Gd(III)-EPTPAC$_{16}$, a new self-assembling potential liver MRI contrast agent: in vitro characterization and in vivo animal imaging studies

Suzana Torres, Maria I. M. Prata, Ana C. Santos, João P. André, José A. Martins, Lothar Helm, Éva Tóth, María L. García-Martín, Tiago B. Rodrigues, Pilar López-Larrubia, Sebastián Cerda and Carlos F. G. C. Geraldes

INTRODUCTION

Gadolinium(III) chelates have been extensively used as paramagnetic contrast agents (CAs) for MRI (1–6). The first generation of MRI CAs, including [Gd(DOTA) (H$_2$O)]$^{2-}$ (DOTA = 1,4,7,10-tetra-azacyclododecane-1,4,7,10-tetra-acetate) and [Gd(DTPA)(H$_2$O)]$^{2-}$ (DTPA = diethylenetriamine penta-acetate) among others, are

ABSTRACT: The recently reported amphiphilic chelate, [Gd(EPTPAC$_{16}$)(H$_2$O)]$^{2-}$, forms supramolecular aggregates in aqueous solution by self-assembly of the monomers with a relaxometrically determined critical micellar concentration (CMC) of 0.34 mM. The effect of sonication on the aggregate size was characterized by dynamic light scattering and relaxometry, indicating the presence of premicellar aggregates and an overall decrease in aggregate size and polydispersity upon sonication, slightly below the CMC. $[^{153}$Sm$]$(EPTPAC$_{16}$)(H$_2$O)]$^{2-}$ radiotracer was evaluated in vivo from γ scintigraphy and biodistribution in Wistar rats. It was found to depend strongly on the sample concentration, below or above the CMC, and its sonication, in a way that correlates with the effect of the same factors on the size of the aggregates formed in solution. Below CMC, the very large aggregates of the $[^{153}$Sm$]^{1+}$-labeled chelate were persistently and mainly taken up by the lungs, and also by the macrophage-rich liver and spleen. Sonication of this solution led to loss of the lung uptake. Above CMC, the metal chelate was mainly taken up by the liver, with very little uptake by the spleen and lungs. In vivo, dynamic contrast-enhanced (DCE)-MRI evaluation of the micellar [Gd(EPTPAC$_{16}$)(H$_2$O)]$^{2-}$ compound in Wistar rats showed a persistent hepatic positive-contrast effect in T_1-weighted images, qualitatively similar to the clinically established GdIII-based hepatobiliary-selective agents. No enhancement effect was observed in the lungs because of the scarcity of mobile protons in this organ, despite the scintigraphic evidence of significant lung retention of the $[^{153}$Sm$]^{1+}$-labeled chelate at concentrations below the CMC. Copyright © 2007 John Wiley & Sons, Ltd.

KEYWORDS: MRI; contrast agents; gadolinium; liver targeting; self-assembly; micelles; dynamic light scattering; γ scintigraphy

INTRODUCTION

Gadolinium(III) chelates have been extensively used as paramagnetic contrast agents (CAs) for MRI (1–6). The first generation of MRI CAs, including [Gd(DOTA) (H$_2$O)]$^{-}$ (DOTA = 1,4,7,10-tetra-azacyclododecane-1,4,7,10-tetra-acetate) and [Gd(DTPA)(H$_2$O)]$^{-}$ (DTPA = diethylenetriamine penta-acetate) among others, are

ABSTRACT: The recently reported amphiphilic chelate, [Gd(EPTPAC$_{16}$)(H$_2$O)]$^{2-}$, forms supramolecular aggregates in aqueous solution by self-assembly of the monomers with a relaxometrically determined critical micellar concentration (CMC) of 0.34 mM. The effect of sonication on the aggregate size was characterized by dynamic light scattering and relaxometry, indicating the presence of premicellar aggregates and an overall decrease in aggregate size and polydispersity upon sonication, slightly below the CMC. $[^{153}$Sm$]$(EPTPAC$_{16}$)(H$_2$O)]$^{2-}$ radiotracer was evaluated in vivo from γ scintigraphy and biodistribution in Wistar rats. It was found to depend strongly on the sample concentration, below or above the CMC, and its sonication, in a way that correlates with the effect of the same factors on the size of the aggregates formed in solution. Below CMC, the very large aggregates of the $[^{153}$Sm$]^{1+}$-labeled chelate were persistently and mainly taken up by the lungs, and also by the macrophage-rich liver and spleen. Sonication of this solution led to loss of the lung uptake. Above CMC, the metal chelate was mainly taken up by the liver, with very little uptake by the spleen and lungs. In vivo, dynamic contrast-enhanced (DCE)-MRI evaluation of the micellar [Gd(EPTPAC$_{16}$)(H$_2$O)]$^{2-}$ compound in Wistar rats showed a persistent hepatic positive-contrast effect in T_1-weighted images, qualitatively similar to the clinically established GdIII-based hepatobiliary-selective agents. No enhancement effect was observed in the lungs because of the scarcity of mobile protons in this organ, despite the scintigraphic evidence of significant lung retention of the $[^{153}$Sm$]^{1+}$-labeled chelate at concentrations below the CMC. Copyright © 2007 John Wiley & Sons, Ltd.

KEYWORDS: MRI; contrast agents; gadolinium; liver targeting; self-assembly; micelles; dynamic light scattering; γ scintigraphy

INTRODUCTION

Gadolinium(III) chelates have been extensively used as paramagnetic contrast agents (CAs) for MRI (1–6). The first generation of MRI CAs, including [Gd(DOTA) (H$_2$O)]$^{-}$ (DOTA = 1,4,7,10-tetra-azacyclododecane-1,4,7,10-tetra-acetate) and [Gd(DTPA)(H$_2$O)]$^{-}$ (DTPA = diethylenetriamine penta-acetate) among others, are
extracellular agents, distributing non-specifically throughout the plasma and interstitial spaces and being rapidly excreted via the kidneys (7). In the emerging field of cellular and molecular imaging using MRI, more efficient (higher relaxivity) and biospecific CAs are required to deliver as many Gd$^{3+}$-containing species as possible to the cellular targets of interest and therefore attain sufficiently high contrast to obtain their images (8).

At the magnetic field strengths currently used in MRI (0.5–3.0 T, 21.29–127.73 MHz for protons), the aptitude of Gd$^{3+}$ chelates to enhance the longitudinal water proton relaxation rate per mmol of CA (relaxivity) is mainly determined by the inner-sphere water-exchange rate (k_{ex}) and the rotational correlation time of the chelate (τ_R) (2–4). The charge of the complex and the steric crowding in the inner coordination sphere have been shown to be the main factors affecting water exchange in Gd$^{3+}$ poly(aminocarboxylate) complexes (9,10). Chelators that ensure optimal fast water exchange on the Gd$^{3+}$ complex have been developed by inducing steric crowding around the water-binding site, by elongation of the amine backbone or by elongation of a pendant carboxylate arm of the ligand, for both linear (DTPA-type) and macrocyclic (DOTA-type) chelates (11–13), or by replacing a pendant carboxylate by a phosphonate group (14). This facilitates the removal of the water molecule by a dissociative mechanism, accelerating the exchange. Several approaches have been devised to increase τ_R through covalent attachment of Gd$^{3+}$ chelates to slowly tumbling macromolecules (2–5), such as carbohydrates (15–17), proteins (18) and dendrimers (19,20). The formation of host–guest non-covalent interactions between Gd$^{3+}$ chelates and macromolecules (5,21,22) or β-cyclodextrin oligomers (23) has also been explored. An alternative way to increase τ_R is through self-assembly of amphiphilic Gd$^{3+}$ chelates or through inclusion of lipophilic Gd$^{3+}$ chelates in liposomes or other lipid-based systems. However, when the water-exchange rate in the Gd$^{3+}$ inner sphere is not optimized in these macromolecular agents, their proton relaxivity is still seriously limited.

Lipid-based nanoparticles, such as micelles and liposomes, have been used as colloidal drug carrier vehicles (24–26) and as contrast-enhanced MRI and molecular imaging agents (27,28). Liposomal MRI CAs include, among other types, liposomes entrapping hydrophilic paramagnetic agents in the aqueous lumen or carrying amphiphilic agents on the liposomal surface with the hydrophobic part non-covalently anchored in the lipid bilayer (27,28). In addition to the increased relaxivities, colloidal CAs made up of Gd$^{3+}$-containing supramolecular assemblies can be efficiently taken up by macrophage-rich tissue undergoing endocytosis/phagocytosis (liver and spleen) (29). This provides an efficient way of delivering therapeutic and diagnostic agents to cells with the aid of colloidal-drug-carrier systems. However, the fast sequestration of intravenously injected colloidal-drug carriers from the blood by Kupffer cells (liver/spleen resident macrophages) is a drawback for efficient targeting of drug carriers or diagnostic agents to a specific macrophage population or to non-macrophage sites. As a consequence, there has been increasing interest in the design of colloidal-drug-carrier systems that, by avoiding rapid recognition by Kupffer cells, remain in the blood for long periods. Such carriers have applications in vascular drug delivery and release and site-specific targeting (24). Long-circulating colloidal systems with entrapped radiopharmaceuticals or CAs have been successful in blood-pool imaging (20–32). Micelles prepared from poly(ethylene glycol)–lipid conjugates have been shown to be useful in the delivery of therapeutic or diagnostic agents to areas of myocardial infarction (33).

Several gadolinium-based micelles have been relaxometrically characterized and reported in the literature: linear copolymers of Gd$^{3+}$–DTPA conjugates linked by α,ω-alkyldiamides with a varying number of methylene groups separating the amide function (34,35); Gd$^{3+}$–DTPA-bisamide-(CH$_2$)$_n$ copolymers ($n = 6, 10$ or 12) (36); Gd$^{3+}$–DOTA derivatives bearing alkyl or monoamide-alkyl aliphatic side chains (C$_{10}$–C$_{18}$) (37,38); Gd$^{3+}$ chelates of 1,4,7-tris(carboxymethyl)-10-(2-hydroxyl-alkyl)-1,4,7,10-tetra-azacyclododecane ligands of varying alkyl chain length (39); Gd$^{3+}$ chelates of C$_8$–DOTP and C$_{11}$–DOTP, two fatty acid analogues of DOTP [1,4,7,10-tetra-azacyclododecane-1,4,7,10-tetrakis(methylene phosphinate)] (40,41); Gd$^{3+}$–3,6,9,15-tetra-azacyclododecane Cδ–DOTP–cholesterol (42); gadofluorine 8 with a Ln$^{3+}$–DO3A monomonoamide hydrophilic head (Ln = Gd or Y) (43).

The formulation for the preparation of stable mixed micelles based on gadolinium chelates usually includes an amphiphilic Gd$^{3+}$ chelate, phospholipid(s) and a surfactant. These micelles should meet the criteria of high contrast efficiency (high relaxivity), small particle size, high loading, good stability and easy production. Several mixed systems have been relaxometrically and/or pharmacologically studied: mixed micelles based on Gd$^{3+}$–DTPA derivatives (44); Gd$^{3+}$–HHD–DO3A–cholesterol (HHD = hydroxyhexadecyl) (45,46); mixed micelles of the Gd$^{3+}$–DTPA–cholesterol conjugate (47); Gd$^{3+}$–DO3A monomonoamide and bisamide derivatives with alkyl chains (C$_{12}$, C$_{14}$, C$_{16}$ or C$_{18}$) (48,49). Target-specific mixed micelles based on Gd$^{3+}$–C$_{18}$DTPAGlu/C$_{18}$CCK8 have also been reported; their effectiveness is due to the presence of the bioactive peptide CCK8, which acts as targeting vector for cholecystokinin (CCK) receptors localized in the cell membrane, which are overexpressed in many tumors (50).
We have previously reported the synthesis and characterization of the GdIII complex of the chelator, H$_5$EPTPA ([hydroxymethylhexadecanoyl ester] ethylenepropylene triaminepenta-acetic acid] (Fig. 1) (51). This chelate displays an increased water-exchange rate (k_{ex}) resulting from steric compression around the water-binding site. The attachment of a palmitic ester unit to the ethylenediamine bridge yields an amphiphilic conjugate which forms supramolecular aggregates, possibly micelles, in aqueous solution, with a calculated CMC of 0.34 mM at 25°C (51).

A global analysis of the variable-temperature, multiple-field 17O NMR, electron paramagnetic resonance and 1H NMR dispersion data allowed determination of the parameters governing the relaxivity of [Gd(EPTPA)$_2$(H$_2$O)]$^{2-}$/C$_0$. The micelles formed in aqueous solution showed considerable internal flexibility, leading to a limited increase in proton relaxivity (51).

In the present work, we studied how the self-assembly of the amphiphilic monomer metal chelates into supramolecular aggregates dramatically influences their in vivo behavior and determines their performance as potential imaging agents. We also report the evaluation of the 153Sm$^{3+}$-labeled compound in Wistar rats through pharmacokinetic studies involving in vivo dynamic γ-scintigraphy and biodistribution. The effects of concentration and preparation method (with and without sonication) of the radiotracer ([153Sm](EPTPA)$_2$(H$_2$O))$^{2-}$ solution on its biodistribution were correlated with the size distribution of the aggregates, determined by dynamic light scattering (DLS). The influence of sonication on [Ln(EPTPA)$_2$(H$_2$O)]$^{2-}$ in water was monitored by NMR and relaxometry. An in vivo MRI study of the contrast effects and pharmacokinetics of the micellar [Gd(EPTPA)$_2$(H$_2$O)]$^{2-}$ complex in Wistar rats is also reported and compared with a typical commercial, low-molecular-mass CA, GdDTPA (Magnevist$^{(R)}$).

EXPERIMENTAL

H$_2$EPTPA16 was synthesized as described previously (51).

Preparation of LnIII-EPTPA complexes

The general procedure was dissolution of H$_2$EPTPA in distilled water and addition of a molar equivalent of LnCl$_3$ solution (Ln = Eu, Gd). The pH was adjusted to 5.5 with aqueous KOH (0.1 M). The solution was stirred at room temperature for 1 h and then adjusted to pH 7.0 with aqueous KOH (0.1 M). The solution was concentrated at reduced pressure giving rise to a white solid.

For the DLS experiments, 0.2 mM and 2 mM solutions were prepared by dissolving the corresponding [Gd(EPTPA)$_2$(H$_2$O)]$^{2-}$ complex in 150 mM MES [2-(N-morpholino)ethanesulfonic acid hydrate, 99.5%] buffer, pH 6.4. Samples were sonicated using a Bandelin Sonorex RK 106S sonicator (P = 200 W, ν = 35 MHz). Aqueous solutions of [Eu(EPTPA)$_2$(H$_2$O)]$^{2-}$ were prepared for the relaxometric experiments, whereas the NMR experiments used D$_2$O solutions of [Gd(EPTPA)$_2$(H$_2$O)]$^{2-}$.

NMR measurements

1H NMR spectra were recorded in D$_2$O (99.99% 2H) on Varian Unity Plus 300 and Unity 500 NMR spectrometers, operating at 299.938 MHz and 499.80 MHz, respectively. Chemical shifts (δ) are given in ppm relative to TSP as internal reference (1H, δ 0.0).

Relaxometric measurements

Water 1H relaxivity measurements were performed on a Bruker Minispec mq60 (60 MHz) at 25°C and 37°C. The temperature was measured by a substitution technique. Longitudinal relaxation rates were measured at four different concentrations, two below (0.1 and 0.2 mM) and two above (2.0 and 4.0 mM) the CMC before and after 2, 4 and 20 min of sonication.

DLS measurements

These were performed on a Coulter$^{(R)}$ N4 Plus Submicron Particle Sizer. The N4 Plus contains a 10 mW He–Ne seed.
laser which emits monochromatic polarized light with a wavelength of 632.8 nm. The electric field polarization is perpendicular to the plane formed by the incident and detected rays (vertical polarization). The particle size is calculated from the measurement of the sample diffusion coefficient by photon correlation spectroscopy. The N4 Plus is controlled by PC-based software which operates in the Microsoft Windows environment. Before data acquisition, the sample was allowed to equilibrate for 2 min. All the measurements were performed at an angle of 90° and at 20°C. The data acquired were analysed by unimodal analysis, which yields the mean intensity-weighted particle size and standard deviation. The mean intensity-weighted particle size was determined for each solution concentration over time, without and with 2 min of sonication of the solution. Multimodal DLS analysis was performed with a Zetasizer Nano ZS instrument (Malvern Instruments Ltd, Malvern, UK) equipped with a 4 mW He–Ne laser at 633 nm with backscattering detection at 173°.

Reagents for γ imaging and biodistribution studies

\[^{153}\text{SmCl}_3 \] was produced at the Instituto Tecnológico e Nuclear, Lisbon, Portugal by Dr Maria dos Anjos Neves, with a specific radioactivity of \(>5 \text{ GBq/mg} \). For this purpose, \(^{153}\text{Sm}_2\text{O}_3 \) was prepared from a 98% \(^{152}\text{Sm} \)-enriched Sm \(2\text{O}_3 \) target, sealed into a quartz vial and welded into an aluminum can, by neutron irradiation using a thermal flux of \(2.3 \times 10^{13} \text{ n/cm}^2 \cdot \text{s} \). After irradiation, the sample was opened, dissolved in 1 M HCl, and the final \(^{153}\text{SmCl}_3 \) solution was brought to a stock concentration of \(1.9 \times 10^{-3} \text{ M} \).

Radiotracer preparation

Stock solutions of \(\text{H}_5\text{EPTPAC}_{16} \) were prepared in 150 mM MES buffer, pH 6.4, and mixed with \(^{153}\text{SmCl}_3 \). The solutions were left stirring at room temperature for 1 h. Solutions with different concentrations of the radiotracer, \(0.2 \text{ mM} \) (below CMC) and \(2 \text{ mM} \) (above CMC) [CMC = 0.34 mM, determined by relaxometry (51)], were prepared for biodistribution and γ imaging experiments. The solution of 2 mM concentration of radiotracer was prepared by adding to a 0.2 mM solution of the \([^{153}\text{Sm}](\text{EPTPAC}_{16})(\text{H}_2\text{O})]^{2-}\) radiotracer the appropriate amount of non-radioactive \([^{152}\text{Sm}](\text{EPTPAC}_{16})(\text{H}_2\text{O})]^{2-}\) complex.

In vivo γ imaging

A γ camera–computer system (GE 400 GenieAcq; General Electric, Milwaukee, WI, USA) was used for acquisition and preprocessing. Data processing and display were performed on a PC using homemade software developed for the IDL 5.2 computer tool. A well counter (DPC-gamma C12, Los Angeles, CA, USA) with a Compaq DeskPro compatible computer was used for radioactivity counting in the biodistribution studies.

\(γ \) images and biological distribution of \([^{153}\text{Sm}^{3+}]\) complexes were determined using 200–250 g Wistar rats. All animal studies were carried out in compliance with procedures approved by the appropriate institutional review committees. Conscious rats were allowed free access to food and water ad libitum. Groups of four animals (one group for each concentration of the radiotracer with and without sonication) were anesthetized with 50 mg/ml ketamine/2.5% chlorpromazine (10:3, v/v) and injected into the femoral vein with ~200 \(\mu \text{Ci} \) of the \([^{153}\text{Sm}^{3+}]\) complex immediately after the solution had been prepared. Two different injected dose concentrations were studied (0.2 mM and 2 mM) as well as the effect of 2 min of sonication on the \(γ \) scintigraphic image. The animals were then positioned in dorsal decubitus over the detector. Image acquisition was initiated immediately before radiotracer injection. Sequences of 180 images (of 10 s each) were acquired to 64 × 64 matrices. In addition, static data were acquired 24 h after the radiotracer injection. Images were subsequently processed using an IDL-based program (Interactive Data Language, Research Systems, Boulder, CO, USA). For analysis of the transport of radiotracer over time, three regions of interest (ROIs) were drawn on the image files, corresponding to the thorax, liver and left kidney. From these regions, time–radioactivity curves were obtained.

Biodistribution studies

Groups of four animals were injected in the tail vein with ~100 \(\mu \text{Ci} \) of the \([^{153}\text{Sm}^{3+}]\) tracer (at the concentrations and conditions stated in the scintigraphic imaging section) and killed 1 h later. The major organs were excised and weighed, and tissue radioactivity was measured in a \(γ \) well counter. Similar biodistribution studies were also performed with the animals referred to in the previous section killed at 24 h.

MRI

Sample formulation/preparation of \([\text{Gd(EPTPAC}_{16}])\)(\text{H}_2\text{O})]^{2-}\) for MRI. The ligand, \(\text{H}_5\text{EPTPAC}_{16} \) (147.4 mg; 0.218 mmol), was dissolved in distilled water. To this solution was added dropwise an aqueous solution of Gd(NO₃)₃·6H₂O (90.0 mg; 0.199 mmol). The pH was kept at 5.5–6.0 by the addition of NaOH (aqueous solution, 0.1 M). The reaction mixture was left stirring for
The solution was adjusted to pH 7.0 with NaOH (aqueous solution, 0.1 M), filtered (Filtropur S filters, 0.2 μm), and concentrated under reduced pressure. The absence of free metal was confirmed by the xylenol orange test.

To remove the salts (NaNO₃) produced during the synthesis of the \([\text{Gd(EPTPAC}_{16})(\text{H}_2\text{O})]^2^−\) complex, a sample was purified by silica-gel 100 C₅ reverse-phase chromatography with gradient elution, 100% water → 100% ethanol. The relevant fractions, identified by reverse-phase C₁₈ thin-layer chromatography and conductivity measurement, were pooled, filtered (Filtropur S filters, 0.2 μm), and concentrated under reduced pressure to give the salt-free complex, probably \([\text{Gd(EPTPAC}_{16})(\text{H}_2\text{O})]\)Na/K₂, as a vitreous solid.

In vivo MRI studies. The experimental protocols performed were approved by the appropriate institutional review committees and followed the guidelines of their responsible governmental agency. The MRI experiments were all performed on a Bruker Pharmascan platform (Bruker Medical GmbH, Ettlingen, Germany) using a 7.0 T horizontal-bore superconducting magnet, equipped with a ¹H-selective 60 mm birdcage resonator and a Bruker gradient insert with 90 mm diameter (maximum intensity 300 mT/m). Data were acquired using a Hewlett-Packard console running Paravision software (Bruker Medical) in a Linux environment.

All MRI examinations were carried out on male Wistar rats (n = 4, 250–260 g body weight) anesthetized initially by inhalation in an induction box with O₂ (1 liter/min) containing 3% isoflurane, and maintained during the experiment using a mask and 1–2% isoflurane in O₂. Animals were taped down into a holder to minimize breathing-related motion, and then placed in a heated probe, which kept the core body temperature at ~37°C, monitored by a rectal probe. The physiological state of the animal was monitored throughout the experiment with a Biotrig physiological monitor (Bruker Medical), using the respiratory rate and body temperature. Solutions of \([\text{Gd(EPTPAC}_{16})(\text{H}_2\text{O})]^2^−\) and \([\text{Gd(DTPA)}(\text{H}_2\text{O})]^2^−\) (Magnevist®; Schering, Berlin, Germany; 100 mM) were prepared in distilled water, and the pH was adjusted to 7.2. The solutions were injected into the catheterized tail vein as a bolus of 200 μL in 20 s (0.2 mmol Gd/kg body weight) using an infusion pump (Panlab, Barcelona, Spain).

\(T_1\)-weighted spin-echo anatomical images (\(TR = 200\) ms; \(TE = 11.7\) ms; field of view = 6 × 6 cm; acquisition matrix = 256 × 256; number of averages = 2; slice thickness = 2 mm; two packages of four slices each, centered on the liver and on the kidneys) were acquired in axial orientation. Baseline images were acquired before the administration of our CA, \([\text{Gd(EPTPAC}_{16})(\text{H}_2\text{O})]^2^−\). After injection, regional CA uptake was assessed by acquiring sequential images for 1 h (50 images).

MRI data processing. Data were analyzed with software written in-house using IDL. With the aim of comparing the pharmacokinetics obtained from different animals, the data were normalized by calculating the relative enhancement (RE):

\[
RE = \left(\frac{I - I_0}{I_0} \right) \times 100
\]

where \(I\) is the signal intensity at any given time after CA injection, and \(I_0\) is the intensity before injection. Pharmacokinetics were analyzed by calculating the average enhancements within different ROIs in each one of the following regions: liver, kidney medulla, kidney cortex, vena cava and muscle.

RESULTS AND DISCUSSION

DLS studies

The effects of concentration and sonication of aqueous \([\text{Gd(EPTPAC}_{16})(\text{H}_2\text{O})]^2^−\) solutions on the average particle size and polydispersity index (PI) were studied by DLS at 20°C (Fig. 2). We assumed that the CMC does not change between 5°C (51) and 20°C, as observed for \([\text{Gd(DOTAC}_{14})(\text{H}_2\text{O})]\) between 5°C and 25°C (38). For \([\text{Gd(EPTPAC}_{16})(\text{H}_2\text{O})]^2^−\) concentrations (0.2 mM) below the CMC and without sonication, the mean intensity-weighted particle size was above the working range of the instrument (<3000 nm). After 2 min of sonication, it decreased to ~500 nm, and a heterogeneous population of aggregates was present (PI ~1.0). The duration of the sonication, 2 or 4 min, did not substantially affect either the mean intensity-weighted particle size or the PI (not shown). The aggregates formed on sonication.

![Figure 2. DLS studies on the effect of concentration and sonication of the \([\text{Gd(EPTPAC}_{16})(\text{H}_2\text{O})]^2^−\) solution on the average particle size (mean ± SD) and population distribution, as measured by PI.](image-url)
remained stable for at least 4 h with regard to size and polydispersity (Fig. 2). For [Gd(EPTPAC16)(H2O)]2− solutions of concentration 2 mM (above the CMC), the mean intensity-weighted particle size (~450 nm) was the same before and after 2 min of sonication. However, sonication reduced the heterogeneity of the aggregates, as indicated by a decrease in PI from ~1.5 to ~1.0. Furthermore, both the mean intensity-weighted particle size and the PI decreased over time, reaching values of ~300 nm and ~0.8, respectively, after 24 h (Fig. 2).

For all concentrations studied, both below and above the CMC, with and without sonication, a DLS multimodal analysis (data not shown) revealed populations of at least two particle sizes: small particles (diameter <10 nm), and very large particles (diameter >100 nm) of variable size. The existence of large particles for concentrations below the CMC suggests premicellar aggregation. This is in agreement with a recent study of micelle formation caused by surfactants in the presence of a reporting dye using fluorescence correlation spectroscopy that demonstrated the formation of aggregates in the concentration range (0.3–1.0) × CMC, in increasing number when approaching the CMC (52). Premicellar aggregation has been shown to be responsible for anomalies of various physical parameters (53,54). The large aggregates probably represent only a very small population below the CMC. Indeed, the value of the calculated mean intensity-weighted particle size can be dominated by a very small population of large particles with high scattering intensity. This is also in accordance with the fact that, using relaxometry, we did not observe any slowly rotating large particles below 0.34 mM (CMC determined by relaxivity measurements) (51). Even if below the CMC the large aggregates represent a significant proportion of the population of particles, they can be extremely flexible, which implies that the proton relaxivities will not be much increased with regard to the monomer state.

In conclusion, at a concentration just below the CMC (0.2 mM in our case), the aggregate morphology and dynamics can be quite complicated. DLS data at concentrations lower than 0.2 mM would have certainly been more representative of the ‘non-aggregated’ state.

Effect of sonication on the NMR spectra and water relaxivity of [Ln(EPTPAC16)(H2O)]2− solutions

The 1H NMR spectrum of a 10 mM D2O solution of [Eu(EPTPAC16)(H2O)]2− contains a large number of high-frequency (e.g. +25.42, +17.27, +14.93, +13.23, +12.33, +11.67, +7.96 ppm) and low-frequency (−1.58, −2.43, −3.04, −3.55, −4.04, −7.45, −10.45, −10.64 ppm) paramagnetically shifted resonances. This spectrum (available online as Fig. 1S in Supplementary Material) is not affected by sonication periods of up to 20 min, or after a subsequent period of 1 day, showing that sonication does not affect the stability and structure of the complex.

The effect of increasing sonication periods up to 20 min on the 60 MHz water 1H longitudinal relaxivity (r1) of [Gd(EPTPAC16)(H2O)]2− solutions was studied at different concentrations and temperatures (25°C and 37°C), as shown in Table 1 for 0.2 mM and 2.0 mM concentrations. At the measurement frequency of 60 MHz (close to the maximum of the NMR dispersion curves of the complex in the micellar form), r1 is mainly determined by the rotational dynamics of the chelate (51). Hence the variation in r1 reflects the changes in the rotational dynamics of the micellar aggregates. As the CMC is expected to increase by ~1% between 25°C and 37°C (38), at 37°C 0.2 mM is still below the CMC (51). Above the CMC and at any of the temperatures, sonication had no significant influence on r1. This indicates that sonication does not affect the average rotational dynamics of the chelate in the micellar aggregates, as reflected by the r1 values [more precisely, r1 is determined by the global (τg) and segmental (τs) rotational correlation times of the aggregates (51)]. This is in qualitative agreement with the DLS observation that the mean intensity-weighted particle size was not affected by sonication at concentrations above the CMC. Below the CMC, r1 values, which are about half the values above the CMC, increased with sonication at both temperatures. At 25°C, this increase became larger with sonication time, from 9% (2–4 min) to 14% (20 min). At 37°C, the r1 increase was only significant (9%) for 20 min of sonication. As

<table>
<thead>
<tr>
<th>r1 (mM−1s−1)</th>
<th>25°C</th>
<th>37°C</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.2 mM</td>
<td>2.0 mM</td>
</tr>
<tr>
<td>No sonication</td>
<td>9.94 ± 0.01</td>
<td>20.55 ± 0.01</td>
</tr>
<tr>
<td>2 min sonication</td>
<td>10.94 ± 0.04</td>
<td>20.61 ± 0.01</td>
</tr>
<tr>
<td>4 min sonication</td>
<td>10.96 ± 0.02</td>
<td>20.62 ± 0.01</td>
</tr>
<tr>
<td>20 min sonication</td>
<td>11.66 ± 0.01</td>
<td>20.63 ± 0.01</td>
</tr>
</tbody>
</table>

Table 1. Effect of sonication on the 60 MHz water 1H longitudinal relaxivity (r1) of [Gd(EPTPAC16)(H2O)]2− solutions at different temperatures and concentrations below and above the CMC. The results are mean ± SD from three measurements.

discussed above, the situation at concentrations just below the CMC is rather complex with regard to the formation of preaggregates. Moreover, these structures are probably very fluxional and may change on sonication. These factors may explain why the significant decrease in mean intensity-weighted particle size detected by DLS was not observed in the relaxivities. Concentrations significantly lower than 0.2 mM would be much more useful for examining the non-aggregated state.

Studies of $[^{153}\text{Sm}]^{3+}$-labeled EPTPAC$_{16}$ complex

In vivo γ-imaging and biodistribution. Scintigraphic images of Wistar rats were obtained as a function of time after injection of an aqueous solution of 0.2 mM $[^{153}\text{Sm}](\text{EPTPAC}_{16})(\text{H}_2\text{O})^{2-}$ tracer (below CMC). Fig. 3 compares the images obtained 30 min after injection of the tracer solution without and after 2 min of sonication. Without previous sonication, there is a marked high uptake/retention of the tracer in the thorax. Further experiments (dynamic acquisition and biodistribution; see below) revealed that the uptake of the radiotracer occurred predominantly in the lungs. In sharp contrast, 2 min of sonication of the 0.2 mM radiotracer solution resulted in high liver uptake and virtually no uptake in the lungs, as demonstrated by dynamic acquisition and biodistribution (see below).

Time–radioactivity curves for the 0.2 mM $[^{153}\text{Sm}](\text{EPTPAC}_{16})(\text{H}_2\text{O})^{2-}$ radiotracer without and after 2 min of sonication were obtained in dynamic acquisition experiments (Fig. 4). The curves were smoothed and normalized in relation to the maximum radioactivity obtained. The radioactivity of the 0.2 mM radiotracer without sonication increased sharply in the thorax immediately after the injection, possibly corresponding to lung uptake/retention of the radiolabeled complex, and decayed very slowly over the duration of the experiment. After 30 min, the radioactivity remaining in the thorax/
lungs was still \(\sim 80\% \) of the maximum obtained for this region. In contrast, the radioactivity in the liver increased smoothly over the duration of the experiment, and after 30 min it was approximately half of that remaining in the lungs. There was virtually no uptake of radioactivity by the kidney, consistent with the lipophilic nature of the radiotracer and its putative hepatobiliary excretion pathway. Sonication of the radiotracer solution before injection had a dramatic effect on the dynamic acquisition curves. The radioactivity in the liver increased sharply after the injection and reached its highest value after \(\sim 1 \) min, which can be ascribed to the liver first-pass uptake of the radiotracer. From there on, the radioactivity in the liver decayed slowly and smoothly, remaining at \(\sim 80\% \) after 30 min. The radioactivity in the thorax and kidneys increased immediately after the injection, and then decayed constantly during the experiment. After 30 min, the radioactivity was located mainly in the liver.

The effect of sonication on the biodistribution pattern of \([^{153}\text{Sm}]\text{(EPTPAC}_{16}\text{)}\text{(H}_{2}\text{O})^2\text{−} \) in Wistar rats at 1 and 24 h after injection was studied for concentrations of the radiotracer below (0.2 mM) and above (2 mM) the CMC. Fig. 5 and Table 2 show representative data as a percentage of injected dose per gram of tissue (\%ID/g).

![Figure 5](image-url)

Figure 5. Biodistribution in Wistar rats (percentage of the injected dose/g of organ) of \([^{153}\text{Sm}]\text{(EPTPAC}_{16}\text{)}\text{(H}_{2}\text{O})^2\text{−} \) at 1 h (A) and 24 h (B) after the injection for radiotracer concentrations of 0.2 and 2 mM, with and without sonication. S. Intestine, small intestine; L. Intestine, large intestine. Values are mean ± SD.
Above the CMC, the sonication seems not to have had a significant effect on the biodistribution pattern. The radioactivity was located mainly in the liver, with very low %ID/g found in the blood, kidney, spleen and heart. These results are consistent with the DLS studies, which showed that, for concentrations of the radiotracer above the CMC, it exists as "small" particles (mean intensity-weighted particle size ~450 nm), which are efficiently taken up by the liver-resident macrophages (Kupffer cells). Moreover, the DLS studies showed that, above the CMC, sonication had no significant effect on the size of aggregates and therefore on the biodistribution pattern.

Below the CMC and without sonication, there was a very high uptake and retention of the radiotracer by the lungs, and significant radioactivity was taken up by the liver (even higher than its value above the CMC) and spleen, and to a much lesser extent by the kidney and blood. These results are consistent with the DLS studies, which showed the existence of very large micellar aggregates in solution (diameter >3000 nm) in these experimental conditions. These large aggregates were efficiently taken up by resident macrophages in lungs, liver and spleen (reticuloendothelial system). The high lung uptake may also be due to entrapment of very large particles in the narrow lung capillaries. In fact, pulmonary

<table>
<thead>
<tr>
<th>Organ</th>
<th>%ID/g (1 h)</th>
<th>%ID/g (24 h)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.2 mM no sonication</td>
<td>2 mM no sonication</td>
</tr>
<tr>
<td>Blood</td>
<td>0.11 ± 0.07</td>
<td>0.17 ± 0.06</td>
</tr>
<tr>
<td>Kidney</td>
<td>1.04 ± 0.06</td>
<td>0.05 ± 0.02</td>
</tr>
<tr>
<td>Liver</td>
<td>0.13 ± 0.07</td>
<td>0.15 ± 0.06</td>
</tr>
<tr>
<td>Spleen</td>
<td>0.72 ± 0.18</td>
<td>0.06 ± 0.01</td>
</tr>
<tr>
<td>Heart</td>
<td>0.02 ± 0.03</td>
<td>0.0075 ± 0.0002</td>
</tr>
<tr>
<td>Lung</td>
<td>4.32 ± 0.47</td>
<td>0.0090 ± 0.0003</td>
</tr>
<tr>
<td>Femur</td>
<td>—</td>
<td>0.018 ± 0.003</td>
</tr>
</tbody>
</table>

Figure 6. Comparison of the biodistribution in Wistar rats (percentage of the injected dose/g of organ) of $\left\{^{153}\text{Sm}\right\}\left(EPTPAC_{16}\right)\left(H_2O\right)^2^-$ at 1 h and 24 h after injection for a radiotracer concentration of 0.2 mM without sonication. S. Intestine, small intestine; L. Intestine, large intestine. Values are mean ± SD.
precapillaries are only 8 μm in length and 10–15 μm in diameter. Thus, particles with diameters exceeding 10 μm cannot pass through the smallest capillaries and are therefore filtered out of the circulation on arrival at these vessels (55). This is the reason for the use of 99mTc-labeled macro-aggregated albumin to evaluate lung perfusion (56).

The most striking result of the biodistribution studies is the dramatic effect of sonication on the biodistribution pattern 1 h after the injection at concentrations of the radiotracer below the CMC. After sonication, radioactivity in the lungs virtually disappeared, being mainly taken up by the liver and to a lesser extent by the spleen. This biodistribution pattern is virtually equivalent to that found at radiotracer concentrations above the CMC, the only difference being some uptake by the spleen. These results are again consistent with the DLS studies, which revealed that sonication of the radiotracer solution below the CMC significantly reduced the size of the particles (from a diameter of >3000 nm to a mean intensity-weighted particle size of ~450 nm). It is also striking that, with the 0.2 mM non-sonicated radiotracer (concentration below the CMC), there was still very significant radioactivity in the lungs, liver and spleen after 24 h. In fact, in the 24 h time span, the liver %ID/g decrease in non-sonicated radiotracer was ~90% at 2 mM compared with only ~18% at 0.2 mM. In the same time interval, this value for the 0.2 mM non-sonicated radiotracer was reduced in the lungs by ~40% and increased by ~6% in the spleen. This resulted in a total %ID/g ratio (lung/liver plus spleen) decrease from 2.40 at 1 h to 1.03 at 24 h, because of the large relative mass of the liver. These results suggest that the lungs work as a reservoir of (possibly entrapped) radiotracer, which is slowly released and taken up by the liver and spleen reticuloendothelial system (Fig. 6). For 0.2 mM sonicated radiotracer, the %ID/g reduction in the liver and spleen at 24 h was respectively ~73% and ~80%.

We have interpreted the biodistribution data for \({\text{[Gd(EPTPAC}_{16}\text{)(H}_2\text{O})]^{2-}}\) on the basis of the CMC determined by relaxometry for the corresponding Gd\(^{3+}\) complex (51) and correlating the data with the size distribution of the particles as determined by DLS. However, the physical state and fate of the radiotracer once injected is uncertain. On injection, the resulting dilution, which depends on the volume of the blood compartment, may reduce the concentration of the radiotracer to below the CMC, even when injected at concentrations above the CMC. The situation is even

![Figure 7. T\(_1\)-weighted spin-echo axial MR images of rat liver before (upper panels) and after (lower panels) the injection of 0.2 mmol/kg \([\text{Gd(EPTPAC}_{16}\text{)(H}_2\text{O})]^{2-}\) (left) or \([\text{Gd(DTPA)(H}_2\text{O})]^{2-}\) (right).](image)

![Figure 8. Representative T\(_1\)-weighted DCE-MRI series of rat liver (above) and kidney/muscle (below) axial images before and after the injection of \([\text{Gd(EPTPAC}_{16}\text{)(H}_2\text{O})]^{2-}\) (0.2 mmol/kg). Each pre-contrast and post-contrast image corresponds to the average of three time points (~4 min) or 10 time points (12 min), respectively.](image)
more complex when the concentration of the radiotracer is already below the CMC when injected. The non-covalent association of $[[^{153}\text{Sm}](\text{EPTPAC}_{16})(\text{H}_2\text{O})]^2-\$/C_0$ with plasma lipoproteins through anchorage of the fatty acid chain at their phospholipid monolayer may occur, as shown for the DTPA–bis(steraylamide) complexes of Gd^{3+} and $[^{111}\text{In}]^{3+}$ with high-density lipoproteins and low-density lipoproteins (57–59). This would allow their transport and delivery to the liver by receptor-mediated endocytosis, which would modify the tracer biodistribution.

MRI

Effect of the Gd chelate on vital functions. The CA was well tolerated by the mice. Their body temperature remained stable, but respiration rate increased to 120 breaths/min during the first 2–3 min after injection, returning to baseline values within 3 min.

MRI in vivo. Series of T_1-weighted spin-echo axial images of the DCE MRI experiments were obtained with the $[\text{Gd}(\text{EPTPAC}_{16})(\text{H}_2\text{O})]^2-$ complex (dose 0.2 mmol/kg

Figure 9. Time course of signal intensity (A) and relative enhancement (B) of several ROIs during DCE-MRI experiments after the injection of $[\text{Gd}(\text{EPTPAC}_{16})(\text{H}_2\text{O})]^2-$ (0.2 mmol/kg). (A) Data from an individual animal. (B) Mean ± SE from four animals.

body weight) and \([\text{Gd(DTPA)}(\text{H}_2\text{O})]^2^−\) (dose 0.2 mmol/kg body weight). The \([\text{Gd(EPTPAC}_{16}) (\text{H}_2\text{O})]^2^−\) complex induced a marked increase in the liver, whereas \([\text{Gd(DTPA)}(\text{H}_2\text{O})]^2^−\) had no significant effect (Fig. 7).

A representative series of DCE-MRI data is shown in Fig. 8; the images correspond to the average of three (pre-contrast) or 10 (post-contrast) time points. The enhancement in the liver after injection of \([\text{Gd(EPTPAC}_{16})(\text{H}_2\text{O})]^2^−\) reached a steady state that was maintained until the end of the experiment. In contrast, the enhancement observed in the kidneys and muscle was transitory. This is better illustrated in Fig. 9A, which shows a quantitative analysis of the same dataset. Each time point corresponds to the average intensity within the ROIs in the different organs. For comparison of the results of all the animals under study, the data were normalized by calculating the mean relative enhancement of each ROI for the four animals studied (Fig. 9B). Maximum enhancement was reached within the first 5 min of the injection in all cases. The initial relative enhancement rose quickly to a maximum that was higher in the kidney medulla (280%) and cortex (175%) than in the liver (145%). However, it rapidly decreased in the kidney to below 90% after 20 min, whereas the enhancement in the liver remained approximately constant as the predominant effect throughout the experiment (105% to 100% between 12 and 60 min). Fig. 9A also shows that the contrast enhancement in the abdominal vena cava was also intensified, although more briefly than in the abdominal aorta with another colloidal agent, GdDTPA–DeA (60).

CONCLUSIONS

We have recently reported on a new amphiphilic GdIII complex, \([\text{Gd(EPTPAC}_{16})(\text{H}_2\text{O})]^2^−\), which self-assembles into supramolecular structures, possibly micelles, with a CMC of 0.34 mM as determined by relaxometry and surface tension measurements (51). Although its stability constant could not be determined by potentiometry because of precipitation at acid pH, its stability should be similar to that of \([\text{Gd(EPTPA)}(\text{H}_2\text{O})]^2^−\) (the EPTPACH\textsubscript{2}OH ligand is not linked by an ester group to the long fatty acid chain; log \(K_{\text{GdL}} = 16.7\)) (61), as the two ligands have similar protonation constants (61). This stability is indeed lower than for the parent unsubstituted chelate, \([\text{Gd(EPTPA)}(\text{H}_2\text{O})]^2^−\) (log \(K_{\text{GdL}} = 18.75\)), for the substituted \([\text{Gd(EPTPA-bz-NO}_2\text{)}(\text{H}_2\text{O})]^2^−\) (log \(K_{\text{GdL}} = 19.20\)) or for \([\text{Gd(DTPA)}(\text{H}_2\text{O})]^2^−\) (log \(K_{\text{GdL}} = 22.50\)) (12). However, \textit{in vivo} dissociation of the EPTPAC\textsubscript{16} complex does not seem to occur, as no accumulation of radioactive \([\text{Sm}^{153}]^3^+\) is observed in the rat skeleton (see data for femur in Table 2). We also believe that the ester function of the \([\text{Ln(EPTPAC}_{16})(\text{H}_2\text{O})]^2^−\) complexes is stable in water during sonication, as this treatment did not cause precipitation of the long-chain fatty acid, had no effect on the \(^1\text{H}-\text{NMR}\) spectrum of \([\text{Eu(EPTPAC}_{16)}(\text{H}_2\text{O})]^2^−\) (in particular, no new resonances corresponding to the hydrolysis product, \([\text{Eu(EPTPA)}(\text{H}_2\text{O})]^2^−\), were observed (61)) nor on the \(r_1\) relaxivity of \([\text{Gd(EPTPAC}_{16}) (\text{H}_2\text{O})]^2^−\) below and above the CMC, which was quite different from that of GdEPTPACH\textsubscript{2}OH (61).

Here we present DLS studies on aqueous \([\text{Gd(EPTPAC}_{16})(\text{H}_2\text{O})]^2^−\) solutions which demonstrate the existence of aggregates of different sizes both slightly below and above the CMC. This evidence for premicellar aggregation is in accordance with previously reported data for cationic and anionic surfactants (52). As the CMC is known to depend on the physical method used to determine it, the value determined by relaxometry, corresponding to a discontinuity in the relaxometric behavior of the \([\text{Gd(EPTPAC}_{16})(\text{H}_2\text{O})]^2^−\) complex as a function of the concentration, must be taken as a reasonable approximation, close to that obtained by classical surface tension measurements (38).

Slightly below the CMC (0.2 mM), the \([\text{Sm}^{153}]^3^+\)-labeled chelate was taken up strongly by macrophage-rich tissues (spleen, liver and lungs), in accordance with the existence of very large particles (as determined by DLS), which are physically trapped in the lungs (which seem to function as a chelate reservoir) and slowly released and taken up by the liver and spleen (as shown by the biodistribution data after 24 h). Above the CMC, the chelate is mainly taken up by the liver, with very little uptake by the spleen and lungs. This is consistent with the presence in solution of smaller particles. Sonication of the 0.2 mM radiotracer solution has a major effect on its biodistribution: it is mainly taken up by the liver, whereas its uptake by the lungs virtually ceases. This is consistent with the reduction in size of the particles after sonication to one similar to that found in the 2 mM solution. This is not reflected in any significant change in internal aggregate flexibility and \(r_1\) relaxivity, as opposed to the effect of rigidification of bilayer structures on \(r_1\) (62).

At the radiotracer concentrations investigated here, there are aggregates in solution with different sizes and structures, in particular at concentrations slightly below the CMC; this is due to the presence of premicellar aggregates. The monomodal DLS analysis performed gives only a simplified view of the very complex population dynamics through the weight-averaged particle size and an index (PI) of population heterogeneity. Furthermore, the effect of the dilution of the metal complex that occurs on injection on the size and type of aggregates formed in the blood is difficult to predict. In addition, the amphiphilic GdIII chelate has the potential to associate with plasma lipoproteins (57–59) by intercalation of the lipophilic chain into their phospholipid monolayers. These facts, taken together, make detailed interpretation of the \textit{in vivo} studies difficult. This work highlights the complexity and subtlety of the \textit{in vivo} behavior of what appears to be a simple system. Nonetheless, the rather simplistic correlation between effect of concentration and preparation (with sonication and without sonication) of
the metal chelator on particle size (determined by DLS) and the biodistribution seems to be significant.

In contrast with liposomal CAs that carry the paramagnetic amphiphilic Gd(III) chelate in the lipid bilayer, and the biodistribution seems to be significant. the metal chelator on particle size (determined by DLS) and the biodistribution seems to be significant.

Acknowledgments

This work was financially supported by the Foundation of Science and Technology (FCT), Portugal (project POCTI/QUI47005/2002 and Ph.D. grant SFRH/BD/5407/2005 to T.B.R.), Instituto de Investigação Interdisciplinar of the University of Coimbra, Portugal (grant III/BIO/45/2005), FEDER, the Institute of Health Carlos III, Spain, PI051845 (to M.L.G.M.), and the Spanish Ministry of Education and Science, grants SAF 2004-0391 and NAN2004-09125-C07-03 (to S.C.). We thank Dr Maria dos Anjos Neves, at the Instituto Tecnológico e Nuclear, Lisbon, Portugal for providing the [153Sm]3+ labeled chelate at concentrations below the CMC. The possibility of using this type of micellar compound for imaging lung pathologies involving water accumulation, which will depend on the degree of dilution of the imaging agent in the body relative to its CMC, is worth pursuing in future studies.

REFERENCES

Copyright © 2007 John Wiley & Sons, Ltd.

A NEW POTENTIAL SELF-ASSEMBLING LIVER MRI CONTRAST AGENT

335

