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ABSTRACT

 
 

In the past recent years, great emphasis has been placed on the role of arterial stiffness in 

the development of cardiovascular diseases, recognized as the leading cause of death in the 

world. This hemodynamic parameter, generally associated to age and blood pressure increase, 

can be assessed by the measurement of the pulse wave velocity (PWV), i.e., the velocity at which 

the pressure wave propagates along an artery. Although PWV measurement is accepted as the 

most simple, non-invasive, robust and reproducible method to determine arterial stiffness over 

the carotid-femoral region, the devices available in the market for this purpose are extremely 

expensive.  

This research project aims at developing alternative instrumental methods for the aortic 

PWV’s hemodynamic characterization and, at a later stage, a software application for acquisition 

and interpretation of this information. The proposed instruments are constituted by one 

accelerometric probe and a multisensor acquisition module, which includes classic electrodes of 

electrocardiography, piezoelectric (PZ) transducers and, foreseen, one pressure sensor.  

Up to now, in its research usage, it has proved effective in the prolonged follow up of 

hypertensive patients without and with drug treatment, allowing the study of correlations 

between the different types of signals. A valuable contribution to this study has been given by 

the bench models developed in laboratory for the ADXL203 accelerometer calibration and 

pulsatory system simulation. 

This report describes not only the aspects related with the overall instrument 

architecture, the successive developed versions and the results obtained, under medical control, 

for each of the input signals, but also the calibration and pulsatory models and respective 

results. 

 

 

Keywords: Cardiovascular Diseases, Aortic Stiffness, Pulse Wave Velocity, Accelerometer based 

Probe, Multisensor Acquisition Module, Clinical Research Tests. 
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RESUMO

 
 

Nos últimos anos, tem sido dada grande ênfase ao papel da rigidez arterial no 

desenvolvimento de doenças cardiovasculares, reconhecidas como a principal causa de morte 

mundial. Este parâmetro hemodinâmico, associado normalmente ao aumento da idade e da 

pressão arterial, pode ser avaliado pela medição da velocidade de onda de pulso (VOP), ou seja, a 

velocidade com que a onda de pressão se propaga ao longo de uma artéria. Embora a medição da 

VOP seja aceite como o método mais simples, não-invasivo, robusto e reprodutível para determinar 

a rigidez arterial ao longo da região carótida-femoral, os equipamentos disponíveis no mercado 

para este efeito são extremamente dispendiosos.  

Este projecto de investigação pretende desenvolver métodos instrumentais alternativos para 

a caracterização hemodinâmica da VOP aórtica e, numa fase mais avançada, uma aplicação 

informática que permita a aquisição e a interpretação dessa informação. Os instrumentos 

propostos são constituídos por uma ponta de prova acelerométrica e um módulo de aquisição 

multisensor, que incorpora eléctrodos clássicos de electrocardiografia, transdutores piezoeléctricos 

e, como previsão, um sensor de pressão.  

Até agora, o seu uso em testes clínicos, provou ser eficaz no seguimento prolongado de 

pacientes hipertensivos sem e com tratamento de fármacos, permitindo o estudo de correlações 

entre os diferentes tipos de sinais. Para este estudo contribuiram ainda os modelos de bancada 

desenvolvidos em laboratório, com vista à calibração do acelerómetro ADXL203 e à simulação de 

um sistema pulsatório.  

Neste relatório são descritos não só os aspectos ligados à arquitectura do instrumento, as 

sucessivas versões desenvolvidas e os resultados obtidos, sob supervisão médica, para cada um dos 

canais de informação, mas também, os modelos de calibração e pulsatório e, respectivos resultados.  

 

 

Palavras-chave: Doenças Cardiovasculares, Rigidez Arterial, Velocidade de Onda de Pulso, Ponta 

de Prova Acelerométrica, Módulo de Aquisição Multisensor, Testes Clínicos. 
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CHAPTER 1  

INTRODUCTION

 
 

1.1 Motivation  

Cardiovascular diseases (CVDs) are the leading cause of death in the world. According to the 

World Health Organization, 17.5 million people died from CVDs in 2005 (30% of all global 

deaths) and in 2015 is expected that this number rises to 20 million [1] [2]. 

Recent studies demonstrated that arterial stiffness is a marker of cardiovascular (CV) risk 

and aortic stiffness holds a strong predictive potential, as intermediate endpoint for CV events 

[3]. 

Arterial stiffness, which increases with age, hypertension and other factors, can be assessed 

by the measurement of the pulse wave velocity (PWV), i.e., the velocity at which the pressure 

wave propagates along an artery.  

PWV measurement is universally accepted as the most simple, non-invasive, robust and 

reproducible method to determine arterial stiffness, and is usually evaluated over the carotid-

femoral region. In fact, the aortic PWV measurement is considered as the ‘gold-standard’ since 

aorta and its first branches are responsible for most of the pathophysiological effects of arterial 

stiffness [3-6]. 

At present, several commercial devices are available, that provide automated measurement 

of aortic PWV.  The two systems in common use are the Complior® (Colson) and the 

Sphygmocor® (AtCor), based in piezoelectric (PZ) sensors and arterial tonometry, respectively 

[7]. Although these devices are based in different sensor technologies, they are both extremely 

expensive.   

Thus a sensor capable of evaluating aortic PWV and elastic properties of the arterial wall 

accurately and, furthermore, if it can be low-priced, has great potential in this medical field [8]. 

Accelerometer sensors based equipments have several advantages compared to the other 

presented types: they are inexpensive and can deliver 1, 2 or 3 measurement-axes. In addition, 

the accelerometers provide a large bandwidth (DC to a few kilohertz) which allows to them to 

acquire a huge amount of information. These benefits make this type of equipment interesting 

for measuring different parameters of the pulse wave. 
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1.2 Objectives 

The objectives of this project are to develop alternative instrumental methods, based in 

accelerometery, for the PWV’s hemodynamic characterization and, at a later stage, also a 

software application for acquisition and interpretation of this information. Both the developed 

instrumental prototypes and the application must be conceived for use by staff technicians in a 

clinical environment.  

 

1.3 Hemodynamic project team 

This project was carried out in the Centro de Electrónica e Instrumentação da 

Universidade de Coimbra (CEI) in the framework of a partnership with Instituto de Investigação 

e Formação Cardiovascular (IIFC). It is a part of the research project ‘Hemodynamic Parameters 

- New Instrumentation and Methodologies’, which aims the development of instrumental 

methods (prototypes and computer applications) for the assessment of blood perfusion in 

microcirculation and pulse wave velocity.  

The work team involved in this global project and its contributions are summarized in 

Table 1.  

 

Table 1 Team members of the project ‘Hemodynamic Parameters - New Instrumentation and 

Methodologies’ and its contributions. 

Team Members Main Contribution Institution 

Prof. Dr. Carlos Correia Scientific and 
Technical 

Supervisors 

General Software 
Development 

CEI 
Prof. Dr.Requicha 

Ferreira 
General Hardware 

Development 

Dr. João Maldonado 
Clinical 

Supervisor 
Clinical Research 

Trials/Prototypes validation 
IIFC 

Catarina Pereira Biomedical 
Engineering 

Project 
Students 

Assessment of PWV Departamento 
de Física da 

Universidade de 
Coimbra 

Ana Ferreira Assessment of Blood 
Perfusion in 

Microcirculation Edite Figueiras 

 

A webpage was also created, and an entire project's information is available on 

http://victoria.fis.uc.pt/ppessoais/hemo2006/. 
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1.4 Overview of the report 

The remaining of this report is organized as follows: Chapter 2 presents a brief overview 

of the arterial stiffness role in hemodynamic evaluation and the importance of PWV 

measurement. A theoretical background of accelerometers and electrocardiography is also 

given.  

Chapter 3 contains general information about the instrument architecture and the work 

done previously by this group in the field of cardioaccelerometery. Chapters 4 and 5 focus in 

instrumentation developed for clinical data acquisition. Therefore, all the versions of 

measurement probes and acquisition modules are explained. 

Chapters 6 and 7 describe the experimental set-up for the accelerometer calibration and 

the pulsatory model, respectively. The results obtained in both the systems are interpreted.  

Chapter 8 depicts the procedures of the clinical trials and establishes a comparison 

between the data acquired with the various developed instruments. 

Finally, Chapter 9 draws conclusions, summarizes this report and addresses a few 

suggestions for future work. 

The appendices complete the theoretical themes and contain further details on the various 

technical aspects of the developed instrumentation. 
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CHAPTER 2  

THEORETICAL BACKGROUND

 
 

This chapter begins with an overview of the arterial stiffness role in hemodynamic 

evaluation and the importance of PWV measurement.  Later, section 2.3 describes in a few 

words, the basic principles of accelerometers used during the development of our instrumental 

prototypes. The last section, more extensive, is dedicated to electrocardiography, which was 

incorporated on the acquisition modules as the main time reference. 

 

2.1 Arterial Stiffness and Pulse Wave Velocity 

2.1.1 General Concepts  

I. Wave propagation in an elastic tube 

An artery is a viscoelastic tube whose diameter varies with a pulsating pressure; in 

addition, it will propagate pressure and flow waves, generated by the ejection of blood from the 

left ventricle, at a certain velocity, which is largely determined by the elastic properties of the 

arterial wall [1]. 

The relationship between PWV (velocity at which the pressure wave propagates along the 

artery) and the elasticity of a thin-walled tube filled with an incompressible fluid is expressed by 

the Moens-Korteweg Equation [2]: 

 

  ��� � √���/2��
                                                   (Eq.1) 

 

From this equation, it is seen that the PWV (m/s) is related to the square root Young’s 

modulus of elasticity (E), where h represents the wall thickness, r the radius and ρ the density of 

fluid. 

Therefore measuring the PWV leads an estimate of the stiffness of the tube. Higher 

velocity corresponds to higher arterial stiffness.  

It is generally agreed that many cardiovascular disorders are associated with increasing 

rigidity of the arterial wall. 
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II. Factors influencing arterial stiffness 

A large number of publications and several reviews reported the various 

pathophysiological conditions associated with increased arterial stiffness (table 2). Apart from 

the dominant effect of ageing, they include physiological conditions, genetic background, CV risk 

factors, CV diseases and primarily non-CV diseases [3].  

Table 2 Clinical conditions associated with increased arterial stiffness. Adapted from [3]. 

Ageing CV risk factors CV diseases 

Physiological conditions Hypertension Coronary heart disease 
Low birth weight Smoking Congestive heart failure 
Menopausa Status Obesity Fatal stroke 

Lack of physical activity Hypercholesterolaemia Primarily non-CV diseases 

Genetic background Impaired glucose intolerance 
Moderate chronic kidney 
disease 

Parental history of 
hypertension 

Metabolic syndrome Rheumatoid arthritis 

Parental history of diabetes Type 1 diabetes Systemic vasculitis 

Parental history of myocardial  
infarction 

Type 2 diabetes 
Systemic lupus 
erythematosus 

Genetic polymorphisms High C-reactive protein level  

 

When evaluating the degree of arterial stiffness, the two major parameters to be taken in 

account are age and blood pressure. 

 

2.1.2 PWV Measurements 

The measurement of PWV is generally accepted as the most simple, non-invasive, robust 

and reproducible method to determine arterial stiffness [3]. 

 Carotid-femoral PWV is a direct measurement and it is the most clinically relevant, since 

the aorta and its first branches are the major components of arterial elasticity and they are 

responsible for most of the pathophysiological effects of arterial stiffness.  

In addition, a large amount of epidemiological studies demonstrates that aortic PWV holds 

a strong predictive potential, as intermediate endpoint for CV events. In fact, it has a better 

predictive value than classical CV risks entering various type of risk score [1] [3-5]. 

PWV is usually measured using foot-to-foot velocity method from various waveforms. 

These are usually obtained at the right common carotid artery and right femoral artery, and the 

time delay (∆t or transit time) measured between the feet of the two waveforms (figure 1). A 

variety of different waveforms can be used including pressure, distension, and Doppler. For 

further reading: [2, 3]. 
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The distance (D) covered by the waves is usually assimilated to the surface distance 

between the two recording sites.  

PWV is calculated as: 

 

PWV� D �meters
∆t�seconds
 

 

The distance should be measured 

precisely because small inaccuracies may 

influence the absolute value PWV. The shorter 

the distance between two recordings sites, the 

greater the absolute error in determining the 

transit time.  

 

 

2.1.2.1 State of the art 

 The ‘gold standard’ for PWV’s clinical evaluating are the Complior® (figure 2) and the 

Shpymocor® systems (figure 3), both based on pressure sensors. Since our goal is also the 

assessment of PWV it is useful to understand how these devices work. 

 

 

 

 

 

 

 

The Complior® system (Colson, France) employs dedicated mechanotransducers (PZ 

sensors - see Appendix A) directly applied on the skin. The transit time is determined by means 

of a correlation algorithm between each simultaneous recorded wave. The operator is able to 

visualize the shape of the recorded arterial waves and to validate them. Three main arterial sites 

Figure 3 The Complior® system [6]. Figure 2 The Sphymocor® system[7] . 

Figure 1 Measurement of PWV with the foot-to-

foot method. Adapted from [4]. 

 



CARDIOACCELEROMETERY  CHAPTER 2: THEORETHICAL BACKGROUND 

 
 

7 
 

can be evaluated, mainly the aortic trunk (carotid-femoral) and the upper (carotid-brachial ) and 

lower (femoral-dorsalis pedis) limbs [3] [6] .  

In the Shpymocor® system (ArtCor, Australia), a single high-fidelity applanation 

tonometer (Millar®) to obtain a proximal (i.e. carotid artery) and distal pulse (i.e. radial or 

femoral arteries) recorded sequentially a short time apart and calculates PWV from the transit 

time between the two arterial sites, determined in relation to the R-wave of the 

electrocardiogram1 (ECG). The time between ECG and proximal pulse is subtracted from the 

time between ECG and distal pulse to obtain the pulse transit time. The initial part of the 

pressure waveform is use as a reference point. It is also possible to check offline the variability 

of measurement over a range of pulses, according to each algorithm [3] [7]. 

 

 

 

 

 

 

  

                                                           
1 See section 2.3.2. 
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2.2 Accelerometric Sensors 

2.2.1 Introduction  

Acceleration2 is an important parameter for general-purpose absolute motion, orientation, 

tilt, vibration and shock sensing measurements and can be assessed by accelerometers [8].  

Accelerometers are commercially available in a wide variety of ranges and types to meet 

diverse application requirements. Their low-cost, small size (MEMS3 devices), light weight and 

robustness, makes them a fundamental and increasingly common device in many technological 

areas. 

In general, accelerometers are preferred over displacement and velocity sensors for the 

following reasons [9]:  

1. They deliver 1, 2 or 3 measurement-axes and have a wide frequency range from DC 

to very high values, in such a way that steady accelerations can easily be measured; 

2. Measurement of transients and shocks can be made more easily than with 

displacement or velocity sensing; 

3. Displacement and velocity can be obtained by simple integration of acceleration 

(integration is preferred over differentiation). 

In this section, common concepts underlying accelerometers usage (operation and 

calibration principles, main types and applications) will be briefly introduced.  

 

2.2.2 General Concepts 

Theory of operation 

The accelerometer is described as a combination of two transducers: the primary one, a 

single degree of freedom vibrating mass or seismic mass, which converts the acceleration into a 

displacement (figure 4), and a secondary transducer which converts the displacement of the 

seismic mass into an electrical signal.  

The spring-mass system, the basic physical principle behind most accelerometers design, 

is shown in the figure below. 

  

                                                           
2 Acceleration is defined as the rate at which an object's velocity changes with time.  
Typical units: m/s2 or ‘g’.  1g =9,81 m/s2. 

3 Micro Electro Mechanical Systems (MEMS) is the integration of mechanical elements, sensors, actuators, 

and electronics on a common silicon substrate through microfabrication technology [11]. 
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         Figure 4 The basic spring mass system accelerometer [8].  

  

 

 

 

 

 

A mass m that is free to slide on a base is connected to it by a spring. This spring that is in 

its unextended state exerts no force on the mass. 

If this system undergoes a acceleration, then, by Newton's law, a resultant force equal to 

ma will be exerted on the mass. This force causes the mass to either compress or expand the 

spring under the constraint that F=ma=kx. Hence an acceleration a will cause the mass to be 

displaced by � � ��/  or, conversely, if a displacement of x is observed, it is know that the mass 

has undergone an acceleration of  � �  �/�.  

Note that this model system only responds to accelerations along the length of the spring. 

This is referred to as a single axis accelerometer. In order to measure multiple axes of 

acceleration, this system needs to be replicated along each of the required axes.  

 

Main types and applications 

According to the type of secondary transducer accelerometers are generally classified as 

piezoelectric, potentiometric, reluctive, servo, strain gauge, capacitive or vibrating element. For 

further reading: [10]. 

Amongst its main application areas the following are worth mentioning: 

1. Automotive (airbag sensors, active suspensions, roll over sensing, GPS, vibration 

monitoring, safety related testing)  

2. Aeronautic and defence (ammunition & missile guidance, aeronautic instruments) 

3. Medical (pacemaker, human motion analysis, wheel chair stabilization) 

4. Industrial  

 

Calibration  

Calibration refers to the process of determining the relation between the output (or 

response) of a measuring sensor/instrument and the value of the input quantity, a measurement 

standard [9].   
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If the sensor has a linear response then its sensitivity4 is determined by the slope of the 

calibration curve.  

An accelerometer can be calibrated by static or dynamic methods. To perform a static 

calibration of the accelerometer, the device is subjected to one or several levels of constant 

acceleration. The simplest method, for low g applications is to use the force of gravity, since it is 

the most stable, accurate and convenient acceleration reference available (figure 5) [12].  

The dynamic calibration is usually obtained using an electrodynamic shaker. This device is 

designed to oscillate in a sinusoidal motion with variable frequencies and amplitudes.  

The relationship between this variables, which are accurately measured, and the 

accelerometer’s output is then determined.  

 
 
                    

 

 

 

 

               (a)                               (b) 

 

  

                                                           
4
 The sensor’s sensitivity measures the level of variation of the output regarding variations applied to its 

input. For example, an accelerometer is very sensible if small variations on the acceleration cause large 

variations in its output [9].  

Figure 5 Flip Calibration [12]: (a) +1g (b) -1g. 

To calibrate, the accelerometer’s measurement axis is 
pointed directly at the earth. The 1 g reading is saved and 
the sensor is rotated 180° to measure –1 g. Using the two 

readings, the sensitivity is: 
Sensitivity = [A – B]/2 g 

A = Accelerometer output with axis oriented to +1 g; 

B = Accelerometer output with axis oriented to –1 g; 
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2.3 Electrocardiography 

2.3.1 Introduction 

One of the main techniques for diagnosing heart‘s electrical and mechanical condition is 

based on the electrocardiogram [13].  

An electrocardiogram is a recording of the electrical activity on the body surface generated 

by the heart. 

ECG measurement information is collected by skin electrodes placed at designated 

locations on the body. By convention, the electrodes are placed on each arm and leg, and six 

electrodes are placed at defined locations on the chest. The particular arrangement of two 

electrodes (one positive and one negative) with respect to a third one (the ground) is called a 

lead [14] [15]. 

 There are three types of ECG leads: bipolar limb leads, augmented unipolar limb leads and 

unipolar precordial leads (table 3) [16].  

In a standard clinical ECG, all leads are recorded simultaneously, giving rise to what is 

called a 12-lead ECG. In monitoring applications, typically one or two leads are used, since the 

principal goal of these is to reliably recognize each heartbeat and perform rhythm analysis [13]. 

 

Table 3 Types of ECG leads. The bipolar leads utilize a single positive and a single negative electrode 
between which electrical potentials are measured. The unipolar leads have a single positive recording 
electrode and utilize a combination of the other electrodes to serve as a composite negative electrode. 

Each of the 12 leads provides spatial information about heart’s electrical activity in three approximately 
orthogonal directions: right ↔ left; superior ↔ inferior; anterior ↔ posterior [5] [6].  Lead place diagrams 

can be seen in Appendix A. 
 

Leads Types Electrodes Location 

Electrical activity 

recorded: Spatial 

Information 

Bipolar Limb 

I RA (-) to LA (+)1 

Frontal 
Plane 

Right Left, 
or lateral 

II RA (-) to LF (+) 
Superior 
Inferior 

III LA (-) to LF (+) 
Superior 
Inferior 

Unipolar 

Augmented 
aVR RA (+) to [LA & LF] (-) Rightward 
aVL LA (+) to [RA & LF] (-) Leftward 
aVF LF (+) to [RA & LA] (-) Inferior 

Precordial 
V1, V2, V3 

Chest 
Horizontal 

Plane 

Posterior 
Anterior 

V4, V5, V6 
Right Left, 
or lateral 

1 RA: right arm; LA: left arm; LF: left foot                            (-) negative electrode, (+) positive electrode 
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Figure 7 Cardiac Cycle Diagram. 

Changes in aortic pressure, left 
ventricular pressure, left atrial pressure, 
left ventricular volume and heart sounds 

during a single CC, are related in time to 
the ECG. Adapted from [20]. 
 

2.3.2 Components of the ECG 

The ECG signal is characterized by six peaks and 

valleys labelled with successive letters of the alphabet 

P, Q, R, S, T and U [14].  Figure 6 shows a typical ECG 

tracing of a normal cardiac cycle, which consists of a P 

wave, a QRS complex, a T wave and a U wave5. The 

presence and polarity of these components depend on 

the position of the electrodes on the body.  

 

Cardiac Cycle (CC) 6 

           The CC is the sequence of events that occur in the heart from the beginning of one heart 

beat to the beginning of the next .  

The diagram shown to the left (figure 7) depicts 

the relationship between the ECG and the mechanical 

(pressure, volume) and valvular events occurring in one 

CC. 

A single cycle of cardiac activity can be divided 

into two basic stages: diastole, which represents 

ventricular filling and a brief period just prior to filling at 

which time the ventricles are relaxing; and systole, 

which corresponds to the time of contraction and 

ejection of blood from the ventricles into aorta and 

pulmonary artery [19]. 

 In an ECG, the beginning of systole is marked by 

the appearance of the QRS complex. In contrast, the 

diastole period is bounded by the end of T wave and the 

beginning of the next P wave.  

To analyze these two stages in more detail, the CC is 

usually divided into seven phases: Atrial Contraction, 

Isovolumetric Contraction, Rapid Ejection, Reduced 

Ejection, Isovolumetric Relaxation, Rapid Filling and 

Reduced Filling. For further reading on this issue: [19]. 

 

                                                           
5
 The normal values associated to ECG components can be seen in the Appendix A. 

6 In order to understand this issue, it is possible to review basic cardiac anatomy also in the Appendix A. 

Figure 6 Form of a normal ECG signal 

[14]  
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Figure 8 Heart’s electrical activity (a) 

Conduction system (b) Electrical Sequence. 
Adapted from [21] [22] 

 

Regulation of Cardiac Cycle 

The rhythmic contractions of the heart occur 

in response to periodic electrical impulse 

sequences. It is the conduction of an electrical 

impulse from the top of the heart over the atria 

through the septum and the ventricles that causes 

the cardiac muscle contraction, the opening and 

closing of the valves and the blood flow into the 

body (figure 8a).  

The sinoatrial node (SA node) or heart’s 

pacemaker is the generator of the electrical signal, 

initiating each CC. When SA node depolarizes the 

electrical stimulus spreads through atrial muscle, 

which leads to the contraction of both atria - this 

event can be seen in ECG as P wave - then the 

electrical impulse flows down to the lower 

chambers of the heart, stimulating the ventricles to 

contract (QRS Complex). Finally, the electrical 

current spreads back over the ventricles in the opposite direction. This activity is called the 

recovery wave, which is represented by the T wave [15] [16].  Sometimes, after T wave it may be 

seen the U wave. The origin of this is still in question, however most of the researchers correlate 

it with the repolarization of a collection of specialized muscle fibers in the ventricles (Purkinje 

fibers) [23].  

 

2.3.3 Instrumentation Requirements 

Signal Acquisition Challenges 

The front end of an electrocardiograph must be able to deal with extremely weak AC 

signals ranging from 0.5mV to 5.0 mV, combined with a DC component of up to ±300mV – 

resulting from the electrode-skin contact –plus a common mode component of up to 1.5 V, 

resulting from the potential between the electrodes and ground [14]. The useful bandwidth of an 

ECG signal, depending on the application, can range from 0.05 Hz to 50 Hz- for a monitoring 

application in intensive care units – up to 1 kHz for late potential measurements (pacemaker 

detection). A standard clinical ECG application has a bandwidth of 0.05 Hz to 100 Hz.  

ECG signals may be corrupted by various kinds of noise, such as [14]: 

 (b) 

          (a) 
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• Power-line interference: 50–60 Hz pickup and harmonics from the power mains; 

• Electrode contact noise: variable contact between the electrode and the skin, causing 

baseline drift; 

• Motion artefacts: shifts in the baseline caused by changes in the electrode-skin 

impedance;  

• Muscle contraction: electromyogram-type signals are generated and mixed with the ECG 

signals; 

• Respiration, causing drift in the baseline; 

• Electromagnetic interference from other electronic devices, with the electrode wires 

serving as antennas; 

• Noise coupled from other electronic devices, usually at high frequencies; 

For meaningful and accurate detection, it is necessary to filter out all these noises sources. 

 

Typical Measurement System 

Figure 9 shows a block diagram of a typical single-channel electrocardiograph. The ECG 

system comprises five basic stages. In the first one the bioelectrodes convert the ionic current 

flow of the body to an electron flow of the metallic wire. The efficient acquisition by these 

electrodes relies on a gel with a high ionic concentration. This acts as the transducer at the 

tissue-electrode interface [16]. 

Then an instrumentation amplifier (IA), with a high gain and common mode rejection 

ratio (CMRR), attenuates the signals that are common to both inputs and amplifies the difference 

between the two signals. Due to this some of the noise is eliminated. To further reject 50Hz and 

60 Hz noise, an operational amplifier (op amp) deriving common-mode voltage is used to invert 

the common-mode signal and drive it back into the patient trough the right leg [14][24]. 

Subsequently, it is visible the presence of an opto isolator7, which allows galvanic 

isolation; some analog filters (high pass filter, low pass filter and notch); an ADC8 and a DSP9, 

which permit the conversion to digital domain and the communication to computer, 

respectively[14] . 

 

 

 

 

                                                           
7 This technology can be substituted by other with the same function, e.g.: magnetic induction.  

8 Analogic Digital Converter. 

9  Microprocessor or Microcontroller. 
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CHAPTER 3   

PROCESS METHODOLOGY

 
 
This chapter presents the work developed by the hemodynamic team, previously to the 

Project starting date, in the field of cardioaccelerometery. 

 

3.1 Introduction 

The development of an accelerometer based instrument started some months before the 

beginning of the Project discipline. At that time, its application was related with the maintenance 

and monitoring of railways equipments.  

However, lab experiments were carried out using the same instrument in the carotid 

artery of human subjects, showing promising results. 

 The potential of these results was then discussed with a cardiologist and a new objective 

arose: the assessment of PWV with accelerometers. In order to achieve this idea a first 

accelerometer based instrument was designed and trimmed to clinical experiments. 

 

3.2 Measurement System Architecture 

The first measurement system developed for in situ clinical research tests (CTs) is shown 

in figure 10. It can be divided into three different blocks: the accelerometer based probe and the 

data acquisition (DAQ) module, that constitute the instrument itself, and the data processing 

block.  

 The measurement probe consists of a cylindrical piston (diameter: 5,1mm; length: 

14,7mm) rigidly coupled to the electronic circuit, which is protected by a plastic box 

(78,8mm×39,0mm×22,0mm).  

 The acceleration transmitted to the piston is measured by the in-circuit dual-axis 

accelerometer ADXL203CE10, featuring a full-scale range of ±1.7g. The voltage signal generated 

by this is then filtered, in order to cancel the DC component associated to gravity, and amplified 

(see circuit at Appendix B). The preference towards this accelerometer resulted from some 

estimates. 

                                                           
10

 Data sheet: http://www.analog.com/UploadedFiles/Data_Sheets/ADXL103_203.pdf. 
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USB 

Restart 

Power Supply 

Measurement probe 

Data Acquisition  

Module 

IInnssttrruummeenntt    AArrcchhiitteeccttuurree  

Data Processing 

Matlab® 

    NI USB 6008© 

NI-DAQmx©   Software 

 

Figure 11 NI USB-6008© [1].  

Table 4 Some NI USB-6008 Specifications [1]. 

Specifications Summary 

USB Bus Type 

8 analog inputs 
(resolution: 12-bit; sampling rate: 10Ks/s); 

2 analog outputs 
(resolution: 12-bits; update rate: 150Ks/s); 

12 digital input/output; 

32-bit counter; 

NI-DAQmx© driver software and 

  NI LabVIEW SignalExpress LE interactive 
data-logging software; 

 

Figure 10 General measurement system architecture.  

 

 

 

 

 

 

 

 

 

  

 

The DAQ module used in this measurement system is the NI USB-6008©11, shown in figure 

11. This device is based in an 8051 microcontroller, can sample up to 10Ks/s and comes with a 

driver software for interactive configuration and data acquisition running on Windows 

Operative System: the NI-DAQmx© (table 4). This software includes VI Logger Lite, a 

configuration software package, which is used in this architecture for data logging. 

 After the data logging, it follows up the data processing, where the files are saved in a .txt 

format and processed in Matlab®.  

 

 

 

 

 

 

 

 

 
                                                           
11

 Data sheet at: http://www.ni.com/pdf/products/us/20043762301101dlr.pdf. 
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3.3 Clinical Trials 

3.3.1 Data Acquisition 

In order to acquire data, the instrument shown in figure 12 was taken to IIFC, where for a 

one month time period tests in 21 young and healthy subjects were carried out.  

 

 

 

 

 

 

 

 

 

 

 

 

 
The procedure consisted on the following steps: after switching on the instrument and 

starting the VI Logger application, the patient was laid down. Then, the measurement probe was 

placed on the carotid or femoral arteries, and its position slightly adjusted until a relevant signal 

started to be seen. From that moment on, and during 10-20 seconds, data was acquired. The 

logged data was finally saved in a .txt file with an appropriate tag name. 

 

3.3.2 Data Processing12 

Once the data have been collected, it was necessary to proceed to their analysis in order to 

draw conclusions.  

The clinical data processing was made in Matlab®, and started by their general 

visualization. The recognition of a specific pattern for carotid and a different one for femoral 

data was immediately recognized. The characteristic pattern consists of two successive peaks for 

the carotid and just one for the femoral (figure 13).  

   

                                                           
12 The clinical data processing marked the official beginning of the Project discipline. 

  

 
Figure 12  Developed Instrument. 

 (a) General device: The power supply must be connected to DC Power Supply and the DAQ 

Module to PC (with VI Logger) by an USB cable. (b) Zoomed measurement probe. 
                          (a 

Power  

 Supply 

DAQ Module: 

NI USB-6008 

Probe 

                                                              (a)                                                                                     (b) 
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In order to extract more information about patterns repeatability, an algorithm was 

developed, whose main purpose was to relate the peaks of each acquisition.     

This algorithm consisted in the following main steps: 

Step 1: File loading and visualization; 

Step 2: Filtering (application of a band-pass filter); 

Step 3: Selection of peaks; 

Step 4: Peaks Adjustment; 

Step 6: Overlapping of the selected peaks; 

Step 7: Mean determination of overlapped peaks; 

Step 8: Data saving.  

Figure 14 shows the result from the application of steps 6 and 7 to either a carotid or 

femoral files of two patients. 

                                                 (a)                                                                                                    (b) 

Figure 13 Original Signals of a young and healthy subject, obtained with the accelerometer based 

instrument and visualized in Matlab®: (a) Carotid signal. (b) Femoral Signal. 

P2  

                (a)                                                                              (b) 

P1 
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After this analysis method was applied to all the data, the pattern described previously 

was confirmed: two peaks for carotid files and one peak for femoral files. Besides, only two more 

common aspects were seen: the first one was that the majority of files presented high levels of 

noise, even after filtering. The second one was that each patient had a unique and singular signal, 

distinguishable from the others.  

 

3.4 Discussion  

 The performed data processing was only a first approach to understand the type of 

information that could be extracted from the accelerometer based instrument and, at this point 

it cannot be conclusive. In fact, it was only a basic method to determine the aspects that could be 

improved. The first aspect relates to the high levels of noise in the signals which must be 

avoided, and the second one is related with the need of including another type of signal which 

could serve as a reference.  

In order to solve these problems, we concluded that it would be necessary to improve the 

instrument electronics and to integrate ECG or PZ based signals, turning it into a multisensor 

prototype. 

Regarding the pattern seen in the acquired data, we concluded that there was a good 

agreement between this and the pulse wave contour in carotid and femoral arteries. As it is 

shown in figure 15, the pulse wave in carotid artery shows the incisura dicrota13 and the dicrotic 

                                                           
13

 The high frequency wavelet on an arterial pressure wave due to sudden closure of the aortic or 

pulmonary valve. 

     (c)                                                                               (d) 

Figure 14 Overlap of eight selected peaks and mean of these overlapped peaks. 

(a) Carotid data of patient 1.  (b) Carotid data of patient 2. (c) Femoral data of patient 1. 

 (d) Femoral data of patient 2. 
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wave 14 in contrast with the femoral artery which does not 

show any of them. This fact suggested that the second peak 

seen at the data collected in carotid artery matched the 

dicrotic wave only seen in the upper arteries. 
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  A diastolic wave following the systolic peak. This is the echo of the first wave following its reflection in 

the peripheral vasculature. 

Figure 15 Pulse wave Contour in some arteries. 

I. Carotid;  II. Brachial; III. Radial; IV. Femoral. 
A. Auricular systole; D- Incisura Dicrota; E- Dicrotic wave. 

Adapted from [2]. 
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CHAPTER 4  

MEASUREMENT PROBES

 
 
The design of the measurement probe is crucial to the success of an efficient 

accelerometric instrument. This is the reason why this chapter is entirely devoted to the 

description of the several versions developed throughout this project. 

Note – Some concepts depicted in this chapter may be protected by international patents. 

 

4.1 Introduction 

The analysis of the first data bunch (section 3.3.2) immediately showed a number of 

drawbacks and, consequently, the need to improve the instrument in many ways. 

Concerning the measurement probe, the first perception was that the mechanical coupling 

between the pulsating tissues and the sensor was not efficient which greatly impaired the signal 

to noise ratio at the output. 

It was very clearly the need to modify the rigid coupling between the piston and the 

electronic circuit, identified as a major noise source. In fact, the second version of the 

measurement probe arose from this adjustment and it featured a spring loaded coupling 

between the piston and the sensor. It was therefore designated as spring-loaded probe (SLP). 

Clinical experiments carried out with the SLP (chapter 8), however, showed that the final 

noise level, mainly the one that was attributed to the operator itself, was still very high.  A new 

design was sorted out to remove this problem and another was built, based on a mechanically 

differential scheme that used two aligned accelerometer sensors. For obvious reasons, we have 

named this probe differential probe (DP). 

The fourth and last probe version was developed in the final stage of this work and joined 

the concepts of all the other versions adding the ability of integrating a PZ transducer into the 

piston. This probe, which we called hybrid, was used only for data acquisition in the pulsatory 

model, described in chapter 7. 
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(b)                                                                                      (c) 

Figure 16 SLP. (a) Exploded view; (b) Assembled front side; (c) Assembled rear side; 1- 
Electronic circuit: 1a) Accelerometer; 2-Spring with guiding post; 3- Connecting copper wires; 4- 

Back covering block; 5-Main covering body; 6-PVC support piece; 7- Front covering block; 8-

Cylindrical Piston; 9-Mini-USB; 10- Mini-USB cable; 

4.2 Spring-Loaded Probe 

The configuration of the SLP, the second measurement probe, is shown in figure 16. 

As mentioned, in this version the coupling is based on a spring-loaded mechanism. The 

used high quality spring (k= 0,06 N/mm15; Øext =3,45mm; l=10mm) at rest is held in position by a 

2 mm wide guiding post16 and is connected to the electronic circuit at its rear side, through two 

small filed cuts. 

The front side of the circuit is fitted to a cylindrical shaped piece of PVC17, which is, in turn, 

attached to the cylindrical piston18  (r=5,0 mm) through an appropriate mechanical  rigid link. 

  

 

  

 

 

 

 

 

copper wires. 

The signal is then connected to the acquisition module by an USB cable.  
                                                           
15

 It is a very small spring constant. 
16

 The guiding post is an integral part of the rear covering block. 

17  Polyvinyl Chloride. 

18 It is also made of PVC plastic. 

The probe’s covering (104,3mm × 

24,8mm × 13,1mm) consists of three metal 

pieces: the main body, where the electronic 

circuit slides, and the frontal and rear blocks, 

where the piston and a mini-USB are 

incorporated, respectively.  

The mini-USB receives the accelerometer 

signal and provides power to the circuit 

through extremely thin (90µm) enameled 

copp 
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8 

9 

10 

 3 

5 

 

1 
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     Figure 17 Schematic of the forces applied on the                   

SLP during data acquisition. 

The presented electronic circuit also contains the ADXL203CE accelerometer with 

capacitive coupling and a gain stage (≈20). The circuit schematic can be seen at Appendix B.  

 

 Model of the Spring-Loaded Mechanism  

A close examination of the SLP’s mode of operation shows that it is possible to establish a 

relationship between the force exerted on the piston (F), the spring displacement (x), the 

probe’s movable mass (m), and the acceleration of the movable mass (a), through the Newton’s 

second law:  ! " #$ � %& 

where,   k = spring constant in N/m 

[F ] = N; 

[x]= m;  

[m]= Kg;  

[a]= m/s2 

The forces which act on the 

movable assembly19 are: the force 

due to the pulse wave propagation, 

which can be given by F=PS 

(P=pressure associated to pulse wave 

propagation; S=section of the piston) 

and, the force due to spring’s compression, F1, given by F1=k.x (figure 17). 

In a first approach, it is possible to estimate the pressure value associated to pulse wave 

propagation, in a given location, by: 

 

' � %& ( )*  

Since the displacement of the loaded spring is very small, the term k.x is considered 

constant (A). 

 

4.3 Differential Probe 

  The construction of the DP was motivated by the analysis of data acquired at IIFC using the 

SLP and, it arose mainly from the need of avoiding the artefacts introduced by the operator itself.  

                                                           
19  Piston+ support piece+ electronic circuit +spring. 

 (Eq. 2) 

(Eq. 3) 
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(a)                                                                (b) 

 

Figure 18 DP. (a) Assembled front side. (b) Assembled rear side. 
1- Movable Piston; 2- Fixed accelerometer; 3- Mini-USB 

   1 
  2 

 3 

Figure 18 pictures the DP’s external aspect. The covering (102,3mm × 24,8mm × 12,7mm) 

is also made of metal (aluminium) and comprises the main body and the two extremities. The 

front extremity is rounded off in order to make the DP more ergonomic and, the PVC cylindrical 

piston (r=5,0mm) is less prominent than the SLP’s piston. 

The DP also features a spring-loaded mechanism. In fact, the only difference from the SLP’s 

mechanism is that the spring (k= 0,06 N/mm; Øext =3,45mm; l=12,1mm) is set with a different 

compression force20.  

The main innovation for the DP resides on its mechanically differential structure, which 

is achieved by the action of an extra accelerometer (ADXL203CE) that is fixed to the bulk of the 

probe. Assuming that both accelerometers are equally oriented and well aligned, the output 

signals of both can be electronically subtracted in order to remove all common acceleration 

components in such a way that only the pulsatile acceleration, from the piston-attached 

accelerometer, remains to be analogued. 

The electronic circuit21 is based on the INA12622 IA and on the TL082 inverting op amp. 

The INA126 (Gain ≥ 5)  is an important component on this circuit, since it amplifies the 

difference between the signals of the fixed and the floating accelerometers and nulls  the signals 

that are common to both inputs.  

                                                           
20  Compression (∆x) = 0,8mm ↔ Force exerted by the spring =k. ∆x=0,006×0,8=48mN. 
21

 The printed circuit board (PCB) used for the DP’s electronic circuit was the same of the SLP. Since the 

electronic circuits of the two probes were different, it was necessary to remove and add some connections 
of the DP’s PCB. 
22

 Data sheet at: http://focus.ti.com/lit/ds/symlink/ina126.pdf. 
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As mentioned, the fixed and the floating accelerometers must be perfectly aligned and 

with the same orientation, in order to guarantee the mechanically differential scheme. In this 

way, the difference between their outputs will be zero when they have the same movement or 

the probe is at rest. 

 

4.4 Hybrid Probe (HP) 

The HP was the last version of the measurement probes to be developed. Although it has 

not been tested in the clinical environment, it was tested in the pulsatory model (chapter 7). 

This probe is an improved version of the DP, since it combines the spring-loaded and 

differential mechanisms with an important source of information: a PZ transducer on the top of 

the piston. 

The placing of the PZ transducer on the piston implied some slightly changes in the 

configuration of the probe, as is shown in figure 19.  

The anterior extremity (25mm×25mm×12,8mm) of the metal covering23 is squared, with 

rounded edges and presents an “o”ring that is attached to the PZ transducer, in order to improve 

the adjustment of the tip to the acquisition location. The PZ signal is connected to the electronic 

circuit by two enameled copper wires (signal and ground), that go through the piston and the 

support piece. 

The electronic circuit consists basically of the ADXL203 accelerometer, and the IAs, INA126 

and INA121. The INA126, is set for a gain of 5 and, as in the DP, it amplifies the difference 

between the accelerometer outputs. The INA12124, with unitary gain, suppresses the noise 

pickup produced by the PZ transducer. Besides that, it presents current feedback via two 

resistors of 8.2M, in order to eliminate guarding and achieve insulation requirements [1]. 

 Appendix B shows a schematic that will allow a fully detailed understanding of the 
circuit.  

 

 

 

 

                                                           
23  Probes covering: 105,9mm×25mm×12,8mm. 

24  Data sheet at: http://focus.ti.com/lit/ds/symlink/ina121.pdf. 
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                                         (b)                                                                              (c)    

Figure 19 Hybrid Probe. (a) Electronic circuit and front side block; (b) Assembled 
lateral side; (c) Assembled rear side; 1- PZ Transducer; 2-“O”ring; 3- Movable piston; 4-

Front covering; 5- Copper wires; 6-Electronic circuit: a) Floating accelerometer;  
7-Support ring of the piston; 8- Fixed accelerometer; 9- Mini-USB. 
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CHAPTER 5  

DAQ MODULES

 
 

As the measurement probes were being developed, it was also necessary to adjust the DAQ 

module to their requirements. 

Since five versions of the DAQ module were constructed to achieve this purpose, this 

chapter depicts their principal features and successive improvements. 

 

5.1 Introduction  

The instrument enhancement involved not only the probe’s design upgrade but also the 

development of a multichannel platform, which could integrate different hemodynamic signals. 

 In fact, the addition of different sensor types to the DAQ module came out from the need of 

having several time references to allow accelerometric signal comprehension. 

 The first DAQ module version could only accommodate the SLP and the ECG sensors, in 

opposite to the last one (fifth version) which already included the HP, the electrocardiograph, 

two PZ transducers and one pressure sensor and an independent ±5V DC power supply.  

 Whether regarding the number of information channels or the signal to noise ratio (SNR) 

at the output, each new version was actually better than the previous one.  

  

 5.2 Module A 

As it is shown in figure 20, the first developed DAQ module comprised only an 

electrocardiograph (to provide a starting time reference) and the NI USB-6008©. 

The electrocardiograph circuit is based on the single-channel scheme described in section 

2.5.3 and consequently it presents four electrodes which are placed on the body in agreement 

with the configuration of lead I.  

The analogue front-end (see circuit schematic at Appendix B) applies the typical approach 

with an IA and a right leg common-mode feedback op amp. An AD62025 set to a gain of 9 is used 

as IA and, a TL081 op amp is used to cancel the common mode interference. A variable gain 

block follows, which allows for the adjustment of the output voltage signal, and a protection 

                                                           
25Data sheet at: http://www.analog.com/UploadedFiles/Data_Sheets/37793330023930AD620_e.pdf. 
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                                                    (a)                                                                                            (b) 

Figure 20 DAQ Module A. (a) General view; (b) Inner side; 1- Electrocardiograph circuit; 2- NI USB-
6008©. 

 

Figure 21  DAQ Module B.   

1-Electrocardiograph circuit; 2- NI USB-6008©; 3-PZ amplification circuit;  
4- Accelerometric probe’s input; 5-Power Supply. 

 

    1 

    2 

    3 

     4 

   5 

     5 

block with back-biased diodes is placed on the signal path in order to provide protection from 

over voltages. Power is supplied directly by the USB interface since the total current drawn by 

the circuit is a fraction of the USB 500 mA limit. 

Since the signals obtained with this module and the SLP presented high levels of noise, this 

system was not used for CTs but only for lab trials. 

 

5.3 Module B 

A photograph of module B, the DAQ module’s second version, is shown in figure 21.  

It contains not only three different information channels arising from the integration of 

the SLP, the electrocardiograph circuit and one PZ transducer amplification circuit, but also the 

NI DAQ-6008© and the power supply.  
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The electrocardiograph circuit is identical to the one previously described. 

The PZ transducer was included since it provided the means for the pressure wave 

detection and it would represent another important reference to the accelerometric signal. In 

order to extract its signal it was employed the same principle seen in HP’s PZ [1], i.e. an IA 

(INA11126) with current feedback via two 1M resistors, which was then followed by a TL081 and 

an OPO7CP inverting op amps. The full circuit schematic can be consulted in the Appendix B. 

Since the USB power supply (a switching type) was found to be a major contributor to the 

noise level in module A, it was replaced by a linear power source, whose general scheme is 

described in figure 22.  

 

 

 

Due to its features, this system was taken to the IIFC for one month, in order to perform 

the first clinical data acquisition in hypertensive patients.  

 

5.4 Module C 

After placing the previous instrument in operation at IIFC, a third version of the module 

was developed. The main purpose of which was to use the Complior’s® operating principle to 

measure the aortic PWV and, in the limit, to validate the accelerometric signals.   

As a consequence, two PZ transducers were integrated, to be positioned in the classic 

sites: the carotid and femoral arteries. Their electronic circuit, shown in Appendix B, is based on 

INA12627 IA also with current feedback, and the TL082 as an inverting op amp for delivering the 

output signal.  

 Together with the new information channel this module also included the SLP, the 

electrocardiograph circuit, the NI USB-6008© and a linear power source. The internal and 

external arrangement of module C can be seen in figure 23. 

For two months, this instrument replaced the previous one at IIFC, where further CTs in 

patients with hypertension were carried out. 

                                                           
26 The gain was set to ≈1,4.  
Data sheet at: http://focus.ti.com/lit/ds/symlink/ina111.pdf. 

27 The gain was set to 13. 

Figure 22 Block Diagram of the linear power supply design.  

DC output = ±5V. 
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                                              (a)                                                                                            (b) 

Figure 23 DAQ Module C. 

1-Electrocardiograph circuit;  2- NI USB-6008©; 3-PZ amplification circuit; 4- Power supply; 5-PZ 
Transducers; 6-SLP; 7-ECG electrodes. 
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Figure 24 DAQ Module D. 

1- ECG’s input; 2- DP’s input; 3-PZ circuit. 

2 

3 

1 

 

 
 
 
 
 
 
     
 
 
 
 
 
 
 
 
 

5.5 Module D 

The construction of the fourth DAQ module version, module D, was motivated by two 

distinct needs: 1) to cope with the development of bench models on lab, which could simplify the 

comprehension of clinical data; and, 2) the beginning of additional scientific research on PZ 

based pulse wave assessment. 

As is displayed in figure 24, this module reproduces the architecture of module C, 

presenting the same three information channels (ECG, accelerometric and PZ), the NI USB-

6008® and the linear power source. 

In fact, the only difference between them is the gain associated to the PZ circuit (GD=5) 

which, in module C, was causing signal saturation due to its high value (GC=13).   

For this reason this module and the recently made DP were taken to IIFC, where they have 

been in operation acquiring data up to today. 
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Figure 25 DAQ Module E. 

1- Pressure sensor’s input; 2- HP’s input 

1 2 

5.6 Module E 

In order to accomplish all the requests 

previously described, module C was slightly 

modified, giving rise to the fifth and last DAQ 

module version: module E (figure 25). 

The first improvement had to do with 

the gain of the PZ, which was adjusted to the 

gain of module D. Besides, the two current 

amplifiers INA126 were replaced by two 

INA114.  

The second upgrade consisted in the 

insertion of a pressure acquisition channel that would be employed in the developed bench 

models (see Chapter 7). The pressure sensor used was the HCXM100D6V28. 

At last, the main similarities and differences between each module are resumed in table 5. 

  
Table 5 Summary of the developed modules and its main features. 

 
              Features 

 
  Modules 

Measurement 

Probe 

Incorporated 

ECG 
No. of 

Piezos 
Function Others 

A SLP �  �  Trial Run 
Switching Power 

Source (USB) 

B SLP �  1 CTs Linear Power Source 

C SLP �  2 CTs Linear Power Source 

D DP �  2 CTs Linear Power Source 

E HP �  2 Pulsatory Model 
Pressure Channel 

Linear Power Source 

 

 

References 

[1] Wuchinich, Dave. "Circuit suppresses capacitively coupled noise pickup by the piezoelectric 
sensor and its wiring." EDN: Design ideas 23 11 2006 75-76. 15 Aug 
http://www.edn.com/article/CA6391432.html 

 
 

                                                           
28 Differential pressure range: 0-100mbar;  

   Data sheet at: http://www.lascarelectronics.com/DATA/sensor/HCX005D6V.pdf. 
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CHAPTER 6  

ACCELEROMETER CALIBRATION

 
 

Prior to the clinical experiments with the differential probe, two bench models were 

developed in order to help to interpret the clinical data. 

The first model relates to the calibration of the accelerometer, while the second one has to 

do with the simulation of a pulsatory system for the full understanding of the relationship 

between accelerometric, PZ and pressure signals (Chapter 7). 

This chapter focuses only the calibration of the accelerometer, firstly by describing the 

experimental set-up and, afterwards, by interpreting the obtained results. 

 

6.1 Introduction 

As mentioned in chapter 2, the calibration process consists in applying an excitation or a 

reference signal of known mechanical characteristics and measuring the subsequent electrical 

output of the sensor/instrument under test [1]. 

To achieve this goal, we made an option of building a slider-crank mechanism (SCM), due 

to its simplicity and ease of construction. Through this reference apparatus, a sinusoidal-like 

motion, with variable frequencies and amplitudes is produced to measure the ADXL203 

accelerometer output. 

In order to understand the basic concepts of a SCM, the next subsection is entirely devoted 

to its mathematical description. 

 

6.1.1 Slider-Crank Mechanism 

The SC mechanism is an arrangement of mechanical parts designed to convert rotary 

motion to straight-line motion or vice-versa. 

The basic nature of the mechanism and the relative motion of the parts can be best 

described with the help of figure 26. 

The darkly shaded part 1 corresponds to the cylinder29, in which the piston or slider (part 

4) slides back and forth. The crank, part 2, is shown as a straight line member extending from 

                                                           
29 Or two guides. 
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the bearing at A to the bearing at B, which in turn attaches it to the connecting rod, part 3. The 

small circle at A is the main crankshaft bearing [2] [3]. 

The connecting rod is shown 

as a straight member extending 

from the bearing at B to the 

bearing at C, which connects it to 

the piston.  

Thus, these three bearings, 

shown as circles at A, B, and C, 

permit the connected members to 

rotate freely with respect to one 

another [3].  

The path of B is a circle of radius AB and the path of C is a segment of length JH. When B is 

at point h the piston will be in position H, and when B is at point j the piston will be in position J. 

 

  Piston Motion Equations 

The piston describes an oscillatory movement which can be approximated to the simple 

harmonic movement (SHM) when  BC ----- >>> AB----  [3]. 

 The mathematical equations which express the position, velocity and acceleration of the 

piston are summarized in table 6 and represented graphically in figure 27. For further reading 

refer to [3] [4] [5]. 

 

Table 6  Comparison between piston motion and SMH equations [3] [4]. 

 Piston’s Movement SHM 

Position 
(x) rcos�wt
(0l2‐r2sin2�wt
‐0l2‐r2 rcos�wt
 

Velocity 
(v) 

‐rwsin�wt
. 51( r cos�wt
0�l2‐r2sin2�wt

7 ‐rwsin�wt
 

Acceleration 
(a) ‐rw2. 8cos�wt
 ( r�l2 cos�2wt
 (r2sin4�wt


�l2‐r2sin2�wt

32 ; ‐rw2cos�wt
 

Notation: Crank radius= AB----= r; Crank’s constant angular velocity=w; connection rod’s length: BC----� l 

 

Figure 26 Crank Mechanism. 

A- Crankshaft; AB-Crank; BC- Connecting rod; C-Slider or piston. 

Adapted from [2]. 
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6.2. Methods 

 6.2.1 Experimental Configuration 

Figure 28 shows an overall view of the bench model developed for the accelerometer 

calibration.  

  

 

 

 

 

 

 

(a) (b) 

(c) 

Figure 27 Graphic representation of the 

piston movement (blue) and MHS (red).       

(a) Position; (b) Velocity; (c) Acceleration. 

The piston describes an oscillatory 

movement which is not a SHM, but that can 
be approximated to it. Adapted from [3]. 

 

Figure 28 Experimental set-up of accelerometer calibration. 

1-Brushed DC motor; 2- Crank 3- Connecting rod; 4-PCB holding AXL203CE Accelerometer 
(piston); 5- Probe’s metal body; 6- Probe’s support piece; 7- Connection wires: a) +5V, b) 

Ground; c) Signal; 8- NI USB-6008©; 9- USB Cable. 
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 The calibration system was basically constituted by the SC apparatus, the DAQ module NI 

USB-6008© and the power sources.  

To perform, the SC mechanism, the brushed DC motor and the probe’s main covering 

were respectively fixed in acrylic and PVC surfaces. The electronic circuit30 (piston) was placed 

in the inner side of the probe (cylinder) and connected to the motor’s shaft (crankshaft) by a 

copper wrapped wire (connecting rod).  

It was also placed a cog wheel (crank) with different eccentricities (3mm, 4mm, 5mm 

and 6mm) on the top of motor’s geared shaft, in order to obtain different piston’s displacement 

amplitudes. The DC motor was powered by variable voltage so that different frequencies could 

be obtained.  

 When this mechanism was set in motion, the accelerometer output was sampled at a 1k 

samples per second (sps), during 60s. 

 

6.2.2 Experimental Measurements 

Two experiments were made in order to achieve the accelerometer calibration.  

Experiment A consisted on the verification of the quadratic law associated to the 

acceleration of the electronic circuit (a=-rw2sin(wt)). Thus, in the first set of measurements, the 

cog wheel eccentricity was set to its maximum (6mm) and the system’s angular velocity was 

successively increased by stepping up the motor’s supply voltage. The various accelerometer 

outputs were then recorded. 

Experiment B was aimed at obtaining the accelerometer curve calibration, i.e., the relation 

between the peak voltage of the accelerometer and the peak acceleration of the piston. In this set 

of measurements, the system’s angular velocity was kept constant (constant motor supply) 

while the amplitude of the oscillatory movement was changed by increasing the cog wheel 

eccentricity.  

 

6.3 Results and Discussion 

6.3.1 Experience A 

           Verification of the quadratic law associated to SHM 

In a first approach, it was attempted to explore the quadratic law associated to the SHM. 

Since the results were not clear, they won’t be presented.  

 

                                                           
30 PCB with the AXL203CE accelerometer. 
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6.3.2 Experience B 

Determination of the calibration curve 

In order to get the calibration curve of the accelerometer, several sets of accelerometer 

data were acquired. 

Data analysis (Matlab®) consisted in the following steps: 

1: File loading and visualization; 

2: Band-pass filtering of data; 

3: Fast Fourier Transformation (FFT) of data; 

4: Visualization of the amplitude spectra,  

 Figures 29(a) and 29(b) show a typical output signal obtained from the ADXL203 as well 

as its amplitude spectra. 

In these two types of graphics, 

we intended to extract the peak voltage 

from the accelerometer (graphic a) and 

the fundamental frequency associated 

to its movement (graphic b).  

In the amplitude spectra, it was 

compared the value of the fundamental   

frequency with the respective system’s 

oscillation frequency, given by the 

motor’s rotation. As expected, the both 

values were in agreement31. 

The presence of another harmonics in this spectrum suggested, straight away, that the 

movement of the SC apparatus was not closer to the pure SHM. 

Concerning the graphic of accelerometer’s output, it was necessary to find a strategy to 

extract the peak voltage, since the accelerometer’s output signal presented high levels of noise, 

even after filtering. 

 In order to obtain this peak, it was made an approximation which consisted in to situate, along 

the acquisition file, a pattern of two peaks similar to the figure 27(c) and then to make a mean of 

all these peaks. This assumption was based again in the fact that the system movement was not 

pure simple harmonic. 

                                                           
31 The rotations per minute for a determined tension are tabled in the motor’s data sheet. In this 
experience, the tension applied to the motor was of 3V and consequently the motor’s rotation should be of 

2.4Hz (real value), which is in agreement with the obtained in figure 2 b (≈2.342 Hz). 
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(b)     
 

Figure 29  Data Pre Processing 

   (a) Filtered output signal of the ADXL203 accelerometer, 
(b) Amplitude spectre.  

Both signals were obtained by the application of the program 
developed in Matlab®. 
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Hz

Table 7 is based on the previous 

conjecture and resumes the values of 

peak voltage and peak acceleration 

determined for the different oscillation 

amplitudes of the SC system. 

 The calculation of the peak 

acceleration values was based upon 

equation 4. This equation corresponds 

to the absolute maximum of the piston’s 

movement acceleration expression 

(table 6) [5].  

                                                                  
       �<=> � ?@A�1 ( BC
                                                           

     

 In this experience, w is a 

constant equal to 2,342Hz, r is the 

amplitude (equal to the eccentricity) 

and l (connecting rod’s length) is also a 

constant equal to 0,069m. 

 

 

                       Table 7 Amplitude, peak voltage and peak acceleration values 

Amplitude (m) Peak Acceleration (m/s2) Peak Voltage (V) 

0,006 3,180 0,213 

0,005 2,588 0,151 

0,004 2,020 0,114 

0,003 1,477 0,089 

 

 

The respective calibration curve obtained is shown in figure 30. 

 

 

 (Eq. 4) 
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Figure 30 Accelerometer’s Curve Calibration 

The measured sensitivity of the accelerometer is therefore 0,159V/m.s2  (the curve’s 

slope).  

Since the manufacturer’s stated sensitivity on the accelerometer’s data sheet is 

1V/g=0,102 V/m.s2, it is possible to determine the measurement error, defined as the difference 

between the measured value and the true value of the measure: 

 � � |��E�FGAEH
 " �IAGE
| � 0,057 

 

6.4 Conclusions 

The developed slider-crank mechanism did not reveal itself as a good option for 

accelerometer calibration, since the error between the measured sensitivity and manufacturer’s 

stated sensitivity was high and it seems to proportionate only a small fraction (1/17) of the 

accelerometer’s measurement range (3,4 g).  

The principal causes for the measurement error must be associated not only to the 

experimental set-up but also to the data acquisition and processing. 

Regarding the experimental set-up, the poor SNR of the calibration data derives from noise 

originated by: 1) motor brushes, 2) lack of stiffness of the connecting road, 3) breadth in the 

articulations (mainly between the connecting road and the crankshaft bearing, 4) external 

shakings due to the poor of isolation of the system and also 5) possible friction inside the probe’s 

body. 

 On the other hand, and in what concerns data acquisition and processing, the approach 

to estimating the peak voltage by directly reading the peak values in the accelerogram, was 

y = 0,159x - 0,032
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probably not adequate, since it is subjective. Thus, the future utilization of this mechanism in 

accelerometer calibration would necessarily imply an optimization of the experimental 

configuration, in order to obtain higher SNR, and would also require second thoughts on data 

processing methods. Eventually, the exploitation of the singularities of the spectral properties of   

functions xx, yy , will lead to interesting results.  
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Figure 31 Set-up of the developed bench model. 

1- Reservoir; 2-Plastic Tubing; 3- Circuit breaker; 4-Peristaltic Pump; 5- Pressure sensor; 

 6- HP; 7-Module E. The arrows indicate the direction of the pulsatile flow. 
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CHAPTER 7  

PULSATORY MODEL

 
  
The development of a pulsatory model was the final step of the experimental work done 

throughout the Project discipline. Since the time for its execution was limited, it was not possible 

to proceed to the full understanding of the relationship between the different types of signals. 

However, the little data processing done was enough to prove the existence of an excellent 

correlation between PZ an accelerometric signals, as it will be shown in the last part of this 

chapter. 

 

7.1 Bench Model Set-up  

  The arrangement of the bench system developed for the pulsatory model is shown at 

figure 31.  
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The pulsatory model is divided in two main parts: the fluid circulation circuit and the DAQ 

system.  

The fluid circulation circuit is fixed on an acrylic surface and is constituted by plastic 

tubes, a water reservoir (500 ml), a peristaltic pump (PP)32 and a 10 mA differential circuit 

breaker, which protects the operator from over load or short circuit, and powers up motor 

pump. The PP establishes a water pulsatile flow of 5l/h in the direction of the arrows, as the 

figure points out.  

The DAQ system comprises the HP, the HCXM100D6V differential pressure sensor and the 

module E. The HP, horizontally fixed with an appropriate holder, is leaned against a rubber 

elastic membrane. The need to glue an elastic membrane on the plastic tube is due to its 

stiffness, which would make difficult the signal acquisition. Previously to gluing the rubber 

elastic membrane to the tube a partial small cut have to be done. 

   

7.2 Results 

With the configuration described before it was possible to acquire accelerometric, PZ and 

pressure signals, simultaneously. 

In figure 32 is shown the typical signals obtained during 4s, using an acquisition sample 

rate of 1ksps.  These signals were already filtered in Matlab® with a band-pass filter of [0.4 Hz, 

45 Hz].  

 

7.3 Data Processing 

 The acquired signals suffered a very superficial data processing treatment, however, and 

having in mind to find a relationship between the patterns recognized for each signal, the 

accelerometric and PZ signals were compared. 

It was developed a small algorithm which consisted in the following main steps and whose 

final result is presented in figures 33(a) and 33(b): 

Step 1: File load and visualization; 

Step 2: Filtering: application of a band-pass filter [0.4 Hz, 45 Hz]; 

Step 3: Double differentiation of the PZ signal; 

Step 4: Normalization of the accelerometric and the differentiate PZ, signals; 

Step 5: Simultaneous visualization of the normalized signals. 
                                                           
32 A peristaltic pump is a type of positive displacement pump (compression pump) used for pumping a 

variety of fluids. The fluid is contained within a flexible silicon tube fitted inside the circular pump casing. 

A rotor, with a determined number of rollers, compresses the flexible tube in order to produce the flow. 
For further reading: http://en.wikipedia.org/wiki/Peristaltic_pump2 
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(a) 

Figure 32 Accelerometric, PZ and pressure signals acquired in the pulsatory model during 

4s.  
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It is observed an explicit correlation between the shapes of both signals. Thus, it is proved 

that the accelerometer gives, at least, the same information as the PZ when it is differentiated 

twice. In fact, we suppose that the information provided by the accelerometer can be more 

valuable that those obtained directly by the PZ, since PZ is inherently an AC coupled device and, 

as such, its frequency response always depends on the time constant of the overall circuit, and it 

is inevitably impaired in the very low range (DC to 0.2 Hz), where a number of auto-regulatory 

effects of the human body, are located [1]. 

Moreover, even for the frequencies where the response is not affected by the coupling (0.2 

Hz up to resonance), the response delivered by PZ is affected by the way the operator holds the 

probe and presses it against the region under test (this is the reason why the HP has been fixed 

in this model). This uncertainty is due to the complex relationship between charge polarization 

and externally applied forces in the bulk of the sensor material.  

For these reasons PZs cannot be calibrated in terms of a mechanical unit (pressure, force, 

torque or other) against output voltage. In fact all hemodynamic instruments using PZs are used 

for time measurements, only. 

Accelerometers, on the contrary, are truly DC devices capable of a complete 3-axis 

assessment of a precise mechanical parameter, and when incorporated in a well designed probe, 

many artefacts, associated to the operator involuntary movements, can be eliminated. 

 

References 

[1] Humeau, Anne. et al, Numerical Simulation of Laser Doppler Flowmetry Signals Based on a 
Model of Nonlinear Coupled Oscillators. Comparison with Real Data in the Frequency Domain 
(I), Proceedings of the 29th Annual International Conference of the IEEE EMBS, pp. 4068-4071. 

(b) 

Figure 33 Accelerometric and Double Differentiate PZ Signals: 

 (a) General view. (b) Peak amplification. 
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CHAPTER 8  

CLINICAL RESEARCH TESTS

 
 

This final chapter describes the procedures of the CTs carried out in IIFC, and establishes a 

comparison between the data acquired with the various probes/modules.  

  

8.1 CTs Procedures 

As mentioned before, the second period of CTs was carried out respectively by: the 

SLP/module B (1 month), the SLP/module C (2 months) and the DP/module D (in still progress).  

The clinical trials main objective is to explore the potential of the accelerometer based 

probes in the assessment of PWV, by comparing their information with the one of a standard 

method (Complior®). Since the DAQ modules C and D incorporate a similar (and inexpensive) 

input, based on a principle similar to the Complior’s®, it is also intended to investigate the 

feasibility of extracting transit time curves with this platform, to further PWV computing. 

The type-of-patient criteria of selection changed in relation to the first period (section 

3.3.1): currently, all patients are hypertensive and have been submitted to drug treatment. This 

circumstance makes it possible a valuable comparison of PWV values, before and after 

medication.   

The three types of acquisitions performed are summarized in table 8.  

 
Table 8 Acquisition types performed with the various probes/modules. 

(It was used the Complior® to perform a 4th test, in order to obtain the PWV real value). 

 Acquisition Type  Description 

Probe + ECG 
After the ECG sensors are located in agreement with lead I 

configuration, the operator places the measurement probe over the 
carotid artery, during 30-45s. 

Probe + PZ 
Two operators place the probe and the PZ, respectively, in opposition 

over the carotid arteries, during 30s-45s. 

PZ + PZ1 
The operator places the PZs over carotid and femoral arteries during 

15 s, approximately. 

1The PZ+PZ CT was not performed by the SLP/module B. 
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8.2 Data Pre-Processing  

Up to now, data from nearly forty patients have been subject to the clinical trials and some 

of them are now entering the second turn of evaluation. 

However, and since the project’s priority was hardware optimization in order to obtain 

signals with high SNR, the acquired data has not yet been processed, in an attempt to relate 

them with the Complior’s® information. In fact, so far, the data pre-processing that was carried 

out (data visualization and filtering) has been used for the instrument improvement, only. 

Next, some representative examples are shown in order to compare signals obtained with 

the different instrument set-ups (figures 34, 35 and 36). 

1) SLP/Module B 

 

 

 

 

 

 

 

 

                                                           

                        

 

 

 

 

 

 

 

 

 

  Figure 34 Signals acquired by the SLP/Module B in one patient. 

(a) ECG+Accelerometer. (b) ECG+PZ. 

(a) 

(b) 



CARDIOACCELEROMETERY  CHAPTER 8: CLINICAL RESEARCH TESTS

 

48 
 

10 10.5 11 11.5 12 12.5 13 13.5 14

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

t(s)

V

 

 

Accel

ECG

7 7.5 8 8.5 9 9.5 10 10.5 11

-1

-0.5

0

0.5

1

t(s)

V

 

 

Accel

PZ

2) SLP/Module C 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1 2 3 4 5 6 7

-3

-2

-1

0

1

2

3

t(s)

V

 

 

Femoral PZ

Carotid PZ

Figure 35 Signals acquired by the SLP/Module C in one patient. 

(a) ECG+Accelerometer. (b) ECG+PZ. (c) Carotid PZ+ Femoral PZ. 

(a) 

(b) 

(c) 
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3) DP/Module D 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(b) 

(a) 

Figure 36 Signals acquired by the DP/Module D in one patient. 

(a) ECG+Accelerometer. (b) ECG+PZ. (c) Carotid PZ+ Femoral PZ. 
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It is quite clear that the accelerometric and PZ signals acquired with the DP/module D set-

up exhibit higher SNR than those obtained with the other probe/modules set-ups, and the 

observed saturation on PZ signals has disappeared also when using this set-up. In fact, the only 

signals whose SNR is constant throughout the use of different set-ups are the ECG ones. 

Although the pre-processing of the clinical data is not enough to conclude the exact 

information values that the accelerometer is able to give, the existence of very well defined 

correlations between the different signals is also very clear, thus making it an interesting subject 

for further research.  
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CHAPTER 9  

CONCLUSIONS AND FUTURE WORK

 
 

Once the project’s academic component has been achieved, it is now necessary to 

evaluate and discuss the work that has been done, the results obtained and the future 

developments.  

 

9.1 Conclusions 

The main objective of this project was the development of instrumental methods, based in 

accelerometery, for PWV hemodynamic characterization. 

Three accelerometer based probes (SLP, DP and HP) and five multisensor DAQ modules 

(A, B, C, D and E) were designed and built for this purpose and have been tested in the field. 

In its research usage, they have proved effective in the prolonged follow up of 

hypertensive patients and, at this point, the instrument with the better performance is the DP 

and module D, which exhibit signals with a higher SNR. 

The pre-processing of the clinical data was not conclusive about the exact information that 

accelerometer was able to give, but the existence of very well defined correlations between the 

ECG, accelerometric and PZ signals suggests a high potential for this new technique. 

 In order to help the comprehension of the clinical data, two bench models were also 

developed. The first addresses the calibration of the ADXL203 accelerometer. Although the 

simplicity of the mechanism was very attractive, the device was only capable of testing a small 

fraction of the accelerometer’s measurement range. In addition, the difference between the 

measured sensitivity and manufacturer’s stated sensitivity was extremely high.  

The second model had to do with the simulation of a pulsatory model. The analysis of the 

signals acquired with the HP revealed that the accelerometer delivers, at least, the same 

information as the PZ when its output curve is differentiated twice.  

In the future, it is expected that the best performance in clinical trials would be from the 

HP or from a similar version, which, in the limit, will be able to compute PWV punctually in the 

carotid artery.  
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9.2 Future work 

In this work, the feasibility of using accelerometers in the assessment of PWV was 

explored and the results obtained with prototype probes were indeed very promising. 

However, there is still much work to be done in order to achieve a powerful and reliable 

instrument for hemodynamic characterization of PWV, and to turn this technique into a 

marketable technology. 

Since this project is to be continued, the two main steps which are necessary to take in 

the short term are related not only to the instrument itself but to the clinical data processing. 

 

Instrument Optimisation  

Since they two major limitations on the performance of NI-DAQ 6008 © were found 

(software inflexibility and reduced real time capacities), it will be necessary to develop an 

electronic platform with real time signal analysis capacity. The integration of a late generation 

microcontroller as the unit’s core will be the best solution. 

The analog front end should maintain the current number of channels (accelerometric 

probe, PZ transducers, electrocardiograph circuit), but must have a modular structure to allow 

simple adaptations in order to add other sensors of interest (temperature, oximetry…). As for 

the communication with the PC, although not critical, it should be done by means of a standard 

RF communication protocol (Zigbee, Bluetooth...), in order to guarantee connectivity and 

portability. 

 The validation of this platform will be made with the clinical tests extension.  

 

Clinical data Processing 

Undoubtedly, clinical data processing is the key to the major goals of this work. It will 

remove the obstacles found in the assessment of PWV values obtained by accelerometery, and 

will enable a comprehensive comparison with Complior’s® data.  

Ultimately, it will be data processing that will lead the way to the validation of a clinical 

instrument based on the new (to our knowledge) techniques unveiled in this work.  

To attain this goal, it will be necessary, firstly, to study the relationship between the 

different signals in an ideal model and, then, bring the data processing, already started for the 

pulsatory model, to a conclusion. 
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APPENDIX A  

THEORETICAL ASPECTS 

 

 

1. PIEZOELECTRIC SENSORS  

PZ sensors, used in a variety of pressure-sensing applications, measure the electrical 

potential caused by applying mechanical force to a PZ material. PZ materials can be divided in 

two main groups: crystals and ceramics. The most well-known is quartz (SiO2).  

A PZ sensor is based on the PZ effect33 , in which energy is converted between 

mechanical and electrical forms. Specifically, when a polarized crystal is put under pressure, 

some mechanical deformation takes place in the polarized crystal, which leads in the generation 

of the electric charge.  

There are many types of PZ sensors. Examples include a PZ accelerometer, PZ force 

sensors, and PZ pressure sensors. A PZ accelerometer is suitable for working at a lower power 

consumption and wider frequency range. PZ force sensors are low impedance voltage force 

sensors designed for generating analog voltage signals when a force is applied on the PZ crystal 

and are widely used in machines for measuring force. PZ pressure sensors are used for 

measuring change in liquid and gases pressure [31] . 

 

  

                                                           
33

 PZ effect was discovered in the 1880's by the Curie brothers. 

                                                          (a)                                                                        (b) 

Figure 37 Functions of a piezoelectric sensor [30]. 

(a) Mechanical deformation --> Electrical Potential. (b) Electrical Potential --> Mechanical deformation. 
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2. ELECTROCARDIOGRAPHY 

 

Heart’s Anatomy 

The next figure is a sketch of the heart, showing its main structures and arterial and 

venous connections: 

 
 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

12-Lead Placement Diagrams 

The 12-lead ECG provides spatial information about the heart's electrical activity. The 

three standard limb leads (I, II, III) and the augmented limb leads (aVR, aVL, aVF) detect the 

electrical potential change in the frontal plane. The six precordial leads (V1,V2,V3,V4,V5,V6), each 

in a different position along the chest, record the electric potential change in the heart in a cross 

sectional plane. The diagrams below illustrate the location of the electrodes for each lead. 

Figure 38 The Heart. Adapted from [25]. 
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Figure 40: Location of the electrodes in the Standard Limb Leads and 

Augmented Limb leads. Adapted from [26]. 

  Figure 39 Location of the precordial leads. 

V1 and V2 are located at the fourth 

intercostal space on the right and left side of 
the sternum; V4 is located in the fifth 
intercostal space at the midclavicular line; 

V3 is located between the points V2 and V4; 

V5 is at the same horizontal level as V4 but 
on the anterior axillary line; V6 is at the 

same horizontal level as V4 but at the 
midline. Adapted from [27] and [28]. 
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ECG Components  

The electrical events of the heart are usually recorded on the ECG as a pattern of a 

baseline broken by a P wave, a QRS complex, a T wave and a U wave. In addition to the wave 

components of the ECG, are also defined intervals and segments. An interval is a part of the ECG 

containing at least one wave and a straight line. A segment is the period of time from the end of 

one wave to the beginning of the next wave. 

In the figure below is shown the principal ECG components and its normal values. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 41 ECG components: waves, segments and intervals. 

P wave: Depolarization of atrial muscle as negativity spreads from the SA node toward the 
ventricles; QRS complex: spread of excitation through ventricular myocardium, resulting in 
depolarization of ventricular muscle. Atrial repolarization is also part of this segment, but the 

electrical signal is masked by the larger QRS complex; T wave: beginning of ventricular 
relaxation (ventricles repolarization); U wave: repolarization of a collection of specialized 
muscle fibers in the ventricles (Purkinje fibers) ; P-R Interval: time it takes for the impulse sent 

from the SA node to travel to the ventricles; P-R segment: interval between atrial 
depolarization and ventricular polarization; S-T Segment: period during which ventricles are 
more or less uniformly excited; Q-T interval: electrical systole. Sources: [29] and [15]. 
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APPENDIX B 

 ELECTRONIC CIRCUITS SCHEMATICS 
 

 

1. Measurement Probe Circuit 

The next figure illustrates the schematic of the measurement probe’s circuit (first 

prototype). Only the electronics concerning one of the x-axis accelerometer is shown.   

 

Figure 42 Measurement probe’s circuit schematic (first prototype). 
 

2. PZ Single Channel 

 

 

 

 

 

 

 

 Figure 43 PZ Electronic Circuit of the DAQ Module B. 
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3. PZs Double Channel 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 44 PZ Electronic Circuit of the DAQ Module B.  

This architecture is common to both PZs channels. 
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Figure 45 SPL Electronic Circuit Schematic. 
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Figure 46 HP Electronic Circuit Schematic. 
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Figure 47 Electrocardiograph Electronic Circuit Schematic. 


