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Abstract

Nowadays, the Internet of Things (IoT) has a big impact on our way
of living, making security a huge concern. In many cases, standard
techniques like firewalls are unable to prevent intrusions, and thus,
Intrusion Detection Systems (Intrusion Detection System (IDS)s) are
required, either for detecting external or internal breaches of security.
Currently, for the IoT, there are no ready-to-use IDS solutions based
on pattern recognition.

The main goal of this work is to develop an Anomaly-based IDS for
the IoT, operating at the Constrained Application Protocol (CoAP).

The new Anomaly-based IDS, AnIDS, is presented along with the
architecture, software libraries, platforms, scenario and performance
evaluation. Client CoAP level misbehaviors are programmed in Con-
tiki, and features are calculated with Wireshark, a packet dissector.
These features are pre-processed by standardization and the feature
extraction algorithms Principal Component Analysis (PCA) and Lin-
ear Discriminant Analysis (LDA). The resulting data is processed
using Support Vector Machine (SVM), a machine learning algorithm
based on the Scikit-Learn package, in order to train a classifier. This
classifier is evaluated with the plotting of Confusion Matrices and
Receiving Operator Characteristic (ROC) Curves.

AnIDS allows to detect the signs of an intrusion, by cross checking
the normal behavior, known a priori of the nodes, with a known
data pattern of intrusion. AnIDS is also able to identify the type of
misbehavior present on a node based on a priori data patterns of the
specific intrusion.

The Client CoAP misbehavior implemented are: implicit Denial of
Service (DoS), repeatedly Acknowledgement (ACK) sending, wrong
URI requesting, and invalid CoAP content accept option requesting.

Results demonstrate that AnIDS can obtain an F Measure and a
Recall scores of ∼ 98%, demonstrating that the system is capable to
distinguish between the normal and the intruder behavior. As CoAP
is the most disseminated open source application protocol on the IoT,
AnIDS can have a significant impact on IoT security.

Keywords— IoT, 6LoWPAN, CoAP, Machine Learning, IDS
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Resumo

Na civilização atual, a Internet das Coisas (IoT) rege a nossa forma de
viver, tornando a segurança desses aparelhos uma preocupação. Em
muitos casos, técnicas standard como as firewalls são insuficientes,
exigindo o recurso a Sistemas de Deteção de Intrusões (IDS) de forma
a identificar intrusões externas e internas. Atualmente, para a IoT,
não se encontram IDSs baseados em reconhecimento de padrões que
estejam dispońıveis.

O objetivo desta tese é desenvolver um novo IDS baseado em anoma-
lias para a IoT, que opere ao ńıvel da camada protocolar de aplicação,
CoAP (constrained application protocol).

É apresentado um novo IDS, AnIDS, sendo descrita a sua arquitetura,
bibliotecas de software, plataforma, cenário e as técnicas usadas para
a avaliação da performance. Os comportamentos erróneos de clientes
CoAP são programados em Contiki, e as caracteŕısticas (features) são
calculadas via Wireshark. Estas caracteŕısticas são pré-processadas
com standardização, para média 0 e desvio padrão 1, e são aplica-
dos os algoritmos de extração de features PCA e LDA. Os dados
resultantes permitem treinar o algoritmo de classificação SVM, pre-
sente na biblioteca Scikit-Learn. O classificador é avaliado através
do cálculo de matrizes de confusão e curvas ROC.

O AnIDS permite detetar sinais de intrusões cruzando dados car-
acteŕısticos de comportamento normal com dados de nós com um
padrão conhecido de intrusão. O AnIDS também é capaz de identi-
ficar o tipo de comportamento erróneo presente num nó baseando-se
em padrões de dados de intrusões espećıficas, previamente conheci-
das. Implementam-se os seguintes comportamentos erróneos: DoS
impĺıcito, envio constante de ACKs, pedidos a URIs inválidos e pe-
didos com a flag de CoAP accept não suportada.

Os resultados obtidos para os indicadores F Measure e Recall de ∼
98%, demonstram que o AnIDS pode distinguir com elevado grau de
certeza o comportamento normal do comportamento erróneo. Dado
que o CoAP é o protocolo aberto mais disseminado da IoT, o AnIDS
poderá ter um grande impacto na segurança nos dispositivos da IoT.

Plavras Chave— IoT, 6LoWPAN, CoAP, Machine Learning, IDS
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Chapter 1

Introduction

This chapter provides an introduction to this thesis. It describes the context, the research
goals, the scheduling of the work, and the document structure.

1.1 Context

Our way of life is particularly dependent on the Internet of Things (IoT). IoT is everywhere,
bringing computerization and connectivity to billions of devices such as private and public
transports, home appliances, medical devices, webcams, power plants, or just smart light
bulbs.

The low cost of these microcomputers comes with a price: reduced computing power
and consequent difficulties in installing protection software. Another problem is that IoT
network security is more complex than traditional network security because of the diversity
of the communication protocols, standards, and device capabilities. Moreover, as they are
connected to the internet, they are open to intruders through the Internet Protocol version
6 (IPv6).

IoT security breaches have become a hot topic, particularly since WikiLeaks’s intrusion
in CIA documents and the Dyn attack. These episodes revealed that the security vulner-
abilities in the IoT are deep and pervasive, and may threat not only people’s personal life
but may also have a world-level impact. A recent paper demonstrates that even products
apparently protected by standard cryptographic techniques are vulnerable [35]. So, in
spite of the many communication protocols that have been developed, security remains an
issue and Intrusion Detection Systems (IDSs) need to be applied.

Pattern Matching algorithms have been extensively used, namely Signature Based IDS
Snort. Currently, for the IoT, there are no ready-to-use IDS solutions based on pattern
recognition. Anomaly-based IDS is a promising solution, and it will be explored in this
work, targeting the applicational layer protocol of the IoT CoAP.

1.2 Research Goals

The main gold of this Master thesis is to develop a new Anomaly-based IDS, AnIDS, for
the IoT working at the Application protocolar Layer Level, CoAP. Secondary aims include:
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• selection of an IoT platform to conceive a scenario necessary for training the classifier;

• identification of different types of intrusions;

• development an IDS with a higher performance, namely good accuracy, recall and
F Measure.

1.3 Document Structure

The document has the following structure:

Chapter 1 – Introduction

The first chapter is an introduction to familiarize the reader with the used concepts, and
to contextualize the problem.

Chapter 2 – State of the Art

The second chapter provides the state-of-the-art on the security of IoT protocols that
operate on the Internet.

Chapter 3 – System Architecture and Methodologies

The third chapter contains the Architectural features of the IDS, namely an high level
view of the System, message formats exchanged among the devices, and the assumptions
of the IDS being developed.

Chapter 4 – Implementation and Evaluation Strategy

Chapter four describes the implementation and the evaluation of the proposed solution.

Chapter 5 – Results and Analysis

Chapter five presents and discuss the performance results of the proposed solution.

Chapter 6 – Conclusion and Future Work

This final chapter presents the major conclusions, discusses impact and limitations of this
work, and proposes future developments.

2



Chapter 2

State of the Art

2.1 Basic Concepts

For clarity, some important concepts used on this work are defined next according to [27]:

1. Intrusion: The action of trying to compromise Confidentiality, Integrity and Au-
thentication (CIA) policies or to bypass the security techniques of a computer or a
network;

2. Intrusion Detection: The process of monitoring the events occurring in a computer
system or network and analyzing them for signs of intrusions. Since the Wireless
medium is more susceptible to attacks, namely WDoS (Wireless Denial of Service)
ones, the IDS are categorized as belonging to one of the two groups: Wireless-based
or other technology types;

3. Intrusion Detection System: The hardware or the software that is responsible for
automating the Intrusion Detection Task;

4. Intrusion Prevention System (IPS): A system that not only inherits all the capa-
bilities of the IDS, but also has the capability of stopping the intrusion events.
Normally, the authors fuse both the terms IDS and IPS, resulting on the acronym
IDPS (Intrusion Detection and Prevention System) to refer to an IPS.

2.2 Protocols on the IoT and their Security

Limitations of the IoT devices make cryptographic algorithms and communication pro-
tocols to be hindered, and thus, they influence the design of the architectural structure.
Those limitations include:

• low computing power capability;

• low available storage;

• constant power drain;

• non trusted random generators;

3



• short term relationships between the device and the others, that may never had
communicated with them before;

Such limitations must be taken into account when defining the protocol standards for
the IoT. Devices run their own Internet stack using different protocols depending on the
layer. In this Section, the main protocols for the IoT and their security mechanisms are
explained.

2.2.1 IEEE 802.15.4-2011

IEEE802.15.4-2006 is a physical layer protocol, defined by the Institute of Electrical and
Electronics Engineers (IEEE) to support low-rate wireless personal area networks. It was
originally planned to support critical industrial very low cost communication to nearby
devices, with little or no underlying infrastructure, intending to exploit lower power con-
sumption.

IEEE802.15.4 is also used on the Media Access Control (MAC) layer (that interacts with
the radio) and defines the format of the Header of the MAC packet and the communica-
tion between motes (low computing nodes). IEEE 802.15.4 devices are recognized either
by their 16-bit short identifier or by their 64-bit IEEE EUI-64. The 16-bit identifiers
are employed by devices that are short on computing resources or operate on restricted
environments.

The mechanisms for securing IEEE802.15.4 are applied only to the MAC layer (layer 2),
though these mechanisms imply that the upper layers will be more protected.

From the standard [12], ad hoc networks are not significantly different from any other
wireless network, being susceptible to passive eavesdropping attacks and active tampering,
for the requirement of a wired connection is not mandatory in order to participate on the
communication.

Security mechanisms on the PHY/MAC layer inherited by higher layer protocols, being
based on symmetric-key cryptography, providing combinations of services as, data confi-
dentiality, data authenticity and replay protection.

It is important to make clear that an IEEE 802.15.4 device is not required to implement
security, since it is optional. The MAC Layer of the IEEE 802.15.4 establishes security
procedures for:

• outgoing and incoming frames;

• KeyDescriptor, SecurityLevelDescriptor and DeviceDescriptor lookup;

• incoming security level checking;

• incoming key usage policy checking.

There are built-in tools for making intrusions on IEEE802.15.4 protocol such as KillerBee
from the OS Kali Linux.

The IEEE 802.15.4 does not hang on a specific keying model, leaving to the administrator
the choice of the most adequate model [22]. This selection depends on the threat model
and on the scenario. A scenario is characterized, for example, by the applications that are
currently running on the device and by its computing resources.

4
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There are also issues regarding the reuse of the same Nonce value when the same Key
is used in more than one ACL (Access Control List) entry. When using Stream Ciphers,
the previous situation can facilitate the process of reverse engineering plain texts out of
ciphered texts. The reuse of the keys may pose a huge problem, because group keying
makes the repetition of the same key in multiple ACL entries more frequent, making the
reuse of the Nonce value a security breach. In a similar way, network shared keying and
replay protection are incompatible.

Moreover, IEEE 802.15.4 is not robust against a Distributed Denial of Service Acknowl-
edgment (DDoS Acknowledgement (ACK)) attack, as the integrity or confidentiality is
not applied to ACK packets. This allows the forgery of Acknowledgments, for which the
attacker only needs to learn the sequence number of the packet to be confirmed, being
the packet sent in plain text. Following [22], the use of key management mechanisms at
higher layers of the protocolar stack, is a workaround on the management of the ACL
limitations at the link layer in respect to the support of group and network shared keying.
The optimized hardware of the nodes, that have the cryptography mechanisms optimized
at hardware level, provides higher layers, application and network, strongly securing their
payload.

2.2.2 International Engineering Task Force (IETF) 6LoWPAN

IETF 6LoWPAN is an adaptation layer, placed right between IPv6 and IEEE802.15.4e
MAC layers, that allows link layer forwarding and fragmentation. The IPv6 header and
Next Headers can be compressed, by crossing out redundant information that can be
inferred from other layers of the stack. As in RFC 4944 [28], the adaptation layer itself
does not provide any security procedures, depending of the IEEE 802.15.4 on the MAC
layer. As stated on RFC 4944, although the Interface Identifiers from EUI-654 MAC
addresses are intended to be unique, their replay or their forgery will not be detected by
the IETF 6loWPAN protocol.

2.2.3 IETF Routing Protocol for Low Power and Lossy Networks (RPL)

RPL is a free of charge network layer protocol, assuring routing on most IoT devices.
In the most common scenario involving RPL, the nodes of the network are connected
through multi-hop paths to a small number of root devices, which are responsible for data
gathering and management tasks. For each root device, a Destination Directed Oriented
Acyclic Graph (DODAG) is built based on different parameters, such as link costs, motes’
attributes and Objective Function. The Objective Function must be defined on each
implementation of the IETF ROLL standard, since it is not provided by the protocol.
Each DODAG is identified by an ID, the DODAGID, and the graph is built based on a
Rank metric.This metric is monotonically decreasing along the DODAG and towards the
target mote, based on a gradient approach.

According to RFC 6550 [14], RPL supports three security modes, namely:

• Unsecured, in which the basic messages like DIS (DODAG Information Solicitation),
DIO (DODAG Information Object), DAO (DODAG Advertisement Object), and
DAO-ACK for meshing configuration, do not carry Security Sections, relying on the
lower level layer protocols for securing the frames;

• Pre-installed, in which a node that is expected to join the network has a pre-installed
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key, becoming either a host or a router, guaranteeing message, confidentiality, in-
tegrity and authenticity.

• Authenticated, which similarly to the previous mode, it is based on a pre-installation
of a key, being only allowed to become a host. In order to get promoted to router,
it must obtain a second key from a key authority, which can authenticate that the
requester is allowed to be a router before providing it with the second key.

The secured network uses the pre-installed or the authenticated mode; in either way, it
will be signaled with a specific bit, ’A’ bit, on the payload of the layer 3 or (network
layer) packet. All RPL implementations must have the algorithm CCM (Counter with
Cipher Block Chaining-Message Authentication Code). CCM requires AES-128 as the
cryptographic algorithm.

When a node intends to join a secure Network, it is assumed it has been configured with
a shared key for communicating with its future neighbours and the root of RPL. To do
this, either the node listens for secure DIOs or triggers secure DIOs by sending a secure
DIS. There are rules on RFC 6550 [14] that define the specific values of the DIS and DIO
messages that must be present on each field of each packets.

The most problematic attacks that can bypass RPL protocol are the following [26]:

• Rank Attacks, which can lead to the construction of optimized paths, loop creations
or optimized path disruption

• Local Repair Attacks in which an attacker would be able to change its rank to the
highest value possible and broadcast it to all its neighbours, making them to find
a new parent towards the root. The other alternative for the attacker would be
to change its DODAG ID value, making the current network to assume the node
changed to a different network, because each DODAG ID on a network is unique.

• Resource Depleting Attacks, that consists on depleting resources, such as computa-
tional and battery life, by imposing the execution of a large number of processes, for
in RPL there is no limit to the number of actions.

There are open-source tools for simulating and generating attacks at RPL level: Contiki-
IDS and RPL-attacks. The Contiki-IDS is a repository of an IDS at RPL level. It has built-
in Cooja attack simulations, like worms and sinkholes. The Contiki version in which the
IDS was built (2.6) is outdated. The RPL-attacks consists on a Python based framework
built for simulating Hello-Flooding, Increased Rank andor Blackhole attacks.

2.2.4 Constrained Application Protocol (CoAP)

The IETF Constrained RESTful Environments (CORE) working group developed the
Constrained Application Protocol (CoAP), a protocol that easily translates to HTTP for
integration with the web, while respecting the specialized needs, such as low overhead
and simplicity under constrained environments. Therefore, a set of mechanisms must be
applied to compress application layer protocol packet, payload. CoAP works on top of
UDP, holding the unreliable nature of UDP. HTTP and CoAP have different client/server
models: synchronous for HTTP and asynchronous for CoAP.

CoAP messages fall in one of the following categories, Confirmable, Non-confirmable (being
used for multicasting), Acknowledgment and Reset.
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CoAP inherits the same CRUD (Create, Read, Update, Delete) operations as Represen-
tational State Transfer (REST): GET, (read), POST (create), PUT (update), DELETE.
It also has the same HTTP code errors.

CoAP URI is similar to HTTP URI, allowing an easy migration to IPv6 networks. As in
RESTful architectures, CoAP resources are organized hierarchically being the URI in the
form of:

coap-URI = ”coap:” ”//” host [”:” port] path-abempty [”?” query]

Proxying and caching are elements of men-in-the-middle attacks. These attacks ruin
IPsec or DTLS, which are protection of systems of CoAP messages. Attacks to proxying
and caching break confidentiality and/or integrity of messages exchanged. For the case
of caching proxies, the scenario gets worse, for, contrarily to HTTP/1.1, CoAP has no
caching control suppressing options.

Another security breach is the malicious increase of packet size, turning CoAP susceptible
to DDoS attacks. If NoSec mode is used in a node, there is no way to verify the source
address given to the request packet, as UDP does not provide any mechanism for it.
So, an attacker needs only to type the destination IP address of its victim in a request
packet, and amplify it. A network composed of many constrained devices may cause the
impression that the network would not be able to generate a large ammount of traffic.
However the target of the attacker is to constraint the network. The use of Multicasting
on CoAP networks could also compromise the security of all network. Yet, on RFC 7252,
all CoAP servers can only accept multicast requests either if their source is authenticated
cryptographically, or if they do not cross a multicasting boundary limit. CoAP servers
should limit the use of multicast to specific resources, depending on the scenario.

Regarding packet spoofing attacks (in which the attacker tries to assume another node’s
identity), as CoAP uses the handshake free UDP protocol, a rogue node is free to read and
write any type of messages namely reset, confirmable, request, response or observe. How-
ever, forged response packets can be detected and fought without recurring to transport
layer security, by choosing a randomized token in the request. ”CON Packet Attacks” can
be deployed towards the victims with the purpose of their Power Depletion. IP spoofing
can also be used to block the CoAP server valid IPs that are being spoofed by an attacker.
These valid IPs are wrongly considered as fake by the CoAP server. To avoid these attacks,
CoAP servers should not use NoSec mode [13].

One of the most significant problems on CoAP security is the possibility of Cross Proto-
colar Attacks, even when an attacker, named Mallory, wants to target a node, Alice, but
Mallory is currently blocked via a firewall rule from Alice. Also Mallory knows that Alice
usually talks to Bob, a CoAP endpoint. A workaround to this security measure is:

1. Mallory sends a spoofed packet with Alice address to Bob;

2. Bob receives the spoofed packet sent by Mallory, and replies to Alice’s address;

3. Alice receives the packet from Bob, for it ”was” Alice who sent the request;

This way, a DDoS attack can be easily executed, making Alice to block Bob instead of
Mallory.

One more problematic scenario is the key installation process. For generating a good key,
its entropy should be as high as possible, and preferably externally generated. Creating
a Key Group for N clients will reduce the number of keys to be managed. However, it
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will increase the ratio at which entropy decreases, for same key is distributed by N clients.
This makes easier for the attacker to crack the keys, as each single user of the group is a
bottleneck of security.

Since we are only interested in open (non-proprietary) protocols, it is important to note
that the Transport Layer of the IoT is currently merged with the Application layer. So,
the Application Layer is considered filled with CoAP protocol. In [22] different security
techniques and applications, exploring security properties of CoAP targeting transparent
end-to-end security, are extensively described.

There are other IoT protocols, like Bluetooth Low Energy (BLE), WirelessHART, ZWave,
LoRWaN, IEEE 802.11ah, ZigBee and MQTT. Besides not being open source, they all have
security problems and have no clear advantages over open source protocols, like CoAP.
Some examples of security problems are described in [21] for BLE, [33] for WirelessHART,
[29] for IEEE 802.11ah, [37] for ZigBee. These protocols will be not discussed as they are
not on the scope of this thesis.

2.3 IoT Operating Systems

For selecting the most appropriate Operating System (OS) for our work, some characteris-
tics were taken into consideration, namely: project activity, community size, programming
languages supported, devices supported in terms of chipsets and hardware requirements.
The characteristics of the main Operating Systems for IoT are summarized in tables from
2.1 to 2.7, based on current literature. ([1, 3–10, 17–20]).
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Table 2.1: ARM MBed analysis

Name: ARM Mbed

Sum up:
platform and operating system for internet-connected
devices based on 32-bit ARM Cortex-M microcontrollers;

Quality of
Documentation

very good and guided documentation;

Programming
Language

C/C++ language

Min. Hardware
Requirments

256KB of Flash; 32KB of SRAM;

Devices &
chipset
Supported:

devices: mbed NXP LPC1768; chipsets: ARM, Atmel,
BBC, Make it Digital Campaign, CQ Publishing Co.,Ltd.;
Delta; Embedded Artists, Espotel; JKSoft; Maxim
Integrated; MultiTech; NXP Semiconductors; Nordic
Semiconductor ASA; Nuvoton; Outrageous Circuits;
RedBearLab; Renesas; STMicroelectronics; SeeedStudio;
Semtech; Silicon Labs; Switch Science Inc.; WIZnet;
communitycontributors; u-blox AG;

Project /
Community
Activity

more than 10.000 questions put by developpers; Blog
constantly updated, having 3 posts on March 2017; more
than 6000 posts on forum;

Other Aspects:

develop applications with the free online code editor and
compiler, using the ARMCC C/C++ compiler, providing
private workspaces; Applications can be developed; The
mbed software consists on core libraries that provide the
microcontroller peripheral drivers, networking, RTOS and
runtime environment, build tools and test and debug
scripts; A components database provides driver libraries for
components and services; Vast number of real life examples
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Table 2.2: Contiki analysis

Name: Contiki

Sum up:

uIP TCP/IP stack, uIPv6 stack, Rime stack. Multitasking
kernel; Windowing system and GUI; Networked remote
display using Virtual Network Computing; small web
browser; Personal web server; Simple telnet client
Screensaver

Quality of
Documentation

easy instalation via Instant Contiki; very good and guided
documentation;

Programming
Language

Partial C - use of Protothreads, multithreading and event
driven programming.

Min. Hardware
Requirements

RAM < 2kB (+ 30kB for GUI); ROM < 30kB embeded
systems to 8-bit computers;

Devices &
chipset
Supported:

Atmel – ARM, AVR NXP Semiconductors – LPC1768,
LPC2103, MC13224Microchip – dsPIC, PIC32, Texas
Instruments – MSP430, CC2430, CC2538, CC2630,
CC2650, STMicroelectronics – STM32 W

Project /
Community
Activity

Over 150 contributors; last updated blog was on August
2015; Average of 150 mails each past 3 months;

Other Aspects:
Low battery consumption mechanism; Contiki instalation
comes in a VMWare image, with a network simulator,
cooja.
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Table 2.3: Apache Mynewt analysis

Name: Apache Mynewt

Sum up:
BLE and 6LoWPAN+CoAP protocols supported;
preemptive multithreading; Semaphores; Mutexes; Event
Queues; Memory Management; data buffers.

Quality of
Documentation

instalation steps well guided; amateur style documentation;

Programming
Language

C languages for coding apps; higher level languages to
build apps.

Min. Hardware
Requirements

Mynewt size: approx. 7.5kB ROM and 1.2kB RAM

Devices &
chipset
Supported:

nRF51—2 DK; RuuviTag; BLE Nano; BLE Nano2 and
Blend2; BMD-300-EVAL-ES; STM32F4DISCOVERY;
STM32-E407; Arduino Zero (Pro); Arduino M0 Pro;
NUCLEO-F401RE; FRDM-K64F from NXP; Creator Ci40
IoT Kit; BBB micro:bit; Adafruit Feather.

Project /
Community
Activity

Over 30 contributors; 3 events on current year;
Developers&Users contributions: Around 700 posts Posts a
month.

Other Aspects:
Pros: Newtron flash file system (nffs) for minimal RAM
usage and reliability; Cons:Non friendly documentation for
advanced programmers.
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Table 2.4: Raspbian analysis

Name: Raspbian

Sum up:

Debian-based computer operating system, officially
provided by the Raspberry Pi Foundation, as the primary
operating system for the family of Raspberry Pi
single-board computers; highly optimized for the
Raspberry Pi line’s low-performance ARM CPUs; uses
PIXEL, Pi Improved Xwindows Environment, Lightweight
as its main desktop environment as of the latest update;
composed of a modified LXDE desktop environment and
the Openbox stacking window manager with a new theme
and few other changes;

Quality of
Documentation

Extensively Documented, with very good start up guide,
for any experience level; very extensive FAQ;

Programming
Language

D language for developpers; python, scratch, mathematica
for apps;

Min. Hardware
Requirements

RAM < 1MB; ROM < 1MB;

Devices &
chipset
Supported:

over 6500 topics on the forum; very community support;

Project /
Community
Activity

very good reputation

Other Aspects:
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Table 2.5: RIOT OS analysis

Name: RIOT OS

Sum up:

multithreading and realtime capabilities; network stacks:
IPv6, 6LoWPAN, Content centric networking; standard
protocols: RPL, User Datagram Protocol (UDP),
Transmission Control Protocol (TCP), and CoAP

Quality of
Documentation

Average quality of Documentation for installation : github
wiki based; very good for developers

Programming
Language

fully support for C and C++

Min. Hardware
Requirements

RAM < 1.5kB; ROM < 5kB;8-bit, 16-bit, and 32-bit
processors.

Devices &
chipset
Supported:

devices: Airfy Beacon, Arduino Due, Arduino Mega 2560,
Atmel samr21-Xplained Pro, f4vi, HiKoB FOX, mbed NXP
LPC1768, MSB-IoT, Nordic nrf51822 (DevKit),
OpenMote, Spark-Core, STM32F4DISCOVERY,
STM32F3DISCOVERY, STM32F0DISCOVERY,
ScatterWeb MSB-A2, +K1ScatterWeb MSB-430H, TelosB,
Texas Instruments cc2538 Developer Kit, Texas
Instruments EZ430-Chronos, UDOO Board (Cortex-M3
part), WSN 430 (v1.3b and v1.4), yunjia-nrf51822, Zolertia
Z1; chipsets: MSP430, ARM7, Cortex-M0, Cortex-M3,
Cortex-M4, MIPS32, x86

Project /
Community
Activity

140 contributors; around; around 1500 issues on the past 4
years, in which over 1100 were closed; Twitter blog in
constant update;

Other Aspects:

very well documented; native port enables RIOT to run as
a Linux or OS X process, enabling use of standard
development and debugging tools such as GNU Compiler
Collection (GCC), GNU Debugger, Valgrind or Wireshark;
RIOT is partly Portable Operating System Interface
(POSIX) compliant; cooja integration
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Table 2.6: TinyOS analysis

Name: TinyOS

Sum up:

fully non-blocking; based on software components, being
some hardware abstractions. Components are connected to
each other using interfaces. TinyOS provides interfaces and
components for common abstractions such as packet
communication, routing, sensing, actuation and storage

Quality of
Documentation

sparse documentation;

Programming
Language

Optimized C language exploting sensors’ limits

Min. Hardware
Requirements

RAM < 1kB; ROM < 4kB

Devices &
chipset
Supported:

Devices: btnode3; epic; exp msp432; eyesIFXv1;
eyesIFXv2; intelmote2; iris; mega2560; mica2; mica2dot;
micaz; mulle; null; nxp jn516; sam3s ek; sam3u ek;
shimmer; shimmer2; shimmer2r; span; telosa; telosb;
tinynode; ucbase; ucmini; ucprotonb; z1;

Project /
Community
Activity

39 contributors; over 270 issues where over 200 were closed
as of 2012; claiming to have ’35,000 downloads each year’

Other Aspects: Java and shell-scripts interfaces for easy programming.
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Table 2.7: Zephyr analysis

Name: Zephyr

Sum up:

early members and supporters of Zephyr include Intel,
NXP Semiconductors, Synopsys, and UbiquiOS
Technology; Single address-space, where both the
application code and kernel code execute in one shared
address space as from version 1.6.0; Highly configurable;
Resources defined at compile-time; Minimal error checking;
Development services

Quality of
Documentation

Documentation consolidated in one place;

Programming
Language

C language

Min. Hardware
Requirements

RAM < 2kB

Devices &
chipset
Supported:

X86 Boards, Arduino/Genuino 101, Galileo Gen1/Gen2,
MinnowBoard Max, X86 Emulation (QEMU), Quark
D2000 Development Board, tinyTILE ARM Boards,
96Boards Carbon, 96Boards Nitrogen, Arduino/Genuino
101 (BLE), Arduino Due, CC3200 LaunchXL, CC3220SF
LaunchXL, Curie (BLE), ST Disco L475 IOT01, NXP
FRDM-K64F, NXP FRDM-KL25Z, NXP FRDM-KW41Z,
Hexiwear, Hexiwear KW40Z,ARM V2M MPS2,
nRF51-PCA10028, nRF52840-PCA10056, Redbear Labs
Nano v2, Nordic nRF5x Segger J-Link, nRF52-PCA10040,
ST Nucleo F401RE, ST Nucleo F411RE, ST Nucleo,
L476RG, OLIMEXINO-STM32, ARM Cortex-M3
Emulation (QEMU), SAM E70 Xplained, ARM V2M
Beetle, ARC Boards, Arduino/Genuino 101 (Sensor
Subsystem), DesignWare(R) ARC(R) EM Starter Kit,
NIOS II Boards Altera MAX10, XTENSA Boards, Xtensa
simulator

Project /
Community
Activity

143 contributors; over 2100 issues, with over 1500 solved
and 597 open; 6 recorded events in 2016, according to the
blog

Other Aspects:
Real life examples derived from Zephyr - a motion sensing
tooth brush, called Grush;

After comparing all OS we select Contiki for the 6BR, CoAP server and CoAP clients.
This choice is justified by the documentation and simulation tools provides, by its software
stability and hardware compatibility, as described in Table 2.2 and also because it is
adopted by many researchers.
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2.4 Intrusion Detection on the Internet

This section describes the techniques required to detect an Intrusion in the standard
Internet.

2.4.1 IDS Methodologies

An IDS can be classified in one of three major categories:

• SD (Signature-based Detection), also known as Knowledge-based Detection or Misuse
Detection, in which a signature is a pattern or a string that corresponds to a known
attack or threat. SD is the process of comparing patterns against captured events
for recognizing possible intrusions;

• AD (Anomaly-based Detection) or behavior based ; an anomaly is a deviation from a
normal behavior; a normal behavior, also known as profile, represents the expected
behavior derived from monitoring regular activities, network connections, hosts or
users over a period of time. Profiles can be either static or dynamic and is defined by
a set of attributes. Typical attributes of a profile include, for example, the frequency
of key strokes, the number of different files accessed on a given time or the number
of incorrect attempts on the login screen. By comparing the profiles with observed
events, intrusions are recognized with a good accuracy;

• SPA (Stateful Protocol Analysis) or Specification-based, which is based on tracing
the protocol states, depends on the generic profiles developed to specific protocols.

There is also the Hybrid approach in which complementary methodologies are followed, like
using both SD and AD, in order to detect known attacks and to warn of unknown threats,
respectively. Figure 2.1 states the advantages of the three major IDS methodologies.
Though theoretically SPA could be the most effective, it is almost impractical, as the
state machine of the protocol implementation can be very large. Also, the analysis of the
state machine can take a very high execution time.

Figure 2.1: Pros and Cons of IDS Methodologies, from [27].

In general, the Anomaly-based methodology is the elected one. The stateful-protocolar-
analysis is by far the least used methodology.

According to [27], there are five different IDS technologies: HIDS (Host-based IDS), NIDS
(Network based IDS), WIDS (Wireless Based IDS), NBA (Network Based IDS) and MIDS
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(Mixed based IDS). The MS is responsible for processing captured incidents, whereas the
DS is responsible for storing event information.

An HIDS monitors and collects the characteristics of hosts containing sensitive informa-
tion, servers running public services, and suspicious activities. A NIDS captures network
traffic at specific network segments through sensors, and subsequently, analyzes the ac-
tivities of applications and protocols to recognize suspicious incidents. WIDS is similar
to NIDS, but captures wireless network traffic, such as ad hoc networks, wireless sensor
networks and wireless mesh networks. When multiple technologies are used, as MIDS, the
security goal can be fulfilled for a more complete and accurate detection.

The previous authors [27] also compare IDS detection approaches, classifying them in
five groups. These approaches are characterized according to the detection methodology,
technology type, and other features. The detection approaches described are:

• Statistics-based, consisting on analysis of network packets, audited data and user
profiles. This approach uses Anomaly Detection as the prevailing detection method-
ology, and is based on Bayesian and distance analysis. The NIDS technology is
preferred and its source is mostly audited data. These kind of approaches are stated
as simple, and real-time active, though less accurate;

• Pattern-based, in which Signature Detection is more frequently used than Anomaly
Detection. This approach is simple but less flexible; it makes use of keystroke moni-
toring and file system checking. The HIDS technology is the most prevailing on this
approach;

• Rule-based, having lower false positive rate and a high accuracy, though it is very
hard to have its rules created or updated. The NIDS technology is the elected choice
on this approach. Support Vector Machine (SVM) is one of the algorithms used on
this approach, along with other data mining techniques;

• State-based, in which Anomaly Detection is more common than Signature-based,
having been used with a Stateful-Protocol-Analysis methodology. State-based ap-
proach is described as having a low false positive rate but also to be less effective. It
recurs to Markov Chains and user intention identification. The HIDS and the NIDS
have been equally used.

• Heuristic-based, being fault tolerant, self learning and scalable flexible, have their
foundations based on machine learning techniques, like neural-networks, fuzzy logic
and genetic-algorithms.

The components of an IDS include a sensor and an agent. One major drawback of IDS
technologies is that they cannot guarantee 100% accuracy in intrusion detection. In real
world scenarios, security administrators prefer to reduce false negatives (the errors in
classification where malicious events were classified as being benign), even if that means
an increase of false positives. Figure 2.2 describes the taxonomy of IDS [27] with great
detail. IDSs can be categorized according to the type of System Deployment, Data Source,
Timeliness and Detection Strategy.
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Figure 2.2: IDS Taxonomy, from [27].
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2.5 Intrusions and Detection Systems on the IoT

Figure 2.3 gives a simplified overview of IoT intrusions, classified by protocol layers (Phys-
ical, MAC, Network, Transport and Application) and groups of protocols (IEEE 802.154,
6LoWPAN RPL and CoAP, corresponding to the three coloured areas).

An example of an attack is Sybil that consists in overpowering a mote in order to gain
access to his resources. When the Sybil node is localized on MAC Layer, the effect is
to change the transmission link, but when localized on the Network Layer, the effect is
to create a fake route. In some cases, like with Misdirection and Internet Smurf Attack,
the intrusions have different purposes, but the procedure is the same. The Flooding, the
De-synchronization and the Internet Smurf Attack operate by flooding the target.

Figure 2.3: Intrusion Taxonomy by Protocolar Layer. Adapted from [26].

Many of these intrusions may be considered as Denial of Service intrusions (DSI). A Denial
of Service (DoS) attack consists of bombarding a central resource located on a public
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network with normal requests, in such a way that resources rapidly become depleted.
These intrusions are particularly difficult to be detected by Signature-based IDS. DoS is
easily detected by the Anomaly-based IDS, the approach chosen on this thesis.

2.5.1 Denial of Service Detection

There are several types of DoS [25]:

• Jamming attacks, exploiting transmission of radio signal interference, frequencies
being used by the sensor network;

• Cloning of Things attacks, which consists on replacing nodes during their mainte-
nance phase, like a software update, by another pre-programmed version of the same
physical node. A node can also be captured during its operational phase. In both
situations, an avalanche of new security failures can occur, such as extraction of
security parameters or firmware injections;

• Eavesdropping attacks, which relies on a sloppiness of the communicating parties,
like exchanging security keys in plain text; and, even if the exchanged material is
ciphered, one can deploy a cryptographical analysis or a brute force attack, reducing
the entropy of the keys, and easing the decipherment of the messages. This can
possibly evolve to a Man-in-the-Middle attack.

• Routing attacks, by spoofing, altering or relaying routing information of a grid of
devices in order to create communication loops or repelling network traffic. Flooding,
sinkhole, selective forwarding, wormhole attacks also fall into this category.

• Application attacks, as the most used applicational protocol, CoAP, is still very
young, there are many security issues that arise and will arise in the future; some
of the known vulnerabilities are protocol parsing, SYN flood, proxying, or cross-
protocol attacks.

A DDoS (Distributed DoS) is a slightly different approach to the DoS attack. In DDoS
the number of attackers is higher and the sending frequency of each of the attackers is
lower, making it more difficult to be detected.

Two solutions for DoS attacks have been proposed, but neither of them uses CoAP: one
is based in 6LoWPAN and another is based in detection in ebbits networks.

The first solution, proposed by [30], prevents DoS attacks against low powered devices,
originated from the Internet, by putting all the protection on the more capable devices,
the edge routers. The mechanism is based on the address registration process defined in
the Neighbour Discovery (ND) protocol of 6LoWPAN. Accordingly to [30], the traffic is
forwarded from the Internet to the 6LoWPAN devices if the following rules are met:

1. The destination node address must be registered at the edge router, so that traffic
does not become forwarded to non existing nodes;

2. The nodes must previously declare the willingness to accept data from the Internet.
In this way, nodes that should not be addressed from outside, will not be contacted,
like the 6LoWPAN routers.

3. The transport protocol to be used by the device must be registered at the edge
router, so that no unexpected traffic can reach the device.
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4. Nodes must previously inform the edge router about the accepted traffic rate limit,
in order to avoid flooding attacks.

This mechanism is fairly easy to implement, being only required to change the three fields
on specific types of messages. As this solution uses stateless traffic processing, it supports
a scalable architecture, by giving the chance of implementing the mechanism on multiple
edge routers, thus turning the network more robust. Lastly, the compression rates of the
6LoWPAN are not compromised, for the non-compliant messages have their reserved fields
with a 0 value.

The second solution [25] proposes an architecture for an automated system that detects
intrusions on IoT devices connected to ebbits networks [24]. These networks provide a
platform for connection IoT devices remotely located, offering a security manager service.
The architecture of ebbits network is given in Figure 2.4.

Figure 2.4: DoS Detection Architecture, from [25].

The architecture includes the Physical world and the ebbits Network Manager. The Net-
work Manager includes a Security Manager that provides security mechanisms, encryption
and policy enforcement. It also enables secure communication between ebbits Network
Manager and the Physical World. The Security Manager has two main components, the
IDS and the DoS protection Manager. The IDS is composed by a set of probes, the IDS P
devices, that have promiscuous mode on and capture wireless packets. Probes are con-
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nected to a machine that runs an open-source IDS, Suricata. The DoS protection Manager
receives alerts from IDS when intrusion attempts occur. It also collects feature parameters
such as interference rate and packet drops from the other ebbits managers (opportunistic
and Network Management) and performs data cross to confirm an actual attack.

The efficiency of the ebbits Network security system was evaluated using penetration
testing. For creating the scenario of the penetration test, the actual attacker was a node
running Contiki Operating System, flooding the network via Wireless medium. The IDS
used was Suricata. Suricata had a rule relying on packet rate from any source to any
destination, so that if a pre-defined rate threshold was exceeded, an event in Suricata
would be triggered.

In the ebbits security system, the DoS Protection Manager relies on both the IDS and data
from the Opportunistic and Network Management, thus reducing the false alarm ratio.
But, Suricata is a Signature-based detection IDS, and so, it depends on a set of predefined
rules to detect such attacks. Such rules still need to be inserted manually by an expert on
security. This restricts the ebbits solution to the rules created by the expert.

2.5.2 Hybrid IDS

As mentioned before, hybrid systems combine different approaches, like Signature-based
detection and Anomaly-based detection, to identify known attacks and to warn about
unknown threats, respectively. Two main hybrid systems have been described: SVELTE
[34], and RIDES (Robust Intrusion Detection System) [11].

SVELTE combines Signature and Anomaly-based approaches. It is composed by three
main centralized modules:

• The 6LoWPAN Mapper, placed on the 6BR, reconstructs the RPL DODAG in the
6LoWPAN Border Router (6BR). The Mapper starts by sending requests to nodes
in the 6LoWPAN network at regular intervals, being the request constituted by the
RPL Instance ID, DODAG ID, the DODAG Version Number and a timestamp. In
return, each node responds by prepending its Node ID to the request message, and
by appending its own rank, its parent ID and all its neighbour IDs and their ranks.

• The IDS Component, installed on the 6BR and on all the constrained nodes, follows
an hybrid approach. The IDS detects and corrects the RPL DODAG inconsistencies,
detects Filtered Nodes, find rank inconsistencies and adapts to End-to-End Losses.
As shown in [34], this IDS can detect spoofed/altered information, sinkhole and
selective forwarding attacks.

• A distributed mini-firewall, installed on each constrained node and on the 6BR, pro-
vides blocking functionality against well-known external attackers, specified by the
network administrator. The firewall blocks external malicious hosts communications
to the nodes inside the 6LoWPAN network. The hosts are specified in real-time.
When a constrained node notices it is being attacked by an external host, the node
sends a packet with the host IP to the firewall module in the 6BR. However, it could
happen that the attacker would target a different node and in that way, circumvent
the blockade of communication to a specific node on the 6LoWPAN network. To
prevent such situation, the mini-firewall is extended to adapt and block any external
host, providing a minimum set of nodes complains about this same external host.

In [34] an experiment with Contiki’s simulator Cooja in Tmoke Sky nodes was described.
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The attacker was given the possibility to spoof or alter information, and/or perform sink-
hole or selective forwarding attacks. It was verified that the TP (true positives) for sinkhole
attacks in a lossless network were nearly 100% and no false positives were detected during
simulation. As for the lossy network, the TP were almost 90%. The TP ratio decreased as
the network size (number of motes) increased. The energy overhead of SVELTE running
RPL protocol (Figure 2.5) was measured with Contiki’s Powertrace application. It is in-
teresting to note that there is an exponential growth of the energy consumed by the entire
network during the 30 minutes of operation, as the number of nodes increases. Also, the
average consumption remains constant until a certain amount of nodes is reached.

Figure 2.5: SVELTE Energy overhead, from [34].

In terms of memory consumption, SVELTE only produces an overhead of 1.76k of RAM,
which is quite below the ROM of constrained devices such as the 48k in Tmote sky (Figure
2.6).

Figure 2.6: SVELTE Memory Overhead, from [34].

RIDES is a Hybrid IDS, that combines Signature-based detection relying on a predefined
ruleset, with Anomaly-based detection where the IDS can learn the malicious patterns
of an attacker. This hybrid solution was conceived to deal with attacks, such as PoD
(Ping-of-Death), that only require a small amount of packets to subvert the target. In
such cases, the Anomaly-based detection would fail, leading to a high percentage of false
negatives, for single packet attacks are not detected. This solution is based on two main
components:

• SCG (Signature Code Generator), which uses Bloom Filters for storing Snort signa-

23



ture codes of different sizes, in an attempt to minimize false positives, while occur-
rences of false negatives are close to 0%.

• NAD (Network Anomaly Detector), which uses CUSUM (cumulative sum control
chart) for detecting the abnormal network activity. The control limits of CUSUM
can be defined by two methods: V-mask, which is a visual procedure, and Tabular
CUSUM. Tabular CUSUM is preferred for computer implementations.

The Snort is an open source Signature-Based IDS. RIDES’ architecture is illustrated in
Figure 2.7. The evaluation of the performance of RIDES show that with a storage memory

Figure 2.7: RIDES Architecture, from [11].

of 8 kbits, a sensor can decrease false positives to 10%. The probability of not experiencing
a hash collision will increase as the number of signatures decreases. It is also shown [11]
that the signature codes can reduce energy consumption by 8 µJ. Finally, this work shows
that the true positive ratio increases as the time interval between packets also increases.
The number of attackers is negligible.

2.5.3 Anomaly-based IDS

Anomaly-based IDSs can recognize normal and erroneous behavior by learning the data
patterns of normal and erroneous network activity. This methodology creates a model that
can classify traffic as either normal or erroneous. Unlike Signature-based IDS, Anomaly-
based IDS are not based on a predefined set of rules, saving the Security Manager the
effort to find the appropriated signatures for blocking malicious traffic.

Another Anomaly-based IDS, [15], provides a centralized solution for preventing forgery
of traffic that is forwarded to a potentially infected node, the botnet, that acts as a
router to the remaining network. This solution is based on the assumption that such
device is also communicating with the source of the attacker, and so, packets that go
through the infected node are expected to be larger than the non tampered ones, for the
source must update the bot in order to make the desired forgery. For such solution to
be executed, three conditions are essential to the scenario, namely, restraining protocolar
communications only to TCP, limiting the number of services running on each node to
one and assuming the normality on the communication between the final user and the
6LoWPAN devices. The detection mechanism must be placed on the gateway, the edge
router. The architectural components are depicted in Figure 2.8.

As the TCP protocol is not complying with the CoAP protocol, the [15] does not fulfills the
aim of this work. Moreover, it is not clear in what application layer protocol it operates.
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Figure 2.8: Solution against Botnet, from [15].

A different Anomaly-based solution [23], named WIDS (Wireless IDS), uses agents with
intelligence that constantly perceive and analyze events. Figure 2.9 illustrates the archi-
tecture of this solution. The advantages of this methodology include, fewer errors due

Figure 2.9: WIDS architectural scheme, from [23].

to the use of computational intelligence, easier to detect newer malicious activities, no
need for a rule-based dataset and intrusions are treated as a continuous stream in a sys-
tem. This solution, however, is not described with enough details in order to allow its
implementation.

2.5.4 Wormhole Attack Detection Solution

A wormhole attack consists on disrupting communications through the creation of a tunnel
between two or more nodes that are geographically far away. By communicating through
such tunnel, a group of nodes, the selfish nodes, make the remaining nodes of the network
believe that they are closer, in terms of topology, than they really are. If succeeded, the
selfish nodes will disrupt routing, by making routes to pass through the tunnel, due to the
fact that each of the selfish nodes seems to be closer. But in fact, they are significantly
geographically separated. So, the flow of all packets through the tunnel will cause a
bottleneck, increasing the delay on each of the selfish nodes’ networks.

In [31], an IDS to detect wormhole attacks of packet encapsulation and relay types is
described. Its architecture is shown in Figure 2.10.

The IDS network architecture is hybrid (Figure 2.2), consisting in a centralized module
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Figure 2.10: Pongle architectural scheme for detecting wormhole attacks, from [31].

on the 6BR, preforming the following operations: neighbour validation, distance RSSI
(Received Signal Strength Indicator), RSSI collection and attacker detection. Concern-
ing distributed network architecture, the sensor nodes perform the following operations:
neighbour information sending, packet forwarding, RSSI monitoring and RSSI sending.

The scenario was simulated in Cooja/Contiki simulator. The true positive ratio obtained
is ∼ 90%. This IDS is not suited to an IoT scenario. There is no point in creating a
tunnel between a user and an IoT device on IEEE802.15.4-CoAP stack, for, not only the
sensor is already connected to the Internet (and so it has open access), but also there are
computing power limitations on IoT devices to support tunneling.

2.5.5 A Deep Packet Inspection (DPI) based Solution

Deep Packet Inspection (DPI) consists on observing the payload for each protocolar layer
of the packet for required information. The solution described in [38], claims to be a high-
performance ultra-lightweight deep-packet Anomaly-based detection approach. Thus, this
solution can be run on small IoT devices. This DPI-based solution uses n-gram bit-patterns
to model payloads in an efficient and flexible manner and allows the n-gram size to vary
by dimension. By using a direct representation of the feature space for the discrimination
function, the detector can make a fast packet classification decision. The approach can
be implemented in hardware or software and has abundant parallelism to be exploited for
an effective implementation. The approach can be deployed in an IoT device’s network
interface or protocol stack, or it can be built into network appliances and firewalls. The
DPI-based solution can operate in a wide-range of network environments and is highly
configurable and scalable.

The analysis of results have shown that small IoT devices use few and relatively simple
protocols, leading to network payloads that are highly similar and therefore amenable to
Anomaly detection with an extremely low occurrence of false positives. The detectors
proved to be highly effective in identifying abnormal packets from a wide-range of attacks,
and they have an excellent ability to discriminate device-specific traffic from other types
of Internet traffic.
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2.5.6 An IDPM Solution

A multilayer and effective intrusion detection and prevention mechanism (IDPM) is an IPS
designed for low-power IoT systems [36]. The system has two layers. In the first layer, an
intelligent Anomaly detection model is built using a RNN (Random Neural Network) to
handle performance degradation attacks. In the second layer, a lightweight compile-time
code instrumentation technique is implemented to protect programs from illegal memory
accesses. The proposed solution also acts as a sensor node health monitoring system, and
can detect the failure of a valid sensor node.

The feasibility of the proposed solution is demonstrated for a wireless sensor nodes–based
IoT system, with a detection accuracy of 97.23% [36]. This solution was further tested by
adding an attacker sensor node and generating different security attacks that are eventually
detected. The proposed IDPM does not require dedicated hardware resources and presents
negligible performance overhead with 10.45% increase in the power consumption.

This solution is not described with enough detail, preventing its implementation. Also, it
does not comply to CoAP.

2.6 Conclusions

As perceived by the state of the art, both major used approaches, Signature and Anomaly-
based, have pros and cons. Signature-based approaches, although with a faster decision
mechanism, do not recognize new threats and have the need for creating/updating the
rules (signatures) in order to block undesired traffic. On the contrary, Anomaly-based
IDS can learn new data patterns from normal profiles, and so, they make easier the task
of Security Managers, freeing them from generating models. In fact, the expertise required
to map manually the models generated by Anomaly-based into rules (signatures) would
be daunting.

In the next chapters, we describe a new Anomaly-based IDS, AnIDS, providing its archi-
tecture, implementation and validation.
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Chapter 3

System Architecture and
Methodologies

This chapter describes the structure of the IDS to be implemented and the selected sign of
intrusions detection, misbehavior. Misbehaviors are implemented on Contiki CoAP client.
We choose to program these misbehaviors because there were no available open-source
intruder tools on IEEE802.15.4-CoAP stack. Additionally, no dataset containing data of
intrusions on the IoT stack was found.

3.1 Architecture

The architecture is based on the assumption that a single node, the one that will be in
charge of the IDS module, is capable of running a network sniffer application, in conjunc-
tion with a high level language interpreter. Chapter 4 describes the tools that are used
on the process. The main point is that the Controller is a high processing and storage
capacity node, a sink, such as a Raspberry PI, that makes decisions regarding routing and
forwarding on behalf of the other nodes. It is also assumed that the sink has every node
on the 6LoWPAN network radio covered.

In a CoAP application context, the most common scenario, when one 6BR serves as the
door to the Internet, and one or multiple CoAP server nodes have a set of finite number
of resources, is configured. Client nodes are linked to server nodes and they can request,
actuate or observe, server resources. The proposed architecture of the IDS is depicted in
Figure 3.1.

A multi-hop scenario, in which any pair of in-range nodes could communicate, was initially
considered. However, due to physical restrictions related to the placement of the nodes, it
was not implemented. Moreover, this work considers only GET requests due to limitations
of the hardware. Section 4 explains the tools that are used and their limitations.

The IDS’s role is to detect a compromised node, and to stop communication to and from
that node, by spreading alert messages to the remaining nodes and/or filtering the packets
to and from the compromised node. So, the IDS must be centralized (Figure 3.1).
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Figure 3.1: High Level Architecture of the proposed solution

3.2 Misbehavior to be detected

Compromised nodes are detected by the presence of erroneous behaviors. Examples of
erroneous behaviors include: draining all power battery from the hacked node; and/or
forcing the remaining normal nodes to process messages that should not be processed.
These misbehaviors could lead to energy depletion in all nodes and/or compromise network
performance. The following erroneous behaviors are considered for CoAP clients:

• Having a higher rate of CoAP requests at the respective Server, named here by
DOS FREQ, label 2;

• Sending CoAP acknowledgements to the CoAP server with no previous request to
CoAP requests, named here by DOS ACK, label 3;

• Requesting resources that are not supported/not existent on the CoAP Server,
named here by WRONG URI, label 4.

• Sending requests with an invalid ACCEPT option to the CoAP Server, named here
by WRONG ACCEPT, label 5.

We define that the normal behavior, named as NORMAL, corresponds to label 1. The
misbehaviors implemented are known for not being detected by simple Signature-based
IDS approaches.
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3.3 Model Learning and Detection Methodology

The architecture for the IDS solution is described in Figure 3.2.

Figure 3.2: Probing Scheme for the proposed solution
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The components of the architecture are:

• The 6BR node, responsible for interconnecting all the nodes to the Internet.

• The Server node (in case of just one), with its clients, each Server Node providing
access to its own CoAP resources. Pairs of Server Nodes do not communicate with
each other.

• The Client nodes, the ones who request CoAP resources, being the request rate
controlled by a Timer.

The previous scenario is simplified in Chpater 4, restricting the resource requests of clients
to one server.

Of the three different approaches for the intrusion detection problem, Multi-Class, Binary-
Class and One-Class, only the first two are used. On Multi-Class we are interested on
knowing which intrusion the system has detected, assuming that we know data patterns
of specific intrusions. The Binary-Class approach is a simplification of Multi-Class that
assumes the problem is simply to detect if there is an intrusion or not. The One-Class
approach is used when we only know the data pattern of non-intruded nodes or the data
pattern of intruded nodes, exclusively. This approach is not considered here, because it is
less powerful than other approaches. Also, for a better performance of the classifier, the
security manager should know the intrusion and the non-intrusion patterns.

For Multi-Class approach, the pre-processing algorithms used are Standardization and
MinMax, and the feature extraction algorithms used are Principal Component Analysis
(PCA) and Linear Discriminant Analysis (LDA). The algorithm for the learning IDS is
the SVM, as it is a state of the art classifying algorithm and used for IDS of the Standard
Internet. According to [27], SVM are classified as Rule-Based and Heuristic-Based ap-
proaches. Neural Networks were not considered, because of their excessive computational
requirements and their time consuming learning and classification process. K-Nearest
Neighbours (KNN) algorithm, due to the lazy learning characteristic and the relatively
high number of observations of the training data set that are required for this work [32],
would be too slow and is not considered. On the contrary, SVM have a faster classifica-
tion procedure, allowing a real time implementation and also have the advantage of being
non-linear classifiers.

For the Binary-Class, we follow the same procedures used on the Multi-Class approach,
except for the number of labels used. For reducing the number of labels to two, misbehavior
labels were converted to a single label. For example, the array of labels [1, 2, 3, 2, 1, 4, 5, 3, 2]
is converted into [1, 2, 2, 2, 1, 2, 2, 2, 2], following the nomenclature as of Section 3.2.

On both classification approaches, Multi-Class and Binary-Class, the whole data is pre-
processed, either via Standardized methodology with mean 0 and variance 1, or scaled to
the interval [0, 1].

The calculation of the features and the learning methodology are depicted in Figure 3.3.

The steps marked as 3 occur simultaneously, meaning that when the calculation of the
features are completed, the new data will be available for classification. At the same time,
the network starts to be sniffed again by the Sink node. In step 4, a label will be returned.
This label is computed by applying the learned model to the test data. The splitting of
packets, the calculation of features and their aggregation will be discussed on the next
chapter. Performance results of the IDS system are presented and discussed on chapter 5.
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Figure 3.3: Learning Methodology Approach chosen

On this chapter, it was stated that the architecture of the system would follow a CoAP
common design, with one 6BR, one CoAP server and multiple CoAP clients, being each
of the clients making requests to the same server. Also, client misbehaviors were imple-
mented, in order to train a classifier that can make a distinction between normal and
erroneous traffic. Lastly, the overview of the model building and of the detection method-
ology was defined.
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Chapter 4

Implementation and Evaluation
Strategy

4.1 Implementation Strategy

For the implementation of the specified IDS, we need to select: the operating system(s) for
nodes (clients, servers and 6BR), the platform in which the scenario is built, the statistical
data gatherer and the intrusion detection component.

For the IDS operating system, the IoT Contiki was selected because of its widely ac-
ceptance within the research community, good simulation tools, software stability and
hardware compatibility, as previously described (Table 2.2). The simulation tool for WSN
NeSSi2 was discarded, for it does not simulate IEEE802.15.4-CoAP stack.

For the experimental environment (set up of nodes) and platform, we first tested the
physical Hardware Micaz and Telos motes for client and server nodes. These devices have
a built in IEEE802.15.4 radio chip and very little ROM and Flash memory. For the 6BR,
the first choice was a Raspberry PI with the 802.15.4 radio module. The PI was directly
connected via ethernet cable to a router supporting Internet Protocol version 6 (IPv6).
The process of compiling a Contiki program and sending the image to each of the nodes
to form a 6LoWPAN network was problematic. Occasionally, motes could not connect
with each other, imposing to rely on logging information (obtained by connecting the PC
directly to each mote and by capturing the printed messages that were being sent via the
Universal asynchronous receiver/transmitter (UART) output).

Searching for a better solution, we used Cooja, the simu/emulation environment embedded
on Contiki project. Although the number of simulated types of nodes was smaller than the
physical nodes, configuring, placing and debugging was easier. Contiki has a radio capture
plugin, which can capture the packets sent by each of the simulated nodes. Still, there
was a problem: the CoAP server and client firmwares from the version 3.0, the most up to
date, did not fit into some of the supported Cooja motes, like Sky or Micaz. Additionally,
a simulation environment oversimplifies real scenarios.

As a final choice, we used the platform that combined the advantages of both physical
and the Simu/Emulation scenarios: IoT-LAB [2]. IoT-LAB is a platform that allows
researchers to build real physical scenarios without having to handle neither with the
difficulties of flashing the motes nor with the need of configuring the gathering of the
resultant experimental data. As the nodes are physical and have real sensors, real time

35

http://www.nessi2.de/
http://openlabs.co/OSHW/Raspberry-Pi-802.15.4-radio


values from any of the available nodes can be read. The available sensors are: pressure,
temperature, magnetometer, accelerometer, gyrometer and light. The motes used on IoT-
LAB were the M3 Open Node for the availability of network sniffers and power tracing
features.

For debugging purposes we kept using Cooja before launching each experiment in IoT-
LAB, for it allows logging output messages, and thus, has advantages to evaluate the
execution of the program.

Wireshark version 1.12 was chosen as the Packet Statistical Gatherer and Exporter. This
tool is one of the best open source packet dissectors for IEEE802.15.4 networks. The
version 1.12 was firstly chosen in order to be compatible with the Latest version available
for Instant Contiki3.0, the virtualized environment with the most up to date Contiki
software distribution building tools.

The Machine Learning application, running on the local computer, intends to classify nodes
as being Normal or Compromised. Depending on the misbehavior of the compromised
node, the node is labeled following the label nomenclature described on Chapter 3. This
application is programmed on Python version 2, consisting on a GUI designed in Tkinter,
via the pygubu designer. The library for the machine learning application is the Scikit-
learn, and the plots were generated with matplotlib. On the GUI, by tuning the adequate
parameters, one can choose to do stratified splitting of the dataset into traintest parts with
the desired proportion and preform pre-processing, feature extraction and classification.
There is also a functionality for performing a Grid Search for the best parameters of the
classifier regarding the desired Scoring goal. Figure 4.1 shows the GUI developed for
training the IDS.

Figure 4.1: Developed GUI for tuning the Detection Module of the IDS
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4.2 Implementing and Automating the Experiments

As stated in the previous Section, IoT-LAB was the elected experimental platform for the
current solution. The access to my home directory of the linux server supporting IoT-LAB
was made via Secure Copy (SCP) and Secure Shell (SSH). Scripting via Python 2 made
possible a high degree of automation in configuring the nodes and collecting data. Figure
4.2 illustrates the methodology for building the experimental scenario used in conjunction
with IoT-LAB.

Figure 4.2: Steps used for connecting the local computer to the IoT-LAB server and for
launching the experiments.

The experiments require the following steps:

• Step 1 - connect the local computer to the IoT-LAB server and select the nodes from
the platform located in Grenoble, France. Grenoble was chosen for it has a large
number of available M3 Open nodes.

• Step 2 - submit the experiment to the IoT-LAB, specifying the firmware and a
profile for the server and the 6BR nodes. On the case of the clients, only a profile
is associated, because the OS image of the client nodes is flashed after knowing the
IPv6 address of the CoAP Server.

• Step 3 - replace the hard-coded IPv6 address on the client nodes code by the IPv6
address of the CoAP server, compiling the source code of the client and flashing the
resultant firmware to the nodes.

When the experiment starts, an Secure Shell (SSH) console is opened and a daemon
command is run to make a bridge on the 6BR node, between the 6LoWPAN network and
the Internet. This step is mandatory, otherwise the server will not respond to the clients.
For capturing the packets, another shell must be open to run a daemon command that
aggregates all traffic of the experiment.

Each experiment consisted in a 6BR, a CoAP Server and three CoAP clients, being one of
the three an intruder. The number of CoAP servers was reduced, due to node positioning
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limitations of IoTLAB platform. Each experiment had a duration of 30 minutes, and a
total of four experiments were run, each with its misbehavior node.

After the experiment is finished, the PCap file is analyzed by TShark, the terminal appli-
cation of Wireshark. TShark is executed with the statistical flag via Python 2 language
scripting and calculates the features. TShark can collect network data during a customized
period of time, and at the end of this period, performs an analysis. For the training phase,
the approach was to split the entire training PCap file into subfiles with the same duration
of the sampling period, using Editcap utility from Wireshark.

Currently, only client misbehaviors have been implemented. However, the Python scripts
we have developed can also detect misbehaviors from servers and 6BR. This can be per-
formed by calculating features of the network packets. It is only needed to specify what
is the role of the intruder, client, server or 6BR. In each experiment a set of features are
computed from the PCap file associated with the analyzed traffic network. The mean-
ing of the following features is explained by the protocol Standard documents: [12] for
IEEE802.15.4, [28] for 6LoWPAN, [16] for IPv6, and [13] for CoAP.

For IEEE802.15.4 traffic these features are:

• wpan− nonask − phy.frame length - Frame Length

• wpan.aux sec.frame counter - Frame Counter

• wpan.bcn.gts.count - Guaranteed Time Slots (GTS) Descriptor Count

• wpan.cmd.gts.length - GTS Length

• wpan.correlation - Link Quality Indication (LQI) Correlation Value

• wpan.frame length - Frame Length

• wpan.gtsreq.length - GTS Length

• wpan.sec frame counter - Frame Counter

• wpan.sec key sequence counter - Key Sequence Counter

For 6LoWPAN traffic, the features are:

• 6lowpan.frag.size - Datagram size

• 6lowpan.fragment.count - Message fragment count

• 6lowpan.hc2.udp.length - Length

• 6lowpan.hops - Hop limit

• 6lowpan.iphc.hlim - Hop limit

• 6lowpan.mesh.hops - Hops left

• 6lowpan.nhc.ext.length - Header length

• 6lowpan.reassembled.length - Reassembled 6LoWPAN length

• 6lowpan.udp.length - Length
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For IPv6 traffic, the features are:

• ipv6.f low - Flow Label

• ipv6.fragment.count - Fragment count

• ipv6.hlim - Hop Limit

• ipv6.opt.calipso.cmpt.length - Compartment Length

• ipv6.opt.jumbo - Payload Length

• ipv6.opt.length - Length

• ipv6.opt.rpl.sender rank - Sender Rank

• ipv6.plen - Payload Length

• ipv6.reassembled.length - Reassembled IPv6 length

• ipv6.shim6.len - Length

• ipv6.shim6.opt.elemlen - Element Length

• ipv6.shim6.opt.len - Length

• ipv6.shim6.opt.total len - Total Length

Finally, for CoAP traffic, the features are:

• coap.opt.block size - Encoded Block Size

• coap.opt.length - Options Length

• coap.opt.length ext - Options extended Length

• coap.opt.max age - Max-age

• coap.token len - Token Length

• coap.code - Status Code

From each of these features, except for the coap.code, the tuple (sum,min,max, average)
is calculated. For coap.code we count the number of message codes, from and to each node
of the network, containing the following specific status: error, not supported and valid.

4.3 Previous Approaches

For calculating traffic statistics we also tested the following utilities found on the web:

• Netmate based on Flowcalc;

• Argus;

• Tcpstat;
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• Tcptrace;

• Tstat;

• Tcpdstat

• Capanalysis

• YAF-Yet Another Flowmeter;

• CapLoader - Not Free to use

• Nop-ng - Not Free to use

• Scapy -Python framework for pcap analysis and packet manipulation.

However, none of these tools could capture or recognize IEEE802.15.4-CoAP stack, and
so could not be used for the implemented IDS.

When planning the best strategy for obtaining data from attacks in order to train the IDS,
a search on the Internet was performed to verify if there were open to the public intrusion
datasets for IEEE802.15.4-CoAP available. The following sites were evaluated:

• Netresec - Not Relevant;

• KDD-Cup-99 - Not Relevant;

• UNB - Not Relevant;

• CAIDA - Not Relevant;

• ADFA - Not Relevant;

• MIT - Not Relevant;

• WAND - Not Relevant;

• RIPENCC - Not Relevant;

• UMASS - Not Relevant;

• Predict - Not Relevant;

• AWID - Request for dataset is pending;

• HS-Coburg - Not Relevant;

• secrepo - Not Relevant;

• ISI - Not Relevant;

• Honeynet - Not Relevant;

• FitnessLab - Public dataset, although the protocol used for Routing is AODV;

• UTWENTE - Not Relevant;

As none of these sites contained dataset for IEEE802.15.4-CoAP, we had to build our own
intrusions.
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4.4 Final Product Characteristics

According to the Internet IDS taxonomy described by [27] (Figure 2.2), the characteristics
of the IDS developed are:

• System Network Architecture: Centralized, for it is chosen is the Client-Server CoAP
model.

• Networking type: Wireless Hierarchical

• Technology Type: Wireless Based

• Collection Component: Agent, for IoT-LAB sniffer captures the traffic in a specific
node of the Network.

• Data Collection: Centralized for the capture of the network traffic is done in a
specific node of the network.

• Data Type: Wireless Network Traffic, stored in pcap file format.

• Time of Detection: currently off-line;

• Granularity: Periodic/Batch

• Detection Response: Planned to be Passive Notification

• Detection Discipline: state based and Stimulating Evaluation, for the IDS tells if a
node is in the state NORMAL or INTRUSION.

• Processing Strategy: Centralized

• Detection Methodology: Anomaly-based

4.5 Evaluation Strategy of the IDS

The classifiers of the IDS are evaluated during the training phase. Scoring metrics of
performance include:

• Accuracy = TP+TN
n

• Recall = TP
TP+FN

• Precision = TP
TP+FP

• F Measureβ = Precision∗Recall
β2∗Precision+Recall

were evaluated in confusion matrices and Receiving Operator Characteristic (ROC) curves,
either for the Multi or for the Binary Class approaches, (see Chapter 3). TP stands for
the number of true positives, TN for the number of true negatives, FN for the number of
false negatives, FP for the number of false positives and n the number of observations.

Concerning the Binary Class approach, the system can be in one of two states or conditions:
either with an intrusion present, I, or with no intrusion present, NI. The prior probability
of an intrusion is called p. The IDS reports either an intrusion alarm, A, or no alarm,
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NA. The parameters of the IDS’s ROC curve are: the probability of an alarm given an
intrusion P (A|I) = 1 − β, and the probability of an alarm given no intrusion, the false
alarm probability, P (A|NI) = α.

Our approach is just a proof of concept. In a real scenario, the security manager would
have to attribute costs to wrong classified observations. This implies the creation of an
IDS’s Decision Tree expected cost, like the one illustrated on Figure 4.3.

Figure 4.3: Decision Tree of IDS’s expected cost, from [39].

Figure 4.3 shows the sequence of actions (squares) and uncertain events (circles) that
describe the operation of the IDS and of the actions or responses that can be taken, based
on reports. It also shows the consequences of the combinations of actions and events.
The costs shown correspond to the consequences. The convention in a decision tree is to
read it from left to right. The path leading to any point in the tree is shown to the left
of the point and is assumed to be determined. Paths to the right of any point show all
subsequent possibilities, which are not yet determined.
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Chapter 5

Results and Analysis

The results, obtained from the analysis of the PCap files, are constituted by observations,
consisting on arrays of features organized as a rectangular matrix. These observations are
submitted to data pre-processing, dimensionality reduction and classifier training. Along
with the feature extraction algorithms, and SVM related parameters presented in each
table, a brief contextualization of the data obtained is presented. Finally, an insight of the
obtained results are provided. The proportions of the number of NORMAL observations
vs. the erroneous observations (resultant from the misbehaved node) is 2 : 1, meaning
that for each two NORMAL observations, there is one erroneous observation.

5.1 Multi-Class Problem Approach

For the Multi-Class problem approach, the labels for the classes of the NORMAL and
misbehaved nodes are organized as follows:

• NORMAL - Label 0;

• DOS FREQ - Label 1;

• DOS ACK - Label 2;

• WRONG ACCEPT - Label 3;

• WRONG URI - Label 4.

Two feature extraction algorithms are used, PCA and LDA. For both, we trained classifiers
regarding the scoring metrics of accuracy and F Measure.

For PCA, the data is pre-processed with a Standard Scaler, mean 0 and standard deviation
1. Figure 5.1 illustrates, in two dimensions, the feature reduction applied to the Multi-
Class data. We may observe how clustered the resultant data is after the transformation.

The features of the data are reduced by PCA to 3 components, with whitening, and the
method is set to auto. Then, a grid search for the best parameters of the SVM classifier,
with a K-fold of 3, setting the scoring metric to accuracy is performed. The following SVM
Kernels used are: Linear, RBF, polynomial and sigmoidal. The results are described in
Figures 5.2 to 5.5.
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Figure 5.1: Multi-Class problem - PCA with auto solver, 3 Components and Data Whiten-
ing

(a) (b)

Figure 5.2: Multi-Class problem - Grid Search SVM with linear Kernel, One vs. Rest
decision function shape, 30 iterations, and scoring criterion of accuracy, Confusion Matrix
5.2a and ROC Curves 5.2b

44



(a) (b)

Figure 5.3: Multi-Class problem - Grid Search SVM with: RBF Kernel, One vs. Rest deci-
sion function shape, 30 iterations and scoring criterion of Weighted F Measure, Confusion
Matrix 5.3a and ROC Curves 5.3b

(a) (b)

Figure 5.4: Multi-Class problem - Grid Search SVM with: polynomial Kernel, One vs.
Rest decision function shape, 30 iterations and scoring criterion of Weighted F Measure,
confusion Matrix 5.4a and ROC Curves 5.4b

(a) (b)

Figure 5.5: Multi-Class problem - Grid Search SVM with: sigmoidal Kernel, One vs. Rest
decision function shape, 30 iterations, and a scoring criterion of accuracy, confusion Matrix
5.5a and ROC Curves 5.5b
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For each Kernel, the best parameters and accuracy results are found by a grid search
under the previously described conditions. Results are presented on Table 5.1.

Table 5.1: SVM Parameters obtained using accuracy as the scoring metric.

Scoring Metric: accuracy

C Kernel Iterations
Degree

(valid on
Polynomial only)

Gamma Coef0
Decision
Function

Shape
accuracy

0.957895 ’linear’ 30 1 0.100000 0.000000 ’ovr’ 0.212513
0.957895 ’rbf’ 30 1 1.000000 0.000000 ’ovr’ 0.509824
0.410526 ’poly’ 30 2 0.621053 0.105263 ’ovr’ 0.283868
0.200000 ’sigmoid’ 30 1 0.194736 0.947368 ’ovr’ 0.618408

The results from Figure 5.2 to 5.5 and from Table 5.1 show, that an SVM learner with
Linear Kernel has 100% misclassification of the labels of DOS ACK observations, and
a misclassification of 59% of WRONG URI observations. RBF Kernel has a completely
wrong classification of WRONG URI observations, considering them as NORMAL. For
wrongly observations classified as NORMAL, polynomial Kernel has a good score, although
58% of the WRONG URI observations are misclassified as Normal. sigmoidal Kernel
achieved the best accuracy (Table 5.1), but classified many misbehaviors as NORMAL
(Figure 5.5a).

Then, a grid search for the best parameters of the SVM classifier, setting the scoring
metric to F Measure, is performed. The SVM Kernels used are: Linear, RBF, polynomial
and sigmoidal. The results are described in Figures 5.6 to 5.9.

(a) (b)

Figure 5.6: Multi-Class problem - Grid Search SVM with: linear Kernel, One vs. Rest
decision function shape, 30 iterations, and scoring criterion of Weighted F Measure, con-
fusion Matrix 5.6a and ROC Curves 5.6b
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(a) (b)

Figure 5.7: Multi-Class problem - Grid Search SVM with: rbf Kernel, One vs. Rest deci-
sion function shape, 30 iterations and scoring criterion of Weighted F Measure, Confusion
Matrix 5.7a and ROC Curves 5.7b

(a) (b)

Figure 5.8: Multi-Class problem - Grid Search SVM with: polynomial Kernel, One vs.
Rest decision function shape, 30 iterations and scoring criterion of Weighted F Measure,
confusion Matrix 5.8a and ROC Curves 5.8b

(a) (b)

Figure 5.9: Multi-Class problem - Grid Search SVM with: sigmoidal Kernel, One vs. Rest
decision function shape, 30 iterations, and a scoring criterion of Weighted F Measure,
confusion Matrix 5.9a and ROC Curves 5.9b.
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For each Kernel, the best parameters and accuracy results are found by a grid search
under the previously described conditions. Results are presented on Table 5.2.

Table 5.2: SVM Parameters obtained using F Measure as the scoring metric.

Scoring Metric: F Measure

C Kernel Iterations
Degree

(valid on
polynomial only

Gamma Coef0
Decision
Function

Shape
F Measure

0.957895 ’linear’ 30 1 0.100000 0.000000 ’ovr’ 0.212513
0.957895 ’rbf’ 30 1 1.000000 0.000000 ovr’ 0.509824
0.326316 ’poly’ 30 2 0.715790 0.315790 ’ovr’ 0.270424
0.200000 ’sigmoid’ 30 1 0.194737 0.947368 ’ovr’ 0.618407

Although the scoring Metric is changed from accuracy to F Measure, the results did not
seem to change significantly. The sigmoidal and RBF Kernel still have the best accuracy
of the four Kernels, though classifying wrongly the majority of the erroneous behaviors as
NORMAL. polynomial, linear and RBF Kernels have the best score on accuracy regarding
DOS FRE, though sigmoidal Kernel does not fall very behind.

LDA is used with the method of singular value decomposition and 6 components. Again,
the data is pre-processed with a Standard Scaler, mean 0 and standard deviation 1. Figure
5.10 illustrates the feature reduction applied to the Multi-Class data in two dimensions.

Figure 5.10: Multi-Class problem - LDA with Singular Value Decomposition (SVD) solver,
6 Components.

The features of the data are reduced by LDA to 6 components, and the method is set to
svd. Then, we performed a grid search for the best parameters of the SVM classifier, with
a K-fold of 3, setting the scoring metric to accuracy.
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The following SVM Kernels used are: Linear, RBF, polynomial and sigmoidal. The results
are described in Figures 5.11 to 5.14.

(a) (b)

Figure 5.11: Multi-Class problem - Grid Search SVM with linear Kernel, One vs. Rest
decision function shape, 30 iterations, and scoring criterion of accuracy, Confusion Matrix
5.11a and ROC Curves 5.11b

(a) (b)

Figure 5.12: Multi-Class problem - Grid Search SVM with RBF Kernel, One vs. Rest
decision function shape, 30 iterations, and scoring criterion of accuracy, Confusion Matrix
5.12a and ROC Curves 5.12b
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(a) (b)

Figure 5.13: Multi-Class problem - Grid Search SVM with polynomial Kernel, One vs.
Rest decision function shape, 30 iterations, and scoring criterion of accuracy, Confusion
Matrix 5.13a and ROC Curves 5.13b,

(a) (b)

Figure 5.14: Multi-Class problem - Grid Search SVM with sigmoidal Kernel, One vs. Rest
decision function shape, 30 iterations, and a scoring criterion of accuracy, confusion Matrix
5.14a and ROC Curves 5.14b
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For each Kernel, the best parameters and accuracy results are found by a grid search
under the previously described conditions. Results are presented on Table 5.3.

Table 5.3: SVM Parameters obtained using accuracy as the scoring metric.

Scoring Metric: accuracy

C Kernel Iterations
Degree

(valid on
Polynomial only)

Gamma Coef0
Decision
Function

Shape
accuracy

0.452632 ’linear’ 30 1 0.100000 0.000000 ’ovr’ 0.932782
0.578947 ’rbf’ 30 1 0.810526 0.000000 ’ovr’ 0.632368
0.200000 ’poly’ 30 1 0.147368 0.000000 ’ovr’ 0.933816
0.284211 ’sigmoid’ 30 1 0.100000 0.000000 ’ovr’ 0.753361

With LDA the accuracy improved substantially. The polynomial and Linear Kernels
reached 93% as can be seen on Table 5.3. RBF and sigmoidal Kernels showed a bad
performance with an accuracy below 80% according to Table 5.3.

The features of the data are reduced by LDA to 6 components, and the method is set to
svd. Then, we performed a grid search for the best parameters of the SVM classifier, with
a K-fold of 3, setting the scoring metric to F Measure. The following SVM Kernels used
are: Linear, RBF, polynomial and sigmoidal. The results are described in Figures 5.15 to
5.18.

(a) (b)

Figure 5.15: Multi-Class problem - Grid Search SVM with linear Kernel, One vs. Rest
decision function shape, 30 iterations, and a scoring criterion of Weighted F Measure,
confusion Matrix 5.15a and ROC Curves 5.15b
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(a) (b)

Figure 5.16: Multi-Class problem - Grid Search SVM with Radial Basis Function (rbf)
Kernel, One vs. Rest decision function shape, 30 iterations, and a scoring criterion of
Weighted F Measure, confusion Matrix 5.16a and ROC Curves 5.16b

(a) (b)

Figure 5.17: Multi-Class problem - Grid Search SVM with polynomial Kernel, One vs.
Rest decision function shape, 30 iterations, a scoring criterion of Weighted F Measure,
confusion matrix 5.17a and ROC Curves 5.17b

(a) (b)

Figure 5.18: Multi-Class problem - Grid Search SVM with sigmoidal Kernel, One vs. Rest
decision function shape, 30 iterations, and a scoring criterion of Weighted F Measure,
confusion matrix 5.18a and ROC Curves 5.18b
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For each Kernel, the best parameters and F Measure results are found by a grid search
under the previously described conditions. Results are presented on Table 5.4.

Table 5.4: SVM Parameters obtained using F Measure as the scoring metric.

Scoring Metric: F Measure

C Kernel Iterations
Degree

(valid on
polynomial only

Gamma Coef0
Decision
Function

Shape
F Measure

0.915793 ’linear’ 30 1 0.100000 0.000000 ’ovr’ 0.813340
0.578947 ’rbf’ 30 1 0.810526 0.000000 ’ovr’ 0.632368
0.200000 ’poly’ 30 1 0.147368 0.000000 ’ovr’ 0.933816
0.284210 ’sigmoid’ 30 1 0.100000 0.000000 ’ovr’ 0.753361

Changing the scoring metric from accuracy to F Measure seemed to not improve the F -
Measure score. Also, this change greatly sacrificed the accuracy of the classifier with linear
and polynomial Kernels, reducing it to 82%. sigmoidal and RBF Kernels did not suffer
significant alterations.

We conclude that LDA is a better feature extraction algorithm than PCA. An SVM with
a polynomial Kernel also proved to be more accurate.

5.2 Binary Class Problem Approach

For Binary Class approach, the following two labels are defined:

• NORMAL - Label 0;

• ERRONEOUS - Label 1;

For this approach, only the most accurate feature extraction method, LDA is used. The
method of singular value decomposition and 2 components is applied. Once more, data is
pre-processed with a Standard Scaler, with mean 0 and standard deviation 1. Figure 5.19
illustrates the feature reduction applied to the binary class data in two dimensions.

The features of the data are reduced by LDA to 2 components, and the method is set to
svd. Then, a grid search for the best parameters of the SVM classifier, with a K-fold of 3,
setting the scoring metric to accuracy is performed.

The following SVM Kernels used are: Linear, RBF, polynomial and sigmoidal. The results
are described in Figures 5.20 to 5.23.
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Figure 5.19: Binary Class problem - LDA with SVD solver, 2 Components

(a) (b)

Figure 5.20: Binary Class problem - Grid Search SVM with linear Kernel, One vs. Rest
decision function shape, 30 iterations, with scoring criterion of accuracy, confusion Matrix
5.20a and ROC Curves 5.20b
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(a) (b)

Figure 5.21: Binary Class problem - Grid Search SVM with RBF Kernel, One vs. Rest
decision function shape, 30 iterations, with scoring criterion of accuracy confusion Matrix
5.21a and ROC Curves 5.21b

(a) (b)

Figure 5.22: Binary Class problem - Grid Search SVM with polynomial Kernel, One vs.
Rest decision function shape, 30 iterations, with scoring criterion of accuracy, confusion
Matrix 5.22a and ROC Curves 5.22b

(a) (b)

Figure 5.23: Binary Class problem - Grid Search SVM with sigmoidal Kernel, One vs.
Rest decision function shape, 30 iterations, and a scoring criterion of accuracy confusion
matrix 5.23a and ROC Curves 5.23b
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For each Kernel, the best parameters and F Measure results are found by a grid search
under the previously described conditions. Results are presented on Table 5.5.

Table 5.5: SVM Parameters obtained using accuracy as the scoring metric.

Scoring Metric: accuracy

C Kernel Iterations
Degree

(valid on
Polynomial only)

Gamma Coef0
Decision
Function

Shape
accuracy

0.200000 ’linear’ 30 1 0.100000 0.000000 ’ovr’ 0.858325
0.200000 ’rbf’ 30 1 0.100000 0.000000 ’ovr’ 0.830403
0.915790 ’poly’ 30 3 0.621053 0.000000 ’ovr’ 0.810238
0.200000 ’sigmoid’ 30 1 0.9052632 0.315710 ’ovr’ 0.927094

For the linear Kernel, the accuracy of these results do not show significant changes from
those obtained with accuracy as the scoring metric, in Multi-Class LDA approach (Table
5.3). However, according to Figure 5.20b, good results of recall and accuracy are obtained
for linear Kernel and for a polynomial Kernel of degree 3. Even more, on polynomial
Kernel, the false negatives (observations wrongly classified as NORMAL), is 0%.

The features of the data are reduced by LDA to 2 components, and the method is set
to svd. Then, a grid search for the best parameters of the SVM classifier, with a K-fold
of 3, setting the scoring metric to F Measure, is performed. The SVM Kernels used are:
Linear, RBF, polynomial and sigmoidal. The results are described in Figures 5.24 to 5.27.

(a) (b)

Figure 5.24: Binary Class problem - Grid Search SVM with linear Kernel, One vs. Rest
decision function shape, 30 iterations, and a scoring criterion of accuracy confusion Matrix
5.24a and ROC Curves 5.24b
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(a) (b)

Figure 5.25: Binary Class problem - Grid Search SVM with RBF Kernel, One vs. Rest
decision function shape, 30 iterations, and a scoring criterion of accuracy, confusion matrix
5.25a and ROC Curves 5.25b

(a) (b)

Figure 5.26: Binary Class problem - Grid Search SVM with polynomial Kernel, One vs.
Rest decision function shape, 30 iterations, and a scoring criterion of accuracy, confusion
Matrix 5.26a and ROC Curves 5.26b

(a) (b)

Figure 5.27: Binary Class problem - Grid Search SVM with sigmoidal Kernel, One vs.
Rest decision function shape, 30 iterations, and a scoring criterion of accuracy, confusion
Matrix 5.27a and ROC Curves 5.27b
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For each Kernel, the best parameters and F Measure results are found by a grid search
under the previously described conditions. Results are presented on Table 5.6.

Table 5.6: SVM Parameters obtained using F Measure as the scoring metric.

Scoring Metric: F Measure

C Kernel Iterations
Degree

(valid on
polynomial only

Gamma Coef0
Decision
Function

Shape
F Measure

0.200000 ’linear’ 30 1 0.100000 0.000000 ’ovr’ 0.858325
0.200000 ’rbf’ 30 1 0.100000 0.000000 ’ovr’ 0.830403
0.915790 ’poly’ 30 3 0.621053 0.000000 ’ovr’ 0.810238
0.452632 ’sigmoid’ 30 1 0.810526 0.4210526 ’ovr’ 0.925543

With the metric score set to F Measure, the sigmoidal Kernel reaches the best accuracy
score, of about 92% (Table 5.6). Sigmoidal Kernel accurately classifies NORMAL ob-
servations, with a ratio of false positive of 1% (Figure 5.27a), though with considerable
false negatives of 20%. For polynomial Kernel, there are 0% false negatives, but 28% of
false positives (Figure 5.26a). Considering IDSs aims, it is crucial to prevent the most
intrusions as possible. So, the main concern is to assure a low false negatives rate even at
a cost of increasing false positives. This must be taken into account when searching for
the maximum accuracy.

Regarding the Multi-Class approach, using confusion matrices described in Figures 5.12a
and 5.14a, we verify that RBF and sigmoidal Kernels have more false negatives (erroneous
observations wrongly classified as NORMAL) than SVMs (with linear and polynomial
Kernels).

If the Security Manager (SM) is interested in identifying specific intrusions, he should
choose the Multi-class problem approach, since results show that a linear Kernel or a
polynomial Kernel with degree one have the best results regarding accuracy. If the SM
is more interested in capturing the largest number of ERRONEOUS behaviors, he should
use the Binary class approach, using the parameters for the polynomial Kernel described
in Table 5.5.
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Chapter 6

Conclusion and Future Work

The area of security research on IoT is of paramount importance on today’s technological
paradigm, where all kind of devices can be connected and open to malicious intrusions.
Currently, there are no ready-to-use open source Anomaly-based IDS solutions for IoT
security. We propose an Anomaly-based Intrusion Detection System (IDS), AnIDS, for
the IoT, operating at the CoAP level.

We faced some difficulties along this project. The major one was related to the key problem
of finding a mechanism to generate intrusions on IEEE802.15.4-CoAP, or, in alternative,
to find a dataset of intrusions for this stack. As none of these solutions were available, we
had to generate the misbehaviors on the IoT-LAB platform. The next big challenge was
how to calculate features from the PCap files. Most of the available programs of Internet
PCap statistics calculators do not support IEEE802.15.4-CoAP, or not even mention what
protocolar stack they support. Therefore, we had to experiment those programs one by
one. Fortunately, Wireshark, with the TShark command line utility, proved to be able to
analyze the majority of Internet protocols, including IEEE802.15.4, 6LoWPAN, RPL and
CoAP. Thus, TShark could be used to calculate the features from PCap files.

AnIDS uses pre-processing algorithms and training classifiers for building the intrusion
model, either on a Multi or Binary class approaches. For the Multi-Class problem ap-
proach, AnIDS is capable of distinguish between the four types of implemented misbehav-
iors, reaching an accuracy of 93% for the best SVM classifier, with accuracy as the scoring
metric, when using the LDA feature extraction algorithm. For the Binary Class problem
approach, with the best SVM parameters, a classification of NORMAL and ERRONEOUS
can reach an accuracy of 92%, and an F Measure of 98%.

Currently, features are calculated using a TShark call from a python script via popen
command. This solution can be improved to reduce execution time. As future work, we
plan to develop an application for calculating features from a PCap file, without 3rd-party
command system calls. Although only SVM was used as a classifier algorithm, AnIDS
can be easily extended to include additional algorithms, like K-NN, Neural Networks or
Random Forests. Additionally, this work also provides a framework for launching IoT
experiments on the IoT-LAB cloud platform.

Using a CoAP scenario, AnIDS can handle misbehaviors that are difficult to detect by a
pure Signature-based IDS. Additional intrusions can be considered in future developments.

We hope this work can contribute to make our digital world more secure.
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