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Abstract

The Expected Shortfall is an increasingly popular risk measure in financial risk management. This
work seeks to study the asymptotic statistical properties of two nonparametric estimators of Expected
Shortfall, under the assumption of dependence in the time series of study. The first estimator can
be seen as an average of values that satisfy a certain property, whereas the second estimator is a
kernel smoothed version of the first. The assumption of dependence is considered one of weakest
(α-mixing), for which reason the control of the presented random variables (namely their variances
and covariances) has a big emphasis on this work. Due to this control we are able to present a Central
Limit Theorem for each estimator, from which we are able to draw relevant conclusions about the
efficiency of both estimators.
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Chapter 1

Introduction

Value-at-Risk (VaR) and Expected Shortfall (ES) are popular measures of financial risk associated
with an asset or a portfolio of assets. In Artzner et al. (1999), four desirable properties for measures
of risk are introduced, and if a measure of risk fulfills those properties it is considered to be coherent.
One of those properties is subadditivity, and in Artzner et al. (1999) it is proven that VaR is not
subadditive, and consequently, it is not considered a coherent risk measure. On the other hand, ES
fulfills all four properties, making it a coherent risk measure. To introduce both these risk measures,
let (Xt , t = 0, ...,n) be the market values of an asset or a portfolio of assets over n+ 1 periods of a
time unit, and let Yt =− log(Xt/Xt−1), t = 1, ...,n, be the negative log return on the t-th time period.
Suppose (Yt , t = 1, ...,n) is a dependent and (strictly) stationary family of random variables, with
marginal distribution function F . Given a positive value p close to zero, the 1− p level VaR, denoted
as νp, is defined as

νp = inf{u : F (u)≥ 1− p} .

Simply put, VaR is the (1− p) quantile of the loss distribution F . This value specifies the smallest
amount of loss such that the probability of a loss being larger than νp, is at most p. Besides the
incoherence as a risk measure that we have pointed before, there is another obvious shortcoming of
VaR - it provides no information about the loss when it surpasses νp. That is not the case with ES.
The ES associated with the 1− p level, denoted as µp, is defined as

µp = E(Yt |Yt > νp) .

ES is the conditional expectation of a loss, given that the loss is larger than νp. It is a value of great
importance in the financial and actuarial contexts, and its estimation is commonly done by assuming a
parametric loss distribution. A popular parametric method to estimate the ES, is the extreme value
theory approach (Embrechts et al., 1997), which uses the asymptotic distribution of exceedance over a
high threshold to model the excessive losses and carries out parametric inference within the framework
of the Generalized Pareto distributions.

Besides the well known disadvantage of parametric estimation - the underlying assumption being
too rigid - data is generally sparse in the tail part of the loss distribution, which is the part that is more
relevant in this framework, and that makes the choosing of a loss model for parametric estimation
not trivial. Moreover, the extreme value theory approach presented in Embrechts et al. (1997)
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2 Introduction

considers conditions under which the high exceedances are asymptotically independent and identically
distributed, and a more recent empirical study by Bellini and Figá-Talamanca (2004) has shown that
financial returns can exhibit strong tail dependence even for large threshold levels. This is a strong
reason to consider the dependence in financial returns. The nonparametric approach allows for a
wide range of data dependence, and has the advantage of being free of distributional assumptions on
(Yt , t = 1, ...,n) while being able to capture fat-tailed and asymmetric distribution of returns.

Before introducing the ES estimators that will be studied in this work, it is relevant to introduce
some definitions and theorems to give more motivation for this subject.

This work is heavily based on Chen (2008) and is structured as follows. In Chapter 1 we present
definitions and theorems that will be needed in this work and we introduce the nonparametric ES
estimators we will study and the assumptions of this work. In Chapter 2 we derive the results that lead
to two Central Limit Theorems, which are the main focus of this work, and in Chapter 3 we analyze
the obtained results and suggest future work.

1.1 Notation

(Ω,A ,P) Probability space: Ω non-empty set, A σ -Algebra of subsets of Ω, P Probability
measure on A ,

∫
f (x)dx integral of f over R,

Lq(P) space of real measurable functions f such that

|| f ||q =
(∫

| f |qdP
)1/q

< ∞ (1 ≤ q < ∞),

|| f ||∞ = inf{a : P( f > a) = 0}< ∞ (q = ∞),

E(X),Var(X) Expectation and Variance of X ,

Cov(X ,Y ),Corr(X ,Y ) Covariance and Correlation coefficient of X and Y ,

PX = PY distribution of X and Y is the same,

[x] integer part of x,

I(x ∈ A) indicator function of A: I(x ∈ A) = 1,x ∈ A;= 0,x /∈ A,

N (µ,σ2) a normally distributed random variable with mean µ and variance σ2,

σ(Xi, i ∈ T ) sigma-algebra generated by the random variables Xi, i ∈ T ,

:= definition.
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1.2 Definitions and Motivation

1.2.1 Kernel Density Estimator

Suppose that Y1, ...,Yn is a set of absolutely continuous random variables with common density f , and
let Y be a random variable also having density f . Perhaps the most widely known nonparametric
estimator for the density function f is the histogram. The histogram is created by dividing the real
line into equally sized intervals, called bins. If b denotes the width of the bins, then the histogram
estimate at a point x is given by

f̂H(x;b) =
number of observations in bin containing x

nb
.

The value of the binwidth b affects the shape of the histogram. A lower value leads to a more ‘spiked’
histogram, while a higher value leads to a smoother looking histogram. This is why the binwidth b
is called a ‘smoothing parameter’, as its selection controls the amount of smoothing in the obtained
histogram. There are several well known problems with using the histogram as a density estimator,
such as the placement of the bin edges, and the fact that most density functions are not step functions.
Moreover, it can be shown that in a certain sense, the histogram does not use the available data
efficiently. We will discuss about this matter later.

We now introduce the kernel density estimator (see Rosenblatt (1956) and Parzen (1962) to get
insight on how it came about). It is defined as

f̂ (x;h) =
1

nh

n

∑
t=1

K
(

x−Yt

h

)
, (1.1)

where K is a function satisfying
∫

K (u)du = 1, which we call the kernel, and h is a positive number,
usually called the bandwidth. It serves as the smoothing parameter. Setting Kh (u) = h−1K (u/h)
allows us to write

f̂ (x;h) =
1
n

n

∑
t=1

Kh (x−Yt) . (1.2)

Usually K is chosen to be a unimodal probability density function that is symmetric around zero. This
ensures that f̂ (x;h) is a density itself. Moreover, it is clear that if K is continuous and differenciable,
then the kernel density estimator inherits those important properties, which makes it a more interesting
density estimator than the histogram. There are several interesting topics about the kernel density
estimator, such as how the selection of K and its shape can influence our estimate, or how one should
choose the value h. We refer to Wand and Jones (1995) for the interested reader.

1.2.2 The O, o notation.

To study some basic properties of the kernel density estimator, it is convenient to introduce order and
asymptotic notation. We will follow the approach in Bishop (1975) and Wand and Jones (1995).

Let (an,n ∈ N) and (bn,n ∈ N) be two sequences of real numbers.
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Definition 1. We say that an is of order bn (or an is ‘big oh’ bn), and write an = O(bn) as n → ∞, if
the ratio |an/bn| remains bounded for large n. That is, if there exists a number C and an integer n(C)

such that if n is larger than n(C) then |an| ≤C|bn|, or equivalently, if lim
n→∞

|an/bn|< ∞.

Definition 2. We say that an is of small order bn (or an is ‘small oh’ bn), and write an = o(bn) as
n → ∞, if the ratio |an/bn| converges to zero. That is, if for any ε > 0, there exists an integer n(ε)
such that if n is larger than n(ε) then |an| ≤ ε|bn|, or equivalently, if lim

n→∞
|an/bn|= 0.

In the context of our work, we will not write ‘as n → ∞’ when referring to the order of a sequence,
as that will always be the case of interest. There are several trivial properties that are consequence
of this notation, such as O(an)o(bn) = o(anbn) that will not be proven, but will be used in this work.
The final definition concerning asymptotic notation is presented now. It will be useful to compare
rates of convergence.

Definition 3. We say that an is asymptotically equivalent to bn, and write an ∼ bn if lim
n→∞

an/bn = 1.

From these definitions, we may state the following version of Taylor’s theorem, which we will not
be proving.

Theorem 1 (Taylor’s Theorem). Suppose that g is a real-valued function defined on R and let x ∈ R.
Assume that g has p continuous derivatives in an interval (x−δ ,x+δ ) for some δ > 0. Then for any
sequence (αn,n ∈ N) converging to zero,

g(x+αn) =
p

∑
j=0

α
j

n

j!
g( j)(x)+o(α p

n ) .

With these definitions and this version of Taylor’s theorem we are ready to study a few interesting
statistical properties of the kernel density estimator. Let us consider the estimation of f at x ∈ R.
From (1.2) it is clear that

E
(

f̂ (x;h)
)
=
∫

Kh (x− y) f (y)dy. (1.3)

Now let us assume the following conditions. Most of them are common in kernel smoothing theory,
and will also be hypothesis in this work.

(i) The density f is such that its second derivative f ′′ is continuous and square integrable.

(ii) The bandwidth h = hn is a non-random sequence of positive numbers that satisfies

lim
n→∞

h = 0 and lim
n→∞

nh = ∞,

which is equivalent to saying that h approaches zero, but at a rate slower than n−1.

(iii) The kernel K is a bounded probability density function having finite fourth moment and symmetry
about the origin.
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Under these conditions, setting S(K) =
∫

u2K(u)du and doing a change of variables in (1.3) and a
Taylor expansion, it is easily shown that

Bias( f̂ (x;h)) = E( f̂ (x;h))− f (x) =
1
2

h2S(K) f ′′(x)+o(h2).

This means that the bias of f̂ (x;h) is of order h2, which implies that f̂ (x;h) is asymptotically unbiased,
making the kernel density estimator a decent alternative to the histogram, as a density function
estimator. Another good reason to consider the kernel density estimator is the following. Recall the
definition of Mean Integrated Square Error (MISE), which is the expected value of the Integrated
Square Error (ISE), that serves as an error criterion that globally measures the distance between the
functions f and its estimator. It is defined as

MISE( f̂ (·;h)) = E[ISE( f̂ (·;h))] = E
∫
[ f̂ (x;h)− f (x)]2dx.

Let R(g) =
∫

g2(x)dx. It can be shown that (Wand and Jones, 1995)

inf
h>0

MISE( f̂ (·;h))∼ 5
4
[S(K)2R(K)4R( f ′′)]1/5n−4/5.

If b satisfies assumption (ii), it can also be shown that (Scott, 1979)

inf
b>0

MISE( f̂H(·;h))∼ 1
4
[36R( f ′)]1/3n−2/3.

What this means is that the MISE of the histogram is asymptotically inferior to the kernel density
estimator’s, in the sense that its convergence rate is O(n−2/3) compared to the kernel estimator’s
O(n−4/5) rate. This is a quantification of the inefficiency of the histogram that was mentioned before,
and it is a convincing argument to consider estimation of density functions using the kernel density
estimator. Later in this work, we will compare two estimators for νp, and we shall see how the kernel
estimator helps in variance reduction.

1.2.3 The Op, op notation. Convergence in distribution and in probability.

To generalize the O, o notation for non-random sequences, we now introduce the Op, op notation. The
idea is to maintain the concept behind each definition, and try to adapt it to stochastic processes.

Let (An,n ∈ N) and (Bn,n ∈ N) be two stochastic processes.

Definition 4. We write An = op(Bn) if for every ε > 0,

lim
n→∞

P
(∣∣∣∣An

Bn

∣∣∣∣< ε

)
= 1,

or equivalently, if for every ε > 0 and every η > 0 there exists an integer n(ε,η) such that if
n ≥ n(ε,η), then

P
(∣∣∣∣An

Bn

∣∣∣∣< ε

)
≥ 1−η .
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Informally, this definition means that with arbitrarily high probability, |An/Bn|= o(1). To preserve
the idea behind this description, we wish to define An = Op(Bn) to mean that with high probability,
|An/Bn|= O(1). We accomplish this using the following definition.

Definition 5. We write An = Op(Bn) if for every η > 0 there exist a constant C(η) and an integer
n(η) such that if n ≥ n(η), then

P
(∣∣∣∣An

Bn

∣∣∣∣<C(η)

)
≥ 1−η .

Let us note the case when Bn = 1 a.s., for all n ∈ N. There is not any generality loss because
An = Op(Bn) if and only if An/Bn = Op(1), and the same argument is valid for op. In both Op(1) and
op(1), events are required to hold with a probability arbitrarily close to 1, replacing the certainty of
the O, o definitions. In both o(1) and op(1), the sequences are required to be less than any arbitrarily
small ε , for n suficiently large, whereas in both O(1) and Op(1), the sequences are required to be
bounded by some constant C, for n suficiently large. This is the reason why we refer to An = Op(1)
by saying that An is bounded in probability, and to An = op(1) by saying that An converges to zero in
probability.

The obvious question now is how to identify the stochastic order of a process. Chebyshev’s
inequality provides a good starting point.

Theorem 2. Let (An,n ∈ N) be a stochastic process with µn = E(An) and σ2
n = Var(An)< ∞, for all

n ∈ N. Then
An −µn = Op(σn).

Proof. From Chebyshev’s inequality, for all n ∈ N and h > 0,

P
(
|An −µn|

σn
< h
)
≥ 1−h−2.

Setting h = η−1/2 for any 0 < η < 1, and C(η) = η−1/2, Definition 5 is fulfilled.
From this, it is also convenient to define two kinds of convergence of sequences of random

variables that will be relevant in this work, and make the parallelism with the notation we have
introduced.

Definition 6. Let (Xn,n ∈ N) be a stochastic process such that Xn has distribution function Fn and let
X be a random variable with distribution function F. We say (Xn,n ∈ N) converges in distribution to
X, and write Xn

d−→ X, if for all x which are continuity points of F,

lim
n→∞

Fn(x) = F(x).

Convergence in distribution is perhaps the most frequently used in practice. It often arises from the
application of a Central Limit Theorem, and it is provides a tool for the approximation of probabilities
when Fn is not known, and the construction of confidence intervals.
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Definition 7. Let (Xn,n ∈N) be a stochastic process. We say that (Xn,n ∈N) converges in probability
to a random variable X, and write Xn

P−→ X, if for every ε > 0,

lim
n→∞

P(|Xn −X | ≤ ε) = 1.

If X = c with probability 1 (i.e, X is a degenerate random variable), we simply say that Xn converges
to c in probability.

Remark 1. Saying that (Xn,n ∈ N) converges in probability to 0 is the same as saying Xn = op(1).

To end this section, we present three famous theorems that will be useful in this work. The proofs
of the last two will be ommited, as they are far more technical than the other. We start by presenting a
sufficient condition for convergence in probability.

Theorem 3. Let (Xn,n ∈ N) be a stochastic process such that E(Xn) converges to c ∈ R, and Var(Xn)

converges to 0. Then Xn
P−→ c.

Proof. Fix ε > 0. For n suficiently large, |E(Xn)− c| ≤ ε/2, and consequently, by Chebyshev’s
inequality,

P(|Xn − c| ≥ ε)≤ P
(
|Xn −E(Xn)| ≥

ε

2

)
≤ 4Var(Xn)

ε2
n→∞−−−→ 0,

which is a condition equivalent to the one in Definition 7. �

The following two theorems will be of great importance when we need to prove the two Central
Limit Theorems of this work.

Theorem 4 (Slutsky’s Theorem). Let (Xn,n ∈N) and (Yn,n ∈N) be two stochastic process, and X be
a random variable. If Xn

d−→ X and Yn
P−→ c, where c is some constant, then Xn +Yn

d−→ X + c.

The original version of Slutsky’s theorem is far more general than the one we presented. However,
for the purpose of this work, this statement of Slutsky’s theorem will suffice.

Theorem 5 (Lyapounov’s Theorem). Let (ξn,n ∈N) be a stochastic process, and let kn be a sequence
of positive integers. For each n, let ξ1, ...,ξkn be independent random variables with mean 0 and finite
variance σ2

i , for i = 1, ...,kn. Let Sn = ξ1 + ...+ξkn and suppose its variance s2
n = σ2

1 + ...+σ2
kn

is
positive. If, for some positive δ ,

1

s2+δ
n

kn

∑
k=1

E(|ξk|2+δ )
n→∞−−−→ 0,

then
Sn

sn

d−→ N (0,1).
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1.2.4 Mixing

Let us recall the definitions of independence between two σ -algebras and between two random
variables.

Definition 8. Consider the probability space (Ω,A ,P) and let U and V be two σ -algebras of A .
We say that U and V are independent if

∀U ∈ U ,∀V ∈ V P(U ∩V ) = P(U)P(V ).

Definition 9. We say that the random variables X and Y of the same probability space (Ω,A ,P) are
independent if the σ -algebras σ(X) and σ(Y ) are independent.

To move away from the concept of independence, Rosenblatt (1956) introduced a fairly intuitive
idea, which is now known as the α-mixing coefficient. It measures the dependence between two
σ -algebras, and is defined as follows.

Definition 10. Consider the probability space (Ω,A ,P). Given two σ -algebras U and V of A ,
their α-mixing coefficient is defined by

α(U ,V ) = sup
U∈U
V∈V

|P(U ∩V )−P(U)P(V )| .

The extension of this concept to random variables is quite straightforward.

Definition 11. Let Y and Z be two random variables defined on (Ω,A ,P). The α-mixing coefficient
of Y and Z, which we denote as α(Y,Z) is defined as

α(Y,Z) = α(σ(Y ),σ(Z)).

That is,
α(Y,Z) = sup

A∈σ(Y )
B∈σ(Z)

|P(A∩B)−P(A)P(B)|.

Furthermore, if X = (Xt , t ∈ Z) is a stochastic process, the α-mixing coefficient of order k ≥ 1 is
defined as

α(k) = sup
t∈N

α(σ(Xs : s ≤ t),σ(Xs : s ≥ t + k)).

That is,
α(k) = sup

t∈N
sup

A∈σ(Xs:s≤t)
B∈σ(Xs:s≥t+k)

|P(A∩B)−P(A)P(B)|.

The same definition applies if the index set of the process is N. It can be shown that if X is a
stationary process, then α(k) does not depend on t. In this case, α(k) can simply be written as

α(k) = sup
A∈σ(Xs:s≤t)

B∈σ(Xs:s≥t+k)

|P(A∩B)−P(A)P(B)|.
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We say that the process X is strong mixing (or α-mixing) if lim
k→∞

α(k) = 0. This condition specifies

a form of asymptotic independence of the past and future of X , that is, the statistical dependence
between Xt1 and Xt2 is arbitrarily close to zero when |t1 − t2| is suficiently large.

Since the introduction of the α-mixing, several other coefficients have been introduced. We
refer to Doukhan (1994) for the interested reader. Here, we would only like to point that α-mixing
is the weakest type of mixing, in the sense that it is implied by other types of mixing. Just as a
curiosity, another measure that quantifies the extent to which given random variables are dependent
was introduced by Kolmogorov and Rozanov in 1960. It is now known as the ρ-mixing coefficient,
and its definition of order k ≥ 1 for a stationary stochastic process X = (Xt , t ∈ Z) is

ρ(k) = sup
Y∈L2(σ(Xs:s≤t))

Z∈L2(σ(Xs:s≥t+k))

|Corr(Y,Z)|.

In the same sense, we say that X is ρ-mixing if lim
k→∞

ρ(k) = 0, and it can be shown that if X

is ρ-mixing then it is also α-mixing. This is one of the implications we mentioned in the above
paragraph.

Remark 2. If (Xt , t ∈Z) is a stationary α-mixing process, since σ(Xs : s≥ t+k+1)⊆σ(Xs : s≥ t+k)
it is clear from the construction of the α-mixing coeficient that α(k) is a non-increasing sequence.

Remark 3. If X = (Xt , t ∈ Z) is a stationary α-mixing process and Z = (Zt , t ∈ Z) is defined as
Zt = g(Xt),∀t ∈ Z, with g a measurable transformation, then Z is also a stationary process and each
α-mixing coefficient of Z is smaller or equal than the corresponding α-mixing coefficient of X.

In this work, we will be assuming a condition stronger than α-mixing, to guarantee the summability
of the α-mixing coefficients.

Definition 12. A process is said to be geometric α-mixing if there exist constants C > 0 and ρ ∈ (0,1)
such that α(k)≤Cρk for k ≥ 1.

The obvious question now, is if the condition of a stochastic process being geometric α-mixing
is too restrictive to be applied in the financial fields. Fortunately, it is not. Many commonly used
financial time series models have been proven to be geometric α-mixing, with some restrictions to
their parameters. These include ARMA (Pham and Tran, 1985), ARCH (Masry and Tjøstheim, 1995),
GARCH (Carrasco and Chen, 2002) and Diffusion and Stochastic Volatility models (Genon-Catalot,
Jeantheau and Laredo, 2000).

On the subject of mixing, it is worth noting that under certain mixing conditions, one may still
derive important Central Limit Theorems. A common technique used in these types of proofs is
to consider different ‘blocks’ of random variables, which are no more than sums of those random
variables, that satisfy certain imposed conditions. We will see more about this blocking technique
later.

It is now convenient to introduce the theorems concerning α-mixing that we will be using. We
start by presenting an inequality that is often used to derive limit theorems for strong mixing processes.
The following can be found in Bosq (1998) and Yokoyama (1980).
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Theorem 6 (Bosq’s Theorem). Let X = (Xt , t ∈ Z) be a zero-mean process such that sup
1≤t≤n

||Xt ||∞ ≤ b,

and Sn =
n

∑
t=1

Xt . Then, for each integer q ∈
[

1,
n
2

]
and each ε > 0,

P(|Sn|> nε)≤ 4exp
(
− ε2

8τ2(q)
q
)
+22

(
1+

4b
ε

)1/2

qα

([
n
2q

])
,

where
τ

2(q) = 2m−2
σ

2(q)+
bε

2
,

with m =
n
2q

, σ2(q) = max
0≤ j≤2q−1

E
(
([ jm]+1− jm)X[ jm]+1 +X[ jm]+2 +...+X[( j+1)m]+(( j+ 1)m−

[( j+1)m])X[( j+1)m+1]

)2
, and α

([
n
2q

])
is the α-mixing coefficient of order

[
n
2q

]
of X.

Remark 4. In the context of this work, we will be applying Bosq’s theorem with two small differences.
The first difference concerns the upper bound given in Bosq’s theorem for P(|Sn|> nε). Using the
same arguments that are present in this theorem’s proof, we can deduce that this bound is also valid
for P(|Sn| ≥ nε). The second difference concerns an argument in the proof itself. Bosq considers an
auxiliary continuous time process to complete his proof. As a consequence, he has to define σ2 (q)
in the form we see above. A simpler quantity can be deduced if we don’t consider such an auxiliary
process, but the original discrete time process itself. In this case, since n is a multiple of m (which is
the size of each block used in the proof), the coefficient of X[ jm]+1 is 1, and the coefficient of X[( j+1)m+1]

is 0, which allows us to get a simpler definition of σ2(q), that equates to

σ
2(q) = max

0≤ j≤2q−1
E

(
[( j+1)m]

∑
l=[ jm]+1

Xl

)2

.

The next theorem is perhaps the most interesting one. It provides an upper bound for the covariance
between two random variables of an α-mixing process as a function of how far apart their indexes are.

Theorem 7 (Davydov’s Inequality). Let X and Y be two random variables such that X ∈ Lq(P),
Y ∈ Lr(P) where q > 1, r > 1 and q−1 + r−1 + s−1 = 1. Then

|Cov(X ,Y )| ≤ 12||X ||q||Y ||r[α(σ(X),σ(Y ))]1/s.

For instance, if (Xt , t ∈ N) is a stationary α-mixing process with X1 ∈ Lq(P) for some q > 1, the
following inequality holds for appropriate choice of q = r:

|Cov(X1,Xt+1)| ≤ 12||X1||2qα
1/s(t).

Clearly, as t → ∞, Cov(X1,Xt+1) approaches zero. This is not a surprise, given the formulation of the
α-mixing coefficient.
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Remark 5. Let γ(k) =Cov [(Y1 −νp)I(Y1 ≥ νp),(Yk+1 −νp)I(Yk+1 ≥ νp)], for positive integers k. A
relevant quantity in this work that will show up several times is defined as

σ
2
0 (p;n) :=Var[(Y1 −νp)I(Y1 ≥ νp)]+2

n−1

∑
k=1

(
1− k

n

)
γ(k).

We can prove that lim
n→∞

σ
2
0 (p;n) is finite using Davydov’s inequality. For that purpose, assume that

Y = (Yt , t ∈ N) is a stationary geometric α-mixing process with Y1 ∈ L4+δ (P) for some δ > 0. As we
will see, these will be underlying assumptions in our work. Taking into consideration Remark 3, and
letting q = 2+δ ′, where δ ′ ∈ (0,δ ). Davydov’s inequality gives us that

lim
n→∞

n−1

∑
k=1

∣∣∣∣(1− k
n

)
γ(k)

∣∣∣∣≤ lim
n→∞

n−1

∑
k=1

|γ(k)| ≤ 12||(Y1 −νp)I(Y1 ≥ νp)||2q lim
n→∞

n−1

∑
k=1

α
δ ′

2+δ ′ (k)< ∞.

As of right now it may not be clear why ||(Y1 −νp)I(Y1 ≥ νp)||q is finite, but soon it will.

We now present Bradley’s Lemma, a result that will be crucial to prove both Central Limit
Theorems that we will study.

Theorem 8 (Bradley’s Lemma). Let (X ,Y ) be a Rd ×R-valued random vector such that Y ∈ Lp(P)
for some p ∈ [1,+∞]. Let c be a real number such that ||Y + c||p > 0, and ζ ∈ (0, ||Y + c||p]. Then,
there exists a random variable Y ∗ such that

(i) PY ∗ = PY and Y ∗ is independent of X,

(ii) P(|Y ∗−Y |> ζ )≤ 18
(
ζ−1||Y + c||p

)p/(2p+1)
[α(σ(X),σ(Y ))]2p/(2p+1).

In a certain sense, this lemma tells us about the price to pay if we wish to replace dependent
random variables by independent ones, with the same distribution. To end the note on theorems
concerning α-mixing, we present a powerful inequality, due to Yokoyama. The following is achieved
in a broader context than just the hypothesis of a stochastic process being α-mixing, but since this is
the case that concerns us, it is the one we present.

Theorem 9 (Yokoyama’s Inequality). Let (Xt , t ∈ N) be a stationary strong mixing process, with

E(X1) = 0, E
(
|X1|r+δ

)
< ∞ for some r > 2 and δ > 0, and Sn =

a+n

∑
t=a+1

Xt , for a ≥ 0. If

∞

∑
i=1

(i+1)r/2−1 [α(i)]δ/(r+δ ) < ∞,

then there exists a constant C such that

E(|Sn|r)≤Cnr/2, n ≥ 1, a ≥ 0. (1.4)
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Also, under the condition that (Xt , t ∈ N) is a stationary strong mixing process, with E(X1) = 0
and |X1| ≤C < ∞ a.s., and letting r > 0, if

∞

∑
i=1

(i+1)r/2−1
α(i)< ∞,

then (1.4) still holds.

Yokoyama’s inequality provides us a way to bound expected values of powers of sums. As we
will see, that will save us some work when we need to verify the hypothesis of Lyapounov’s theorem.

1.3 Some well known auxiliary results

In this brief chapter, we present some results that will be useful in our work. They will mostly be
relevant to provide upper bounds to quantities that will come up. We start with Hoeffding’s covariance
identity.

Theorem 10 (Hoeffding’s Identity). Let X and Y be two random variables with finite second moments,
FX(x) and FY (y) be the marginal distribution function of X and Y respectively, and FX ,Y (x,y) be the
joint distribution function of the pair (X ,Y ). In this case,

Cov(X ,Y ) =
∫ ∫

FX ,Y (x,y)−FX(x)FY (y)dxdy. (1.5)

Remark 6. Note that FX ,Y (x,y)−FX(x)FY (y) = P(X > x,Y > y)−P(X > x)P(Y > y), for all (x,y) ∈
R2. This means that (1.5) can be rewritten as

Cov(X ,Y ) =
∫ ∫

P(X > x,Y > y)−P(X > x)P(Y > y)dxdy.

Next we present a special case of Hölder’s inequality. The more general inequality will not be
presented as it is not needed in this work.

Theorem 11 (Hölder’s Inequality). Let X and Y be two random variables with finite p-th and q-
th moments respectively, with p,q ∈ [1,+∞] such that p−1 + q−1 = 1. In this case, the following
inequality holds

E
(
|XY |

)
≤ E

1
p
(
|X |p

)
E

1
q
(
|Y |q

)
.

The case p = q = 2 is the famous Cauchy-Schwarz inequality.

Remark 7. In particular, if X has finite p-th moment, for p ≥ 1, then E
(
|X |
)
≤ E

1
p
(
|X |p

)
.

Finally, we present the cr inequality.
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Theorem 12 (cr inequality). Let X and Y be two real random variables and let r be a positive number
such that X and Y have finite r-th moments. In this case, the following inequality holds

E
(
|X +Y |r

)
≤ cr

[
E
(
|X |r

)
+E
(
|Y |r

)]
,

where

cr =

1, if 0 < r ≤ 1

2r−1, if r > 1
.

1.4 Nonparametric estimators and assumptions

In order to present the two nonparametric estimators of the ES we will be studying in this work, we
must first introduce two VaR estimators. The first one, which we denote as ν̂p, is simply an order
statistics. It is defined as

ν̂p = Y([n(1−p)]+1),

where Y(r) is the r-th order statistic of (Yt , t = 1, ...,n).

To introduce the second estimator, we must first extend the concept of kernel density estimator.
For instance, in the context of Section 1.2.1, if we are interested in estimating the distribution function
of Y , which we denote by F , a natural estimator involving the kernel density estimator would be
obtained by integrating both sides of (1.1). That would lead us to

F̂(x;h) =
1
n

n

∑
t=1

∫ x−Yt
h

−∞

K(u)du.

In a more general context, we say that this is a kernel estimator because it involves the usage of a
kernel. Another way to get to this estimator would be to consider the empirical distribution function,
which is defined as

F̂n(x) =
1
n

n

∑
t=1

I(Yt ≤ x),

and replace the indicator function I by the smoother H, which we define as H(x) =
∫ x
−∞

K(u)du, where
K is a kernel. That is,

F̂(x;h) =
1
n

n

∑
t=1

H
(

x−Yt

h

)
,

where h is a smoothing parameter that controls the amount of smoothing in the estimation of F .

Let G(x) =
∫ +∞

x K(u)du and Gh(x) = G(x/h). In this work we will be interested in estimating the
survival function S(x) := 1−F(x). For that purpose we consider the following estimator for S(x), that
can be derived in the same manner that F̂(x;h) was, and is defined as

Ŝ(x;h) =
1
n

n

∑
t=1

Gh(x−Yt).



14 Introduction

The second estimator of νp, which we denote as ν̂p,h, is a kernel estimator, introduced by
Gourieroux, Laurent and Scaillet (2000), and can be viewed as a smoothed version of ν̂p. It is the
solution of Ŝ(z;h) = p, that is,

1
n

n

∑
t=1

Gh
(
ν̂p,h −Yt

)
= p.

We are now ready to present the two nonparametric estimators of the ES. The first one, which we
denote as µ̂p, is an average of the losses larger than ν̂p. It is defined as

µ̂p =

n

∑
t=1

YtI(Yt ≥ ν̂p)

n

∑
t=1

I(Yt ≥ ν̂p)

. (1.6)

The second estimator, which we denote as µ̂p,h, is a kernel estimator proposed by Scaillet (2004).
It is obtained by replacing the indicator function I and ν̂p by the smoother G and ν̂p,h respectively in
(1.6). It is defined as

µ̂p,h =
1

np

n

∑
t=1

YtGh
(
ν̂p,h −Yt

)
.

Now that the ES estimators have been introduced, we will present the assumptions for this work.
They are:

(i) Y = (Yt , t ∈N) is a stationary α-mixing process, and there exist C > 0 and ρ ∈ (0,1) such that
α(k) ≤ Cρk for all k ≥ 1; Yt is absolutely continuous, with f and F as its density and distribution
functions, respectively.

(ii) f has continuous second derivatives in Bνp , a neighbourhood of νp, and satisfies f (νp)> 0;
The joint distribution function of (Y1,Yk+1), k ≥ 1, which we denote by Fk, has all its second partial
derivatives bounded in Bνp by a constant B, say; There exist C,δ > 0 such that E(|Yt |4+δ )≤C.

(iii) K is an univariate symmetric and bounded probability density function satisfying the moment
conditions

∫
u2K(u)du = σ2

K and
∫

u4K(u)du = σ4
K , and K has bounded and Lipschitz continuous

derivative. K also satisfies
∫

K2+δ ′
(u)du <C and

∫
uK2+δ ′

(u)du <C, for some C > 0, δ ′ ∈ (0,δ ).

(iv) The smoothing bandwidth h satisfies h → 0, nh3.5−β → ∞ for any β ≥ 0 and nh4 log2(n)→ 0
as n → ∞.

Condition (i) means that the time series of study, (Yt , t ∈ N), is geometric α-mixing, and as we
have seen in Section 1.2.4, that is not too restrictive of an assumption. Condition (ii) contains standard
assumptions for quantile estimation, which require underlying smoothness for f and Fk, as well as
finite moments for the absolute returns. Conditions (iii) and (iv) are commonly imposed conditions in
kernel smoothing, with some particular conditions for this work. For instance, condition (iv) specifies
a range for the bandwidth h.

Under slightly different assumptions, Chen and Tang (2005) showed that

Var
(
ν̂p,h
)
= n−1 f−2(νp)∆

2(p;n)−2n−1h f−1(νp)cK +o(n−1h), (1.7)
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with ∆2(p;n)=

[
p(1− p)+2

n−1

∑
k=1

(
1− k

n

)
Cov [I(Y1 ≥ νp), I(Yk+1 ≥ νp)]

]
and cK =

∫
uK(u)G(u)du.

Using a similar argument to the one in Remark 5, it is easy to prove that lim
n→∞

∆
2(p;n) is finite.

Yoshihara (1995) had already established that, under the α-mixing assumption,

Var(ν̂p) = n−1 f−2(νp)∆
2(p;n) [1+o(1)] . (1.8)

Equations (1.7) and (1.8) indicate that both VaR estimators have the same leading asymptotic
variance term. However, the VaR kernel estimator ν̂p,h reduces the variance in the second order of
n−1h as cK > 0. This second-order reduction can be of significance, not only because the available
data in the tail is usually low, but also because even a low reduction in variance can translate to a large
reduction in absolute financial losses.

Based on this particular improvement that was achieved with kernel smoothing, it is reasonable
to expect that the kernel ES estimator, µ̂p,h, will also bring some sort of improvement over the
unsmoothed ES estimator, µ̂p. Confirming this or otherwise is one of the objectives of this work, and
to do so, we must first prove some results, which we state in form of four lemmas, that will facilitate
the proof of the two Central Limit Theorems.





Chapter 2

Main Results

In this chapter we present the results we will derive and their proofs. For that purpose, we will let
C denote generic positive constants. We start with Lemma 1, where we will prove that a certain
probability converges to zero faster than any polynomial. By this we mean that said probability is
O
(
n−C
)
, for any real number C. This result will be helpful to prove Lemma 2.

2.1 Auxiliary Lemmas

Lemma 1 (Chen, 2008). Let εn = n−1/2 logn. Under condition (i), P(|ν̂p −νp| ≥ εn) converges to
zero faster than any polynomial.

Proof. Fix n ∈ N. Taking into consideration that ν̂p is an absolutely continuous random variable, it is
clear that P(|ν̂p −νp| ≥ εn) = P(ν̂p > νp +εn)+P(ν̂p < νp −εn). Define C1(n) = inf

x∈[νp−εn,νp+εn]
f (x).

We will now find upper bounds for the two probabilities.

Assume that ν̂p > νp + εn. Given the definitions of the empirical distribution function and ν̂p, it is
clear that for any value smaller than ν̂p, such as νp + εn, F̂n satisfies F̂n(ν̂p)> F̂n(νp + εn).

Note that

F̂n(νp + εn)≤
1
n

n

∑
t=1

I(Yt ≤ νp + εn)≤
[n(1− p)]

n
≤ 1− p, (2.1)

and
F(νp + εn) =

∫
νp+εn

−∞

f (x)dx = 1− p+
∫

νp+εn

νp

f (x)dx ≥ 1− p+C1(n)εn. (2.2)

(2.1) and (2.2) allow us to conclude that |F̂n(νp + εn)−F(νp + εn)| ≥C1(n)εn.

Now consider the case ν̂p < νp−εn. As F̂n is a nonincreasing function, F̂n(ν̂p)≤ F̂n(νp−εn), and
since

F̂n(ν̂p) =
[n(1− p)]+1

n
≥ 1− p,

we get that
F̂n(νp − εn)≥ 1− p (2.3)

17
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Also note that

F(νp − εn) =
∫

νp−εn

−∞

f (x)dx = 1− p−
∫

νp

νp−εn

f (x)dx ≤ 1− p−C1(n)εn. (2.4)

Combine (2.3) and (2.4) to conclude that |F̂n(νp − εn)−F(νp − εn)| ≥C1(n)εn.

Hence

P(ν̂p > νp + εn)+P(ν̂p < νp − εn)

≤ P(|F̂n(νp + εn)−F(νp + εn)| ≥C1(n)εn)+P(|F̂n(νp − εn)−F(νp − εn)| ≥C1(n)εn). (2.5)

In order to determine an upper bound for the two probabilities in (2.5), consider the auxiliary stochastic
process Z = (Zt , t ∈ N) defined as Zt = I(Yt ≤ νp + εn)−F(νp + εn), for t ∈ N. Clearly, for any t,
E(Zt) = 0 and |Zt | ≤ 2 a.s.. Also note that, from Remark 3, Z is a stationary process with smaller or
equal α-mixing coefficients than those of Y . Note that

P(|F̂n(νp + εn)−F(νp + εn)| ≥C1(n)εn) = P

(∣∣∣∣∣n−1
n

∑
t=1

[I (Yt ≤ νp + εn)−F (νp + εn)]

∣∣∣∣∣≥C1(n)εn

)
= P(|Sn| ≥ nC1(n)εn),

where Sn =
n

∑
t=1

Zt . Set q = b0nεn, where b0 is such that q is a positive integer smaller or equal to n/2

for each n, and m = n/2q. We seek to apply Bosq’s Theorem with the alteration we mentioned in
Remark 4. Remember that, in this case,

σ
2(q) = max

0≤ j≤2q−1
E

(
[( j+1)m]

∑
l=[ jm]+1

Zl

)2

.

Since E(Zt) = 0 and |Zt | ≤ 2 a.s., for each j ∈ {0, ...,2q−1}, Yokoyama’s Inequality gives us the
following upper bound

E

∣∣∣∣∣ [( j+1)m]

∑
l=[ jm]+1

Zl

∣∣∣∣∣
r

≤C([( j+1)m]− [ jm])r/2 ≤C(m+1)r/2 ≤Cmr/2,

provided that
∞

∑
k=1

(k+1)r/2−1
α(k) is finite, which under assumption (i) is trivially true for r = 2, the

case we are interested in. Hence,

σ
2(q) = max

0≤ j≤2q−1
E

(
[( j+1)m]

∑
l=[ jm]+1

Zl

)2

= max
0≤ j≤2q−1

E

∣∣∣∣∣ [( j+1)m]

∑
l=[ jm]+1

Zl

∣∣∣∣∣
2

≤Cm.

We now apply the modified version of Bosq’s theorem, to conclude that

P(|Sn| ≥ nC1(n)εn)≤ 4exp

(
−(C1(n))

2
ε2

n

8τ2(q)
q

)
+22

(
1+

8
C1(n)εn

)1/2

qα

([
n
2q

])
,
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where α

([
n
2q

])
is the α-mixing coefficient of order

[
n
2q

]
of the process Z and

τ
2(q) = 2m−2

σ
2(q)+C1(n)εn.

Since σ2(q) ≤Cm, we get that τ2(q) ≤ 4b0Cεn +C1(n)εn =C2(n)εn, which allows us to conclude
that

4exp

(
−(C1(n))

2
ε2

n

8τ2(q)
q

)
≤ 4exp(−C3(n)εnq) ,

which converges to zero faster than any polynomial, since C3(n)εnq tends to infinity.

On the other hand, for n suficiently large,

22
(

1+
8

C1(n)εn

)1/2

qα

([
n
2q

])
≤ 22

(
16

C1(n)εn

)1/2

qα

([
n
2q

])
=C4(n)n

3
4 (logn)

1
2 ρ

[
Cn1/2
logn

]
,

which converges to zero faster than any polynomial too. Hence P(|F̂n(νp + εn)−F(νp + εn)| ≥
C1(n)εn) converges to zero faster than any polynomial. Analogous arguments can be used to prove
that P(|F̂n(νp−εn)−F(νp−εn)| ≥C1(n)εn) also converges to zero faster than any polynomial, which
concludes the proof. �

In Lemma 2 we will prove that a certain sum of random variables is op
(
n−3/4+κ

)
, for κ > 0

arbitrarily small. This result will help us get a simple, yet practical expansion of µ̂p as a function of
µp.

Lemma 2 (Chen, 2008). Under the conditions (i)− (ii) and for κ > 0 arbitrarily small,

1
n

n

∑
t=1

(Yt −νp) [I (Yt ≥ ν̂p)− I (Yt ≥ νp)] = op

(
n−3/4+κ

)
.

Proof. We seek to apply theorem 2. Let Wt = (Yt −νp)[I(Yt ≥ ν̂p)− I(Yt ≥ νp)] for t = 1, ...,n. Note
that, since Y is stationary, E(Wt) and Var(Wt) do not depend on t. We start by computing E(W1) by
noting that

W1 =


Y1 −νp, if ν̂p ≤ Y1 < νp

νp −Y1, if νp ≤ Y1 < ν̂p

0, otherwise

, a.s..

Defining

I1 = (Y1 −νp)I(νp ≤ Y1 < ν̂p)I(ν̂p > νp),

I2 = (Y1 −νp)I(ν̂p ≤ Y1 < νp)I(ν̂p < νp),
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it is clear that W1 = −I1 + I2 a.s., hence E(W1) = −E(I1)+E(I2). Moreover, for a ∈ (0,1/2) and
η > 0, if we define

I11 = (Y1 −νp)I(νp ≤ Y1 < ν̂p)I(ν̂p ≥ νp +n−a
η),

I12 = (Y1 −νp)I(νp ≤ Y1 < ν̂p)I(νp < ν̂p < νp +n−a
η),

I21 = (Y1 −νp)I(νp > Y1 ≥ ν̂p)I(ν̂p ≤ νp −n−a
η),

I22 = (Y1 −νp)I(νp > Y1 ≥ ν̂p)I(νp > ν̂p > νp −n−a
η),

it is also clear that E(I1) = E(I11)+E(I12) and E(I2) = E(I21)+E(I22). Applying the Cauchy-Schwarz
inequality, we get

|E(I11)|2 ≤ E
[
(Y1 −νp)

2I(νp ≤ Y1 < ν̂p)
]

E
[
I(ν̂p ≥ νp +n−a

η)
]
.

Since (Y1 −νp)
2I(νp ≤ Y1 < ν̂p)≤ (ν̂p −νp)

2 a.s.,

|E(I11)|2 ≤ E(ν̂p −νp)
2P(ν̂p ≥ νp +n−a

η)≤ E(ν̂p −νp)
2P(|ν̂p −νp| ≥ n−a

η),

which implies that
|E(I11)| ≤ [E(ν̂p −νp)

2P(|ν̂p −νp| ≥ n−a
η)]1/2. (2.6)

Since n−1/2 logn = o(n−aη), Lemma 1 guarantees that

P(|ν̂p −νp| ≥ n−a
η)→ 0 faster than any polynomial. (2.7)

Moreover, Yoshihara (1995) showed that

Var(ν̂p) = O
(
n−1) and E(ν̂p)−νp = O

(
n−3/4

)
,

which means that

MSE(ν̂p) = E(ν̂p −νp)
2 = Var(ν̂p)+(E(ν̂p)−νp)

2 = O
(
n−1) . (2.8)

From (2.6), (2.7) and (2.8), it is clear that |E(I11)| converges to zero faster than any polynomial.
Using the same arguments and the inequality (Y1 −νp)

2I(νp > Y1 ≥ ν̂p)≤ (ν̂p −νp)
2 a.s., it can be

shown that |E(I21)| converges to zero faster than any polynomial.

In order to evaluate E(I12), we note that 0≤ I12 ≤ (Y1−νp)I(νp ≤Y1 < νp+n−aη), a.s.. Therefore

E(I12)≤
∫

νp+n−aη

νp

(z−νp) f (z)dz ≤
∫

νp+n−aη

νp

(z−νp) max
x∈[νp,νp+η ]

f (x)dz

=C
∫

νp+n−aη

νp

(z−νp)dz =
Cη2

2
n−2a = O

(
n−2a) .
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Finally, to evaluate E(I22), we note that 0 ≥ I22 ≥ (Y1 −νp)I(νp > Y1 > νp −n−aη) a.s.. Hence

|E(I22)| ≤
∣∣∣∣∫ νp

νp−n−aη

(z−νp) f (z)dz
∣∣∣∣≤ ∣∣∣∣∫ νp

νp−n−aη

(z−νp) max
x∈[νp−η ,νp]

f (x)dz
∣∣∣∣

=C
∣∣∣∣∫ νp

νp−n−aη

(z−νp)dz
∣∣∣∣= Cη2

2
n−2a = O

(
n−2a) .

From all this, we conclude that E(W1) = O
(
n−2a

)
. Choosing a = 1/2− γ , where γ > 0 is arbitrarily

small, we conclude that E(W1) = O
(

n−1+κ ′
)

, for an arbitrarily small κ ′ > 0. This and the fact that

n−1+κ ′ → 0 imply that E(W1) = o
(
n−1+κ

)
, for an arbitrarily small κ > 0, which in turn implies that

E

[
1
n

n

∑
t=1

(Yt −νp) [I (Yt ≥ ν̂p)− I (Yt ≥ νp)]

]
= o

(
n−1+κ

)
.

Let us now evaluate Var(W1). For a ∈ (0,1/2) and η > 0,

E(W 2
1 ) = E

[
(Y1 −νp)

2{I(Y1 ≥ ν̂p)−2I(Y1 ≥ ν̂p)I(Y1 ≥ νp)+ I(Y1 ≥ νp)}
]

= E
[
(Y1 −νp)

2{I(νp > Y1 ≥ ν̂p)+ I(ν̂p > Y1 ≥ νp)}
]

= E
[
(Y1 −νp)

2I(ν̂p ≤ Y1 < νp)I(ν̂p ≥ νp −n−a
η)
]

+E
[
(Y1 −νp)

2I(ν̂p ≤ Y1 < νp)I(ν̂p < νp −n−a
η)
]

+E
[
(Y1 −νp)

2I(ν̂p > Y1 ≥ νp)I(ν̂p ≥ νp +n−a
η)
]

+E
[
(Y1 −νp)

2I(ν̂p > Y1 ≥ νp)I(ν̂p < νp +n−a
η)
]

:= E(A)+E(B)+E(C)+E(D).

Hölder’s inequality allows us to bound E(B). Setting p = 1+ δ

2 , q = p
p−1 , we get that

|E(B)| ≤ E
[∣∣(Y1 −νp)

2I(ν̂p ≤ Y1 < νp)I(ν̂p < νp −n−a
η)
∣∣]

≤ E
1
p
[
|(Y1 −νp)

2|p
]

E
1
q
[
|I(ν̂p ≤ Yt < νp)I(ν̂p < νp −n−a

η)|q
]

≤ E
1
p (|(Y1 −νp)|2+δ ){P(|ν̂p −νp| ≥ n−a

η)}
1
q

≤C
2

2+δ

[
P(|ν̂p −νp| ≥ n−a

η)
] δ

2+δ ,

which converges to zero faster than any polynomial, by Lemma 1. The same argument can be used to
prove that |E(C)| also converges to zero faster than any polynomial.

To compute E(A), we note that 0 ≤ (Y1 − νp)
2I(ν̂p ≤ Y1 < νp)I(ν̂p ≥ νp − n−aη) ≤ (Y1 −

νp)
2I(νp −n−aη < Y1 < νp) a.s., so

E(A)≤
∫

νp

νp−n−aη

(z−νp)
2 f (z)dz ≤ max

x∈[νp−η ,νp]
f (x)

∫
νp

νp−n−aη

(z−νp)
2dz = O

(
n−3a) .

Using the same arguments, and noting that 0 ≤ (Y1 − νp)
2I(ν̂p > Y1 ≥ νp)I(ν̂p < νp − n−aη) ≤

(Y1 −νp)
2I(νp < Y1 < νp +n−aη), it can be shown that E(D) = O(n−3a), which finally implies that

E
(
W 2

t
)
= O

(
n−3a

)
.
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Similarly to what was done before, by choosing a = 1
2 −γ , for γ > 0 arbitrarily small, we conclude

that E
(
W 2

1
)
= o

(
n−

3
2+κ

)
, for an arbitrarily small κ > 0, which implies that Var(W1) = o(n−

3
2+κ).

Finally, we will find a bound for Cov(Wi,Wj), with i, j = 1, ...,n, i ̸= j. Cauchy-Schwarz inequality
gives us that ∣∣Cov(Wi,Wj)

∣∣≤ Var
1
2 (Wi)Var

1
2 (Wj) = o

(
n−

3
2+κ

)
,

for an arbitrarily small κ > 0. Hence,∣∣∣∣∣Var

(
n−1

n

∑
t=1

Wt

)∣∣∣∣∣= n−2

∣∣∣∣∣
[

n

∑
t=1

Var(Wt)+2
n

∑
i, j=1,i> j

Cov(Wi,Wj)

]∣∣∣∣∣
≤ n−2

[
n

∑
t=1

|Var(Wt)|+2
n

∑
i, j=1,i> j

∣∣Cov(Wi,Wj)
∣∣]

= n−2
[
o
(

n−
3
2+κ

)
+o
(

n−
3
2+κ

)]
= o

(
n−

3
2+κ

)
.

Thus far, we have shown that E

(
n−1

n

∑
t=1

Wt

)
= o

(
n−1+k

)
and Var

(
n−1

n

∑
t=1

Wt

)
= o

(
n−

3
2+k
)

, for an

arbitrarily small κ > 0. Theorem 2 allows us to conlude that

1
n

n

∑
t=1

Wt −o
(

n−1+k
)
= Op

(
o
(

n−
3
4+k
))

, for κ > 0 arbitrarily small.

We finish the proof if we can show that

1. Op

(
o
(

n−
3
4+k
))

= op

(
n−

3
4+k
)

,

2. o
(
n−1+k

)
= op

(
n−1+k

)
,

3. op
(
n−1+k

)
+op

(
n−

3
4+k
)
= op

(
n−

3
4+k
)

.

The proofs of 2. and 3. are rather trivial: to prove 2. simply consider o
(
n−1+k

)
as a sequence of

random variables that take their value with probability 1, and to prove 3. use the fact that if a stochastic
process is op

(
n−1+k

)
, then it also is op

(
n−

3
4+k
)

. The proof of 1. is as follows:

Name the Op

(
o
(

n−
3
4+k
))

as Tn. From the assumption, for all η > 0, there exist C(η) and n(η)

such that for all n ≥ n(η),

P
(
|Tn|
an

<C(η)

)
≥ 1−η ,

where an = o
(

n−
3
4+k
)

. Let ε∗ > 0,η∗ > 0 be arbitrarily fixed. Again, from our assumption, there
exist C(η∗) and n(η∗) such that for all n ≥ n(η∗),

P
(
|Tn|
an

<C(η∗)

)
≥ 1−η

∗ ⇔ P
(

|Tn|
n−

3
4+k

<
an

n−
3
4+k

C(η∗)

)
≥ 1−η

∗.
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When n → ∞,
an

n−
3
4+k

K(η∗)→ 0 < ε
∗, which implies that, for n large enough,

P
(

|Tn|
n−

3
4+k

< ε
∗
)
≥ 1−η

∗,

that is, Tn = op

(
n−

3
4+k
)

. This allows us to write

1
n

n

∑
t=1

Wt = op

(
n−

3
4+k
)
,

which finishes the Lemma’s proof. �

Out of all the four Lemmas, it is only Lemma 2 that will help us prove the asymptotic normality
of µ̂p. Lemmas 3 and 4, which we present next, will aid us with the proof of asymptotic normality of
µ̂p,h.

In Lemma 3 we will show that some covariances that will appear when we deduce Var(µ̂p,h)

are simply o
(
n−1h

)
, which will facilitate our computations when we prove the convergence of the

smoothed estimator.

Lemma 3 (Chen, 2008). Let β̂ = (np)−1
n

∑
t=1

YtGh(νp −Yt), η̂ = (np)−1
n

∑
t=1

YtKh(νp −Yt), β = E
(

β̂

)
and η = E(η̂). Under conditions (i)− (iv),

(a) Cov
[
β̂ ,
(

p− Ŝ(νp;h)
)(

f̂ (νp;h)− f (νp)
)]

= o
(
n−1h

)
,

(b) Cov
[
β̂ ,(η̂ −η)

(
p− Ŝ(νp;h)

)]
= o

(
n−1h

)
,

(c) Cov
[(

p− Ŝ(νp;h)
)
,(η̂ −η)

(
p− Ŝ(νp;h)

)]
= o

(
n−1h

)
.

Proof. From (1.2), it is clear that

E
(

f̂ (νp;h)
)
= E(Kh(νp −Yt)) = f (νp)+O

(
h2) .

Moreover, by means of Fubini’s and Taylor’s theorems,

E(Ŝ(νp;h)) =
∫ ∫

∞

νp−z
h

K (u)du f (z)dz =
∫

K (u)
(∫

∞

νp

f (z)dz+
∫

νp

νp−hu
f (z)dz

)
du

= p+
∫

K(u) [F(νp)−F(νp −hu)]du = p− 1
2

f ′(νp)σ
2
Kh2 +o

(
h2)= p+O

(
h2) .
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Using these definitions and results, let

β̂ −β = n−1
n

∑
t=1

[
p−1 (YtGh (νp −Yt)−E(YtGh (νp −Yt)))

]
=: n−1

n

∑
t=1

ψ1 (Yt) ,

f̂ (νp;h)− f (νp) = n−1
n

∑
t=1

[Kh (νp −Yt)−E(Kh (νp −Yt))]+O
(
h2)=: n−1

n

∑
t=1

ψ2 (Yt)+O
(
h2) ,

p− Ŝ (νp;h) = n−1
n

∑
t=1

[E(Gh (νp −Yt))−Gh (νp −Yt)]+O
(
h2)=: n−1

n

∑
t=1

ψ3 (Yt)+O
(
h2) ,

η̂ −η = n−1
n

∑
t=1

[
p−1 (YtKh (νp −Yt)−E(YtKh (νp −Yt)))

]
=: n−1

n

∑
t=1

ψ4 (Yt) .

Note that for j = 1,2,3,4 and for t = 1, ...,n, E(ψ j (Yt)) = 0.

We start with the proof of (a). Using the definitions above, we may write∣∣∣∣∣Cov
[
β̂ ,
(

p− Ŝ(νp;h)
)(

f̂ (νp;h)− f (νp)
)]∣∣∣∣∣= ∣∣∣E[(β̂ −β

)(
p− Ŝ(νp;h)

)(
f̂ (νp;h)− f (νp)

)]∣∣∣
=

∣∣∣∣∣E
[(

n−1
n

∑
t=1

ψ1 (Yt)

)(
n−1

n

∑
t=1

ψ2 (Yt)+O
(
h2))(n−1

n

∑
t=1

ψ3 (Yt)+O
(
h2))]∣∣∣∣∣

≤

∣∣∣∣∣E
[

n−3
n

∑
t=1

ψ1 (Yt)
n

∑
t=1

ψ2 (Yt)
n

∑
t=1

ψ3 (Yt)

]∣∣∣∣∣+
∣∣∣∣∣E
[

n

∑
t=1

ψ1 (Yt)
n

∑
t=1

ψ2 (Yt)

]∣∣∣∣∣O(n−2h2)
+

∣∣∣∣∣E
[

n

∑
t=1

ψ1 (Yt)
n

∑
t=1

ψ3 (Yt)

]∣∣∣∣∣O(n−2h2) . (2.9)

Let us start by studying the first term in (2.9). As we have pointed out, ψ1(Yt),ψ2(Yt) and ψ3(Yt)

for any t = 1, ...,n are centered random variables. This together with the stationary of Y = (Yt , t ∈ N)
allows us to write, in an analogous way as done in Billingsley (1968, p 173),∣∣∣∣∣E
[

n−3
n

∑
t=1

ψ1 (Yt)
n

∑
t=1

ψ2 (Yt)
n

∑
t=1

ψ3 (Yt)

]∣∣∣∣∣≤ 3!n−2
∑

i≥1, j≥1,i+ j≤n

∣∣E(ψ1 (Y1)ψ2 (Yi)ψ3 (Yi+ j))
∣∣ (2.10)

Setting p = 2+δ ′, q = 2+δ ′ for some δ ′ ∈ (0,δ ) and s−1 = 1− p−1−q−1, Davydov’s inequality
gives us that

|E(ψ1(Y1)ψ2(Yi)ψ3(Yi+ j))|= Cov(ψ1(Y1),ψ2(Yi)ψ3(Yi+ j))

≤ 12||ψ1(Y1)||p||ψ2(Yi)ψ3(Yi+ j)||qα
1/s(i). (2.11)

We start by bounding ||ψ1(Y1)||p = E1/p (|ψ1(Y1)|p). Write

E(|ψ1(Y1)|p) = p−2−δ ′
E
(
|(Y1Gh(νp −Y1)−E(Y1Gh(νp −Y1))|2+δ ′

)
. (2.12)

Applying the cr-inequality in (2.12), it is clear that

E(|ψ1(Y1)|p)≤ p−2−δ ′
21+δ ′

[
E
(
|Y1Gh(νp −Y1)|2+δ ′

)
+ |E(Y1Gh(νp −Y1))|2+δ ′

]
. (2.13)
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On the other hand, Hölder’s inequality gives us that

|E(Y1Gh(νp −Y1)) | ≤ E
1

2+δ ′
(
|Y1Gh(νp −Y1)|2+δ ′

)
. (2.14)

Combine (2.12), (2.13) and (2.14) to obtain

E(|ψ1(Y1)|p)≤ p−2−δ ′
22+δ ′

E
(
|Y1Gh(νp −Y1)|2+δ ′

)
. (2.15)

Finally, set ξ1 =
2+δ

2+δ ′ > 1 and ξ2 = (1−ξ
−1
1 )−1. Applying Hölder’s inequality once more in (2.15),

we conclude that

E
(
|Y1|2+δ ′

G2+δ ′

h (νp −Y1)
)
≤ E

1
ξ1

(
|Y1|2+δ

)
E

1
ξ2

(
|G2+δ ′

h (νp −Y1)|ξ2
)
≤C. (2.16)

Hence
||ψ1(Y1)||p ≤C. (2.17)

In order to bound ||ψ2(Yi)ψ3(Yi+ j)||q, we start by noting that, since |ψ3(Yi+ j)| ≤ 2, we get that
||ψ2(Yi)ψ3(Yi+ j)||q ≤ 2||ψ2(Yi)||q. Applying the same arguments present in (2.13) and (2.14) as above
and remembering that K is a non-negative function, we get that

E(|ψ2(Yi)|q) = E
(
|Kh(νp −Yi)−E(Kh(νp −Yi))|2+δ ′

)
≤ 21+δ ′

[
E
(

K2+δ ′

h (νp −Yi)
)
+E2+δ ′

(Kh(νp −Yi))
]

≤ 22+δ ′
E
(

K2+δ ′

h (νp −Yi)
)

= 22+δ ′
∫

h−2−δ ′
K2+δ ′

(
νp − z

h

)
f (z)dz

= 22+δ ′
h−1−δ ′

∫
K2+δ ′

(u) f (νp −uh)du (2.18)

Assumption (iii) guarantees that the integral in (2.18) is finite. Therefore

||ψ2(Yi)ψ3(Yi+ j)||q ≤ 2E
1

2+δ ′
(
|ψ2(Yi)|2+δ ′

)
≤Ch−

1+δ ′
2+δ ′ . (2.19)

Consequently, combining (2.11), (2.17) and (2.19), we obtain

|E(ψ1(Y1)ψ2(Yi)ψ3(Yi+ j))| ≤ 12Ch−
1+δ ′
2+δ ′ α

δ ′
2+δ ′ (i). (2.20)

Applying Davydov’s inequality in a different manner, we can also deduce that

|E(ψ1(Y1)ψ2(Yi)ψ3(Yi+ j))|= Cov(ψ1(Y1)ψ2(Yi),ψ3(Yi+ j))

≤ 12||ψ1(Y1)ψ2(Yi)||p||ψ3(Yi+ j)||qα
1/s( j). (2.21)
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Employing Hölder’s inequality and the same arguments present in (2.15), (2.16) and (2.18), it can

be shown that ||ψ1(Y1)ψ2(Yi)||p ≤Ch−
1+δ ′
2+δ ′ , and since ||ψ3(Yi+ j)||q ≤ 2, we conclude that

|E(ψ1(Y1)ψ2(Yi)ψ3(Yi+ j))| ≤ 12Ch−
1+δ ′
2+δ ′ α

δ ′
2+δ ′ ( j), (2.22)

and from (2.20) and (2.22), we derive

|E(ψ1(Y1)ψ2(Yi)ψ3(Yi+ j))| ≤ 12Ch−
1+δ ′
2+δ ′ min{α

δ ′
2+δ ′ (i),α

δ ′
2+δ ′ ( j)}. (2.23)

To control the second term in (2.9) we note that, by stationarity,∣∣∣∣∣E
[

n

∑
t=1

ψ1 (Yt)
n

∑
t=1

ψ2 (Yt)

]∣∣∣∣∣=
∣∣∣∣∣Cov

(
n

∑
t=1

YtGh (νp −Yt) ,
n

∑
t=1

Kh (νp −Yt)

)∣∣∣∣∣
=

∣∣∣∣∣n−1

∑
t=0

(n− t)Cov(Y1Gh (νp −Y1) ,Kh (νp −Yt+1))

∣∣∣∣∣≤ n
n−1

∑
t=0

|Cov(Y1Gh (νp −Y1) ,Kh (νp −Yt+1))| .

(2.24)

The bounding of this quantity becomes much simpler if we define α(0) in the same manner as we
have defined the other α coefficients. This is not an uncommon practice, as can be seen in Yokoyama
(1980), and for the purpose of this proof, we only need to realize that α(0) is obviously a finite
value. We can then use Davydov’s inequality in a much more direct way. For that purpose, setting
p = q = 2+δ ′ for some δ ′ ∈ (0,δ ) and s−1 = 1− p−1 −q−1, we can conclude that

|Cov(Y1Gh (νp −Y1) ,Kh (νp −Yt+1))| ≤ 12||Y1Gh (νp −Y1) ||p||Kh (νp −Y1) ||qα
δ ′

2+δ ′ (t). (2.25)

Using analogous arguments to the ones we have used to prove (2.17) and (2.19), it can easily be

shown that ||Y1Gh (νp −Y1) ||p ≤C and ||Kh (νp −Y1) ||q ≤Ch−
1+δ ′
2+δ ′ . This fact, the summability of the

α-mixing coefficients, (2.24) and (2.25) imply that∣∣∣∣∣E
[

n

∑
t=1

ψ1 (Yt)
n

∑
t=1

ψ2 (Yt)

]∣∣∣∣∣≤Cnh−
1+δ ′
2+δ ′

n−1

∑
t=0

α
δ ′

2+δ ′ (t) = O
(

nh−
1+δ ′
2+δ ′

)
. (2.26)

Analogous arguments to (2.24) and (2.25) can be used to show that∣∣∣∣∣E
[

n

∑
t=1

ψ1 (Yt)
n

∑
t=1

ψ3 (Yt)

]∣∣∣∣∣≤Cn = O(n). (2.27)

Taking into account that α(k) is a non-increasing sequence (Remark 2), and noticing that

O
(
n−2h2

)
O
(

nh−
1+δ ′
2+δ ′

)
= o

(
n−1h

)
, combine (2.9), (2.10), (2.23), (2.26) and (2.27) to conclude that

∣∣∣Cov
[
β̂ ,
(

p− Ŝ(νp;h)
)(

f̂ (νp;h)− f (νp)
)]∣∣∣≤Cn−2h−

1+δ ′
2+δ ′

n−1

∑
j=1

(2 j−1)α
δ ′

2+δ ′ ( j)+o
(
n−1h

)
.

(2.28)
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Since
∞

∑
j=1

jα
δ

2+δ ( j)< ∞ is implied by Condition (i), the first term of the right hand side of (2.28) is

simply O
(

n−2h−
1+δ ′
2+δ ′

)
= o

(
n−1h

)
, which concludes the proof of (a).

Let us proceed with the proof of (b). Using analogous arguments as the ones presented in (2.9)
and (2.10),∣∣∣Cov

[
β̂ ,(η̂ −η)

(
p− Ŝ(νp;h)

)]∣∣∣= ∣∣∣E[(β̂ −β

)
(η̂ −η)

(
p− Ŝ (νp;h)

)]∣∣∣
=

∣∣∣∣∣E
[

n−3
n

∑
t=1

ψ1 (Yt)
n

∑
t=1

ψ3 (Yt)
n

∑
t=1

ψ4 (Yt)

]
+E

[
n

∑
t=1

ψ1 (Yt)
n

∑
t=1

ψ4 (Yt)

]∣∣∣∣∣O(n−2h2)
≤3!n−2

∑
i≥1, j≥1,i+ j≤n

∣∣E(ψ1 (Y1)ψ3 (Yi)ψ4 (Yi+ j))
∣∣+ ∣∣∣∣∣E

[
n

∑
t=1

ψ1 (Yt)
n

∑
t=1

ψ4 (Yt)

]∣∣∣∣∣O(n−2h2) . (2.29)

Applying Davydov’s inequality with the same choices for p,q and s as before, we get that

|E(ψ1(Y1)ψ3(Yi)ψ4(Yi+ j))| ≤ 12||ψ1(Y1)||p||ψ3(Yi)ψ4(Yi+ j)||qα
1/s(i). (2.30)

Applying both Hölder’s and Cr-inequality,

E(|ψ4(Yi+ j)|q)≤ p−2−δ ′
22+δ ′

E
(
|Yi+ jKh(νp −Yi+ j)|2+δ ′

)
(2.31)

Applying Hölder’s inequality once again with ξ1 and ξ2 as above, we conclude that

E
(
|Yi+ j|2+δ ′

K2+δ ′

h (νp −Yi+ j)
)
≤ E

1
ξ1

(
|Yi+ j|2+δ

)
E

1
ξ2

(
K(2+δ ′)ξ2

h (νp −Yi+ j)
)

≤C
1

ξ1

[∫
h−(2+δ ′)ξ2K(2+δ ′)ξ2

(
νp − z

h

)
f (z)dz

] 1
ξ2

=C
[

h−(2+δ ′)ξ2+1
∫

K(2+δ ′)ξ2(u) f (νp −hu)du
] 1

ξ2

≤Ch−(2+δ ′)+ 1
ξ2 . (2.32)

Hence

||ψ4(Yi+ j)||q ≤Ch−1+
ξ
−1
2

2+δ ′ . (2.33)

Consequently, using the bound we derived in (2.17) for ||ψ1(Y1)||p and the fact that |ψ3(Yi)| ≤ 2, we
get that

|E(ψ1(Y1)ψ3(Yi)ψ4(Yi+ j))| ≤ 12Ch−1+
ξ
−1
2

2+δ ′ α
δ ′

2+δ ′ (i). (2.34)

Applying Davydov’s inequality in a different manner, we also conclude that

|E(ψ1(Y1)ψ3(Yi)ψ4(Yi+ j))| ≤ 12||ψ1(Y1)ψ3(Yi)||p||ψ4(Yi+ j)||qα
1/s( j), (2.35)
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where p and q are the same constants as before. Applying the same arguments and bounds presented
in (2.17) and (2.33) to inequality (2.35), we conclude that

|E(ψ1(Y1)ψ3(Yi)ψ4(Yi+ j))| ≤ 12Ch−1+
ξ
−1
2

2+δ ′ α
δ ′

2+δ ′ ( j), (2.36)

which, coupled with (2.34) finally implies that

|E(ψ1(Y1)ψ2(Yi)ψ3(Yi+ j))| ≤ 12Ch−1+
ξ
−1
2

2+δ ′ min{α
δ ′

2+δ ′ (i),α
δ ′

2+δ ′ ( j)}. (2.37)

As was done for the proof of (a), and using analogous arguments as the ones presented in (2.24),
(2.25), (2.17) and (2.33) it can easily be shown that∣∣∣∣∣E

[
n

∑
t=1

ψ1 (Yt)
n

∑
t=1

ψ4 (Yt)

]∣∣∣∣∣≤Cnh−1+
ξ
−1
2

2+δ ′ ,

which implies that ∣∣∣∣∣E
[

n

∑
t=1

ψ1 (Yt)
n

∑
t=1

ψ4 (Yt)

]
O
(
n−2h2)∣∣∣∣∣= o

(
n−1h

)
. (2.38)

Combining (2.29), (2.37) and (2.38), we conclude that

∣∣∣Cov
[
β̂ ,(η̂ −η)

(
p− Ŝ (νp;h)

)]∣∣∣≤Cn−2h−1+
ξ
−1
2

2+δ ′
n−1

∑
j=1

(2 j−1)α
δ ′

2+δ ′ ( j)+o
(
n−1h

)
= o

(
n−1h

)
.

Lastly, to prove (c), we note that, using the same argument that was presented in (2.10),∣∣Cov
[(

p− Ŝ (νp;h)
)
,(η̂ −η)

(
p− Ŝ (νp;h)

)]∣∣
=
∣∣∣E[(p− Ŝ (νp;h)

)2
(η̂ −η)

]
−E

(
p− Ŝ (νp;h)

)
E
(
(η̂ −η)

(
p− Ŝ (νp;h)

))∣∣∣
≤

∣∣∣∣∣∣E
(n−1

n

∑
t=1

ψ3 (Yt)

)2

+O
(
h4)+n−1

n

∑
t=1

ψ3 (Yt)O
(
h2)(n−1

n

∑
t=1

ψ4 (Yt)

)∣∣∣∣∣∣
+

∣∣∣∣∣O(h2)E

[
n−2

n

∑
t=1

ψ3 (Yt)
n

∑
t=1

ψ4 (Yt)+n−1
n

∑
t=1

ψ4 (Yt)O
(
h2)]∣∣∣∣∣

≤

∣∣∣∣∣E
[

n−3
n

∑
t=1

ψ3 (Yt)
n

∑
t=1

ψ3 (Yt)
n

∑
t=1

ψ4 (Yt)

]∣∣∣∣∣+
∣∣∣∣∣E
[

n

∑
t=1

ψ3 (Yt)
n

∑
t=1

ψ4 (Yt)

]∣∣∣∣∣O(n−2h2)
≤ 3!n−2

∑
i≥1, j≥1,i+ j≤n

∣∣E(ψ3 (Y1)ψ3 (Yi)ψ4 (Yi+ j))
∣∣+ ∣∣∣∣∣E

[
n

∑
t=1

ψ3 (Yt)
n

∑
t=1

ψ4 (Yt)

]∣∣∣∣∣O(n−2h2) . (2.39)



2.1 Auxiliary Lemmas 29

Once more, we apply Davydov’s inequality with the same constants, and recall (2.33) to conclude
that

|E(ψ3(Y1)ψ3(Yi)ψ4(Yi+ j))| ≤ 12||ψ3(Y1)||p||ψ3(Yi)ψ4(Yi+ j)||qα
1/s(i)

≤C||ψ4(Yi+ j)||qα
1/s(i)≤Ch−1+

ξ
−1
2

2+δ ′ α
1/s(i), (2.40)

and that

|E(ψ3(Y1)ψ3(Yi)ψ4(Yi+ j))| ≤ 12||ψ3(Y1)ψ3(Yi)||p||ψ4(Yi+ j)||qα
1/s( j)

≤C||ψ4(Yi+ j)||qα
1/s( j)≤Ch−1+

ξ
−1
2

2+δ ′ α
1/s( j). (2.41)

Combining these last two inequalities leads to

|E(ψ3(Y1)ψ3(Yi)ψ4(Yi+ j))| ≤Ch−1+
ξ
−1
2

2+δ ′ min{α
δ ′

2+δ ′ (i),α
δ ′

2+δ ′ ( j)}. (2.42)

As was done before, using the arguments presented in (2.24), (2.25) and (2.33), it is easily shown
that ∣∣∣∣∣E

[
n

∑
t=1

ψ3 (Yt)
n

∑
t=1

ψ4 (Yt)

]∣∣∣∣∣≤Cnh−1+
ξ
−1
2

2+δ ′ ,

which implies that ∣∣∣∣∣E
[

n

∑
t=1

ψ3 (Yt)
n

∑
t=1

ψ4 (Yt)

]
O
(
n−2h2)∣∣∣∣∣= o

(
n−1h

)
. (2.43)

Combine (2.39), (2.42) and (2.43) to conclude that

∣∣Cov
[(

p− Ŝ (νp;h)
)
,(η̂ −η)

(
p− Ŝ (νp;h)

)]∣∣≤Cn−2h−1+
ξ
−1
2

2+δ ′
n−1

∑
j=1

(2 j−1)α
δ ′

2+δ ′ ( j)+o
(
n−1h

)
= o

(
n−1h

)
.

This completes the proof of Lemma 3. �

Lemma 4 will be useful for two purposes: It will serve to identify the small order of some
quantities, but most importantly, it will provide a mean of comparison of the asymptotic variance of
both estimators.



30 Main Results

Lemma 4 (Chen, 2008). Under conditions (i)− (iv), for i = 0,1 and j = 0,1,

n−1

∑
k=1

(
1− k

n

)[
Cov

(
Y i

1Gh(νp −Y1),Y
j

k+1Gh(νp −Yk+1)
)

−Cov
(

Y i
1I (Y1 > νp) ,Y

j
k+1I (Yk+1 > νp)

)]
= o(h) .

Proof. We start by proving the case i = j = 0 much like is done in Cai and Roussas (1998). As we
shall see later, the proof of the other cases could be extended to the case i = j = 0. Nevertheless, we
opt to present a different proof for this first case as it brings some interesting insight. Set γ

i, j
h (k) =

Cov
(

Y i
1Gh (νp −Y1) ,Y

j
k+1Gh (νp −Yk+1)

)
and γ i, j(k) = Cov

(
Y i

1I (Y1 > νp) ,Y
j

k+1I (Yk+1 > νp)
)

. We
shall first prove that ∣∣∣∣∣n−1

∑
k=1

(
1− k

n

)[
γ

0,0
h (k)− γ

0,0(k)
]∣∣∣∣∣= o(h) .

Fix k ∈ N. It is clear that

γ
0,0(k) = Cov(I(Y1 ≤ νp), I(Yk+1 ≤ νp)) = Fk(νp,νp)−F2(νp). (2.44)

On the other hand, Hoeffding’s Covariance Identity gives us that γ
0,0
h (k) is equal to

∫
R2

P

(
G
(

νp −Y1

h

)
> u,G

(
νp −Yk+1

h

)
> v

)

−P
(

G
(

νp −Y1

h

)
> u
)

P
(

G
(

νp −Yk+1

h

)
> v
)

dudv.

Let r = G−1(u),s = G−1(v), where G−1 denotes the generalized inverse of G. Then du =−K(r)dr,
dv =−K(s)ds. These two changes of variables allow us to write the last integral as∫

R2
[Fk (νp −hr,νp −hs)−F (νp −hr)F (νp −hs)]K (r)K (s)drds. (2.45)

Finally, note that, from a change of variables,

E(F̂(νp;h)) =
∫

F(νp −hu)K(u)du,

and from Cai and Roussas (1998),∣∣E2 (F̂ (νp;h)
)
−F2 (νp)

∣∣≤Ch2.
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We will now provide an upper bound for
∣∣∣γ0,0

h (k)− γ0,0 (k)
∣∣∣. By means of a Taylor expansion to

Fk (νp −hr,νp −hs) around (νp,νp) we obtain, for some θ1 ∈ (νp −hr,νp), θ2 ∈ (νp −hs,νp),∣∣∣γ0,0
h (k)− γ

0,0 (k)
∣∣∣

=

∣∣∣∣∫R2
[Fk (νp −hr,νp −hs)−F (νp −hr)F (νp −hs)]K (r)K (s)drds−Fk (νp,νp)−F2 (νp)

∣∣∣∣
=

∣∣∣∣∫R2

[
(Fk (νp −hr,νp −hs)−Fk (νp,νp))−

(
F (νp −hr)F (νp −hs)−F2 (νp)

)]
K (r)K (s)drds

∣∣∣∣
≤
∣∣∣∣∫R2

[Fk (νp −hr,νp −hs)−Fk (νp,νp)]K (r)K (s)drds
∣∣∣∣+ ∣∣E2 (F̂ (νp;h)

)
−F2 (νp)

∣∣
≤

∣∣∣∣∣
∫
R2

[
∂Fk

∂x
(νp,νp)(−hr)+

∂Fk

∂y
(νp,νp)(−hs)+

1
2

(
∂ 2Fk

∂x2 (θ1,θ2)h2r2 +2
∂ 2Fk

∂x∂y
(θ1,θ2)h2rs

+
∂ 2Fk

∂y2 (θ1,θ2)h2s2

)]
K (r)K (s)drds

∣∣∣∣∣+Ch2 ≤ |Bh2
σ

2
K |+Ch2 =Ch2. (2.46)

Now, from the definition of α(k), it is clear that sup
(x,y)∈R2

|Fk(x,y)−F(x)F(y)| ≤ α(k). From this,

(2.44) and (2.45) allow us to conclude that
∣∣∣γ0,0

h (k)− γ0,0 (k)
∣∣∣≤ 2α(k), which coupled with (2.46)

implies that

|γ0,0
h (k)− γ

0,0(k)|= |γ0,0
h (k)− γ

0,0(k)|2/3|γ0,0
h (k)− γ

0,0(k)|1/3 ≤Ch4/3
α

1/3(k),

and consequently,∣∣∣∣∣n−1

∑
k=1

(
1− k

n

)[
γ

0,0
h (k)− γ

0,0 (k)
]∣∣∣∣∣≤ n−1

∑
k=1

∣∣∣γ0,0
h (k)− γ

0,0 (k)
∣∣∣≤Ch4/3

∞

∑
k=1

α
1/3(k) = o(h) ,

which concludes the proof for the case i = j = 0.

The proof for the other choices of i and j is quite similar, so we only present the proof for the case
i = j = 1. In this case, as we shall see later,

E(Y1I(Y1 > νp)) = pµp and E(Y1Gh(νp −Y1)) = pµp +O(h2).

From this, it is clear that∣∣∣γ1,1
h (k)− γ

1,1 (k)
∣∣∣

≤ |E [Y1Yk+1Gh (νp −Y1)Gh (νp −Yk+1)]−E [Y1Yk+1I (Y1 > νp) I (Yk+1 > νp)]|+O
(
h2) . (2.47)

Let us compute E [Y1Yk+1Gh(νp −Y1)Gh(νp −Yk+1)]. Write

E [Y1Yk+1Gh(νp −Y1)Gh(νp −Yk+1)] =
∫ ∫ ∫

∞

νp−x
h

K (u)du
∫

∞

νp−y
h

K (v)dv xy fk (x,y)dxdy, (2.48)
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where fk (x,y) is the density function of the pair (Y1,Yk+1). To compute this integral, we start by
changing the order of integration. We want that the last integral to be computed to be the one with
respect to u. For that purpose, realize that for a given u, when v ranges from −∞ to u, then both x and
y range from νp −hv to +∞, and when v ranges from u to +∞, then both x and y range from νp −hu
to +∞. This allows us to write (2.48) as

∫
K(u)

[∫ u

−∞

K(v)
{∫

∞

νp

∫
∞

νp

xy fk(x,y)dxdy+
∫

νp

νp−hv

∫
νp

νp−hv
xy fk(x,y)dxdy

}
dv

+
∫

∞

u
K(v)

{∫
∞

νp

∫
∞

νp

xy fk(x,y)dxdy+
∫

νp

νp−hu

∫
νp

νp−hu
xy fk(x,y)dxdy

}
dv

]
du. (2.49)

It is clear that E [Y1Yk+1I(Y1 > νp)I(Yk+1 > νp)] =
∫

∞

νp

∫
∞

νp
xy fk(x,y)dxdy. Putting together the appro-

priate integrals so that we may use the previous representation, (2.49) can be rewritten as

∫
K(u)

[∫ u

−∞

K(v)
∫

νp

νp−hv

∫
νp

νp−hv
xy fk(x,y)dxdydv+

∫
∞

u
K(v)

{∫
νp

νp−hu

∫
νp

νp−hu
xy fk(x,y)dxdy

}
dv

]
du

+E [Y1Yk+1I(Y1 > νp)I(Yk+1 > νp)] . (2.50)

Set dK =
∫

u2K(u)
∫ u

−∞

K(v)dvdu. Apply Taylor’s theorem to rewrite xy fk(x,y) as ν2
p fk(νp,νp)+

[θ2 fk(θ1,θ2) + θ1θ2
∂ fk
∂x (θ1,θ2)](x − νp) + [θ1 fk(θ1,θ2) + θ1θ2

∂ fk
∂y (θ1,θ2)](y − νp), for some θ1 ∈

(x,νp), θ2 ∈ (y,νp). This allows us to write the integral present in (2.50) as

h2
ν

2
p fk(νp,νp)

(∫
K(u)

∫ u

−∞

v2K(v)dvdu+
∫

u2K(u)
∫

∞

u
K(v)dvdu

)
+O(h3). (2.51)

One more application of Fubini’s theorem allows us to realize that what is inside the parenthesis in
(2.51) is simply 2(σ2

K −dK). Consequently, from (2.48), (2.49), (2.50) and (2.51),

E [Y1Yk+1Gh(νp −Y1)Gh(νp −Yk+1)] = E [Y1Yk+1I(Y1 > νp)I(Yk+1 > νp)]+O(h2). (2.52)

Combine (2.47) and (2.52) to conclude that
∣∣∣γ1,1

h (k)− γ1,1(k)
∣∣∣≤Ch2. Now from Davydov’s inequality,

and as was done in the proof of Lemma 3, setting p = q = 2+δ ′, we obtain∣∣∣γ1,1
h (k)− γ

1,1 (k)
∣∣∣≤ ∣∣∣γ1,1

h (k)
∣∣∣+ ∣∣γ1,1 (k)

∣∣
≤ 12||Y1Gh(νp −Y1)||2pα

δ ′
2+δ ′ (k)+12||Y1I(Y1 > νp)||2pα

δ ′
2+δ ′ (k)

≤Cα
δ ′

2+δ ′ (k),

and consequently∣∣∣∣∣n−1

∑
k=1

(
1− k

n

)[
γ

1,1
h (k)− γ

1,1(k)
]∣∣∣∣∣≤Ch4/3

∞

∑
k=1

α
δ ′

3(2+δ ′) (k) = o(h) .

This concludes the proof of Lemma 4. �
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We are now ready to present the two main theorems of this work. We start by proving the
asymptotic normality of the unsmoothed estimator, µ̂p.

2.2 Convergence of the empirical estimator

Theorem 13 (Chen, 2008, Central Limit Theorem for µ̂p). Under conditions (i)− (ii),

√
npσ

−1
0 (p;n)(µ̂p −µp)

d−→ N(0,1).

Proof. Let φ1 (z) = n−1
n

∑
t=1

YtI (Yt ≥ z) and φ2 (z) = n−1
n

∑
t=1

I (Yt ≥ z). Clearly µ̂p = φ1 (ν̂p)/φ2 (ν̂p).

Let us start by noting that

E(φ1 (νp)) = pµp and E(φ2 (νp)) = p.

Also note that

φ2 (ν̂p) =


[np]+1

n , if [np] ̸= np

p , if [np] = np
,

which means that
[np]+1

n
≥ φ2 (ν̂p)≥ p.

Consequently,

|φ2 (ν̂p)− p|= φ2 (ν̂p)− p ≤ [np]+1
n

− p ≤ 1
n
.

By virtue of this fact, and using the same arguments that we presented in the end of Lemma’s 2 proof,

φ2(ν̂p)−E(φ2(νp)) = o
(
n−1)= op

(
n−3/4

)
. (2.53)

From Lemma 2, for an arbitrarily small positive κ ,

1
n

n

∑
t=1

(Yt −νp) [I (Yt ≥ ν̂p)− I (Yt ≥ νp)] = op

(
n−3/4+κ

)
⇔ φ1 (ν̂p) = φ1 (νp)+νp (φ2 (ν̂p)−φ2 (νp))+op

(
n−3/4+κ

)
. (2.54)

Let h(x,y) = x
y . Expand h(φ1 (ν̂p) ,φ2 (ν̂p)) around (E(φ1 (νp)) ,E(φ1 (νp))) and consider (2.53) to

obtain

µ̂p = µp + p−1 (φ1 (ν̂p)− pµp)+op

(
n−3/4+k

)
. (2.55)

Taking into consideration (2.53), plug (2.54) into (2.55) to conclude

µ̂p = µp + p−1 (φ1 (νp)− pµp)+ p−1
νp (p−φ2 (νp))+op

(
n−3/4+κ

)
(2.56)

= µp + p−1

[
n−1

n

∑
t=1

(Yt −νp) I (Yt ≥ νp)− p(µp −νp)

]
+op

(
n−3/4+κ

)
. (2.57)
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Now set Ti,n = σ
−1
0 (p;n) p−1 [(Yi −νp) I (Yi ≥ νp)− p(µp −νp)], for i = 1, ...,n. From (2.57) we

obtain the following equality

σ
−1
0 (p;n)(µ̂p −µp) = n−1

n

∑
i=1

Ti,n +op

(
n−3/4+κ

)
. (2.58)

We will prove the asymptotic normality of this random variable by employing the blocking technique.

Let k and k′ be two sequences of positive integers such that k′ → ∞, k′/k → 0 and k/n → 0 as
n → ∞. Let r be a sequence of positive integers such that r(k+ k′) ≤ n < r(k+ k′+1). Define the
large blocks

Vj,n = T( j−1)(k+k′)+1,n + ...+T( j−1)(k+k′)+k,n for j = 1,2, · · · ,r,

the small blocks

V ′
j,n = T( j−1)(k+k′)+k+1,n + ...+T( j−1)(k+k′)+k+k′,n for j = 1,2, · · · ,r,

and the residual block
δn = Tr(k+k′)+1,n + ...+Tn,n.

Set

Sn := n−1/2
n

∑
i=1

Ti,n = n−1/2
r

∑
j=1

Vj,n +n−1/2
r

∑
j=1

V ′
j,n +n−1/2

δn =: Sn,1 +Sn,2 +Sn,3. (2.59)

We will start by proving that Sn,2 and Sn,3 converge to 0 in probability. Start by noting that, using
the definition of µp, for i = 1, ...,n,

E(Ti,n) = E
[
σ
−1
0 (p;n) p−1 ((Yi −νp) I (Yi ≥ νp)− p(µp −νp))

]
= σ

−1
0 (p;n) p−1 [E((Yi −νp) I (Yi ≥ νp))− p(µp −νp)]

= σ
−1
0 (p;n) p−1 [E(Yi −νp|Yi ≥ νp) p− p(µp −νp)]

= 0,

which means that E(Sn,2) = E(Sn,3) = 0. We proceed by computing Var(Sn,3), which will give us
insight on how to compute Var(Sn,2). Set γ(k) =Cov [(Y1 −νp) I (Y1 ≥ νp) ,(Yk+1 −νp) I (Yk+1 ≥ νp)],
with k a non-negative integer. Trivially,

Var(Sn,3) = Var
(

n−1/2
δn

)
= Var

(
n−1/2 (Tr(k+k′)+1,n + · · ·+Tn,n

))
= n−1

[(
n− r

(
k+ k′

))
Var(Ti,n)+2

n

∑
i, j=r(k+k′)+1, j>i

Cov(Ti,n,Tj,n)

]
. (2.60)



2.2 Convergence of the empirical estimator 35

Now, for i = 1, ...,n,

Var(Ti,n) = Var
[
σ
−1
0 (p;n) p−1 ((Yi −νp) I (Yi ≥ νp)− p(µp −νp))

]
= σ

−2
0 (p;n) p−2Var [((Yi −νp) I (Yi ≥ νp))− p(µp −νp)]

= σ
−2
0 (p;n) p−2Var [(Yi −νp) I (Yi ≥ νp)]

= σ
−2
0 (p;n)p−2

γ(0). (2.61)

And for i, j = 1, ...,n, with j > i, taking into account that the Ti,n are centered, it is clear that

Cov(Ti,n,Tj,n) = E(Ti,nTj,n)

= E
[
σ
−2
0 (p;n) p−2 [(Yi −νp) I (Yi ≥ νp)− p(µp −νp)] [(Yj −νp) I (Yj ≥ νp)− p(µp −νp)]

]
= σ

−2
0 (p;n) p−2

[
E [(Yi −νp) I (Yi ≥ νp)(Yj −νp) I (Yj ≥ νp)]− p2 (µp −νp)

2
]

= σ
−2
0 (p;n) p−2Cov [(Yi −νp) I (Yi ≥ νp) ,(Yj −νp) I (Yj ≥ νp)] = σ

−2
0 (p;n) p−2

γ ( j− i) . (2.62)

Hence, plugging (2.61) and (2.62) into (2.60), and due to stationarity, we obtain

Var(Sn,3) = n−1 p−2
σ
−2
0 (p;n)

[(
n− r

(
k+ k′

))
γ (0)+2

n

∑
i, j=r(k+k′)+1, j>i

γ ( j− i)

]

= n−1 p−2
σ
−2
0 (p;n)

[(
n− r

(
k+ k′

))
γ (0)+2

n−r(k+k′)

∑
i, j=1, j>i

γ ( j− i)

]

= n−1 p−2
σ
−2
0 (p;n)

[(
n− r

(
k+ k′

))
γ (0)+2

n−r(k+k′)−1

∑
l=1

(
n− r(k+ k′)− l

)
γ (l)

]

= n−1 p−2
σ
−2
0 (p;n)

(
n− r

(
k+ k′

))[
γ (0)+2

n−r(k+k′)−1

∑
l=1

(
1− l

n− r(k+ k′)

)
γ (l)

]

=
(n− r (k+ k′))σ2

0 (p;n− r (k+ k′))
np2σ2

0 (p;n)
. (2.63)

The exact computation of Var(Sn,2) is more complex than that of Var(Sn,3), as Sn,2 is composed by
more than one block of random variables. We will not be exhibiting it, as we only need to prove that it
converges to zero. Let us assume for a moment that any two variables Ti,n, taken from two different
small blocks, are independent. If that was the case, taking into consideration that Sn,2 is composed of r
blocks, each with k′ variables, and using the same arguments present in the computation of Var(Sn,3),
we would conclude that

Var(Sn,3) = r
k′σ2

0 (p;k′)
np2σ2

0 (p;n)
.

In this situation, we are not taking into consideration the covariances between any of the variables
between two different blocks. However, since any of those two random variables are apart by at least k
other random variables, and k tends to infinity, Davydov’s inequality guarantees that their covariance
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goes to zero, due to the fact that our original process is α-mixing. Consequently we conclude that

Var(Sn,2) =
rk′
[
σ2

0 (p;k′)+o(1)
]

np2σ2
0 (p;n)

→ 0,

Var(Sn,3) =
(n− r(k+ k′))σ2

0 (p;n− r(k+ k′))
np2σ2

0 (p;n)
→ 0.

Therefore, by theorem 3,

Sn,2
p−→ 0 and Sn,3

p−→ 0. (2.64)

We now prove the asymptotic normality of Sn,1. By choosing r ∼ n2/3 (for instance, r = [n2/3]),
since

√
n/r → 0, recursive applications of Bradley’s Lemma guarantee that there exist independent and

identically distributed random variables Wj,n, j = 1, ...,r, such that each Wj,n has the same distribution
as Vj,n and

P(|Vj,n −Wj,n|> ε
√

n/r)≤ 18ε
−2/5r2/5n−1/5(E(V 2

j,n))
1/5

α
4/5(k′),

where ε > 0. Using Yokoyama’s inequality and noticing that rk ∼ n, we get that

P(|Vj,n −Wj,n|> ε
√

n/r)≤C1ε
−2/5n−1/5r2/5k1/5

α
4/5(k′)≤C2ε

−2/5r1/5
α

4/5(k′).

Let △n = Sn,1 −n−1/2
r

∑
j=1

Wj,n. Clearly,

P(|△n|> ε)≤
r

∑
j=1

P
(∣∣Vj,n −Wj,n

∣∣> ε
√

n/r
)
≤C3ε

−2/5r6/5
ρ

4k′/5. (2.65)

By choosing k′ ∼ nc such that c ∈ (0,1/3), it is clear that the right hand side of (2.65) converges to 0
as n → ∞. Hence,

△n
p−→ 0, (2.66)

which means that

Sn,1 = n−1/2
r

∑
j=1

Wj,n +op(1). (2.67)

By virtue of this fact and Slutsky’s Theorem, we only need to derive the asymptotic normality of

n−1/2
r

∑
j=1

Wj,n, which will be a simpler task, as the Wj,n are mutually independent.

Taking into account the construction of the Wj,n, j = 1, ...,r, applying Yokoyama’s inequality, it
follows that E(|Wj,n|4) = E(|Vj,n|4)≤C1k2 and Var(Wj,n) = E(V 2

j,n) = O(k). Thus, as n → ∞,

r

∑
j=1

E
(∣∣Wj,n

∣∣4)
(rVar(W1,n))2 ≤ C3rk2

r2k2 → 0.
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This is Lyapounov’s condition for the Central Limit Theorem. It allows us to conclude that

W1,n + ...+Wr,n√
rVar(W1,n)

d−→ N(0,1).

Using anlogous arguments to the ones presented in (2.63), it is easy to show that Var(W1,n) =

Var(V1,n) = kσ2
0 (p;k)/p2σ2

0 (p;n). Consequently, by choosing k ∼ n1/3 (which goes in acordance
with rk ∼ n), we get that

n−1/2 p(W1,n + ...+Wr,n) =

√
rk
n

σ2
0 (p;k)

σ2
0 (p;n)

W1,n + ...+Wr,n√
rk
p2

σ2
0 (p;k)

σ2
0 (p;n)

d−→ N(0,1),

That is,

n−1/2 p
r

∑
j=1

Wj,n
d−→ N(0,1). (2.68)

Consequently, from (2.59), (2.64), (2.66), (2.67), (2.68) and Slutsky’s Theorem,

n−1/2 p
n

∑
i=1

Ti,n
d−→ N(0,1), (2.69)

From (2.58) and (2.69) and one more application of Slutsky’s Theorem we conclude that

√
npσ

−1
0 (p;n)(µ̂p −µp)

d−→ N(0,1).

�

2.3 Convergence of the smoothed estimator

Theorem 14 (Chen, 2008, Central Limit Theorem for µ̂p,h). Under conditions (i)− (iv),

√
npσ

−1
0 (p;n)(µ̂p,h −µp)

d−→ N(0,1).

Furthermore,

Bias(µ̂p,h) =−1
2

p−1
σ

2
Kh2 f (νp)+o(h2), (2.70)

Var(µ̂p,h) = p−2n−1
σ

2
0 (p;n)+o(n−1h). (2.71)

Proof. First we will characterize the behaviour of Bias
(
µ̂p,h

)
and Var

(
µ̂p,h

)
. From Chen and Tang

(2005), ν̂p,h admits the expansion

ν̂p,h −νp =
Ŝ (νp;h)− p

f (νp)
+op

(
n−1/2

)
, (2.72)
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and its bias satisfies

Bias
(
ν̂p,h
)
= E

(
ν̂p,h
)
−νp =−1

2
σ

2
K f ′ (νp) f−1 (νp)h2 +o

(
h2) . (2.73)

Also from Chen and Tang (2005),

Ŝ (νp;h)− p = op(n−1/2 logn). (2.74)

Applying a Taylor expansion around νp

µ̂p,h = (np)−1
n

∑
t=1

[
YtGh (νp −Yt)−YtKh (νp −Yt)

(
ν̂p,h −νp

)]
+

1
2
(np)−1 h−2

n

∑
t=1

YtK′

(
νp +θ

(
ν̂p,h −νp

)
−Yt

h

)(
ν̂p,h −νp

)2
, (2.75)

for some θ ∈ (0,1). It is not relevant in the context of this work, but it can be shown that

(2nph)−1
n

∑
t=1

YtK′ [h−1(νp +θ
(
ν̂p,h −νp

)
−Yt)

]
converges to a constant φ , say. Taking into con-

sideration (2.72), (2.74) and assumption (iv), it can be shown that (2.75) can be written as

µ̂p,h = (np)−1
n

∑
t=1

[
YtGh (νp −Yt)−YtKh (νp −Yt)

(
ν̂p,h −νp

)]
+op

(
h2) . (2.76)

Before proceeding with the proof, we would like to make a note. For sake of simplicity, we will
not exhibit the calculations of expectations, variances and covariances of random variables that involve
Op or op. For instance, it can be shown that under reasonable conditions, E(op(n−1)) = o(n−1).
Nonetheless, the computations we make already take these considerations into account.

Let us continue by computing E
(
µ̂p,h

)
. Note that

E

[
(np)−1

n

∑
t=1

YtGh (νp −Yt)

]
= p−1

∫
zGh (νp − z) f (z)dz = p−1

∫ ∫
∞

νp−z
h

K (u)duz f (z)dz. (2.77)

Applying Fubini’s theorem, (2.77) can be written as

p−1
∫

K (u)
(∫

∞

νp

z f (z)dz+
∫

νp

νp−hu
z f (z)dz

)
du = µp + p−1

∫
K (u)

∫
νp

νp−hu
z f (z)dzdu. (2.78)

Applying Taylor’s theorem once more, we get that f (z) = f (νp)+ f ′ (νp)(z−νp)+
f ′′(θ)

2 (z−νp)
2,

for some θ ∈ (z,νp). We use this expansion to compute
∫ νp

νp−hu z f (z)dz. Taking into consideration
that

∫
uK (u)du = 0 and

∫
u3K (u)du = 0, trivial calculations lead to

p−1
∫

K (u)
∫

νp

νp−hu
z f (z)dzdu =−1

2
p−1h2

σ
2
K
(
νp f ′ (νp)+ f (νp)

)
+o(h3). (2.79)
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Combine (2.73), (2.78) and (2.79) to obtain

E

[
(np)−1

n

∑
t=1

YtGh(νp −Yt)

]
= µp −

1
2

p−1h2
σ

2
K
(
νp f ′(νp)+ f (νp)

)
+o(h3). (2.80)

Using the same notation as in Lemma 3, let us now compute η := E

[
(np)−1

n

∑
t=1

YtKh (νp −Yt)

]
.

Clearly,

η = p−1
∫

h−1K
(

νp − z
h

)
z f (z)dz = p−1

∫
(νp −hu)K(u) f (νp −hu)du

= p−1
νp

∫
K(u) f (νp −hu)du− p−1h

∫
uK(u) f (νp −hu)du (2.81)

Expand f (νp −hu) as f (νp)−hu f ′(νp)+2−1(hu)2 f ′′(νp)+O(h2) in the first integral of (2.81), and
as f (νp)−hu f ′(νp)+o(h) in the second to conclude that

η = p−1
νp f (νp)+O(h2). (2.82)

Recalling (2.72) and applying Davydov’s inequality in an analogous way as we did in (2.25), it
can be shown that

Cov

[
(np)−1

n

∑
t=1

YtKh (νp −Yt) , ν̂p,h −νp

]
= o

(
h2) . (2.83)

Hence, from (2.76), (2.82) and (2.83), it follows that

E

(
(np)−1

n

∑
t=1

YtKh (νp −Yt)
(
ν̂p,h −νp

))
= E

(
(np)−1

n

∑
t=1

YtKh (νp −Yt)

)
E
(
ν̂p,h −νp

)
+o
(
h2)

=−1
2

p−1
νp f ′ (νp)h2

σ
2
K +o

(
h2) . (2.84)

Combining (2.76), (2.80) and (2.84), and noticing that O
(
n−1
)
= o

(
h2
)

we conclude that

E
(
µ̂p,h

)
= µp −

1
2

p−1
σ

2
Kh2 f (νp)+o

(
h2) ,

which establishes the bias given in (2.70).

Let us now describe Var
(
µ̂p,h

)
. Let A := (np)−1

n

∑
t=1

[
YtGh (νp −Yt)−YtKh (νp −Yt)

(
ν̂p,h −νp

)]
be the leading order term of the expansion (2.76). Trivially,

Var(A) = Var

[
(np)−1

n

∑
t=1

YtGh (νp −Yt)

]
+Var

[
η̂
(
ν̂p,h −νp

)]
−2Cov

[
(np)−1

n

∑
t=1

YtGh (νp −Yt) , η̂
(
ν̂p,h −νp

)]
. (2.85)
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We shall first compute Var

[
(np)−1

n

∑
t=1

YtGh (νp −Yt)

]
. Using the same arguments we presented in

(2.60) and (2.63), it is clear that

Var

[
(np)−1

n

∑
t=1

YtGh (νp −Yt)

]

= (np)−2

[
nVar(YtGh (νp −Yt))+2 ∑

1≤i< j≤n
Cov [YiGh (νp −Yi) ,YjGh (νp −Yj)]

]

= n−1 p−2

[
Var(YtGh (νp −Yt))+2

n−1

∑
k=1

(
1− k

n

)
Cov [Y1Gh (νp −Y1) ,Yk+1Gh (νp −Yk+1)]

]
.

(2.86)

Let us consider Var(YtGh (νp −Yt)). Applying Fubini’s Theorem,

Var(YtGh(νp −Yt)) = E(YtGh(νp −Yt))
2 −E2(YtGh(νp −Yt))

=
∫

z2G2
h(νp − z) f (z)dz− p2

µ
2
p +O(h2)

=
∫

z2
∫

∞

νp−z
h

K(u)du
∫

∞

νp−z
h

K(v)dv f (z)dz− p2
µ

2
p +O(h2). (2.87)

To compute this integral, we use analogous arguments to the ones we presented in (2.49) to conclude
that (2.87) can be written as

∫
K(u)

[∫ u

−∞

K(v)
{∫

∞

νp

z2 f (z)dz+
∫

νp

νp−hv
z2 f (z)dz

}
dv

+
∫

∞

u
K(v)

{∫
∞

νp

z2 f (z)dz+
∫

νp

νp−hu
z2 f (z)dz

}
dv

]
du− p2

µ
2
p +O(h2). (2.88)

It is clear that Var(YtI (Yt ≥ νp)) =
∫

∞

νp
z2 f (z)dz+ p2µ2

p. Putting together the appropriate integrals so
that we may use the previous representation, (2.88) may be rewritten as

∫
K(u)

[∫ u

−∞

K(v)
∫

νp

νp−hv
z2 f (z)dzdv+

∫
∞

u
K(v)

{∫
νp

νp−hu
z2 f (z)dz

}
dv

]
du

+Var{YtI(Yt ≥ νp)}+O(h2). (2.89)

Apply Taylor’s theorem to rewrite z2 f (z) as ν2
p f (νp) +

(
2θ f (θ)+θ 2 f ′ (θ)

)
(z−νp), for some

θ ∈ (z,νp). This allows us to write (2.89) as

hν
2
p f (νp)

(∫
K (u)

∫ u

−∞

vK (v)dvdu+
∫

uK (u)
∫

∞

u
K (v)dvdu

)
+Var{YtI(Yt ≥ νp)}+O

(
h2) .
(2.90)
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Now set cK =
∫

uK(u)
∫ u

−∞

K(v)dvdu. One more application of Fubini’s theorem allows us to realize

that what is inside the parenthesis of (2.90) is simply −2cK . Consequently,

Var(YtGh (νp −Yt)) = Var(YtI (Yt ≥ νp))−2hν
2
p f (νp)cK +O

(
h2) . (2.91)

To conclude the computation of Var

[
(np)−1

n

∑
t=1

YtGh (νp −Yt)

]
, note that, using the notation of

φ1(t) and φ2(t),

Var(φ1 (νp)) = Var

(
n−1

n

∑
t=1

YtI (Yt ≥ νp)

)

= n−1

[
Var(I (Yt ≥ νp))+2

n−1

∑
k=1

(
1− k

n

)
Cov [Y1I (Y1 ≥ νp) ,Yk+1I (Yk+1 ≥ νp)]

]
.

(2.92)

That is,

Var(I (Yt ≥ νp)) = nVar(φ1 (νp))−2
n−1

∑
k=1

(
1− k

n

)
Cov [Y1I (Y1 ≥ νp) ,Yk+1I (Yk+1 ≥ νp)] . (2.93)

Combining (2.86), (2.91) and (2.93) and applying Lemma 4, we deduce that

Var

[
(np)−1

n

∑
t=1

YtGh (νp −Yt)

]
= p−2Var(φ1 (νp))−2n−1 p−2hν

2
p f (νp)cK +o

(
n−1h

)
. (2.94)

Now, the second term of (2.85) is

Var
[
η̂
(
ν̂p,h −νp

)]
= Var

[
η
(
ν̂p,h −νp

)
+(η̂ −η)

(
ν̂p,h −νp

)]
= η

2Var
(
ν̂p,h
)
+2ηCov

[
ν̂p,h −νp,(η̂ −η)

(
ν̂p,h −νp

)]
+Var

[
(η̂ −η)

(
ν̂p,h −νp

)]
. (2.95)

From Chen and Tang (2005),

Var
(
ν̂p,h
)
= n−1 f−2 (νp)∆

2 (p;n)−2n−1h f−1 (νp)cK +o
(
n−1h

)
, (2.96)

where

∆
2 (p;n) =

(
p(1− p)+2

n−1

∑
k=1

(
1− k

n

)
Cov [I (Y1 ≥ νp) , I (Yk+1 ≥ νp)]

)
.

Hence, from (2.82) and (2.96),

η
2Var

(
ν̂p,h
)
=
[
p−1

νp f (νp)+O
(
h2)]2 [n−1 f−2 (νp)∆

2 (p;n)−2n−1h f−1 (νp)cK +o
(
n−1h

)]
= p−2

ν
2
pn−1

∆
2 (p;n)−2p−2n−1hν

2
p f (νp)cK +o

(
n−1h

)
. (2.97)
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Finally, taking into notice that

Var(φ2 (νp)) = Var

(
n−1

n

∑
t=1

I (Yt ≥ νp)

)

= n−2

[
nVar(I (Yt ≥ νp))+2

n−1

∑
k=1

(n− k)Cov [I (Y1 ≥ νp) , I (Yk+1 ≥ νp)]

]

= n−1

[
p(1− p)+2

n−1

∑
k=1

(
1− k

n

)
Cov [I (Y1 ≥ νp) , I (Yk+1 ≥ νp)]

]
= n−1

∆
2 (p;n) , (2.98)

allows us to write

η
2Var

(
ν̂p,h
)
= p−2

ν
2
pVar(φ2 (νp))−2p−2n−1hν

2
p f (νp)cK +o

(
n−1h

)
. (2.99)

On the other hand, taking into consideration (2.72), the second term of (2.95) is equal to

2ηCov
[
ν̂p,h −νp,(η̂ −η)

(
ν̂p,h −νp

)]
= 2ηCov

[(
Ŝ (νp;h)− p

)
f−1 (νp)+op

(
n−1/2

)
,(η̂ −η)

((
Ŝ (νp;h)− p

)
f−1 (νp)+op

(
n−1/2

))]
= 2η f−2 (νp)Cov

[
Ŝ (νp;h)− p,(η̂ −η)

(
Ŝ (νp;h)− p

)]
+o
(
n−1h

)
(2.100)

which, by Lemma 3, is just o
(
n−1h

)
.

To study the final term of (2.95), we apply Yokoyama’s inequality. It allows us to write

E
(
ν̂p,h −νp

)4
= O

(
n−2) and E(η̂ −η)4 = O

(
n−2h−4) .

Applying the Cauchy-Schwarz inequality three times,∣∣Var
(
(η̂ −η)

(
ν̂p,h −νp

))∣∣= ∣∣∣E[(η̂ −η)2 (
ν̂p,h −νp

)2
]
−E2 [(η̂ −η)

(
ν̂p,h −νp

)]∣∣∣
≤
∣∣∣E[(η̂ −η)2 (

ν̂p,h −νp
)2
]∣∣∣+ ∣∣E2 [(η̂ −η)

(
ν̂p,h −νp

)]∣∣
≤
√

E(η̂ −η)4 E
(
ν̂p,h −νp

)4
+E(η̂ −η)2 E

(
ν̂p,h −νp

)2

≤ 2
√

E(η̂ −η)4 E
(
ν̂p,h −νp

)4
= 2
√

O(n−2h−4)O(n−2)

= O
(
n−2h−2)= o

(
n−1h

)
. (2.101)

Combine (2.99), (2.100) and (2.101) to obtain

Var
[
η̂
(
ν̂p,h −νp

)]
= p−2

ν
2
pVar(φ2 (νp))−2p−2n−1hν

2
p f (νp)cK +o

(
n−1h

)
. (2.102)
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Now consider the final term of (2.85). Recall the definition of β̂ = (np)−1
n

∑
t=1

YtGh(νp −Yt). From

(2.72) and an application of Lemma 3, it is clear that

Cov
[
β̂ , η̂(ν̂p,h −νp)

]
= Cov

[
β̂ ,(η̂ −η)

(
ν̂p,h −νp

)
+η

(
ν̂p,h −νp

)]
= Cov

[
β̂ ,(η̂ −η)

((
Ŝ (νp;h)− p

)
f−1 (νp)+op

(
n−1/2

))]
(2.103)

+Cov
[
β̂ ,η

((
Ŝ (νp;h)− p

)
f−1 (νp)+op

(
n−1/2

))]
= f−1 (νp)Cov

[
β̂ ,(η̂ −η)

(
Ŝ (νp;h)− p

)]
+Cov

[
β̂ ,(η̂ −η)op

(
n−1/2

)]
+Cov

[
β̂ ,η

(
Ŝ (νp;h)− p

)
f−1 (νp)

]
+Cov

[
β̂ ,ηop

(
n−1/2

)]
= Cov

[
β̂ ,η f−1 (νp) Ŝ (νp;h)

]
+o
(
n−1h

)
. (2.104)

From (2.82), it is clear that

Cov
[
β̂ ,η f−1 (νp) Ŝ (νp;h)

]
= Cov

[
(np)−1

n

∑
t=1

YtGh (νp −Yt) ,
(

p−1
νp f (νp)+O

(
h2)) f−1 (νp)n−1

n

∑
t=1

Gh (νp −Yt)

]

=
[
(np)−2

νp +n−2O
(
h2)]Cov

[
n

∑
t=1

YtGh (νp −Yt) ,
n

∑
t=1

Gh (νp −Yt)

]
(2.105)

Similarly to what was done in (2.26) or in (2.38), it may be shown that

n−2O
(
h2)Cov

[
n

∑
t=1

YtGh (νp −Yt) ,
n

∑
t=1

Gh (νp −Yt)

]
= o

(
n−1h

)
.

This means that (2.105) can be written as

Cov
[
β̂ ,η f−1 (νp) Ŝ (νp;h)

]
= (np)−2

νpCov

[
n

∑
t=1

YtGh (νp −Yt) ,
n

∑
t=1

Gh (νp −Yt)

]
+o
(
n−1h

)
.

(2.106)

Now note that

Cov

[
n

∑
t=1

YtGh (νp −Yt) ,
n

∑
t=1

Gh (νp −Yt)

]

= n

[
Cov [YtGh (νp −Yt) ,Gh (νp −Yt)]+2

n−1

∑
t=1

(
1− k

n

)
Cov [Y1Gh (νp −Y1) ,Gh (νp −Yk+1)]

]
.

(2.107)

Let us first compute Cov [YtGh (νp −Yt) ,Gh (νp −Yt)]. Clearly,

E(YtGh(νp −Yt)) = pµp +O(h2) and E(Gh(νp −Yt)) = p+O(h2).
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Taking this fact into consideration, and using the same arguments that were presented in the
computation of Var(YtGh (νp −Yt)), it is clear that

Cov [YtGh (νp −Yt) ,Gh (νp −Yt)] = E
(
YtG2

h (νp −Yt)
)
− p2

µp +O
(
h2)

=
∫

z2
∫

∞

νp−z
h

K (u)du
∫

∞

νp−z
h

K (v)dv f (z)dz− p2
µp +O

(
h2)

=
∫

K (u)

[∫ u

−∞

K (v)
{∫

∞

νp

z f (z)dz+
∫

νp

νp−hv
z f (z)dz

}
dv (2.108)

+
∫

∞

u
K (v)

{∫
∞

νp

z f (z)dz+
∫

νp

νp−hu
z f (z)dz

}
dv

]
du

− p2
µp +O

(
h2)

= p(1− p)µp −2νp f (νp)hcK +o(h) . (2.109)

Now, notice that

Cov [φ1(νp),φ2(νp)] = n−2Cov

[
n

∑
t=1

YtI (Yt ≥ νp) ,
n

∑
t=1

I (Yt ≥ νp)

]

= n−1

[
Cov [YtI (Yt ≥ νp) , I (Yt ≥ νp)]+2

n−1

∑
k=1

(
1− k

n

)
Cov [Y1I (Y1 ≥ νp) , I (Yk+1 ≥ νp)]

]

= n−1

[
p(1− p)µp +2

n−1

∑
k=1

(
1− k

n

)
Cov [Y1I (Y1 ≥ νp) , I (Yk+1 ≥ νp)]

]
. (2.110)

Plug (2.109) into (2.107), and take into consideration (2.110) and Lemma 4 to conlude that

Cov
[
β̂ ,η f−1 (νp) Ŝ (νp;h)

]
=

=
(
np2)−1

νp

[
p(1− p)µp −2νp f (νp)hcK +o(h)

+2
n−1

∑
k=1

(
1− k

n

)
Cov [Y1Gh (νp −Y1) ,Gh (νp −Yk+1)]

−2
n−1

∑
k=1

(
1− k

n

)
Cov [Y1I (Y1 ≥ νp) , I (Yk+1 ≥ νp)]

+2
n−1

∑
k=1

(
1− k

n

)
Cov [Y1I (Y1 ≥ νp) , I (Yk+1 ≥ νp)]

]
+o
(
n−1h

)
= p−2

νpCov [φ1(νp),φ2(νp)]−2n−1 p−2
ν

2
p f (νp)hcK +o

(
n−1h

)
. (2.111)
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Combine (2.104) and (2.111) to conclude that

Cov

[
(np)−1

n

∑
t=1

YtGh (νp −Yt) , η̂
(
ν̂p,h −νp

)]
= p−2

νpCov [φ1(νp),φ2(νp)]−2n−1 p−2
ν

2
p f (νp)hcK +o

(
n−1h

)
. (2.112)

Finally, substituting (2.94), (2.102) and (2.112) in (2.85), we note that the terms that are O(n−1h)
cancel and lead us to

Var(A) = p−2Var(φ1(νp))+ p−2
ν

2
pVar(φ2(νp))−2p−2

νpCov(φ1(νp),φ2(νp))+o(n−1h). (2.113)

Recalling (2.92), (2.98) and (2.110) into (2.113), simple covariance computations lead to

Var(A) = n−1 p−2

[
Var(YtI(Yt ≥ νp))+ν

2
p p(1− p)−2νp p(1− p)µp

+2
n−1

∑
t=1

(
1− k

n

)
Cov((Y1 −νp)I(Y1 ≥ νp),(Yk+1 −νp)I(Yk+1 ≥ νp))

]
+o(n−1h).

(2.114)

By adequately adding and subtracting νp, it can be easily shown that Var[YtI(Yt ≥ νp)] = Var((Yt −
νp)I(Yt ≥ νp))−ν2

p p(1− p)+2νp p(1− p)µp. This fact in combination with (2.114) lets us conclude
that

Var(µ̂p,h) = n−1 p−2
σ

2
0 (p;n)+o(n−1h),

which establishes (2.71).

We shall now prove the asymptotic normality of µ̂p,h, much like was done in the previous theorem.
Let Ai := YiGh(νp −Yi)−YiKh(νp −Yi)(ν̂p,h −νp). From (2.76) and (2.70) we may write

σ
−1
0 (p;n)(µ̂p,h −µp) = n−1

n

∑
i=1

Ti,n +op (h) , (2.115)

where Ti,n = σ
−1
0 (p;n)p−1 [Ai −E(Ai)]. We let k, k′ and r be three sequences of positive integers

satisfying the same assumptions as those presented in the previous theorem, and we define the same
large, small and residual blocks as before. Setting

Sn := n−1/2
n

∑
i=1

Ti,n = n−1/2
r

∑
j=1

Vj,n +n−1/2
r

∑
j=1

V ′
j,n +n−1/2

δn =: Sn,1 +Sn,2 +Sn,3, (2.116)

it is clear that E(Sn,2) = E(Sn,3) = 0. Moreover,

Var(Sn,3) = n−1 p−2
σ
−2
0 (p;n)Var

[
n

∑
i=r(k+k′)+1

(
YiGh (νp −Yi)−YiKh (νp −Yi)

(
ν̂p,h −νp

))]
,
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and using the same arguments that led us to (2.71), we conclude that

Var(Sn,3) =
(n− r(k+ k′)

[
σ2

0 (p;n− r(k+ k′))+o(n−1h)
]

np2σ2
0 (p;n)

→ 0. (2.117)

Using the above arguments and the argument presented in previous theorem to justify that the
covariances of variables of different blocks tend to zero, it is clear that

Var(Sn,2) =
rk′
[
σ2

0 (p;k′)+o(n−1h)+o(1)
]

np2σ2
0 (p;n)

→ 0. (2.118)

Theorem 2 lets us conclude that

Sn,2
p−→ 0 and Sn,3

p−→ 0. (2.119)

The proof of the asymptotic normality of Sn,1 is similar. By choosing r ∼ n2/3 (for instance,

r = [n2/3]), k′ ∼ nc such that c ∈ (0,2/3), k ∼ n1/3, and setting △n = Sn,1 −n−1/2
r

∑
j=1

Wj,n, recursive

applications of Bradley’s lemma allow us to conclude that

Sn,1 = n−1/2
r

∑
j=1

Wj,n +op(1). (2.120)

Yokoyama’s inequality leads to

r

∑
j=1

E
(∣∣Wj,n

∣∣4)
(rVar(W1,n))2 ≤ C3rk2

r2k2 → 0,

which is Lyapounov’s condition for the Central Limit Theorem. Using the arguments that lead us to

(2.118), it is easy to show that Var(W1,n) = Var(V1,n) =
k[σ2

0 (p;k)+o(n−1h)]
p2σ2

0 (p;n) , which implies that

n−1/2 p(W1,n + ...+Wr,n) =

√
rk
n

[
σ2

0 (p;k)+o(n−1h)
]

σ2
0 (p;n)

W1,n + ...+Wr,n√
rk
p2
[σ2

0 (p;k)+o(n−1h)]
σ2

0 (p;n)

d−→ N(0,1),

That is,

n−1/2 p
r

∑
j=1

Wj,n
d−→ N(0,1). (2.121)

Combine (2.115), (2.116), (2.119), (2.120), (2.121) and apply Slutsky’s Theorem to conclude that

√
npσ

−1
0 (p;n)(µ̂p,h −µp)

d−→ N(0,1).

�



Chapter 3

Conclusion

3.1 Results Analysis

In this section we revise and comment the main results of this work. Let us start with the unsmoothed
estimator, µ̂p. We showed that

Theorem 1 (Chen, 2008) Under conditions (i)− (ii),

√
npσ

−1
0 (p;n)(µ̂p −µp)

d−→ N(0,1).

This theorem indicates that the asymptotic variance of µ̂p is (np2)−1σ2
0 (p;n). As we noted in

Remark 5, lim
n→∞

σ
2
0 (p;n) is finite. We note that the dependence in the original time series is reflected

in the asymptotic variance through the covariance terms in σ2
0 (p;n). This knowledge is of crucial

importance if one wishes to do further statistical inference (such as confidence intervals estimation
and hypothesis testing) concerning expected shortfall estimation, as it would be an error (financially
speaking) to ignore this term. We also note that the effective sample size for the ES estimation is only
np2. As we mentioned before, financial risk management is generally concerned with values of p that
range from 0.01 to 0.05, which is a reason why ES estimation is subject to high volatility. This is a
general challenge for statistic inference of risk measures.

For the kernel estimator, µ̂p,h, we proved the following theorem.

Theorem 2 (Chen, 2008) Under conditions (i)− (iv),

√
npσ

−1
0 (p;n)(µ̂p,h −µp)

d−→ N(0,1).

Furthermore,

Bias(µ̂p,h) =−1
2

p−1
σ

2
Kh2 f (νp)+o(h2),

Var(µ̂p,h) = p−2n−1
σ

2
0 (p;n)+o(n−1h).

Comparing both theorems we find that both ES estimators have the same asymptotic distribution.
We also note that, unlike the VaR estimation, the kernel estimator does not grant a variance reduction,
at least up to the term of order n−1h, as the term of this order vanishes, instead of taking a negative
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value. At the same time, the kernel estimator brings in a bias, which leads to an overall increase
in the mean square error. Therefore, for the purpose of ES estimation, the kernel smoothing is
counter-productive. One of the possible reasons why kernel smoothing is not efficient in this context
is the fact that the ES is effectively a mean parameter, which can be estimated accurately by simple
averaging.

It should also be noted that the above statement is only applicable for point estimation of ES. For
constructing confidence intervals and hypothesis testing on µp in the presence of data dependence, the
kernel smoothing can play a significant role in estimating σ2

0 (p;n) via the spectral density estimation
approach. This approach is presented in Chen and Tang (2005), but it serves the purpose of estimating
another important quantity that shows up in VaR estimation, but plays the same roll as σ2

0 (p;n).

3.2 Future Work

Our work was based on the assumption that the underlying stochastic process is α-mixing. There are
several other interesting ways to model dependence, such as association (see Esary, Proschan and
Walkup, (1967)) or a stronger type of mixing, that can be used as a premise to study the asymptotic
statistical properties of both presented estimators.
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