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SP, Brazil
cUFMA, Universidade Federal do Maranhão, Campus Universitário do Bacanga, Departamento de Fı́sica, 65080-805, São Luı́s, MA,

Brazil
dCFisUC, University of Coimbra, Physics Department, P-3004-516, Coimbra, Portugal

Abstract

New exact analytical bound-state solutions of the 3+1 Dirac equation for sets of couplings and radial poten-
tial functions are obtained via mapping onto the nonrelativistic bound-state solutions of the one-dimensional
generalized Morse potential. The eigenfunctions are expressed in terms of generalized Laguerre polyno-
mials, and the eigenenergies are expressed in terms of solutions of equations that can be transformed into
polynomial equations. Several analytical results found in the literature, including the Dirac oscillator, are
obtained as particular cases of this unified approach.
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1. Introduction

In nonrelativistic quantum mechanics there are several potential with physical interest that allow for
exact solutions, thus offering the possibility of extracting physical information in a way which is not possible
otherwise. Among them is the the generalized Morse potential Ae−αx + Be−2αx [1]-[6], the singular harmonic
oscillator (SHO) Ax2 + Bx−2 [3], [7]-[22], and the singular Coulomb potential (SCP) Ax−1 + Bx−2 [3], [7]-
[10], [19], [21], [23]-[29], which have played an important role in atomic, molecular and solid-state physics.

In a recent paper [30], it was shown that nonrelativistic bound-state solutions of the well-known SHO and
SCP in arbitrary dimensions can be systematically generated from the nonrelativistic bound states of the one-
dimensional generalized Morse potential. The method amounts to a mapping via a Langer transformation
[31]. In the present paper, that method is extended to the 3+1 Dirac equation with scalar, vector and tensor
radial potentials. This extension of the method used in Ref. [30] is an interesting way of providing an unified
treatment of many known relativistic problems via a mapping onto a unique well-known one-dimensional
nonrelativistic problem, allowing to obtain some new exact analytical bound-state solutions for a large class
of problems including new types of couplings and potential functions. We highlight vector-scalar SHO plus
nonminimal vector Cornell potentials and nonminimal vector Coulomb (space component) and harmonic
oscillator (time component) potentials, vector-scalar Coulomb plus nonminimal vector Cornell potentials
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and nonminimal vector shifted Coulomb potentials, vector-scalar SCP plus nonminimal vector Coulomb
potentials, and also a pure nonminimal vector constant potential. Furthermore, we show that several exactly
soluble bound states explored in the literature are obtained as particular cases of those cases. In all those
circumstances the eigenfunctions are expressed in terms of the generalized Laguerre polynomials and the
eigenenergies are expressed in terms of irrational equations.

The paper is organized as follows. In Sec. II we review, as a background, the generalized Morse potential
in the Schrödinger equation. The Dirac with vector, scalar and tensor couplings and its connection with the
generalized Morse potential and the proper form for the potential functions, are presented in Sec. III. In Sec.
IV we draw some conclusions.

2. Nonrelativistic bound states in a one-dimensional generalized Morse potential

The time-independent Schrödinger equation is an eigenvalue equation for the characteristic pair (E, ψ)
with E ∈ R. For a particle of mass M embedded in the generalized Morse potential it reads

d2ψ (x)
dx2 +

2M
}2

(
E − V1e−αx − V2e−2αx

)
ψ (x) = 0, (1)

where α > 0. Bound-state solutions demand
∫ +∞

−∞
dx |ψ|2 = 1 and occur only when the generalized Morse

potential has a well structure (V1 < 0 and V2 > 0). The eigenenergies are given by

En = −
V2

1

4V2

[
1 −
}α
√

2MV2

M|V1|

(
n +

1
2

)]2

. (2)

with

n = 0, 1, 2, . . . <
M|V1|

}α
√

2MV2
−

1
2
. (3)

This restriction on n limits the number of allowed states and requires M|V1|/
(
}α
√

2MV2

)
> 1/2 to make the

existence of a bound state possible. On the other hand, on making the substitutions

}αsn =
√
−2MEn, }αξ = 2

√
2MV2 e−αx, (4)

the eigenfunctions are expressed in terms of the generalized Laguerre polynomials as

ψn (ξ) = Nn ξ
sn e−ξ/2L(2sn)

n (ξ) , (5)

where Nn are arbitrary constants.

3. The Dirac equation

The time-independent Dirac equation for a spin 1/2 fermion with energy ε and with mass m, in the
presence of a potential reads (with } = c = 1)(

~α · −→p + βm +V
)
Ψ = εΨ, (6)

where −→p is the momentum operator and ~α and β are 4 × 4 matrices which, in the usual representation, take
the form

~α =

(
0 −→σ
−→σ 0

)
, β =

(
I2 0
0 −I2

)
. (7)
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Here −→σ is a three-vector whose components are the Pauli matrices, and IN stands for the N × N identity
matrix. In the following, we consider

V (r) = Vv (r) + βVs (r) + iβ~α · r̂U (r) . (8)

In the last term, r̂ = ~r/r, and the radial functions in Eq. (8) are named after the properties their respective
terms have under Lorentz transformations: Vv corresponds to the time component of a vector potential, Vs

is a scalar potential, and U is a tensor potential [32]. In spherical coordinates, Ψ is expressed in terms of
spinor spherical harmonics

Ψ
(
~r
)

=


i
gκ (r)

r
Yκm j (r̂)

−
fκ̃ (r)

r
Yκ̃m j (r̂)

 , (9)

where κ = ± ( j + 1/2) = −κ̃ are eigenvalues of the spin-orbit operator K = −β
(
2~S · ~L + I4

)
, j is the total

angular momentum quantum number (m j refers to its third component), and ~S and ~L are the spin and angular
momentum operators, respectively. More explicitly, the spin-orbit coupling quantum number κ is related to
the upper component orbital angular momentum quantum number l by

κ =


− (l + 1) = − ( j + 1/2) , j = l + 1/2 (κ < 0)

l = + ( j + 1/2) , j = l − 1/2 (κ > 0).
(10)

The upper and lower radial functions obey the coupled first-order equations:

[
d
dr

+
κ

r
+ U (r)

]
gκ (r) = [m + ε − V∆ (r)] fκ̃ (r)

(11)[
d
dr
−
κ

r
− U (r)

]
fκ̃ (r) = [m − ε + VΣ (r)] gκ (r) ,

where we have introduced the “sum” and the “difference” potentials defined by VΣ = Vv+Vs and V∆ = Vv−Vs.
It is instructive to note that the charge-conjugation operation is accomplished by the changes of sign of

ε, Vv, U and κ. In turn, this means that VΣ turns into −V∆, V∆ into −VΣ, g into f and f into g. Therefore, to
be invariant under charge conjugation, the Dirac equation must contain only a scalar potential. Furthermore,
g and f should be square-integrable functions for bound states.

Due to charge conjugation, solutions for VΣ = 0 can be conveniently obtained from those ones for
V∆ = 0, provided those solutions are analytical. These correspond, respectively, to so-called pseudospin and
spin symmetry conditions of the Dirac equation (see [33] for a recent review). Therefore, we concentrate
our attention to the case V∆ = 0. In this case, one obtains a second-order differential equation for g when
ε , −m and a first-order differential equation for g when ε = −m.

3.1. The Sturm-Liouville problem for V∆ = 0 (ε , −m)
For V∆ = 0 and ε , −m,

d2gκ (r)
dr2 + 2M

[̃
ε − V (r) −

κ (κ + 1)
2Mr2

]
gκ (r) = 0, (12)
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with M denoting a positive parameter having dimension of mass. The effective energy ε̃ and the effective
potential V are expressed by

2Mε̃ = ε2 − m2

2MV = (ε + m)VΣ −
dU
dr

+ 2κ
U
r

+ U2, (13)

gκ → 0 as r → ∞ for bound-state solutions.
Following Ref. [30], with effective potentials expressed by

V (r) = Arδ +
B
r2 + C, δ = +2, − 1 (14)

the Langer transformation [31]

gκ(r) =
√

r/r0 φκ(x) , r/r0 = e−Λαx , (15)

with r0 > 0, Λ > 0 and α being as in eq. (1), transmutes the radial equation (12) into

d2φκ (x)
dx2 + 2M

{
−

(ΛαS )2

2M
− (Λαr0)2

[
Arδ0e−Λα(δ+2)x + (C − ε̃) e−2Λαx

]}
φκ (x) = 0, (16)

with

S =

√
(κ + 1/2)2 + 2MB. (17)

A connection with the bound states of the generalized Morse potential of eq. (1) is obtained if the pair (δ,Λ)
is equal either to (2, 1/2) or (−1, 1), and, as an immediate consequence of the reality of S , i.e., S 2 > 0, one
must have

2MB > −(κ + 1/2)2. (18)

Actually, if 2MB > −1/4, the above condition will satisfied for all values of κ.
Furthermore, since the asymptotic behaviour of (16) implies that φκ (x) →

x→+∞
e−ΛαS x and therefore, from

(15), one has

gκ (r) →
r→0

r1/2+S . (19)

Effective potentials with the general form (14) are achieved by choosing the potentials in the Dirac
equation as follows

VΣ (r) = αΣ/r2 + βΣ/r + γΣr2, (20)
U (r) = βu/r + γurδu , δu = 0 or 1 . (21)

In these last expressions, when δ = 2 one must have βΣ = 0 , δu = 1 and when δ = −1 one has γΣ = 0 , δu = 0.
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3.1.1. The effective singular harmonic oscillator
With (δ,Λ) = (2, 1/2) plus the definition A = Mω2/2, the identification of the bound-state solutions of

Eq. (12) with those ones from the generalized Morse potential is done by setting V1 = −α2r2
0 (̃ε −C) /4 and

V2 = α2r4
0 Mω2/8, with ε̃ > C and ω2 > 0, since V1 < 0 and V2 > 0. With ω > 0 one can write

ξ = Mωr2. (22)

Furthermore, (3) implies ε̃ > C + ω (2n + 1). Using (2) and (17) one can write the complete solution of the
problem as

ε̃ = C + ω (2n + 1 + S ) (23)
gκ(r) = Nr1/2+S e−Mωr2/2L(S )

n

(
Mωr2

)
, (24)

The condition (3) means that

n ≤
[
ε̃ −C − ω

2ω

]
(25)

where [x] stands for the largest integer less or equal to x. Since ε̃ depends quadratically on ε from eqs. (13)
and ω may depend at most on

√
ε (see eq. (27) below), the condition (25) means that there is no limitation

on the value of n, because it can be as large as the energy can, which in turns means that n in (23) has no
upper bound.

Examples of this class of solutions can be reached by choosing

VΣ (r) =
αΣ

r2 + γΣr2, U (r) =
βu

r
+ γur. (26)

This includes solutions like the harmonic oscillator plus a tensor linear potential [34], the harmonic oscillator
plus a tensor Cornell potential [35], [36], the SHO plus a tensor linearpotential [37], the SHO [39], the tensor
Cornell potential [40] and the Dirac oscillator [41].

The complete identification with the generalized Morse potential is done with the equalities

Mω =

√
γ2

u + γΣ (ε + m)

2MB = (βu + κ + 1/2)2 − (κ + 1/2)2 + αΣ (ε + m) (27)
2MC = γu (2βu + 2κ − 1) ,

which lead, in general, to an irrational equation in ε:

(ε + m) (ε − m) − γu (2βu + 2κ − 1) = 2 (2n + 1 + S )
√
γ2

u + γΣ (ε + m)

= 2
(
2n + 1 +

√
(βu + κ + 1/2)2 + αΣ (ε + m)

) √
γ2

u + γΣ (ε + m) (28)

We note that if αΣ > 0, γΣ > 0 and βu = 0, one gets a harmonic oscillator type energy spectrum for positive
energy states with ε > m, but there also states with negative energy, although there would a minimum value
for that energy, because one must have (κ + 1/2)2 + αΣ (ε + m) ≥ 0. If in addition αΣ = 0, one has the
(positive energy) generalized relativistic harmonic oscillator with γΣ = 1/2 mω2

1, γu = mω2 where ω1 and
ω2 are the frequencies defined in [34].

Squaring Eq. (28) successively results into a nonequivalent algebraic equation of degree 8. Solutions
of this algebraic equation that are not solutions of the original equation can be removed by backward sub-
stitution. A quartic algebraic equation is obtained when αΣ = 0. For αΣ = γu = 0 one obtains a cubic
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algebraic equation. However, (28) can be written as a quadratic algebraic equation rendering two branches
of solutions symmetrical about ε = 0 in the case of a pure tensor Cornell potential (γu , 0):

ε = ±

√
m2 + γu (2βu + 2κ − 1) + 2|γu| (2n + 1 + S )

= ±

√
m2 + γu (2βu + 2κ − 1) + 2|γu| (2n + 1 + |βu + κ + 1/2|). (29)

3.1.2. The effective singular Coulomb potential
To get the bound states of eq. (12) from those of the generalized Morse potential equation eq. (16) with

the pair (δ,Λ) = (−1, 1) on must choose V1 = α2r0A and V2 = α2r2
0 (C − ε̃), with A < 0 and ε̃ < C. Now,

ξ = 2
√

2M (C − ε̃) r (30)

and (3) implies ε̃ > C − MA2/[2 (n + 1/2)2]. Using (2) and (17) one can write

ε̃ = C −
MA2

2ζ2 ,

(31)

gκ (r) = Nr1/2+S e−M|A|r/ζL(2S )
n

(
2M|A|r
ζ

)
.

with

ζ = n + 1/2 + S = n + 1/2 +

√
(κ + 1/2)2 + 2MB. (32)

This class of solutions can be obtained by choosing

VΣ (r) =
αΣ

r2 +
βΣ

r
, U (r) =

βu

r
+ γu. (33)

There results

2MA = βΣ (ε + m) + 2γu (βu + κ)

2MB = (βu + κ + 1/2)2 − (κ + 1/2)2 + αΣ (ε + m) (34)
2MC = γ2

u,

in such a way that one finds the irrational equation in ε

(ε + m) (ε − m) = γ2
u −


2γu (βu + κ) + βΣ (ε + m)

2
(
n + 1/2 +

√
(βu + κ + 1/2)2 + αΣ (ε + m)

)


2

, (35)

One example of solutions for these type of radial potentials in the Dirac equation is the Coulomb potential
plus a tensor Coulomb potential [42], and the SCP plus a tensor Coulomb potential [43], [44].

The very special case αΣ = γu = 0, necessarily with βΣ < 0, holds a spectrum given by

ε = m
1 −

[
βΣ/ (2ζ)

]2

1 +
[
βΣ/ (2ζ)

]2 . (36)
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with ζ = n + 1/2 + |βu + κ + 1/2|. It is interesting that the dependance on the tensor potential parameter βu

is done only through ζ, which contains the quantity 2MB. Therefore, the spectrum is formally similar to the
solution of pure (βu = 0) Coulomb scalar and vector potentials in spin symmetry conditions [45]. It amounts
to have an effective value of κ, given by κ̄ = κ + βu.

É também interessante ver o caso de um potencial tensorial puro (αΣ = βΣ = 0),

U (r) =
βu

r
+ γu, (37)

com o espectro dado por

ε = ±

√
m2 + γ2

u

1 − (
βu + κ

ζ

)2. (38)

Como A < 0 e usando a equação (32) encontramos que γu (βu + κ) < 0. Dessa inequação e da equação de
autovalor percebe-se que não há estados ligados para γu = 0. Se βu = 0 então γuκ < 0 e teremos estados
ligados para partı́culas com spin alinhado ou desalinhado dependendo do sinal de γu. Nesta situação, no
entanto, o espectro é o mesmo em ambos os casos, pois não depende do sinal de γuκ. Para que haja estados
ligados para βu , 0 e γu < 0, a parte coulombiana do potencial tensorial tem que ter um limite inferior
dado por βu > ∓ |κ| para spin alinhado e desalinhado respectivamente. Então, pode-se concluir que nesta
situação, só é possı́vel ter estados ligados de partı́culas com spin desalinhado para um potencial coulombiano
repulsivo, e para spin alinhados, pode-se ter estados ligados com um potencial atrativo ou repulsivo. Por
outro lado, para que haja estados ligados para βu , 0 e γu > 0 devemos ter um limite superior para a parte
coulombiana do potencial tensorial dado por βu < ∓ |κ|, para spin alinhado e desalinhado respectivamente,
donde se conclui que nesta situação, só é possı́vel ter estados ligados de partı́culas de spin alinhado para um
potencial atrativo, e ara spin desalinhado, pode-se ter estados ligados com um potencial atrativo ou repulsivo.
Desta vez, o espectro não será necessariamente o mesmo para spin alinhado e desalinhado. É engraçado que
βu sozinho não consiga gerar estados ligados, ou seja, para o caso do potencial puramente tensorial, a parte
constante do potencial é mais ”forte” do que a parte coulombiana. Como já tı́nhamos visto, um potencial
tensorial constante é capaz de gerar estados ligados.

3.2. Isolated solutions for V∆ = 0 (ε = −m)
We shall now deal with possible solutions for potentials that can not be expressed by means of the

Sturm-Liouville problem. For V∆ = 0 and ε = −m, one can write

gκ(r) = Nge−v(r), fκ (r) =
[
N f + NgI (r)

]
e+v(r), (39)

where Ng and N f are constants, and

v (r) =

∫ r

dy
[
κ

y
+ U (y)

]
, I (r) =

∫ r

dy
[
2m + VΣ (y)

]
e−2v(y). (40)

It is worthwhile to note that this sort of isolated solution can not describe scattering states.
Setting

(δu + 1) λ = 2γu, (δu + 1) τ = −2 (βu + κ) , (41)

one finds

2v (r) = − (δu + 1) τ ln r + λrδu+1 (42)
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and

(δu + 1) λτI (r) = 2mλ−1/(δu+1)γ

(
1

δu + 1
+ τ, λrδu+1

)

+αΣλ
1/(δu+1)γ

(
−

1
δu + 1

+ τ, λrδu+1
)

+βΣγ
(
τ, λrδu+1

)
+γΣλ

−3/(δu+1)γ

(
3

δu + 1
+ τ, λrδu+1

)
(43)

where γ (a, z) is the incomplete gamma function [46]

γ (a, z) =

∫ z

0
dt e−tta−1, Re a > 0. (44)

Hence,

gκ(r) = Ngr+(δu+1)τ/2e−λrδu+1/2

(45)
fκ (r) =

[
N f + NgI (r)

]
r−(δu+1)τ/2e+λrδu+1/2

A proper asymptotic behaviour for λ < 0 (γu < 0) requires Ng = 0. Thus,

gκ(r) = 0
(46)

fκ (r) = N f r−(δu+1)τ/2e+λrδu+1/2

regardless of αΣ, βΣ and m. Nevertheless, a good behaviour of fκ near the origin, in the sense of normaliza-
tion, forces one to the choice (δu + 1) τ < 2, i.e. βu + κ > −1.

As for λ > 0 (γu > 0), a good behaviour at infinity requires N f = 0. Hence,

gκ (r) = Ngr+(δu+1)τ/2e−λrδu+1/2

(47)
fκ (r) = NgI (r) r−(δu+1)τ/2e+λrδu+1/2

We must, however, pay attention to the behaviour of I(r) at infinity. As z increases γ (a, z) approaches
the limiting value Γ (a) so that fκ is not a square-integrable function. An exception, though, occurs when
m = αΣ = βΣ = 0 just for the reason that fκ vanishes identically. Therefore,

gκ (r) = Ngr+(δu+1)τ/2e−λrδu+1/2

(48)
fκ (r) = 0

with (δu + 1) τ > −2, i.e. βu + κ < 1.

8

marcelo
Realce

marcelo
Realce

marcelo
Realce

marcelo
Realce

marcelo
Realce

marcelo
Realce

marcelo
Realce

marcelo
Realce

marcelo
Realce

marcelo
Realce

marcelo
Realce



4. Concluding remarks

Based on Ref. [30], we have described a straightforward and efficient procedure for finding a large class
of new solutions of the 3+1 Dirac equation with radial scalar Vs vector Vv and tensor U radial potentials,
when has Vs = ±Vv. Their wave functions are all expressed in terms of generalized Laguerre polynomials
and their energy eigenvalues obey analytical equations, either polynomial or irrational which can be cast
as polynomial. These include harmonic oscillator-type and Coulomb-type potentials and their extensions.
Although the solutions for those systems could be found by standard methods, this procedure, based on the
mapping from the one-dimensional generalized Morse potential via a Langer transformation to the 3 + 1
radial Dirac equation, provide an easier and powerful way to find the solutions of a very general class of
potentials which otherwise one might not know that would have analytical solutions in the first place. We
were able to reproduce well-known particular cases of relativistic harmonic oscillator and Coulomb spin-1/2
systems, when the scalar and vector potentials have the same magnitude, but there are a wealth of other
particular cases with physical interest that are left for further study.
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