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Abstract

The De Broglie relation is revisited in connection with an ab initio relativistic description of

particles and waves, which was the same treatment that historically led to that famous relation. In

the same context of the Minkowski four-vectors formalism, we also discuss the phase and the group

velocity of a matter wave, explicitly showing that, under a Lorentz transformation, both transform

as ordinary velocities. We show that such a transformation rule is a necessary condition for the

covariance of the De Broglie relation, and stress the pedagogical value of the Einstein-Minkowski-

Lorentz relativistic context in the presentation of the De Broglie relation.
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I. INTRODUCTION

The motivation for this paper is to emphasize the advantage of discussing the De Broglie

relation in the framework of special relativity, formulated with Minkowski’s four-vectors, as

actually was done by De Broglie himself.1 The De Broglie relation, usually written as

λ =
h

p
, (1)

which introduces the concept of a wavelength λ, for a “material wave” associated with

a massive particle (such as an electron), with linear momentum p and h being Planck’s

constant. Equation (1) is typically presented in the first or the second semester of a physics

major, in a curricular unit of introduction to modern physics. At that stage, students are

generally not yet acquainted with the relativistic formalism (or even with relativity at all).

Therefore we accept the way in which the De Broglie relation is usually taught, but we

claim that, in a later stage, the relation should be revisited in a full relativistic framework,

such as the one pedagogically presented in this paper. For instance, in a second course in

electromagnetism or in quantum mechanics (wherein special relativity may appear again, this

quantum example can be presented). In this way, students may get a new physical insight

on the interrelations in physics, in particular between relativity and quantum mechanics.

The supposed unfamiliarity with a relativistic formalism is probably the reason why

typical university introductory physics textbooks do not stress that the De Broglie rela-

tion connecting wave to particle properties, (expressed either by ~p = ~~k or E = ~ω), are

co-related intrinsically relativistic expressions.2 (In these expressions, ~p is the particle mo-

mentum, E is its energy, while ~k and ω are its wavenumber and its angular frequency, and

~ = h/(2π).) In quantum mechanics textbooks, the De Broglie relation is usually presented

in its most simplified form,3 our Eq. (1). On the other hand, basic textbooks on special

relativity typically do not present De Broglie relations (although exceptions can be found4).

The “wave-particle duality” concept was actually introduced by Planck when he related

the energy of a stationary electromagnetic wave, of frequency ν, in thermal equilibrium with

the walls of a cavity (blackbody), with the quantum of energy E = hν times an integer

number. Such an idea was reinforced by Einstein when he assigned the linear momentum

pphoton =
hν

c
, (2)
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to a photon with frequency ν and energy Ephoton = hν,5 though the fact that light car-

ries linear momentum (besides energy) was already established by the Maxwell’s theory of

electromagnetism.

Now, using the relativistic expressions for the energy and linear momentum of a particle

with inertia m, moving with velocity ~v in a certain inertial frame S, namely E = γmc2 and

~p = γm~v, where γ = (1 − β2)−1/2 and β = v/c, one obtains ~p = E~v/c2. For a photon,

v = c and, using Planck’s relation E = hν, one arrives at Eq. (2). Several experiments using

light, such as diffraction and interference experiments, showed that light behaves as a wave

of wavelength λ = c/ν. In other experiments, such as those involving Compton scattering,

the photoelectric effect, etc. could only be interpreted using the concept of a photon,6 a

particle with linear momentum ~pphoton.

Hence, at the beginning of the twentieth century the dual nature of light was unquestion-

able. Louis De Broglie, in the second decade of last century, was inspired to generalize this

idea, introducing the “wave-particle duality” for massive particles,2 relating the wavelength

of the matter wave and the linear momentum of the particle as expressed by Eq. (1). The

validity of that equation was later on confirmed by Davisson and Germer in their famous

diffraction experiment of electrons on a nickel crystal. Equation (1) is also consistent with

the resonance condition for the Bohr’s atom (quantization of angular momentum).7

The wavelength and the frequency of a plane wave are related through λν = vphase, where

vphase is the so-called phase velocity (i.e. the velocity at which a fixed phase point in a wave

moves through space). The same concept of phase velocity applies to a De Broglie wave.

The energy of a particle of mass m, moving with velocity v, is E = γmc2. Using Planck’s

equation E = hν, the frequency for this material wave is ν = γmc2/h. Finally, writing down

the wavelength as λ = h/(γmv), by using the same expression λν = vphase one recognizes

that

vphase =
c2

v
. (3)

The way this result was obtained makes it clear that the phase velocity for a De Broglie

material wave is an intrinsically relativistic concept. One notes that the De Broglie phase

velocity is larger than c,8 but this is not an issue, because there is no observable associated

with the wave’s phase, which does not carry any physical information.9 Rather, we know

that information cannot be transferred faster than the so-called signal velocity, which is the

speed of the front of a truncated wave or disturbance. In relativity, this is always less than
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or equal to c.

The wavenumber and the wavelength are related through k = 2π/λ, and the angular

frequency and the frequency are related through ω = 2πν. The so-called group velocity,

defined as the velocity at which the maximum of a wave packet moves through space, can

be found from

vgroup =
dω

dk
, (4)

and as we shall see, this velocity is equal to the velocity of the particle, vgroup = v. Thus,

for De Broglie material waves, vphasevgroup = c2.4

In the next section we apply a full covariant formalism, based on the Minkowski rela-

tivistic four-vector description of particles and waves, to show that ‘wave-particle duality’ in

relativity naturally leads to the De Broglie relation. The compliance of the De Broglie equa-

tion with the principle of relativity is analyzed in Sect. III, where we also explicitly show that

the phase and group velocities actually do transform as ordinary velocities under Lorentz

boosts. In fact, the way the phase and the group velocities actually transform is crucial to

ensure the De Broglie hypothesis covariance, and this is shown explicitly. In Sect. IV we

draw our conclusions, stressing the genuine relativistic character of the De Broglie relation.

II. RELATIVISTIC DESCRIPTION FOR PARTICLES AND FOR WAVES

The wave-particle duality is an intrinsically relativistic concept, with no correspondence

in classical non-relativistic physics.2 In this section we explore the four-vector description of

a massive particle and of a plane wave, to conclude that the De Broglie relation naturally

emerges from such a formalism.

A. Four-vector description of a particle

Let us consider a free particle with inertia m, moving with velocity ~v = (vx, vy, vz) in

reference frame S. The linear momentum, ~p = (px, py, pz), and the energy, E, are ~p = γm~v,

and E = γmc2, respectively, and for this particle, relations hold that

~v =
c2

E
~p, (5)

and

E2 = c2 ~p · ~p+m2c4. (6)
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The momentum-energy four-vector (in energy units), is (the time-like component is real and

it is the fourth component of the four-vector)

(Eµ) =


c px

c py

c pz

E

 = (E) =


c γ mvx

c γ mvy

c γ mvz

γ m c2

 . (7)

The norm of this four-vector is a relativistic invariant,10 expressing the information already

provided by Eq. (6), we obtain EµE
µ = E2 − c2p2 = m2c4 (we are using a diagonal metric

tensor with g44 = −gii = 1). From Eq. (6) we may write E dE = c2 ~p · d~p , or using (5),

dE = ~v · d~p , (8)

which is equivalent to d (γc2) = ~v · d(γ~v). From Eq. (8), the components of the velocity are

vi = ∂E/∂pi , exactly as in non-relativistic mechanics for a free particle.

B. Four-vector description of a wave

A harmonic plane wave of amplitude A is described by

ψ(x, y, z, t) = A exp
[
i
(
~k · ~r − ωt

)]
, (9)

where ~k is the wavenumber and ω the angular frequency, both already introduced in Sect. 1.

For this wave one usually considers the four-vector kµ (with wavenumber units),11 which is

explicitly written below, together with the contravariant position-time four-vector as

(kµ) =


kx

ky

kz

ω/c

 and (xµ) =


x

y

z

ct

 . (10)

One recognizes that the exponent in Eq. (9) is the internal product in Minkowski space of

these four-vectors. Hence it is a relativistic invariant that12

xµk
µ = −xkx − yky − zkz + ωt = φ, (11)

with φ being the phase of the wave, which is the same for all inertial observers. For a given

wavenumber ~k (hence, also a given ω) the internal product dxµk
µ vanishes or, ωdt−~k·d~r = 0.
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This is the condition for constant phase , or φ = constant, meaning dφ = 0 (which is a frame

independent equation). From this condition, the phase velocity in frame S calculated from

~vphase = d~r/dt for the wave Eq. (9), can be related to the wavenumber and to the angular

frequency in that frame or

ω = ~vphase · ~k . (12)

This relation generalizes the more familiar expression ω/k = λν = vphase.

C. Relativistic De Broglie equation

According to Einstein’s wave-particle duality hypothesis for the light, one may consider

the four-vector (Eµ
k ) = c~(kµ) for the wave (in energy units) and the four-vector of Eq. (7),

(Eµ), for the particle with the linear momentum given by Eq. (2) (i.e. with the inertia given

by hν/c2). Then, the “wave–particle duality,” expressed by Eµ
k = Eµ, states that

c ~ kx
c ~ ky
c ~ ky
~ω

 =


c (hν/c) `x

c (hν/c) `y

c (hν/c) `z

h ν

 , (13)

where ~̀= (`x, `y, `z) is the unit vector pointing in the photon’s direction.

The De Broglie hypothesis for a particle of mass m consists in expressing the “wave–

particle duality” again by Eµ
k = Eµ, which now implies13

c ~ kx
c ~ ky
c ~ ky
~ω

 =


c γ mvx

c γ mvy

c γ mvz

γ m c2

 . (14)

This four-vector equation can be regarded as the relativistic generalization14 of the simpler

De Broglie relation Eq. (1). Indeed, the four-vector Eq. (14) provides vector and scalar De

Broglie relations,15 namely

~~k = ~p = γ m~v (15)

and

~ω = E = γ m c2 . (16)
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Taking the modulus of (15), one may write this pair of relations as

λ =
h

p
=

h

γ mv
(17)

and

ν =
E

h
=

γ m c2

h
. (18)

From Eq. (12) and from the De Broglie four-vector relation Eq. (14), the phase velocity

is such that

~vphase · ~v = c2 , (19)

an expression that generalizes Eq. (3).

A dispersion relation (i.e. a connection between a wave’s frequency and its wavenumber)

for matter waves16 follows from Eq. (6) and from the previous De Broglie relations Eq. (14).

In fact, the norm of (Eµ
k ) allows us to write

ω2 = c2~k · ~k +
m2 c4

~2
. (20)

From this dispersion relation one obtains ω dω = c2 ~k · d~k and, after expressing ~k and ω as

functions of the velocity of the particle, as given by (14), results in

dω = ~v · d~k . (21)

The group velocity is found from Eq. (4) and, more generally, satisfies dω = ~vgroup · d~k.

Therefore, one concludes that the group velocity associated with the matter wave is the

particle velocity ~vgroup = ~v, at least when the group velocity is aligned with ~k. Using the

energy and the linear momentum, one may also write down dE = ~vgroup · d~p and a direct

comparison with Eq. (8) allows us to conclude that the group velocity is the particle velocity

indeed. For an electromagnetic wave (or photon), the phase and the group velocities are the

same, as in vphase = vgroup = c.

A remark on the wave equation for a relativistic massive particle, corresponding to Eq. (9),

is pertinent here. From that equation and the De Broglie relations one has

ψ(x, y, z, t) = A exp

[
− i

~
(Et− ~p · ~r)

]
. (22)

The exponent in the exponential is reference frame invariant since it corresponds to an in-

ternal product in Minkowski space, xµp
µ/~ = φ (where pµ = c−1Eµ). The condition for
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obtaining the phase velocity, or the condition for constant phase, is also frame invariant,

as per dxµp
µ = 0. Equation (22) is the plane wave solution of the Klein-Gordon equation

for a free particle.3 The Klein-Gordon equation is the relativistic quantum mechanical equa-

tion that applies to wave components of particles, and was established from the relativistic

connection between E and ~p, whereas the Schrödinger equation was established from the

non-relativistic connection between energy and linear momentum.

III. RELATIVISTIC TRANSFORMATIONS

One of the advantages of the Minkowski’s four-vector formalism is the equation covariance

under Lorentz transformations. This means given a four-vector equation in reference frame

S, such as Eµ
k = Eµ, in reference frame S ′, the same equation holds, or E ′µk = E ′µ. In

particular, the four-vector De Broglie relation of Eq. (14) is valid in any reference frame13

and, in S ′, is explicitly given by
c ~ k′x
c ~ k′y
c ~ k′y
~ω′

 =


c γ′mv′x

c γ′mv′y

c γ′mv′z

γ′mc2

 , (23)

where the primed quantities refer to S′, in particular γ′ = γ(v′).

In the asynchronous formulation of relativity17 the four-vectors in S and S′ are related

through the Lorentz transformation matrix. For the standard configuration (S′ moving with

respect to S with velocity V along the common x-x′ direction) this matrix is

L(V ) =


γV 0 0 −βV γV
0 1 0 0

0 0 1 0

−βV γV 0 0 γV

 . (24)

where γV = (1− β2
V )
−1/2

and βV = V/c. The contravariant four-vector transformation rule

is

E ′
µ

= Lµν (V )Eν , (25)

and it applies to any other four-vector. For a particle moving in S with 3-momentum ~p, the
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momentum-energy transformation is

p′x = γV
(
px − V c−2E

)
,

p′y = py , p′z = pz and (26)

E ′ = γV (E − V px) .

A similar set of relations holds for the wavenumber components and the angular frequency

(with the replacements p′i, → k′i, pi →, ki and E ′ → ω′, E → ω).

For the sake of simplicity we shall restrict ourselves to the case of a particle moving along

the x (or the x′) direction, though the generalization to the more general case is straight-

forward (but tedious). Hence, for a particle with ~p = (px, 0, 0) the following expressions,

relating the wavelength and the frequency in S′ with the wavelength in S,

λ′ =
h

p′
=

h

γV (px − c−2E V )
=

γ−1V λ

1− vphase,xV/c2
(27)

ν ′ =
E ′

h
=
γV (E − pxV )

h
= γV λ

−1(vphase,x − V ) , (28)

then hold, where use has been made of the relations Eqs. (3), (5) and (26). Since the phase

velocity in S′ should be given by v′phase,x = λ′ν ′, one concludes that

v′phase,x =
vphase,x − V

1− vphase,xV/c2
, (29)

which is the ordinary x−component velocity transformation18 for the standard configuration.

This result is not surprising because the phase velocity in S′ is defined as ~v ′phase = d~r ′/dt′,

and both d~r ′ and dt′ transform in the standard way under Lorentz transformations as

given by Eq. (25), which is like Eq. (26), with the replacements p′i → dx′i, pi → dxi and

E ′/c→ cdt′, E/c→ cdt.

Should one consider a particle moving in any direction, the usual expressions for the y

and z components of the transformed phase velocity would also be obtained, namely

v′phase,i =
γ−1V vphase,i

1− vphase,xV/c2
for i = y, z . (30)

One should note that the phase velocity can be found from the frame independent equation

ω′dt′ − ~k ′ · d~r ′ = 0, giving ~v ′phase = d~r ′/dt′ is the phase velocity in S′. Therefore, the phase

velocity transforms like a normal velocity under Lorentz transformations, as also shown in

ref.19.
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The group velocity is equal to the particle velocity. Therefore the group velocity also

transforms in the same way, like an ordinary velocity, or

v′group,x =
vgroup,x − V

1− vgroup,xV/c2
v′group,i =

γ−1V vgroup,i
1− vgroup,xV/c2

for i = y, z . (31)

Now, it can be directly checked that, provided Eq. (12) holds in S, ω′ = ~v ′phase ·~k′ must hold

as well in S′; and, provided Eq. (21) holds in S′, with ~v = ~vgroup, dω′ = ~v ′group ·d~k′ must also

hold in S′. Moreover, from Eqs. (29)–(31) we may explicitly show that Eq. (19) is also valid

in S′:

~v ′phase · ~v ′group = c2 , (32)

provided ~vphase · ~vgroup = c2 in S, as is actually the case for a De Broglie matter wave. The

dot product of two 3-vectors is not a Lorentz invariant, in general, but remarkably the dot

product of the phase and the group velocity for a De Broglie wave is a frame independent

result. In fact, a Lorentz transformation (along the x−axis) acting on two velocities ~u and

~v gives

~u ′ · ~v ′ = u′xv
′
x + u′yv

′
y + u′zv

′
z

=
(ux − V )(vx − V ) + (~u · ~v − uxvx) [1− (V/c)2]

(1− uxV/c2)(1− vxV/c2)
. (33)

If and only if, in frame S, ~u · ~v = c2, will the above become ~u ′ · ~v ′ = c2, making this

dot product a Lorentz invariant. We stress that, in order to obtain this important result,

the phase and the group velocities should transform exactly in the same way, as ordinary

velocities. This ensures the covariance of Eqs. (12) and (21), and the frame invariance of

Eq. (19). In sum, only the proper velocity transformations of both the phase and the group

velocity lead to the frame independent result ~vphase · ~vgroup = ~v ′phase · ~v ′group = c2.

We should note that, while both the phase and group velocities transform as ordinary

velocities for this special case, in general they do not transform in the same way for all wave

phenomena.18

IV. CONCLUSIONS

The De Broglie relation is usually presented in university courses before the students

get acquainted with relativity and particularly with the four-vector formalism in Minkowski

space. But when students are familiarized with this more advanced relativity formalism,
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it is a good opportunity to re-visit the De Broglie relations, as we propose in this article.

In our view, the relativistic formalism brings more physical insight to that basic quantum-

mechanical relation. Note that we do not criticize the way the De Broglie relation is usually

introduced, rather we claim that it is worthwhile to revisit the matter after the students

are familiarized with advanced relativistic topics, including the covariance of four-vector

equations under Lorentz transformations. As we have shown in this paper, relativity puts,

in a better perspective, the scalar and the vector content of the four-vector equation that

expresses the De Broglie’s idea. On the other hand, relativity also allows for a more clear

understanding of the wave-particle duality both when we refer to light or to matter.

Moreover, in this paper we present in vector form certain relations that are usually

presented as scalar ones, such as the relation between linear momentum and the wavenumber.

This is almost automatically accomplished by working with four-vectors. On the other

hand, the four-vector formalism embodies covariance under Lorentz transformations, and

this facilitates finding the De Broglie relations in different inertial reference frames. In the

framework of the four-vector formalism, the way the De Broglie relation is expressed in

different frames is self-evident. This is not the case in the usual presentation of the De

Broglie relation in textbooks.

The relativistic context is also an opportunity to discuss the phase and the group velocity

(this is the particle’s velocity) as presented in this paper. We showed that ~vphase ·~vgroup = c2

is frame independent only if the phase and the group velocities transform under Lorentz

transformations as normal velocities. The expression can be generalized to any two velocities

whose dot product is c2 in a certain inertial frame.

We deem that there is an unquestionable pedagogical advantage in discussing the De

Broglie relation in a relativistic framework and this can be done, with great advantage

to the students, in an intermediate course on relativity (sometimes integrated in a second

Electromagnetism curricular unit) or even in an advanced quantum mechanics course, where

the interrelations between quantum mechanics and relativity are presented and explored.

According to own experience as instructors, by placing the De Broglie relation in a four-

vector perspective, when the students are becoming familiar with the formalism of special

relativity, brings them a new physical insight both on the powerfulness of the relativistic
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four-vector formalism and on the significance of the De Broglie relation.
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