel in the image, i.e c = Il(xL)|i, where
the color may be a gray level for monochromatic cameras or a RGB color for color
cameras.

2.2 Image Features & Homographies

2.2.1 Interest Point Matching

Given a pair of images of the same area, many 3D points in the world are imaged in
both images, i.e., the 3D points are projected into both image planes and thus each
3D point correspond to one pixel on each image. The interest point matching problem
consists on finding pairs of pixels, one from each image, which are projections of the
same 3D point in the world.

Figure 2.3 shows an example of corresponding pixel pairs found on two partially
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Figure 2.3: An example of interest point matching. Each line connects a pair of
corresponding pixels in both images.

overlapping images. Often hundreds of corresponding pixel pairs can be found on an
image pair (only a handful are shown in the figure, for the sake of clarity).

More formally, the interest point matching problem is defined as: given two images
I and I′, find a set of pairs of corresponding points on the images, such that, for each
pair of image points (x,x′), x and x′ correspond to the projection of the same 3D
point on the images I and I′, respectively.

Over the years, this problem has received a lot of attention, and it is still challeng-
ing, as there are many variable conditions which make the recognition of the same
point as seen in the two images be difficult. A good algorithm should be invariant,
i.e., able to return the same results, detecting and matching the same points, in face
to environmental changes such as illumination and blur, and to differences on the im-
age caused by the difference on the camera position in the world: scaling, translation,
rotation, and even changes of viewpoint and affine transformations in general.

For the experiments reported in this thesis, initially the SIFT [Lowe, 2004] algo-
rithm was used. After, the newer SURF [Bay et al., 2006] algorithm was used, as it
offers very similar performance in our experiments, and executes much faster.

All interest point algorithms find wrong matches, among the set of matched pixel
pairs. Robust techniques such as RANSAC [Fischler and Bolles, 1981] are often used
to filter out these wrongly paired points, which are called outliers, leaving a set of
consistently matched pixel pairs, called inliers. Some kind of geometric model is
necessary to provide a criterion to discriminate the outliers - the robust estimation
algorithm selects and considers only the largest possible set of inliers, i.e., of points
which are consistent with the geometric model.

2.2.2 Planar surfaces and homographies

Consider a 3D plane imaged by two identical cameras placed in different positions.
Consider also a set of pixel correspondences belonging to that plane in the form of
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(a) A 3D plane is imaged by a moving camera. (b) Above, two aerial images with some
pixel correspondences. Below, the same
images registered with a homography.

Figure 2.4: A 3D plane imaged by a moving camera induces a homography.

pairs of pixel coordinates (x,x′), where each pair corresponds to the projection of
the same 3D point into each view. A homography represented by a 3 × 3 matrix H
relates these two sets of homogeneous pixel coordinates such that x′ = Hx, and the
homography is said to be induced by the 3D plane [Hartley and Zisserman, 2000].
The homography can be recovered from pixel correspondences, and it is related to
the 3D plane normal n, the distance from the camera center to the plane d, and to the
relative camera poses represented by the two camera projection matrices P = [I|0]
and P′ = [R|t], as shown in figure 2.4, by:

Hλ = λH = λ
(
R− tnT /d

)
(2.4)

where R is rotation matrix and t a translation vector. The arbitrarily scaled matrix
Hλ = λH is recovered first, and then the scale factor λ must be recovered. The
scale λ is equal to the second largest singular value of λH, up to sign, as shown
in appendix B.1. The correct sign of λ is recovered by imposing a positive depth
constraint [Ma et al., 2004].

Defining H = Hλ/λ, the normalized homography matrix H is then decomposed
into R, n, and t/d [Ma et al., 2004]. The relative pose recovered has an inherent
scale ambiguity, as the translation magnitude is not recovered, only the ratio t/d.
The recovered homography can be used to register the image pair by applying the
recovered transformation H to the first image. Figure 2.4(b) shows, above, an example
of a pair of aerial images with some corresponding pixel pairs, and below, the same
images registered.
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2.2.2.1 Pure rotation case

The infinite homography H∞ is a special case: it is the homography induced by the
plane at infinity. It is also the homography between two images taken from two
cameras at the same position (i.e., no translation, t = 0), but rotated by a rotation
represented by the matrix R. The infinite homography can also be used to synthesize
a virtual view from a non-existent virtual camera, at a desired orientation, given the
appropriate rotation matrix.

The infinite homography is calculated by a limiting process where d approaches
infinity, or the translation t tends to zero. In both cases the ratio t/d tends to zero in
equation (2.4):

H∞ = lim
t/d→0

H = lim
t/d→0

K(R +
t

d
nT )K−1 = KRK−1 (2.5)

2.2.3 Pure translation case

This section reviews computer vision results for the special case of pure translation
movement.

2.2.3.1 Planar Homologies

Equation (2.4) of section 2.2.2 is valid for general camera motion, involving the relative
camera rotation matrix R and translation vector t. In the translation-only case,
R = I and the homography becomes a planar homology.

A planar homology G is a planar perspective transformation with the property
that there is a line, called the axis, such that every point on this line is a fixed
point1, and there is another fixed point not on the axis (the vertex ) . A 3D plane
imaged under pure translation induces a planar homology, where the axis is the
image of the vanishing line of the plane (the intersection of the 3D plane and the
plane at infinity), and the vertex is the epipole, or the FOE. Among the properties
of homologies [Hartley and Zisserman, 2000, van Gool et al., 1998], we recall:

• Lines joining corresponding points intersect at the vertex, and corresponding
lines (lines joining two pairs of corresponding points) intersect at the axis.

1A fixed point is a point x such that Gx = x, i.e., a point that is not changed by the transfor-
mation
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Figure 2.5: An example of a homology planar transformation with two corresponding
pairs of points in the plane.

• The cross ratios defined by the vertex, a pair of corresponding points (x,x′),
and the intersection of the line joining this pair with the axis (named as i),
have the same value for all points. Define a homology parameter µ as µ =
crossratio(i,x,x′,v) + 1 such that:

(µ− 1) = crossratio(i,x,x′,v) =
|xx′| · |iv|
|ix| · |x′v|

(2.6)

• The homology matrix G may be defined from its axis, vertex, and cross-ratio
parameters:

G = I + (µ− 1)
vaT

vTa
(2.7)

where v is the vertex coordinates, and a the axis line. Figure 2.5 illustrate these
entities and properties and shows a pair of points transformed by a homology in
general configuration.

Under pure translation, each plane in 3D space induces a homology, where the
vertex depends only on the camera movement and the axis depends on the relative
orientation of the camera and the 3D plane. For the homologies utilized in section
3.2.3, the inducing plane is parallel to the image plane and the axis is the infinite
line, and therefore corresponding lines are parallel (i.e., intersect in the infinite line).
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2.2.3.2 Calculating the depth of a 3D point from ratios of distances on
the image

The scene depth of individual 3D points is related with ratios of distances measured
on the image [Arnspang et al., 1999]. Consider the images of two scene points and
the vanishing point of the line defined by the two points, viewed by a single camera
in any position, as shown in figure 2.6.

Denoting x and x′ as the images of the two scene points X and X ′, v as the
vanishing point of their connecting line, and Z and Z ′ as the scene depth of X and
X ′, and (b+ c) and c as the image distances between x and x′ to the vanishing point,
the following equation holds:

Z ′

Z
=

c

b + c
=

dist(x,v)

dist(x′,v)
(2.8)

where dist() means distance measured in the image. These entities are shown in
figure 2.6, and equation (2.8) is written down as:

The relative scene depth of two points equals the reciprocal ratio of the image plane
distances to the vanishing point of their connecting line [Arnspang et al., 1999].

This fundamental result will be applied in section 3.2.3 for a different configuration
where two cameras with the same orientation image a single 3D point. The image
projections are the same, but instead of having two scene points as in this case, in
section 3.2 it is the camera which is moved under pure translation and images a single
point twice. The equivalent configuration is shown in figure 3.6, where virtual cameras
under pure translational motion image points in a 3D plane. Note that the problem
of determining the vanishing point is not addressed in this section. Nevertheless,
equation (2.8) is used in section 3.2 where the vanishing point is the FOE, which is
estimated as presented in section 2.2.3.3.

Absolute depth can be calculated for the configuration shown in figure 2.7(a): two
cameras with the same orientation but located at different positions (the two image
planes are parallel but not coincident, and they are separated by a distance δ) image
the pair of scene points X and X ′. The previous notation is extended with f and r
suffixes denoting the “front” and “rear” cameras to differentiate between the images
of the points in the two views and the scene depths of the points relative to the two
cameras, as seen on figure 2.6(b). With two views epipolar lines can be drawn to
determine the epipole e.

For this configuration the depths Zl and Zr, for any given scene point, are related
by the following equation, :

Zrl = Zf − δ (2.9)
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(a) The image of two 3D points and the
vanishing point.

(b) Diagram with the 3D points and their image
projections.

Figure 2.6: A camera images a pair of 3D points. The depth ratio is related with a
ratio of distances on the image (equation (2.8)).

(a) Two parallel cameras im-
age a pair of points.

(b) The two images superimposed.

Figure 2.7: Relating absolute scene depth with ratios of distances on the image for a
pair of cameras and a pair of points.
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Now, applying the anterior result on both views, we get the following non-singular
system of equations: (

(br + cr) −cr

(bf + cf ) −cf

)(
Z1r

Z2f

)
=

(
0
−δbf

)
(2.10)

Therefore, if the image plane separation δ is known, the image distances from the
two views (br, cr, bf , cf ) may be used to determine the absolute depth. Note that for
frontal binocular views (i.e., two cameras with coincident image planes), this system
of equations is not regular.

After solving the above system of equations the following solution is obtained:

Z1r =
−δbfcr

bfcr − brcf

(2.11)

Z2r =
−δbf (br + cr)

bfcr − brcf

(2.12)

These equations offer an alternative to classical depth from stereo for computer
vision, and they do not depend on focal length, coordinate disparities nor coordinate
scale. They depend on an accurate determination of the distance between the image
planes (the “baseline”), of the corresponding points image coordinates on the two
views, and of their vanishing point. It is supposed that the line joining the points
P 1 and P 2 is not parallel to the image planes, otherwise the epipolar lines would be
parallel, the epipole would be on infinity, and the two lines joining their images p1lp2l

and p1rp2r would not share a vanishing point.

2.2.3.3 Recovering the FOE from pixel correspondences.

Under pure translation, all lines connecting corresponding pixel pairs intersect in the
FOE. This is a property of the homologies (section 2.2.3.1), but it is true for all
corresponding pixels independently of the presence of 3D planes. An initial FOE
estimate may be obtained from the pixel correspondences by solving a linear system.

To form the linear system, one constraint is defined for each corresponding pixel
pair (x,x′): as the FOE must lie in the line l = x × x′, where × represents vector
cross product, the following must be satisfied:

(x× x′) · v = 0 (2.13)

Stacking these constraints for n corresponding pixel pairs, we have:
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(x1 × x′1) · v = 0
(x2 × x′2) · v = 0

...
(xn × x′n) · v = 0

(2.14)

Then, given two or more corresponding pixel pairs, this linear system is solved
to find a first estimate for the FOE v. Then an optimization routine improves this
estimate by considering that the fundamental matrix is F = [v]× ([v]× indicates the
skew symmetric matrix built from the entries of v), and minimizing x′TFx for all
corresponding pixel pairs. If there were no error, the linear system would have an
exact solution and x′TFx would be zero for all corresponding pixel pairs. This process,
including the usage of RANSAC [Fischler and Bolles, 1981] to exclude outliers on the
pixel correspondences, and normalization terms for the optimization, is detailed in
[Chen et al., 2003], with results using real images.

The FOE estimation is used in the experiments of chapter 3 and to exclude outliers
from the set of corresponding pixel pairs.

2.3 Attitude Heading Reference System
The Attitude Heading Reference Systems (AHRS) used in this thesis are the mod-
els MTi and MTB-9 manufactured by the XSens company [XSens Tech., 2007]. The
MTB-9 is shown in figure 1.2. Both consist on a set of sensors mounted together,
namely three-axis accelerometers, gyroscopes, and magnetometers, plus a thermome-
ter. It outputs direct readings from all its internal sensors, and also filtered, drift-less
absolute orientation, obtained by fusing the readings of all internal sensors, consider-
ing variations with temperature. The internal sensors are calibrated in factory.

When the AHRS is not moving, the gravity acceleration is directly measured by
the accelerometers, in the form of a 3D vector with 9.81[m/s2] magnitude. If the
magnitude is different, then the AHRS is moving and the acceleration measured has
an additional component due to the AHRS´s own motion.

The three-axis magnetometers measure the direction and magnitude of the mag-
netic field around the AHRS. The results are normalized to the earth magnetic field
(which is constant for a given location on earth), therefore if the measured magnitude
is close to 1, then the earth magnetic field is being measured.

In indoor environments, the earth magnetic field is often distorted due to fer-
romagnetic objects, electric equipment or power lines, and thus the magnetic field
readings may be heavily distorted. This distortion can be detected as a variation
on magnetic field magnitude, and if the magnetic field can not be measured, then
the AHRS heading angle can not be trusted. In outdoor environments this is a less
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important issue, as when the AHRS is mounted on a free flying UAV, provided that
it is isolated from electromagnetic fields generated by electronic equipment or large
currents, and that the gondola structure is made of non-ferromagnetic materials such
as aluminum.

Figure 2.8 shows the value of the magnetic vector module with the AHRS moving
in three different environments: inside a laboratory room, over the roof of a car driving
on campus, and finally in an outdoor environment. The magnetic field measurements
are normalized, therefore the earth magnetic field magnitude is represented with the
value 1. In the most polluted environment, the magnetic vector module reaches 50%
of the expected nominal value.

Figure 2.8: The module of the magnetic vector in different environments.

2.4 Laser Range Finder
The Laser Range Finder (LRF) sensor measures the time of return for a light signal
emitted and reflected by the environment. The laser beam mounted on a rotating
axis inside the sensor, performing a series of range readings separated by a constant
angular interval. This correspond to a set of 3D points called a “2D scan”, because
all the 3D points are on the plane defined by the coplanar laser beams.

The LRF itself is mounted on a pantilt, as shown in figure 2.9, and by moving
the tilt axis between each LRF “2D scan”, a set of 3D points is obtained covering the
space around the LRF device, and this set is called a “3D scan”.

The 3D scan is a set of 3D points LP|i, with coordinates expressed in the laser
frame of reference {L}|i, which has origin on the tilt rotation axis of the pantilt,
directly below the center of projection of the laser beams. The 3D positions of each
point are given by a laser projection model as defined in [Scaramuzza et al., 2007]:
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Figure 2.9: Sensors utilized for mapping: AHRS, LRF, stereo and single cameras.

for each point the pantilt position is defined by the tilt angle ϕ, as the pan axis is not
moved, and the LRF supplies a distance measurement ρ and a beam angle θ in the
2D scan plane for each range reading. Thus the projection of a range reading into a
3D point LX = (X, Y, Z)T in the {L}|i frame is given by:

 X
Y
Z

 =

 cϕcθ −cϕsθ sϕ cϕdx + sϕdz

sθ cθ 0 0
−sϕcθ sϕsθ cϕ −sϕdx + cϕdz




ρ
0
0
1

 (2.15)

where c and s represent the cosine and sine functions. This projection takes into
account the distance between the pantilt rotation axis and the emission/sensing point
of the laser beams.

2.5 Frames of reference

An AHRS is rigidly mounted together with a camera (single camera or stereo pair).
The AHRS estimates the orientation of the rigid body containing itself and the cam-
era(s). For the experiments using the stereo camera (figure 2.9(a)) the LRF and
monocular camera are not used. For the experiments using a LRF the AHRS is
rigidly mounted with a monocular camera and the LRF as in figure 2.9(b). For the
experiments using datasets from the airship, the camera-AHRS system is shown in
section 1.4 and figures 1.2 and 2.11.

The stereo cameras provide intensity images Il(x, y)|i and Ir(x, y)|i, where x and
y are pixel coordinates, r and l represent the right and left cameras, and i the frame
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(a) The stereo camera scenario (b) The LRF scenario

Figure 2.10: Definitions of frames of reference.

time index. A single camera provides only one intensity image I(x, y)|i. All cameras
are calibrated [Bouguet, 2006], and their intrinsic parameter matrix K is known. We
henceforth define the following reference frames, as shown in figure 2.10:

• Camera Frame {C}|i: This is the reference frame used in the common pinhole
camera projection model. The origin is placed at the camera center, the axis z
points to the front (the depth axis), and the axes x and y form the image plane,
where, on the image, x points right and y points down. In the stereo camera
case, {C}|i is defined as referring only to the left camera.

• Inertial Sensor Frame {I}|i: It is defined by the internal sensor axes of the
AHRS. The AHRS orientation estimate is a rotation which aligns the axes of
{I}|i to the {W} world frame axes. As the AHRS is mounted rigidly together
with the camera, the transformation between the frames {I}|i and {C}|i is
constant for all time indexes i.

• World Frame {W}: This is a LLA (Latitude Longitude Altitude) frame, where
its axes correspond to the local north, east and up directions. Its origin is an
arbitrarily set point, often the origin of the first camera frame.

• Laser Frame {L}|i Its origin is the tilt rotation axis of the pantilt, directly
below the center of projection of the laser beams. Its axes are aligned with the
laser beams as shown in figure 2.10.

• Rotated Camera Frame {R}|i: This frame shares its origin with the {C}|i
frame, but its axes are aligned with the world frame {W}. Figure 2.10 shows
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Figure 2.11: The calibration recovers the rotation between the camera and inertial
sensor frames. The camera and AHRS measure the gravity direction. Two example
images with vertically placed chessboards used in the calibration are shown in the
right.

this frame on a different position than the {C}|i frame only to increase the
clarity of the drawing.

• Virtual Downwards Camera {D}|i: This is a camera frame, which shares
its origin with the {C}|i frame, but its optical axis points down, in the direction
of gravity, and its other axes (i.e., the image plane) are aligned with the north
and east directions.

2.6 Calibration of Camera - Inertial System

The camera is first calibrated to determine its intrinsic parameter matrix and lens dis-
tortion parameters [Bouguet, 2006]. A subsequent calibration routine [Lobo and Dias, 2007,
Lobo and Dias, 2005, Alves et al., 2003] finds the rigid body rotation between the {I}
and {C} frames and is performed by having both sensors observing the gravity vector,
as shown in figure 2.11. The camera observes vertical vanishing points from a verti-
cally placed chessboard target, and the AHRS measures the acceleration vector from
its accelerometers. If the AHRS is not moving, the sensed acceleration represents the
gravity.

The output of this calibration is a rotation matrix IRC that brings a point from
the {C}|i frame into the {I}|i frame for all i. There is also a process to find the
translational component of the transformation, but in this thesis the translation is
considered as zero, as the distance between the camera and AHRS is negligible.
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Two examples of calibration images with a vertically placed chessboard are shown
in figure 2.11. Each image must be taken from a different point of view and the camera
must be immobile while taking each shot. The assembly of camera and AHRS must
be kept rigid, but the camera orientation is not fixed or restricted during this off-line
calibration process. The same set of images may have been used previously for the
calibration of the camera’s intrinsic parameters.

To obtain the rotation matrix IRC, two sets of gravity vector measurements Ivi

and Cvi on the {I}|i and {C}|i frames, respectively, are measured. Then, the unit
quaternion

◦
q that best rotates one set of measurements to be registered with the

other is determined by maximizing the following equation [Alves et al., 2003]:

n∑
i=1

(
◦
q ·Ivi·

◦
q
∗
) · Cvi (2.16)

where n is the number of measurements, which can be rewritten as:

n∑
i=1

(
◦
q Ivi) · (Cvi

◦
q) (2.17)

The quaternion product can be expressed as a matrix. Defining Ivi = (Ixi,
Iyi,

Izi)
T

and Cvi = (Cxi,
Cyi,

Czi)
T , we have:

◦
q ·Ivi =


0 −Ixi −Iyi −Izi
Ixi 0 Izi −Iyi
Iyi −Izi 0 Ixi
Izi

Iyi −Ixi 0

 ◦
q= IVi·

◦
q (2.18)

and

Cvi·
◦
q=


0 −Cxi −Cyi −Czi
Cxi 0 −Czi

Cyi
Cyi

Czi 0 −Cxi
Czi −Cyi

Cxi 0

 ◦
q= CVi·

◦
q (2.19)

Using the matrix form of the quaternion product and substituting in (2.17):

n∑
i=1

(IVi

◦
q) · (CVi

◦
q) (2.20)

or

n∑
i=1

◦
q

T
IVi

CVi

◦
q (2.21)
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Now factoring out
◦
q we get:

◦
q

T
(

n∑
i=1

IVi
CVi

)
◦
q (2.22)

So we must find the unit quaternion
◦
q that maximizes:

max
◦
q

T

N
◦
q (2.23)

where N =
n∑

i=1

IVi
CVi. To express N concisely, we define:

Sxx =
n∑

i=1

Ixi
Cxi , Sxy =

n∑
i=1

Ixi
Cyi (2.24)

and analogously for all 9 pairings of components of the two vectors. Therefore N
can be expressed by equation (2.25). These sums contain all information needed to
find the solution. Since N is a symmetric matrix, the solution is the four vector

◦
qmax

corresponding to the largest eigenvalue of N [Horn, 1987].

N =
Sxx + Syy + Szz Syz − Szy Szx − Sxz Sxy − Syx

Syz − Szy Sxx − Syy − Szz Sxy + Syx Szx + Sxz

Szx − Sxz Sxy + Syx (−Sxx + Syy − Szz) Syz + Szy

Sxy − Syx Szx + Sxz Syz + Szy (−Sxx − Syy + Szz)


(2.25)

Note that the camera-inertial calibration deals with a monocular camera. For the
stereo camera only data from the left camera are used in this calibration.

The rotation from the camera frame to the inertial sensor frame for the camera-
inertial system of figures 1.2 and 2.11 is:

IRC =

 −0.9998 0.0080 0.0206
0.0084 0.9998 0.0141
−0.0206 0.0143 −0.9998

 (2.26)

2.7 The virtual horizontal plane concept or an in-
ertial stabilized plane

The knowledge of the camera orientation provided by the AHRS orientation estimates
allows the image to be reprojected on entities defined on an absolute geo-referenced
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Figure 2.12: The virtual horizontal plane concept.

frame, such as a virtual horizontal plane (with normal parallel to gravity), at a dis-
tance f below the camera center, as shown in figure 2.12. Projection rays from 3D
points to the camera center intersect this plane, reprojecting the 3D point into the
plane. This reprojection corresponds to the image of a virtual camera with the same
optical center as the original camera, but with optical axis coincident with the gravity
vector. Section 3.2.1 details how to perform this reprojection.



Chapter 3

Inertial Aided Visual Trajectory
Recovery

3.1 Introduction
In this chapter, the trajectory of a mobile observer is recovered from a sequence
of images of a planar area. Orientation estimates from an AHRS compensate the
rotational degrees of freedom and allow the usage of a translation-only model.

Firstly, the knowledge of camera orientation allows the images to be reprojected
on a virtual horizontal plane, compensating the rotation, as presented in section 3.2.1.
Then, the pure rotation models are introduced in sections 3.2.2 and 3.2.3. The case
of non-horizontal planes is covered in section 3.3.

The results are presented in section 3.4. As the vertical component is of special
importance for aerial vehicles and is recovered separately by the homology algorithm,
experiments with images taken from a tripod are presented to evaluate the algorithms
against hand measured ground truth. The chapter finishes by presenting trajectory
recovery for the DIVA airship, and evaluating it by comparison with the common
homography model and GPS. Visual odometry is also fused with GPS position fixes,
and the maps generated when images are projected on the ground plane are also
compared.

3.2 Visual Navigation

3.2.1 Reprojecting the images on the virtual horizontal plane

The first step of the processes of this chapter and of sections 4.2 and 5.2 is to re-
project each image onto the virtual horizontal plane. In other words, a virtual view
is generated, to compensate differences due to heading and viewpoint. Each image

31
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(a) Original image (b) Warped image

Figure 3.1: Example of reprojection in the virtual horizontal plane

is transformed in order to appear as if it were taken from a virtual camera with
the same camera center and intrinsic parameters, but looking down (i.e., having its
optical axis coincident with the gravity vector), and heading north (i.e., having the
image y axis parallel to the North-South direction). The camera height variation is
not compensated, resulting in scale differences in the virtual images.

In figure 2.12, the image, shown in red into the real image plane, is reprojected
into the image plane of the virtual camera, that is perpendicular to the gravity (shown
in green). Figure 3.1 shows the reprojection of one image as an example. The cross
in the ground is nearly aligned with the north and east axes, as it is seen on figure
3.1(b).

In this way, the camera rotation is compensated, and the relative pose between
any pair of camera poses is reduced to a pure translation, as required by the models
used in this thesis.

Another objective is to make interest point matching algorithms more robust,
by relaxing the demands on the interest point detection, encoding and matching
algorithms. Otherwise, it would be necessary that the feature encoding be invari-
ant to heading and viewpoint differences. The usage of this reprojection during
interest point matching in the image mosaicing context is evaluated in section 4.2
[Mirisola and Dias, 2007].

For the low altitude aerial dataset used in section 3.4.4, the time spent matching
interest point descriptors using the reprojected images was 41% of the time required
to perform the matching with the original, non-reprojected images. The number of
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correctly matched interest points was 10% smaller with the reprojected images. The
time spent to generate the reprojected images must be discounted, but this on average
it was four times smaller than the speedup obtained in descriptor matching. Besides
that, reprojecting the images may be a necessary task itself, for example to generate
the images drawn in figure 3.21(a).

This reprojection - sometimes called pre-warping - is already widely used to pre-
process images taken from moving vehicles like submarines [Gracias, 2002]. The tech-
niques presented in this thesis use only the reprojected coordinates of the matched
interest points, and the actual generation of reprojected images is not strictly neces-
sary. Nevertheless, most experiments in this thesis used reprojected images, because
of the improvements shown in this section and section 4.2 and because it is easier to
visualize the results and errors in the reprojected images.

3.2.1.1 The infinite homography.

The image is reprojected on the virtual horizontal plane by an infinite homography,
using the rotation that transforms the {C}|i frame into the {D}|i frame. Thus the
infinite homography is used to synthesize a virtual view from a non-existent virtual
camera.

For each image Ii, a simultaneous AHRS orientation estimate and the rotation
matrix IRC from the camera-inertial calibration are used to calculate the camera
orientation in relation to the world frame, expressed by the rotation matrix WRC|i.
This is shown in §4.4.2.

The virtual camera frame {D}|i has its axes parallel to axes of the {W} and {R}|i
frames, but its optical axis points down. The rotation matrix DRW rotates from the
{W} to the {D}|i frame:

DRW =

 0 −1 0
−1 0 0
0 0 −1

 (3.1)

Then the rotation between the {D}|i frame and the {C}|i frame is calculated as
DRC|i = DRW · WRC|i

Therefore the transformation used to reproject images into the virtual stabilized
frame is:

DHC|i , K · DRC|i ·K−1 (3.2)

3.2.1.2 Deleting image pixels from close to horizontal 3D rays.

In the previous section, images were reprojected into an image plane perpendicular
to the vertical direction of gravity. But there is not any guarantee that the camera
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Figure 3.2: An example of a reprojected image before and after cutting the low
latitude regions. The limit was set at 45◦.

principal axis will be pointing close to the gravity direction. If it is not, then some
areas on the reprojected images will be heavily distorted by the reprojection and have
small resolution. This leads to low quality images and large memory consumption
and computational time. Moreover, if the camera optical axis is close to horizontal,
some pixel rays will be horizontal, rendering the reprojection infeasible.

As the camera orientation is known, it is possible to delete from the original image
beforehand the pixels on these undesirable areas. It is also possible to delete these
regions from an already reprojected image. Suppose an imaginary sphere, centered
into the camera center, with radius equal to the camera focal length. Any image
ray connecting a 3D point to the camera center, passing by the image plane, also
intersects the surface of this sphere.

Supposing that the gravity direction is the south pole of this sphere, image pixels
reprojected into the low latitude regions of this sphere (i.e., close to the equator)
should be deleted, as it is shown in figure 3.3. An example of an image before and
after the deletion of the low latitude regions is shown in figure 3.2.

The geometric process to find the pixels to be deleted from the image is given
in algorithm 1. Note that the pixels can be found both on the original or in the
reprojected image, and both cases are shown, although it is obviously preferable
to eliminate the pixels already the original image, to avoid wasting computational
resources. The key step is to find the nadir point on the image (the nadir point is the
image projection of the 3D point that is exactly below the camera center, in a straight
vertical line, in the world frame). As the {D}|i frame corresponds to a virtual camera
with a principal axis coincident with gravity, its nadir point is also its principal point.
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(a) An image projected on
the virtual sphere and image
plane

(b) Delete the low latitude re-
gions (checkered)

Figure 3.3: Deleting pixels projected on the virtual sphere in low latitude regions.

Figure 3.4: The relation between pixel coordinates and the angle of the projection
ray with the optical axis.

Equation (3.3) in algorithm 1 is derived from the relation between pixel coordi-
nates and the angle of the projection ray with the optical axis on a pinhole camera
projection: supposing a 3D point X which is projected in the image plane in the 2D
image point x. The camera center, the camera principal point and x form a triangle
as seen in figure 3.4. From this triangle, as the focal length in pixels f is known,
and the distance in pixels from x to the principal point is also known, we extract
tan α = dist(x, principal point)/f , where α is the angle between the projection ray
and the optical axis and dist is the Euclidean distance on the image.

3.2.2 Procrustes solution to register scene points.

Suppose a sequence of aerial images of a horizontal ground patch, and that these
images are reprojected on the virtual horizontal plane as presented in section 3.2.1.1.
The virtual cameras have horizontal image planes parallel to the ground plane. Then,
each corresponding pixel is projected into the ground plane, generating a 3D point, as
shown in figure 3.5(a). Two sets of 3D points are generated for two successive views,
and these sets are directly registered in scene coordinates. Indeed, as all points belong
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Algorithm 1 Finding pixels to delete from the image.
// Cg← direction of gravity in the {C}|i frame
Cg← CRW |i · ( 0 0 −1 )T

// project Cg on the image of the {C}|i camera
Cn← K · Cg

// transform the nadir image point Cn into the virtual projected image
Dn← DHC|i · Cn // not needed if pixels are deleted from original {C}|i image

// given the image I and the nadir point n, which are either CI, Cn or DI, Dn.

// define the maximum angle with the gravity direction
γ ←MAX_ANGLE_GRAV ITY

// calculate maximum image distance with n

max_dist = f · tan γ (3.3)

Delete all pixels p on the image such that dist(n,p) > max_dist
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to the same ground plane, the registration is solved in 2D coordinates. Figure 3.5(b)
shows a diagram of this process.

(a)

Figure 3.5: Finding the translation between successive camera poses by 3D scene
registration.

Each corresponding pixel pair (x,x′) is projected by equation (3.4) yielding a pair
of 3D points (X, X ′), defined in the {D}|i frame:

X =


(xx−nx)·hi

f
(xy−ny)·hi

f

hi

 , X ′(t) =


(x′x−nx)·(hi−tz/tw)

f
+ tx

tw
(x′y−ny)·(hi−tz/tw)

f
+ ty

tw

hi − tz

 (3.4)

where x = [xx, xy, 1]T , x′ =
[
x′x, x

′
y, 1
]T , again in inhomogeneous form, h is the

camera height above the ground plane, t is defined as a four element homogenous
vector t = [tx, ty, tz, tw]T . The t value which turns X ′(t) = X is the translation
which registers the {D}|i and {D}|i+1 frames, and which must be determined. If
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there are n corresponding pixel pairs, this projection yields two sets of 3D points,
X = {Xk|k = 1 . . . n} and X′ = {X ′

k|k = 1 . . . n}
An initial, inhomogeneous, value for t0 is calculated by the Procrustes registration

routine [Borg and Groenen, 1997, Gower and Dĳksterhuis, 2004], which is described
in appendix B.6. It finds the 2D translation and scale factor which register the two
point sets taken as 2D points, yielding estimates the x and y components of t0 and
of the scale factor µ0. The inputs for the Procrustes routine are the configurations X
and X′(0).

From µ0 and the current estimate of the camera height an initial estimate the
vertical component of t0 can be calculated, as µ0 = (hi− tz)/hi. Outliers in the pixel
correspondences are removed by embedding the Procrustes routine in a RANSAC
procedure. Then t0 is used as an initial estimate for an optimization routine which
minimizes the registration error between X and X′(t), estimating an updated and
final value for t.

This optimization variables are the four elements of t, with equation (3.4) used
to update X′(t). The function to minimize is:

min
(tx,ty ,tz ,tw)

∑
k=1...n

dist (X ′
k (t) , Xk) (3.5)

where dist is a distance metric. Appendix B.4 shows the partial derivatives of this
function with Euclidean distance as dist.

The same process could be performed with an inhomogeneous, three element
t. But, as it is the case with homography and homology estimation, the over-
parameterization improves the accuracy of the final estimate and sometimes even
the speed of convergence. In this case the extra dimension allows the length of the
translation to change without changing its direction.

The optimization variables could also be (tx, ty, tw, µ), with the translation being
a 2D translation vector in homogeneous form, with µ as a scale factor and with the
optimization performed in the virtual plane 2D coordinates. For the aerial image
dataset, this second parameterization yielded worse results and was abandoned. The
same remarks about overparameterization are again valid.

Nevertheless, for datasets such as the overpass dataset of section 3.4.2, where the
actual camera orientation is almost constant, the error in the orientation estimate is
less significant, and interest point matching is easier, not only both parameterizations
obtain good results even without over-parameterization or homogeneous variables,
but also the algebraic Procrustes procedure obtains good results alone, with no op-
timization at all, as it is shown in figure 3.16. Indeed, if the assumptions of having
both image and ground planes parallel and horizontal are really true, with outliers
removed, and considering isotropic error in the corresponding pixel coordinates, then
it can be proved that the Procrustes solution is the best solution in a least squares



3.2. VISUAL NAVIGATION 39

sense. But the other methods should be more robust and resilient to errors, outliers
and deviations from the model, and still exploit the available orientation estimate to
recover the relative pose more accurately than an image-only method.

The FOE estimation of section 2.2.3.3 can also be used to find the initial estimate
t0 instead of the Procrustes routine. But t0 can be calculated from the FOE only
up to scale (section 3.2.4). To find the correct scale, an estimate of the cross-ratio
parameter µ is obtained by measuring and averaging, for all corresponding pixel
pairs, the ratios of image distances to the FOE as in equation (3.13). Then, given
the estimate of the height of the first view h, tz is calculated as tz = (µ − 1)h, and
the horizontal components are calculated by equation (3.14).

3.2.3 The homology model for a horizontal plane
Suppose again a sequence of aerial images of a horizontal ground area, and that these
images are reprojected on the virtual horizontal plane as presented in section 3.2.1.
This section shows another solution for the relative pose determination problem. As
the virtual image planes and the ground plane are both horizontal, the camera height
above the plane is equal to the plane depth in the virtual camera frame.

Although the homology (equation (2.7)) considers an inducing 3D plane in general
position, in our experiments the relative pose estimation becomes less accurate if the
plane axis also must be estimated, therefore it was necessary to restrict the inducing
plane to be parallel to the virtual image planes. If a 3D plane is imaged by two
cameras with image planes parallel to it, the image of vanishing line of the 3D plane,
i.e., the homology axis, is the infinite line a = (0, 0, 1)T , and equation (2.7) becomes:

G =

 1 0 (µ− 1) · vx

0 1 (µ− 1) · vy

0 0 µ

 (3.6)

where vx, vy are the inhomogeneous1 image coordinates of the vertex v = (vx, vy, 1).
The cross ratio parameter µ depends only of the depths of the 3D plane in the
two views. To analyze the latter relation, we recall that the relative scene depth of
two points equals the reciprocal ratio of the image plane distances to the vanishing
point of their connecting line [Arnspang et al., 1999], as reviewed in section 2.2.3.2.
Here, instead of having two parallel cameras as in section 2.2.3.2, the same principles
are applied to two images taken by a single moving camera, which keeps the same
orientation during its movement.

Take two images of the same 3D point X taken under pure translation, as in figure
3.6(a), where the vanishing point is the FOE and the image is the superimposed image

1Without loss of generality as if v is known in homogeneous coordinates, it can be scaled into its
inhomogeneous form.
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(a) A superimposed image with the FOE and the
image projections.

(b) 3D diagram with virtual cameras and image
projections.

Figure 3.6: A pair of virtual cameras under pure translation imaging the same 3D
point.

of two views. Defining Z and Z ′ as the depth of X in the first and second views, and
x and x′ as the image coordinates of their respective projections, as in figure 3.6(b),
we have:

Z ′

Z
=

dist(x,v)

dist(x′,v)
(3.7)

where dist means Euclidean distance in the superimposed image. Therefore the rel-
ative depth of the same point in two views is calculated from image measurements.

The relation between scene depths and image distances is valid for every single
point, and it only requires an image of the same point in two views, and the FOE.
But, if a 3D plane is parallel to the image planes, all points in the plane have the
same depth, and are transferred between the two views by the same homology.

The homology calculation involves many pairs of corresponding pixels, and is
therefore potentially more stable than an image measurement involving just one pair.
Returning to the relation between the homology parameter µ and the depth of the
3D plane, applying equation (3.6) allow us to find:

x′ = Gx =

 xx

µ
+ vx − vx

µ
xy

µ
+ vy − vy

µ

1

 (3.8)

where x = (xx, xy, 1)T . Now by calculating |x− x′| = |x−Gx|, we relate this
difference with |x− v|, in image coordinates:
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|x− x′| =

[(
xx −

(
xx

µ
+ vx −

vx

µ

))2

+

(
xy −

(
xy

µ
+ vy −

vy

µ

))2
]1/2

(3.9)

=

[(
(xx − vx)

(
1− 1

µ

))2

+

(
(xy − vy)

(
1− 1

µ

))2
]1/2

(3.10)

=

[(
((xx − vx))

2 + ((xy − vy))
2)(1− 1

µ

)2
]1/2

(3.11)

and then:

|x− x′| = |x− v|
(

1− 1

µ

)
(3.12)

as x,x′,v are collinear |x− x′| + |v − x′| = |x− v|, and therefore from 3.12 we find
the image distances of equation (3.7), which is updated as:

Z ′

Z
=

dist(x,v)

dist(x′,v)
= µ (3.13)

We have therefore shown that the relative depth of the plane is equal to µ, a
parameter of the homology matrix. This relation is in accordance with the known fact
that given the homography matrix induced by a 3D plane in two views, the relative
distance between the camera centers and the plane is equal to the determinant of the
homography [Malis et al., 1999, Malis, 1998].

This is valid for general homographies (correctly scaled), thus also for planar
homologies. From equation (3.6), we note that det(G) = µ, and as the distance
between the camera center and the plane is the depth of the plane, equation (3.13)
is again demonstrated in another way.

3.2.3.1 Calculating Relative Depth For Horizontal Planes

This section describes the process to calculate the depth ratio µ of a 3D plane imaged
by two cameras with image planes parallel to it. This process exploits the results
of section 3.2.3, especially equation (3.13), in a practical implementation. The sub-
sequent calculation of the translation vector given the FOE and µ is dealt with in
section 3.2.4.

Firstly, the images are reprojected on the virtual horizontal plane and pixel cor-
respondences are established. Then an initial FOE estimate v0 is obtained from the
pixel correspondences using a robust linear estimation with RANSAC
[Fischler and Bolles, 1981] followed by an optimization step [Chen et al., 2003], as
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presented in section 2.2.3.3. The FOE estimation also excludes outliers from the set
of corresponding pixel pairs.

From the pixel correspondences and the FOE estimate, an initial estimate µ0 of
the cross-ratio parameter µ is obtained by measuring and averaging for all pairs of
corresponding pixel the ratios of image distances to the FOE as in equation (3.13).

Given the initial estimates v0 and µ0, an optimization routine minimizes the pro-
jection error of the pixel correspondences when projected by the homology G(v, µ, a =
[0, 0, 1]T ), finding improved estimates for v and µ. The optimization is performed by
the Levenberg-Marquardt algorithm, using the same implementation used to estimate
homographies [Capel et al., 2006], but parameterized by the homology parameters v
and G. As it is advisable to overparameterise the optimization [Hartley and Zisserman, 2000],
v is considered as a 3-element homogeneous vector and equation (2.7) is used instead
of equation (3.6). The point v is normalized once its final value is known. The relative
depth is the determinant of G, i.e., µ. Two error metric were tested: Sampson dis-
tance, which is commonly used to estimate full homographies [Hartley and Zisserman, 2000],
and Euclidean distance. For the latter case, the partial derivatives necessary to cal-
culate the Jacobian of the optimization function are shown in Appendix B.3.

Figure 3.7 summarizes this process. Notice that there is no need to reproject
the whole image onto the virtual plane, but rather only the coordinates of the pixel
correspondences, if interest point matching with the original images achieves good
enough performance. Sensor data could provide an initial FOE estimate directly, and
the initial µ0 estimate is trivial. The final optimization takes roughly as much time as
the optimization necessary to calculate a homography when using Sampson distance,
and with Euclidean distance it is faster. Therefore, this process can be potentially
fast enough for robotic applications.

3.2.4 From the FOE and µ to the translation vector

With the homology model, the FOE and µ are directly estimated (section 3.2.3.1).
Additionally, the FOE estimation described in section (2.2.3.3) may be used instead
of a Procrustes routine to remove outliers and to find an initial estimate for the
translation vector, before the optimization step described by equation (3.5) in section
3.2.2. In both cases, the translation vector must be calculated from the FOE, and
this is described in this section.

As the rotation is compensated, the virtual cameras relative pose may be repre-
sented by a translation vector t. The relative height corresponds to the z component
of t, although its scale depends on the height of the first camera. The FOE, already
calculated in the process above, is the direction of the other two components of t,
although the FOE does not indicate the scale of t. From images alone it is not possi-
ble to find the translation magnitude, thus this limitation is expected. Nevertheless,
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Figure 3.7: Finding the homology transformation between two images reprojected on
the stabilized plane.

the scale of the horizontal x and y components can be calculated as a function of the
vertical component.

Given the FOE v = (vx, vy, 1)T , the camera intrinsic parameters focal length f and
pixel size dpx and dpy in the x and y directions, and the nadir point n = (nx, ny, 1)T ,
which is the image of the direction of gravity and the principal point of the {D}|i
camera, the vector t = (tx, ty, tz)

T is calculated as a function of its vertical component
tz, as:

t =


(vx−nx)·dpx·tz

f
(vy−ny)·dpy·tz

f

tz

 (3.14)

This relation is derived from the similar triangles shown in figure 3.8 for the x
component, and a similar relation exists for the y component. The figure omits the
change of coordinates (nx) and units (dpx) that must be applied to vx.

To find the correct scale, given the height of the first view h, tz is calculated as
tz = (µ− 1)h. Therefore the trajectory of a mobile observer may be reconstructed by
summing the relative pose vectors over an image sequence. If the homology matrix
is estimated after the FOE, µ will be known. If the estimated FOE is used only to
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initialize the process of section 3.2.2, µ is estimated by measuring and averaging, for
all corresponding pixel pairs, the ratios of image distances to the FOE as in equation
(3.13).

Figure 3.8: Finding the scale of translation from the difference in height.

3.2.5 Filtering the translation measurements

The visual odometry yields a sequence of translation vectors t, which is filtered with a
Kalman Filter, with the acceleration modeled as a Wiener process [Bar-Shalom et al., 2001],
as detailed in B.5. This filtering should reduce the influence of spurious measurements
and generate a smoother trajectory. The filter state contains the camera position,
velocity and acceleration. The process error considers a maximum acceleration incre-
ment of 0.35 [m/s2], and the sequence of translation vectors is considered as a measure-
ment of the airship velocity, adjusted by the image sampling period (0.5[s] or 0.2[s]).
The measurement error is considered as a zero mean Gaussian variable with standard
deviation of 4 [m/s] in the horizontal axes and 1 [m/s] in the vertical axis. The sequence
of 3D camera poses is taken from the filter state after the filtering.

3.2.6 Fusing visual odometry and GPS

The Kalman Filter described in section 3.2.5 has the 3D camera position in its state
vector. GPS supplies a measurement of the camera position, with expected errors in
the horizontal and vertical axes. Then the same Kalman Filter with a Wiener process
acceleration model fuses the GPS position fixes (considered as measurements of the
camera position), and from the visual odometry (the translation vectors are consid-
ered as measurements of velocity, as before). It is expected that the incorporation
of GPS measurements avoids drifting of the estimated vehicle pose, while the visual
odometry corrects the trajectory locally, particularly in the vertical axis.
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3.3 The case of planes in general position

3.3.1 The homology model for planes in general position
This section relates Arnspang’s relative depth theorem (section 2.2.3.2) with a planar
homology induced by a 3D plane in general position, i.e., the plane does not need
to be parallel to the camera image planes. In this case, the depth of the 3D points
belonging to the plane is not always constant, so their relative depth will also not be
a constant as in equation (3.13), but it must vary with the image coordinates of the
pixel correspondences, or equivalently, with the corresponding 3D point coordinates
on the 3D plane.

Define a translation matrix T that brings the FOE (i.e., the vanishing point) to
the origin of the coordinate system:

T =

 1 0 −vx

0 1 −vy

0 0 1

 (3.15)

This translation is applied to the image correspondences and to the original ho-
mology G, yielding a transformation on the translated coordinates: trx′ =tr G · trx,
where trx = Tx, trx′ = Tx′, and trG = TGT−1. The homology axis is also trans-
lated as tra = T−Ta = (ax, ay,v · a)T , if the original vertex coordinates are given
in non-homogeneous form. As the vertex for the translated transformation is in the
origin trv = (0, 0, 1)T , substituting in equation (2.7) yields the form:

trG =

 1 0 0
0 1 0

(µ−1)ax

v·a
(µ−1)ay

v·a µ

 (3.16)

where v·a is the scalar product of the original, non-translated, vertex and axis vectors.
Note that the µ parameter is the same for trG and G, and det(trG) = det(G) = µ.

This can be understood intuitively as a translation should not change the cross-ratios
of a transformation.

As done in section 3.2.3, we will calculate the relation between the differences
|trx′ − trv| and |trx− trv|, expressed in image coordinates. Initially we follow the
steps shown in [Liang et al., 2004]:

trx′ = trG · trx = (3.17)

=

 trxx
trxy

(µ−1)ax
trxx

v·a + (µ−1)ay
trxy

v·a + µ

 =

 trxx
trxy

(µ−1)(ax
trxx+ay

trxy)

v·a + µ

 (3.18)
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, and separating this equation into two equations for the x and y components:

trx′x

(
(µ− 1)(ax

trxx + ay
trxy)

v · a
+ µ

)
= trxx (3.19)

trx′y

(
(µ− 1)(ax

trxx + ay
trxy)

v · a
+ µ

)
= trxy (3.20)

and, supposing trx given in homogeneous coordinates, squaring and summing 3.19
and 3.20 yields:

(trx′
2
x + trx′

2
y)

2

(
(µ− 1)(ax

trxx + ay
trxy)

v · a
+ µ

)2

= (trx2
x + trx2

y)
2

remembering that trv = 0, we have:(
(µ− 1)(ax

trxx + ay
trxy)

v · a
+ µ

) ∣∣trx′ − trv
∣∣ =

∣∣trx− trv
∣∣ (3.21)

Then, substitute trxx, trxy by their non-translated versions, and noticing that the
scalar product is v·a = vxax+vyay+1, if both vertex and axis are in non-homogeneous
form, we have:

|trx− trv|
|trx′ − trv|
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(µ− 1)(ax(xx − vx) + ay(xy − vy))

v · a
+ µ

)
=
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v · a

=
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v · a
=
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v · a
=

(µ− 1)(axxx + ayxy) + (µ− 1)

v · a
+ 1 =

(µ− 1)(axxx + ayxy + 1)

v · a
+ 1 =

(µ− 1)(a · x)

v · a
+ 1 =

(µ− 1)(a · x)

v · a
+ 1 =

|trx− trv|
|trx′ − trv|

=
Z

Z ′ (3.22)
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Figure 3.9: The ratios Z/Z ′, d/d′, b/b′ are the same.

Note that if x = v = (vx, vy, 1)T , then the term dependent on x disappears and
equation (3.22) is reduced to equation (3.13). Therefore µ is the relative depth of the
plane in the direction of the FOE.

The relation between the relative depth and the determinant of trG yields:

det(G) = det(trG) = µ =
Z

Z ′ (3.23)

It is stated here that the determinant of G is the relative depth of the plane in
the direction of the FOE, while the original theorem stated that the determinant
is the ratio of the distances between the camera centers and the plane. These two
ratios are indeed the same: figure 3.9 shows that they are the projections of another
ratio in different directions. This other ratio is the ratio of the distances between the
camera centers and the plane along the translation direction. In figure 3.9, b is the
hypotenuse for the two dashed triangles, relating the ratio b/b′ with the ratios d/d′

and Z/Z ′, where d and d′ are the distances between the camera centers and the plane
along lines perpendicular to the plane (as in the determinant theorem), B = b− b′ is
the baseline, so b and b′ are the distances between the camera centers and the plane
along the direction of translation. Z/Z ′ are the depths in the direction of the FOE.
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3.3.1.1 Calculating Relative Depth for planes in general position

As section 3.2.3.1, this section describes a process to calculate the ratio of the depths
of a 3D plane in two views related by a pure translation. But now the plane may
be in a general position, not parallel to the image planes, and the relevant result is
equation (3.23) of section 3.3.1.

The FOE v and the cross-ratio µ must still be estimated, but now the axis a is
also unknown, and is estimated first. An usual homography H, calculated from pixel
correspondences, allow us to estimate the axis a by solving the following linear system
[Hartley and Zisserman, 2000]:

λH = I3×3 + tnT (3.24)

, where H is the homography matrix, t = [vx, vy, focal length]T is the translation
between both cameras (defined up to scale), n is the vector normal to the 3D plane,
the unknown to be determined in the linear system, and the scale λ is found as in
section 2.2.2. Once the normal vector is calculated, it is related with the axis a,
which is the image of the vanishing line of the 3D plane, by the following formula
[Hartley and Zisserman, 2000]:

a = K−T · n (3.25)

where K is the camera intrinsic calibration matrix.
As the calculation of the homography H already excludes outliers from the pixel

correspondences, the first estimate of the FOE is given by a simpler linear estimation
with the inliers, which is the first step of the process described in [Chen et al., 2003],
without need of RANSAC or optimization.

Then an optimization is performed as in the previous section, but over v, µ, and
also a, yielding an estimated G(v, µ, a). Note that, as discussed in section 3.3.1, µ is
the determinant of G and the relative depth in the direction of the FOE as well the
relative distance to the 3D plane.

Figure 3.10 summarizes this process, showing additional steps in relation to the
algorithm in section 3.2.3.1.

Therefore, for 3D planes in unknown position, the additional cost after the ho-
mography estimation consists in solving two linear system, (to calculate the FOE and
the axis) and estimate G as in the last section but having one more tree dimensional
parameter to estimate. The determinant of H is also the relative depth as well as the
determinant of G, and the question is if the latter is a better approximation to the
truth, in order to justify its additional cost.
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Figure 3.10: Finding the homology transformation between two images.

3.4 Trajectory recovery results

3.4.1 Relative height experiments with ground truth

On these experiments, the camera inertial system of figure 1.2 was mounted in a
tripod or a fixed base, as shown in figures 3.11 and 3.13, taking images of objects on
the ground floor. The camera height was manually set, with the purpose of providing
experiments with measurable ground truth. These experiments used the MTB-9
AHRS.

3.4.1.1 Tripod experiment with 3D plane parallel to image plane

In this experiment, the rigidly coupled AHRS-camera system of figure 1.2 was mounted
on a tripod as shown in figure 3.11 and 50 images of the ground floor were taken from
different viewpoints at three different heights. The tripod was moved manually but
kept still while each image was being taken. Image examples are shown in figure
3.12and 3.11. The objective is to calculate the height of the camera for each view
as a ratio of the height of the first view, and to compare the results obtained by the
homography and the pure translation models models against hand-measured ground
truth.

Figure 3.12 shows the relative height for all 50 images. Two arrows connect two
highlighted points to their respective images. The tripod was set to 3 different heights,
therefore the 3 horizontal lines are the ground truth. The circles are the relative
heights found by the Procrustes routine, with no need of any optimization. The stars
are the result of the process described in section 3.2.3.1. The crosses are the relative
depths taken as the determinant of a homography H, estimated with RANSAC,
optimized to minimize the projection error on pixel correspondences, and scaled as
in equation (2.4).

The results are summarized in table 3.1, where the unit is the reference height
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Figure 3.11: A tripod with a camera rigidly mounted with the AHRS, and an image
example.

Figure 3.12: Relative heights to the ground for the tripod experiment, with two
example images. Each unit on the abscissa corresponds to one image. Images were
taken from 3 different heights.
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Rel. height error Average Time [s]
RMS std ransac Optimiz. Total

homography 0.033 0.030 0.40 0.29 0.69
homology 0.020 0.020 0.57 0.19 0.76
Procrustes 0.019 0.017 0.74 - 0.74

Table 3.1: Results for relative depth of 3D plane parallel to virtual image planes.

Figure 3.13: The camera mounted on a base, to be manually aligned with the walls,
with an image example.

(104.5[cm]), and show that the pure translation models yield better accuracy than
the homography model. The closed form Procrustes routine yielded the best results.
Optimizing in t (equation (3.5)) did not improve, or even worsened the results. While
the average computational time spent with optimization decreased with the simpler
models, the time spent with outlier removal increased - and using the FOE estimation
to detect outliers was faster than using the Procrustes routine.

3.4.1.2 Tripod experiment with general 3D plane

In the next experiment the monocular camera, fixed to its base in order to have
always the same orientation, was manually placed at 5 different heights above the
same portion of the ground plane, and a total of 25 images were taken from different
positions. The images are not reprojected on the virtual horizontal plane, the original
images are directly used.

The experimental setup with an image example is shown in figure 3.13. The
objective, as in the first experiment of section 3.4.1.1, is to use the homology process
to estimate the relative heights, comparing with the usual homography model, but
now considering the ground plane in general position, and thus applying the process
of section 3.3.1.1.

The inertial system was not used in this experiment. The FOE was estimated from
the pixel correspondences, and from it the cross-ratio parameter µ was estimated. A
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Figure 3.14: Relative heights to the ground plane, with two image examples. Each
unit on the abscissa corresponds to one image. Images were taken from 5 different
heights.

RMS error std of error
homography 0.018 0.011
homology 0.015 0.010

Table 3.2: Results for relative depth of 3D plane in general position.

homography H was also estimated from the pixel correspondences, and an initial
estimate for the axis was obtained from H using equations (3.24) and (3.25). Then
the homology G was estimated from these parameters.

The results, shown in figure 3.14 and summarized in table 3.2, indicate that the
homology model slightly improved the relative depth estimates from the full homog-
raphy model. The maximum height, with relative depth equal to one, was 83[cm]

3.4.2 Overpass Experiment

In the next experiment, the camera and MTB-9 AHRS were manually moved down
an overpass access where 39 images were taken. The recovered camera trajectory is
similar to the trajectory of an UAV approaching to land. Figure 3.15 shows the tra-
jectories recovered by the homology (trajectory with blue lozenges) and homography
models, superimposed onto a photograph of the overpass. Only the homographies
were used to recover the trajectory indicated by the red squares. The green circles
indicate a trajectory recovered by the homographies where the camera orientation
was given by the AHRS to avoid drifting of the camera orientation estimate. The
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Figure 3.15: Trajectories recovered by the homology and homography models for the
overpass dataset.

Final Error [m] Average Time [s]
Vertical 3D ransac Opt. Total

Procrustes 0.14 (06%) 3.57 (13%) 0.09 - 0.09
Proc. + opt(t) Euclidean 0.14 (06%) 3.66 (14%) 0.10 0.04 0.14
Proc. + opt(t) Sampson 0.08 (04%) 3.71 (14%) 0.10 0.06 0.16

Homology 0.04 (02%) 3.78 (14%) 0.22 0.18 0.40
Homography 0.89 (40%) 4.17 (16%) 0.04 0.35 0.39

Homography + ahrs 0.60 (27%) 5.19 (19%) 0.04 0.34 0.38

Table 3.3: Comparison of trajectories recovered using the homography and the pure
translation models for the overpass dataset.

metric scale was measured in this image from a hand-measured reference, and the
trajectory estimation presupposes that the height of the first image is known. The
AHRS was used to estimate only the roll and pitch angles, while the yaw angle could
not be estimated due to the metallic structure of the overpass which interferes with
the magnetometer readings. Therefore the camera was kept in the same orientation
as far as it is possible when carrying it by hand - small errors on the orientation were
still visible in the images. Table 3.3 shows the final error in the vertical component
as well as final 3D pose error, indicating also the percentage relative to the total dis-
placement. The vertical displacement was 2.18[m] and the horizontal displacement
26.5[m].

Figure 3.16 shows the trajectory recovered by the Procrustes procedure alone,
using RANSAC to eliminate outliers, and two trajectories recovered with the opti-
mization in t described by equation (3.5), initialized with the result of the Procrustes
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Figure 3.16: Trajectories recovered by the Procrustes procedure for the overpass
dataset, and by optimizing in t, with two distance metrics.

procedure, and using two distance metrics. For this dataset the projective models
are not necessary, as the simpler Procrustes registration finds a good, non-iterative
solution, and even is able to remove outliers. The 10[cm] difference between the pure
translation models in the vertical displacement is not very significative.

3.4.3 Screwdriver Table Experiment

In this experiment, the camera was mounted on a moving table below the screwdriver
of figure 3.17(a). The camera was fixed with its optical axis pointing approximately
down - bubble levels were utilized to fix the camera enclosure at the right orientation.
Therefore in this experiment reprojected images were not utilized, and the original
images were always used. Although the AHRS is present, it was not utilized. The
screwdriver moving table was moved by manually turning three mechanical screws,
which allow independent movement for each axis. The objective of this experiment is
to perform trajectory recovery with small errors in the camera orientation with mo-
tion in a single axis, vertical or horizontal. Both cases represent extreme situations:
for horizontal displacements, the direction of translation is almost parallel to the im-
age plane, and the FOE is estimated as a large number (from 104 to 106 pixels in this
dataset), nevertheless the trajectory recovery proceeds normally. Large FOE coordi-
nate values also can be found in the flight experiment of section 3.4.4, as the airship
motion is often almost horizontal. On the other hand, during vertical displacement
the FOE is close to the camera principal point in the center of the image.

The screwdriver table was moved and the images used to recover its trajectory
as shown in figure 3.17(b). The horizontal (forward and lateral) displacements in-



3.4. TRAJECTORY RECOVERY RESULTS 55

Unit: [cm] forward1 forward2 lateral height2 height3
ground truth 15.9 15.9 8.5 99.6 109.6

homology 16.4 15.9 7.9 100.1 110.5
homology filtered 16.4 15.8 8.0 100.1 110.5

homography 15.4 13.6 9.1 98.8 108.1
homography scaled 15.4 13.5 9.4 99.2 108.8
by homology height

Table 3.4: Comparison of displacements recovered using the homography and homol-
ogy models for the screwdriver table dataset. All displacements are given in [cm].

dicated in figures 3.18(a) and 3.18(b) are the maximum displacements allowed by
the mechanical devices, and were measured with metric tape. After each vertical
displacement of the camera, its height in relation to the ground plane was also hand
measured. Therefore the distances indicated in figures 3.18(a) and 3.18(b) can be
compared against ground truth as it is shown in table 3.4. One image was taken
every 0.6[s], including the moments when the camera was not moving, e.g. when its
height was being measured. The initial height was also measured and it was 85.6[cm].
Figure 3.17(a) also presents an example image.

3.4.4 Trajectory recovery for aerial vehicles with the MTB-9
AHRS

This experiment uses images taken by the remotely controlled airship of figure 1.2,
carrying the AHRS-camera system with the MTB-9 AHRS and a GPS receiver, flying
above a planar area next to the Coimbra Aerodrome. The image frame rate is 2fps.

3.4.4.1 Visual Odometry: Heights For a UAV

The GPS measured height is shown in figure 3.19 compared against visual odometry
based on the µ value of homologies calculated for the sequence of images using the
process described in section 3.2.3.1.

For the first image the height is visually guessed and manually set as h1 = 4[m],

and for the ith image the height is hi =

(
i−1∏
j=1

j+1µj

)
· h1, where j+1µj represents the

cross-ratio parameter for the homology that transforms the jth image into the image
j+1. For a few image pairs the homology could not be calculated due to corrupted or
missing images, or because too few interest points were matched. In this case the last
valid µ value is assumed to be the current one. Except by that, no other attempt was
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(a) (b)

Figure 3.17: The screwdriver with its moving table and one example image (a) and
the recovered 3D camera trajectories (b).

(a)

(b)

Figure 3.18: Two views of the recovered trajectories with highlighted displacements.
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Figure 3.19: Visual odometry based on homology compared with GPS altitude mea-
surements.

made to filter the data to avoid the drift from successive multiplications of relative
heights.

The scale of the visual odometry depends on the manually set height of the first
image. GPS altitude measurements are not very accurate; in this case their expected
vertical error (epv in GPS terminology, or one standard deviation), was always around
30[m] - so large that it covers most of the scale, therefore it was omitted in the graph.
It is evident that the visual odometry is close to the GPS data, even having peaks a
few seconds ahead of it.

3.4.4.2 Visualizing the effect of orientation error with an example image

Within the projective homology model, equation (3.13) allows to calculate individual
µ values for each corresponding pixel pair, which should be equal for all points in the
ground plane as they represent the same relative height. Figure 3.20 shows, for one
example image of the Coimbra Aerodrome, the individual µ values for each matched
pixel (correspondences classified as outliers in the FOE estimation are not shown).
On the right, the same data is shown as a 3D plot with a larger scale for ease of
visualization. The color scale and the z axis both indicate the same µ values. This
example has noticeable orientation error, although the translation vector still could
be estimated.

In figure 3.20(a) all corresponding pixels are in a relatively narrow band close to
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Figure 3.20: The µ values for individual pixel correspondences.

the center of the image. There were other correctly matched pixels in other sections
of the image but, as the motion model does not cover the non-compensated rotation,
they were classified as outliers due to errors on the orientation estimation. This effect
is more significant in image areas far from the nadir point. Errors in the calibration of
the rotation between the camera and inertial sensor frames should increase this effect.
If the orientation error is too large, too many pixel correspondences are discarded and
it is not possible to estimate the homology reliably. The AHRS orientation output
standard deviation for a static setup (as on the tripod experiments) is 3◦. The error
is larger for the moving UAV.

Even among the inliers the measured height change varies between 2.3% and
1.6% of the first image height. The building in the bottom of the image is out of
the horizontal plane and thus there are a few points that do not follow the general
tendency.

3.4.4.3 Recovering the complete UAV Trajectory

As presented in section 3.2.4, the UAV trajectory is recovered by adding the transla-
tion vectors recovered for each image pair in the image sequence. The trajectory is
thus reconstructed for the same UAV dataset and shown in figure 3.21. A Kalman
Filter as described in (3.2.5) filtered the translation vectors for all methods, and pre-
dicted the translation for the few image pairs for which the translation estimation
was not successful and a measurement was missing.

Both 2D and 3D plots of the same data are provided. The GPS trajectory is
indicated by red circles, with the larger circles indicating the expected horizontal
error (eph in GPS terminology), which was around 15[m] most of the time. The GPS
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indicates that the trajectory length was 660[m], and the average speed was 7.5[m/s].
The squares in figure 3.21(b) show the trajectory reconstructed by adding up

all translation vectors, estimated by the homology model. The trajectory recovered
by the homography model is also shown, and as only the ratio t/d is recovered, the
recovered vector is multiplied by the current airship height found by the homology
model.

Figure 3.22 show as squares the same trajectory estimated by the optimization
approach of equation 3.5 initialized by the FOE estimation. The trajectory recovered
by the homography model is also shown, scaled by the current recovered airship
height.

The most important source of error in our experience, inclusive in this estimated
UAV trajectory, is the FOE estimation, which was found to be less accurate and
slower if the orientation estimate is less accurate. With an inaccurate orientation
estimate, the lines connecting corresponding pixels fail to converge to a single point,
and the FOE is more difficult to estimate. Therefore better orientation estimates, or
another measurement of the direction of movement (which is equivalent to the FOE)
to improve the initial FOE estimate, would improve the accuracy of the estimated
trajectory.

3.4.4.4 Combining GPS and Visual Odometry

The translation recovered by the visual odometry was fused with GPS position fixes
in a Kalman Filter with a Wiener process acceleration model as described in section
3.2.5. The GPS measures the airship position and translation vectors from the visual
odometry are interpreted as a velocity measurement between two successive poses,
with a manually set covariance smaller in the vertical axis than in the horizontal
ones. The fused trajectory is shown in figure 3.23(a) using the translation recovered
by the homology model and in figure 3.23(b) using the translation vectors recovered
the optimizing in t after obtaining an initial estimate from the FOE.

3.4.4.5 Comparison with GPS as scale to relative pose recovered from
homography

The the GPS measured trajectory and the trajectory recovered from rotation-compensated
images were shown. It is hard to obtain accurate ground truth to evaluate these re-
sults for a free flying aerial vehicle but this section offers another piece of evidence
that the altitude recovered is accurate.

The homography model was applied on the reprojected images, also recovering
the trajectory from a sequence of relative poses. There is an inherent scale ambiguity
on equation (2.4), as only the ratio t/d is recovered, and not the actual translation
vector t. Therefore, to compare the trajectory recovered by the homography model
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(a)

(b)

Figure 3.21: 3D (a) and 2D (b) plots comparing the trajectory recovered by the
homology with GPS position fixes. The circles indicate some of the GPS eph values
(i.e. one standard deviation).

with the trajectory measured by GPS, it is necessary to have an independent measure
of d, to recover the scale.
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(a)

(b)

Figure 3.22: 3D (a) and 2D (b) plots comparing the trajectory recovered by optimizing
in the translation vector with GPS position fixes. The circles indicate some of the
GPS eph values (i.e. one standard deviation).

Firstly, the GPS is used to obtain these measurements. For each image pair, the
recovered ratio t/d is multiplied by the current GPS measured height to obtain the
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(a) With the homology model. (b) Optimizing in t after FOE estimation.

Figure 3.23: Data from GPS and visual odometry fused by a Kalman filter.

actual translation t, and the resulting trajectory is shown in figure 3.24. The GPS
height measurement is simply the current GPS altitude minus the altitude measured
before taking off.

Secondly, another trajectory is generated by taking as d the height estimated by
fusing GPS and visual odometry data as in section 3.4.4.4. It is also shown in figure
3.24. And finally, the height recovered by the visual odometry was used to measure
d in the trajectory shown in figure 3.21(b).

Note that for the first, larger curve, the trajectory scaled by the GPS height is too
short, and the other trajectories are closer to the GPS 2D trajectory. This indicates
that the height measured by the GPS was too low.

The trajectory scaled by the fused data exploits the GPS data to avoid drifting,
and the visual odometry data offers some degree of improvement - with the homology
model it is even able to close the second loop as in figure 3.24(a). In the second,
smaller loop of figure 3.24(b), the trajectory scaled by the GPS height has a larger
loop, closer to the size of the loop in the reference trajectory, indicating that height
recovered by the visual odometry has already drifted .

Table 3.5 also presents error values for the trajectory recovered by the homography
model alone, with no extra height measurement: the height of the first image is
manually set and each translation vector is scaled by the current estimated height.

3.4.4.6 Comparison of methods including the Procrustes solution.

For the flight dataset, the trajectory recovered by the Procrustes procedure is too
small, even if optimization is performed. Some translation vectors are wrongly esti-
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(a) Using the homology model (b) Optmizing in t after initialization from the
FOE.

Figure 3.24: 2D plot of the trajectories recovered by the homography model with
different height measurements to scale it. Compare with figure 3.21.

mated, and this error propagates in the subsequent estimated trajectory. To address
this problem, the FOE was estimated as shown in section 2.2.3.3, and an initial es-
timate of t was derived from it as shown in section 3.2.4, obtaining the results of
section 3.4.4.3.

Figure 3.25 shows the following recovered trajectories: the triangles indicate the
trajectory recovered by optimization in t initialized by a Procrustes procedure. The
stars and filled circles are the result of applying the same optimization to an initial
estimate generated by estimating the FOE, with respectively Sampson and Euclidean
distance metrics. The trajectories recovered by the homology model (squares) and
GPS position fixes (empty circles) are also shown. This thesis shows results only for
the best variations of these methods, with some additional results available online in
[Mirisola and Dias, 2008].

3.4.4.7 Computational requirements and error statistics

Both Procrustes and the first linear step of FOE estimation are very fast routines.
But, due to the presence of outliers, they are embedded in a RANSAC procedure.
For the aerial dataset, figure 3.26 shows the time spent with outlier removal, with the
final optimization step, and the total of both steps. With any of the translation-only
models, outlier removal is the most computationally expensive part of the process,
while with the homography model the final optimization is more costly. Errors in
the orientation estimate may hamper outlier removal with a pure translation model,
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Figure 3.25: 2D plots comparing of the trajectory recovered by the homography model
and scene registration approaches.

as they are not modeled. These losses are partially compensated by the faster final
optimization step, as there are less variables to optimize. The data shown in figure
3.26 also include the optimization step which is part of the FOE estimation, and is
applied after the outliers are removed. It takes on average 0.05[s], and it is a reason
why outlier removal with the FOE estimation is slower than with Procrustes.

For the homology model with Sampson distance metric, the average computational
time for the final optimization step was 4% larger than for the homography model,
with standard deviations of 20% for homologies and 40% for homographies related
to their respective average values. But, if the Euclidean distance metric is used, the
average computational time is halved, with a standard deviation of 26% of the mean.
The simpler distance metric also yielded slight better, or not significantly different
results, therefore it is the one used in this thesis.

Table 3.5 compares numerically the error, using the GPS as a reference, of the
trajectories presented so far and includes some results not shown in the figures of this
thesis. The fused trajectory from the Kalman Filter of section 3.4.4.4 is the closest to
the GPS, which is expected as it utilizes GPS data directly. The comparison of the
methods tested show that the homology model achieved the results closest to GPS,
very closely followed by the optimization with the translation vector (equation 3.5)
after obtaining an initial estimate from the FOE estimation. The FOE estimation
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Figure 3.26: Comparison of average computation time per frame for some of methods
tested. All experiments in this chapter were executed in a Pentium D 3.2 [GHz].

was better than the Procrustes routine to find an initial estimate of t.

Different height measurements were used to scale the translation recovered by the
homography, including GPS data, the height component of the trajectory recovered
by the pure translation models, and the result of the Kalman Filter fusing both visual
odometry and GPS. The visual odometry achieved better results than GPS, indicating
a more accurate height estimate in the fused trajectory. With the homology model,
the result of the Kalman filter was better than either GPS or visual odometry alone
to scale the trajectory recovered by the homography model.
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Unit: meters 3D Position Error 2D Position Error Error in the length of t

Avg. Max. Final Avg. Max. Final rms Avg. Max.

Homography 48.5 100 100 44.3 98.6 98.6 3.00 -2.68 14.6
Homography scaled

by GPS
38.5 79.3 79.3 33.0 76.2 76.2 2.07 -1.19 14.3

Homography scaled

by FOE+opt(t)
27.7 72.4 72.4 20.0 69.7 69.7 1.88 -1.14 13.2

Homography scaled

by the filtered output

kf(gps & foe+opt(t))

27.9 70.2 70.2 20.1 67.0 67.0 1.84 -1.07 13.2

KF(gps & foe+opt(t)) 7.5 21.6 20.0 6.0 21.5 20.0 1.62 0.1 8.06
optimization in t

initialization: FOE
16.4 43.3 43.3 15.8 43.0 43.0 2.03 0.16 8.71

optimization in t

initialization: Procrustes
38.9 87.0 87.0 35.1 85.7 85.7 2.56 -1.73 10.5

Homology 12.1 39.8 38.9 10.6 39.0 38.2 2.11 0.09 10.3
Homography scaled

by Homology
35.2 62.5 49.5 31.5 58.2 45.8 1.67 -0.66 12.2

Homography scaled

by the filtered output

kf(gps & Homology)

30.3 63.7 63.7 24.1 60.1 60.1 1.83 -1.00 13.8

KF(gps & Homology) 7.0 20.3 19.6 5.0 19.5 19.0 1.71 -0.36 8.04

Table 3.5: Comparison of all trajectories presented with the GPS as a reference. Red
and green cells represent the two worst and the two best values in each column. The
grayed lines represent the results of Kalman Filters including the GPS position fixes
which can not be fairly compared. All error values are given in meters.

3.4.5 Trajectory recovery for aerial vehicles with the MTi
AHRS

This experiment uses images taken by the remotely controlled airship of figure 1.2,
carrying the AHRS-camera system with the MTi AHRS and a GPS receiver, flying
above a planar area next to the Coimbra Aerodrome. The camera captured images
at 5 fps.

The letters of the city name written on the ground were visible on the first image
of the sequence. The letters were measured on the image, and then the first airship
height was calculated from the camera intrinsic parameters and the actual, hand-
measured, size of the letters. The first height was found to be h1 = 25[m].

The recovered trajectory is shown in figure 3.27. Both 2D and 3D plots of the same
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data are provided. The GPS trajectory is indicated by small circles, with larger circles
indicating the GPS eph, which was around 8[m] in the horizontal axes and 15[m] in the
vertical axis. The GPS indicates a trajectory length of 543[m], and average speed of
9[m/s]. A Kalman Filter with a constant acceleration model [Bar-Shalom et al., 2001]
filtered the translation vectors for all methods, and predicted the translation for
the few image pairs for which the translation estimation was not successful and a
measurement was missing.

The squares in figure 3.27 show the trajectory reconstructed by adding up all
translation vectors, estimated by the optimization approach of equation 3.5 initialized
by Procrustes. The recovered trajectory is very close to the one recovered by the
Procrustes procedure alone, indicated by crosses. The trajectory recovered by the
homography model using only the images is also indicated with stars. As only the
ratio t/d is recovered by the homographies, the scale is recovered by multiplying the
recovered vector by the current recovered airship height. Tables 3.6 and 3.7 show the
errors in the visual odometry, taking the GPS as a reference, and the execution times.

Unit: meters 3D Position Error 2D Position Error Error in the length of t

Avg. Max. Final Avg. Max. Final rms Avg. Max.

Homography 57.5 98.2 52.3 43.1 67.6 52.0 0.88 -0.63 1.24
Visual Odometry:

Procrustes only
16.5 43.6 43.6 15.3 43.3 43.3 0.73 -0.46 0.59

Visual Odometry:

optimization in t

initialization: Procrustes

16.0 41.6 41.6 14.9 41.3 41.3 0.70 -0.45 0.59

Table 3.6: Comparison of visual odometry with the GPS reference. All error values
are given in meters.

Unit: seconds RANSAC Optimization Total

Avg. std. Avg. std.

Homography 0.05 0.02 0.43 0.19 0.48
Visual Odometry:

Procrustes only
0.18 0.08 - - 0.18

Visual Odometry:

optimization in t

initialization: Procrustes

0.18 0.08 0.18 0.10 0.36

Table 3.7: Comparison of the execution time of visual odometry techniques.

Another image sequence with a recovered trajectory is shown in figure 3.28. The
images are reprojected on the ground plane forming a map by using equation (3.4) to



68 CHAPTER 3. INERTIAL AIDED VISUAL TRAJECTORY RECOVERY

find the metric coordinates of the projection of its four corners in the ground plane
and drawing the image on the canvas accordingly. The better alignment of the road
and lines in the grass field indicates that the map of figure 3.28(a), which utilizes the
vehicle poses recovered by the visual odometry, is better registered than the map of
figure 3.28(b), which utilizes the GPS position fixes. Both figures utilize the same
images orientation data.

3.4.6 Combining GPS and Visual Odometry
This experiment also utilized the MTi AHRS unit. The translation recovered by the
visual odometry was fused with GPS position fixes in a Kalman Filter with a constant
acceleration model [Bar-Shalom et al., 2001]. The GPS measures the airship position
with standard deviation given by the eph and epv values supplied for each position
fix, and translation vectors from the visual odometry are interpreted as a velocity
measurement between two successive poses, with a manually set covariance smaller in
the vertical axis than in the horizontal ones. The GPS absolute position fixes keep the
estimated airship position from diverging, while the visual odometry measurements
improve the trajectory locally. The fused trajectory is shown in figure 3.30(a) next
to the original GPS trajectory. The latter is shown alone in figure 3.30(b). The
maps in figures 3.30(a) and 3.30(b) were generated from the same images and camera
orientation values, the only difference being in the camera poses. The fused trajectory
is still heavily dependent on the GPS, and its corresponding map is far from perfect,
but some details such as the letters and the airfield runway are better registered with
the fused trajectory (a) than with GPS alone (b). This dataset contains 1000 images
(only 68 are drawn). This trajectory is too large to be recovered by visual odometry
alone, therefore the map corresponding to this is not shown.
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(a)

(b)

Figure 3.27: 3D (a) and 2D (b) plots comparing visual odometry with GPS position
fixes. The circles indicate some of the GPS eph values (i.e. one standard deviation).
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(a) (b)

Figure 3.28: Maps formed by reprojecting the images on the ground plane, with
trajectories superimposed. The circles indicate some of the GPS eph values (i.e. one
standard deviation).

Figure 3.29: A satellite image of the flight area, the Coimbra City Airfield.
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(a) Images projected in the ground using the fused
trajectory.

(b) Images projected in the ground using the GPS
trajectory.

Figure 3.30: Data from GPS and visual odometry fused by a Kalman filter. The
images are projected on the ground plane, forming a map.
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Chapter 4

Inertial Aided Visual Mapping

4.1 Introduction
The reprojection on the virtual horizontal plane introduced in section 2.7 and detailed
in section 3.2.1 can be applied in other domains besides trajectory recovery. This
chapter considers other problems such as Image Mosaicing, Plane Segmentation and
3D Mapping from a monocular camera image sequence and registration of point clouds
taken from a stereo camera or LRF.

4.2 Image Mosaicing

Building small mosaics
All images are reprojected on the virtual horizontal plane as presented in sections 2.7
and 3.2.1. These images of the virtual downwards camera are denoted by IDi . Interest
point matching is used to establish point correspondences between each image IDi
and an arbitrarily chosen reference image IDB. Wrong correspondences will appear as
outliers, that are detected by RANSAC, using the homography model.

In the sequence of images, the interest point matching algorithm tries to match the
reference image IDB with the images following and preceding it until the image match is
not good enough, therefore delimiting an image sequence denoted by {ID1 . . . IDB . . . IDn }.

For an image match to be considered “good enough”, two conditions must be
satisfied:

1. There must be a minimum number of corresponding pixel pairs, after excluding
outliers. (A minimum 20 pixel correspondences in this work);

2. The area covered by the corresponding pixels in the image must be large. This
is relevant because the homography calculation is better conditioned when dif-

73
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Figure 4.1: Example of mosaic constructed from successive images.

ferent portions of the image are constrained [Hartley and Zisserman, 2000]. In
this work the area of the convex hull of all corresponding pixels must be larger
than 20% of the image area, in both images.

If any of these two conditions do not hold, the pair of images is considered badly
matched, the image sequence also stops.

Then for each image IDi , a homography BHi is calculated to register the image IDi
to the reference image IDB, and then the images are drawn together. Figure 4.1 shows
an example of a mosaic built from a sequence of successive image frames.

It might be asked why the reprojected images were registered using homographies
instead of homologies as used in chapter 3. Certainly homologies can be estimated,
as it is done with the same kind of dataset in the tripod experiments of section 3.4.1,
but the remaining uncompensated rotation is still significant enough to cause visible
misalignments on an image pair when drawn together. It is still necessary to estimate
homographies with the reprojected images to obtain visually clean small mosaics.



4.2. IMAGE MOSAICING 75

Figure 4.2: Choosing the next base frame for the next mosaic.

Choosing the next base frame.

The purpose of building mosaics from successive frames is to register themselves into
a larger mosaic. In order to do that, the choice of the reference frame of the next
mosaic in the image sequence must guarantee that consecutive mosaics overlap.

To guarantee this overlapping, a small number of image frames must be shared
between two consecutive mosaics. Therefore after setting a default interval between
consecutive reference frames, and arbitrarily choosing the base frame of the first
mosaic, the process shown in figure 4.2 generates a sequence of overlapping mosaics.

Basically the new mosaic base frame is chosen closer and closer to the last frame
used by the last mosaic until both mosaics share enough frames. A few stop conditions
were not shown in the figure: if the interval reaches 1 and the new mosaic still does
not share frames with the previous one, then the new mosaic is accepted anyway, but
the mosaic sequence may be not continuous. And when the last existing frame is
used, the algorithm stops.

Mosaicing the mosaics

By construction, most mosaics will overlap with the next mosaic in the temporal
sequence, especially when they share image frames. It is possible to apply recur-
sively the same algorithm that registered sequences of successive images, registering
sequences of successive mosaics. This should further reduce the number of images,
and make the number of chained transformations smaller than if one was chaining all
the homographies between every pair of original images. A similar concept was used
to generate a panorama from video in the pure rotation case [Steedly et al., 2005],
where images in the video are matched to a small number of “key frames”, which are
in turn matched themselves. Figure 4.3 shows an example of two matched mosaics.

This data shows that the mosaics themselves may be registered by interest point
matching. The mosaics shown in this section originate from a dataset of 61 images,
taken from a tripod moved manually above a planar patch, set at 2 different heights.
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Figure 4.3: On the right, two mosaics, with their pixel correspondences; left, the same
mosaics registered and drawn together.
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This sequence generated 20 mosaics built from successive pairs of images. Then, a
second run over them generated 4 larger mosaics. A final run generated the mosaic
of fig. 4.4. A feathering process was applied to smooth image transitions on the last
step, and this implied on some ghosting in the books in the middle.

The mosaic of figure 4.4 was obtained without deghosting and bundle adjustment,
which usually must be applied to image-only mosaicing of this size
[Szeliski, 2004, Capel, 2001]. These techniques still could be used to register larger
datasets. Also, some recent results in mosaicing suppose a rotation-only model (e.g
[Brown and Lowe, 2003, Szeliski, 2004]), where the camera center is the same for all
images. But here the camera is freely translating and rotating.

For comparison, the same interest point matching algorithms were applied to
successive frames in the original image sequence as well as in the sequence reprojected
into the virtual horizontal plane. The reprojection error (root mean square) on pixel
correspondences was 20% less on the reprojected images.

The ratio of correct matches versus total number of interest points detected is bet-
ter with images taken from the same viewpoint, therefore the algorithm parameters
may be tuned to detect less features, while keeping the same number of correct pixel
correspondences. Therefore, interest point matching is faster (less features means less
descriptor computation and faster matching) or more robust (more correct matches
with the same number of detected interest points means greater probability of suc-
cessful registration), which is a trade-off. For this dataset, the matching of interest
point descriptors with the reprojected images was 50% faster, while still yielding a
2% larger number of correct correspondences.

Otherwise, it would be necessary that the feature encoding be invariant to heading
and viewpoint differences of the original images [Mikolajczyk and Schmid, 2004].

Note that the small mosaics are built from a small temporal sequence of over-
lapping images, where the camera pose and viewpoint could not change too much.
But during a larger movement, such as when the mosaics themselves are registered,
the moving observer may revisit the same area from other points of view, including
changes in scale, rotation, and luminosity, and thus interest point matching with the
mosaics is more difficult.

The gains obtained with the reprojection to the virtual horizontal plane should be
related to the gains of affine invariant interest point matching algorithms
[Mikolajczyk et al., 2005], i.e., interest point algorithms invariant to affine transfor-
mations of planar images - the transformation that a small patch of image suffers
when seen under different viewpoints.

Some affine invariant interest point matching algorithms improve the matching
reliability under viewpoint change by reprojecting the region around each detected
interest point to a viewpoint uniquely determined by the statistical characteristics of
that image region [Mikolajczyk and Schmid, 2004]. In our case, the reprojection to
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Figure 4.4: A mosaic from 61 registered images.
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the virtual horizontal plane essentially transforms each image to generate a virtual
image taken from a constant, downwards point of view, and the transformation is
estimated from AHRS orientation measurements.

It is not clear in the algorithms comparisons found in the literature
[Mikolajczyk et al., 2005], which would be the advantages of affine invariant algo-
rithms over the more usual algorithms invariant only to rotation and scaling in this
context. But reprojecting the images into the virtual horizontal plane has been shown
here to improve execution times by allowing the point detection thresholds to be more
restrictive. Therefore the detected interest points have better distinctiveness, improv-
ing the ratio of inliers versus outliers, which facilitates and accelerates the matching
and outlier removal steps.

4.3 Plane Segmentation and a Digital Elevation
Map From Pixel Correspondences

Recall that equation (3.7), the relation between scene depths and image ratios with
the FOE for pixel correspondences, is valid for each individual corresponding pixel
pair. Therefore, if an image contains regions above the ground plane, the relative
height can be directly recovered for each corresponding pixel. This suffices to order
these pixels by their height, but it is not an absolute measurement. Again, additional
information is needed to recover scale from imagery.

First, in section 4.3.1, plane segmentation experiments are shown, where 3D planes
are segmented on the image and ordered by their depth, with no concern for absolute
heights. Then, in the following sections, given the height of the first view, the absolute
height is calculated for each pixel correspondence and a coarse Digital Elevation Map
(DEM) grid is built, performing 3D mapping from monocular aerial images.

4.3.1 Plane Segmentation Experiments

Planes parallel to the image plane In the following experiment, two images
were taken from a staircase scene containing various horizontal planes. As there are
various planes on the scene, the process of section 3.2.3.1 can not be applied using
all pixel correspondences. Instead, the relative depths for every pixel correspondence
were calculated and used to perform plane segmentation by clustering the pixel cor-
respondences belonging to each plane, ordering the planes by their relative height.

To accomplish this, the image pair was reprojected into the virtual horizontal
plane, and pixel correspondences were established. The FOE was calculated as in
section 2.2.3.3.
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Figure 4.5: The relative depths from two cameras used to order different planes by
they height.

The relative depths, i.e., image cross ratios with the FOE, were calculated via
equation (3.7) for all corresponding pixel pairs, and these values were arranged into a
histogram with 50 bins. Groups of corresponding pixel pairs with close relative depth
values were found by picking the peaks the histogram. Figure 4.5 shows each group
- corresponding to the ground level and three steps of a staircase - with a different
color, and the scale relating colors to relative depths is found on the right of the
image.

These points are very fast to obtain, and they can be seeds for other plane seg-
mentation algorithms.

Planes in General Position but known orientation The aim of this experi-
ment is to perform plane segmentation, as above, by clustering corresponding pixels
belonging to each plane. The ground plane is still supposed to be horizontal, but now
the images are not reprojected on the virtual horizontal plane. Camera orientation
measurements from the inertial system were used to compensate for the difference on
rotation by calculating the infinite homography between both poses, and applying it
to one of the images.

From the camera orientation measurement the vanishing line for horizontal planes
is directly calculated on image coordinates, allowing us to look for a plane corre-
sponding to it. The same process also finds other horizontal planes, as the vanishing
line is the same, and orders them by their height.

Therefore, two images were taken from a tripod, showing objects on the ground
plane and books forming another parallel but higher plane.
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Figure 4.6: The ground plane, and other parallel planes, segmented and ordered by
height.

The FOE was robustly estimated from all pixel correspondences [Chen et al., 2003],
and outliers were discarded in this step. The horizon line a, i.e., the vanishing line of
the ground plane, is obtained via equation (3.25), with n being the vector normal to
the ground plane in the camera frame.

For each corresponding pixel pair (x,x′), the cross-ratio µ is calculated by:

µ =
‖v,x‖ ‖x′, i‖
‖v,x′‖ ‖x, i‖

(4.1)

where i is the intersection of the vanishing line a and the line |x,x′|. Again, a
histogram is calculated on the values of µ, and by picking the peaks of the histogram
we find groups of pixel correspondences corresponding to the same plane.

Figure 4.6 shows the value of the cross-ratio µ (corresponding to relative height)
for groups of pixel correspondences.

4.3.2 Calculating Height For Each Pixel Correspondence

In the previous section, the relative height is directly recovered for each corresponding
pixel. This sufficed to order these pixels by their height, but it is not an absolute
measurement. Again, additional information is needed to recover scale from imagery.
The absolute height of these points may be recovered if the absolute height on both
views is known - case (a), or, equivalently, if the height of one view and relative height
corresponding to the ground plane is known - case (b).



82 CHAPTER 4. INERTIAL AIDED VISUAL MAPPING

In case (a), define µi = dist(xi,v)
dist(x′i,v)

=
Z′

i

Zi
= h′−hpi

h−hpi
as the relative height for the

corresponding pixel pair (xi,x
′
i), where hpi is the height of the 3D point X i imaged

as xi, and h and h′ are the known camera heights, as shown in Fig. 4.7. Then solving
for hpi, we have:

hpi =
µih− h′

µi − 1
(4.2)

Figure 4.7: Calculating the height of a 3D point from an image pair under pure
translation.

In case (b), we substitute h′ = µh, where µ is the relative camera height above
the ground plane, into (4.2) to obtain:

hpi =
(µi − µ)h

µi − 1
(4.3)

Supposing that the ground plane is visible in the majority of the image, the term
(µi−µ) will be used to compensate for errors in the AHRS orientation measurements.
An image wrongly reprojected on the virtual horizontal plane due to errors in the
orientation estimate results on a deviation on the image ratios calculated for the
pixel correspondences, as shown in section 3.4.4.2. Therefore, given all image ratios
for all pixel correspondences, a 3D plane is fitted to the (xi, yi, µi) triplets, where
xi = (xi, yi, 1) in inhomogeneous image coordinates, using RANSAC to look for the
dominant plane on the scene, that should be the ground plane.

This fitted 3D plane is used to compensate for a linear deviation induced by ori-
entation errors, by calculating, for each xi, the value (µi−µ0(xi, yi)), where µ0(xi, yi)
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is the µ value corresponding to the (xi, yi) coordinates on the fitted plane, and taking
this value as (µi − µ) on (4.3).

Figure 4.8 shows the image ratios calculated before and after correction with a
fitting 3D plane. These points are very fast to obtain, as no homography or homology
is recovered, and just image ratios for individual points are needed. The plane fitting is
a simple model for RANSAC, and potentially it can be skipped if better measurements
are available.

(a) (b)

Figure 4.8: Image ratios before (a) and after (b) compensation by fitting a plane.
The points on the building are the only ones above the ground plane.

4.3.3 Constructing a DEM

A DEM is a 2D grid dividing the ground plane into equal square regions called cells,
where the height of each cell is represented as a probability density. A DEM can be
constructed from punctual height measurements if the 3D coordinates of each mea-
sured point are known. The camera geometry allows us to find the remaining two
horizontal coordinates if the height from the ground plane is known as presented in
section 4.3.2. The distance ri between the principal axis of the virtual downward cam-
era and the 3D point X i = (Xi, Yi, hpi) may be calculated by similarity of triangles
(see Fig. 4.7) as:

ri =
dist(xi,n)

f
(h− hpi) (4.4)

where xi is the image projection of X i and n the principal point of the virtual down-
ward camera. The angle θi between the line xin and the east axis is directly calculated
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from their coordinates. Then, transforming (ri, θi) from polar to rectangular coor-
dinates yields (Xi, Yi), the remaining two components of X i = (Xi, Yi, hpi), in the
{D}|i frame. If the camera pose in the world frame is known, these coordinates may
be registered into the {W}|i frame, incorporating the height measurements in a global
DEM.

Each point X i represents a height measurement for an individual DEM cell. The
height of each cell and the heights measurements are represented by random variables
with Gaussian distribution, and the cell update follows the Kalman Filter update rule.
There is not an initialization and the cell takes its first value when incorporating its
first measurement.

The position of each point X i has also an uncertainty on the xy axes, i.e., it
may be uncertain which cell the measurement belongs to. Currently the influence of
measurements on neighboring cells is approximated by considering all measurements
exact on the North-East axes, and then smoothing each local DEM with a Gaussian
kernel with variance similar to the measurements.

Figure 4.9 shows a DEM constructed from a 10 frame sequence (a 5[s] portion of
the flight), with the GPS-measured vehicle localization shown as red stars. The cell
size is 3[m], and the Gaussian convolution kernel has standard deviation of 2[m]. The
highest cells correspond to the building, and the smaller blue peaks correspond to the
airplanes and vehicles. Points more than 1[m] below the ground plane are discarded
as obvious outliers. The mosaic on the left - included just to allow the reader to
compare visually the covered area and the DEM grid - is built from homographies
calculated between each successive image pair as in section 4.2.

4.3.4 Applications and Future Improvements

In section 3.4 the complete UAV trajectory was reconstructed from rotation com-
pensated imagery. In this section, a 3D map of the environment, in the form of a
sparse DEM, is built from punctual height measurements generated from a sequence
of images and the vehicle pose. These two techniques assume mutually exclusive
conditions: the trajectory recovery requires imaging a planar area, and the map-
ping procedure is meaningful only if there are obstacles above the ground plane.
Therefore, they could not make a complete SLAM (Simultaneous Localization and
Mapping) scheme on their own, but they may be complimentary methods to other
SLAM approaches. A SLAM scheme also needs to obtain, from the maps built at each
step, another displacement measurement to constrain the vehicle pose estimation, by
matching local maps with the previous local map or with the global map built so far.
A comparison of different approaches for matching 2D occupancy grids built from
sonar data indicates that both options are feasible [Schiele and Crowley, 1994], and
the DEM grids could be correlated this way.
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Figure 4.9: 2D and 3D plots of the DEM generated from the 10 frames mosaiced on
the left. The red stars indicate the vehicle trajectory.

Figure 4.8 shows that all pixel correspondences are concentrated into one small
portion of the image. Outside this region, there are other correspondences found
by the interest point matching algorithm, but they are considered outliers during the
FOE estimation and rejected, probably due to errors on the orientation measurement.
For the estimation of the homology, and particularly of its cross ratio used on the
height component of the trajectory estimation, usually there are enough correspon-
dences for a reliable estimation. But for the mapping problem, the area covered by
height measurements is quite smaller than the total area imaged (see Fig. 4.9), and
thus the map becomes too sparse for a reliable correlation between the DEM grid
maps. This problem could be addressed by improving the accuracy of the orientation
measurements, by increasing the image frame rate, or by developing models that take
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into account small uncompensated rotations.

4.4 3D Depth Map Registration
This section describes the registration of 3D maps taken from a moving ranging device,
which may be a calibrated stereo camera, or a LRF coupled with a single camera.
There is also an AHRS rigidly coupled with the ranging device as before. The maps
consist of sets of 3D points, or point clouds, defined in the frame corresponding to
the ranging device used, i.e., the {C}|i or {L}|i frames. These point clouds must be
registered in a common world frame {W}. The models to calculate these point clouds
from the raw sensor readings at each frame index i are given in sections 2.1.1 and 2.4,
and they are denoted by CP|i or LP|i, where the left superscript represent the frame
of reference and the right subscript represent the time index.

Each point cloud is associated to an image Ii captured at the same instant by a
digital camera. This image is the left camera image in the stereo camera case. In
the LRF case, the acquisition of the point cloud is not instantaneous, therefore the
pantilt position at the moment of image acquisition must be known. For these results
the image was always acquired with the tilt and pan angles zeroed.

First, an image sequence is delimited, consisting of images that can be successfully
matched with an arbitrarily chosen reference image IB by interest point matching
algorithms (section 4.4.1). Then for each point cloud, the rotational components
are compensated using measurements of the camera orientation in section 4.4.2, and
image correspondences find the remaining translational component in section 4.4.3.

The output for each frame is a point cloud registered into a common frame, the
frame {W} = {R}|B. The registered point clouds are not kept separately as in figure
4.22(a) but are combined into an aggregated point cloud (figure 4.22(b)), discarding
redundant points to save memory.

Figure 4.10 shows the data flow for the registration of each point cloud. On
the left of the figure, the inputs are shown: for each time index i, the stereo point
cloud, the image from the left camera, and the inertial orientation measurement. Two
other inputs are constant for all frames: the image from the reference frame, and the
rotation matrix IRC, output of the camera-inertial calibration.

4.4.1 Delimiting an image sequence
To delimit the subsequence to be registered, interest point matching is applied to
match the reference image IB with the next images on the sequence until an image
is found that can not be successfully matched with the reference frame, as shown in
figure 4.11 (actually, for the sake of clarity the figure omits that the loop is executed
twice, first matching frames in the forward direction and then backwards). An image
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Figure 4.10: The data flow for the registration of each 3D point cloud.

Figure 4.11: The process for the registration of 3D point clouds. The box “process
point cloud” corresponds to figure 4.10.

match is deemed successful if the number of corresponding pixel pairs is bigger than
a threshold. The frames on the delimited image sequence are numbered with a time
index i = 1 . . . B . . . n. The inertial orientation measurement corresponding to each
time index i is also available.

4.4.2 Rotating to a stabilized frame of reference

The measured inertial orientation for the time index i is expressed as a rotation matrix
RRI |i which rotates the inertial sensor frame {I}|i into the stabilized frame {R}|i.

If stereo cameras are used as the ranging device, the point cloud CP|i is rotated
from the camera frame to the stabilized frame by the rotation RRC|i = RRI |i · IRC.
As figure 4.12 shows for two point clouds, the purpose of this rotation is to align
all point clouds to the earth-referenced {R}|i frame, i.e., North, East and vertical
directions, as indicated by the inertial and magnetic orientation measurements.

For the LRF, a similar step is taken, but it is necessary to compensate for the
pantilt position at the moment the inertial measurement was taken. The pantilt
rotation is represented by R(ϕ, 0, 0), the rotation matrix equivalent to the Euler
angles ϕ, 0, 0 considering ϕ as the tilt angle and zero as the other two Euler angles.
For each time index i = 1 . . . n, the rotation matrix WRL|i = WRI |i · IRL ·R(ϕ, 0, 0)
brings a point from the laser frame {L}|i into the {R}|i frame, this rotation is applied
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Figure 4.12: Compensating the rotation: point clouds aligned on inertial stabilized
frame.
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to all 3D points on the point cloud LP|i, generating a point cloud RP|i in the rotated
frame of reference.

This calculation depends on the rotations between the inertial and the ranging
devices, which are constant in time as the devices are rigidly mounted together. The
fixed rotation IRC is found by the inertial camera calibration of section 2.6. In this
thesis, the fixed rotation IRL was found by using the camera image to paint the point
cloud, and adjusting the rotation between the camera and the laser until the point
cloud appeared to be correctly painted.

After this step only a translation is missing to register the point cloud into the
{W} frame.

4.4.3 Translation to a common frame.
The objective now is to register the a set of point clouds {RP|1 · · ·RP|B · · ·RP|n}, by
finding the translation between each {R}|i frame and the base {W} , {R}|B frame,
for i = 1 . . . B . . . n.

Every point cloud RP|i must overlap with the reference point cloud RP|B. A pair
of point clouds overlaps when, after correct registration, the 3D volumes covered by
each point cloud have significant intersection. To register a pair of point clouds, the
algorithm searches pairs of 3D points, one from each point cloud, that correspond to
the same point on the {W} world frame.

The stereo processing associates each 3D point in the point cloud with a pixel on
its corresponding image. Thus, if corresponding pixel pairs are found in the images
Il|i and Il|B, then their associated stereo 3D points P |i and P |B should be a pair of
corresponding 3D points, with P |i ∈ RP|i and P |B ∈ RP|B. This pair of 3D points
indicates the translation t between the {R}|i and {R}|B, in the form:

t = P |i − P |B (4.5)

Figure 4.13 illustrates the concept of two corresponding 3D points in two overlap-
ping point clouds, obtained from a corresponding pixel pair on the respective images.
The translation vector is the dashed blue arrow, and the corresponding 3D points
and image pixels are connected by full green lines.

If the images Il|i and Il|B have enough overlap for interest point matching, then
a set of corresponding pixel pairs can be found, and therefore a set of translation
vectors. Note that outliers must be removed from this set.

Besides the outliers in interest point matching, for some pixels, the stereo process-
ing algorithm may not be able to find disparities, or it may find wrong disparities,
due to lack of texture, depth discontinuities, etc. In this case, a corresponding pixel
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Figure 4.13: The concept of a corresponding pair of 3D points with a translation
vector.

Figure 4.14: An example of a translation vector set with outliers.

pair may not have any corresponding 3D point pair at all, or it may correspond to the
wrong 3D point, and this implies that on incorrect translation vectors, which appear
as outliers as well.

An example of a set of translation vectors between corresponding 3D points in
two rotated point clouds is shown in figure 4.14, including outliers.

Assuming that the majority of corresponding pixel pairs are from the static back-
ground, a robust estimation algorithm such as RANSAC [Fischler and Bolles, 1981],
utilizes directly the set of translation vectors to discriminate inliers and outliers, uti-
lizing a simple Euclidean translation vector model (a simpler model implies that the
estimation is faster), and detecting and eliminating outliers caused by errors on both
the stereo and interest point matching processes in a single robust estimation process.
The inlier translation vectors are averaged to obtain the final translation vector to
translate the point cloud RP|i from the {R}|i frame into the {W} frame, obtaining a
point cloud WP|i.
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(a) Difference between translations
vectors and the mean vector (in
mm).

(b) [Histogram of the angle be-
tween the translation vectors and
the mean vector.

Figure 4.15: An example of the usage of RANSAC to detect outliers.

Figure 4.15(a) is an example of the usage of RANSAC to detect outliers in one
set of translation vectors from one image pair. The plotted circles are the differences
between each vector and the mean vector - i.e., if all vectors were the same, all circles
would appear on the origin. The crosses (×) are outliers. The ’+’ sign is the mean of
the inliers. Figure 4.15(b) is a histogram of the angle between the translation vectors
and the mean vector, showing that most of them point approximately to the same
direction, except a few outliers corresponding to the crosses on the left figure.

By repeating this process for every frame i = 1 . . . n (skipping i = B) the algorithm
calculates a set of point clouds {WP|1 · · ·WP|B · · ·WP|n}, where all point clouds have
been registered into the same frame of reference {W}.

In the LRF scenario, as the LRF angular resolution is typically less than the image
pixel angular resolution, most pixels do not have an associated 3D point. When one
pixel x, belonging to a matched interest point pair, do not have an associated 3D
point, the closest pixel

∗
x with an associated 3D point is found. If the image distance∣∣∣x− ∗

x
∣∣∣ is less than a small threshold (2 pixels in our experiments) that 3D point

substitutes the missing one, otherwise the corresponding pixel pair is discarded.
This approximation increases the error of the measured translation, dominating

errors on the individual range measurements, but may be necessary to obtain enough
pairs of 3D points. Note that there is not any guarantee that the 3D point correspond-
ing to

∗
x will be close to the right place, as the line x

∗
x in the image may correspond

to a depth discontinuity in the 3D scene. Therefore this association step must be
performed before RANSAC, in order that any badly associated 3D point may appear
as an outlier for RANSAC.

Therefore, after using RANSAC to remove outliers, for each remaining correspond-



92 CHAPTER 4. INERTIAL AIDED VISUAL MAPPING

ing pixel pair (xk,x
′
k) in the images Ii and Ij, the value wk =

(∣∣∣xk −
∗
xk

∣∣∣+ ∣∣∣x′k − ∗
x
′
k

∣∣∣)−1

is defined as a weight in the averaging of the resulting translation vector, as suggested
in [Matthies and Shafer, 1987], and therefore the translation vector is calculated by:

t =

( ∑
for all k

wk

)−1( ∑
for all k

wktk

)
(4.6)

where tk = P k|i − P ′
k|j, with P k|i and P ′

k|j being the pair of 3D points associated
with the corresponding pixel pair (xk,x

′
k). For the corresponding pixel pairs where

this approximation is not necessary, their weights should be set at some larger value,
as equation (4.6) would yield wk = (0 + 0)−1 =∞. In the experiments in this thesis
they were set at 2.

In the stereo scenario, this approximation is not usually necessary, as many cor-
responding pixel pairs have associated 3D points. A covariance for each 3D point
can be calculated using stereo triangulation error models, and used as weights in the
averaging of translation as presented in [Matthies and Shafer, 1987].

4.4.4 Subsuming other geometric constraints for outlier re-
moval

Other geometric constraints have been proposed to remove outliers from the set of cor-
responding 3D points. In this section, the two constraints proposed in
[Hirschmüller et al., 2002] are reviewed and it is shown that in the rotation com-
pensated case they may be enforced more tightly and subsumed by the translation
vector constraint proposed in section 4.4.3.

Consider two pairs of corresponding 3D points on the i and j frames, (P |i, P |j)
and (Q|i, Q|j). The first constraint concerns the invariance of the length of the
P |i −Q|i vector under a rigid transformation, i.e. ‖P |i −Q|i‖ = ‖P |i −Q|i‖ must
be true.

The second constraint limits the angle between a vector formed by two 3D points
before and after the motion. With the orientation measured, it can be more tightly
enforced with a statistically significant boundary if the error on orientation measure-
ments is known.

Represent the rotation between the poses i and j by a rotation axis r and a
rotation angle φ. The angle between the vectors P |j −Q|j and P |i −Q|i must be
between 0 and φ. It is zero if P |i − Q|i is parallel to r, and it is φ if P |i − Q|i is
orthogonal to r.

Imposing the restriction φ < θ results in the inequality:
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(
P |i −Q|i
‖P |i −Q|i‖

)
·
(

P |j −Q|j
‖P |j −Q|j‖

)
> cos θ

If for such two pairs of corresponding 3D points this inequality do not hold, at
least one 3D point is an outlier. In [Hirschmüller et al., 2002], with large and unknown
camera rotation, θ was set at 45◦, a loose constraint, but if it were tighter, the camera
rotation would be limited. If the point clouds are already rotated to a stabilized frame,
φ should be zero, but in practice it has a small value due to errors on the orientation
measurements. But, if the orientation measurement error is bounded, φ is bounded
too.

Suppose the AHRS orientation measurement errors are normal variablesN (0, σ2
IMU).

φ is the sum of the uncompensated rotation on the two frames, and thus φ is normally
distributed with φ = N (0, 2 · σ2

IMU). Therefore θ can be set as a function of σ2
IMU

and the percentage of discarded outliers can be predicted by standard statistical tech-
niques. What is missing in this scheme is to consider the positioning error of the 3D
points, that will be relevant as σ2

IMU is small.
With the rotation compensated, both constraints can be subsumed by one con-

straint, the difference of translation vectors (section 4.4.3). To take into account
the errors on 3D points positioning the error in orientation measurements is approxi-
mated as a random perturbation on the position of the 3D point Q|j, with magnitude
N (0, σ2

rot), where σ2
rot = ‖Q|j −Q|i‖ sin(2 · σ2

IMU). Supposing that each 3D point P
has a covariance matrix Σ(P ), define Σ(Q|j)′ = Σ(Q|j) + (σ2

rotI) as an updated
Σ(Q|j) matrix. An approximation of the covariance of the difference ∆t = tP − tQ

is calculated as:

Σ(∆t) = Σ(P |j) + Σ(P |i) + Σ(Q|j)′ + Σ(Q|i) (4.7)

If both translation vectors tP , tQ are consistent, the Mahalanobis distance between
then, (tP − tQ)T Σ(∆t)(tP − tQ), will be small. Otherwise one of the four 3D points
is an outlier. The threshold should be set as a function of the desired outlier rejection
ratio. The difference between translation vectors is a single constraint that is not
satisfied if any of the two other constraints is not satisfied, and therefore it subsumes
both.

A non-iterative outlier rejection scheme was implemented as presented by
[Hirschmüller et al., 2002], using this constraint instead of the two constraints origi-
nally proposed. The constraint is checked against all possible pairs of corresponding
3D points, and the maximum subset of consistent translation vectors is selected by
searching for a maximal clique in a matrix graph were all consistent translations are
connected.

Although this method is not interactive, it takes longer to execute than the
RANSAC method presented in section 4.4.3, because the translation vector model
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is simple, allowing RANSAC to be executed very fast, without need to test every
possible pair of translation vectors. Therefore, RANSAC was used on the experi-
ments of this thesis to exclude outliers, and the non-iterative method was abandoned.

Nevertheless, using equation (4.7) with typical values for the covariance of the
3D points and the AHRS orientation error, yields an expected covariance for the
difference between translation vectors which may be used to define the threshold for
inlier/outlier discrimination in the RANSAC outlier detection method.

4.4.5 Filtering out redundant points

The algorithm described on the last sections registers a set of overlapping point clouds
{WP|1 · · ·WP|B · · ·WP|n} into the frame of reference {W}. The simple union of all
point clouds in this set is a registered point cloud itself, but, due to overlapping, there
may be a many 3D points from different point clouds which are very close and are
considered redundant. They should be eliminated to save memory and processing
time.

Additionally, the point clouds must be filtered, deleting points wrongly positioned
due to errors on stereo processing. Isolated, “floating” 3D points must be eliminated,
generating a smoother point cloud. The outlier detection process of section 4.4.3
deals only with the relatively small number of 3D points corresponding to the pixels
matched by the interest point matching algorithm, and do not change the point clouds
themselves.

The registered point clouds in the set {WP|1 · · ·WP|B · · ·WP|n} do not need to
actually exist at the same time; Instead, they are calculated sequentially by the
process described in the last sections, and aggregated into a final aggregated point
cloud WA. WA is initialized with WA = ∅, and as each point cloud WP|i is calculated,
a subset of the points on WP|i is added into WA. Namely, the points of WP|i that are
closer than a threshold value dmin to any point already in WA are discarded.

The value of dmin determines the final resolution of WA. It may be close to the
resolution of the original point clouds, or dmin may be set to a higher value, leading
to a coarser point cloud which occupies less memory.

As the number of points is typically large, it would be too slow to check linearly
all the stored points in WA to test if each new point in WP|i is redundant. We have
chosen the well-known approach of keeping only the point cloud WA and a hash table,
that indexes all its points by their x-y coordinates. The hash table is used to retrieve
a list of potentially close points for each point in WP|i, and the closest point is quickly
searched for.

The cloud WA could also be built by dividing the 3D space in voxels, marking
each voxel as occupied or free as new points are added. But as the number of voxels
increases with the volume of the covered space, it is difficult to cover a large volume.
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(a) (b)

Figure 4.16: An example of an aggregated point cloud

Besides that, many voxels are empty, outside and inside the 3D surface visible on the
scene.

With a moving camera with a fast frame rate, the same 3D point in the world
may be imaged by a relatively large number of frames, being represented repeatedly
in various point clouds in the set {WP|1 · · ·WP|B · · ·WP|n} . Therefore, for each point
P ∈ WP|i the hash table bin corresponding to P is searched for a point Q ∈ W A
such that Q is closer than dmin to P . If such Q is found, P is discarded, but a vote
counter associated with Q is incremented.

In such a way, the 3D points in WA receive “votes” from each individual point
cloud. For every 3D point in WA, the software keeps a vote counter, and the time
index i of the point cloud that last voted for it. A 3D point in W A is only allowed to
receive one “vote” at each time step i.

The most voted 3D points in WA correspond to 3D positions that were imaged
and considered occupied by various successive stereo frames, and therefore may be
considered as occupied with more confidence. The 3D points in WA with less “votes”
correspond to random stereo errors to be eliminated, or to moving objects, which can
also be eliminated in this way [Lobo et al., 2006], although this is not the objective
here.

Algorithm 2 summarizes in pseudo-code the process of filtering redundant 3D
points, where dist() calculates the Euclidean distance between two points and dmin,
votemin are constant parameters.

Figure 4.16 shows an example of an aggregated point cloud, created from 200
highly overlapping point clouds. Only 3D points with more than 35 votes were allowed
to remain in the aggregated point cloud, and the hash table bins had 5[cm] × 5[cm]
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Algorithm 2 Filtering redundant 3D points from sequences of point clouds.
WA← ∅
cloudcount← 0
define constants dmin,votemin

for all WP|i ∈ {WP|1 · · ·WP|B · · ·WP|n}
cloudcount← cloudcount + 1
for all P ∈ W P|i

if ∃Q ∈ WA | dist(Q.xyz, P ) < dmin

if Q.lastvote < cloudcount
Q.vote← Q.vote + 1
Q.lastvote← cloudcount

end
else

newP .xyz ← [P.x P.y P.z]
newP .vote← 1
newP .lastvote← cloudcount
WA← WA ∪ {newP }

end
end

end
delete ∀P ∈ WA s.t.P .vote < votemin
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in a 1[m]× 1[m]× 1[m] covered area - therefore each hash table bin contained about
1/400 of the points in the point cloud. The threshold dmin was set to 1[cm]. The
point cloud looks sparse when plotted with a small point size (figure 4.16(a)), the
gaps are filled when plotting with a larger point size, as in figure 4.16(b).

4.4.6 Results

Results with Stereo Cameras

Outdoor image sequences were used in the next experiments. Given one reference
frame {R}|B, corresponding to an image arbitrarily chosen as the reference image,
SIFT correspondences were used to match each image with the reference image,
finding a set of translation vectors to translate the point clouds into the {R}|B frame.

This set of translation vectors contains outliers, due to mismatched SIFTs and
wrong stereo disparities, that are detected by the same RANSAC procedure.

As the model utilized on the RANSAC calculations is very simple, involving aver-
aging and calculating differences between Euclidean 3D vectors, the RANSAC proce-
dure runs very fast, on the order of a few tenths of seconds per frame in MATLABr.

As many backward and forward frames are matched as it is possible, by keeping
trying to match frames in the sequence until the number of inliers correspondences
found by RANSAC falls below a threshold - probably because the camera has moved
and the overlap region is too small.

The garden sequence was taken on an outdoor grass field, under indirect sunlight.
There is a small light post. Figure 4.17(a) shows one point cloud from this data set,
with its corresponding left camera image displayed on the back. Figure 4.17(b) shows
two registered point clouds, one in green, the other in the original gray level color.
Figure 4.18 shows the resulting point cloud after registering together a sequence of
26 successive frames, with points seen in less than 4 frames discarded.

The jeep sequence shows a jeep parked on the street under sunlight. Analogously,
figures 4.19(a) and 4.21(a) show one point cloud from this data set, with its corre-
sponding left camera image displayed on the back. Figures 4.19(b) and 4.21(b) show
two registered point clouds, one in green, the other in the original gray level color,
with their respective images displayed behind them. Figures 4.20 and 4.22 show, in
the left, a set of registered point clouds, and on the right, the resulting point cloud
after registering together a sequence of 27 (in both figures) successive point clouds,
and filtering out points with less than four votes. In the left figure, only one every
four point clouds is shown, to ease visualization.

The pyramids in figures 4.18, 4.20 and 4.22 represent the camera trajectory and
orientation: there is one pyramid for every four camera poses, and camera points
towards the base of the pyramid. The images on the graph sides are an approximate
visual reference, being stretched up to the extreme coordinates of their point clouds.
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(a) (b)

Figure 4.17: From the garden dataset: (a) one point cloud; (b) two registered point
clouds.

(a) Registered point clouds (only one every
four).

(b) the final, filtered point cloud. The camera
trajectory is shown in blue.

Figure 4.18: The result of registering point clouds for 26 successive frames.
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(a) (b)

Figure 4.19: From the jeep dataset: (a) one point cloud; (b) two registered point
clouds.

(a) Registered point clouds (only one every four) (b) The resulting, filtered point cloud. The cam-
era trajectory is shown in blue.

Figure 4.20: The result of registering point clouds for 27 successive frames.
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(a) One point cloud. (b) Two registered point clouds.

Figure 4.21: The sidewalk dataset

(a) Registered point clouds (only one every four) (b) The resulting, filtered point cloud. The cam-
era trajectory is shown in blue.

Figure 4.22: The result of registering point clouds for 27 successive frames.



4.4. 3D DEPTH MAP REGISTRATION 101

The RANSAC threshold for membership in the inlier set was 5[cm] for both
datasets. The minimum acceptable number of inliers was 20.

For each frame chosen as a reference frame, between 20 and 50 frames could be
registered, equivalent to approximately between 1.5 and 3 seconds at 15fps.

Results with LRF and monocular cameras

To generate a 3D point cloud, the LRF was mounted on a pantilt, and its tilt axis
was moved from −30◦ to 30◦, taking a scan every 1◦. One example is shown in figure
4.23(a). Points in the area imaged by the camera are painted with the gray color
of their corresponding pixel, while points not imaged are in a uniform gray. Three
such point clouds are shown registered in figure 4.23(b), with the other point clouds
highlighted in green and blue.

After the process shown in this section is completed, ICP can be used to fine tune
the registration. This was unnecessary with the outdoor sequence of figure 4.22. But
in indoor environments, often metallic structures or electric equipment interferes on
the magnetic field, and thus the AHRS compass output has larger errors. In such
conditions our method can only be used as a first approximation for other techniques.

Averaging the processing times for 10 different pairs of point clouds, after the data
is acquired, it takes 1.5[s] to generate interest points on both images, plus 1.5[s] to
run the process described here, against 7[s] to execute ICP.
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(a) A point cloud taken by a LRF

(b) Three registered point clouds.

Figure 4.23: Registration of three point clouds taken by the LRF.



Chapter 5

Aerial Surveillance by Visual
Tracking

5.1 Introduction

As reported in chapter 3, orientation measurements from an AHRS compensated the
rotational degrees of freedom of the motion of the moving camera, including in the case
of the remotely controlled airship of figure 1.2. Firstly, the images were reprojected
in a geo-referenced virtual horizontal plane. Pure translation models were then used
to recover the camera trajectory from images of a horizontal planar area, and they
were found to be especially suitable for the estimation of the height component of the
trajectory.

In this chapter, the models which achieved the best results are used to recover
the trajectory of the camera while it images a target independently moving in the
ground plane. The target position is marked in the reprojected images. The target
trajectory is then recovered and tracked using only the observations made from a
moving camera, including the airship on-board camera, as it is shown in figure 5.1,
and results in a urban people surveillance context with known ground truth.

GPS also can be utilized to recover the airship trajectory, but GPS position fixes
are notoriously less accurate in the altitude than in the latitude and longitude axes,
and this uncertainty is very significant for the low altitude dataset used in this chapter.

Uncertainty in the camera orientation estimate is the most important source of er-
ror in tracking of ground objects imaged by an airborne camera [Redding et al., 2006],
and its projection in the 2D ground plane is usually anisotropic even if the original dis-
tribution is isotropic. The Unscented Transform [Julier and Uhlmann, 1997], which
has been used to localize static targets on the ground [Merino et al., 2005], is thus
used to project the uncertainty on the camera orientation estimate to the 2D ground
plane, taking into account its anisotropic projection.

103
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Figure 5.1: Tracking an independently moving target with observations from a moving
camera.

Kalman Filters are utilized to filter the recovered trajectories of both camera and
the tracked target. In the airship case, visual odometry and GPS position fixes are
also fused to recover the camera trajectory.

The target trajectory is represented, tracked, and filtered in 2D coordinates. In
this way the full geometry of the camera and target motion is considered and the
filters involved may utilize covariances and constants set to the physical limits of the
camera and target motion in actual metric units and coordinate systems. This should
allow for more accurate tracking than when only pixel coordinates in the images are
utilized.

5.2 Tracking of moving targets
Once the camera pose is known, a moving target is selected on each reprojected image.
Problems such as image segmentation or object detection are out of the scope of this
thesis. Nevertheless, to track its position on the plane, the target coordinates on the
virtual image must be projected on the reference {W} frame, considering the error
in the camera position and orientation. Figure 5.2 summarizes this process which is
detailed in the next sections.

5.2.1 Target Pose measurement: projecting from image to
world frame

The target coordinates in the image are projected into the ground plane by equation
(3.4), and then these coordinates are transformed into the {W} frame by the appro-
priate change of axes - equation (3.1) - and translation (the origin of the {D} frame
is WxC in the {W} frame).
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Figure 5.2: A block diagram of the tracking process.

The projection of the images in the virtual horizontal plane does not by itself
improves the measurement on the target’s position on the ground, although it facil-
itates interest point matching (Sections 3.2.1and 4.2). Moreover, the measurement
of the position of a target imaged on the ground is known to be very sensitive to
errors in the camera orientation [Redding et al., 2006]. Therefore the uncertainty
on camera 6D pose is propagated with the Unscented Transform, which has al-
ready been used to measure the positions of static targets from a low altitude UAV
[Merino et al., 2005, Redding et al., 2006]. The actual errors in the camera position
and orientation are unknown. The covariances found by the Kalman Filter of section
3.2.5 are taken as the camera pose covariance, and the camera orientation estimate
is supposed to have Gaussian error with standard variation of 5[◦].

Therefore, given a sequence of camera poses with the respective images and an
object detected on these images, this projection generates a sequence of observations
(2D coordinates and covariance) of the target pose in the ground plane .

5.2.2 Filtering of target pose

The target pose is tracked in the 2D reference frame, and filtered by a Kalman Filter
to generate a smoother trajectory and filter out wrong measurements. The filter
state contains the target 2D position, velocity and acceleration, with the acceleration
modeled as a Wiener process [Bar-Shalom et al., 2001], as detailed in the appendix
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B.5. The process error considers a maximum acceleration increment of 0.35 [m/s2], and
the Unscented Transform supplies observations of the target position with covariance
matrices which are considered as the measurement error.

The target observations projected in the ground plane have high frequency noise,
due to errors in the camera position and orientation estimate, and in the target
detection in each image. This is clearly seen in the trajectories of figure 5.9 where the
ground truth trajectory is a sequence of straight lines. These errors are accounted for
by the Unscented Transform to estimate a covariance for the target observation, but
nevertheless, the original target trajectory is filtered by a low pass filter before the
input of the Kalman Filter. Analyzing the spectrum of the trajectory of the walking
person, most of the energy is concentrated below 1[Hz]. As the frequencies involved
are too small, a low pass filter with too large attenuation or too small cut frequency
would filter out true signal features such as going from zero velocity to motion in the
beginning of the movement, and introduce delays in the filtered signal after curves.
Therefore after empirical testing, the low pass filter parameters were set to a cut
frequency of 1[Hz] and attenuation of −40[dB]. Thus the input of the Kalman Filter
is a better conditioned signal, and the final trajectory is smoother.

5.3 Tracking of a Moving Target from Airship Ob-
servations

Firstly, an object of known dimensions in the ground was observed by the airship, and
the height of the camera estimated from its image dimensions, eliminating the scale
ambiguity inherent to relative pose recovery from images alone. This was done a few
seconds in the image sequence before the images shown. Then the airship trajectory
was recovered by the model of section 3.2.2. Only the Procrustes procedure was
necessary as the optimization did not improve the results. Finally the target (a
moving car) trajectory was recovered from image observations.

Fig. 5.3(a) shows the recovered airship trajectories using the Procrustes method of
section 3.2.2 (red circles) and by the standard homography estimation and decompo-
sition method (green crosses). The blue squares show the GPS measured trajectory.
In the ground the target trajectory derived from the airship trajectory recovered by
our method is shown as blue stars.

The trajectory recovered by the pure translation method is shown again in Figure
5.3(b) with the corresponding target trajectory drawn in the ground plane. The
images projected in the ground plane by using equation (3.4) to find the coordinates
of their corners in the ground plane and drawing the image in the canvas accordingly.
One every three images is drawn.

Figure 5.4 shows the a 2D view of the target trajectory on the ground plane over
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(a) Airship trajectories from GPS, pure transla-
tion and image-only method. Target trajectory
derived from pure translation airship trajectory.

(b) Trajectories recovered by the pure transla-
tion method, with registered images.

Figure 5.3: A 3D view of the recovered trajectories from Visual Odometry and from
GPS, for the target and airship.

the corresponding images for the pure translation (a) and image-only (b) methods.
The error in height estimation for the image only method is apparent in figure 5.4(b)
as an exaggeration in the size of the last images. The same low pass and Kalman
filters were used with both methods.

5.3.1 Tracking after fusing GPS and Visual Odometry

In this experiment the car has been driven in a closed loop in the ground while the
airship was flying above it. The translation recovered by the visual odometry was
fused with GPS position fixes by a Kalman Filter with a constant acceleration model
[Bar-Shalom et al., 2001]. The GPS outputs standard deviation values for its position
fixes (shown as the red ellipses and red points in Fig. 5.5), and the translation
vectors from the visual odometry are interpreted as a velocity measurement, with
a manually set covariance smaller in the vertical axis than in the horizontal ones.
The GPS absolute position fixes keep the estimated airship position from diverging,
while the visual odometry measurements improve the trajectory locally. The fused
airship trajectory is shown as green crosses in Fig. 5.5, while the target observations
are shown as blue points in the ground plane. The target could not be continously
observed, therefore the straight lines (for example the straight lines crossing the path)
indicate where observations were missing and resumed at some other point of the path.

Figure 5.6(a) shows the target trajectory drawn over a satellite image of the flight
area. The airship trajectory was taken directly from GPS. Figure 5.6(b) shows the
same target trajectory obtained when the airship trajectory is recovered by a Kalman
Filter fusing both visual odometry and GPS. In both figures, the squares show the
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(a) Pure translation method. (b) Image only method.

Figure 5.4: Tracking a car from the airship with the pure translation and the image
only methods. The green circles are the tracked target trajectory with one standard
deviation ellipses drawn in red.

(a)

Figure 5.5: The airship trajectory from GPS and from the fusion of GPS and visual
odometry, with the target observations shown in the ground plane.
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(a) (b)

Figure 5.6: The target trajectory over a satellite image of the flight area. The car
followed the dirty roads. In (a), the airship trajectory was taken from GPS, in (b) a
Kalman Filter estimated the airship trajectory by fusing GPS and visual odometry.

coordinates of the target observations in the ground plane, the circles show the target
trajectory filtered by its own Kalman Filter, and the crosses indicate that the target
is “lost”. The blimp can not keep observing the target continuously, thus when there
is not observations for an extended period of time the tracked trajectory diverges. If
the target position standard deviation becomes larger than 30 [m] then the target is
declared “lost” and the filter is reinitialized at the next valid observation. Fusing the
visual odometry with GPS resulted in a smoother trajectory for the tracked target.

5.4 Tracking people with a moving surveillance cam-
era

The method described in this chapter was applied to track a person moving on a
planar yard, imaged by a highly placed camera which is moved by hand. The large
squares in the floor provide a ground truth measure, as the person was asked to walk
only on the lines between squares. The ground truth trajectories of the camera and
the target person are highlighted in the photograph of figure 5.7(a), and figure 5.7(b)
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(a) (b)

Figure 5.7: A photo with highlighted trajectories of camera and target person (a). A
3D view of the recovered trajectories, using Procrustes and optimizing in t to recover
the camera trajectory (b).

shows a 3D view of the recovered trajectories with the registered images above it. The
camera height above the ground was around 8.6[m], and each floor square measures
1.2[m].

This experiment used the MTB-9 AHRS. The method used to recover the camera
trajectory shown in figure 5.7(b) was Procrustes registration followed by the opti-
mization in the translation vector which improved the results in this case. Figure
5.8 shows the target observations projected in the ground plane before (squares) and
after (circles) applying a low pass filter to the data.

Figure 5.9(a) shows a closer 2D view of the target trajectory to be compared with
figure 5.9(b). In the latter case, the camera trajectory was recovered by the homog-
raphy model. The red ellipses are 1 standard deviation ellipses for the covariance
of the target position as estimated by the Kalman Filter. In both figures, the large
covariances in the bottom right of the image appear because the target was out of
the camera field of view for a number of frames, and therefore its estimated position
covariance grew with the Kalman Filter prediction stage. When the target went back
in the camera field of view the tracking resumed.

The solid yellow lines are the known ground truth, marked directly over the floor
square tiles in the image. Comparing the shape of the tracked trajectories is more
significant than just the absolute difference to the ground truth, as the images them-
selves have also some error in registration. The tracked trajectory after recovering
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(a) Camera trajectory recovered by the ho-
mography model.

Figure 5.8: A low pass filter is applied to the observed target trajectory.

the camera trajectory with the pure translation model appears more accurate than
when the homography model is used.
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(a) Camera trajectory recovered by Procrustes
and opt(t)

(b) Camera trajectory recovered by the ho-
mography model.

Figure 5.9: A closer view of the target person tracked trajectory.



Chapter 6

Conclusions

In this thesis, pure translation models are used to recover an airship UAV trajectory
using AHRS orientation estimates and aerial images of the horizontal ground plane.
The sets of points projected in the ground plane may be directly registered. Theoreti-
cally, this is an instance of the well-known Procrustes problem [Gower and Dĳksterhuis, 2004],
with closed-form solution, but with real datasets sometimes optimization approaches
may improve the results, for example taking the translation vector itself as the op-
timization variable. The other alternative, the homology model, is derived from
projective geometry, being the special case of the homography transformation under
pure translation.

These models were also compared with the usual homography model against
ground truth, by determining relative heights in the tripod experiments and re-
covering the camera trajectory in the overpass experiment. The screwdriver table
experiment showed that horizontal and vertical displacements can also be recovered
with the homology model, even if the FOE is very close to the camera principal point
or very large, tending to infinite as the trajectory is parallel to the image plane.

The experiments with aerial image datasets show that the optimization proposed
appears to be unnecessary with the more accurate AHRS, as faster non-iterative so-
lutions are obtained by directly registering the correspondences, and the optimization
provides very small or no improvement in the results. Optimization is also not neces-
sary in the tripod and overpass experiment where the camera is static or moves only
slowly.

Nevertheless, with the less accurate AHRS the best visual odometry results for the
airship were obtained by a projective model (FOE estimation and planar homologies)
which required an optimization step. Future work may explore the limit conditions
where the Procrustes registration fails and other approaches are necessary.

The vehicle poses recovered by the visual odometry were compared with the vehicle
poses estimated by GPS by generating maps of the ground plane, and the visual
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odometry results in locally more coherent image alignment. GPS and visual odometry
data were also fused by a Kalman Filter, and the map generated with the fused
trajectory is more accurate than the map generated with the GPS alone, even if the
trajectory is too large to be recovered by visual odometry alone.

Over-parameterization is usually recommended in the case of homography es-
timation (the nine elements of the matrix are estimated although it has only eight
degrees of freedom [Hartley and Zisserman, 2000]). In the pure translation case, over-
parameterization with homogeneous variables was also found to be necessary.

The pure translation models have performed better than the image-only approach
in the recovery of the vertical motion component. Vertical motion is more critical
because errors in the height estimation propagate not only in the vertical component,
but also as an error in the scale of the horizontal components. The effect of error
accumulation in vertical motion is visible in figure 3.21: the recovered trajectories
have a relatively correct shape but a wrong scale.

Altitude estimation is important for aerial vehicles, and GPS altitude measure-
ments are less accurate in the altitude axis than in the horizontal axes. During landing
and taking off, GPS uncertainty may be very significant due to the small height, and
the restriction to horizontal ground planes is likely to be valid. Also in high altitudes
the ground plane can often be safely assumed as horizontal. Moreover, reasonable
pose estimates were obtained even with the orientation estimates directly output by
the relatively inexpensive and inaccurate AHRS utilized, and under relatively large
roll and pitch variations.

Certainly, even under pure translation motion, image-based measurements are not
sufficient to find the correct scale of the translation. Scale ambiguity is inherent to rel-
ative pose retrieval from images, even when using homographies [Merino et al., 2006].
However, as image-based visual odometry may be integrated with other measurements
[Kelly et al., 2007], the fact that in the pure translation model rotational, vertical,
and horizontal motion are explicitly separated should facilitate the data fusion needed
to recover the actual scale and improve the overall relative pose estimate. For ex-
ample, other sensors which measure the direction of movement, even if relatively
inaccurate, could contribute to the initial estimate before the final optimization.

The computer vision community has sporadically used planar homologies for at
least ten years, but not as widely as homographies. To our knowledge the pure
translation models have never been used successfully for trajectory recovery from
a real aerial image sequence. Possible reasons include the relative difficulty and
expense of obtaining good orientation estimates until some years ago, or even lack of
communication between the robotics and computer vision communities.

Another reason may be that the estimation of the homology with unknown axis,
vector and cross ratio, empirically appears to be less reliable and more vulnerable to
convergence into local minima than the homography estimation and decomposition
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process which has already become usual in the computer vision community. The
further simplification of supposing the ground plane horizontal and therefore using
the virtual camera with an image plane parallel to it, improves much the reliability
of the estimation.

Future work can explore more elaborate error models, e.g., estimating an uncer-
tainty for each pixel coordinate by propagating the uncertainty in the camera 6D pose.
Procrustes problem variants with diverse uncertainty models have been solved, al-
though for some cases there are only non-iterative solutions [Gower and Dĳksterhuis, 2004].
The FOE estimation algorithm could be adapted by taking into account these uncer-
tainties when calculating epipolar distances.

Other constraints between the recovered vehicle poses could be extracted from
the map formed by the reprojected images by matching other image pairs, thus a
SLAM method could improve both the map and the vehicle poses. Such method
must consider that when one vehicle pose is updated by a new constraint, the scale
of all subsequent translation vectors from the visual odometry must be also updated.

The tracking experiments further exploited the improvements in camera trajectory
recovery, with the same rotation compensated images being used to track an indepen-
dently moving target in the ground plane. Using the pure translation model to recover
the camera trajectory resulted in a more accurate trajectory for the tracked object
than using the homography model. In a low altitude setting recovering the trajectory
from the images represents a significant improvement, because GPS uncertainty is
very significant, particularly as uncertainty in its altitude estimate is projected as
uncertainty in the tracked object position. The fusion of Visual Odometry and GPS
position fixes in the airship scenario improved the recovered airship trajectory, and
these improvements translate in a smoother recovered trajectory for the moving tar-
get in the ground. The tracking can also be performed over an extended period of
time.

In the context of urban people surveillance, the camera could be carried by a
mobile robot to extend the coverage of a network of static cameras, being able to
focus the surveillance by moving towards a detected occurrence. In such context visual
odometry can be fused with wheel odometry or beacon-based localization systems,
and the surveillance of an horizontal plane at a lower level is a likely scenario.

In the domain of 3D point clouds registration, the inertial orientation measure-
ments also permitted to deal with the rotational and translational components sepa-
rately. The compensation of the rotational component is very fast (it just applies a
rotation to the points) and may accelerate considerably a posterior ICP registration,
besides improving its reliability.

The second part of the method, the approximation of the translational compo-
nent using the image correspondences, does not represent a large time saving if its
is necessary to apply ICP afterwards to fine-tune the registration. ICP quickly ap-
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proximates the remaining translation when its input are rotation-compensated point
clouds. Besides that, the time necessary to calculate the translational components is
around 30% to 50% of the time needed to run ICP in this case.

To decide if this technique should be applied, alone or as a first approximation to
ICP, the developer should consider the characteristics of its particular sensor setup
and the application requisites in terms of accuracy and reliability. We highlight the
following points to consider:

1. The computational time spent in the calculation of the translational component
is dominated by the interest point detection and matching algorithm. If interest
point matching is already being done for other purposes, then the additional
cost of RANSAC is very small.

2. Even with interest point matching, the total time spent by this method is con-
siderably less than with ICP. Depending of the application, the approximation
of the translational components may be good enough and the final ICP may be
dismissed. For example in the stereo results of section 4.4.6, the point clouds
registered using this method are visually indistinguishable from the same point
clouds registered using ICP. On the other hand, when using the LRF, the point
cloud is more sparse, the association of image pixels and 3D points is less accu-
rate, and thus the results are not so accurate.

3. The approximation of the translational component represents a better starting
point for ICP. In some cases, such as registration of point clouds with only
partial overlap, this may allow ICP to avoid a wrong registration due to local
minima. Therefore the larger computational cost may be paid off by increased
reliability. In the LRF case, as the time needed to tilt the LRF to collect a 3D
scan is significant, it is reasonable to think that in any robotic application the
distance traveled between two consecutive 3D scans will also be relatively large.
Therefore in the LRF case it is more likely that this method would be useful to
approximate the translation before applying ICP.



Bibliography

[Alves et al., 2003] Alves, J., Lobo, J., and Dias, J. (2003). Camera-Inertial Sensor
modelling and alignment for Visual Navigation. In Proceedings of the 11th Inter-
national Conference on Advanced Robotics, pages 1693–1698, Coimbra, Portugal.

[Arnspang et al., 1999] Arnspang, J., Henriksen, K., and Bergholm, F. (1999). Re-
lating scene depth to image ratios. In Solina, F. and Leonardis, A., editors, Proc. of
the 8th Int. Conf. on Computer Analysis of Images and Patterns (CAIP’99), vol-
ume 1689 of Lecture Notes in Comp. Science, pages 516–525, Ljubljana, Slovenia.
Springer.

[Bar-Shalom et al., 2001] Bar-Shalom, Y., Li, X. R., and Kirubarajan, T. (2001).
Estimation with Applications to Tracking and Navigation. John Willey & Sons,
Inc.

[Bay et al., 2006] Bay, H., Tuytelaars, T., and van Gool, L. (2006). SURF: Speeded
Up Robust Features. In the Ninth European Conference on Computer Vision, Graz,
Austria.

[Besl and McKay, 1992] Besl, P. and McKay, N. (1992). A method for registration of
3-d shapes [ICP]. IEEE Pattern Analysis and Machine Intelligence, 14(2):239–256.

[Borg and Groenen, 1997] Borg and Groenen (1997). Modern Multidimensional Scal-
ing, Theory and Application. Springer Verlag.

[Bouguet, 2006] Bouguet, J. (2006). Camera Calibration Toolbox for Matlab.
http://www.vision.caltech.edu/bouguetj/calib_doc/index.html.

[Bronshtein and Semendyayev, 1997] Bronshtein, I. N. and Semendyayev, K. A.
(1997). Handbook of mathematics (3rd ed.). Springer-Verlag, London, UK.

[Brown and Sullivan, 2002] Brown, A. and Sullivan, D. (2002). Precision kinematic
alignment using a low-cost GPS/INS system. In ION GPS, Portland, OR, USA.

117



118 BIBLIOGRAPHY

[Brown, 2006] Brown, M. (2006). Autostitch: Automated panorama creation.
http://www.cs.ubc.ca/ mbrown/autostitch/autostitch.html.

[Brown and Lowe, 2003] Brown, M. and Lowe, D. G. (2003). Recognising panoramas.
In 10th Int. Conf. on Computer Vision (ICCV), Nice, France.

[Caballero et al., 2006] Caballero, F., Merino, L., Ferruz, J., and Ollero, A. (2006).
Improving vision-based planar motion estimation for unmanned aerial vehicles
through online mosaicing. In IEEE Int. Conf. on Robotics and Automation
(ICRA06), pages 2860–2865, Orlando, FL, USA.

[Capel et al., 2006] Capel, D., Fitzgibbon, A., Kovesi, P., Werner, T., Wexler,
Y., and Zisserman, A. (2006). Matlab functions for multiple view geometry.
http://www.robots.ox.ac.uk/∼vgg/hzbook/code/.

[Capel, 2001] Capel, D. P. (2001). Image Mosaicing and Super-resolution. PhD thesis,
University of Oxford, Oxford, UK.

[Chen et al., 2003] Chen, Z., Pears, N., McDermid, J., and Heseltine, T. (2003).
Epipole estimation under pure camera translation. In Sun, C., Talbot, H., Ourselin,
S., and Adriaansen, T., editors, Proc. of the 7th Int. Conf. on Digital Image Com-
puting: Techniques and Applications, DICTA 2003, pages 849–858, Sydney, Aus-
tralia. CSIRO Publishing.

[Cheng et al., 2006] Cheng, Y., Maimone, M. W., and Matthies, L. (2006). Visual
odometry on the mars exploration rovers. IEEE Robotics and Automation Maga-
zine, 13(2):54–62.

[Corke et al., 2001] Corke, P., Sikka, P., and Roberts, J. M. (2001). Height estimation
for an autonomous helicopter. In ISER ’00: Experimental Robotics VII, pages 101–
110, London, UK. Springer-Verlag.

[Cunningham et al., 2006] Cunningham, D., Grebby, S., Tansey, K., and Gosar, A.
(2006). Application of airborne LiDAR to mapping seismogenic faults in forested
mountainous terrain, southeastern Alps, Slovenia. Geophysical Research Letters,
33.

[de Paiva et al., 2006] de Paiva, E. C., Azinheira, J. R., Ramos, J. J. G., Moutinho,
A., and Bueno, S. S. (2006). Project AURORA: Infrastructure and flight control
experiments for a robotic airship. Journal of Field Robotics, 23(3-4):201–222.

[Diel, 2005] Diel, D. D. (2005). Stochastic constraints for vision-aided inertial navi-
gation. Master’s thesis, Dept. of Mechanical Engineering - Massachussetts Institute
of Technology, Cambridge, MA, USA.



BIBLIOGRAPHY 119

[Eden et al., 2006] Eden, A., Uyttendaele, M., and Szeliski, R. (2006). Seamless
image stitching of scenes with large motions and exposure differences. In CVPR
’06: Proceedings of the 2006 IEEE Computer Society Conference on Computer
Vision and Pattern Recognition, pages 2498–2505, Washington, DC, USA. IEEE
Computer Society.

[Eustice, 2005] Eustice, R. M. (2005). Large-Area Visually Augmented Navigation for
Autonomous Underwater Vehicles. PhD thesis, Massachusetts Institute of Tech-
nology / Woods Hole Oceanographic Institution - Joint Program in Applied Ocean
Science & Engineering.

[Fischler and Bolles, 1981] Fischler, M. A. and Bolles, R. C. (1981). Random sample
consensus: A paradigm for model fitting with applications to image analysis and
automated cartography. Comm. of the ACM, 24:381–395.

[Garmin Int. Inc., 2007] Garmin Int. Inc. (2007). www.garmin.com.

[Gower and Dĳksterhuis, 2004] Gower, J. C. and Dĳksterhuis, G. B. (2004). Pro-
crustes Problems. Oxford Statistical Science Series. Oxford University Press.

[Gracias, 2002] Gracias, N. R. E. (2002). Mosaic-based Visual Navigation for Au-
tonomous Underwater Vehicles. PhD thesis, Universidade Técnica de Lisboa -
Instituto Superior Técnico, Lisbon, Portugal.

[Hartley and Zisserman, 2000] Hartley, R. and Zisserman, A. (2000). Multiple View
Geometry in Computer Vision. Cambridge University Press, Cambridge, UK.

[Hirschmüller et al., 2002] Hirschmüller, H., Innocent, P. R., and Garibaldi, J. (2002).
Fast, unconstrained camera motion estimation from stereo without tracking and
robust statistics. In 7th International Conference on Control, Automation, Robotics
and Vision, Singapore.

[Horn, 1987] Horn, B. (1987). Closed-Form Solution of Absolute Orientation Using
Unit Quaternions. Journal of the Optical Society of America, 4(4):629–462.

[Huguet et al., 2003] Huguet, A. B., Carceroni, R. L., and de A. Araújo, A. (2003).
Towards automatic 3d reconstruction of urban scenes from low altitude aerial im-
ages. In IEEE 12th Int. Conf. on Image Analysis and Processing (ICIAP’03),
Mantova, Italy.

[Hygounenc et al., 2004] Hygounenc, E., Jung, I.-K., Soueres, P., and Lacroix, S.
(2004). The Autonomous Blimp Project at LAAS/CNRS: Achievements in Flight
Control and Terrain Mapping. Int. J. of Robotics Research, 23(4/5):473–512.



120 BIBLIOGRAPHY

[Julier and Uhlmann, 1997] Julier, S. J. and Uhlmann, J. K. (1997). A new extension
of the kalman filter to nonlinear systems. In Int. Symp. Aerospace/Defense Sensing,
Simul. and Controls, Orlando, FL, USA.

[Kelly et al., 2007] Kelly, J., Saripalli, S., and Sukhatme, G. S. (2007). Combined
visual and inertial navigation for an unmanned aerial vehicle. In Proc. 6th Int’l
Conf. Field and Service Robotics (FSR’07), Chamonix, France.

[Kim, 2004] Kim, J. (2004). Autonomous Navigation for Airborne Applications. PhD
thesis, The University of Sydney, Sydney, NSW, Australia.

[Kleiner et al., 2005] Kleiner, A., Steder, B., Dornhege, C., Hoefler, D., Meyer-Delius,
D., Prediger, J., Stueckler, J., Glogowski, K., Thurner, M., Luber, M., Schnell, M.,
Kuemmerle, R., Burk, T., Braeuer, T., and Nebel, B. (2005). RoboCupRescue
- RescueRobots Freiburg (Germany), Team Description Paper. In Rescue Robot
League, Osaka, Japan.

[Konolige, 1997] Konolige, K. (1997). Small vision systems: Hardware and implemen-
tation. In Eight International Symposium on Robotics Research, Hayama, Japan.

[Liang et al., 2004] Liang, B., Pears, N., and Chen, Z. (2004). Affine height land-
scapes for monocular mobile robot obstacle avoidance. In Groen, F., Amato, N.,
Bonarini, A., Yoshida, E., and Kröse, B., editors, Intelligent Autonomous Systems
8, pages 863–872, Amsterdam, The Netherlands. IOS Press.

[Lobo and Dias, 2003] Lobo, J. and Dias, J. (2003). Vision and inertial sensor coop-
eration using gravity as a vertical reference. IEEE Trans. on Pattern Analysis and
Machine Intelligence, 25(12):1597–1608.

[Lobo and Dias, 2005] Lobo, J. and Dias, J. (2005). Relative pose calibration between
visual and inertial sensors. In ICRA Workshop on Integration of Vision and Inertial
Sensors - 2nd InerVis, Barcelona, Spain.

[Lobo and Dias, 2007] Lobo, J. and Dias, J. (2007). Relative pose calibration between
visual and inertial sensors. International Journal of Robotics Research, 26(6):561–
575.

[Lobo et al., 2006] Lobo, J., Ferreira, J. F., and Dias, J. (2006). Bioinspired visuo-
vestibular artificial perception system for independent motion segmentation. In
ICVW06 (2nd Int. Cognitive Vision Workshop), Graz, Austria.

[Lowe, 2004] Lowe, D. G. (2004). Distinctive image features from scale-invariant
keypoints. International Journal of Computer Vision, 60(2):91–110.



BIBLIOGRAPHY 121

[Ma et al., 2004] Ma, Y., Soatto, S., Kosecka, J., and Sastry, S. (2004). An Invitation
to 3D Vision. Springer.

[Makadia and Daniilidis, 2005] Makadia, A. and Daniilidis, K. (2005). Correspon-
denceless ego-motion estimation using an imu. In Proceedings of the IEEE Inter-
national Conferenece on Robotics and Automation.

[Malis, 1998] Malis, E. (1998). Contributions à la modélisation et à la commande en
asservissement visuel. PhD thesis, L’Université de Rennes, École de Informatique,
Traitement du Signal et Telecommunications, Rennes, France.

[Malis et al., 1999] Malis, E., Chaumette, F., and Boudet, S. (1999). 2-1
2
-D Visual

Servoing . IEEE Trans. on Robotics and Automation, 15(2):238–250.

[Matthies and Shafer, 1987] Matthies, L. and Shafer, S. (1987). Error modeling in
stereo navigation. IEEE J. of Robotics and Automation, RA-3(3).

[Merino et al., 2005] Merino, L., Caballero, F., de Dios, J., and Ollero, A. (2005).
Cooperative fire detection using unmanned aerial vehicles. In IEEE International
Conference on Robotics and Automation, pages 1896–1901, Barcelona, Spain.

[Merino et al., 2006] Merino, L., Wiklund, J., Caballero, F., Moe, A., de Dios, J.
R. M., Forssen, P.-E., Nordberg, K., and Ollero, A. (2006). Vision-based multi-
UAV position estimation. Robotics & Automation Magazine, IEEE, 13(3):53–62.

[Michaelsen et al., 2004] Michaelsen, E., Kirchhof, M., and Stilla, U. (2004). Sen-
sor pose inference from airborne videos by decomposing homography estimates.
In XXth ISPRS Congress, Istambul, Turkey. The International Society for Pho-
togrammetry and Remote Sensing.

[Mikolajczyk and Schmid, 2004] Mikolajczyk, K. and Schmid, C. (2004). Scale and
affine invariant interest point detectors. International Journal of Computer Vision,
60(1).

[Mikolajczyk et al., 2005] Mikolajczyk, K., Tuytelaars, T., Schmid, C., Zisserman,
A., Matas, J., Schaffalitzky, F., Kadir, T., and van Gool, L. (2005). A comparison
of affine region detectors. International Journal of Computer Vision, 65(7):43 – 72.

[Mirisola, 2001] Mirisola, L. G. B. (2001). Desenvolvimento da estação de terra do
projeto AURORA. Master’s thesis, Universidade Estadual de Campinas, Instituto
de Computação, Campinas, SP, Brazil.

[Mirisola and Dias, 2008] Mirisola, L. G. B. and Dias, J. (2008). Complemen-
tary results and data to Exploiting inertial sensing in vision based navigation.
http://paloma.isr.uc.pt/∼lgm/.



122 BIBLIOGRAPHY

[Mirisola and Dias, 2007] Mirisola, L. G. B. and Dias, J. M. M. (2007). Exploiting
inertial sensing in mosaicing and visual navigation. In 6th IFAC Symposium on
Intelligent Autonomous Vehicles (IAV07), Toulouse, France.

[Mirisola et al., 2006] Mirisola, L. G. B., Lobo, J., and Dias, J. (2006). Stereo vision
3D map registration for airships using vision-inertial sensing. In The 12th IASTED
Int. Conf. on Robotics and Applications (RA 2006), Honolulu, HI, USA.

[Ohno and Tadokoro, 2005] Ohno, K. and Tadokoro, S. (2005). Dense 3D map build-
ing based on LRF data and color image fusion. In IEEE Int. Conf. on Intelligent
Robots and Systems (IROS 2005), pages 2792– 2797.

[OMG, 2007] OMG, O. M. G. (2007). OMG’s CORBA page. http://www.corba.org.

[Point Grey Inc., 2007] Point Grey Inc. (2007). www.ptgrey.com.

[Redding et al., 2006] Redding, J., McLain, T., Beard, R., and Taylor, C. (2006).
Vision-based target localization from a fixed-wing miniature air vehicle. In Amer-
ican Control Conference, Minneapolis, MN, USA.

[Saripalli et al., 2003] Saripalli, S., Montgomery, J., and Sukhatme, G. (2003).
Visually-guided landing of an unmanned aerial vehicle. IEEE Transactions on
Robotics and Automation, 19(3):371–381.

[Scaramuzza et al., 2007] Scaramuzza, D., Harati, A., and Siegwart, R. (2007). Ex-
trinsic self calibration of a camera and a 3d laser range finder from natural scenes.
In IEEE Int. Conf.on Intelligent Robots and Systems (IROS), San Diego, CA, USA.

[Schiele and Crowley, 1994] Schiele, B. and Crowley, J. L. (1994). A comparison of
position estimation techniques using occupancy grids. In Int. Conf. on Robotics
and Automation (ICRA94), pages 1628– 1634, San Diego,CA, USA.

[Schmidt, 2007] Schmidt, D. C. (2007). TAO - The ACE ORB.
http://www.cs.wustl.edu/∼schmidt/TAO.html.

[Steedly et al., 2005] Steedly, D., Pal, C., and Szeliski, R. (2005). Efficiently reg-
istering video into panoramic mosaics. In IEEE Int. Conf. on Computer Vision
(ICCV05), Beĳing, China.

[Strelow and Singh, 2004] Strelow, D. and Singh, S. (2004). Motion estimation from
image and inertial measurements. The International Journal of Robotics Research,
23(12):1157 – 1195.



BIBLIOGRAPHY 123

[Suter et al., 2002] Suter, D., Hamel, T., and Mahony, R. (2002). Visual servo control
using homography estimation for the stabilization of an x4-flyer. In 41st IEEE Conf.
on Decision and Control, pages 2872–2877, Las Vegas, NV, USA.

[Szeliski, 2004] Szeliski, R. (2004). Image alignment and stitching: A tutorial. Tech-
nical Report MSR-TR-2004-92, Microsoft Research.

[Szeliski, 2005] Szeliski, R. (2005). Image alignment and stitching, chapter 17, pages
273–292. Handbook of Mathematical Models in Computer Vision. Springer.

[Sünderhauf and Protzel, 2007] Sünderhauf, N. and Protzel, P. (2007). Stereo odom-
etry - a review of approaches. In IASTED Conference on Robotics and Applications,
Würzburg, Germany.

[Triebel et al., 2006] Triebel, R., Pfaff, P., and Burgard, W. (2006). Multi-level sur-
face maps for outdoor terrain mapping and loop closing. In Int. Conf. on Intelligent
Robots and Systems (IROS), Beĳing, China.

[van Gool et al., 1998] van Gool, L., Proesmans, M., and Zisserman, A. (1998). Pla-
nar homologies for grouping and recognition. Image and Vision Computing, 16(21-
26).

[XSens Tech., 2007] XSens Tech. (2007). www.xsens.com.



124 BIBLIOGRAPHY



Appendix A

Experimental Platform

This chapter provides a more detailed description of the DIVA airship, complementing
the overview of section 1.4. A high level view of the characteristics and capabilities of
the current system is presented in section A.1. Then, section A.2 presents the requi-
sites for an extension of this system towards automatic flight. Finally, the hardware
components, sensors, and software architecture are shown in section A.3.

A.1 Technical Characteristics of the DIVA Airship
This section details the technical characteristics of the system which collected the
data used on the experiments shown in chapter 3. They can be considered as the
requisites to build an equivalent system. The system is composed by an embedded
system and a ground station, which communicate through a wireless link.

A.1.1 Embedded System
Operational Requisites

• Periodically, the embedded system must read data from all sensors and trans-
mit the data to the ground station, with a period compatible with the vehicle
dynamics.

• The embedded system must integrate at least one camera, capturing images
with sufficient resolution and frame rate. A modern camera with automatic
gain adjustment is necessary as illumination conditions change often during the
flight.

• The embedded system must store all telemetry data, besides transmitting them
to the ground station, to avoid losing data if the data link is lost. Camera
images also are stored (the heaviest burden to the CPU and storage system).
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• If DGPS (Differential GPS) corrections are needed, the embedded system must
receive DGPS data from the ground station via a reliable data link. GPS
position fixes when DGPS data is intermittent often “jump” between corrected
and uncorrected states, which may be worse than having no DGPS correction
at all. A separate low speed link for DGPS data may be advisable.

• Payload weight is a severe limitation for airships. Thus, energy consumption
must be minimized to decrease battery weight.

Safety Characteristics

• The embedded system must have a Remote Control (RC) receiver to allow a
human pilot to manually pilot the airship. Figure A.3 shows a Radio Control
Unit (standard aero-modeling equipment), used to pilot the airship.

• There must be a device electrically independent of the CPU to read the servo
commands from the RC receiver, able to continue working in case of CPU
malfunctioning. It receives commands from the RC receiver, and relays them
to the servo motors and to the CPU to be read and stored.

• The embedded system must be sufficiently resistant to vibration and tilting to
resist the flight and motor induced vibration. Vibration isolation (lightweight)
may be necessary. Vibration-resistant data storage such as a flash disk is needed
to store images.

A.1.2 Ground Station

This section presents the technical characteristics of the ground station.

Data Collection And Storage

• Although the embedded system stores all state variables, the data may not be
recoverable due to accidents or malfunctioning. Therefore, the ground station
should receive and store data from the embedded system.

• The ground station must be easily reconfigurable if there is a change in the data
format sent by the embedded system (e.g., if a new sensor is added).

• The stored data must be easily converted to a format readable by commercial
mathematical software such as MATLABr (e.g., an ASCII format).
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User Interface: Vehicle Safety And Monitoring The ground station must
monitor the vehicle state not only to detect hazardous situations (safety issues),
but also to avoid useless flights and waste of time in case of malfunctioning. The
human pilot and the algorithm developers should determine which variables should
be monitored.

• Monitor all critical state variables, i.e., the ones which are essential to the flight
safety or data recording, like tachometers, GPS, camera status, etc. The user
interface must show the state of the most critical variables clearly and contin-
uously (but not necessarily the actual numeric value of all of them), indicating
critical failures with alarms (red lights and/or sounds).

• This monitoring must be active before take-off, so that the ground station op-
erator can abort the flight if a critical system is not operating.

Differential GPS

• If differential GPS correction is needed, the ground station should be connected
to a DGPS (Differential GPS) station and transmit its signals to the embedded
system.

A.2 Requisites for extension towards an autonomous
airship prototype

This section details the requisites necessary to extend the current system towards
automatic flight, in addition to the requisites already presented in section A.1.1. An
early version of these requisites, without an on-board camera, is found on [Mirisola, 2001].

A.2.1 Embedded System
Operational Requirements

• Periodically, the embedded system must also receive from the ground station
commands and parameters related to the algorithms to be executed, transmit
feedback about their execution, and send commands to the actuators.

• To develop control algorithms based on inputs generated from images, the em-
bedded system must also transmit camera images to the ground.

• If more than one camera is utilized to perform some of the tasks described in
this thesis, it is desirable to have synchronized cameras, i.e., cameras which,
when connected in the same data bus, can take frames at the same time.
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Safety Requirements

• The human pilot must be able to take over the control at his will using a channel
on his RC unit. The on-board electronics must detect this command and change
immediately to manual mode.

• There must be a device electrically independent from the CPU to select be-
tween manual and automatic control, able to continue working in case of CPU
malfunctioning. It should receive commands from both the embedded CPU and
the RC receiver, and relay one of them to the servo motors. The commands are
also relayed to the CPU to be stored.

A.2.2 Ground Station
Ground Station User Interface: Operational These requirements aim to in-
crease the usefulness of each flight, reducing the number of flights needed to achieve
the intended results.

• For image-based algorithms, the user interface must show the images being
received from the embedded system.

• The embedded system may be able to execute different types of mission, with
different parameters, e.g., controller gains, or camera parameters as brightness,
saturation, etc. Parameter adjustments must be done online via the ground
station, during the flight. It is not desirable to have to land the airship and log
on the embedded system to change the a parameter value.

• The operator must be informed about the execution of the mission. Mission
related information must be displayed over a map of the vehicle trajectory.

Ground Station User Interface: Vehicle Safety And Monitoring

• The user interface must have an Instruments Panel displaying the value of
the most important variables (e.g. tachometers, altitude, attitude). Under
automatic flight a sensor failure may represent a safety risk.

• The user interface must be able to show graphs of all state variables. They may
be important to evaluate the algorithms being tested and choose new values for
parameters.

• To visualize the vehicle in a virtual 3D world is not useful if the virtual world is
not sufficiently detailed to provide visually recognizable references to the user.
If the airship is always within visual range a virtual world visualization is also
less important.
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A.3 Overview of architecture

This section provides an overview of the system architecture developed and utilized
to obtain the datasets used in this thesis including the aerial dataset used in chapter
3. Remotely piloted flights were performed with telemetry and image recording with
the on-board hardware architecture shown in Fig. A.1.

A.3.1 Sensors and hardware components

Figure A.1: The embedded system of the DIVA project.

Figure A.2 shows hardware components used in the DIVA airship, some of which
are described below:

CPU The aerial dataset used in section 3.4.4 and other datasets used in chapter 4
were collected with a M570-BAB Board with a VIA EDEN 600[MHz] processor.
The board has the PC/104+ format, and incudes 512[MB] RAM. Nevertheless,
an upgrade was necessary to be able to store images at a higher frame rate.
The embedded CPU was upgraded to a MiniITX CPU model VIA EN 1500G,
with a 1.5[GHz] processor, 6x USB, 2x RS232, Ethernet, and Firewire camera
ports. It was not necessary to add any expansion to the MiniITX board. Figure
A.4(a) shows a picture of the CPU board, and figure A.4(b) shows it mounted
on the DIVA on-board computer.
The reasons for the upgrade are detailed in section A.3.1.1. The CPU was used
to obtain the aerial dataset used in section 3.4.5 and chapter 5, with a image
frame rate of 5fps.
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(a) Xsens MTB-9 AHRS (b) Xsens MTi AHRS (c) Garmin GPS35

(d) Wind sensor on the air-
ship nose

(e) The switch board is the inter-
face between the servos, RCU and
CPU

(f) Li-Po batteries for the embed-
ded system.

(g) The embedded system.

Figure A.2: Hardware components of the DIVA prototype.

Inertial System (Xsens MTi and MTB-9) [XSens Tech., 2007] See sections 2.3 and
1.4for details.

Digital Camera (Point Grey Flea) [Point Grey Inc., 2007]. See section 1.4 for de-
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tails. This camera automatically controls parameters such as gain to adapt to
illumination changes. Images were captured during flight, with no need of any
parameter control external to the camera. Bayer images were converted into
grayscale images by simple linear interpolation with OpenCV functions.

GPS Receptor (Garmin GPS35 12 channel GPS unit) Low weight GPS receptor
and antenna integrated in a single mouse-sized package, with RS-232 commu-
nication.

Wind Sensor It is mounted on the airship nose and measures barometric altitude,
the angle of attack, sideslip angle and wind speed. It is not yet calibrated.

RPM Sensor Measures the rotation speed of the motors, by counting the number of
interruptions on an Infra Red light signal that is cut by the propeller movement.

Switch Board The servo-motors on the flaps and motors accelerators are com-
manded by Pulse Width Modulation (PWM) signals sent by the human pilot
via the Radio Control Unit. The Switch Board reads the signals from the Ra-
dio Control Receiver, transmits their values in digital form (serial port) to the
CPU, for recording, and retransmits PWM signals to the servo motors. In fu-
ture automatic flights, the same board may switch to transmit commands sent
from the CPU to the servo motors.
As the switch board is responsible to send commands to the servos in both man-
ual and automatic modes, a failure on it would render the airship unresponsive
to any command. For safety, it must be able to continue functioning even in
the case of CPU failure. Therefore, it is electrically isolated from the on-board
CPU and servo motors, with a separate battery for power.

Video Storage Vibration resistant storage for images is provided by a fast USB flash
disk. It must be tested by saving a file large enough to fill all buffers involved
in data writing (in the order of hundreds of megabytes), and then observing
the continuous data transfer speed. Actual continuous writing speed is often
much less than the advertised value (respectively 5MB/s and 21MB/s with our
flashdisk).

Besides the on-board system, there is also support equipment on the ground (see
Fig. A.3). The human pilot commands the airship with a standard aeromodel Remote
Control Unit, sending PWM signals to command the servo-motors on the flaps and
motor accelerators. Also, a laptop connected to a Wireless Access Point receives,
stores and displays telemetry data from the airship.
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Figure A.3: The Ground Station.

Batteries and energy budget Separate batteries are needed for the on-board
radio receiver, to avoid interference, and for the switch board, to keep it electrically
isolated from other components. As their current consumption is quite small, these
are small Ni-MH or Li-Po batteries. A separate, larger Ni-MH battery, supplies power
to the servo motors.

The main concern is the battery for the on-board CPU and the sensors connected
to it. The current system needs around 35[W ] power, supplied by a Li-Po (Lithium-
Polymer) battery with 3700[mAh] at 14.9[V ], shown in figure A.2, which can safely
supply power for more than an hour. Therefore the tightest limitation of flight time
is now fuel consumption, and not battery power.

Actuators The motors accelerators are actuated by servo motors, to control the
speed of the airship. In the tail, there are four aerodynamical surfaces (flaps),
mounted on ’X’ shape, with one servo motor deflecting each one, which are used
to steer the airship. There is also a servo motor to open and close a valve to release
helium from the envelope, to land quickly the airship in the case of emergency.

A.3.1.1 Comparison of standards PC104 and MiniITX

The DIVA project switched from PC104 to MiniITX for the following reasons, which
are also summarized in table A.1:

1. The PC104 standard was extended in the last years with the addition of PCI-104
and PC104+ standards, to incorporate different buses (ISA, PCI, or both). Al-
though in theory these different boards can be stacked and connected together,
this resulted in common incompatibility problems between boards of different
suppliers. These problems are avoided with MiniITX.
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PC104 MiniITX
Board Dimensions 11[cm]× 10[cm] + - 17[cm]× 17[cm]

Board Area 110[cm2] + - 289[cm2]
availability of new tech larger delay - + more up to date

support Linux uncertain - + more common
expansibility yes, stacked bus + - very limited (1 slot)

incompatibility risks yes - + all-in-one-board
price range (1[GHz] CPU) � 400-800 - + � 150-280

Table A.1: Comparison between the PC104 and MiniITX standards. ’+’ indicates an
advantage, ’-’ a disadvantage.

(a) (b)

Figure A.4: The MiniITX VIA EN 1500G CPU used in the DIVA on board computer.
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weight [g] total weight [g]
Gondola (mechanical structure) 6800 6800

Battery box (for airmodel equipment) 850 7650
Embedded System Box 3050 10700

GPS, CAM-AHRS, Anemometer 1300 12000
Li-Po Battery for Embedded System 450 12450

Wireless AP 150 12600
Fuel 800 13400

Envelope Safety Limit 13500

Table A.2: The weight budget of a flight experiment.

2. The larger size of MiniITX means that it is possible to fit more functionality
into the board, therefore it is more likely that one single board will have all
needed functionality. For DIVA, the CPU must have at least a Firewire port
and enough serial or USB ports to connect the other sensors.

3. The larger weight of a MiniITX board is compensated by eliminating the extra
Firewire board, and by exchanging the PC104 power source board by the smaller
MiniITX DC-DC converter. Also, the weight of vertical bus connectors and
screws is eliminated by having all functionality on one board.

4. A MiniITX system usually has few expansion slots available to connect expan-
sion boards, and it can not expand by stacking new boards like a PC104 system.
But future expansion needs may be covered by USB or Ethernet connections.
Newer MiniITX boards have connectors for Firewire, 4x or 6x USB2.0, IDE
and/or SATA, 2x RS232, 1x or 2x Ethernet. Many have developed multimedia
capabilities.

5. MiniITX motherboards generally are cheaper than PC104 motherboards.

A.3.1.2 A weight budget example

Table A.2 represents the weights of all hardware equipment aboard the gondola for
the last flight experiment of August 2008. The weights in this table include the
corresponding cables to connect each item into the system.
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A.3.2 Embedded & Ground Station Software
The C++ embedded software includes a main loop to read, store and transmit sensor
data, and threads to capture and store images. The period is 100[ms].

CORBA middleware [OMG, 2007] is used for the transmission of a struct contain-
ing all sensor data. More specifically the free software TAO ORB [Schmidt, 2007] is
used in both the embedded system and ground station. TAO is aimed at real time
and embedded systems, and has been one of the main references for CORBA in these
areas because it was one of the first free ORBs to implement a significant part of
the standard specifications. The implementation is optimized to avoid data copying
and context switching, and their results show good latency times. Although some
services are called real-time, this is valid only for specific services, and TAO is not
really real-time without a supported real time operational system.

The subset of CORBA called minimumCORBA was evaluated but found to be
too limited. Anyway, as the embedded system do not use sophisticated services, the
overhead of the normal implementation is negligible.

The usage of CORBA middleware avoids manual data marshaling and allows fast
reconfiguration when the telemetry format is changed. For example, when a new
sensor is added, new fields are added in the struct and the communication routines
remain the same.

Images and sensor data are time-stamped immediately after reading with the same
CPU clock, and each image is saved with the timestamp embedded on its filename.

The telemetry data is saved both in the embedded system and on the ground
station, for redundancy. It is saved in a comma-separated text file, which may be
open directly in MATLABr or other processing software.

The main task of the ground station software is to receive a stream of data from
the embedded computer, store it and show it to the user with a GUI. Additionally the
ground station must receive commands from the user and send it to the embedded
computer.

Therefore, there may be various GUI clients to display/store telemetry data and to
send commands to the embedded system, but only one piece of software to centralize
communication with the embedded computer. Here we use a CORBA server to receive
telemetry data and the Event Service to distribute telemetry data among the various
clients.

In this way, any new GUI client just needs to connect to the Event Service, to
receive all telemetry data coming from the embedded system. The GUI client must
check the data types to discriminate between telemetry and other kinds of data from
the embedded system, such as acknowledgments of camera settings.

Figure A.5 shows a diagram with the main components of the Ground Station.
A GUI client developed as a undergrad student project displays the 2D trajectory of
the blimp over a satellite image of the area, and displays the value of some important
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GroundStation

+------- for Embedded System --------()

+sendTelemetry(in data:DIVA_DATA): DIVA_ACK

+getDGPS(): DGPS_DATA

+getGround_Data(): GROUND_DATA

+------- for GUI Clients -----------()

+setCameraParameters(in Id:CamParamId,in value:float)

+setAlgParam(in algparam:struct AlgParam)

Main GroundStation Server

Corba GS Server
{SPAWN}

Thread: Sensor Reading

- Reads DGPS & Meteo

- sets DGPS & Meteo

   on GS Server

- Sleeps

From Emb. Sys

Event 

Service

Publishes telemetry

Client

GUI Client

GUI

Subscribe Telem.

Camara &
Algorithm
Settings

Waypoints &
Mission description

Client

GUI
User

Figure A.5: Ground Station Components

state variables in real-time including a graphical instruments panel. It can “replay”
a previous flight by reading a previously stored telemetry file and sending the data
to the Ground Station Server via a CORBA remote method. Figure A.6 shows an
image of one of the windows of this GUI with the instrument panel that was used in
the flight tests.
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Figure A.6: Monitoring GUI at the Ground Station laptop with a instruments panel
and a map of the flight area.
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Appendix B

Mathematical Proofs and formulae

B.1 Recovering the scale of the recovered homog-
raphy matrix

Given two images of the same 3D plane, a homography recovered from point cor-
respondences is recovered only up to a scale factor λ (section 2.2.2), in the form
Hλ = λH = λ

(
R− tnT /d

)
. The matrix R is a 3 × 3 rotation matrix, t ∈ R3 is a

translation vector, n ∈ R3 is the plane normal vector, and d ∈ R the distance from
the camera center to the plane, as shown in figure B.1.

The matrix Hλ = λH is recovered only up to the scale factor λ ∈ R which must
be recovered first. After λ is recovered, the translational and rotational components
embedded in the matrix will be recovered. Therefore, the following proposition must
be proved:

Proposition: For a matrix on the form Hλ = λ
(
R− tnT /d

)
, |λ| is the second

largest singular value of Hλ.
Proof: This proof was taken from [Ma et al., 2004], and it is more explicitly de-

tailed here. For definitions in algebra we relied on [Bronshtein and Semendyayev, 1997].
The notation x ∼ y denotes that the vectors x and y are proportional or parallel.

Let u = RT t/d ∈ R3. Then it can be shown that:

HT
λHλ = λ2

(
I + unT + nuT + ‖u‖2 nnT

)
(B.1)

Denote u = (u1, u2, u3) ∈ R3, and

ũ =

 0 −u3 u2

u3 0 −u1

−u2 u1 0

 ∈ R3×3 (B.2)
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Figure B.1: A 3D plane imaged by a moving camera induces a homography.

where the matrix ũ is a skew-symmetric matrix. From the properties of skew symmet-
ric matrices, we known that ũT = −ũ, and for any vector x ∈ R3, u× x = ũx ∈ R3

Take the vector u × n = ũn ∈ R3, which is orthogonal to both u and n. Now
calculate the scalar product of HT

λHλ by ũn:

HT
λHλ · ũn = λ2

(
I + unT + nuT + ‖u‖2 nnT

)
· ũn = λ2 (ũn) (B.3)

as, due to the orthogonality, all terms except λ2(I · ũn) are zero.
As HT

λHλ · ũn = λ2(ũn), we know that λ2 is an eigenvector of HT
λHλ. Therefore

λ2 is an eigenvalue of HT
λHλ, and, by definition, |λ| is a singular value of Hλ.

Now it must be shown that this singular value is the second largest. Let a new
matrix Q be defined as:

Q = unT + nuT + ‖u‖2 nnT (B.4)

such that:

HT
λHλ = λ2(I + Q) = λ2I + λ2Q (B.5)

Then let v = ‖u‖n, w = u/ ‖u‖ ∈ R3. It can be shown that:

Q = unT + nuT + ‖u‖2 nnT = (w + v)(w + v)T −wwT (B.6)

Now we analyze the eigenvalues of the matrix Q.
For any column vector x ∈ R3, a matrix A in the form A = xxT is symmetric

matrix, which has only real eigenvalues. Therefore, as Q is the sum of two terms of
the form xxT , Q is the sum of two symmetric matrices. Hence, Q itself is symmetric
and all its eigenvalues are real.
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Furthermore, any matrix A = xxT − yyT with linearly independent x and y has
one positive and one negative eigenvalue. Indeed, if a vector z is a linear combination
of x and y and is orthogonal to y, then zTAz = (zTx)2 > 0, therefore A is not
negative definite or semi-negative definite and then A must have a positive eigenvalue.
Given another vector z which is a linear combination of x and y and is orthogonal
to x, then zTAz = −(zTy)2 < 0, therefore A is not positive definite or semi-positive
definite and then A must have a negative eigenvalue.

Therefore if w and v + w are linearly independent, then Q has a positive and a
negative eigenvalue.

Now the following facts will be used: let e ∈ R be an eigenvalue of a matrix A,
then, for any constant c ∈ R:

1. ce is an eigenvalue of the matrix cA.

2. c + e is an eigenvalue of the matrix cI + A.

As HT
λHλ = λ2(I + Q) = λ2I + λ2Q, the eigenvalues of HT

λHλ can be calculated as a
function of the eigenvalues of Q and vice versa. Applying these two facts, we know
that if one the eigenvalues of HT

λHλ is λ2, than zero is one of the eigenvalues of Q,
as λ2 + λ2 · 0 = λ2.

Therefore, Q has one positive and one negative eigenvalue and a zero eigenvalue,
except when u ∼ n. In this case w and v + w are linearly dependent and the rank
of Q is 1, and therefore Q have two repeated zero eigenvalues. In any case, the
second largest eigenvalue of Q is zero. This special case happens when the direction
of the translation t is proportional to the plane normal n, i.e., when the direction of
movement is perpendicular to the 3D plane.

As the second largest eigenvalue of Q is zero, λ2 is the second largest eigenvalue
of HT

λHλ and therefore |λ| is the second largest singular value of Hλ .

�

Once |λ| is known, a new matrix is set as:

H = Hλ/ |λ| (B.7)

and thus H is recovered up to the form H = ±
(
R− tnT /d

)
. The correct sign is

recovered by imposing a positive depth constraint using the pixel correspondences,
which are given in the form of pixel pairs (xi,x

′
i), for i = 1 . . . n. Remembering that

x′i ∼ Hxi, we have, for all i:

x′
T
i Hxi > 0 (B.8)

for the correct sign of H. Thus if the pixel correspondences are on general configura-
tion on the plane, the matrix H =

(
R− tnT /d

)
can be uniquely determined.
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B.2 Calculating sigma points for the Unscented
Transform

The Unscented Transform is applied to the transformation from the virtual camera
image plane to the ground plane, expressed by equation (3.4), to allow uncertainty
propagation from the camera pose and orientation to the object position in the ground
plane. Sigma points are necessary for the six dimensions corresponding to three
rotational and three translational DOF.

Developing and inverting equation (3.4), and changing the origin of the horizontal
coordinates to the world frame, we have:

WXO =


(Dox−nx)h

f
+W Cx

−(Doy−ny)h

f
+ WCy

0

 (B.9)

where the observation of the object in the image coordinates, in the virtual camera
frame {D}, is DxO = [Dox,

Doy, 1]T , and the nadir point n is also measured in the
image.

The sigma points for the three translational DOF are trivially calculated: change
the values of WXC = [WCx,

WCy, h]T into equation (B.9) and recalculate WXO.

Sigma points for the rotational DOF The orientation of the camera do not
appear in equations (3.4) and (B.9) because the virtual camera with the rotation
compensated is being used. Nevertheless, it is possible to calculate the orientation of
the observation in the virtual camera frame and generate the sigma points related to
errors in this orientation. This is necessary because errors on the orientation estimate
are the most significant in this scenario.

First we deal with the roll and pitch angles. The sigma points for the roll angles
and the x axis are calculated here but there is a similar development to calculate the
sigma points for the pitch angle and the y axis.

Define θ as the angle between the vertical and the projection ray from the camera
center to the object position in the ground plane WXO = [WOx,

WOy, 0]T . Looking
to the triangle formed by the camera center, its nadir point in the ground plane and
WXO, we have tan θ = (WOx − WOx)/h

Lets calculate the new value of WOx if θ is changed by an amount +∆θ:
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χ+
pitch = h tan (θ + ∆θ) + WCx (B.10)

= h

(
tan (θ)

1− tan (θ) tan (∆θ)
+

tan (∆θ)

1− tan (θ) tan (∆θ)

)
+ WCx

and similarly for the negative sigma point:

χ−pitch = h tan (θ −∆θ) + WCy (B.11)

= h

(
tan (θ)

1 + tan (θ) tan (∆θ)
− tan (∆θ)

1 + tan (θ) tan (∆θ)

)
+ Wcy

The sigma points for the yaw angle can be calculated by transforming the object
coordinates from Cartesian to polar coordinates, changing the yaw angle, and trans-
forming it back into Cartesian. A translation must be performed to place the origin
in the camera center, as in the following algorithm:

[
θ
ρ

]
← cart2pol((WOx − WCx), (

WOy − WCy)) (B.12)

χ+
yaw ← pol2cart((θ + ∆θ) , ρ) + [ WCx

WCy ]T (B.13)

χ−yaw ← pol2cart((θ −∆θ) , ρ) + [ WCx
WCy ]T (B.14)

χ+
yaw ←

[
χ+

yaw

0

]
(B.15)

χ−yaw ←
[

χ−yaw

0

]
(B.16)

where the last two lines just set the z coordinate to zero as the object is on the
ground plane, and cart2pol and pol2cart are the functions which transform Cartesian
coordinates into polar coordinates and vice-versa.

B.3 Jacobian formulae for the homology transfor-
mation.

In section 3.2.3 the following equation is minimized to find the homology transforma-
tion which register two images:
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min
vx,vy ,vw,µ

n∑
i=1

dist(x′i,Gxi) =
n∑

i=1

dist(x′i,


1 0 (µ− 1) · vx

vw

0 1 (µ− 1) · vy

vw

0 0 µ

xi) (B.17)

where the FOE v = [vx, vy, vw]T is given in homogenous form, and n is the number
of corresponding pixels between the image pair. Thus, for each corresponding pixel
pair i, the function being minimized is, if dist is defined as Euclidean distance:

f(vx, vy, vw, µ) =

√(
x′x −

(
vx

vw

+
xx

µ
− vx

vwµ

))2

+

(
x′y −

(
vy

vw

+
xy

µ
− vy

vwµ

))2

(B.18)
where x = [xx, xy, 1]T is given in unhomogeneous form, and x′ is defined similarly.
The partial derivatives of f in function of each of its four free variables, which are
necessary to compose the Jacobian of the optimization function, are:

∂f

∂vx

=

(
1

µ
− 1

)
dist(x′i,Gxi) · vw

(x′x −
vx

vw

)
−

xx −
vx

vw

µ


 (B.19)

∂f

∂vy

=

(
1

µ
− 1

)
dist(x′i,Gxi) · vw

(x′y −
vy

vw

)
−

xy −
vy

vw

µ


 (B.20)

∂f

∂vw

=
1

dist(x′i,Gxi) · v2
w


(x′x −

vx

vw

)
−

xx −
vx

vw

µ


(vx −

vx

µ

)
+

+

(x′y −
vy

vw

)
−

xy −
vy

vw

µ


(vy −

vy

µ

) (B.21)

∂f

∂µ
=

1

dist(x′i,Gxi) · µ2


(x′x −

vx

vw

)
−

xx −
vx

vw

µ


(xx −

vx

vw

)
+

+

(x′y −
vy

vw

)
−

xy −
vy

vw

µ


(xy −

vy

vw

) (B.22)
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note that for faster computation,
(

x′x −
vx

vw

)
,
(

x′y −
vy

vw

)
,
(

xx −
vx

vw

)
, and

(
xy −

vy

vw

)
are computed first for all corresponding points.

B.4 Jacobian formulae for the optimization in t.

In section 3.2.2, a set of corresponding points in two images are projected into the
virtual horizontal plane, generating two sets of 3D points which are registered to find
the translation between the two camera poses. The process involves optimization in
the translation vector t, and this section shows the partial derivatives of the following
optimization function (equation (3.5)):

f (tx, ty, tz, tw) =
∑

k=1...n

dist (X ′
k (t) , Xk) (B.23)

which, if dist() represents Euclidean distance, becomes, for each corresponding point
pair:

f (tx, ty, tz, tw) =


(x′x ·

h

f

)
−

xx ·
(

h +
tz
tw

)
f

+
tx
tw




2

+ (B.24)

+

(−x′y ·
h

f

)
−

−xy ·
(

h +
tz
tw

)
f

+
ty
tw




2


1/2

and then the partial derivatives are:
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∂f

∂tx
=

1

dist(X ′
k (t) , Xk) · tw

·
[
+ (x′x − xx) ·

h

f
− xx · tz

f · tw
− tx

tw

]
(B.25)

∂f

∂ty
=

1

dist(X ′
k (t) , Xk) · tw

·
[
−
(
x′y − xy

)
· h
f

+
xy · tz
f · tw

− ty
tw

]
(B.26)

∂f

∂tz
=

1

dist(X ′
k (t) , Xk) · tw

·
[[

+ (x′x − xx) ·
h

f
− xx · tz

f · tw
− tx

tw

](
−xx

f · tw

)
+

+

[
−
(
x′y − xy

)
· h
f

+
xy · tz
f · tw

− ty
tw

](
xy

f · tw

)]
(B.27)

∂f

∂tw
=

1

dist(X ′
k (t) , Xk) · t2w

·
[[

+ (x′x − xx) ·
h

f
− xx · tz

f · tw
− tx

tw

](
xx · tz

f
+ tx

)
+

+

[
−
(
x′y − xy

)
· h
f

+
xy · tz
f · tw

− ty
tw

](
−xy · tz

f
+ ty

)]
(B.28)

where, to speed up the calculation, the following quantities which appear repeatedly
can be calculated first:

1

dist(X ′
k (t) , Xk) · tw[

+ (x′x − xx) ·
h

f
− xx · tz

f · tw
− tx

tw

]
(B.29)[

−
(
x′y − xy

)
· h
f

+
xy · tz
f · tw

− ty
tw

]

B.5 The discrete Wiener process acceleration model
for the Kalman Filter

The Kalman Filters used in chapter 3 to filter the airship trajectory and in chapter
5 to filter the target trajectory utilize the discrete Wiener process acceleration model
[Bar-Shalom et al., 2001], where the process noise is the acceleration increment during
the sample period k and it is assumed to be a zero-mean white noise sequence. The
filter state X consist in pose, velocity and acceleration:

(filter state) X =

 x
ẋ
ẍ

 (B.30)

where x, in this thesis, may be the airship position (3D) or target position (2D). The
state equation is:
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(state equation) X(k + 1) = FX(k) + Γv(k) (B.31)

where, with I and 0 representing the identity and zero matrix of appropriate size,
and T representing the length of the sample period:

F =

 I T I T 2

2
I

0 I T I
0 0 I

 (B.32)

Γ =

 T 2

2
I

T I
I

 (B.33)

Therefore the prediction step is performed by the following equations:

(prediction of state) X(k + 1|k) = FX(k|k) (B.34)
(prediction of covariance) P(k + 1|k) = FP(k|k)F′ + Q (B.35)

Q =

 T 4

4
I T 3

2
I T 2

2
I

T 3

2
I T 2I T I

T 2

2
I T I I

 · σ2
v (B.36)

The value of σv should be of the order of magnitude of the maximum acceleration
increment over the sample period.

B.6 The Procrustes Procedure

The similarity Procrustes1 problem consists in finding a transformation to register
two sets of points in an Euclidean space, with known point correspondences. More
formally, the problem variant which is considered in this thesis is: given two sets of
n points in Rd, in the form of n × d matrices X and Y, where the ith line in both
matrices correspond to the same point P i, the transformation parameters s, t and R
such that Y = sXR + 1tT must be determined. The notation 1 represents a vector
of ones.

1In Greek mythology, Procrustes (Πρokρoύστης), son of Poseidon, was an evil innkeeper whose
inn offered a wonderful all-fitting bed. The innkeeper “fitted” his unlucky guests to his bed by
forcefully stretching their bodies or chopping off their legs. If a guest luckily fitted the first bed
perfectly, then there were a second, differently sized bed. The young Theseus killed the innkeeper
by fitting him to his own bed.
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The derivation and proof of the solution can be found in many places including
[Borg and Groenen, 1997], from which it was taken, and [Gower and Dĳksterhuis, 2004].
The latter offers an extensive treatment of many variations of the problem. The steps
to calculate the transformation are:

1. Compute C = XTJY, where J is the matrix I− n−111T .

2. Compute the SVD of C, and obtain the following matrices in the form C =
PΦQT .

3. The optimal reflection/rotation matrix is R = QPT .

4. The optimal scaling factor is s = tr
(
XTJYR

)
/tr
(
YTJY

)
.

5. The optimal translation vector is t = n−1 (X− sYR)T 1.

The scaling factor s is the inverse of the relative depth µ in the registration problem
of section 3.2.2.
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