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este projeto. Prof. José Pinto da Cunha não sabe como apreciei as tardes (e por vezes

noites) passadas a discutir f́ısica e a sua orientação na melhoria dos documentos.

Agradeço ainda ao pessoal do IT Aveiro pela ajuda que todos prestaram: aos técnicos
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Resumo

Através de ferramentas quasi-óticas, a análise de um sistema composto por dois refletores

parabólicos foi feita com o objetivo de transferir energia sem fios, usando micro-ondas

(à frequência de 5.8 GHz).

Primeiramente desenvolveram-se scripts com duas principais finalidades: visualizar a

frente de onda dos feixes gaussianos para diferentes modos de propagação, tanto em

coordenadas retangulares como em ciĺındricas e a propagação de feixes gaussianos através

de um sistema (composto por refletores ou lentes).

Depois de este estudo, recorreu-se a uma análise teórica com o intuito de permitir a

prototipagem do sistema usando o mı́nimo parâmetros posśıvel. Foi posśıvel simplificar

a análise através da utilização do prinćıpio da reciprocidade, ao igualar os dois espelhos

e as antenas (emissora e recetora). Conseguiu-se chegar a um conjunto de equações que

cumprem o objetivo.

De seguida concretizou-se o sistema com base nos resultados anteriores por forma a

efetuar experiências laboratoriais, com vista na validação da teoria. A antena escolhida

para emissor e recetor de radiação são do tipo corneta circular de superf́ıcie plana,

uma vez que estas oferecem uma maior aproximação da radiação emitida a um feixe

gaussiano, juntamente com uma relativa facilidade de construção. Após o desenho e

simulação da antena, juntamente com o guia de ondas e o conetor SMA que a alimenta,

utilizando um software CAD, CST Studio Suite, prosseguiu-se à sua construção. Tal

foi efetuado numa impressora 3D, seguindo-se a colagem de fita de cobre como material

condutor da antena. Foi necessário encomendar conetores SMA espećıficos, procedendo-

se de seguida à medição dos parâmetros principais da antena. Tendo concluindo que

os resultados foram positivos, procedeu-se à construção da segunda antena. Por outro

lado, foi posśıvel obter dois espelhos parabólicos, juntamente com os suportes necessários,

através da empresa Famaval.

Finalmente, utilizando um gerador de sinal e um analisador de espetro, efetuou-se uma

experiência preliminar de transferência de energia de uma antena para a outra. Os re-

sultados foram positivos mas não satisfatórios pelo que existe necessidade de efetuar um

varrimento dos parâmetros mais completo. A dificuldade de alinhamento dos diferen-

tes componentes do sistema é apontado como o principal fator pela principal perda de

eficiência.

Este estudo apresenta métodos de análise que possibilitam rapidamente prototipar sis-

temas de transferência de energia por microondas, compostos por dois componentes que

permitem a aplicação do prinćıpio da reciprocidade.
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Abstract

Using the quasi-optical formalism a double parabolic reflector system was analysed in

order to achieve Wireless Power Transfer, using Microwaves (at the frequency of 5.8

GHz).

Firstly, scripts were developed with two main goals: the visualisation of the gaussian

beam wave fronts for different modes of propagation, in both rectangular and cylindrical

coordinates, and the propagation of gaussian beams throughout a system (composed of

either mirrors or lenses).

After this analysis a theoretical approach is made to arrive at a way to quickly prototype

the system, using the minimum parameters possible. The use of the reciprocity principle

to simplify this analysis can be done by simply making both reflectors and antennas

(emitting and receiving) equal. A set of equations were derived, which serve this purpose.

A system set-up based on the results obtained was made with the objective of setting

up a lab experiment, so as to validate the theory. The chosen antenna for the emitter

and receiver was a smooth surface conical antenna for having the radiation pattern best

approximated to that of a gaussian beam while remaining relatively easy to build. After

designing and simulating the antenna, as well as the waveguide and the SMA connector

which feed it, in a CAD software, CST Studio Suite, the antenna was built. It was

done on a 3D printer, followed by the gluing of copper tape as the antenna’s conducting

material. It was necessary to order the specific SMA connectors for this antenna. After

their arrival, the main parameters of the antenna were measured with positive results.

Because of it, the second antenna was built and measured in the same way. On the

other hand, it was possible to obtained the parabolic reflectors, along with the necessary

supports, from the company Famaval.

Finally, using a signal generator and a spectrum analyser, a preliminary experiment

of power transfer from one antenna to other was performed. The results were not

satisfactory, for which a more thorough parameter sweep is necessary. The difficulty in

aligning the different system’s components is pointed as the main factor for the major

efficiency loss.

In this study one can find analysis tools that allow for fast prototyping of systems

for power transfer through microwaves, made up of two components that respect the

reciprocity principle.
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Chapter 1

Introduction

1.1 Background and Motivation

For the majority of history even though the origins of physics phenomena were not

fully understood their effects were observed, studied and, more often than not, used to

improve the overall quality of human life.

Such was the case with electricity. The observation of electrical effects can be traced

back to the ancient world. A famous example is the ”Thunderer of the Nile”, the electric

fish which the Ancient Egyptians considered to be the ”protector” of all other fish.

Speculation on the origin and nature of the electric and magnetic phenomena prompted

the realization of various experiments throughout the ages. However, it was only recently

in the history of mankind that the electric and magnetic phenomena were linked, with

the ripening of the electromagnetic theory in the 19th century. It was the culmination

of the work of many, resulting in the essential description of electromagnetism in the

form of the Maxwell’s Equations.

The evolution of this theory greatly affected common people’s lives ever since light bulbs

revolutionized lighting. It was only a matter of time before electrical appliances swirled

through the front door of our homes and infrastructure to best manage the generation,

storage and distribution of electric power became a pillar of modern civilization.

Nevertheless, there is always room for improvement. What if we could transfer electric

power without wires? Nikola Tesla’s work is simply inescapable for numerous reasons,

among which his contribution to Wireless Power Transfer (WPT). The potential appli-

cations are immense, ranging from our everyday lives to the space industry.

It was the author’s fascination for electromagnetism which prompted the choice of re-

searching in this field, with WPT assuming the role of an obviously related, greatly

potential, interesting and useful subject to study.

1
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1.2 History and State-of-the-art

Microwave’s high directionality along with a high transmission efficiency in the atmo-

sphere made this type of radiation interesting for long distance transmissions.

These features made the millimetre and sub-mm waves also convenient for power trans-

mission in the air [1]. However, the divergence effects are significant and have to be

considered. The common theory of optics has then been adapted to contexts with high

diffraction (such as microwave propagation), being referred to as ”quasi-optics” [2, 3].

There is vast literature on this subject with comprehensive treatment, both on electro-

magnetics [4] and optics [5], which dedicate sections to the diffraction effect.

WPT using Radio Frequencies (RF) can be traced back to the 19th century, with the

work of Heinrich Hertz [6]. His experiments demonstrated the propagation of electro-

magnetic waves and their reflection on parabolic mirrors at the receiver and transmitter

ends. Later on, Nikola Tesla pioneered a different concept of WPT by using low fre-

quency standing waves along the surface of the Earth which would power strategically

located antennas. There was no focusing and the radiation would propagate in every

direction [7, 8].

Since then, many efforts and important contributions have been done. For a summary of

the state-of-the-art on WPT refer to [9, 10]. WPT has immense potential for numerous

applications, ranging from distances of a few centimetres (with inductive and capacitive

fields) all the way to kilometres using microwaves [11]. Long distance WPT remains

a field of interest since there is still much to be done in order to improve the overall

efficiency.

A review of the general applications for RF and, specifically, microwave power transfer

can be found in [12]. Microwaves have been used to power drones [6, 13] by using

rectennas (rectifying antennas) as receivers [14, 15]. The use of microwaves and rectennas

form the basis of a Space Solar System for power harvesting where the Sun energy

would be converted to electricity in space via solar panels, and transferred to Earth by

microwaves [16, 17].

In general, emitting antennas can have any form but the use of planar arrays is very

interesting in various situations due to their relatively small size and low manufacturing

costs. Their use in WPT has been contemplated [18] and interesting studies developed,

namely on the maximization of the power transfer efficiency [19] or the possibility of

focusing multiple targets [20].

That brings us to another important aspect in electromagnetic waves which is the fo-

cusing of the radiation. It is common to use reflectors or lenses to create systems that

focus the beam, thus reducing the spillover losses. On one hand parabolic reflectors are

advantageous to avoid spherical aberration and are common in the industry [21, 22].
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Off-set parabolic reflectors are crucial to avoid blockage from the feed [23] at the price

of some undesired beam aberrations [24]. On the other hand, depending on the applica-

tion, lenses can eventually be more advantageous [25, 26] with dielectric lenses receiving

a lot of attention [27, 28], due to their simplicity. Fresnel Zone Plate Lens [29, 30] and

electronically reconfigurable Luneburg lenses [31] are also worth mentioning. Several

studies make use of both reflectors and lenses [32, 33].

An interesting application of the quasi-optical theory applied to WPT that considers

a metasurface aperture to dynamically focus a radiation beam to specific points is dis-

cussed in [34].

The present study applies the quasi-optical theory in the study of a double-reflector

WPT system, using the reciprocity principle to simplify the analysis.

1.3 Structure

The main body of this dissertation is separated into four parts.

Firstly, in the introduction is presented the author’s motivation for studying WPT, as

well as a historical overview along with the state-of-the-art.

This is followed by an overview of the necessary theoretical concepts, starting at the

electromagnetic theory. The principles of the quasi-optics theory are then discussed.

The original work beings with the development of scripts for representing the beam,

followed by a theoretical analysis of a proposed quasi-optical system.

Finally, the necessary components are discussed in order to be able to set-up a prelimi-

nary experiment.

A final note on the navigation of the this document, it includes links to various points

of interests. They are simply hidden for aesthetic purposes.





Chapter 2

Electromagnetism

As David J. Griffiths eloquently elaborated on Introduction to Electrodynamics: ”it is

scarcely and exaggeration to say that we live in an electromagnetic world - for virtually

every force we experience in everyday life, with the exception of gravity, is electromag-

netic in origin”.

This statement hints us of the vast and crucial role of electromagnetism in the universe,

even more so when acknowledging that the electromagnetic force is one of the four known

fundamental forces. There are immense applications and WPT is no exception, but let

us start with the most basic electromagnetic concept.

2.1 Particles and Electric Charges

All matter is composed of atoms which are in turn generally made up of protons and

neutrons (in the nucleus) and electrons (in the electron cloud). Protons and electrons

are some of the most fundamental particles in the universe having respectively +e and

−e of charge, the smallest discovered on free particles. The electric charge of every

object in nature is always a multiple of the elementary charge, e = 1.602× 10−19C.

But we can go even deeper. According to the Standard Model of particle physics,

fermions are particles that respect the Fermi-Dirac statistics, having half-integer spin

(1/2). The elementary fermions are leptons and quarks, with a huge difference between

them being that the former can exist on their own. Such is the case of the electron.

On the other hand, quarks, charged with either 2/3 or 1/3 e, combine in different ways,

making up various particles. For example, protons are made up of two up quarks (+2/3 e)

and one down quark (−1/3 e), resulting in +1 e of charge.

5
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At the time of writing, there is still debate on the origin of electric charge1. Regardless

of this fact, its effects are widely known and form the basis of electromagnetism: in a

very rudimentary summary one can state that stationary charges create constant electric

fields, whereas moving charges (currents) with constant velocity form constant magnetic

fields. Accelerating charges produce varying magnetic fields which result in the emission

of radiation through space. This is the phenomena which most interests us.

However, in order to create electromagnetic radiation, one must make charges move.

Conductors are materials which easily allow the flow of electric charges and generators,

which create Direct or Alternating Currents (DC, AC), are common in every laboratory.

Natural conductors can be found in most metals, whose outer electrons are loosely bound,

with silver being the best conducting one, followed by copper and gold. Copper is the

most used for economic reasons but sometimes gold is required for its higher corrosion

resistance.

We have cleared the basis for electromagnetism and now more complex analysis are in

order. Most uniquely, all of the electromagnetic theory can be summarised in a small

set of equations.

2.2 Maxwell’s Equations

Firstly some notation clarification. Arbitrarily time-varying vector fields, functions of

(x, y, z, t), are symbolised by script letters. For the most part, the electromagnetic laws

will be introduce in a chronological order.

2.2.1 Gauss’s Electric Law

Electric charges are ”the ultimate source of the electromagnetic field” [43], first and

foremost because they create electric fields,

∇ · ~E =
ρ

ε0
. (2.1)

ρ is the charge density and this equation is known as Gauss’s Law (or Gauss’s Flux

Theorem), presented here for the case of the analysis in a vacuum. When that is not

the case, the effect of the electric field on the medium (or on a dielectric material)

must be taken into account: the medium’s internal dipole moments will align resulting

in an overall dipole moment, commonly denominated Polarisation, ~P = ε0χe~E . This

overall dipole moment creates an electric field, contributing (constructively or not) to the

original one. χe is the electric susceptibility, a constant2 that indicates how polarisable

1although there are hypothesis linking it to spin []
2for linear and homogeneous medium.
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the medium is. To differentiate between these two electric field sources, D, the Electric

Displacement (or electric flux density) is introduced and the charges are separated into

free (ρf ) and bound (ρb), respectively associated with the original electric field and with

the polarisation. The electric displacement is then given by,

~D = ε0~E + ~P, ~D = ε~E , (2.2)

where ε = ε0(1 + χe) is the absolute permittivity of the medium. The ratio of the

medium permittivity to that of the vacuum permittivity (the also called electric constant,

ε0 = 8.854× 10−12F/m) is the relative permittivity of the medium, εr = ε
ε0

= 1 + χe.

Gauss’s law can now be rewritten using D as ∇· ~D = ρf . In the integral form it becomes

�
S

~D · d~s =

�
V
ρf · dv = Q, (2.3)

where Q is the free electric charge contained in the volume V.

We now know how electric charges create electric fields, but what happens if we move

them?

2.2.2 Ampère’s Law and Maxwell’s Correction

Great improvements on electromagnetism happened in the 19th century, beginning in

1820, when Oersted first connected electricity and magnetism by noting that an elec-

trical current deflects nearby compass needles. Ampère, after acknowledging this fact,

elaborated several experiments in order to study electrical currents, the magnetic field

originating from them and the way two wires with currents affect each other. Ampère’s

Law, states that steady electric currents create steady magnetic fields,

∇× ~B = µ0
~J , (2.4)

where J is the electric current density.

In a similar fashion to the electric field, the Magnetisation (magnetic polarisation) is the

account of the internal magnetic dipole moments, enabling the study of how the material

reacts to an external magnetic field. The reaction can be very different, enabling the

categorization of the materials into ferromagnetic, paramagnetic and diamagnetic. In

some materials, ~M = χm ~H, where χm is the magnetic susceptibility. Similarly we have

H = B
µ , the magnetic field intensity,

~B = µ0
~H+ ~M, ~B = µ ~H, (2.5)

where µ, µ0 = 4π × 10−7N/A2 (the magnetic constant) and µr = µ
µ0

= 1 + χm are

respectively the absolute, vacuum and relative permeability.
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There is still a term which is missing from the equation below. The creation of a magnetic

field is not only due to electric currents, but can also originate from a varying electric

field. Maxwell later proceeds to introduce the extra term, µ0
~Jd, where ~Jd = ε0

∂~E
∂t is the

displacement current. The corrected form of the Ampère’s Law is,

∇× ~B = µ0
~J + µ0ε0

∂~E
∂t
, (2.6)

or we can write it in integral form, also using (2.5),

�
C

~H · d~l =

�
S

~J · d~s+
∂

∂t

�
S

~D · d~s = I +
∂

∂t

�
S

~D · d~s, (2.7)

where I =
�
S
~J · ~s is simply the total electric current flow through a surface S.

2.2.3 Faraday’s Law

Following this discovery several experiments were set-up. Francesco Zantedeschi pre-

ceded Faraday in noting the electrical induction effect due to the motion of a nearby

magnet, but it was Faraday and his experiments that led to the statement that a chang-

ing magnetic field induces an electric field. In a closed circuit, it is evident as the

electromotive force (EMF ) which arises with the variation of the magnetic flux, ΦB,

EMF = −dΦB

dt
(2.8)

In a differential form the equation becomes,

∇× ~E = −∂
~B
∂t
. (2.9)

There is an extra term which can be useful in some cases, but completely fictitious.

By introducing the magnetic current, Jm, as a mathematical convenience, the equation

becomes,

∇× ~E = −∂
~B
∂t
− ~Jm. (2.10)

We mention it is a fictitious because magnetic charges do not exist3, therefore their

movement is purely hypothetical. The effect of magnetic currents, however, are real and

that is why we mathematically use it. The origin can be loops of electric currents or

magnetic dipoles [43]. In integral form, and using (2.5),

�
C

~E · d~l = − ∂

∂t

�
S

~B · d~s−
�
S

~Jm · d~s (2.11)

The lack of magnetic charges leads to the final Maxwell equation.

3There is still no evidence for its existence
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2.2.4 Gauss’s Magnetic Law

Magnetic monopoles have not been found, hence,

∇ · ~B = 0, (2.12)

or in the integral form, using (2.5),

�
S

~B · d~s = 0. (2.13)

2.2.5 Continuity Equation and Lorentz Force Law

Before finishing this section it is important to refer two other equations, fundamental

for the understanding of electromagnetism.

The continuity equation can be obtained from the divergence of (2.6) and it states that

charge is conserved or the current continuous,

∇ · ~J +
∂ρ

∂t
= 0, (2.14)

Finally, Lorentz Force Law is

F = Q[~E + (~v × ~B)] (2.15)

and it describes the force that a particle with charge Q suffers when travelling in an

electric and magnetic field.

We have concluded the basic electromagnetic laws.

2.2.6 Summary

Now that all of Maxwell’s Equations have been introduced, we can summarise them in

the differential form,

∇× ~E = −∂
~B
∂t
− ~Jm, (2.16a)

∇× ~H = ~J +
∂ ~D
∂t
, (2.16b)

∇ · ~D = ρ, (2.16c)

∇ · ~H = 0, (2.16d)
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or as integrals,

�
C

~E · d~l = − ∂

∂t

�
S

~B · d~s−
�
S

~Jm · d~s, (2.17a)

�
C

~H · d~l =

�
S

~J · d~s+
∂

∂t

�
S

~D · d~s = I +
∂

∂t

�
S

~D · d~s, (2.17b)

�
S

~D · d~s =

�
V
ρ · dv = Q, (2.17c)

�
S

~B · d~s = 0, (2.17d)

where,

Table 2.1: Common electromagnetic quantities, their symbols and SI units.

Symbol Terminology SI units

~E Electric Field V/m

~H Magnetic Field A/m

~D Electric Flux Density C/m2

~B Magnetic Flux Density Wb/m2

~Jm (Fictitious) Magnetic Current Density V/m2

~J Electric Current Density A/m2

~P Electric Polarisation C/m2

~M Magnetisation A/m

ρ Electric Charge Density C/m3

and,

~D = ε~E , ε = ε0(1 + χe), (2.18)

~H =
~B
µ
, µ = µ0(1 + χm). (2.19)

We have reached a point where we can introduce the phenomena that most interests us,

electromagnetic waves.
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2.3 Electromagnetic Radiation

In the absence of charges, Maxwell’s equations inside a medium are,

∇ · ~D = 0, ∇× ~E = −∂
~B
∂t
,

∇ · ~B = 0, ∇× ~H =
∂ ~D
∂t
.

Furthermore, if the medium is linear and homogeneous,

∇ · ~E = 0, ∇× ~E = −∂
~B
∂t
,

∇ · ~B = 0, ∇× ~B = µε
∂~E
∂t
.

(2.20)

After applying the curl operation to the right sided equations the electric and magnetic

field vectors become decoupled,

∇2~E = µε
∂2~E
∂t2

, ∇2 ~B = µε
∂2 ~B

∂t2
. (2.21)

These satisfy the 3D wave equation,

∇2f =
1

v2

∂2f

∂t2
, (2.22)

thus enabling us to conclude that v = 1/
√
µε = c/n, where n =

√
εµ/ε0µ0 is the index

of refraction. In the air, n ≈ 1, and thus the results are very similar, and in most

applications equivalent, to that of electromagnetic waves propagating in vacuum. In

that case v = 1/
√
µ0ε0 = c = 3× 108 m/s, the speed of light in a vacuum, evidence that

light is electromagnetic in nature.

2.3.1 Electromagnetic Spectrum and Why Microwaves

Just like light, there are a lot of different types of radiation, defined according to their

uses and effects. The electromagnetic waves can then be characterized by the frequency

of the electric/magnetic field variation because this quantity is independent of the propa-

gation medium. On the photon level, the Planck’s equation (2.23) dictates that a photon

with a higher frequency has a higher energy,

E = hν. (2.23)
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The eight classifications are, in increasing order of energy, radio waves, microwaves,

terahertz radiation, infrared radiation, light, ultraviolet radiation, X-rays and gamma

rays.

From all the possibilities, microwaves are used for long distance transmissions because

of their relative high directivity, allowing point-to-point transmission, along with a low

interaction with the air particles. This is evident in Fig. 2.1, where the microwave

transmittance in the air is ≈ 100% for the smaller frequencies, including the frequency

of operation, ν = 5.8 GHz. This frequency was chosen because it has gained ground on

the WPT Standards and Regulations as being one of the most used frequency for far

field applications, along with 2.45 GHz [42]. Between the two, the former was chosen

because it has a smaller wavelength, useful for longer distances.

Figure 2.1: Microwave transmittance through the air. Plot obtained from the CSO
Atmospheric Transmission Interactive Plotter4.

Microwaves typically cover the radiation from the electromagnetic spectrum between

the interval of frequencies of [3 - 300] GHz, which corresponds to wavelengths of [100 -

1] (mm). They are usually represented in the spectrum along RF as in Fig. 2.2.

4By Westeros91 (Own work) [CC0], via Wikimedia Commons

http://www.submm.caltech.edu/cso/weather/
http://www.submm.caltech.edu/cso/weather/
https://commons.wikimedia.org/wiki/File%3AAtmospheric_Microwave_Transmittance_at_Mauna_Kea_(simulated).svg
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Figure 2.2: Electromagnetic spectrum centred at the microwave band. [43]

The introduction of the theoretical foundation necessary for our study has been finished.

In a sense, the remaining theoretical sections will elaborate on the electromagnetic results

obtained, in order to reduce the level of abstractness to specific applications.





Chapter 3

Quasi-Optics

The electromagnetic waves introduced in the previous chapter were a consequence of

advances in 19th century physics. However, experiments on light have been performed

millennia before their derivation, yet again in the Ancient World, possibly with the

development of the first lenses. The theory of Geometrical Optics was first presented by

Euclid, the Greek mathematician.

These facts hugely validate the theory of optics because its results and conclusions

have been tested and proven throughout the centuries, until this very day. Therefore,

it would be hugely advantageous if its formalism could be applied to other types of

electromagnetic waves. Fortunately, under certain circumstances, that is the case. It is

only necessary to make some adjustments.

Quasi-optics is the field of optics that deals with cases where the wavelength is compara-

ble to the size of the system’s components, making the diffraction1 effects not negligible

[2]. Consequently, the electromagnetic front wave approximation is no longer valid being

necessary to resort to Gaussian Beams. Examples of real cases are light in micrometre

scale systems (lasers) and microwaves propagating through the air.

3.1 Gaussian Beam Formalism

In most cases, the study of the electromagnetic fields assume a harmonic time variation2

which can be written in phasor notation, eiωt, with ω = 2πν being the angular frequency.

By doing so, the wave number, k = 2π/λ, can be written as k = ω(εrµr)
1/2/c. This

notation allows us to keep the time dependence on a separate term, which will always

be suppressed.

1The alteration of the radiation distribution with the distance from the source of radiation.
2Harmonic time varying fields are denoted with roman letters.

15
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We can start by stating that the beam propagates in the ẑ direction, with z0 being the

point at which the power is most concentrated and the diffraction less evident - the

beam wave front can correctly be approximated by a plane wave at the surroundings of

this point. For now, we will define z0 = 0. As z increases (i.e. as the beam propagates),

the beam spreads and the wave front3, assumes a curved shape.

Then, the plane wave approximation is no longer valid and the electric field can be is

generally defined as E(x, y, z, t) = u(x, y, z)e−ikz, where u is the ”function that defines

the non-plane wave part of the beam” [2]. The major variation assumed is in the direction

of propagation allowing us to continue assuming that the electric and magnetic fields

are perpendicular to each other and to the direction of propagation.

If we introduce this form of the electric field in the Helmholtz Wave Equation,

(∇2 + k2)Ψ = 0, (3.1)

where Ψ is any component of ~E or ~H, we arrive at the reduced wave equation,

∂2u

∂x2
+
∂2u

∂y2
+
∂2u

∂z2
− 2ik

∂u

∂z
= 0. (3.2)

3.1.1 Paraxial Approximation

The assumption that the vector rays which characterise a beam’s wave front have a

small divergence angle4, θ, throughout the system (θ . 10 °), is called the paraxial

approximation. This allows us to neglect the third term in (3.2), thus arriving at the

paraxial equation for rectangular coordinates,

∂2u

∂x2
+
∂2u

∂y2
− 2ik

∂u

∂z
= 0. (3.3)

Cylindrical coordinates may be more advantageous for our analysis due to the symmetry

along the optical axis. In that case the paraxial equation becomes

∂2u

∂r2
+

1

r

∂u

∂r
+

1

r

∂2u

∂ϕ2
− 2ik

∂u

∂z
= 0, (3.4)

In either case, the solutions to the paraxial equation are the gaussian beam modes. The

electric field of a gaussian beam propagating freely in the fundamental mode is axially

symmetric; its value depends only on the distance from the axis of propagation (radius),

r, and the position along the axis, z. In cylindrical coordinates, normalised so that

3The surface of equal phase of the electric field.
4The angle is measured between the ray and the optical axis, the axis of propagation (in this analysis

z).
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�∞
0 |E|2 · 2π r dr = 1, the distribution is

E(r, z) =

√
2

π$2
exp

(
− r2

$2
− ikz − iπr2

λR
+ iφ0

)
, (3.5)

This field distribution is represented in Fig. 3.1. Several important parameters have

been introduced: $ is the beam radius, R is the radius of curvature of the wave front,

φ0 is the phase shift and λ is the wavelength.

(a) (b)

Figure 3.1: Normalized electric field distribution of a gaussian beam in the
fundamental mode ($0 = 1 m): (a) front view and (b) transverse view.

These parameters will now be explained.

3.1.2 Beam Parameters

Gaussian Beams are mainly described by three parameters, $,R and φ0:

� The Beam Radius, $(z), is the distance to the axis at which the field drops

to 1/e of its on-axis value and is generally a function of the position along the

propagation direction (Fig. 3.2). Its minimum value, which is characteristic of the

beam, is called the Beam Waist Radius ($0) and it is located at the Beam Waist

point, z0, which is defined according to a reference point (e.g. the aperture of a

horn antenna). As stated before, it is assumed that z0 = 0. It can be shown that

[2],

$ = $0

√
1 +

(
z

zc

)2

, (3.6)
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Figure 3.2: The normalized beam radius is plotted as a function of the propagation
axis, z.

where zc = (π$2
0)/λ is the confocal distance, an important quantity which will be

defined below.

� The Radius of Curvature , R(z), is the radius of curvature of a wave front at z

(Fig. 3.3), if the wave was plane at z = 0,

R = z +
z2
c

z
. (3.7)

Figure 3.3: The radius of curvature of the wave front along z.

Naturally, at the beam waist z = z0 = 0 and R→∞, typical of a plane surface.

� The Beam Phase Shift , φ0, (sometimes called the Guoy Phase Shift) is the

difference between the on-axis wave front phase and that of a corresponding plane
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wave. It generally changes along z (Fig. 3.4), being

φ0 = arctan

(
z

zc

)
. (3.8)

Figure 3.4: Phase shift along z.

� When studying beam transformations it is particularly convenient to define the so

called Gaussian Beam Parameter , q,

1

q
=

1

R
− i λ

π$2
(3.9)

or (as a function of $0)

q = z + izc. (3.10)

� The crucial quantity after which all the other parameters are written is the Con-

focal Distance (or Rayleigh Range),

zc =
π$2

0

λ
. (3.11)

This parameter sets the scale at which a gaussian beam remains collimated (i.e.

the beam’s rays remain parallel, with minimum divergence). Therefore, zc pa-

rameterizes the transition between the near-field region, z � zc, and the far-field,

z � zc.

It is important to differentiate between the definition of the field regions of gaus-

sian beams from that of antennas’. The antenna’s near-field is the region where

non-radiative fields dominate while the far-field is associated with the emission of

radiation. On the other hand, since gaussian beams are a representation of elec-

tromagnetic waves the field regions are always related to the beam of radiation



20 Chapter 3. Quasi-Optics

and the way it behaves and propagates. The diffraction is the major differentia-

tor between the near and far-field of gaussian beams with zc being the transition

region.

3.1.3 Near and Far Field Regions

The Gaussian Beam mode solutions offer a way of describing the behaviour of the beam

parameters at all distances from the beam waist. However, in analogy to other calcula-

tions it is still natural to divide the beam into Near and Far Field. As stated previously,

this approach can be easily done in terms of the Confocal Distance (3.11).

One can summarise a beam propagating, as a function of the distance from the beam

waist, as follows.

At the Beam Waist

At this point the beam can be correctly approximated by a plane wave (R → ∞ and

φ0 = 0) meaning that the diffraction effects are negligible. The beam radius assumes

its minimum value $ = $0, which is the same to say that the electric field and power

density have their maximum on-axis value.

As z increases, $ grows hyperbolically (Fig. 3.2).

In the Near Field (z << zc)

Firstly the beam radius increases very slowly, remaining relatively similar to the beam

waist ($ ≤
√

2$0). While that is the case, the beam is said to be collimated.

At the confocal distance (z = zc)

This point marks the transition of the near and far field regions, delimiting the end of

the collimation, $ =
√

2$0. The radius of curvature has its minimum value, R = 2zc,

and φ0 = π/4.

From this point on, the beam greatly increases, entering the far field region.

In the Far Field (z >> zc)

The beam assumes a linear growth where the divergence angle, θ0, is θ0
∼= λ

π$0
. Just as

$, the radius of curvature grows linearly, with the form R → z. In 2D the phase shift

has the asymptotic limit φ0 = π/2.

An important note is now in order.

In the paraxial limit the wave fronts are considered to propagate near the optical axis.

These have wave vectors (rays) that are almost parallel to the optical axis at any point
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(i.e. the divergence angle is θ0 . 10 °). In such an approximation,

sin θ0 ≈ θ0, tan θ0 ≈ θ0 and cos θ0 ≈ 1.

The importance of this result is immense since it means that the beam transformations

can be linearly analysed, allowing the use of matrices5. In quasi-optics the paraxial

approximation is considered valid as long as,

$0

λ
& 0.9. (3.12)

3.2 Higher Order Modes

Sometimes, the most common solutions are not enough to describe a certain beam

and the fundamental mode derived above doesn’t provide a good approximation to

the radiation beam. More complex solutions can be achieved by deriving Higher Order

Gaussian Beam Solutions. These have the same behaviour in terms of radius of curvature

and beam radius but differ in phase shift.

3.2.1 Higher Order Modes in Cylindrical Coordinates

Higher order modes in cylindrical coordinates account for radiating systems with high

axial symmetric but which are not perfectly described by the fundamental radiating

pattern:

Epm(r, ϕ, z) =

√
2p!

π(p+m)!

1

$(z)

[ √
2r

$(z)

]m
Lpm

(
2r2

$2(z)

)

· exp

[
− r2

$2(z)
− ikz − iπr2

λR(z)
− i(2p+m+ 1)φ0(z)

]

· exp (imϕ) .

(3.13)

The higher order Gaussian Beam mode solutions are normalised so that each represent

unit power flow and are related orthogonally:

� �
r dr dϕEpm(r, ϕ, z)E∗qn(r, ϕ, z) = δpqδmn. (3.14)

These modes are called the pm Gaussian Beam modes, pm modes, or Gaussian-Laguerre

modes. p refers to radial variations while m is related with axial variations.

5This will be clearer in section 3.3.
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The Lpm polynomials are solutions to Laguerre’s differential equation,

u
d2Lpm
du2

+ (m+ 1− u)
dLpm
du

+ pLpm = 0, (3.15)

which can be obtained in direct series representations,

Lpm(u) =

l=p∑

l=0

(p+m)! (−u)l

(m+ l)! (p− l)! l! . (3.16)

It is quite normal to take m = 0, assuming that there is axial symmetry, to describe

radiating systems (axially symmetric horns, etc). Different beam can be observed in

Fig. 3.5.

(a) (b) (c)

Figure 3.5: Different gaussian beam cylindrical modes assuming axial symmetry,
m = 0: (a) p = 1 (b) p = 2 (c) p = 5.

3.2.2 Higher Order Modes in Rectangular Coordinates

The rectangular coordinate system may be useful to describe some systems, specifically

if there is independent variation along two different directions. They are given by

Emn(x, y, z) =

√
1

π$x$y 2m+n−1m!n!
Hm

(√
2x

$x

)
Hn

(√
2y

$y

)

· exp

[
− x

2

$2
x

− y2

$2
y

− ikz − iπx2

λRx
− iπy2

λRy
+
i(2m+ 1)φ0x

2
+
i(2n+ 1)φ0y

2

]
.

(3.17)

These modes also obey the orthogonality relationship,

� � ∞
−∞

Emn(x, y, z)E∗pq(x, y, z)dxdy = δmpδnq. (3.18)

These solve the Hermite’s differential equation,

d2H(u)

du2
− 2u

dH(u)

du
+ 2mH(u) = 0, (3.19)
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m being a positive integer. The polynomials in direct series are obtained from

Hn+1(u) = 2 [uHn(u)− nHn−1(u)], (3.20)

knowing that H0(u) = 1 and H1(u) = 2u.

The indexes m and n are related to the x and y electric field components as the number

of roots. For example, m = 1 means that the electric field distribution has a null in the

x component. A couple of rectangular modes are represented in Fig. 3.6.

(a) (b)

Figure 3.6: Different gaussian beam rectangular modes: (a) m = 2, n = 0 (b)
m = 3, n = 3.

3.3 Beam Transformation

While in the previous section was introduced the way Gaussian beams propagate6 now

it will be shown how to perform beam transformations. Like in optical systems, lenses

and mirrors are the base components.

The fundamental mode will be the focus of the discussion due to its simplicity and the

fact that most of the radiating patterns can be well approximated by it.

A general quasi-optical system can is represented in Fig. 3.7:

6i.e. how the parameters vary with the distance.
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Figure 3.7: General quasi-optical system. din is the distance from the input beam
waist to the first system’s component whereas dout is the distance from the final
component to the output beam waist. The grey box illustrates the general system
which can be composed of various components.

3.3.1 Rays, Matrices and the Complex Beam Parameter

Rays propagating freely in a homogeneous medium can be ascribed at each point to

their distance (r) and slope (θ) to the optical axis. If a ray encounters a quasi-optical

component it is formally transformed and an output ray will emerge. In the paraxial

approximation these transformations are linear, hence the output ray is linearly related

to the input one: 
rout
θout


 =


A B

C D


 ·


rin
θin


 .

The ABCD elements form the so called Ray Transfer Matrix (M), which is characteristic

of the system with its components. It can be calculated by multiplying the matrices of

each component that interacts with a ray in reverse order (e.g. if a ray enters a system

and encounters the component A and then B, the overall matrix is M = MB ×MA).

The radius of curvature of the wave front of a beam is R = r/θ and therefore the

gaussian beam parameter, q, can be related to the ray parameters. Defining qin as the

input gaussian beam parameter at the input beam waist we can arrive at the output

gaussian beam parameter (at the output beam waist),

qout =
A · qin +B

C · qin +D
. (3.21)
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By using (3.9) we can obtain the beam radius ($) and the radius of curvature (R) of

the output beam as a function of z.

A general system matrix, Msys, can be written by taking the matrices representing the

propagation of the incoming and outgoing rays together with the ray transfer matrix,

M. It enables us to write the input and output parameters for any system configuration

in simple terms:

Msys =


1 dout

0 1


 ·


A B

C D


 ·


1 din

0 1




=


A+ Cdout Adin +B + dout(Cdin +D)

C Cdin +D




=


A
′ B′

C ′ D′




(3.22)

where din, the input distance, is the distance from the input beam waist to the first

element of the system and dout is the output distance from the last element of the

system to the output beam waist (see Fig. 3.7).

Since the beam parameter (3.10) at the beam waist (where z = 0) is qin = izc then,

by inserting A′B′C ′D′ elements of the overall matrix, Msys, in (3.21), the output beam

parameter qout becomes,

qout =
(A+ Cdout)izc + [(A+ Cdout)din + (B +Ddout)]

Cizc + Cdin +D
, (3.23)

and, given that at the output beam waist, zout = 0, qout is imaginary, and

dout = −(Adin +B)(Cdin +D) +ACz2
c

(Cdin +D)2 + C2z2
c

(3.24)

and finally the output beam waist radius $0out (knowing that detM = 1),

$0out =
$0in√

(Cdin +D)2 + C2z2
c

. (3.25)

This ends the quasi-optical formalism theory. In the next chapters a script developed

to visualize the beam propagation and transformation (chapter 4) will be explained as

well as theoretical results obtained when analysing the proposed double reflector system

(chapter 5).





Chapter 4

Graphical Representation Scripts

In order to better understand the phenomena of gaussian beams, scripts were developed

to help fulfil two major goals: firstly, the visualisation of the gaussian beam wave front,

for different modes of propagation, in both rectangular and cylindrical coordinates; the

other objective was to represent gaussian beam propagation and transformation in a

system (which can be composed by reflectors or lenses), through the beam radius’ value

as a function of the position in the system, $(z). The propagation and transformation

follow [2] (presented in section 3.3).

4.1 Initialisation

At first, it is necessary to define the physics constants and parameter values that will

be used, done by Gaussian Beam.m:

1 %% Global Variables

2 global lambda k; % to be used in other .m files

3

4 %% Constants

5 c = 3e8; % Speed of light in vacuum (m/s)

6 freq = 5.8e9; % Frequency is 5.8 GHz

7 n = 1; % Refraction index (n = c/v) of air n = 1.0003

8 lambda = c / (n * freq); % Wavelength (lambda =~ 0.0517 (m)

9 k = 2*pi / lambda; % Wave Vector (1/m)

Listing 4.1: Gaussian Beam.m - The initialisation file.

It is necessary to run this script at the beginning of each session.

27
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4.2 Wave Front

The wave front is a set of beam points which have the same phase. The location of the

wave front is characterised by the distance from the beam waist, z, where the analysis is

made. MATLAB functions1 were used to describe and obtain the necessary quasi-optical

quantity values and use them in the calculus of the electric field distribution.

As an example, the beam radius2 function is presented in Listing 4.2:

1 function y = w_(z, w0)

2

3 global lambda;

4 y = w0 .* (1 + (lambda .* z ./ (pi .* (w0 .^ 2))) .^ 2) .^ (0.5);

5 end

Listing 4.2: w .m - Beam radius MATLAB function.

This function assumes two input arguments, z and $0 (the beam waist value, a constant

parameter characteristic of the beam). For a certain wave front, the beam radius3 is

constant.

After defining the other necessary variables, the final electric field distribution function

in cylindrical coordinates is given in Listing 4.3. It allows us to know the electric field

values of a gaussian beam at any point4 (r, ϕ, z). The gaussian beam can be propagating

in any pm mode.

1 function y = pelec(r, z, w0, phi , p, m)

2

3 global lambda k;

4

5 y = ((2 .* factorial( p ) ./ (pi .* factorial(p + m))) .^ 0.5) .* (1

./ w_(z, w0)) .* ((sqrt(2 .* r) ./ w_(z, w0)) .^ m) .* Lag (((2 .* (r

.^ 2)) ./ (w_(z, w0) .^ 2)), m, p) .* exp(-(r .^ 2) ./ (w_(z, w0) .^

2) - 1i .* k .* z - (1i .* pi .* (r .^ 2)) ./ (lambda .* R_(z, w0)) -

1i .* (2 .* p + m + 1) .* phi0_(z, w0)) .* exp(1i .* m .* phi);

6 end

Listing 4.3: pelec.m - Higher order modes in cylindrical coordinates MATLAB

function.

The Laguerre polynomials (3.16) are defined as another MATLAB function (Listing 4.4):

1To differentiate between variables and functions which have similar names, the latter’s end with
underscore, ’ ’.

2The symbol used for the beam radius in MALTAB is w for being easier to implement than $.
3lambda is the global variable defined in the initialisation file, Gaussian Beam.m.
4r, ϕ, z are the common cylindrical coordinates
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1 function y = Lag(u, p, m)

2 y = 0;

3 for l = 0:p

4 y = y + (factorial(p + m).*((- u).^l))./( factorial(m + l).*

factorial(p - l).* factorial(l));

5 end

6 end

Listing 4.4: Lag.m, Laguerre polynomials in direct series representation.

Having obtained the wave front electric field distribution, it is only necessary to plot the

function. Matlab allows the plotting of a surface with the surf command. By defining

the surface basis as x and y with the meshgrid command, it is only necessary to obtain

the z value (the value of electric field distribution at (x, y)).

The implementation was done by the use of another function (partially presented5 in

Listing 4.5) which immediately outputs a figure with the wave front plot. The use of a

plotting function avoids having to change the script for different modes of propagation.

1 function cc(z, w0, p, m) % Cylindrical Coordinates

2

3 Nres = 1000; % Number of Points

4

5 %% Grid Definition for a Circular x and y Basis.

6

7 theta = linspace(0, 360, Nres) .* pi ./ 180; % Angle is 360

degrees

8 r = linspace(0, 4.*(w_(z, w0)./w0), Nres);% 0 < r < 4*w0

9

10 [th , rho] = meshgrid(theta , r); % Meshgrid creation

11

12 fun = @(r) abs(pelec(r, z, w0 , 0, p, m)); % Function handle

13

14 %% Top View

15

16 figure;

17 surf(rho .* cos(th), rho .* sin(th), fun(rho), 'linestyle ', 'none');

18 view (2);

19 grid on;

20 end

Listing 4.5: cc.m - Wave front in cylindrical coordinates plotting function.

The function handle (fun) enables us to choose which variables will vary and the value

of the ones that are constant. In this case, axial symmetry is assumed (ϕ = const = 0)

and the electric field distribution becomes a function only of r. The electric field is a

5The MATLAB figure formatting was left out of the listing.
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complex vector field but it is here represented as an electric field amplitude by the use

of the abs command.

Finally, a similar approach was repeated for the rectangular coordinates beam modes. All

the wave front graphical representations in this document have been obtained through

these scripts.

Having finalised the wave front representation section, beam propagation and transfor-

mation will now be presented.

4.3 Beam Propagation and Transformation

In order to visualise the beam propagating through the system, several different steps

must be made which will be presented in different sections. The main difference is

that z is now a system variable. In fact, the beam propagation is considered to be one

dimensional, happening only in the ẑ axis.

Firstly, the functionality is condensed in a single script (called test final.m) where it

is possible to call the initialiser script Gaussian Beam.m. We proceed by defining the

beam waist radius, $0, which allows us to obtain the confocal distance, zc.

4.3.1 Cell Array

This script makes use of several requests for user input to define the system6, the first

of which is for N, the number of elements in the system. It is important to emphasise

that all information regarding the elements composing the system are stored in zelem,

a N× 3 cell array7.

1 Gaussian_Beam % Call for the initialising script.

2

3 w0 = 0.04902;

4 zc = pi * (w0 ^ 2) / lambda;

5

6 Nres = 1000; % Related to the graphic 's resolution

7

8 %% System Definition

9

10 zelem = {}; % Cell array initialisation.

11 N = input('\n\nNumber of elements (integer) = '); % # of elements

12

13 i = 1;

14 while i < N + 1

6The input requests are only made for the parameters which are more likely to be changed.
7Cell arrays can contain any type of data, hence their usefulness.
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15 fprintf('\n\n Element number %i\n', i);

16 element = input('Element Type (" mirror" or "lens")\n ', 's');

17 if strcmp(element , 'mirror ')

18 f = input('\nFocal length of the element (f) = ');

19 zelem{i, 1} = [1 0; -1/f 1];

20 zelem{i, 2} = input('\nElement Position (in m) = ');

21 zelem{i, 3} = -1;

22 i = i + 1;

23 elseif strcmp(element , 'lens')

24 f = input('\nFocal length of the element (f) = ');

25 zelem{i, 1} = [1 0; -1/f 1];

26 zelem{i, 2} = input('Element Position (in m) = ');

27 zelem{i, 3} = 1;

28 i = i + 1;

29 else

30 fprintf('Invalid element type!\ nPlease repeat.');

31 end

32 end

Listing 4.6: test final.m - Part 1. System Definition.

The cell array zelem can be explained as follows:

� Each row contains information about one element;

� There are three columns for each row: the first is the ray transfer matrix M,

characteristic of each element8; the second is the position along the ẑ axis where

the element is placed (in meters); finally the third cell has either the integer −1

or +1, respectively for when the element is reflective or not9.

4.3.2 Arrays for Storing Quantity Values

The beam propagation starts at a position z0 dictated by the user. Its value will be

saved in an array, z array, that serves as the independent variable when plotting the

beam propagation. The other variable is the beam radius which starts with the beam

waist value and will also be kept in an array, w array.

The final user requested information is the initial s10, the direction of propagation of

the beam, with +1 and −1 being respectively the positive and negative direction of the

ẑ axis (right and left in the plot figure).

1 z0 = input('\nBeam starting position\n ');

2 s = input('\nDirection of propagation (-1 for negative diretion , 1 for

positive)\n ');

8As described in section 3.3.
9The reason for it will be explained further down in this section.

10The choice is only between +1 or −1.
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3

4 z_array = [z0]; % Saving values and initialising the arrays

5 w_array = [w_(z, w0)];

6

7 z0_last = z0; % Position of the beam waist after the transformation

8 w0_last = w0; % Beam waist value after the last transformation

Listing 4.7: test final.m - Part 2. Array initialisation.

A final note goes to the w0 last and z0 last. These variables are necessary to obtain

the correct quantity values after each transformation11. These are used to keep track of

the most recent quantity values.

4.3.3 Main Loop

The main code is a while loop, where each iteration coincides with a variation in the

wave front position of s/N . The reason why s is defined with a ±1 is now evident: it

makes it easy to have the beam propagate in the positive or negative direction.

It it is now important to differentiate with the beam wave front position (the one that is

being saved in z array) and the z used to calculate quasi-optical quantities. As stated in

the end of the previous section, new beam transformations are the same as terminating

the beam interacting with the component and having another beam, with a new $0 at

a certain z0, start at exactly the component’s position.

Since the dout is defined as the distance between the component and the output beam

waist, it equals to say that, at the component’s position, the beam has z = −dout. It

will proceed to propagate and converge until z = 0 at the beam waist location (z0 in the

system reference frame). In the script it is presented as follows:

1 while size(z_array , 2) < 120 * N + 1

2

3 z = z + 1 / N; % Increase of z in every step.

4

5 %% Saving the new values in the arrays

6

7 w_array(end + 1) = w_(z, w0_last);

8 z_array(end + 1) = z_array(end) + s / N;

Listing 4.8: test final.m - Part 3. Beam propagation.

After having propagated the extra step, s/N , the beam may interact with a system

component. If so, the beam transformation formalism of section 3.3 is used to calculate

11After each transformation, the beam can be mathematical treated as a new beam with a certain
beam waist located in a certain position.
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the output beam waist and its location. Afterwards, the necessary updates to the

variables are made and the beam continues to propagate.

As can be seen in line 23 of Listing 4.9, the third cell of zelem is used to control the

beam direction of propagation through a multiplication between it and s.

1 %% Check if the beam coincides with a system element

2 for i = 1:N

3 if abs(z_array(end) - zelem{i, 2}) < (1 / N)

4

5 %% Transformation Matrix

6

7 A = zelem{i, 1}(1, 1);

8 B = zelem{i, 1}(1, 2);

9 C = zelem{i, 1}(2, 1);

10 D = zelem{i, 1}(2, 2);

11

12 din = s * (zelem{i, 2} - z0_); % din < 0 = virtual

image , din > 0 = real image

13

14 zc = pi * (w0_last ^ 2) / lambda;

15

16 dout = -((A * abs(din) + B) * (C * abs(din) + D) + A * C * (

zc ^ 2)) / ((C * abs(din) + D) ^ 2 + (C ^ 2) * (zc ^ 2));

17 z = - dout;

18

19 w0out = w0_last / ((((C * abs(din) + D) ^ 2) + (C ^ 2) * (zc

^ 2)) ^ 0.5);

20 w0_last = w0out;

21

22 s = s * zelem{i, 3}; % Transformation of the

direction of propagation

23

24 z0_ = zelem{i, 2} + s * dout; % sfinal (s - direction

of propagation) after transformation

25 end

26 end

27 end

28

29 plot(z_array , w);

Listing 4.9: test final.m - Part 4. Beam transformation.

With the plot function this chapter is finalised, having been possible to fulfil both

proposed goals.





Chapter 5

Double Reflector Quasi-optical

System Analysis and Results

After having the tools to analyse any general quasi-optical system, it is necessary to

choose a system for further study. The proposed quasi-optical system is a double reflector

configuration (represented in Fig. 5.1), somewhat inspired by the acoustic mirror. The

idea is that:

1. A feed antenna radiates on the first reflector;

2. The mirror transforms the radiation in order for it to better propagate through

space, directing the beam at the second mirror;

3. This last one will in turn transform the beam so that it can be better received in

the final antenna.

35
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Figure 5.1: Double-Reflector configuration. demitter is the distance from the input
beam waist radiated by the emitter antenna to the first reflector, after which one can
find a beam waist clearly located at z = L/2. dreceptor is the distance from the final
reflector to the output beam waist, at the reception antenna.

Although represented on-axis, an offset reflector should be mandatory since most en-

ergy flows in the centre of the axis. This set-up was chosen for being the most simple

(reflectors are the only type of components used besides the mandatory feed antennas)

which serves the purpose of theory validation and preparation for more advanced systems

(e.g. adding lenses will enable increasingly complex and improved solutions). Parabolic

reflectors were chosen in order to avoid spherical aberration.

The separation between reflectors (L) is the quantity that specially characterizes the

system. Our final goal is to understand how to achieve the maximum power transmission

efficiency, for the maximum L possible.

It is extremely necessary to make a note here. Every quasi-optical system analysis is

made by considering an incident beam, with a certain beam waist radius $0in located

at a distance din from the first component of the system, that suffers transformations

by the system. The result is an output beam with a certain $0out that will be located

at a distance dout from the last component of the system. A representation of a general

quasi-optical system is represented in Fig. 3.7.

For our double-reflector system, the quasi-optical system is composed by three compo-

nents: the first reflector, the distance between reflectors and the final reflector, where

d′in = demitter, d
′
out = dreceptor (the inverted comas are used for quantities referring to

the total double-reflector system).
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However, we can begin our analysis by simplifying the double mirror set-up by making

both mirrors and antennas equal: in optics and quasi-optics, rays respect the reciprocity

principle, therefore the same laws apply to incoming or outgoing beams - the transfor-

mations are simply reversed. One can then analyse the mirrors’ effect by studying only

one of them.

By doing so, the quasi-optical system represents only one reflector and although din =

demitter remains exactly the same, the output beam waist will now be the beam after

the first reflector. By observing Fig. 5.1, it is clear that dout = L/2.

In that case, the ray transfer matrix is exactly that of a single mirror with a certain

focal length (f), [
1 0

− 1
f 1

]
. (5.1)

To clarify, the feed antenna originates a beam whose beam waist is at certain distance din

from the reflector. This beam will diverge until it is transformed by the reflector. The

output beam will converge until it reaches L/2 where the output beam waist is located by

definition (i.e. dout = L/2). That finalises the quasi-optical system analysis, but not the

beam propagation, which proceeds until the receptor. Because of reciprocity, the beam

is expected to diverge until it reaches L, the position where the second mirror is, with the

same characteristics (parameters’ values) it had in the first mirror. Then the beam will

be transformed by the mirror and focused at the receiving antenna, which, reciprocally,

is at a distance of din from the last reflector. In this case demitter = dreceptor = din.

In the end, the incoming beam at the receiving antenna should have the same charac-

teristics of the outgoing beam at the transmitting antenna,

$0final
= $0initial

.

At this point the wave front is approximately a plane wave, which might be advantageous

for conversion efficiency (at the receptor).

By substituting the parameters of (5.1): A = 1, B = 0, C = −1/f and D = 1 into

(3.23) and (3.24), and solving as a function of the mirror’s focal length (f) we arrive at

af2 + bf + c = 0, (5.2)

with a = L
2 + din, b = −

(
Ldin + d2

in + z2
c

)
and c = L

2

(
d2
in + z2

c

)
. This is a quadratic

polynomial equation, which has two solutions. In order for the focal length to be a real

quantity

b2 − 4ac ≥ 0 (5.3)
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Therefore,

[
−
(
Ldin + d2

in + z2
c

) ]2

− 4

[
L

2
+ din

] [
L

2

(
d2
in + z2

c

)]
≥ 0,

which can be solved for L, yielding the condition,

L ≤ zc +
d2
in

zc
. (5.4)

5.1 Maximum Distance Between Mirrors

We have arrived at an interval of possible values for L, ranging from zero up to Lmax(din, zc) =

zc + d2
in/zc.

For the sake of simplicity, L will always refer to its maximum value.

In order to maximize the distance between mirrors it is necessary to optimize on zc and

din. Hence, 



∂L

∂zc
= 1− d2

in

z2
c

= 0 ⇒ z2
c = d2

in ⇒ zc = ±din
∂L

∂din
=

2din
zc

= 0 ⇒ din = 0

The only critical point is therefore zc = din = 0 which is obviously of no interest since

we look forward to quantities that have positive non-zero values. Hence, it should be

assumed that din is a controllable parameter and optimize for zc.

In so doing we find that L is minimum at zc = din, given that d2L
dzc

2 =
2d2in
z3c

= 2
zccrit

> 0.

The function L(zc) is represented in Fig. 5.2 for different values of din.

Figure 5.2: Distance between mirrors, L, for different values of din.
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It is convenient to consider separately the regions below and above the minimum of L,

Lmin = 2din. For each of the regions an assumption can be made, which allows for a

simplification of L. These regions correspond respectively to,

zc � din ⇒ L ≈ d2
in/zc (5.5a)

and

zc � din ⇒ L ≈ zc, (5.5b)

which means that in the two regions the beam is propagating in the far and near-field,

respectively. To avoid any possible ambiguity with near and far-field antennas, we shall

call the above regions simply region 1 and 2 or instead small and big beam regions

because, as can be seen in Fig. 5.4, for a certain frequency of operation, the size of the

beam waist radius is much smaller in region 1 than it is in 2.

Two conclusions are immediately obvious. For a smaller din, L reaches the two approx-

imations more rapidly. On the other hand, however, for a fixed zc, a smaller din enables

a smaller distance L.

The equation L = zc + d2
in/zc can also be written as

z2
c − Lzc + d2

in = 0 (5.6)

and hence,

zc =
L±

√
L2 − 4d2

in

2
, (5.7)

(meaning that L & 2din as above). These solutions correspond to the above regions 1

and 2, respectively.

The input distance of din = 1 m has been chosen for convenience while remaining a

reasonable distance to implement the feed circuit. All the remaining analysis will be

based on this value. The function will therefore assume the curve in Fig. 5.3:

5.2 Focal Length

We can also obtain the focal length of the reflectors from (5.2). Since f has a double

solution when L = zc + d2
in/zc, then,

f(zc, din, L) =
Ldin + d2

in + z2
c

L+ 2din
. (5.8)
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Figure 5.3: Distance between mirrors for din = 1 m, where the approximations for
each region are visible. In the regions well below and well above the minimum, for
zc . 0.1 m and zc & 5 m, L can be approximated by d2in/zc and zc, respectively.

5.3 Beam in the Far-Field (Region 1, where L ≈ d2
in/zc)

The assumption (5.5a) means that the beam propagates in the far-field region (region

1). The beam waist radius is, from (3.11),

$0S =

√
λd2

in

πL
, (5.9)

where ’s’ stands for ”small waist”. In such a case,

$0S√
λ

=
din√
πL

= const, (5.10)

which means that the ratio between the beam waist and the square root of the wavelength

is a constant of the system. Therefore, if ν is the frequency and n is the refraction index

of the propagation medium (n ≈ 1 for air), then

ν =
cd2
in

πnL$2
0S

. (5.11)

This means that the choice of the components’ size will be balanced with the frequency

of operation.

In region 1, the focal length is

fS =
L3din + L2d2

in + d4
in

L3 + 2L2din
. (5.12)



Chapter 5 Double Reflector Quasi-optical System Analysis and Results 41

5.4 Beam in the Near-Field (Region 2, where L ≈ zc)

It is apparent from Fig. 5.3 that the near-field is a good approximation for zc & 5 m.

In this case the beam waist radius from (3.11) is

$0B =

√
λL

π
, (5.13)

where the subscript ’B’ means ”big waist”. This also means that,

$0B√
λ

=

√
L

π
= const, ν =

Lc

πn$2
0B

.

Moreover, the focal length is,

fB =
L2 + Ldin + d2

in

L+ 2din
. (5.14)

5.5 Paraxial Limit

The paraxial approximation sets a limit for both of these regions. From (3.12),

zc
$0

> 0.9π, (5.15)

and hence, considering the conditions in (5.5), the paraxial limits for the regions 1 and

2 are, respectively,

$0SL

d2
in

<
1

0.9π
, (5.16a)

and

$0B

L
<

1

0.9π
. (5.16b)

These limits should be respected when designing the system in the paraxial approxima-

tion.

5.6 Beam Radius at the Reflector

The beam radius at the position of the reflector, $R, having travelled din, is

$R = $0

√
1 +

(
din
zc

)2

. (5.17)



42 Chapter 5 Double Reflector Quasi-optical System Analysis and Results

This means that for the regions considered, we arrive at the same value,

$RS
= $RB

=

√
λ

π

(L2 + d2
in)

L
. (5.18)

5.7 Relation Between Focal Lengths

The quotient between (5.12) and (5.14) gives

fS
fB

=
L3din + L2d2

in + d4
in

L4 + L3din + L2d2
in

(5.19)

which is < 1 for din < L, which will always be the case. We then have

fS < fB. (5.20)

5.8 Comparison Between Beams in the Near and Far-Field

In order to best understand the differences between both beam types Fig. 5.4 shows the

two different possible scenarios.

(a) (b)

Figure 5.4: Comparison between beams in the near and far-field: (a) beam in the
far-field (small) (b) beam in the near-field (Big)

It is worth pointing out that the focal length representation is according to the result

in the previous section.
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5.9 Parabolic Reflector

The dimensions of a parabolic reflector are related as

4fD = R2
R, (5.21)

where RR is the Reflector’s Radius, D its Depth and f is the focal length.

The size of RR must necessarily take $R into account, for obvious reasons. By defining

the reflector’s coefficient (cR) as

RR = cR$R ⇒ RR√
λ

= cR

√
(L2 + d2

in)

πL
(5.22)

and by substituting (5.18) one arrives at

D =
c2
R$

2
R

4f
⇒ D

λ
=

c2
R

4πf

(
L2 + d2

in

L

)
. (5.23)

The coefficient cR should be as large as possible, though a value of
√

2 is enough from

a practical point of view (Fig. 3.1).

It is worth noting that due to (5.20), DS > DB. A beam in the far-field demands a

larger reflector depth.

5.10 Elliptic Reflector

What if we want to use elliptic mirrors? While at first they may not seem very useful

for our study that is not the case.

Ellipses are defined by two foci, F1 and F2, and if the beam originates at the first focus,

the reflecting surface (centred at a point P ) will direct the output beam waist to the

second focus of the ellipse, as can be seen in Fig. 5.5, disabling the possibility of a

reciprocal system.
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Figure 5.5: General ellipse representation with its main parameters. P is any point
in the surface distanced away from the foci, F1 and F2, by R1 = F1P and R2 = F2P .

The focal length of the elliptic reflecting surface centred in P is given by

fe =
R1R2

R1 +R2
(5.24)

where R1 = F1P and R1 = F2P .

To obtain the optimal performance of an elliptical focusing surface [2], we need to set

the system in a way that the input beam has a value of radius of curvature such that

Rin = R1 and, similarly, the radius of curvature of the output beam Rout = R2.

Although the use of elliptical reflectors made from surfaces of the same ellipse is not

advantageous, we can use the surface from two equal ellipses which share one focal point

(Fig. 5.6), thus arriving at a situation where the reciprocal principle is again obtainable.
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Figure 5.6: Double ellipse system. The second ellipse parameters are denoted by an
inverted comma. The ellipses share one focus point, F2 = F ′

2, and, to respect
reciprocity, R1 = R′

1 and R2 = R′
2.

Gaussian beams in that system are represented in Fig. 5.7. It is worth noting that, to

satisfy the optimal condition for elliptical reflector, the requirement is not for the input

beam waist to be located in the focus point, F1, but for the input beam to have a value

of radius of curvature at the reflector of Rin = R1.

Figure 5.7: Schematic representation of a double ellipsoidal reflector quasi-optical
system. The distance between mirrors is simply L = PP ′. To obtain the optimal
condition the input and output beam waist must be located at a point which makes
Rin = R1 = F1P and Rout = R′

1 = F ′
1P

′.



46 Chapter 5 Double Reflector Quasi-optical System Analysis and Results

5.11 Ellipsoidal Focal Length Validity

We will verify if the focal length of an ellipsoidal surface is equivalent to that of a general

quasi-optical component.

As stated before, the focal length of an ellipsoidal reflector in the optimal quasi-optical

condition is given by fe = (RinRout)/(Rin +Rout). From (3.7), we have that

Rin = din +
(π$2

0in
/λ)2

din
and Rout = dout +

(π$2
0out/λ)2

dout
. (5.25)

Now, since the ray transfer matrix of a reflector is generally given by A = 1, B = 0, C =

−1/f and D = 1, by replacing its values in (3.24) and (3.25), we get

$0out =

z2
c + d2

in

f
− din

x
(5.26)

and

$0out =
$0in√
x
, (5.27)

where x = (f2 − 2fdin + d2
in + z2

c )/f2 .

The elliptical focal length becomes

(
din + z2c

ddin

)(
dout + z2c

ddout

)

din + z2c
ddin

+ dout + z2c
ddout

= . . . =
1

dout
z2
cout + d2

out

+
din

z2
cin + d2

in

. (5.28)

At this point we can use (5.26) and (5.27) to arrive at the final form,

fe = f. (5.29)

We have proven that the focal length is indeed valid.

5.12 Theory Restraints

For the value of the distance between reflectors, L, we have two different equations1.

One arises immediately from the quasi-optical formalism as L1 = 2dout, where dout is

given by (3.24). The other (L2) is calculated from (5.8). The starting point is that these

should be the same:

L1 = 2f
z2
c + d2

in − fdin
f2 − 2fdin + z2

c + d2
in

=
z2
c + d2

in − 2fdin

f − din
= L2. (5.30)

1The subscripts 1 and 2 will be used to differentiate them.
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After working on the terms as a function of f , we arrive at

f2(d2
in − z2

c )− 2fdin(z2
c + d2

in) + (z2
c + d2

in)2 = 0, (5.31)

which has the solution,

f =
z2
c + d2

in

din ∓ zc
. (5.32)

By replacing (5.32) in L1 and L2 we arrive at exactly the same solution, L1 = L2 =

∓
(
zc +

d2in
zc

)
. Since L > 0, the solution of interest is,

f =
z2
c + d2

in

zc + din
. (5.33)

5.13 din that Maximizes L1

In the case that f 6= (z2
c + d2

in)(zc + din), we must use L1 = 2dout = L as the distance

between reflectors:

L = 2f
z2
c + d2

in − fdin
f2 − 2fdin + z2

c + d2
in

. (5.34)

The distance din which maximizes L is obtained by optimising (5.34) as a function of

din,
∂L

∂din
=
−2f2(f2 − 2fdin − z2

c + d2
in)

(f2 − 2fdin + z2
c + d2

in)2
= 0 ⇒ din = f ± zc.

Knowing that ∂2L
∂ din

2 = ∓f2

z3c
, L is maximum when,

din = f + zc. (5.35)

5.14 Summary

Quasi-optical systems made up of two equal components, positioned in such a way that

the reciprocity principle is respected, can be explained by two simple equations, (5.4)

and (5.33), reproduced here:

f =
z2
c + d2

in

zc + din
and L = zc +

d2
in

zc
.

The suggested system building procedure is as follows.

In most applications, L is normally the first variable to be defined. When that is the case,

f and $0 must be adjusted to best fit the parameter requirements. As will be seen in

the following chapters, $0 depends heavily on the feed antenna characteristics, normally
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being the second parameter to be settled. Then, it is only a matter of calculating f and

din (from (5.4), din =
√
zc(L− zc)) to obtain all of the parameter values.

For this study we used two parabolic reflectors and two antennas. The latter will be

explained in the following chapter.



Chapter 6

Antennas

As is explained in [39], antennas are defined as ”a means for radiating or receiving

radio waves” by the IEEE Standard Definitions of Terms for Antennas. In the following

section, a general introduction to antennas is presented based on [39].

6.1 Fundamental Parameters

There are many types of antennas assuming very different shapes so in order to compare

their performance engineers have several common parameters that describe the antenna

radiating characteristics.

6.1.1 Radiation Pattern

One of the most important parameters is the radiation pattern. It allows for an im-

mediate visualization of the radiating characteristics of an antenna, as ”a mathematical

function or a graphical representation of the radiation properties of the antenna as a

function of space coordinates” [39]. When analysed in the far field, it is a function of

directional coordinates.

The radiation pattern can be studied in terms of electric or magnetic field (amplitude

field pattern) or of the power density (amplitude power pattern), both of which can be

normalised to their maximum value. In that case, we arrive at the normalized field and

power patterns.

Quite usually, the radiation patterns are best represented in a logarithmic scale, in units

of decibels (dB), because the finer details can be better observed that way.

The radiation pattern is separated into regions delimited by values of relatively weak

radiation intensity. The region containing the direction of maximum radiation is called

49
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the major lobe. The rest are all called minor lobes, which represent radiation in undesired

directions. If a radiation lobe has the opposite direction of the major lobe (∼ 180°) it is

called a back lobe, otherwise they are simply referred to as side lobes.

antennas are defined differently according to their radiation pattern directional charac-

teristics:

Isotropic Ideal lossless antennas which equally radiate in all directions. They are

impossible to achieve but used as a reference for real antennas;

Direc-

tional

Antennas which are more effective in certain directions than in others.

Generally used for antennas whose maximum directivity1 is significantly

greater than that of a half-wave dipole.

Omnidi-

rectional

Special type of directional antennas that are non directional (equally ra-

diating) in a certain plane, but not in the remaining orthogonal planes.

6.1.2 Radiation Power Density

Electromagnetic radiation contains energy in the fields that compose it (E and H. In

order to arrive at the power in an electromagnetic wave, it is useful to introduce the power

density (energy per unit time per unit area) vector, named Poynting Vector (W/m2):

~S = ~E × ~H (6.1)

These are for time-dependant fields. The calculus will then allow us to know the instan-

taneous power density.

The total instantaneous power will then be

~P =

�

S

~S · n̂ da (6.2)

Once again it is possible to define the fields for a time variation of the form exp(iωt).

In that case

~E(x, y, z, t) = Re[ ~E(x, y, z)eiωt], (6.3)

~H(x, y, z, t) = Re[ ~H(x, y, z)eiωt]. (6.4)

Knowing that the average value of these quantities is obtained by integrating them over

one period and dividing by it, we arrive at

~Saverage(x, y, z) = [ ~S(x, y, z, t)]average =
1

2
Re[ ~E × ~H∗]. (6.5)

1The directivity parameter is explained below.
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It is common to name radiation density (Srad) to the power density when analysed in

the far-field. The 1/2 factor is to be omitted for RMS values.

The Average Power Radiated by an antenna is then

Prad =
1

2

�

S

Re[ ~E × ~H∗] · d~s (6.6)

6.1.3 Radiation Intensity

It is possible to analyse the power radiated from an antenna in a certain direction, per

unit solid angle. Then we refer to the Radiation Intensity In the far

U = r2Srad (6.7)

We can then relate the radiation intensity with the far-field electric of the antenna as

U(θ, φ) =
r2

2η
| ~E(r, θ, φ)|2 ' r2

2η

[
|E°

θ(θ, φ)|2 + |E°

φ(θ, φ)|2
]

(6.8)

One can then arrive at the total power radiated by integrating over the entire solid angle

(4π)

Prad =

�

Ω

U dΩ =

� 2π

0

� π

0
U sin θ dθ dφ (6.9)

6.1.4 Beamwidth

The major lobe contains the radiation pattern maximum, oriented in a certain direction.

The beamwidth is defined in terms of angular separation between two points of a plane

containing that direction, with the same amplitude, on opposite sides of the pattern

maximum. A multitude of beamwidths can be defined but generally it is assumed that

beamwidth refers to the Half-Power Beamwidth (HPBW). Another useful beamwidth is

the First-Null Beamwidth (FNBW).

There are two main advantages to the definition of the beamwidth. On one hand as a

figure of merit since it is inversely related to the side lobes (as one increases, the other

decreases). On the other hand as an antenna resolution ”analyser” because an antenna

is capable of distinguishing between sources if they are at least separated by angular

distances of FNBW/2 ≈ HPBW.
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6.1.5 Directivity

The directivity of an antenna is ”the ratio of the radiation intensity in a given direction

from the antenna to the radiation intensity averaged over all directions” (which is the

total power radiated by the antenna divided by 4π). It is therefore dependent on the

radiation pattern.

D =
4πU

Prad
(6.10)

If the direction is not specified, the direction of maximum intensity is used and we talk

about the maximum directivity (Dmax).

6.1.6 Antenna Efficiency

The total antenna efficiency (ε0) relates the power introduced in the input terminals

with the power of the output terminal (the radiated wave), accounting for the different

losses:

εr − reflections (due to mismatch) between the transmission line and the antenna;

εc − conduction;

εd − dielectric.

In general:

ε0 = εrεcεd (6.11)

where εr = (1 − |Γ|2), Γ = (Zin − Z0)/(Zin + Z0) is the voltage reflection coefficient

at the input terminals of the antenna, Zin is the antenna input impedance and Z0 the

characteristic impedance of the transmission line. A common engineering concept based

on Γ is the voltage standing wave ratio, V SWR = (1 + |Γ|)/(1− |Γ|).

It is usually difficult to compute εc and εd although they are measurable. However, even

by measurements, they are not separable, hence the definition of the antenna radiation

efficiency (εcd = εcεd), where the overall antenna efficiency can be written as:

ε0 = εcd(1− |Γ|2) (6.12)

6.1.7 Gain

The gain of an antenna is somewhat similar to the directivity while also taking into

account the antenna efficiency. ”It is a ratio of the intensity in a certain direction, to

the radiation intensity that would be obtained if the power accepted” were radiated

isotropically.

G =
4πU

Pin
(6.13)
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Again, the direction of maximum radiation is taken by default.

We can relate the gain with the directivity as

G = εcdD (6.14)

6.2 Gaussian Coupling Efficiency

The Gaussian Coupling Efficiency or gaussicity (ηG) translates the amount of power

from an antenna which is coupled to the fundamental gaussian beam (with a certain

$0 and z0) [40]. When designing an antenna as a function of $0, it is important to

maximize ηG.

In [2] some antenna types have their ηG discriminated as well as the correspondent $0

and z0. However, for different types of antenna one can still arrive at the Gaussian

Coupling Efficiency by an algorithm explained in [40], by using the antenna’s far field

data. This is especially relevant when considering the sub-efficiencies which amount to

ηG.

The gaussian coupling efficiency can also be calculated from the near field [2, 40],

ηG =

�
|EA · E∗G|2 dx dy

[�
|EA|2dx dy

] [�
|EG|2dx dy

] (6.15)

6.3 Smooth Surface Conical Horn Antenna

After studying [2], the smooth surfaced conical horn antenna strikes as balancing a

relative ease of manufacturing with a high gaussicity and that is the reason why they

were the chosen antenna type. A schematic of the antenna is shown in Fig. 6.1.



54 Chapter 6 Antennas

Figure 6.1: Conical horn antenna schematic where a is the aperture radius, aw is
the waveguide radius, Lh is the length between the aperture and the centre of
curvature and Rh is the horn slant length.

In Tab. 6.1 the main horn antenna parameters are explained.

Table 6.1: Conical horn antennas parameters.

Symbol Terminology

a Aperture Radius

aw Waveguide Radius

Rh Slant Length

Lh Horn Length2

lw Horn Length in Waveguide

cabledist Distance to the Connector3

z0 Beam Waist Location

y Beam Offset

6.3.1 Conical Horn Gaussicity

The optimum gaussian coupling efficiency for the smooth surfaced conical horn type is

ηG = 0.91, where the beam radius at the aperture has the form

$ = cga. (6.16)
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cg was called the gaussian coefficient, useful for connecting the gaussian beam radius

with the aperture radius. For smooth surfaced conical horn antennas cg = 0.76. The

beam waist and its location are respectively given, for any conical horn, by

$0 =
$√

1 +

(
π$2

λR

)2
, (6.17)

z′0 =
R

1 +

(
λR

π$2

)2 . (6.18)

An important note regarding the beam waist location must now be made. From (6.18)

we obtain the distance to the beam waist from the wave front, not from the antenna

aperture. For that we need to subtract y:

z0 = z′0 − y. (6.19)

y is the difference between the slant length and the horn length y = Rh − Lh. By

replacing it in the equation above we arrive at

z0 =

Lh +

(
λRh
π$2

)2

(Lh −Rh)

1 +

(
λRh
π$2

)2 (6.20)

6.3.2 Design Procedure

All the antenna parameters influence the radiation output. A very clear design procedure

can be found in [41].

The directivity of conical horn antennas can be related with its directivity,

D(dB) = 10 log

[
εap

4π

λ2
(πa2)

]
= 10 log

(
C

λ

)2

− Lfig(s) (6.21)

where εap is the aperture efficiency, the ratio of maximum effective area4, Ae = PT /Wi,

to the physical area. C is the aperture circumference C = 2aπ and Lfig is the loss figure,

Lfig(s) = −10 log εap ' (0.8− 1.87s+ 26.25s2 − 17.79s3)(dB). (6.22)

s is the maximum phase deviation (in number of wavelengths), s = a
2λRh

. Knowing

that the aperture diameter (2a) for optimal gain is 2a ∼=
√

3Rhλ, then s = 3
8 leading to

Lfig(
3
8) ∼= 2.9 dB.

4Ratio of the available power at the terminals of a receiving antenna to the power flux density of a
plane wave incident on the antenna from that direction” [39]
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The recommended steps are as follows:

1. Calculate C = λ

√

10

DC + Lfig(s)

10 (from (6.21));

2. This allows us to obtain the aperture radius, a = C
2π ,

3. and from it determine the slant length, Rh = 4a2

3λ ;

4. Finally, through the Pythagoras Theorem, we get the horn length, Lh =
√
R2
h − a2.

There is a condition arising from point 4, the Pythagoras Theorem: since L must have

a positive value, R2
h > a2 ⇔ a

λ >
3
4 .

We can then obtain lw = awLh
2a from triangle similarity.

6.3.2.1 Gaussian Beam Parameters as a Function of Directivity

From (6.17) and (6.18)5 and the equations presented in the previous section we can

relate the directivity of an antenna with the gaussian beam it produces, by substituting

$ for (6.16), Rh = 4a2

3λ and a = C
2π :

$0 =
cgλ

2π

√√√√√√√√
10

DC + Lfig(s)

10

1 +
9

16
π2c4

g

, (6.23)

z′0 = λ
10

DC + Lfig(s)

10

3π2 +
1

3
16c

4
g

. (6.24)

6.3.2.2 Gaussian Beam Parameters as a Function of Antenna Parameters

Alternatively we can have $0 and z′0 as a function of the remaining antenna parameters:

$0 =
cga√

1 +
π2c4

ga
4

λ2

, (6.25)

z′0 =
Rh

1 +
1

9
16π

2c4
g

. (6.26)

5All the beam waist location presented in the following sections will be z′0, related with z0 by (6.19).
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6.3.2.3 Circular Antenna Parameters as a Function of the Gaussian Beam

Sometimes it can be useful to know how to produce a certain gaussian beam from

a conical horn. The analysis is then reversed and from $0 we obtain the remaining

parameters.

For a certain beam, the directivity is

DC = 10 log

[(
2$0π

cgλ

)2(
1 +

9

16
π2c4

g

)]
− 2.91, (6.27)

and the antenna must have

a =
4$0

cg

√
1 +

9

16
π2c4

g, (6.28)

Rh =
4$2

0

3λc2
g

(
1 +

9

16
π2c4

g

)
, (6.29)

and finally

Lh =
$0

cg

√
19$2

0

9λ2c2
g

(
1 +

9

16
π2c4

g

)2

−
(

1 +
9

16
π2c4

g

)
. (6.30)

6.4 Proposed Antenna

In order to best achieve a gaussian beam with a horn antenna while respecting the

paraxial limit (3.12) at the operating frequency of 5.8 GHz, an Excel workbook was

created. It allowed for the settling of a conical horn antenna with the parameters

declared in Tab. 6.2.

Table 6.2: Designed conical horn antenna parameters.

Symbol Value (cm)

a 10.893

Rh 30.587

Lh 28.582

lw 5.224

The remaining parameters will be explained further down.

The antenna’s directivity is D = 19.52 dB and its output radiation is expected to ap-

proximate a gaussian beam with $0 = 4.902 cm and z0 = 8.719 cm.
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6.4.1 Waveguide

In order to feed the antenna a waveguide which allows the propagation of the TE11 is

necessary for the best gaussian coupling efficiency. The waveguide is also circular. In

that case the cut-off frequency is,

νc =
1.841 c

2π aw
√
εr
, (6.31)

The chosen waveguide has a radius of aw = 2 cm, designed for a cut-off frequency of

4.395 GHz.

6.4.2 SMA Connector

To excite the waveguide and consequently the antenna, a SMA connector was used to

plug in a cable to the signal generator. The most appropriate was Farnell’s 1052522-1

SMA connector (Fig. 6.2). The gold finish was chosen for it allows a better soldering

grip.

Figure 6.2: SMA Connector used.

6.5 CST Simulation

This antenna was designed in CST Studio Suite for simulation of the antennas char-

acteristics (for a frequency interval of [5.0 - 6.6] GHz). Since the ultimate goal was to

3D print the antenna, several layers were included in the simulation to obtain the most

realistic results. Two different antenna layers were drawn, the PLA (Polylactic acid, a

common 3D printing filament) and the conducting layer (copper), as can be observed in

Fig. 6.3. The PLA has a thickness of 1 mm.
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Figure 6.3: Horn antenna designed in CST. The blue and yellow layers are
respectively PLA and copper.

The SMA connector were included as well as the screws and nuts used to hold the

connector to the antenna (Fig. 6.4).
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Figure 6.4: Detail of the SMA connector on the horn antenna.

The port of excitation was the SMA connector.

6.5.1 Simulation Results

Before saving the results, an optimization was performed for the different parameters.

The results presented are the final ones obtained. The parameters changed were the

waveguide radius, aw, the waveguide depth, wgdepth, the connector distance from the

waveguide basis, cabledist, and the connector height, cableh.

Table 6.3: Designed SMA connector parameters.

Symbol Value (cm)

aw 1.991

wgdepth 2.200

cabledist 2.278

cableh 1.123
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6.5.1.1 Port Modes

The first obtainable result are the port modes. At the SMA connector we have,

Figure 6.5: Port modes at the SMA connector.

6.5.1.2 S11 Parameter

The S11 parameter is a measure of how much energy is returning to the port of excitation,

hence the smaller the better.

Figure 6.6: S11 Parameter of the simulated antenna in dB.

6.5.1.3 VSWR

The Voltage Standing Wave Ratio is a measure of how well is the antenna matched

to the transmission line (in this case the SMA connector), by measuring the reflection

coefficient.
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Figure 6.7: VSWR of the simulated antenna.

6.5.1.4 Smith Chart

Another way to analyse the S11 result is in the Smith Chart. The usefulness of this

representation is improved due to the fact that it includes the input impedance.

Figure 6.8: Smith chart of the simulated antenna, where it is possible to observe the
input impedance.

6.5.1.5 Far Field

One of the most useful results is the far field radiation pattern. As can be seen in

Fig. 6.9, the gain is G = 19.7 dB, higher that what the antenna was designed to be.



Chapter 6 Antennas 63

Figure 6.9: Far field of the simulated antenna.

This ends the analysis of the simulated antenna. The positive results were a good

incentive to 3D print the antennas.

6.6 3D Printing

Firstly only one antenna was printed. These were divided into 4 pieces because of the

3D printer size (Fig. 6.10), whereas ideally only two pieces would be printed. They

were printed in PLA (Polylactic Acid) filament for support. The conducting material

is copper, applied using copper tape (one surface has glue). It is fairly easy to cut and

place the copper into place. That is one of the reasons why this method was used.

Figure 6.10: The 3D printer used, Ultimaker 3 Extended.
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Since the PLA parts had to be placed and fixed into place, several supports have been

added to the design where screws would be later placed.

Immediately after printing the pieces, several work had to be done to work on natural

imperfections. The first obvious were the deformations made by the quick cooling of

the PLA filament (Fig. 6.11). These would be compensated when screwing the pieces

together.

Figure 6.11: PLA deformation by cooling.

Later on, filing and widening the screw holes would be necessary. Only after that could

the copper tape be applied.
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Figure 6.12: Several PLA pieces on different stages.

Finally the end result can be seen in Fig. 6.13.

Figure 6.13: Finished antenna. One can see the connector on top.
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6.7 Printed Antennas Results

Both antennas present similar results in all the parameters. The measurements were

made in an anechoic room and the results are presented here with the simulated results

of the previous section repeated for a better comparison.

6.7.1 S11 Parameter

(a)

(b) (c)

Figure 6.14: S11 parameters of the printed antennas in dB. (a) CST Simulation (b)
Antenna 1 (c) Antenna 2

Both antennas present a good result for the S11 parameter.

6.7.2 Smith Chart

Antenna 1 and 2 have an input impedance value of 49.04 Ω and 46.42 Ω, respectively.
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(a)

(b) (c)

Figure 6.15: Smith chart of the printed antennas. (a) CST Simulation (b) Antenna
1 (c) Antenna 2

6.7.3 Far Field

The radiation pattern of both antennas are compared in Fig. 6.16.
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(a)

(b)

Figure 6.16: Far field of the printed antennas. (a) CST Simulation (b) Antenna 1 is
labelled on top of antenna 2.
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One finds them to be very similar. A S21 measurement was performed in order to know

the gain of the antennas, by comparing it to that of a reference antenna (Fig. 6.17)

whose gain is known, Gref .

(a)

(b)

Figure 6.17: S21 parameters of the printed and reference antenna. (a) Antenna 1
(b) Reference Antenna
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The following equation was used:

GAnt = Gref − (S21ref − S21Ant).

The reference antenna has a gain of Gref = 19.034 dB, and by observing that S21ref =

−21.710 dB and S21Ant = −21.680 dB, the printed antenna (Antenna 1) can be deter-

mined to have GAnt1 = 19.064 dB. The difference between this value and the one it was

designed to be (G = 19.5 dB) on the gaussian beam it produces is unknown, since we

still the means to measure gaussian beam output.

In all of the parameters, there is clearly one antenna which outperforms the other (An-

tenna 1). There may be two main factors that explain the difference. The nuts and

screws used to fix the connector in Antenna 1 were made of metal, whereas those of

Antenna 2 were plastic. This came as unexpected since it was thought that metal would

interfere destructively with the whole structure, reducing the radiation efficiency.

The contrary result may be due to the fact that the metal makes a better connection

between the copper surface of the antenna and the SMA connector.
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Parabolic Reflectors

The final element necessary for this study are the parabolic reflectors. Two of these were

obtained from the Portuguese company Famaval, along with the necessary supports,

whose schematic can be seen in Fig. 7.1.

Figure 7.1: Parabolic reflector schematic.

The reflectors have their parameters explained in Tab. 7.1

71
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Table 7.1: Reflector parameters

Symbol Terminology Value (cm)

W Width 105.879

f Focal Length 72.675

Hphy Physical Height 114.531

Hpro Projected Height 105.879

Voffset Offset Distance1 7.000

YC Vertical Centre 59.939

Θ Offset Angle 40.59 °

This value of focal length, along with the antenna built in the previous chapter, can be

used to set-up a system where L ≈ 5 m as can be seen in Fig. 7.2.

Figure 7.2: Script representation for the proposed system.

7.1 Feed Blockage

After being reflected from the parabolic dish, the beam may encounter the feed antenna,

suffering blockage from it. To avoid it, we start by comprehending how much of the

antenna is above the axis of symmetry of the parent parabola of the parabolic reflector

(Fig. 7.3).
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Figure 7.3: Feed and dish antenna schematic. An off-set parabolic reflector is
represented in green whose parent parabola is in black. β is the angle that the optical
axis makes with the parent parabola axis of symmetry and h is the feed antenna’s
height above the latter.

Depending on the angle β, h will vary. The extremes can be seen in Fig. 7.4:

(a) (b)

Figure 7.4: Feed antenna height above the parabola’s symmetry axis. PBW is the
antenna rotation point because it is the beam waist location. In (a) β = 0°, h = a and
(b) β = 90°, h = z0

One can obtain an equation for h by acknowledging that the only interesting part in

this analysis is the triangle shown in green in Fig. 7.5:
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(a) (b)

Figure 7.5: Blockage Triangle: (a) on the horn antenna, (b) on its own.

α is the horn slant angle, characteristic of the horn. For a general angle β, the triangle

becomes (Fig. 7.6),

Figure 7.6: Blockage triangle at an arbitrary angle β. h is the triangle height above
the parabola symmetry axis and h′ is the perpendicular distance between this axis
and the center of curvature of the horn antenna.

By trigonometry we conclude that sinβ = h′

Lh−z0 , α = atan
(
a
Lh

)
and sin (β + α) = h+h′

Rh
.

By using the trigonometric relation, sin(A+B) = sinA cosB + cosA sinB,

h = Rh

[
sinβ + atan

(
a

Lh

)]
− (Lh − z0) sinβ (7.1)
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By rearranging the terms,

h = sinβ [Rh cosα− (Lh − z0)] +Rh cosβ sinα. (7.2)

Furthermore, knowing that Rh =
√
L2
h + a2 ⇔ Rh sinα = a ⇔ Rh cosα = L, we can

simplify the result to the form,

h = z0 sinβ + Lh cosβ. (7.3)
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Preliminary Experiment

The final set-up was arranged to complete a first round of experiments (Fig. 8.1).

Figure 8.1: Emitter antenna and first parabolic reflector.

A detailed view of the emitter antenna and the first parabolic reflector is presented in

Fig. 8.2

77
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Figure 8.2: Emitter antenna and first parabolic reflector.

Here it is possible to observe that the parabolic dish is supported by a metal pole whose

base is held to the ground by the use of iron weights. The pole base is screwed to one of

these weights while having another on top of it. After positioning the dishes at exactly

5 m from each other, bubble levels were used to try and align both structures (Fig. 8.3).
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(a) (b)

Figure 8.3: Parabolic antennas leveling: (a) horizontally (b) vertically

Although the use of a single VNA was pondered (as a signal source and detector), the

necessary cables would have to be so long that the losses would be immense. Instead,

two separate devices were used: it is possible to observe the signal generator in Fig. 8.4,

a Rohde & Schwarz SMR 50,

Figure 8.4: The signal generator used to feed the emitter antenna.

and the spectrum analyser in Fig. 8.5, a Rohde & Schwarz FSH4,



80 Chapter 8 Preliminary Experiment

Figure 8.5: The spectrum analyser used to detect the incoming wave.

From a first trial, only the detection of the signal was possible with attenuations of the

order of −40 dB. However, several adjustments were made for a second trial.

Firstly, the cables’ attenuation was measured, by connecting the signal generator directly

to the spectrum analyser. As a measure of safety, a 6 dB signal attenuator was used. The

cables were CBL-3FT-SMSM+, and had attenuations of 2.44 and 2.33 dB. An example

can be seen in Fig. 8.6.

(a) (b)

Figure 8.6: The cables used. (a) Picture of the cables (b) example of an attenuation
measurement.
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After this measurement, the devices were taken outside where the experiment was con-

ducted having changed the antennas distance from the parabolic, but using the metal

tubes as reference. Only after not being able to achieve satisfactory results, were the

tubes removed and the antennas positioned by hand, with the help of two colleagues

(Fig. 8.7).

Figure 8.7: The final set-up which consisted on hand positioning the antennas.

The final result is shown below,

Figure 8.8: The maximum efficiency tranfered.
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8.1 Efficiency

In order to arrive at the total efficiency, on must take into account all the components

used.

The reflectors’ efficiency were accounted as being ∼ 74%1 which equals a power attenu-

ation of ∼ −1.308 dB. Since we have two reflectors, we sum the attenuation. The cables

were measured and we found that their insertion loss was −2.33 dB and −2.44 dB. On

the other hand, the signal attenuator used was a Minicircuit VAT-6W2+, which has an

attenuation of 6.40 dB at 5.8 GHz. We accounted for 6 dB, hence 0.40 dB must be

subtracted from the measured attenuation of the cables. On the other hand, the SMA

connectors have an insertion loss of ∼ −0.145 dB. Finally, a DC blocker was in the

spectrum analyser, which is ∼ 1 dB, further reducing the cables attenuation.

The cables attenuation are therefore −1.04 dB and −0.93 dB. By summing it all up we

have,

−1.308× 2− 0.40− 1.04− 0.93− 0.145× 2 = −5.82 dB.

This equals an overall attenuation of −11.7− (−5.82) = −5.88 dB, which in percentage

is the same as to say that a total efficiency of 25.8% was achieved.

The power emitted was of 0 dBm, 1 mW, enabling the conclusion that at the receiving

end arrived 0.258 mW.

8.2 Result Discussion

Although the efficiency is not great, several important conclusions can be made.

First of all, the existence of a focus point is very clear. In order to achieve the −11.7 dB

attenuation, there were a lot of patience required for putting the antennas into position.

A variation of single millimetres would reduce the value by various dB. Obviously there

were too many free variables which must be fixed in order to obtain better results.

On the other hand, this also means that a better efficiency value can be achieved by

building a proper supporting structure. Only after being able to control variations on

the order of millimetres and degrees, will we be able to know for sure the position of

maximum intensity and how the beam parameters influence the system. Furthermore,

we can not forget that this value was achieved having changed only the antennas. By

adjusting the parabolic dishes, it is likely that the overall efficiency will increase.

There is another important point to make. All the gaussian beam parameters were

simply supposed to be as the theory indicates, but that is most likely not the case,

1Information given by Famaval.
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having been possible to have variations on the beam waist and its location, throughout

the system. Better control must be made to include analysis of the gaussian beam.

Only then can we know for sure how the beam is propagating, and what to expect at

the system’s end.

Finally, one can end this discussion with the statement that it is necessary to repeat the

experiment with a more thorough and extensive analysis, so as to make sure everything

is aligned and in the proper position, and all the parameters are exhausted. However,

having found that the expected system behaves as planned is motivating and helps to

ensure that the theory may be useful after being perfected,

The final note is that, although positive, the results are not satisfactory, being necessary

further work.
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Conclusion

One can summarise the original contents of this dissertation in three different major

areas. Firstly, a theoretical analysis of the quasi-optical system. Then the scripts devel-

oped which allow for the visualisation of the beam along a general system and finally

the practical aspect. In the latter, an experimental set-up was conceived as well as the

necessary components. The ultimate goal was to validate an original quasi-optical sys-

tem in the sense that the basis for achieving a higher efficiency was to reduce spillover

losses, by controlling the beam radius.

All of this provided the author with exciting challenges and the opportunity to work

with different tools, software and people while learning a lot both on the academic and

personal level.

Although the experimental part could not be completed, several important steps have

been achieved that enable a basis for further analysis in this subject. The first most

evident future topic to be done is to develop a method to analyse the gaussian beam

emitted from any source, base on [40]. A complete efficiency analysis is also vital to any

power analysis, including this one. Further down the line, different antenna types shall

be included in the study, all with the goal of achieving the pretended beam, which may

no longer be gaussian since other beam types must also be pondered.

9.1 Publication

The work done on this dissertation enabled the writing of a paper submitted to the

Wireless Power Transfer Journal:

� Pereira, R. A. M.; Carvalho, N. B.; Pinto da Cunha, J.: Quasi-Optical Analysis

of a Double Reflector Microwave Antenna System
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By using Quasi-Optical tools it is possible to approximate Microwave radiation to Gaussian Beams,
which enables the study of its propagation and coupling to different components. Hence their
usefulness for Wireless Power Transfer and rapid system design. In this paper a system composed
by two reflectors is analysed both theoretically and by discussing two cases where quasi-optical tools
were applied. The Near and Far Field regimes were considered and corresponding frequencies of
operation, beam radius and radius of curvature were computed.
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I INTRODUCTION

Microwave’s high directionality along with a high transmission efficiency in the atmosphere made
this type of radiation interesting for long distance transmissions.

These features made the millimeter and sub-mm waves also convenient for power transmission
in the air [1]. However, the divergence effects are significant and have to be considered. The com-
mon theory of optics has then been adapted to contexts with high diffraction (such as microwave
propagation), being referred to as ”quasi-optics”[2, 3]. There is vast literature on this subject
with compreensive treatment, both on electromagnetics [4] and optics [5], which dedicate sections
to the diffraction effect.

Wireless Power Transfer (WPT) using Radio Frequencies (RF) can be traced back to the XIX
century, with the work of Heinrich Hertz [6]. His experiments demonstrated the propagation of
electromagnetic waves and their reflection on parabolic mirrors at the receiver and transmitter
ends. Later on, Nikola Tesla pioneered a different concept of WPT by using low frequency standing
waves along the surface of the Earth which would power strategically located antennas. There
was no focusing and the radiation would propagate in every direction[7, 8].

Since then, many efforts and important contributions have been done. For a summary of the
state-of-the-art on WPT refer to [9, 10]. WPT has immense potential for numerous applications,
ranging from distances of a few centimeters (with inductive and capacitive fields) all the way to
kilometers using microwaves [11]. Long distance WPT remains a field of interest since there is
still much to be done in order to improve the overall efficiency.

A review of the general applications for RF and, specifically, microwave power transfer can be
found in [12]. Microwaves have been used to power drones [6, 13] by using rectennas (rectifying
antennas) as receivers [14, 15]. The use of microwaves and rectennas form the basis of a Space
Solar System for power harvesting where the Sun energy would be converted to electricity in space
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via solar panels, and transferred to Earth by microwaves [16, 17].
In general, emitting antennas can have any form but the use of planar arrays is very interesting

in various situations due to their relatively small size and low manufacturing costs. Their use in
WPT has been contemplated [18] and interesting studies developed, namely on the maximization
of the power transfer efficiency [19] or the possibility of focusing multiple targets [20].

That brings us to another important aspect in electromagnetic waves which is the focusing
of the radiation. It is common to use reflectors or lenses to create systems that focus the beam,
thus reducing the spillover losses. On one hand parabolic reflectors are advantageous to avoid
spherical aberration and are common in the industry [21, 22]. Off-set parabolic reflectors are
crucial to avoid blockage from the feed [23] at the price of some undesired beam aberrations [24].
On the other hand, depending on the application, lenses can eventually be more advantageous
[25, 26] with dielectric lenses receiving a lot of attention [27, 28], due to their simplicity. Fresnel
Zone Plate Lens [29, 30] and electronically reconfigurable Luneburg lenses [31] are also worth
interesting. Several studies make use of both reflectors and lenses [32, 33].

An interesting application of the quasi-optical theory applied to WPT that considers a meta-
surface aperture to dynamically focus a radiation beam to specific points is discussed in [34].

The present study applies the quasi-optical theory in the study of a double-reflector WPT
system, using the reciprocity principle to simplify the analysis.

Gaussian Beams

The wave front of a light beam can be approximated to plane waves in most applications if the
wavelength is much smaller than the size of the components involved (e.g. reflectors, lenses, etc.)
That is not the case for microwaves since generally the wavelength (λ) is about the same size as the
antennas’ components (at 5.8 GHz, λ = 51.7 mm in air). In such a case, a better approximation
is to consider that the waves are gaussian beams.

Let’s assume that these beams propagate in the ẑ direction, with z0 being the point at which
the power is most concentrated and the diffraction less evident - the beam wave front can correctly
be approximated by a plane wave at the surroundings of this point; we will assume z0 = 0
throughout the discussion. As z increases (i.e. as the beam propagates), the beam spreads and
the wave front, i.e. the surface of equal phase of the electric field, assumes a curved shape.

The electric field of a gaussian beam that propagates freely in the fundamental mode is axially
symmetric; its value depends only on the distance from the axis of propagation (radius), r, and
the position along the axis, z, and can be written as

E(r, z) =

√
2

π$2
exp

(
− r2

$2
− ikz − iπr2

λR
+ iφ0

)
(1)

where $ is the beam radius, R is the radius of curvature of the wave front, φ0 is the phase shift
and λ is the wavelength. This field is normalized such that

∫
|E|2 · 2πr dr = 1 for convenience

and is represented in Fig. 1.
Although most of the radiation propagates in the fundamental mode there is also some power

in higher order modes. The percentage of each depends mostly on the type of antenna used. In
some cases the fundamental mode alone is not a good enough approximation. A more general
definition allows us to define the electric field for Higher Order Modes [2].
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Figure 1: Normalized electric field distribution of a gaussian beam in the fundamental mode
($0 = 1 m): (a) front view and (b) transverse view

Gaussian beams are therefore described by three important parameters, $,R and φ0:

• The Beam Radius, $(z), is the distance to the axis at which the field drops to 1/e of its
on-axis value and is generally a function of the position along the propagation direction. Its
minimum value, which is characteristic of the beam, is called the Beam Waist Radius ($0)
and it is located at the Beam Waist point, z0, which is defined according to a reference
point (e.g. the aperture of a horn antenna). In (2) it is assumed that z0 = 0. It can be
shown that [2],

Figure 2: The normalized beam radius is plotted as
a function of the propagation axis, z.

$ = $0

√
1 +

(
z

zc

)2

, (2)

where zc = (π$2
0)/λ is the confocal distance, an important quantity which will be defined

below.

• The Radius of Curvature, R(z), is the radius of curvature of a wave front at z, if the wave
was plane at z = 0,
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Figure 3: The radius of curvature of the wave front
along z.

R = z +
z2c
z
. (3)

Naturally, at the beam waist z = z0 = 0 and R→∞, typical of a plane surface.

• The Beam Phase Shift, φ0, (sometimes called the Guoy Phase Shift) is the difference between
the on-axis wave front phase and that of a corresponding plane wave. It generally changes
along z, being

Figure 4: Phase shift along z.

φ0 = arctan

(
z

zc

)
. (4)

• When studying beam transformations it is particularly convenient to define the so called
Gaussian Beam Parameter, q,

1

q
=

1

R
− i λ

π$2
(5)

or (as a function of $0)
q = z + izc. (6)

• The crucial quantity after which all the other parameters are written is the Confocal Distance
(or Rayleigh Range),

zc =
π$2

0

λ
. (7)

This parameter sets the scale at which a gaussian beam remains collimated (i.e. the beam’s
rays remain parallel, with minimum divergence). Therefore, zc parameterizes the transition
between the near-field region, z � zc, and the far-field, z � zc.

It is important to differentiate between the definition of the field regions of gaussian beams
from that of antennas’. The antenna’s near-field is the region where non-radiative fields
dominate, while the far-field is associated with the emission of radiation. On the other
hand, since gaussian beams are a representation of electromagnetic waves the field regions
are always related to the beam of radiation and the way it behaves and propagates. The
diffraction is the major differentiator between the near and far-field of gaussian beams, with
zc being the transition region.
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Paraxial Approximation

The paraxial approximation refers to near axis wave fronts. These have wave vectors (rays) that
are almost parallel to the optical axis at any point (i.e. the divergence angle is θ . 10 ◦). In such
an approximation,

sin θ ≈ θ, tan θ ≈ θ and cos θ ≈ 1.

and the analysis is linear. Generally the paraxial approximation is considered valid as long as

$0

λ
& 0.9. (8)

However, studies of gaussian beams beyond the paraxial limits can be found in [36, 37].

Beam Transformation

Rays propagating freely in a homogeneous medium can be ascribed at each point to their distance
(r) and slope (θ) to the optical axis. If a ray encounters a quasi-optical component it is formally
transformed and an output ray will emerge. In the paraxial approximation these transformations
are linear, hence the output ray is linearly related to the input one:

[
rout

θout

]
=

[
A B

C D

]
·
[
rin

θin

]
.

The ABCD elements form the so called Ray Transfer Matrix (M), which is characteristic of the
system with its components. It can be calculated by multiplying the matrices of each component
that interacts with a ray in reverse order (e.g. if a ray enters a system and encounters the
component A and then B, the overall matrix is M = MB ×MA).

The radius of curvature of the wave front of a beam is R = r/θ and, therefore, the gaussian
beam parameter, q, can be related to the ray parameters. Defining qin as the input gaussian beam
parameter at the input beam waist we can arrive at the output gaussian beam parameter (at the
output beam waist), qout,

qout =
A · qin +B

C · qin +D
. (9)

By using (5) we can obtain the beam radius ($) and the radius of curvature (R) of the output
beam as a function of z.

A general system matrix, Msys, can be written by taking the matrices representing the prop-
agation of the incoming and outgoing rays together with the ray transfer matrix, M. It enables
us to write the input and output parameters for any system configuration in simple terms:

Msys =

[
1 dout

0 1

]
·
[
A B

C D

]
·
[

1 din

0 1

]

=

[
A+ Cdout Adin +B + dout(Cdin +D)

C Cdin +D

]

=

[
A′ B′

C ′ D′

]
(10)

where din, the input distance, is the distance from the input beam waist to the first element of the
system and dout is the output distance from the last element of the system to the output beam
waist (see Fig. 5).
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Since the beam parameter (6) at the beam waist (where z = 0) is qin = izc then, by inserting
A′B′C ′D′ elements of the overall matrix, Msys, in (9), the output beam parameter qout becomes,

qout =
(A+ Cdout)izc + [(A+ Cdout)din + (B +Ddout)]

Cizc + Cdin +D
, (11)

and, given that at the output beam waist, zout = 0, qout is imaginary, and

dout = −(Adin +B)(Cdin +D) +ACz2c

(Cdin +D)2 + C2z2c
(12)

and finally the output beam waist radius $0out (knowing that detM = 1),

$0out =
$0in√

(Cdin +D)2 + C2z2c
. (13)

Gaussian Coupling Efficiency, the Beam Waist Radius ($0) and Its Location
(z0)

The Gaussian Coupling Efficiency (ηG) translates the amount of power from an antenna which is
coupled to the fundamental gaussian beam (with a certain $0 and z0) [35]. When designing an
antenna as a function of $0, it is important to maximize ηG.

In [2] some antenna types have their ηG discriminated as well as the correspondent $0 and z0.
However, for different types of antenna one can still arrive at the Gaussian Coupling Efficiency
by an algorithm explained in [35]. This is especially relevant when considering the sub-efficiencies
which amount to ηG.

The quantities explained in this section are fundamental when designing a concrete system
because only with them can the antennas be approximated to gaussian beams.
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II QUASI-OPTICAL SYSTEM

The proposed quasi-optical system for this study is a double reflector configuration (represented
in Fig. 5), somewhat inspired by the acoustic mirror. The idea is that:

1. A feed antenna radiates on the first reflector;

2. The mirror transforms the radiation in order for it to better propagate through space,
directing the beam at the second mirror;

3. This last one will in turn transform the beam so that it can be better received in the final
antenna.

Figure 5: Double-Reflector configuration. demitter is the distance from the input beam waist
radiated by the emitter antenna to the first reflector, after which one can find a beam waist
clearly located at z = L/2. dreceptor is the distance from the final reflector to the output beam
waist, at the reception antenna.

Although represented on-axis, an offset reflector should be mandatory since most energy flows
in the center of the axis. This set-up was chosen for being the most simple (reflectors are the
only type of components used besides the mandatory feed antennas) which serves the purpose
of theory validation and preparation for more advanced systems (e.g. adding lenses will enable
increasingly complex and improved solutions). Parabolic reflectors were chosen in order to avoid
spherical aberration.

The separation between reflectors (L) is the quantity that specially characterizes the system.
Our final goal is to understand how to achieve the maximum power transmission efficiency, for
the maximum L possible.

It is extremely necessary to make a note here. Every quasi-optical system analysis is made by
considering an incident beam, with a certain beam waist radius $0in located at a distance din from
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the first component of the system, that suffers transformations by the system. The result is an
output beam with a certain $0out that will be located at a distance dout from the last component
of the system. A representation of a general quasi-optical system is represented in Fig. 6.

Figure 6: General quasi-optical system. din is the distance from the input beam waist to the first
system’s component whereas dout is the distance from the final component to the output beam
waist. The grey box illustrates the general system which can be composed of various components.

For our double-reflector system, the quasi-optical system is composed by three components:
the first reflector, the distance between reflectors and the final reflector, where d′in = demitter,
d′out = dreceptor (the inverted comas are used for quantities referring to the total double-reflector
system).

However, we can begin our analysis by simplifying the double mirror set-up by making both
mirrors and antennas equal: in optics and quasi-optics, rays respect the reciprocity principle,
therefore the same laws apply to incoming or outgoing beams - the transformations are simply
reversed. One can then analyse the mirrors’ effect by studying only one of them.

By doing so, the quasi-optical system represents only one reflector and although din = demitter

remains exactly the same, the output beam waist will now be the beam after the first reflector.
By observing Fig. 5, it is clear that dout = L/2.

In that case, the ray transfer matrix is exactly that of a single mirror with a certain focal
length (f), [

1 0

− 1
f 1

]
. (14)

To clarify, the feed antenna originates a beam whose beam waist is at certain distance din from
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the reflector. This beam will diverge until it is transformed by the reflector. The output beam
will converge until it reaches L/2 where the output beam waist is located by definition (i.e.
dout = L/2). That finalises the quasi-optical system analysis, but not the beam propagation,
which proceeds until the receptor. Because of reciprocity, the beam is expected to diverge until
it reaches L, the position where the second mirror is, with the same characteristics (parameters’
values) it had in the first mirror. Then the beam will be transformed by the mirror and focused
at the receiving antenna, which, reciprocally, is at a distance of din from the last reflector. In this
case demitter = dreceptor = din.

In the end, the incoming beam at the receiving antenna should have the same characteristics
of the outgoing beam at the transmitting antenna,

$0final
= $0initial

.

At this point the wave front is approximately a plane wave, which might be advantageous for
conversion efficiency (at the receptor).

By substituting the parameters of (14): A = 1, B = 0, C = −1/f and D = 1 into (11) and
(12), and solving as a function of the mirror’s focal length (f) we arrive at

af2 − bf + c = 0, (15)

with a = L
2 + din, b = −

(
Ldin + d2in + z2c

)
and c = L

2

(
d2in + z2c

)
. This is a quadratic polynomial

equation, which has two solutions. In order for the focal length to be a real quantity

b2 − 4ac ≥ 0 (16)

Therefore, [
−
(
Ldin + d2in + z2c

) ]2
− 4

[
L

2
+ din

] [
L

2

(
d2in + z2c

)]
≥ 0,

which can be solved for L, yielding the condition,

L ≤ zc +
d2in
zc
. (17)

III RESULTS

A) Maximum Distance Between Mirrors

We have arrived at an interval of possible values for L, ranging from zero up to Lmax(din, zc) =
zc + d2in/zc.

For the sake of simplicity, L will always refer to its maximum value.
In order to maximize the distance between mirrors it is necessary to optimize on zc and din.

Hence, 



∂L

∂zc
= 1− d2in

z2c
= 0 ⇒ z2c = d2in ⇒ zc = ±din

∂L

∂din
=

2din
z2c

= 0 ⇒ din = 0

The only critical point is therefore zc = din = 0 which is obviously of no interest since we look
forward to quantities that have positive non-zero values. Hence, it should be assumed that din is
a controllable parameter and optimize for zc.
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In so doing we find that L is minimum at zc = din, given that d2L
dzc

2 =
2d2in
z3c

= 2
zccrit

> 0. The

function L(zc) is represented in Fig. 7 for different values of din.

Figure 7: Distance between mirrors, L, for different values of din.

It is convenient to consider separately the regions below and above the minimum of L, Lmin =
2din. For each of the regions an assumption can be made, which allows for a simplification of L.
These regions correspond respectively to,

zc � din ⇒ L ≈ d2in/zc (18a)

and

zc � din ⇒ L ≈ zc, (18b)

which means that in the two regions the beam is propagating in the far and near-field, respectively.
To avoid any possible ambiguity with near and far-field antennas, we shall call the above regions
simply region 1 and 2 or instead small and big beam regions because, as will be seen in section IV,
for a certain frequency of operation, the size of the beam waist radius is much smaller in region
1 than it is in 2.

Two conclusions are immediately obvious. For a smaller din, L reaches the two approximations
more rapidly. On the other hand, however, for a fixed zc, a smaller din enables a smaller distance
L.

The equation L = zc + d2in/zc can also be written as

z2c − Lzc + d2in = 0 (19)

and hence,

zc =
L±

√
L2 − 4d2in

2
, (20)

(meaning that L & 2din as above). These solutions correspond to the above regions 1 and 2,
respectively.

The input distance of din = 1 m has been chosen for convenience while remaining a reasonable
distance to implement the feed circuit. All the remaining analysis will be based on this value.
The function will therefore assume the curve in Fig. 8:
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Figure 8: Distance between mirrors for din = 1 m, where the approximations for each region are
visible. In the regions well below and well above the minimum, for zc . 0.1 m and zc & 5 m, L
can be approximated by d2in/zc and zc, respectively.

B) Focal Length

We can also obtain the focal length of the reflectors from (15). Since f has a double solution
when L = zc + d2in/zc, then,

f(zc, din, L) =
Ldin + d2in + z2c

L+ 2din
. (21)

C) Beam in the Far-Field (Region 1, where L ≈ d2in/zc)

The assumption (18a) means that the beam propagates in the far-field region (region 1). The
beam waist radius is, from (7),

$0S =

√
λd2in
πL

, (22)

where ’s’ stands for ”small waist”. In such a case,

$0S√
λ

=
din√
πL

= const, (23)

which means that the ratio between the beam waist and the square root of the wavelength is
a constant of the system. Therefore, if ν is the frequency and n is the refraction index of the
propagation medium (n ≈ 1 for air), then

ν =
cd2in

πnL$2
0S

. (24)

This means that the choice of the components’ size will be balanced with the frequency of oper-
ation.

In region 1, the focal length is

fS =
L3din + L2d2in + d4in

L3 + 2L2din
. (25)
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D) Beam in the Near-Field (Region 2, where L ≈ zc)

It is apparent from Fig. 8 that the near-field is a good approximation for zc & 5 m.
In this case the beam waist radius from (7) is

$0B =

√
λL

π
, (26)

where the subscript ’B’ means ”big waist”. This also means that,

$0B√
λ

=

√
L

π
= const, ν =

Lc

πn$2
0B

.

Moreover, the focal length is,

fB =
L2 + Ldin + d2in

L+ 2din
. (27)

E) Paraxial Limit

The paraxial approximation sets a limit for both of these regions. From (8),

zc
$0

> 0.9π, (28)

and hence, considering the conditions in (18), the paraxial limits for the regions 1 and 2 are,
respectively,

$0SL

d2in
<

1

0.9π
, (29a)

and

$0B

L
<

1

0.9π
. (29b)

These limits should be respected when designing the system in the paraxial approximation.

F) Beam Radius at the Reflector

The beam radius at the position of the reflector, $R, having travelled din, is

$R = $0

√
1 +

(
din
zc

)2

. (30)

This means that for the regions considered, we arrive at the same value,

$RS
= $RB

=

√
λ

π

(L2 + d2in)

L
. (31)
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G) Relation Between Focal Lengths

The quotient between (25) and (27) gives

fS
fB

=
L3din + L2d2in + d4in
L4 + L3din + L2d2in

(32)

which is < 1 for din < L, which will always be the case. We then have

fS < fB. (33)

H) Comparison Between Beams in the Near and Far-Field

In order to best understand the differences between both beam types Fig. 9 shows the two different
possible scenarios.

(a) (b)

Figure 9: Comparison between beams in the near and far-field: (a) beam in the far-field (small)
(b) beam in the near-field (Big)

It is worth pointing out that the focal length representation is according to the result in the
previous section.

I) Parabolic Reflector

The dimensions of a parabolic reflector are related as

4fD = R2
R, (34)

where RR is the Reflector’s Radius, D its Depth and f is the focal length.
The size of RR must necessarily take $R into account, for obvious reasons. By defining the

reflector’s coefficient (cR) as

RR = cR$R ⇒ RR√
λ

= cR

√
(L2 + d2in)

πL
(35)
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and by substituting (31) one arrives at

D =
c2R$

2
R

4f
⇒ D

λ
=

c2R
4πf

(
L2 + d2in

L

)
. (36)

The coefficient cR should be as large as possible, though a value of
√

2 is enough from a
practical point of view (Fig. 1).

It is worth noting that due to (33), DS > DB. A beam in the far-field demands a larger
reflector depth.

IV CASE DISCUSSION

A script has been developed in order to verify the expected beam radius value as the beam
propagates, undergoes a transformation by the reflectors and reaches the final antenna. It enables
the graphical representation of the beam propagating through the system, by implementing the
equations described in the paper.

A gaussian beam is started at z0 with a user defined beam waist radius ($0) and direction
of propagation. The position of the different components as well as their ABCD parameters
must also be defined, prior to the beam propagation throughout the system, so that if the beam
position coincides with that of a certain component, it will suffer a transformation, as described
in section I.

Taking an input distance of din = 1 m and a distance between reflectors of L = 100 m, the
paraxial limit dictates that

Region 1 Region 2

$0 < 3.537× 10−3 m $0 < 35.368 m.

which respectively translates into the wavelength limits,

λ < 3.929× 10−3 m λ < 39.297 m,

or

ν > 76.341 GHz ν > 7.634 MHz.

In order to arrive at an optimum system it is necessary to consider the size of the components
and the frequency of operation. Defining one quantity may lead to undesired values for the other.

The focal length of the reflectors’ is given by (25) and (27) for the regions concerned, yielding

fS = 0.990 m and fB = 99.029 m.

Beam in the Far-Field (Region 1)

The minimum frequency of operation for working with a small beam, for an input distance of 1 m
and a distance between mirrors of 100 m, is 76.341 GHz. For easing the calculations we choose
ν = 80 GHz, and hence,

λ = 3.750× 10−3 m, $0S =

√
λd2in
πL

= 3.455 mm.

We obtain a relatively small beam waist radius, which will be advantageous in terms of the
size of the components, while needing a high frequency of operation.
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Beam in the Near-Field (Region 2)

On the other hand, a big beam can have a much smaller frequency, starting at ν = 8 MHz, giving,

λ = 37.500 m, $0B =

√
λL

π
= 34.549 m.

A huge beam waist radius is obtained. However, by choosing ν = 80 GHz, then

λ = 3.750× 10−3 m, $0 = 0.346 m.

It is worth noting that by properly choosing the frequency, the size of the beam waist radius
will define if the beam is propagating in the near or in the far-field.

Graphical Representation

Several beams have been represented as a function of the frequency of operation (whose values
were spread in order to account for different beam waist radii) from both region 1 (Fig. 10) and
region 2 (Fig. 11). A logarithmic scale was used in the latter, due to the significant difference in
the beam waist radius value between the beam in MHz and the remaining in GHz.

Figure 10: Beams propagating in the far-field (region 1). $ is the beam radius, z is the position
along the propagation direction, ν is the characteristic frequency of operation and f is the focal
distance.
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Figure 11: Beams propagating in the near-field (region 2). $ is the beam radius, z is the position
along the propagation direction, ν is the characteristic frequency of operation and f is the focal
distance.

In order to analyse the difference between the beams propagating in each of the regimes,
another plot in the near-field was made (Fig. 12), operating at the same frequencies as that in
Fig. 10.

Figure 12: Beams propagating in the near-field with the same frequency as those in Fig. 10.
$ is the beam radius, z is the position along the propagation direction, ν is the characteristic
frequency of operation and f is the focal distance.
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A few observations are in order:

• As the frequency increases, the average size of the beam radius decreases. Since the size
of the antenna (reflector) are related to that of the beam waist radius (beam radius at the
reflector), beams in the far-field regime appear more advantageous in this sense;

• The beam radius of the beam between the reflectors is independent of the beam type
(whether it is a near or far-field beam) which originate from the antenna. Beams in the
near-field have beam radius larger than the beam radius of the beam between reflectors,
while beams in the far-field have a smaller beam radius, as can be seen in Fig. 9. When
implementing this study, the size of various components may be constrained, forcing us to
choose a feed beam in the near or far-field.

Regarding beams propagating with the same frequency, for either of the regimes, the beam
radius at the reflector as well as the output beam waist radius (at L = 50 m) have nearly identical
values. One can conclude that although the initial conditions have been different (emitting a
beam in the near or far-field), at the reflector and after the transformation, the beam propagating
the L distance has nearly the same characteristics.

V CONCLUSION

The theoretical study of a double reflector quasi-optical system was presented in the paraxial
approximation, discussing the beam radii of two different beam types, propagating in the near
and far-field, respectively. Different parameters have been considered for each of the beam types.

The preliminary results are consistent to what was expected considering the validity of the
reciprocity between the source and the receptor. This study shows that we can have a frame-
work simple enough in order to access the parameters concerned and to gain insight about their
relevance.

We now have a tool to quickly prototype simple systems (the script enables the implementation
of reflectors and lenses) which serves as basis for more complex analyses.

Further studies are necessary to analyse the power transfer efficiency and improve the model,
alongside to simulations to all the process that exhaust the parameter space and allow proper
optimization. A case study of a system with a double ellipsoidal mirror is also being considered
[38, 39].

Upon completion of this work we plan on making a double reflector prototype aimed at
measuring the effect of the various parameters on the power transfer between the emitting and
receptor antennas and access the validity of the paraxial calculations. Several components have
already been chosen and the main system parameters shall have the following values:

ν λ w0 zc f

5.8 GHz 5.172 cm 4.902 cm 14.595 cm 72.675 cm

The goal is to be able to transfer power over the distance of L = 5 m using two conical smooth
surfaced antennas, which will reflect on two parabolic reflectors with the diameter of 1 m.

We can conclude that the goal of this study was achieved since preliminary results were
obtained for building a system with reduced spillover losses, important for guaranteeing that the
maximum beam arrives at the receiver antenna.
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Introdução 

A radiação eletromagnética na gama dos micro-ondas pode ser estudada na maioria dos casos 

utilizando a quasiótica [1]. Tal como o nome indica, esta teoria aproxima a radiação a um feixe 

de radiação, como na ótica, mas implementa-se o efeito da difração, caraterística dos micro-ondas, 

usando-se feixes gaussianos. As antenas corneta corrugadas são as que melhor emitem radiação 

nessa forma (direcionada). 

Utilizando as ferramentas da quasiótica é possível descobrir a distância ao ponto onde a radiação 

tem maior intensidade, relativamente a um ponto de referência (z) (muito usualmente usa-se a 

boca (“aperture”) da corneta como referência). 

 

 

Na Fig. 1 está esquematizada uma antena corneta e o feixe gaussiano criado pela mesma. O ponto 

de maior intensidade de radiação é a Cintura de Feixe (“Beam Waist”), onde o feixe tem o menor 

raio (w0). Este ponto distancia-se da Frente de Onda da Boca da Corneta (“Wave Front at 

Aperture”) por uma quantidade denominada de Distância à Cintura (“Waist Offset”) (z).  

Podemos encontrar o valor das diferentes grandezas na literatura [1]: 

em que: 

a   – Raio do Orifício da corneta; 

Rh – Comprimento de inclinação da boca. 

Neste momento é necessário alertar que a este valor tem de ser subtraído a distância desde a frente 

de onda da boca da corneta até à boca da mesma (y): 

𝑦 = 𝑅ℎ − 𝐿 (
𝑎

𝑎 − 𝑎0
) 

Podemos finalmente definir z0 como sendo a distância do ponto de maior intensidade de campo 

elétrico desde a boca da corneta: 

𝑧0 = 𝑧 − [𝑅ℎ − 𝐿 (
𝑎

𝑎 − 𝑎0
)] 

Fig. 1 - Esquema da Antena Corrugada e do Feixe Gaussiano [1]. 
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No contexto da engenharia é útil falar também do Centro de Fase, o ponto a partir do qual a 

radiação eletromagnética propaga-se para o exterior esfericamente, com a fase do sinal sendo 

igual em qualquer ponto da esfera. Quando a radiação é emitida unicamente para certos ângulos, 

utiliza-se o Aparente Centro de Fase, como nas antenas corneta (Fig. 2). 

A diferença entre o centro de fase e a cintura de feixe é dada por: 

 

 

O ponto de centro de fase varia com a distância à cintura de feixe a que a observação é efetuada 

(zpc). Quando a observação é efetuada a uma distância muito maior que a distância de coerência 

(zc = πw0
2/λ), zpc >> zc. a diferença é desprezável e pode-se afirmar que o ponto de maior 

intensidade e o ponto de centro de fase são exatamente o mesmo. De notar que aqui utiliza-se o 

raio de curvatura (R) à distância zpc, dado por R = zpc + zc
2/zpc. 

Através da literatura [3], é possível obter o ponto de centro de fase para antenas corrugadas através 

da seguinte tabela: 

 

 

 

 

 

 

Fig. 2 - Esquema de uma antena corneta e do aparente centro de fase [2]. 

pc 
pc 

y 

Fig. 3 – (esquerda) Esquema geral de antenas corneta com os principais parâmetros. (direita) Esquema de 

uma antena corneta corrugada escalar em que a distância da frente de onda na boca da corneta à boca 

propriamente dita é evidenciada (y).  

Lp / Rh Lp / Rh 

HL 

Tab. 1 – Distância ao ponto de centro de fase de uma antena corneta circular corrugada desde a boca da 

corneta em direção ao seu interior (Lp) como rácio do comprimento de inclinação da boca. 
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em que S = a2/(2λRh). 

Neste estudo, as antenas em questão são a F23 e F30: 

F23 

 

F30 
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Desenvolvimento 

Utilizando as fórmulas apresentadas na secção anterior é possível desenvolver e chegar a valores 

para as antenas em questão (F23 e F30). 

Primeiro que tudo utilizou-se o Software CST para simular as antenas e obter os parâmetros mais 

comuns: 

Modos dos Portos de Excitação (Frequência de operação = 11.5 GHz) 

F23 

 

F30

 

 

Parâmetros S11 

F23 
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F30 

 

 

VSWR 

F23 

 

 

F30 
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Farfield (f = 10.7 GHz) 

F23 

 

 

F30 
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Farfield (f = 11.7 GHz) 

F23 

 

 

F30 
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De seguida determinou-se como varia Lp / Rh em função de S com base na tabela 1 e verificou-se 

que a distribuição segue a linha de tendência descrita por uma função polinomial de 6º grau: 

 

 

 

Lp / Rh = 79.826*S6 - 138.16*S5 + 80.164*S4 - 21.138*S3 + 5.5796*S2 - 0.0984*S + 0.0003  

R² = 1 

Resta saber os valores a utilizar (as medidas das antenas foram retiradas das imagens 

esquemáticas das antenas, fornecidas pela empresa Famaval e visualmente, através do software 

CST. Estão apresentadas em mm). 

 

Antena HL /(mm) a0 /(mm) a /(mm) Rh /(mm) y /(mm) 

F23 32,19 9,11 23,92 57,23 5,239 

F30 38,78 9,11 23,92 67,05 4,412 

 

Convém relembrar que 𝑦 = 𝑅ℎ − 𝐿 (
𝑎

𝑎−𝑎0
). 
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Fig. 4 – Representação gráfica dos dados da tabela 1. 

Tab. 2 – Dimensões dos diferentes parâmetros das antenas (em mm). 
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Resultados 

Os cálculos efetuados são apresentados para as frequências de f1 = 10,7 GHz e f2 = 11,7 GHz, 

devido à relação entre a frequência e o comprimento de onda λ. Como λ = c/f , onde c = velocidade 

da luz = 3*108 m/s, temos que λ1 = 28,04 cm e λ2 = 25,64 cm. Dessa forma, todas as grandezas 

vão ser apresentadas para cada uma das frequências (f1 e f2). 

Determinação do Centro de Fase (Lp) 

Conseguimos calcular S através da fórmula S = a2/(2λRh) e Lp / Rh dos dados. 

f1 = 10,7 GHz 

Antena Rh /(mm) S Lp / Rh Lp /(mm) 

F23 57,23 0,178291 0,098996 5,666 

F30 67,05 0,152187 0,072761 4,878 

 

f2 = 11,7 GHz 

Antena Rh /(mm) S Lp / Rh Lp /(mm) 

F23 57,23 0,194954 0,117830 6,743 

F30 67,05 0,166410 0,086567 5,804 

 

Determinação do Ponto de Maior Intensidade de Campo Elétrico (z0) 

f1 = 10,7 GHz 

Antena a /(mm) Rh /(mm) w0 /(mm) z /(mm) z0 /(mm) 

F23 23,92 57,23 12,670 10,160 4,922 

F30 23,92 67,05 13,311 9,112 4,700 

 

f2 = 11,7 GHz 

Antena a /(mm) Rh /(mm) w0 /(mm) z /(mm) z0 /(mm) 

F23 23,92 57,23 12,244 11,740 6,502 

F30 23,92 67,05 12,966 10,612 6,200 

 

Determinação do offset entre o centro de fase (Lp) e o ponto de maior intensidade de campo 

elétrico (z0) 

Para confirmar que os valores obtidos são coerentes, efetuou-se o cálculo do centro de fase de 

duas formas independentes. O primeiro pelo método descrito na subsecção I. O outro na 

subsecção presente (pela determinação do offset Δpc = z0 - Lp). 

Antena 
f1 f2 

Δpc /(mm) Δpc /(mm) 

F23 - 0,744 - 0,242 

F30 - 0,179 + 0,396 
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Podemos observar que em nenhum dos casos temos que o centro de fase é exatamente no mesmo 

ponto onde ocorre a máxima intensidade de campo elétrico, no entanto, é bastante perto, sendo 

aceitável usar o mesmo ponto. 

 

Conclusão 

O ponto de maior intensidade e o centro de fase estão reunidos na tabela seguinte. 

Antena 
f1 = 10,7 GHz f2 = 11,7 GHz 

z0 /(mm) zpc /(mm) z0 /(mm) zpc /(mm) 

F23 4,922 5,666 6,502 6,743 

F30 4,700 4,878 6,200 5,804 

Em geral, é vantajoso colocar o ponto de centro de fase das antenas de alimentação no focus de 

refletores parabólicos para minimizar as perdas relacionadas com o “reflector aperture phase error 

loss” [3]. 
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