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ABSTRACT 

The construction of a structure undergoes several stages, each of which must be thoroughly 

thought. In structures that may be subject to seismic actions at some point of their use life, these 

considerations are especially significant. Joints between steel elements in this type of structures 

should always be designed, fabricated and erected such that brittle failure is avoided and a ductile 

mode of failure governs the collapse.  

Designers must always bear in mind design requirements set by the relevant design standards. In 

Europe, EN1993 must be observed for the seismic design of structures, with significant reference 

to EN1993 for the design of steel structures and EN1993-1-8 in particular for the design of steel 

joints making use of the components method. 

Nowadays the experimental test is the preferred method between the scientific community to 

assess the seismic behavior of steel joints. However, the analysis of the seismic behavior of beam-

to-columns joints at component level directly from the analysis of the results of the experimental 

test is unfeasible. Accordingly, advanced numerical models must be developed and validated with 

the experimental tests.  

In this dissertation advanced FEM based models are developed for the analysis of monotonic 

and cyclic behavior of the tension region of beam-to-column steel joints in the framework of the 

project “European pre-qualified steel joints (EQUALJOINTS)”, focusing in the behavior of the 

column flange in bending. 





European Erasmus Mundus Master 

Sustainable Constructions under natural hazards and catastrophic events 

520121-1-2011-1-CZ-ERA MUNDUS-EMMC 

 

 

iii 
 

NOTATION 

General  

tf  Flange or plate thickness 

leff  Total effective length of an equivalent T-stub  

F  Force 

FT, I, Rd  Design resistance for each T-stub mode  

Mpl, Rd  Resistance of the formed plastic hinges  

Ft, Rd  Bolt’s tension resistance  

m   Bolt distance to the weld  

n  Minimum bolt distance to a free edge  

fy  Yield strength  

fu  Ultimate strength  

fub  Bolt ultimate strength  

As  Tensile area of a bolt  

k2  Bolt strength reduction factor  

K  Stiffness  

E  Elastic modulus  

Et  Tangent modulus  
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Eu  Ultimate modulus  

Q  Prying force 

Greek letters  

𝛾𝛾𝑀𝑀𝑀𝑀  Partial safety factor used for applied design situations  

Ϭtrue  True stress 

Ϭengg.  Engineering stress  

Ɛ true  True strain 

Ɛ engg.  Engineering strain 

Ɛ pl  Plastic strain 

Acronyms 

MISES  Von Mises stresses 

PEEQ  Equivalent plastic strain  
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1. Introduction 

1.1 Background  

As in all types of structures, the cyclic behavior of beam-to-column steel joints may have a major 

influence on the performance of moment resisting frames during an earthquake.  

However, the analysis and design of steel buildings according to EN 1993-1 [1] and EN 1993-1 [2] 

may be based on centerline frame models – where the geometry and the mechanical properties of the 

beam-to-column steel joints is not explicitly modeled – when the beam-to-column joints are full-

strength and rigid thus enforcing the formation of dissipative zones near the ends of the beam members 

[3]. 

On the other hand, in case of partial strength and/or semi-rigid beam-to-column steel joints, EN 1993-

1 [2] allows beam-to-column joints to be the dissipative zones itself. In this case: (i) the joints must 

have rotation capacity higher than the rotation demands, (ii) the adjacent members framing into the 

joints must have a stable behavior at ultimate limit conditions and (iii) the effect of the joint 

deformation on global behavior must be taken into account in the global analysis of structure through 

a non-linear static (pushover) analysis or non-linear response-history analysis. In this case, refined 

models, accounting for the beam-to-column joint cyclic behavior, are required for the analysis and 

design of the structures [3]. 

EN 1993-1-8 [2] provides a procedure based in the so-called component method to assess the strength 

and stiffness of beam-to-column joints. However, it does not provide tools to assess neither the rotation 

capacity nor the cyclic behavior of these structural elements [3]. 

This work is in the scope of the research project “European pre-qualified steel joints 

(EQUALJOINTS) Grant agreement no. RFSR-CT-2013-00021” carried out Institute for 

Sustainability and Innovation in Structural Engineering (ISISE) in University of Coimbra, 

Coimbra, Portugal. 
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1.2. Motivation 

In order to achieve a good seismic performance of moment resisting frames (MRFs) with reduced 

costs, these structures are designed to concentrate the dissipation of the energy induced by 

earthquakes in specific zones so called dissipative zones. In particular, the design of steel moment 

resisting frames according to EC8, can be carried out by locating the dissipative zones in beams 

or joints [4]. The location of dissipative zones can be controlled by capacity design according to a 

strength hierarchy criterion.  

In particular, when full strength joints are adopted, joints are designed to be over strength with 

respect to the connected members and, therefore, the plastic hinges are located at beam ends by 

means of cyclic inelastic bending, so that dynamic inelastic analyses require the modelling of the 

cyclic response of the beams where plastic hinges develop. This approach can lead, in some 

structural situations such as the case of structures with few storeys and/ or with long spans where 

the design of beams is mainly governed by vertical loads rather than the lateral ones, to column 

sections significantly greater than those strictly necessary to withstand the member loads [5,6].  

On the other hand, partial strength joints can be employed in order to concentrate the plastic zones 

in the connections. Aforementioned approach is allowed by EC3 [2] which clearly states that the 

plastic hinges can be developed at the end of the beam or in the joint. In these cases, the response 

of the joints in term of stiffness, resistance and ductility is a key aspect for design purposes. An 

analytical procedure to predict the response of joints based on knowledge of mechanical and 

geometrical properties of individual element of the joint (the components), subjected to static 

loading condition are available and is known as the “component method”. In order to extend the 

component approach to the prediction of the seismic response of partial strength joints, the 

modelling of the cyclic response of the joint components is necessary. 

In case of bolted connections, the main joint components responsible for the joint ductility, such 

as the column flange in bending, the end-plate in bending and the angles in tension may be modeled 

by means of a simplified model known as “T-Stub” [2]. 
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1.3. Main goals and scope 

The main goal of this dissertation is the development of advanced Finite Element Models to assess 

the cyclic behaviour of column flanges in bending of beam-to-column end plate bolted 

connections. Having into account the complex behaviour of full beam-to-column joints, partial 

models were used to allow to assess accurately the internal forces and the deformation of the 

column flange in bending.  The models and the load history was define based in the testes and in 

the findings of EQUALJOINTS project. More in particular, the goal of this dissertation is to assess 

the influence of the collapse mode of the column flange in bending on its cyclic behaviour. The T-

stub model was used as starting point to define the parametric analysis. 
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2. State of Art 

2.1. Behaviour of Joints Under Seismic Load 

In MRFs, the seismic resistance of structure should be provided based in a strength hierarchy 

among members and joints. According to the capacity design concept, such a structure will be able 

to dissipate part of the energy induced by the ground motion through plastic deformations in the 

dissipative zones of ductile members, e.g. through bending deformation in beams of Moment 

Resisting Frames (MRF) – formation of plastic hinges in columns is prevented to avoid the 

premature collapse of the structure [2] and to allow the mobilization of a large number of 

dissipative zones by the collapse mechanism. Accordingly, the region where dissipative zones will 

appear in beams or joints is set by means of an appropriate choice of the ratio between the flexural 

resistance of the beams and the bending resistance of the joint.  

If the dissipative regions are in the beams ends, joints have to be full strength and take into account 

the possible over strength effects, which leads to expensive joints solutions.  

On the other hand, the use of partial strength joint is permitted but the number of requirements to 

be respected for this joint typology is such that it is currently essential to accomplish experimental 

tests to check when these requirements are satisfied. The component method is a solution to 

overcome the “full strength” limitation. This method considers any joint as a set of individual basic 

component [2] and computes the behaviour of the joint from the behaviour of these basic 

components.  

The probability of forecasting the behaviour of beam to column joints under cyclic loading 

conditions allows the design of structures able to dissipate the earthquake input energy by means 

of a stable hysteretic behaviour of beam end and/or of their joints to the columns.  

It is necessary to preliminarily analyse the dissipation capacity of the beam to column joint 

components that are affected by seismic actions. Accordingly, it is recommended to distinguish 

between dissipative and non-dissipative components, i.e., dissipative and non-dissipative failure 
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mechanisms [7]. With reference to joint components this distinction can be made according to 

Table 2.1. 

Table 2.1: Dissipation capacity of single joint component [7] 

Component Dissipative Non-Dissipative 
1 Column web panel in shear ✔   

2 
Column web in compression   
 2.1 without buckling ✔   
 2.2 with buckling   ✔ 

3 Column web in tension ✔   

4 
Column flange in bending   
 4.1 welded joints   ✔ 
 4.2 bolted joints ✔   

5 End plate in bending ✔   

6 
Flange cleat in bending   
 6.1 without local buckling ✔   
 6.2 premature local buckling   ✔ 

7 Beam web in tension ✔   
8 Plate in tension ✔   

9 
Plate in compression   
 9.1 without local buckling ✔   
 9.2 premature local buckling   ✔ 

10 Bolt in tension   ✔ 
11 Bolt in shear   ✔ 

12 Bolt in bearing ( on beam flange, 
column flange, end plate or cleat) ✔   

 

The knowledge of the joint cyclic response and its modelling represents an essential point when 

the frame design is based on the dissipation of the seismic input energy in the linking elements. 

Many research programs have been carried out worldwide on the cyclic response of beam to 

column joints to identify the behaviour parameters governing the cyclic response and at the 

modeling of hysteretic behaviour. Furthermore, many efforts have carried to identify low cycle 

fatigue [8].  
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Mostly research works deals with the whole joint response and its modelling. This methodology 

does not permit an easy identification of the contribution of each component and, as a result, of 

the role played by the geometrical and mechanical parameters. A different methodology can be 

based on the statement that the cyclic behaviour of beam-to-column joints can be predicted by 

properly combining the cyclic response of its basic components. This methodology represents the 

extension to the cyclic behaviour of the component approach widely investigated in the case of 

monotonic loading conditions [8]. 

The components governing the cyclic response of partially restrained bolted connections have been 

identified so that the idea of predicting the cyclic response of connections starting from the 

knowledge of the cyclic response of their basic components has given impetus for research, both 

experimental analysis and modelling, on isolated joint components [4,5,6,9]. In particular, 

Swanson and Leon [9] have tested 48 isolated T-stubs with the primary goal of developing design 

rules for T-stub joints that would result in a full strength joint, ductile behaviour and a joint 

stiffness close to the full restraint range. In addition, they tested also six full scale beam to column 

joints indicating that the T-stubs in the full scale tests performed very similarly to those tested as 

components. 

An accurate forecast of the joint rotational performance under cyclic loads, relied on the 

component methodology, involves the preliminary characterization of the cyclic response of the 

joint components. For this reason, following dissertation dedicated to the analysis of the cyclic 

behaviour of the most important component of bolted joints, i.e. bolted T-stubs.  In this work, 

analytical results are resumed and the preliminary models for predicting the cyclic response of 

such fundamental components are presented and discussed. 
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2.2. Experimental Program on Bolted T-stub under Cyclic Loads 

In [8], author investigated cyclic response of T-stub under cyclic loading conditions and monotonic 

loading conditions on the basis of experimental tests on T- stub assemblages. In that research, 

author examined 28 specimens, 20 under cyclic loading conditions with constant amplitude, 4 

under cyclic loading conditions with variable amplitude and 4 under monotonic loading conditions.  

From 28 specimens, 7 derived from a HEA 180 profile (series HEA 180), from a HEB 180 profile 

(series HEB 180), 7 composed by welding with flange thickness equal to 12 mm (series W12) and 

7 composed by welding with flange thickness equal to 18 mm (series W18).  1 monotonic test, 5 

constant amplitude test, 1 variable amplitude test had been carried out with reference to each series 

of specimens. 

The main objective of the monotonic tests was the investigation of plastic deformation capacity of 

the specimens whose values had been adopted for development of the range of the amplitude 

values to be used in cyclic tests. The results of all monotonic tests are presented in Figure 2.1. 

 

Figure 2.1: Results of monotonic tests [8] 
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With respect to cyclic tests, author [8] found that all specimens belonging to HEA 180 and W12 

series, showed same failure mode independent of the imposed displacement amplitude. Initially 

formation of cracks in flanges is in the central part of flange at the flange to web connection zone 

the number of cycles corresponding to the development of first cracking was dependent on the 

displacement amplitude of the cyclic test, being as much greater as smaller is the displacement. 

These cracks progressively propagated toward the flange edges up to the complete fracture of one 

flange which causes the complete loss of load carrying capacity by increasing the number of the 

cycles, shown in Figure 2.2. 

 

Figure 2.2: Failure mode of specimen under cyclic tests [8] 

This type of behaviour leads to a progressive deterioration, up to failure, of axial strength, stiffness 

and energy dissipation capacity, as presented in Figure 2.3 and in Figure 2.4. Author [8] concluded 

that all aforementioned specimens showed different collapse mechanism under monotonic loading 

conditions and under cyclic loading conditions, where the yielding of flanges were accompanied 

by the bolt fracture. On the other hand, specimens belonging to HEB 180 and W 18 series, the 

cyclic behaviour was characterized by horizontal slips before reloading due to relevant plastic 

deformations of the bolts. During these slips the axial force is equal to zero up to the recovery of 

the bolt plastic deformation before reloading. While this type of premature failure mode was not 

observed in HEA 180 and W 12 series, subjected to cyclic loading.   
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Figure 2.3: Specimen´s behaviour belonging to A series [8] 
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Figure 2.4: Specimen´s behaviour belonging to series C [8] 
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The stiffness and degradation laws had been proposed both in case of specimens failing, under 

monotonic loads, according to type 1 and in the case of specimens failing, under monotonic loads, 

according to either type 2 or type 3 failure mode by [8]. 

In addition, his work also proposed that, as the failure mode under monotonic loading conditions 

can be different from that occurring under cyclic loads, the correlation between the energy 

dissipation corresponding to the failure condition and the energy dissipated in monotonic 

conditions up to a displacement amplitude equal to that of the cyclic tests have been provided.  

On the basis of the above analysis, semi-analytical models for predicting the cyclic behaviour of 

the T-stub assemblages starting from their geometrical and mechanical properties have been 

developed. Finally, the degree of accuracy of the proposed models have been pointed out by the 

good agreement with the experimental results in terms of energy dissipation capacity [8]. 

2.3. The Component Method 

The component method has the prospective to predict the response of joints, whatever geometrical 

configuration of joint and type of member cross sections, under any loading condition (axial 

loading, bending or cyclic loading etc.) but for that, it is required to know the exact behaviour of 

each component shown in Table 2.2, see Figure 2.5. To know the behaviour of the joint it is 

essential to know post yield behaviour of components accounting for strain hardening effects, their 

ultimate resistance, their deformations ability but also the degradation of their strength and 

stiffness, due to cyclic loads [10].  

The following steps are required for application of the component method: 

1. Identification: 

Active component of concern joint should be identifying;  

2. Characterization: 

Evaluation of the behaviour of each individual component; 
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3. Assembly: 

Assembly of all constituent components and evaluation of the behaviour of the 

entire beam-to-column joint. 

The strength of basic components in tension or compression is usually based on an effective width 

(beff) while the strength of a basic component under bending or subjected to transverse forces is 

based on equivalent T-Stub, i.e. a geometrical idealization of T profile made of a web in tension 

and a flange in bending bolted by the flange [10]. 

 

 

Figure 2.5: Typical beam-to-column end-plate bolted joint [11] 

The component method allows to determine the bending moment resistance (M j, Rd), the rotational 

stiffness (S j) and the rotation capacity (ϕ Cd), according to the scheme of Figure 2.6. The design 

moment resistance (M j, Rd) is equal to the maximum moment of design moment-rotation curve, 

and is defined by Eq. 2.1 

𝑀𝑀𝑗𝑗,𝑅𝑅𝑅𝑅  =  ∑ ℎ𝑟𝑟𝐹𝐹𝑡𝑡𝑟𝑟,𝑅𝑅𝑅𝑅𝑟𝑟    Eq.  2.1 

where Ftr, Rd is the effective design tension resistance of bolt-row r, hr is the distance from bolt row 

r to the centre of compression and r is the bolt-row number. If the bolt-rows in tension are more 
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than one, then they are numbered starting from the bolt-row farthest from the centre of 

compression. The rotational stiffness (S j) is a secant stiffness, moment require to produce unit 

rotation in a joint. For a design moment-rotation characteristic this definition of Sj applies up to 

the rotation ϕxd at which Mj, Ed first reaches Mj, Rd, but not for larger rotations as shown in Figure 

2.6. The initial Sj, ini. which is slope of elastic range of the design moment-rotation characteristic. 

Sj is defined by Eq.  2.2 

𝑆𝑆𝑗𝑗  =  𝐸𝐸𝐸𝐸2

𝜇𝜇 ∑ 1
𝑘𝑘𝑖𝑖
𝑖𝑖

   Eq.  2.2 

where E is the Young’s modulus, ki is the stiffness coefficient for basic joint component i, z is the 

lever arm – for two or more bolt rows an equivalent lever arm may be determined –  and μ is the 

stiffness ratio 𝑆𝑆𝑗𝑗,𝑖𝑖𝑖𝑖𝑖𝑖

𝑆𝑆𝑗𝑗
, where Sj,ini is given by Eq.  2.2 with μ = 1.0. The stiffness ratio μ should be 

determined from the following [13]: 

if  𝑀𝑀𝑗𝑗,𝐸𝐸𝑅𝑅 ≤  2
3

 𝑀𝑀𝑗𝑗,𝑅𝑅𝑅𝑅 than μ = 1  Eq.  2.3 

if  2
3

 𝑀𝑀𝑗𝑗,𝑅𝑅𝑅𝑅  < 𝑀𝑀𝑗𝑗,𝐸𝐸𝑅𝑅 ≤   𝑀𝑀𝑗𝑗,𝑅𝑅𝑅𝑅  than μ = �1.5 𝑀𝑀𝑗𝑗,𝐸𝐸𝐸𝐸 
𝑀𝑀𝑗𝑗,𝑅𝑅𝐸𝐸

�
𝜓𝜓

 Eq. 2. 4 

The design rotation capacity ϕCd of a joint is equal to the maximum rotation of the design moment-

rotation curve [2]. 

 
Figure 2.6: Design moment-rotation characteristics for a joint [2] 
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Table 2.2: List of components [2] 

Sr. 
No Component Sr. 

No Component 

1 
Column web 

panel  
in shear 

 

2 
Column web 
in transverse 
compression 

 

3 
Column web 
in transverse 

tension 

 

4 Column flange 
in bending 

 

5 End-plate 
in bending 

 

6 Flange cleat 
in bending 

 

7 

Beam or 
column 

flange and web 
in compression 

 

8 Beam web 
in tension 

 

9 
Plate 

in tension or 
compression 

 

10 Bolts 
in tension 

 

11 Bolts 
in shear 

 

12 

Bolts 
in bearing 

(on beam flange, 
column flange, 

end-plate or 
cleat) 
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2.3.1. The T-Stub model 

The assessment of the strength of the basic components involving plates subjected to transverse 

forces (e.g. column flange in bending, end plate in bending, flange cheat in bending and base plate 

in bending), according to EC3 [2] is based on a geometric idealization of the tension zone known 

as T-Stub. A T-stub is a T profile element made of a web in tension and a flange in bending, where 

the flange is assumed to be attached to a rigid foundation [10], Figure 2.7. 

 

Figure 2.7: T-Stub Geometry 

The equivalence between the T-stub model and the actual basic component is reached through the 

definition of an appropriate length of the equivalent T-Stub so-called effective length (leff) [12]. 

Aforementioned basic component under transvers forces may be studied with similar model and 

thus with similar design formulae, whatever the considered mechanical properties (stiffness, 

resistance or ductility) [10].  

A T-stub may collapse according three different failure modes shown in Figure 2.11and Figure 

2.12 (according to the geometry and the mechanical properties of the plates and the bolts) [2]: 
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Mode 1: Complete yielding of flange (Ductile mode)  

The resistance is associated to the formation of a plastic yield 

mechanism in the flange. In such a case bolts are sufficiently strong to 

resist to the applied axial tension forces, including the praying forces Q 

shown in Figure 2.8. 

𝐹𝐹𝑇𝑇,1,𝑅𝑅𝑅𝑅 =  4 𝑀𝑀𝑝𝑝𝑝𝑝,1,𝑅𝑅𝐸𝐸

𝑚𝑚
  Eq.  2.5 

 

Mode 2: Bolt failure with partial yielding of the flange 

(Intermediate mode) 

Mixed failure is achieved through the formation of yield lines the 

flange (the full plastic mechanism being not reached) and the failure 

of bolts in tension (again including prying effects), Figure 2.9. 

𝐹𝐹𝑇𝑇,2,𝑅𝑅𝑅𝑅 =  2 𝑀𝑀𝑝𝑝𝑝𝑝,2,𝑅𝑅𝐸𝐸+𝑛𝑛 ∑𝐹𝐹𝑡𝑡,𝑅𝑅𝐸𝐸 

𝑚𝑚+𝑛𝑛
  Eq.  2.6 

Mode 3: Bolt failure (Brittle mode) 

The resistance is linked to the failure of the bolts in tension. The 

deformation of flange in bending is small, resulting in absence of prying 

effects, Figure 2.10. 

𝐹𝐹𝑇𝑇,3,𝑅𝑅𝑅𝑅 =  ∑𝐹𝐹𝑡𝑡,𝑅𝑅𝑅𝑅   Eq.  2.7 

 

 

 

Figure 2.8: Failure mode 1 (ductile mode) 

 

 

 

 

Figure 2.9: Failure mode 2  (Intermediate mode) 

 

 

 

 

Figure 2.10: Failure mode 3 (brittle mode) 
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Figure 2.11: Schematic failure modes of T-Stub [13] 

 

Figure 2.12: Ductile failure mode & Intermediate failure mode in T-Stub profiles [14 ] 

Where; 

𝐹𝐹𝑇𝑇,𝑅𝑅𝑅𝑅   is the design tension resistance of T-stub 

Q     is the prying force 

𝑀𝑀𝑝𝑝𝑝𝑝,1,𝑅𝑅𝑅𝑅  = 
0.25 ∑ 𝑝𝑝𝑒𝑒𝑒𝑒𝑒𝑒,1𝑡𝑡𝑒𝑒

2

𝛾𝛾𝑀𝑀0
  

𝑀𝑀𝑝𝑝𝑝𝑝,2,𝑅𝑅𝑅𝑅  = 
0.25 ∑ 𝑝𝑝𝑒𝑒𝑒𝑒𝑒𝑒,2𝑡𝑡𝑒𝑒

2

𝛾𝛾𝑀𝑀0
  

n  = e min   but   n ≤ 1.25m 

tf   is thickness of the T-Stub flange 
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fy  is the yield strength of the T-Stub flange  

𝛾𝛾𝑀𝑀0  is partial safety factor for the resistance of flange (recommended value: 𝛾𝛾𝑀𝑀0 = 1) 

∑𝑙𝑙𝑒𝑒𝑒𝑒𝑒𝑒,1  is value of  𝑙𝑙𝑒𝑒𝑒𝑒𝑒𝑒,1for Mode 1 

∑𝑙𝑙𝑒𝑒𝑒𝑒𝑒𝑒,2  is value of  𝑙𝑙𝑒𝑒𝑒𝑒𝑒𝑒,2for Mode 2 

∑𝐹𝐹𝑡𝑡,𝑅𝑅𝑅𝑅   is the sum of design resistance 𝐹𝐹𝑡𝑡,𝑅𝑅𝑅𝑅 =  0.9 𝐴𝐴𝑠𝑠 𝑒𝑒𝑢𝑢𝑏𝑏
𝛾𝛾𝑀𝑀2

 of all bolts in T-Stub 

As   is the tensile stress area of the bolts 

fub  is the ultimate strength of the bolts 

𝛾𝛾𝑀𝑀2  is the partial resistance factor of the bolts (recommended value 𝛾𝛾𝑀𝑀2 = 1.0) 

e min, m and tf  are shown in Figure 2.13.  

 

 

Figure 2.13: Dimensions of an equivalent T-stub flange [13] 

The effective length (leff) of T-Stub depends on the geometry of T-Stub (number of bolts, stiffener 

probability, the distance of bolts to the edges [2]. Different values of effective length, as shown in 

Table 2.3 and Table 2.4 for end plate in bending and stiffened column flange in bending 

respectively, are linked with the following types of yield patterns: (i) individual non circular yield 

patterns, (ii) individual circular yield patterns, (iii) group non circular yield patterns, (iv) group 

circular yield patterns. 
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Establishment of prying forces in T-Stub leads to individual non circular yield line pattern. 

Depending on β values, failure mode 1, 2 or 3 may arise, as shown in Figure 2.14 where 

𝛽𝛽 =  4 𝑀𝑀𝑝𝑝𝑝𝑝,1,𝑅𝑅𝐸𝐸

𝑚𝑚∑𝐹𝐹𝑡𝑡,𝑅𝑅𝐸𝐸 
 =  𝑀𝑀𝑀𝑀𝑅𝑅𝑒𝑒 1

𝑀𝑀𝑀𝑀𝑅𝑅𝑒𝑒 3
   Eq.  8  

 

Figure 2.14: Type of failure depending on the geometry of T-Stub [2] 

 

On the other hand, if the prying forces cannot develop in the T-Stub then individual circular yield 

line pattern develops. In this scenario failure mode 2 cannot occur, as shown in Figure 2.14. 
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Table 2.3: Effective length of end plate [2]  

 

(α should be obtained from Figure 2.15). 

Table 2.4: Effective length for stiffened column flange [2] 

 

(α should be obtained from Figure 2.15).   
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Figure 2.15: Values of α for stiffened column flanges and end-plates [2] 

According to the latter considerations, the resistance of T-Stub will be 

FT,Rd = min (FT,1,Rd ; FT,2,Rd ;  FT,3,Rd ) Eq.  2.9 

for non-circular patterns and 

FT,Rd = min (FT,1,Rd ;  FT,3,Rd )   Eq.  2.10 

for circular patterns. 
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3. Finite Element Modeling (FEM) 

The finite element method (FEM), sometimes refers to a finite element analysis (FEA), is a 

powerful tool for computation of complex problems, used to obtain approximate numerical 

solutions. FEM is appropriate to problems throughout continuum mechanics, applied mathematics, 

engineering, and physics [15].  

3.1. FEM elements in ABAQUS 

In this dissertation, to assess the cyclic behaviour of stiffened column flange in bending, finite 

element models were developed in ABAQUS software, version 6.14 [16]. These models aimed to 

perform a parametric analysis to assess the influence of the collapse mode in the cyclic behaviour 

of this basic component.  

A wide range of variety of elements are used in ABAQUS software for different modelling 

analysis. The types of elements available in ABAQUS will be briefly addressed taking into account 

the following features [16]; 

 Family 

 Degree of freedom (directly related to element family) 

 Number of nodes 

 Formulation 

 Integration 

Each type of element contains a unique name in ABAQUS software such as T2D2, S4R, or C3D8I. 

The elements name classifies aforementioned aspect of an element [16]. 

3.1.1. Family 

One of major distinction between different element families is the geometry type of the elements. 

The first letter/letters of an element identify the family that the elements belong, e.g. the C in 

C3D8I exhibits this is a continuum element however, the S in S4R exhibits this is a shell element. 

Following are commonly used element families, as shown in Figure 3.1. 
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Continuum (solid) elements 

 Shell elements 

 Beam elements 

 Rigid elements 

 Membrane elements 

 Infinite elements 

 Spring and dashpots 

 Truss elements 

3.1.2. Degrees of freedom 

The degrees of freedom (DOF) are the fundamental variables which are considered during the 

resolution of the equilibrium equations. For a stress/displacement analysis, the degrees of freedom 

are the translations at each node of each element. Some element families, such as the beam and 

shell families, may also have rotational degrees of freedom as well. 

3.1.3. Number of nodes (Order of interpolation) 

Rotation, displacement, temperature, and other quantities are evaluated only at integration points 

of the element. At any other point in the element, these quantities can be obtained from the 

integration points through interpolation. Interpolation order is defined by the order of the 

polynomial shape functions used for the interpolation, as shown in Figure 3.2. 

 

Figure 3.2: Linear brick, quadratic brick, and modified tetrahedral element [16] 

 

Figure 3.1:  Element families in ABAQUS software [16] 
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3.1.4. Formulation  

An element's formulation denotes to the mathematical theory used to describe the response of an 

element. In the absence of adaptive meshing all of the stress/displacement elements in ABAQUS 

are based on the Lagrangian or material description of behavior: the material linked with an 

element remains linked with the element during the analysis, and material cannot flow across 

element boundaries.  In the alternative Eulerian or spatial description, elements are fixed in space 

as the material flows through them. Eulerian methods are used commonly in fluid mechanics 

simulations. ABAQUS/Standard uses Eulerian elements to model convective heat transfer. 

Adaptive meshing combines the features of pure Lagrangian and Eulerian analyses and allows the 

motion of the element to be independent of the material [16]. 

To accommodate different types of behavior, some element families in ABAQUS include elements 

with several different formulations. For example, the shell element family has three classes: one 

suitable for general-purpose shell analysis, another for thin shells, and yet another for thick shells.  

Some ABAQUS/Standard element families have a standard formulation as well as some 

alternative formulations. Elements with alternative formulations are identified by an additional 

character at the end of the element name. For example, the continuum, beam, and truss element 

families include members with a hybrid formulation in which the pressure (continuum elements) 

or axial force (beam and truss elements) is treated as an additional unknown; these elements are 

identified by the letter “H” at the end of the name (C3D8H or B31H). 

Some element formulations allow coupled field problems to be solved. For example, elements 

whose names begin with the letter C and end with the letter T (such as C3D8T) possess both 

mechanical and thermal degrees of freedom and are intended for coupled thermal-mechanical 

simulations. 

Several are of the most commonly used elements formulation are described in ABAQUS 

documentation. 
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3.1.5. Integration 

ABAQUS software uses numerical system to integrate various quantities over the volume of each 

element. ABAQUS evaluates the material response at each integration point in each element. Some 

elements can use full or partial integration.  

ABAQUS uses the letter “R” at the end of the element name to discriminate reduced-integration 

elements (unless they are also hybrid elements, in which case the element name ends with the 

letters “RH”), shown in Figure 3.3. For example, CAX4 is the 4-node, fully integrated, linear, 

axisymmetric solid element; and CAX4R is the reduced-integration version of the same element.  

 

Figure 3.3: Naming convention of solid elements in ABAQUS [16] 

3.2. Solid Elements 

The solid (or continuum) elements will be used in this dissertation. These elements are 

recommended for complex linear or nonlinear analysis involving contact, plasticity and large 

deformations. 
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3.2.1. Choosing between quadrilateral and tetrahedral mesh element shapes 

With tetrahedral mesh elements it is easy to mesh large complex forms. ABAQUS provides 

automatic meshing algorithmic which makes it easy to mesh very complex geometry. Tetrahedral 

mesh elements are therefore more suited to mesh complex geometries. However, quadrilateral 

mesh element type provides solutions of equal accuracy and at less computer cost. Quadrilateral 

mesh elements are more efficient in convergence than tetrahedral mesh elements. Quadrilateral 

mesh elements perform better if their shapes are approximately rectangular however tetrahedral 

mesh elements don’t depend on initial element geometry. 

3.2.2. Choosing between first-order and second-order elements 

Second-order elements have higher accuracy in ABAQUS/Standard than first-order elements for 

problem solutions that do not involve complex contact conditions, impact, or severe element 

alterations. Second order elements capture stress concentrations more efficiently and are better for 

modelling structures with complex geometries. First-order triangular and tetrahedral elements 

should be avoided in stress analysis problem solution because of the overly stiff nature of elements.  

3.3. Material Model in FEM 

In this dissertation, for steel profiles including HEA 300, bending plate and stiffener, S420 material 

is used while different bolt classes were used. Nominal properties were obtained from EC 3. The 

remainder assumed mechanical properties are shown in Table 3.1, Table 3.2, and Table 3.3. 

Table 3.1: Elastic properties of material 

Density 7.85 x 10-9 tons/mm3 

Young’s modulus 210000 N/mm 2 

Poisson ratio 0.3 - 
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Table 3.2: Plastic properties of material for mild steel 

Material fy (N/mm2) fu (N/mm2) εy εu 
S 420 420 520 0.02 0.15 

 

Table 3.3: Plastic properties of material for bolts. 

Material fy (N/mm2) fu (N/mm2) εy εu 
10.9  900 1000 0.02 0.15 
8.8  640 800 0.02 0.15 
6.8 480 600 0.02 0.15 

 

The material model used for steel in ABAQUS was an elastic-plastic material with isotropic 

hardening and associative flow rule. The input for this material model required by ABAQUS is 

the uniaxial stress-strain relation. 

Since ABAQUS will incorporate the reduction in area by itself due to the Poisson effect, True 

Stress-True Strain relations for uniaxial behaviour of steel are required. The stress-strain relation 

gathered from coupon tests are valid up to the necking point, after which the materials seems to 

soften but it actually hardens because of the fact that after necking significant reduction in cross-

sectional area takes place which results in reduction in material resistance hence the stress values 

goes down but actually material continues hardening till fracture. 

True Stress-True Strain relations were computed from the engineering stress-strain relations shown 

in Figure 3.4 through (Eq.  3.1) and (Eq.  3.2) from EN 1993-1-5. The plastic strain was computed 

using Eq.  3.3, where “Ϭtrue” true stress, “Ɛ true” true strain, “Ϭengg” engineering stress, “Ɛengg” 

engineering strain, “Ɛ pl” plastic strain and “E” slope of linear elastic range 
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Figure 3.4: Stress vs strain 

Ϭtrue = ϭ engg (1+ Ɛ)  Eq.  3.11 

Ɛ true = ln (1+ Ɛengg)  Eq.  12 

Ɛ pl = ln (1+ Ɛengg) - 
Ϭ𝑡𝑡𝑟𝑟𝑡𝑡𝑒𝑒
𝐸𝐸

 Eq.  13 

Aforementioned formulas were used up to the maximum load. After the maximum load of 

engineering stress, the curve was considered ascending till fracture. 

3.4. Constrain and Contact Interaction 

In ABAQUS, different components of model interact with each other by continuity links so-called 

constraints (e.g. between beam flange and the end plate) or defining contact properties so-called 

interactions (e.g. between the end plate and column flange, between bolts and the end plate or 

column flange).  

The beam flange elements and stiffener elements were constrained to the end plate and column 

respectively by a “tie constraint” that use the concept of master and slave nodes to define the same 

degree of freedom between both. The column edges elements were constrained with reference 

points for supports by “coupling constraint”, using same master and slave philosophy, the degrees 
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of freedom of the dependent nodes are eliminated; the two surfaces will have the same values of 

their degrees of freedom. 

 The interaction between the end plate and column flange, and the interaction between bolts and 

the column flange or the end plate were imposed by the general contact algorithm, which used 

“hard contact” formulation, using the penalty method to approximate the hard pressure overclosure 

behaviour (normal behaviour) that acts in the normal direction to resist penetration. Friction 

coefficient 0.2 was used to imposed “Tangential behaviour”. 

ABAQUS divides the problem history into steps. A step is any convenient phase of the history 

and, in its simplest form, a step can be just a static analysis, a load change from a magnitude to 

another, an initial pre-stress operation of a part of the structure or the change of a boundary 

condition in the model.  

In this particular case, the solution of the problem is obtained in 3 steps. The first step is used to 

formulate the boundary conditions and prepare the contact interactions defined previously.  

The second step corresponds to the pre-loading of the bolts using the adjust length option and 

determining the length magnitude by the elastic elongation needed to produce the required amount 

of force in the bolts, normally a percentage of the ultimate strength. Figure 3.5 shows the plane 

where the adjust length option is applied.  

In the third step the bolts current length is fixed so the magnitude is computed during the analyses. 

This option allows maintaining the pre-defined load in the bolts during the third step. It is in the 

third step that the pushover begins, changing the boundary conditions on the tip of the cantilever 

by imposing a displacement in the boundary condition parallel to the beam web. 
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Figure 3.5: Bolts pre-loading plane [11] 

3.5. Loading 

The models were loaded following protocol which consisted of an imposed displacement applied 

at the beam flange end, according to scheme shown in Figure 4.5. All models were prepared to 

deal with monotonic loads and cyclic loads. The “loads” were applied in a displacement control 

approach, i.e. a displacement is imposed at the tip of beam flange, see Figure 4.5. The loading 

protocol is defined by the direction (along the three global axis, although in this dissertation only 

the YY axis direction was used), with same orientation but for cyclic loads, amplitude of the 

displacement and number of cycles are detail discussed in next chapter. 
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4. Numerical Model 

4.1. Simplified Model Geometry and Boundaries 

In order assess rigorously the internal forces transmitted to the column flange in bending instead 

of modelling the entire beam-to-column joint only the tension region of the joint was modelled 

and the beam web was not considered either, see Figure 4.1. 

 

Figure 4.1: Tension part of beam-to-column joint 

The analytical program, herein presented, consists in the analysis of the cyclic behaviour of the 

components namely, according to EC 3, “column flange in bending”, “end plate in bending” and 

“bolts in tension”. However, the results are obviously of concern for T-stub connections which are 

not directly covered by EC 3.  

To predict the response of T-stub of column flange under cyclic loading, four models were 

constructed on ABAQUS software 6.14, based on “β”, which is ratio of failure mode 1 to failure 

mode 2. Bolt grades were changed from 10.9 to 6.8 and in one model bolt size was decreased from 
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M36 to M30 with grade 10.9 to achieve different mode ratios. Whole model is consisting of column 

profile (HEA 300), bending plate, stiffeners, and bolts, see in Figure 4.2.  

 

Figure 4.2: 3D view of the tension region of the beam-column joint 

4.2. Parametric Analysis 

The parametric analysis performed aimed to assess the influence of the ratio between the mode 1 

and mode 2 of the failure loads of the T-stub corresponding of column flange in bending according 

to EC 3-1-8 model. Accordingly, a ratio β was considered  

𝛽𝛽 = 𝐹𝐹𝑇𝑇,1 
𝐹𝐹𝑇𝑇,2,

  Eq. 14.1 
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where FT,1  and FT,1  were computed using expressions Eq. 2.5 and Eq. 2.6, respectively. Bolt 

grades were changed from 10.9 to 6.8 and in one model bolt size was decreased from M36 to M30 

with grade 10.9 to achieve different mode ratios. Whole model is consisting of column profile 

(HEA 300), bending plate, stiffeners, beam flange and bolts, see Figure 4.2. 

The models were also defined in order that the failure mode 3 in column flange in bending is 

always higher than the lower of failure modes 1 and 2. The end plate thickness and the beam flange 

was also defined to be strong enough to avoid failure modes 1 and 2 in the end plate as well as in 

the beam flange in tension.  

4.3. FEM Model Construction 

A brief description of model construction in ABAQUS is presented in the following sections 

together with some more details about the models. 

4.3.1. Part Module 

In this module, geometry of each part of the model was defined independently using the measures 

provided in Figure 4.3. the model comprises 5 parts that were drawn independently using the 

procedure shown in Table 4.1. 

Table 4.1: Description of the procedures used to draw the parts of the model. 

Modelling space 3D 
Type Deformation 
Base feature Shape Solid 

Type Extrusion 
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Figure 4.3: Geometrical description of the components 

 

4.3.2. Property Module 

In property module, the material model described in section 3.3 are assigned to each part of the 

model according to Table 4.2. 

Table 4.2: Material assigned to the parts of the model 

Material properties Component of the model 

S 450 HEA 300 
End plate 

10.9 Grade M36/M30 
8.8 Grade M36 
6.8 Grade M36 
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Elastic and plastic properties of material were also introduced in this module, discussed in previous 

chapter. 

4.3.3. Assembly Module 

Each component´s geometry was defined independently, for the assembly of T-stub components, 

this module was used, shown in following Figure 4.4. 

 

Figure 4.4: Description of assembly module of a  model. 

 

4.3.4. Step Module 

Standard general-static step was used to analysis the response of T-stub under monotonic loading 

condition and cyclic loading condition.  

History output request manager used to identify force and displacement at a specific point in beam 

flange. 

ABAQUS divides the problem history into steps. A step is any convenient phase of the history 

and, in its simplest form, a step can be just a static analysis, a load change from a magnitude to 
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another, an initial pre-stress operation of a part of the structure or the change of a boundary 

condition in the model.  

In this particular case, the solution of the problem is obtained in 3 steps. The first step is used to 

formulate the boundary conditions and prepare the contact interactions defined previously.  

The second step corresponds to the pre-loading of the bolts using the adjust length option and 

determining the length magnitude by the elastic elongation needed to produce the required amount 

of force in the bolts, normally a percentage of the ultimate strength. Figure 3.5 shows the plane 

where the adjust length option is applied.  

In the third step the bolts current length is fixed so the magnitude is computed during the analyses. 

This option allows maintaining the pre-defined load in the bolts during the third step. It is in the 

third step that the pushover begins, changing the boundary conditions on the tip of the cantilever 

by imposing a displacement in the boundary condition parallel to the beam web. 

4.3.5. Interaction Module 

The models were comprised of many parts presented in Figure 4.2, those parts were interacted 

with each other through constraints and/or interactions.  

For bolt to steel surface (end plate and HEA 300) and end plate to HEA 300, general contact was 

used with friction coefficient of 0.2 in tangential behaviour and hard contact was used for 

specifying normal behaviour in contact property option.  

Coupling and tie constraints were adopted for boundaries definition and welded parts (beam flange 

to end plate and stiffener to column profile) respectively. 

Three reference points were selected from model and were coupled using kinematic coupling type 

with all degree of freedom constrained with surface of T-stub, shown in Figure 4.5. 
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Figure 4.5: Description of interaction module of a model. 

 

4.3.6. Load Module 

The reference points RP1 and RP2 were restrained using displacement/rotation boundary type with 

all the displacements and rotation fixed. The reference point RP3 was allowed to have a uniform 

displacement along the Y-axis of the model, see Figure 4.6. 

The displacement in RP3 was increased monotonically until failure of the model for monotonic 

loading condition. For cyclic loading condition the loading protocol presented in section 4.4 was 

imposed in RP3. 

To minimize the lack of convergence issues encountered a preload was assign to the bolts detail 

discussed in 3.4 section.   
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Figure 4.6: Description of load module of a model. 

4.3.7. Mesh Module 

The C3D8R linear brick element with 8-node, reduced integration, hourglass control of the 

ABAQUS element library was used for meshing all of the components of the models. To overcome 

the hourglass issue at least 2 layers were considered in the thickness of the end plates and column 

flanges of the models, shown in Figure 4.7. Approximate global size of 10 mm [11], was used for 

all components but around bolt holes, mesh size was reduced to avoid convergence problems. 

Figure 4.7 shows the meshes used in all the parts of the model  
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Figure 4.7: FEM mesh of the  parts of the model, a) end plate, b) HEA 300, c) beam flange, d) bolt, and e) stiffener 

 

4.3.8. Visualization Module 

The visualization module was used for getting response of the models. Equivalent plastic strain 

(PEEQ) and maximum stress (S, Mises) provided by ABAQUS are shown in Figure 4.8 and Force 

- Displacement relationship is shown in Figure 4.9. 

. 



European Erasmus Mundus Master 

Sustainable Constructions under natural hazards and catastrophic events 

520121-1-2011-1-CZ-ERA MUNDUS-EMMC 

 

 

40 
 

 

Figure 4.8: Von Misses stresses and equivalent plastic strains visualization in visualization module of ABAQUS. 

  

Figure 4.9: Force displacement curve in visualization module  of  ABAQUS 

4.2. Loading Protocol  

For computation of cyclic behaviour of joints in MRFs, quasi-static loading protocol has been 

defined in the EQUALJOINTS project in terms of interstorey drifts. These drifts were computed 

based in drift demands from nonlinear time history analyses of moment resisting frames (MRFs), 
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dual eccentrically braced frames (D-EBFs) and dual concentrically braced frame (D-CBFs) 

typologies [3]. The simplified protocol is given in Table 4.3. 

Table 4.3: Simplified loading protocol [3] 

no. of 

cycles 

drift angle θ 

(rad) 

6 0.004 

6 0.006 

4 0.010 

2 0.015 

2 0.020 

2 0.030 

2 0.040 

 

The protocol can be continued after the maximum cycle of 0.040 rad by further loading at 

increments of 0.01 rad, with two cycles of loading at each step, as long as the state of the specimen 

permit. 

Assuming in the safe side that [3]: 

(i) The entire drift arises from the connection, i.e. the beam and columns are rigid and there 

is no deformation in the CWS; 

(ii) The connection internal arm is “z” (assume it to be equal to the distance between the beam 

flange centerlines; 435.4 mm); 

(iii) Compression components deformation is negligible (compression components are much 

stiffer than the tensile components); 

The relation between the maximum drift angle (θ) and the deformation in the tension components 

(δ) is δ = z × tan (θ) and the compression deformation is null. Accordingly, the load quasi static 

load protocol to is considered in Table 4 4 and is represented in Figure 4.10. 
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Table 4 4: Loading protocol for the T-stub [3] 

no. of 

cycles 

maximum tensile 

deformation z (m) 

6 z × tan(0.004) 

6 z × tan(0.006) 

4 z × tan(0.010) 

2 z × tan(0.015) 

2 z × tan(0.020) 

2 z × tan(0.030) 

2 z × tan(0.040) 

 

δ

...
number 
of cycles

z tan(0.004)
z tan(0.006)
z tan(0.010)
z tan(0.015)

 

Figure 4.10: Loading protocol for a T-stub [3] 
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5. Results and Discussion 

In this section, the full details about the models are provided and the monotonic and cyclic analysis 

of their behaviour and the column flange in particular is presented.  

5.1. FEM Models Definition 

Four models were built in ABAQUS for different values of β for column flange in bending in the 

range [0.75;1.25]. These models were obtained by changing the material and geometrical 

properties of bolts.  

Having into account the EC3-1-8 provisions presented in section 2.3.1, for the geometry 

represented in Figure 4.3, only plastic collapse mechanism for individual bolts are possible and 

thus for the computation of the effective length of the T-stub the bolts need only to be considered 

individually – with circular and non-circular patterns for the yield lines. Accordingly, Table 5.1 

presents the effective length for the column flange in bending. 

Table 5.1: Effective length for a stiffened column flange in a bolted connection. 

Bolt row location 

Bolt row considered individually 

Circular patterns   
leff, cp (mm) 

Non circular 
patterns 

leff, nc (mm) 

Bolt row adjacent to a 
stiffener 2πm αm 

274.89 262.5 
For Mode 1: l eff, 1 = l eff, nc but l eff, 1 ≤ l eff, cp 262.5 
For Mode 2: l eff, 2 = l eff, nc  262.5 

m = 43.75 mm e1 = 75 mm m2 = 52 mm λ1 = m/(m+e) 0.4 α = 6 

 

Tables 5.3, 5.4, 5.5 and 5.6 present the mechanical properties and the bolt sizes for the models 

considered in the parametric analysis. These tables also present the strength of these models for 

the three collapse modes considered in EC3-1-8 for the T-Stub model.  
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Table 5.2: Strength of column flange in bending - model 1. 

∑leff, 1 = 1050 mm   fub = 1000 N/mm2 
∑leff, 2 = 1050 mm   db = 36 mm 

tf = 14 mm   As = 1017.36 mm2 
fy = 420 N/mm2   bolts no.= 4   
m = 43.75 mm   γM 2 = 1   

e 1 = n = 75 mm   k2 = 0.9   
γM 0 = 1           

Mpl 1, Rd = 21.61 kNm   Ft, Rd = 915.624 kN 
Mpl 2, Rd = 21.61 kNm   ∑Ft, Rd = 3662.496 kN 
F T,1, Rd = 1975.68 kN         
F T, 2, Rd = 2677.10 kN         
F T,3, Rd = 3662.50 kN         

              
F T, Rd = 1975.68 kN   β = F T,1, Rd / F T, 2, Rd = 0.74 

 

Table 5.3: Strength of column flange in bending - model 2. 

∑leff, 1 = 1050 mm   fub = 800 N/mm2 
∑leff, 2 = 1050 mm   db = 36 mm 

tf = 14 mm   As = 1017.36 mm2 
fy = 420 N/mm2   bolts no.= 4   
m = 43.75 mm   γM 2 = 1   

e 1 = n = 75 mm   k2 = 0.9   
γM 0 = 1           

Mpl 1, Rd = 21.61 kNm   Ft, Rd = 732.4992 kN 
Mpl 2, Rd = 21.61 kNm   ∑Ft, Rd = 2929.9968 kN 
F T,1, Rd = 1975.68 kN         
F T, 2, Rd = 2214.47 kN         
F T,3, Rd = 2930.00 kN         

              
F T, Rd = 1975.68 kN   β = F T,1, Rd / F T, 2, Rd = 0.89 
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Table 5.4: Strength of column flange in bending - model 3. 

∑leff, 1 = 1050 mm   fub = 600 N/mm2 
∑leff, 2 = 1050 mm   db = 36 mm 

tf = 14 mm   As = 1017.36 mm2 
fy = 420 N/mm2   bolts no.= 4   
m = 43.75 mm   γM 2 = 1   

e 1 = n = 75 mm   k2 = 0.9   
γM 0 = 1           

Mpl 1, Rd = 21.61 kNm   Ft, Rd = 549.3744 kN 
Mpl 2, Rd = 21.61 kNm   ∑Ft, Rd = 2197.4976 kN 
F T,1, Rd = 1975.68 kN         
F T, 2, Rd = 1751.83 kN         
F T,3, Rd = 2197.50 kN         

              
F T, Rd = 1751.83 kN   β = F T,1, Rd / F T, 2, Rd = 1.13 

 

Table 5.5: Strength of column flange in bending - model 4. 

∑leff, 1 = 1050 mm   fub = 800 N/mm2 
∑leff, 2 = 1050 mm   db = 30 mm 

tf = 14 mm   As = 706.5 mm2 
fy = 420 N/mm2   bolts no.= 4   
m = 43.75 mm   γM 2 = 1   

e 1 = n = 75 mm   k2 = 0.9   
γM 0 = 1           

Mpl 1, Rd = 21.61 kNm   Ft, Rd = 508.68 kN 
Mpl 2, Rd = 21.61 kNm   ∑Ft, Rd = 2034.72 kN 
F T,1, Rd = 1975.68 kN         
F T, 2, Rd = 1649.03 kN         
F T,3, Rd = 2034.72 kN         

              
F T, Rd = 1649.03 kN   β = F T,1, Rd / F T, 2, Rd = 1.20 
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As already pointed out, to minimize the interaction between the failures modes of the column 

flange in bending and the failure of the remainder components, the remainder components were 

made stronger than the column flange in bending. In particular, the beam end plate was defined 

thick enough to guarantee that the lower collapse mode according to the T-stub model is the mode 

3. Table 5.6 presents the computation of the effective length for the beam end plate and Tables 

5.7, 5.8, 5.9 and  5.10 represent the strength of the three collapse models of the corresponding T-

stub model showing that, for each model, the strength of collapse mode 1 and 2 in the beam end 

plate is always greater than the strength of mode 3 and is always greater than the strength of the 

weakest collapse modes of the column flange in bending. 

Table 5.6: Effective length for end plate in a bolted connection 

Bolt-row 
location 

Bolt row considered individually 

Circular patterns  
 leff, cp (mm) 

Non circular patterns       
leff, nc (mm) 

Bolt row 
outside 
tension 

flange of 
beam 

Smallest of:  
2πmx 
πmx + w 
πmx + 2e  

Smallest of: 
4mx  + 1.25ex 
e+2mx + 0.625ex 
0.5bp 
0.5w + 2mx + 0.625ex 

285.77 150 
For Mode 1: l eff, 1 = l eff, nc but l eff, 1 ≤ l eff, cp 150 
For Mode 2: l eff, 2 = l eff, nc  150 
mx = 46.4 mm  w = 150 mm ex = 70 mm bp = 300 mm 
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Table 5.7: Strength of beam end plate - model 1. 

∑leff, 1 = 600 mm   fub = 1000 N/mm2 
∑leff, 2 = 600 mm   db = 36 mm 

tf = 55 mm   As = 1017.36 mm2 
ff = 420 N/mm2   bolts no.= 4   
m = 46.4 mm   γM 2 = 1   

e x = n = 70 mm   k2 = 0.9   
γM 0 = 1           

Mpl 1, Rd = 190.58 kNm   Ft, Rd = 915.624 kN 
Mpl 2, Rd = 190.58 kNm   ∑Ft, Rd = 3662.496 kN 
F T,1, Rd = 16428.88 kN         
F T, 2, Rd = 5477.02 kN         
F T,3, Rd = 3662.50 kN         

              
F T, Rd = 3662.50 kN      

 

Table 5.8: Strength of beam end plate - model 2. 

∑leff, 1 = 600 mm   fub = 800 N/mm2 
∑leff, 2 = 600 mm   db = 36 mm 

tf = 55 mm   As = 1017.36 mm2 
ff = 420 N/mm2   bolts no.= 4   
m = 46.4 mm   γM 2 = 1   

e x = n = 70 mm   k2 = 0.9   
γM 0 = 1           

Mpl 1, Rd = 190.58 kNm   Ft, Rd = 732.4992 kN 
Mpl 2, Rd = 190.58 kNm   ∑Ft, Rd = 2929.9968 kN 
F T,1, Rd = 16428.88 kN         
F T, 2, Rd = 5036.51 kN         
F T,3, Rd = 2930.00 kN         

              
F T, Rd = 2930.00 kN      
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Table 5.9: Strength of beam end plate - model 3. 

∑leff, 1 = 600 mm   fub = 600 N/mm2 
∑leff, 2 = 600 mm   db = 36 mm 

tf = 55 mm   As = 1017.36 mm2 
ff = 420 N/mm2   bolts no.= 4   
m = 46.4 mm   γM 2 = 1   

e x = n = 70 mm   k2 = 0.9   
γM 0 = 1           

Mpl 1, Rd = 190.58 kNm   Ft, Rd = 549.3744 kN 
Mpl 2, Rd = 190.58 kNm   ∑Ft, Rd = 2197.4976 kN 
F T,1, Rd = 16428.88 kN         
F T, 2, Rd = 4596.00 kN         
F T,3, Rd = 2197.50 kN         

              
F T, Rd = 2197.50 kN      

 

Table 5.10: Strength of beam end plate - model 4. 

∑leff, 1 = 600 mm   fub = 1000 N/mm2 
∑leff, 2 = 600 mm   db = 30 mm 

tf = 55 mm   As = 706.5 mm2 
ff = 420 N/mm2   bolts no.= 4   
m = 46.4 mm   γM 2 = 1   

e x = n = 70 mm   k2 = 0.9   
γM 0 = 1           

Mpl 1, Rd = 190.58 kNm   Ft, Rd = 635.85 kN 
Mpl 2, Rd = 190.58 kNm   ∑Ft, Rd = 2543.4 kN 
F T,1, Rd = 16428.88 kN         
F T, 2, Rd = 4804.02 kN         
F T,3, Rd = 2543.40 kN         

              
F T, Rd = 2543.40 kN      
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5.2. Monotonic Behaviour 

For monotonically loaded models, an imposed displacement was applied in the boundary 

conditions as described in previous chapter, the solution was obtained in 3 steps.  

First step was used to formulate the boundary conditions and interactions, as explained in the 

previous chapters. The second step was used to for the pre-loading of the bolts, using the adjust 

length option and calculation the length magnitude by the elastic elongation needed to simulate 

the required amount of force in the bolts, 80 % of the bolt yield axial force was used. Finally, in 

third step, a pushover analysis was performed.  

5.2.3. Column Flange in Bending 

The main objective of monotonic analysis was to compare the strength of the column flange in 

bending of the FEM with strength to be expected according to the T-stub model from EC3-1-8 and 

presented in section 5.2.1.  

During the course this work was not possible to reach the collapse of the FEM models due to 

convergence issues. Accordingly, the strength computed according to EC3-1-8 was compared with 

the internal force corresponding to the end of the elastic regime in the FEM models. 

To identify the response of column flange models from numerical analysis, applied monotonic 

loads were gathered from the FEM model and deformation (δ) of T-stub models were computed 

by subtracting the deformation (U) at column´s web from the average deformation (U1+U2)/2 at 

bolt holes, shown in Figure 5.1 has suggested by Hugo [11].  
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Figure 5.1: Predefine nodes to assess the deformation of column flange in bending [11] 

The force corresponding to the elastic regime was assumed to correspond to the point of 

intersection of the two straight lines arising from bilinear approximation [17] of the force 

displacement curves, shown in Figure 5.2, Figure 5.3, Figure 5.4, and Figure 5.5 - the bilinear 

approximation was derived through regression analysis. For regression analysis, two lines were 

drawn, blue and orange lines, on a Force-Deformation curved of models, taking into account that 

blue line should characterize the part of the load-deformation curve before the yielding 

(approximately 55% of maximum load, obtained through F-δ curve) and the orange line should 

characterize the part of the curve after the yielding.  

Figure 5.6 compares the monotonic behaviour of the column flange in bending from all the models 

and Table 5.11 shows the comparison of the elastic limit computed as mentioned in the formed 

paragraph with the strength of the column flange in bending computed using the T-Stub model for 

EC3-1-8. 
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Figure 5.2: Force-Deformation curve and bilinear approximation for the column flange in bending in model 1 

 

Figure 5.3: Force-Deformation curve and bilinear approximation for the column flange in bending in model 2 
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Figure 5.4: Force-Deformation curve and bilinear approximation for the column flange in bending in model 3 

 

Figure 5.5: Force-Deformation curve and bilinear approximation for the column flange in bending in model 4 
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Figure 5.6: Force-Deformation curves for the column flange in bending 

 

Table 5.11: Comparison of T-stub response obtained from EC3-1-3 and numerical models 

Model Bolt Failure 
Mode 

EC3-1-8 Analytical 
Results Deviation 

Ft, Rd (kN) β Ft, Rd (kN) % 
1 M36 (10.9) Mode 1 1975.68 0.74 1341.12 32.17 
2 M36 (8.8) Mode 1 1975.68 0.89 1337.00 32.33 
3 M36 (6.8) Mode 2 1751.83 1.13 1260.51 28.05 
4 M30 (10.9) Mode 2 1649.03 1.2 1223 25.78 

 

Having into account that the T-Stub models considered in EC3-1-8 rely in the formation of a plastic 

mechanism to compute their strength it is expected that the strength computed using these 

simplified T-Stub models to be higher than the force corresponding to the end of the elastic regime 

computed as explained previously and shown in Figure 5.2, Figure 5.3, Figure 5.4, and Figure 5.5. 

The results in Table 5.11 confirm these expectation showing that the strength computed from the 
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of the column flange in bending in the FEM models. 
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Figure 5.6 shows that the smaller the β, the stiffer the column flange in bending, however the 

differences between the four models are small. To assess the influence of the β parameter in the 

shape of the force-deformation relation of the column flange in bending the curves shown in Figure 

5.6 was normalizing by getting the maximum forces of each curves in the range [0, 10] mm and 

dividing the forces in that range by that force, see Figure 5.7. It reveals that no huge variances are 

to be predicted from the normalized curves. 

 

Figure 5.7: Normalized Force-Deformation curves for monotonically loaded models 
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5.2.4. Overall Model 

Figure 5.8 shows the force-deformation relations for the FEM models where the forces and 

deformations were both gathered from RP3 in the FEM models. These curves characterize the 

behaviour of the entire tension region of the beam-to-column joint. i.e. the beam flange in tension, 

the end plate in bending, the bolts in tension, the column flange in bending and the column web in 

tension (with the stiffener) – actually the column in bending is also considered. Figure 5.8 shows 

that the smaller the β the stiffer the tension region, however the differences between the four 

models are small. 

 

Figure 5.8: Force-Displacement curves for monotonically loaded model of joints 

Figure 5.9 shows the normalized force vs. displacement relation for the four models – the 

normalization was performed using the same procedure used for the force vs deformations of the 
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Figure 5.9: Normalized Force-Displacement curves for monotonically loaded model of joints 

In Figure 5.10, the Von Mises stresses are drawn, emphasizing the formulation of failure modes, 

as predicted the complete yielding of column flange or partial yielding of column flange for failure 

mode 1 or failure mode 2 respectively. In Figure 5.10, on left hand sides, whole model is shown 

while on right hand side, column flange strength is shown.  
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Model 2 
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Figure 5.10:Von Mises stress for monotonically loaded models 
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5.3. Cyclic Behaviour 

The cyclic analysis of the FEM models followed the same procedure as described for 

monotonically loaded models. The load history was applied imposing the load protocol described 

in section 4.2 to the RP3.  

Again, due to convergence issues, in the course of the present work it was not possible to reach 

the collapse of the models. This way, the cyclic behavior of the models was studied only for the 

first 24 cycles of the loading protocol defined in section 3.5. 

5.3.1. Column Flange in Bending 

Figure 5.11, Figure 5.12, Figure 5.13, and Figure 5.14 show the cyclic and the monotonic force 

vs. deformation of the column flange in bending of the four models described in section 5.1. 

 

Figure 5.11: Force-Deformation curves for the column flange in bending under cyclic and monotonic loads – model 1.  
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Figure 5.12: Force-Deformation curves for the column flange of Model 2 under cyclic and monotonic loads 

 

Figure 5.13: Force-Deformation curves for the column flange of Model 3 under cyclic and monotonic loads 
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Figure 5.14: Force-Deformation curves for the column flange of Model 4 under cyclic and monotonic loads 
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Figure 5.15: Force-Deformation curves for the column flange of All Models under cyclic loads 
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Figure 5.16: Normalized Force-Displacement curves for cyclic loaded models 
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Table 5.12: Energy dissipation for the column flange in bending (J). 

No. of 
Cycles 

Model 1 Model 2 Model 3 Model 4 
 In the 
cycles ∑ In the 

cycles ∑  In the 
cycles ∑  In the 

cycles ∑ 

0-6 76.79 76.79 76.79 76.79 76.79 76.79 17.02 17.02 
7-12 235.84 312.63 220.80 297.58 198.56 275.35 65.79 82.81 

13-18 305.73 618.36 371.44 669.02 301.95 577.30 688.58 771.40 
19-24 8939.60 9557.96 9235.12 9904.15 8842.59 9419.89 10332.10 11103.49 

 

 

Figure 5.17: Energy dissipation in the column flange in bending.  
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Figure 5.18: Accumulative energy dissipation in the column flange in bending. 

Table 5.13, Figure 5.19 and Figure 5.20 present the energy dissipation computed making use of 

the normalized force vs deformation curves for the column flange in bending to remove the effect 

of the strength of each model. Roughly, the same conclusion gathered from Table 5.12, Figure 

5.17 and Figure 5.18 apply. 

Table 5.13: Normalized energy dissipation for the  column flange in bending 

No. of 
Cycles 

Model 1 Model 2 Model 3 Model 4 
In the 
cycles ∑ 

In the 
cycles ∑ 

In the 
cycles ∑ 

 In the 
cycles ∑ 

0-6 0.05 0.05 0.05 0.05 0.05 0.05 0.01 0.01 
13-18 0.15 0.20 0.14 0.19 0.13 0.18 0.04 0.05 
7 12 0.19 0.39 0.24 0.43 0.20 0.37 0.45 0.51 

19-24 5.96 6.35 5.88 6.30 5.71 6.09 6.78 7.29 
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Figure 5.19: Normalized energy dissipation for the column flange in bending 

 

Figure 5.20: Accumulative normalized energy dissipation for the column flange in bending 
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5.3.2. Overall Model 

Figure 5.21 shows the force-deformation relations for the FEM models where the force and 

deformation were both gathered from RP3 in the FEM models. As already stated, these curves 

characterize the behaviour of the entire tension region of the beam-to-column joint. i.e. the beam 

flange in tension, the end plate in bending, the bolts in tension, the column flange in bending and 

the column web in tension (with the stiffener). 

 

Figure 5.21: Force-Displacement curves for cyclic loaded models 

Figure 5.22 represent the normalized form of Force-Displacement curves obtained using a 

procedure similar to the one used for the force vs deformation curves of the column flange in 

bending. 
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Figure 5.22: Normalized  Force-Displacement curves for cyclic loaded models 

 Both Figure 5.21 and Figure 5.22 show that the parameter β has a smaller influence in the overall 

behaviour of the tension zone of the beam-to-column joint. This means that, e.g. the larger 

deformation shown by the column flange in bending in Figure 5.15 are compensated with smaller 

deformation in other parts of the tension region. 

Table 5.14, Figure 5.23 and Figure 5.24 shows energy dissipation by the entire joint models. For 
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loading conditions, β is inversely proportional to energy dissipated by entire joint.  
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Table 5.14:  Energy dissipation for the entire joint model (J). 

No. of 
Cycles 

Model 1 Model 2 Model 3 Model 4 
In the 
cycles ∑ 

In the 
cycles ∑ 

In the 
cycles ∑ 

In the 
cycles ∑ 

0-6 261.5 261.5 261.5 261.5 261.5 261.5 57.3 57.3 
7-12 380.6 642.1 337.7 599.2 350.7 612.2 207.2 264.5 
13-18 764.6 1406.7 989.7 1588.9 763.0 1375.3 913.9 1178.5 
19-24 28621.6 30028.3 27914.5 29503.4 25352.7 26727.9 25473.8 26652.3 

 

 

Figure 5.23: Energy dissipation by entire joint models. 
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Figure 5.24: Accumulative energy dissipation by entire joint models. 
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6. Conclusions and Recommendations for Future works 

6.1. Conclusions 

In this thesis, a FEM analysis was undertaken to assess the monotonic and cyclic behaviour of the 

component stiffened column flange in bending in steel beam-to-column joints. A parametric 

analysis was accomplished where a β parameter corresponding to the ratio of the strength of mode 

1 and mode 2 of the equivalent T-Stub model suggested by EN1993-1-8 was changed in the range 

[0.75, 1.25]. 

The analysis encountered convergence issues that prevented the collapse load being reached in the 

monotonic and in the cyclic analysis. 

The comparison of the collapse load of the stiffness column flange in bending according to the 

equivalent T-Stub model and the behaviour of the FEM models that the collapse loads of the 

equivalent T-Stub model are 25-35% higher than the elastic limits of the FEM models. 

The FEM models of the stiffened column flange in bending showed that, along the first 24 cycles 

of the loading protocol developed in the EQUALJOINTS project no strength degradation, no 

stiffness degradation and no pinching effects are to be expected from this component. 

The parametric analysis showed that the β parameter has a small influence in the behaviour of the 

stiffened column flange in bending. It was found that higher β parameters may lead to larger energy 

dissipation capacity but the trend is not clear. 

Finally, the comparison of the energy dissipation in the column flange in bending and in the overall 

model showed that the column flange in bending contributes to 30-45% dissipation of energy of 

entire tension region of the joint. 
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6.2. Recommendations for Future works 

The bounds imposed by time requirements prevented a deeper analysis of the subjects accounted 
for in this thesis. For future works, it is believed that the following issues should be addressed: 

• Use material models that take into account a combination of kinematic and isotropic flow 

rules to simulate the cyclic behavior of the steel more accurately; 

• Perform experimental tests to calibrate the numerical models; 

• Solve the convergence issues encountered that prevented from reach the collapse of the 

models; 

• Assess the combined effect of the formation of modes 1 and 2 in end plate and column 

flange; 

• Assess the performance of the column flange in bending using a complete beam-column 

joint model to evaluate the effect of the redistribution of internal forces in the impact of the 

response of this component and to assess its actual demand; 
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