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Abstract. A theorem in relativistic mechanics, establishing the relation between the variation
of the rotational energy with the angular momentum variation, is derived. The theorem has
a counterpart for relativistic translations. On the other hand, it also has a counterpart in
non-relativistic rotational mechanics. Interestingly enough, to the best of our knowledge, that
relation has never been presented in articles or textbooks. We discuss the relativistic rotation
of a ring to illustrate how rotational dynamics works and to show the usefulness of the above
mentioned theorem.

1. Introduction
Relativistic rotations are not usually addressed in conventional special relativity textbooks.
However, the inertia and the moment of inertia of rotating bodies, whose parts experience
velocities which are close to the speed of light, and the relativistic rotation equation itself, have
merited the interest of a few authors [1, 2]. This attention is due to the qualitative differences
in the comparison with the classical description of rotating bodies [3].

This work is about relativistic rotations around a principal axis of a rigid body (which remains
rigid, even when it rotates at extremely high angular velocities). In the framework of the
appropriate formalism applicable to the relativistic rotation, we prove a remarkable theorem
which establishes the relationship between the variation of the rotational kinetic energy with
the variation of the angular momentum. We study a rotating ring submitted to a constant
torque, resulting from a binary of constant forces, to illustrate how the formalism works.

The rotational kinetic energy is the kinetic energy of a system as measured in the reference
frame in which its linear momentum does vanish. Thus, it is part of the internal energy of the
system. Let us denote by E0 the energy of a zero momentum solid body in the absence of a
rotation. This energy is internal energy too. Hence, when the rigid body rotates with angular
velocity ω, its internal energy in the pure rotational state, E(ω), is bound to be larger than E0.
Therefore, according to the Einstein’s principle of the inertia of the energy [4], the inertia of a
rotating body M(ω) = E(ω) c−2 > E0 c

−2 depends on its angular velocity, ω, and, surely, also
depends on other magnitudes, such as its chemical composition, its temperature, etc.

By the same reasoning, the relativistic moment of inertia of a rotating rigid body, I(ω), is
angular velocity dependent. This is not the case in classical mechanics, where the moment of
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inertia of a rigid body, I0, is constant. The bottom line is that the body’s moment of inertia and
inertia depend on its angular velocity. For example, the inertia of a rotating object such as a
compact star, a black-hole, a galaxy, etc., is higher than the inertia of the very same non-rotating
object, this being a pure relativistic effect.

The present work on relativistic rotations around a principal axis resulted from a fruitful
collaboration between physicists and mathematicians. Its main result was recently published as
a letter [5].

2. The relativistic rotation
A problem most commonly pointed out in the context of rotations in special relativity is the
non-existence of rigid bodies in rotation when some of its parts have linear velocities of the
order of magnitude of the speed of light. However, here we assume that the rotating solid body
is robust enough so that its distortion and strain response to stress, caused by the stationary
revolving state, is negligible. Our study is a merely theoretical one and, so to say, we are not
concerned with practical aspects of a real situation.

Therefore, let us consider a rigid solid body (a ring, a disc, a bar, etc.) whose volume we
denote by Ω. For the sake of simplicity, we assume that the body is homogeneous, i.e. its density
(at rest), ρ, is constant. The body rotates around a principal axis with angular velocity ω, and,
differently from classical mechanics, now the inertia of the body is angular velocity dependent,
M(ω), and it is defined by [2]

M(ω) = ρ

∫
Ω
γ (ω r(x)) dx . (1)

Here, r(x) is the distance from point x to the rotation axis and

γ(v) =
1√

1−
(
v
c

)2 (2)

is the usual relativistic factor, c being the speed of light. Equation (1) clearly states a major
different with respect to the classical situation.

Similarly, the moment of inertia is also angular velocity dependent, I(ω), and it is given by [2]

I(ω) = ρ

∫
Ω
r2(x)γ (ωr(x)) dx . (3)

The classical inertia, M(0), and the moment of inertia, I(0), are simply given by

M(0) =

∫
Ω
ρdx, I(0) = ρ

∫
Ω
r2(x)dx . (4)

We shall assume that M(0) and I(0) are fixed quantities.

2.1. The theorem
The variation of the magnitude M with the quantity Iω, in the course of a relativistic rotation,
is given by

d
[
M(ω)c2

]
d[I(ω)ω]

= ω . (5)

Physically, this means that the variation of the energy, E = M(ω)c2, with the angular
momentum, defined as J = I(ω)ω, is equal to the angular velocity, ω.



International Conference on Mathematical Modelling in Physical Sciences

IOP Conf. Series: Journal of Physics: Conf. Series 1141 (2018) 012131

IOP Publishing

doi:10.1088/1742-6596/1141/1/012131

3

2.2. Proof
Firstly, it is important to note that the relativistic factor, γ(v), given by equation (2), as well
as its derivative, γ′(v) = dγ(v)

dv , are strictly increasing functions. Therefore, the angular velocity
dependent functions (1) and (3) (the latter firstly multiplied by ω) are differentiable under the
integral sign. The differentiations with respect to ω lead, respectively, to

d
[
M(ω)c2

]
dω

= c2
∫
Ω
ργ′ (ωr(x)) r(x)dx, (6)

and
d [I(ω)ω]

dω
= ω

∫
Ω
ργ′ (ωr(x)) r3(x)dx+

∫
Ω
ρr2(x)γ (ωr(x)) dx . (7)

Now we use the following identity,

γ′(v) =
v

c2 − v2
γ(v), (0 ≤ v < c) (8)

to obtain: from (6),

d
[
M(ω)c2

]
dω

= ω

∫
Ω
ργ (ωr(x))

c2r2(x)

c2 − ω2r2(x)
dx ; (9)

and, from (7),

d [I(ω)ω]

dω
=

∫
Ω
ργ (ωr(x))

ω2r4(x)

c2 − ω2r2(x)
dx+

∫
Ω
ρr2(x)γ (ωr(x)) dx

=

∫
Ω
ργ (ωr(x))

c2r2(x)

c2 − ω2r2(x)
dx. (10)

Finally, after termwise dividing equations (9) and (10), one arrives at equation (5), which
completes the proof. This mathematical proof, based on the identity (8), is general for M(ω)
and I(ω) as defined by (1) and (3), respectively, with fixed M(0) and I(0) — see equation (4).

Equation (5) can also be expressed in a physically more meaningful way as the relation
between the relativistic rotational energy variation and the relativistic angular momentum
variation, in the course of a rotation

dKrot

dJ
= ω , (11)

just as in non-relativistic physics, where Krot = E(ω)− E0.
It is worth noting that there is a counterpart equation for (5) in the context of a pure

translation [6]. That counterpart equation is d[γ(v)c2] = ~v · d[γ(v)~v], relating the energy
variation with and the variation of the linear momentum of a system with constant inertia.
Here ~v = (vx, vy, vz) denotes the velocity of the system moving as a whole in a certain reference
frame. In other words, this is the velocity of the reference frame in which the linear momentum
of the system vanishes. This moving inertial reference frame is the relativistic equivalent of the
centre-of-mass reference frame in classical mechanics.

2.3. Classical limit
Let us verify whether our result properly fulfils the classical limit.

In the limit c → ∞, the relativistic rotational kinetic energy, Krot, gives rise to the
corresponding classical rotational kinetic energy. In the limit

lim
c→∞

Krot = lim
c→∞

1

(1/c2)

[ ∫
Ω
ργ (ωr(x))dx−

∫
Ω
ρdx

]
, (12)
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the L’Hôpital rule can be applied and, after differentiation with respect to c, one obtains

lim
c→∞

Krot = lim
c→∞

1

2

∫
Ω

ω2r2(x)ρdx√
[1− ω2r2(x)/c2]3

. (13)

The denominator reduces to 1 and, using the second definition in (4), one obtains limc→∞Krot =
1
2I(0)ω

2 , which is indeed the correct classical limit. Classically, equation (11) is expressed by
dKrot/d(Iω) = ω, where I = I(0) is the classical (constant) moment of inertia.

3. The equations for the rotational process
The total energy of a body, moving as a whole with linear velocity v and simultaneously rotating
with angular velocity ω, is [4]

E(ω, v) = γ(v)M(ω)c2 . (14)
However, for the case of a body with zero total linear momentum, p = γ(v)M(ω)v = 0, its total
energy, i.e., its rest energy, reduces to E(ω) = M(ω)c2. We stress that this energy does include
the internal rotational kinetic energy. Therefore, it is ω dependent.

Let us consider a rigid body that rotates submitted to a set of external conservative forces
{~F ext

i }, of zero resultant, each of which with arm ri. The relativistic Hamiltonian for the body
is given by

H(J, θ) = [M(ω)−M(0)] c2 +
∑
i

Vi(θ) , (15)

with ω = ω(J), i.e. the angular velocity is a function of the angular momentum, J ; in (15) each
potential energy is such that (dxi = ridθ)

−∂Vi(θ)

∂θ
= −∂Vi(θ)

∂xi

∂xi
∂θ

= F ext
i ri = τ exti . (16)

The external forces, whose resultant must be zero, as mentioned above, produce a vanishing
linear impulse on the body. However, in general, they may perform work as well as angular
impulse.

From the Hamilton equation
dJ

dt
= −∂H

∂θ
, (17)

one obtains the relativistic Euler equation [3] for the body’s rotation, namely

d[I(ω)ω] =

(∑
i

F ext
i ri

)
dt . (18)

On the other hand, from equation (18) and equation (5) one derives the pseudo-
work–kinematic rotational energy variation [7], namely

d[M(ω)c2] =

(∑
i

F ext
i ri

)
dθ . (19)

Note that, it is equation (5) that makes it possible, starting from the equation of motion, to
obtain the pseudo-work – rotational kinetic energy variation equation (19).

From the Hamiltonian (15), and because equation (19) can also be expressed as d[M(ω)c2]+∑
i
∂Vi
∂θ dθ = 0, one concludes that dH = 0 and one has

d

dt
H(J, θ) = 0 . (20)

As expected, mechanical energy is conserved for a process when only conservative forces act on
the system.
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3.1. Characteristic functions
For a given body, it turns out to be convenient to define two characteristic functions: ζ(ω), for
the inertia, and χ(ω), for the moment of inertia. These dimensionless functions are defined by

ζ(ω) =
M(ω)

M(0)
and χ(ω) =

I(ω)

I(0)
. (21)

According to the previous Hamiltonian approach, one has the Euler equation (18) for
relativistic rotation dynamics written as [8]

d [I(0)χ(ω)ω] = Γextdt , (22)

where Γext =
∑

j τ
ext
j is the total resulting torque for the external forces (conservative or non-

conservative). After integration in a time interval [0, t], assuming constant torque, one gets the
finite equation

I(0)
[
χ(ωf)ωf − χ(ωi)ωi

]
= Γext t . (23)

This equation is the relativistic counterpart of the corresponding non-relativistic equation
I (ωf − ωi) = Γext t.

Multiplying both sides of equation (22) by ω = dθ/dt, and taking into account equation (5),
one obtains the equation for the relativistic pseudo-work – rotational kinetic energy variation:

d
[
M(0)ζ(ω)c2

]
= Γextdθ . (24)

Again, the right hand side includes the contribution of both conservative or non-conservative
forces. After integration, between an initial and a final state, and for a constant torque, one
gets the corresponding finite equation

M(0)
[
ζ(ωf) c

2 − ζ(ωi) c
2
]
= Γext (θf − θi) . (25)

This equation is the relativistic counterpart of the non-relativistic equation 1
2I
(
ω2
f − ω2

i

)
=

Γext (θf − θi), where the left hand side is the rotational kinetic energy variation and the right
hand side is, in general, pseudo-work [7].

4. Example: a rotating ring
For a homogeneous ring of radius R and moment of inertia Iring(0) = M(0)R2, rotating with
angular velocity ω around its axis, the characteristic functions (21) are

ζring(ω) = γ (ωR) , χring(ω) = γ (ωR) . (26)

The angular momentum of the rotating ring (if initially at rest, ωi = 0) is J = Iring(0)γ(ωR)ω,
and the angular velocity can be written explicitly as

ω(J) = J
[
I2ring(0) + J2R2/c2

]−1/2
. (27)

The Hamiltonian (15) can be written in term of the canonical variables as

H(J, θ) =

[
I2ring(0) +

J2R2

c2

]1/2
c2

R2
−M(0)c2 + V (θ) . (28)
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We can check that, for c → +∞, the classical Hamiltonian is recovered:

H(J, θ) =
J2

2Iring(0)
+ V (θ) . (29)

We study the process depicted in fig. 1, representing a rotating ring of radius R mounted
in a rigid massless structure. Two conservative forces, ~F1 = (F, 0, 0) and ~F2 = (−F, 0, 0), are
applied to the system, with arms r1 and r2, respectively (r1 = r2 = r). Since the resultant force
vanishes, F ext = 0, the ring does not move as a whole in the reference frame where its initial
total linear momentum is zero [6].

R
r

i .

w
i

F
1

F
2

f .

w
f

F
1

F
2

Figure 1. Rotating ring acted upon only by constant forces: (i) initial state and (f) final state,
after a time interval [0, t].

For the description of the rotating ring by using equation (23) and equation (26) we get

Iring(0) [γ(ωfR)ωf − γ(ωiR)ωi] = Γext t , (30)

where the external net torque is Γext = F (r1 + r2) = 2Fr.
Assuming, in (30), that the initial angular velocity is zero, the angular velocity, simply

denoted by ω, as a function of time, is obtained, as well as the angular dependence θ(t),
yielding [9]

ω(t) =
αt√

1 + (αRt)2/c2
, (31)
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and

θ(t) =
c2

αR2

√1 +
(αRt)2

c2
− 1

 , (32)

where α = Γext/Iring(0). It is straightforward to check the following limits:

lim
t→0

ω(t)

t
= α , lim

t→0

θ(t)

t2
=

1

2
α ; (33)

lim
t→+∞

ω(t) = ωL =
c

R
, lim

t→+∞

θ(t)

t
= ωL , (34)

where ωL is the limiting angular velocity for the ring and t → 0 corresponds to the
classical limit. The maximum angular velocity may also be derived from the requirement
that the ring characteristic functions (26) are real. As the above limit indicates, that
angular velocity is attained only for t → +∞ and the energy transferred to the system is
limω→ωL M(0)[γ(ωR)− 1] c2 = +∞.

Inserting the characteristic mass function for a ring, equation (26), into equation (25), for
zero initial angle and zero initial angular velocity, one obtains the explicit dependence of the
angular velocity with the rotation angle (we are setting ωf = ω and θf = θ):

ω(θ) =
c

R

{
1−

[
1 +

(
aθ

c2

)]−2
}1/2

, (35)

where a = Γext/M(0) = αR2. We can also obtain the limits of the angular velocity for large
and small angles:

lim
θ→+∞

ω(θ) = ωL , lim
θ→0

ω(θ)

θ1/2
=

√
2α . (36)

5. Conclusions
Based on a relativistic Hamiltonian approach we addressed the relativistic rotation by developing
an appropriate formalism.

We proved a remarkable theorem, established by the relation (5), which bridges the vector
description of the relativistic rotation process, involving the angular impulse and the variation
of the angular momentum, and its scalar description that relies on the concepts of energy and
work.

To illustrate the usefulness of that relativistic equation (5), a process has been analysed in
which only conservative forces (related to a work reservoir) intervene, a process that evolves
with conservation of mechanical energy. Processes involving dissipation of mechanical energy
(and heat production) or processes with production of rotational kinetic energy, due to forces
that come from chemical reactions have also been analysed elsewhere [5].
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