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Abstract

Cruz, Rui Francisco Pereira Moital Loureiro da Cruz; Roehl, Deane; Vargas,
Euripedes. An XFEM element to model intersections between hydraulic
and natural fractures in porous rocks. Rio de Janeiro, 2018. 225p. Tese de
Doutorado - Departamento de Engenharia Civil, Pontificia Universidade
Catdlica do Rio de Janeiro

A large number of hydrocarbon reservoirs are naturally fractured. When
subjected to hydraulic fracturing treatments, the natural fractures may influence the
propagation of the hydraulic fracture, which can grow in a complicated manner
creating complex fracture networks in the reservoir. In order to better understand
and simulate such phenomena an element based on the eXtended Finite Element
Method is proposed. The element formulation comprises fracture intersection and
crossing, fracture frictional behaviour, fully coupled behaviour between
displacements, pore and fracture fluid pressure, leak-off from the fracture to the
surrounding medium and the eventual loss of pressure due to filter cake. The
theoretical background and implementation aspects are presented. A set of analyses
is performed in order to validate different features of the implemented element.
Finally, the results of four practical applications are analysed and discussed: two
laboratory hydraulic fracture tests, hydraulic fracture propagation in a multi-
fractured synthetic model and percolation through a dam fractured foundation. It is
concluded that the implemented code provides very good predictions of the coupled
fluid-rock fracture behaviour and is capable of correctly simulating the interaction
between hydraulic and natural fractures. Moreover, it is shown that the hydraulic
behaviour of the models and the intersection between fractures are very sensible to
parameters such as differential in-situ stresses, angle between fractures, initial

hydraulic aperture and fracture face transversal conductivity.

Keywords

Finite Element Method; eXtended Finite Element Method; Hydraulic
Fracturing; Intersection between hydraulic and natural fractures



Resumo

Cruz, Rui Francisco Pereira Moital Loureiro da Cruz; Roehl, Deane; Vargas,
Euripedes. Um elemento XFEM para modelar interseccoes entre fraturas
hidraulicas e naturais em rochas porosas. Rio de Janeiro, 2018. 225p. Tese
de Doutorado - Departamento de Engenharia Civil, Pontificia Universidade
Catdlica do Rio de Janeiro.

Um elevado ndmero de reservatérios de hidrocarbonetos é naturalmente
fraturado. Quando sujeitos a estimulagdo hidrdulica, as fraturas naturais podem
influenciar a propagacdo da fratura hidrdulica, que pode tomar uma forma
geométrica complexa, criando redes de fraturas no reservatério. De forma a melhor
entender e simular tais fendmenos, um elemento baseado no Método dos Elementos
Finitos Estendidos (XFEM) € proposto. A formulacdo do elemento inclui intersecao
e cruzamento entre fraturas, atrito entre as faces das fraturas, comportamento
acoplado entre deslocamentos, poro-pressdes e pressdes do fluido da fratura,
absorcdo de fluido da fratura para o meio poroso (leak-off) e a eventual perda de
pressdo nas faces da fratura (filter cake). Os fundamentos tedricos e os aspectos
relevantes da implementagdo sdo apresentados. Um conjunto de andlises € realizado
de forma a validar em separado as diferentes funcionalidades do elemento
implementado. Finalmente, os resultados de quatro aplicacdes praticas sao
analisados e discutidos: dois conjuntos de ensaios de laboratério de intersecdo de
fratura, propagagdo de fratura hidrdulica num modelo sintético multi-fraturado e
percolacdo na fundagdo fraturada de uma barragem. Conclui-se que o codigo
implementado fornece previsdes muito boas do comportamento acoplado do meio
fraturado e tem capacidade de simular corretamente a interacdo entre fraturas
hidraulicas e naturais. Pode também verificar-se que o comportamento hidraulico
dos modelos e a propagacgao e interse¢do de fraturas sdo muito influenciados por
parametros tais como o diferencial de tensdes in-situ, angulo entre fraturas, a

abertura hidraulica das fraturas e a condutividade transversal das faces da fratura.

Palavras Chave

Método dos Elementos Finitos; Método dos Elementos Finitos Estendidos;
Fraturamento Hidrdulico; Intersecdo entre fraturas hidrdulicas e naturais
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1
Introduction

1.1.
Hydraulic fracturing in naturally fractured formations

Hydraulic fracturing (or hydraulic stimulation) is an operation that consists in
the injection of a fluid under high pressures into the reservoir rock to generate
tensile stresses in the rock, initiating a fracture. This fracture keeps growing during
fluid pumping. Combined with the fracturing fluid, a granular agent (proppant) is
injected. When the fracture closes its faces against this agent once the pumping
operation stops, a high conductivity channel forms in the fracture for the flux of
hydrocarbons from the rock to the well. This is one of the most important activities
in hydrocarbons extraction nowadays.

According to Valké and Economides (1995), 50% oil wells and 70% gas
wells were stimulated using this technology during the second half of the 20
century. Considering the huge increase in unconventional reservoirs during the past
15 years, one may assume those numbers have further increased. Nowadays, this
technique may be applied for different purposes, such as: (a) the stimulation of rock
formations with poor or damaged permeability, mainly in shale gas reservoirs, to
increase conductivity between the reservoir and the producing wells, (b)
improvement of produced water re-injection where water is injected to replace
produced fluids and maintain reservoir pressure or provide enhanced oil recovery,
(c) cuttings reinjection where a slurry of drill cuttings is injected into a formation
to mitigate the cost and risk of surface disposal, (d) in-situ stress measurement by
balancing the fracturing fluid pressure in a hydraulically opened fracture with the
geostatic stresses, and (e) wellbore integrity analysis of drilling operations to avoid
propagating near-wellbore fractures that could result in drilling fluid losses to the
formation and to inability to effectively clean the wellbore (Zielonka et al., 2014).

Hydraulic fracturing may be applied on a wide depth range, being more
common in depths between 2000 and 3500 m. Horizontal, vertical or even inclined

wells are used to create longitudinal or transversal fractures, and one or multi-stage
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treatments can be applied, depending on a variety of factors. As Figure 1.1 shows,

fractures grow preferably in the direction perpendicular to the minimum in situ
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Figure 1.1 — Fracture development as function of wellbore orientation

(Rahim et al., 2012).

Most sedimentary rocks are composed of layers which reflect the changing
depositional conditions of geological time. In addition, the more competent rocks
frequently are fractured and jointed as the result of structural deformations or
tectonic movements. Evidence of such joint systems exists in many surface
outcrops, and it can be assumed that similar systems occur in many subsurface
rocks, although the individual joints may be rather tightly closed due to overburden
forces (Lamont and Jessen, 1963).

An effective hydraulic fracture treatment in naturally fractured reservoirs
should cross and connect the natural fracture system, increasing the effective
surface area of the wellbore and consequently its production. However, those
interactions may also interfere and inhibit fracture growth and proppant placement,
having an adverse effect on the production rates, increasing the treatment costs.
Consequently, the behaviour of hydraulic fractures (HF) near a natural fault or
discontinuity (NF) is of great importance for an efficient reservoir simulation, as
natural discontinuities can significantly influence the hydraulic fracturing process
(Zhang and Ghassemi, 2011). Along the last decades, laboratory experiments have
described qualitatively the effects of fracture intersection (Blanton, 1982; Gu et al.,
2012; Khoei et al., 2015), showing three types of interaction features: crossing to

the opposite side of the NF, arresting of the hydraulic fractures (HF) and opening
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of the natural fractures (NF). Figure 1.2 illustrates the events that can occur. As the
interaction between fractures depends on several physical parameters, such as in-
situ stress and angle between fractures, a realistic simulation of the treatment is

needed to improve design and consequently production.

Hydraulic

HF crosses HF offsets

\Eandopens NF ! from NF EL“-.K._.\_

Figure 1.2 — Different events of interaction between hydraulic and

natural fractures

1.2.
Research motivation

Modern methods of simulation and prediction of hydraulic stimulation of
geomaterials are still very limited to academic cases. Most commercial software
used by the industry are focused in rapid design and still resort to very simple
formulations (Warpinski et al., 1993) that assume planar fractures with simple
geometry with one-dimensional decoupled leak-off in linear-elastic impermeable
materials.

As stated by Adachi et al. (2007) there is a rising tide of evidence from direct
monitoring of actual field treatments that suggests that the fracture can grow in a

complicated manner, taking advantage of local heterogeneities, layering, and
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natural fracture networks in the reservoir. These factors complicate and make the
process of treatment design and numerical modelling far more challenging.

Numerical methods have been widely used to simulate hydraulic fracturing
treatments. Although many different academic works use techniques such as the
Boundary Element Method or the Discrete Element Method, the Finite Element
Method takes by far the preference of most researchers. The techniques for
modelling fracture propagation within the finite element framework are mainly
based on: adaptive meshing, interface or cohesive elements, damage models and
enrichment techniques.

One very well-known enrichment technique is the eXtended Finite Element
Method (XFEM), which was introduced by Belytschko and Black (1999) and Moes
and Dolbow (1999) and later applied to model propagation of hydraulic fractures in
quasi-brittle materials by Moé&s and Belytschko (2002). Even though very
interesting results were achieved, there are still many "grey" areas of knowledge,
such as the branching and intersection of fractures, fluid flow related to fractures,
and the effects of rock heterogeneities (Li et al., 2015).

Considering all the mentioned limitations in the available methods for
hydraulic fracture simulation and the many parameters that govern HF behaviour,
the motivation for this research is the possibility of using a recent and advanced
numerical technique such as the XFEM to bring better insight in the subject of

numerical modelling of hydraulic stimulation in naturally fractured reservoirs.

1.3.
Research objectives

This research work aims at the development of a finite element to study the
interaction between hydraulic and natural fractures. The proposed finite element
uses enrichment techniques to represent displacement discontinuities, i.e. fractures.
By increasing the number of enriched variables, multiple intersecting fractures may
be represented in one single element. Thus, the element is capable of simulating not
only multiple fractures in the same model but also fracture intersections, as the ones
showed in Figure 1.3.

Other complex phenomena are considered, such as fracture frictional
behaviour, fully coupled behaviour with pore and fracture fluid pressure, exchange

of fluid between the fracture and the surrounding medium and the consideration of
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an eventual loss of pressure between the fracture faces and the porous medium
(filter cake). The simulation of the mentioned phenomena is achieved by
discretizing the finite element problem with three physical variables:

displacements, pore-pressures and fracture pressures.

Fracture
! intersection |

__________________

Figure 1.3 — Fracture intersections in a fractured medium

The implementation of an enriched element requires additional procedures
that deal with fracture geometry. This is achieved by implementing a pre-processor
and a post-processor. The former defines the global location of the fractures, their
intersections with each other and intersections between fractures and the element
mesh. The latter checks for fracture propagation by computing a propagation
criterion based on the stress state.

The element implementation and the mentioned procedures are integrated
with the software Abaqus (Simulia, 2014) as user subroutines, together with input
and output auxiliary codes, resulting in a numerical simulation suite which is named
XFEMHF. This overcomes the limitations of built-in Abaqus XFEM elements,
which cannot be intersected by more than one fracture. Similar but simpler
implementations of this type were also done by other authors with good results
(Giner et al., 2009; Chen, 2013; Silva, 2015).

In addition to the implementation work, a wide variety of numerical
applications are computed for validation and to prove the applicability of the

numerical tool. In most of the presented models, parametric analyses are run.
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Summing up, the objectives of this thesis may be summarized in:
¢ Formulation and implementation of an XFEM element that is capable
of simulating
o multiple fractures, including intersections;
o fracture frictional behaviour;
o fully coupled behaviour with pore and fracture fluid pressure;
o exchange of fluid between the fracture and the surrounding
medium;
o an eventual loss of pressure between the fracture faces and the
porous medium (filter cake);
* Implementation of a pre-processor for definition of fracture geometry;
¢ Implementation of a post-processor for propagation computing;
* Integration of the implemented code with Abaqus software;
e Validation of the formulation comparing the implemented code with
analytical or other software solutions;

® Application to real cases or synthetic models.

Finally, this research work aims at contributing to improve knowledge on the
subject of intersection between hydraulic and natural fractures, mainly in
unconventional reservoirs. The use of a more advanced numerical tool may bring
better prediction of injection pressure, injected volumes, fracture opening and
fracture network pattern, resulting in improved treatment design. The application to
parametric studies of real cases may also clarify in which scenarios of stimulation

the treatment is more effective and the production optimized.

1.4.
Thesis organization

This thesis is organized in seven chapters. The first chapter introduces the
research, its motivations and objectives. The second chapter presents the basic
concepts and the most relevant research works that give support to this research,
namely hydraulic fracture modelling, intersection between hydraulic and natural
fractures and the eXtended Finite Element Method.

The third chapter presents the theoretical background and develops the

formulation of the proposed element, focusing on the special spatial discretization



26

that the XFEM requires of the governing equations. The constitutive model used to
simulate the behaviour of the natural fractures is also presented. Chapter 4 describes
the most important aspects and details of the implementation of the XFEMHF
algorithm and its components. It also describes the interaction of the implemented
code with the software Abaqus and the limitations associated to it.

The fifth chapter presents the comparison between numerical models and
analytical solutions or other software, in order to validate the implemented
formulation. Finally, tests in three models are used to verify the accuracy of the
contact and friction model for natural fractures.

Chapter six presents applications to more realistic cases. It starts by
comparing numerical models with two sets of experimental tests by Blanton (1982),
and Khoei et al. (2015). Then, a synthetic multi-fractured model is subjected to a
parametric analysis of the in-situ stresses and initial fracture hydraulic aperture.
Finally, a model of percolation under a dam foundation is set and different
parameters are tested to study their influence, including a comparison with the
results of Segura and Carol (2004).

In the last section, the main conclusions are summarized. Proposals to further
develop and improve the implemented algorithm of this research are also presented

and discussed.
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Basic concepts and literature review

Only recently, researchers started applying enrichment techniques to the
modelling of interaction between hydraulic and natural fractures. Consequently, the
amount of research in this specific subject is limited. Nevertheless, a wide variety
of research related to different parts of this subject is available, such as the use of
enrichment techniques to simulate multiple fractures in uncoupled problems, or the
modelling of single planar hydraulic fractures. To cover all the areas of knowledge
that are involved in this thesis, three main subjects were deeply reviewed. The first
section presents a review on hydraulic fracture modelling, from its early analytical
works based on linear elastic fracture mechanics to modern numerical techniques.
Next, studies regarding the interaction between fractures, physical or numerical, are
contextualized and presented. The last section approaches the history of the
eXtended Finite Element Method and its applications to coupled or branched

problems.

2.1.
Hydraulic fracture modelling

2.1.1.
Introduction

An idealized plot of a borehole pressure response against injected volume is
represented in Figure 2.1a. The first linear part represents the system elastic
deformation, mainly the fracturing fluid compression in the borehole. Fracture
initiation is identified by a pressure peak, followed by a drastic pressure drop
(breakdown), which means the fracture volume grows at a higher rate than the
injected volume. Keeping continuous pumping will lead to stable fracture
propagation. In a second pumping cycle (Figure 2.1a), a reduction of the peak
pressure is noted. Once the fracture already exists, no tensile strength has to be

reached and the in-situ stresses are different from the ones before the first cycle.
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Figure 2.1 — Borehole pressure response during hydraulic fracture of a
vertical wellbore (Fjaer, 2008). a) Idealized plot of two pressure cycles. b)
Realistic plot with distinct breakdown pressure. ¢) Realistic plot without

distinct breakdown pressure

More realistic plots show this processes occur with smoother transitions
which are harder to detect. Figure 2.1b shows a test with clear breakdown pressure,
while in Figure 2.1c it is not detectable. According to Fjaer et al. (2008) this can
happen due to several reasons, from filter cake efficiency to plastification and stress
dependent properties, temperature and leakage.

Hydraulic fracture propagation is mainly based on three physical processes.
First, fluid flow within the fracture, which imposes a pressure load on the fracture
surfaces. Second, rock mechanical deformation as a result of the flow pressure.
Third, fracture propagation when a critical condition is reached. Furthermore, other
complex phenomena may be involved, such as:

e leak-off of fracturing fluid from the fracture to the rock matrix;

e transport of suspended proppant particles within the fracture;
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e cffects of temperature on the fracturing fluid rheology;

e effects of chemical composition of the fluid on rock behaviour.

Hydraulic fracture treatments usually take place in a time-scale of tens of
minutes to a few hours, depending upon the designed fracture size and volume of
proppant to be placed (Adachi et al., 2007). As the body wave speeds are much
larger than the macroscopic propagation velocity of a hydraulically driven fracture,
it may be admitted that dynamic effects like wave propagation can be neglected and
fracture propagation can be analysed as a succession of equilibrium states. For
example, a fracture is driven in the order of 610 m in 5 to 8 hours, while an elastic
wave traverses this distance in 200 milliseconds (Hanson, Shaffer and Anderson,
1981).

The first attempts of modelling the hydraulic fracturing process date from
more than 50 years. However, it remains a current challenge, not only due to the
wide variety of phenomena and scales associated but also because it is so hard to
track evidences in the laboratory or in the field. Standing before a large number of
models created to model different situations and phenomena, one has to choose
which model to use based mainly on experience with the reservoir characteristics.

According to Valké and Economides (1995), a hydraulic fracturing model
should follow three basic principles:

¢ Fundamental laws such as material and energy balances must be obeyed;

e Complete mathematical formulation of the governing and boundary
equations, without resorting to “weighing factors”, should be derived;

e A fracture tip propagation criterion and its interaction with the provided

energy must be explicitly stated.

In general, the solution for hydraulic fracture modelling consists of a series
of "snapshots" that correspond to unique instances in time and crack shape. From
the literature review made throughout this research, two different philosophies of
modelling hydraulic fracturing could be differentiated.

The first has its domain in the plane where the fracture grows, with the width
of the fracture being perpendicular to the calculation plane. This is a classical
approach that assumes a bi-planar fracture, widely used by the industry to design or

simulate the process.
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The second approach models the continuum space. It can be used in 2D or 3D
models, and the fracture is usually simulated in a perpendicular plane to the fracture
plane in case of two-dimensional simulations. In these models, the propagation
direction does not have to be known at start and can change during its development.
These have been used mostly to evaluate the interaction between hydraulic fractures
and natural fractures. Although only a few references with employment of these
models in the industry were found, those models have high academic interest for
the capabilities they present.

The transport and placement of proppant within the fracture is usually
modelled by representing the slurry (i.e., the mixture of proppant and fluid) as a
two-component, interpenetrating continuum. This implies that the fluid flow
equations are solved for the mixture, and not for each individual component.
Modelling of the proppant transport then reduces to solving an advective (mass
conservation) equation for the proppant volumetric concentration. More complex
modelling of this phenomena can be found in the literature, including models used
in commercial simulators (Kresse er al., 2014) that assume three layer models
(proppant, slurry and clean fluid).

In a different process from the conventional hydraulic fracturing, named
Thermally Induced Fracturing (TIF), thermal effects take a major role in the
treatment results, especially when there is a large temperature difference between
the (cold) injection water and the (hot) reservoir. Typical response is a sudden
increase in injectivity after a significant period of stable injection. This reflects that
the reservoir rock has been gradually cooled during injection of the cold water. The
reservoir rock shrinks due to cooling, and eventually the smallest in situ stress is
reduced to a level below the bottom hole injection pressure. This results in the
creation of a fracture which provides a much larger contact area with the formation
and hence dramatic increase in injectivity (Fjaer, 2008). Cohen, Kresse and Weng
(2013) studied the impact of the reservoir temperature on the production for
different fracturing fluids with their rheological properties depending on
temperature, through the implementation of a model that couples the heat transport
equations inside the fracture and the heat exchange with the reservoir.

Chemical effects may also exist in fracturing treatments such as acid
fracturing, which is used in very specific cases (shallow carbonates), and consists

on using acid instead of proppant. This will react with the rock, creating channels
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that improve the permeability of the fracture. In this field, studies exist to predict
the influence of chemical solutions on rock properties, such as in Karfakis and
Akram (1993).

The research papers presented in this literature review are focused on the
phenomena which are considered of main importance to hydraulic fracture

modelling, i.e. fluid flow, mechanical behaviour and fracture propagation.

2.1.2.
Analytical models

A basic stimulation treatment simulation needs to return parameters which
are essential to study the effectiveness of the treatment, as pumping time, pressure
in the well and fracture volume (width, height and length). Therefore, the first
efforts to model the process tried to couple basic phenomena such as:

e elasticity of the rock medium around the fracture;
e fracturing fluid flow, to relate the injection with pressure inside the fracture;
¢ material balance, to relate the fracture growth with injected volume;

® proppant propagation.

Three analytical solutions proved to be reliable enough to be used for decades
as basis for hydraulic fracturing prediction. First, Sneddon (1946) developed
solutions for geometries that conform with a plane strain fracture or a “penny-
shaped” fracture with radial flow (see Figure 2.2a). In the “penny-shaped” model,
the fracture width is determined by assuming a uniform fracture flow pressure. This
solution applies best when the well orientation coincides with the direction of

minimum confining stresses, i.e. the fracture evolves around the wellbore.

i Fracture Tip

Fluid Flow

a) b) c)

Figure 2.2 — Schematic of fracture geometry of analytical solutions: a)

Penny shaped. b) KGD. ¢) PKN (Adachi et al., 2007)
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Khristianvic and Zheltov (1955) and Geertsma and de Klerk (1969)
developed the KGD analytical model for hydraulic fracturing, in which a plane
strain geometry is admitted in the vertical direction (see Figure 2.2b). This way, the
fracture width is constant and the flow channel (from the wellbore to the fracture)
is rectangular. Furthermore, the flow rate is constant and all cross sections are
independent along the vertical direction. This model shows better applicability to
short fractures with large height. However, as pointed by Valké and Economides
(1995) it tends to overestimate the fracture width. Another limitation is that net
pressure decreases with time and is independent of injection rate, which contradicts
experience.

Perkins and Kern (1961) introduced an analytical model which was improved
by Nordgren (1972) to account for the effect of fluid leak-off into the surrounding
rock mass, resulting in the PKN model (see Figure 2.2c). In this model, the fracture
height is fixed and admitted to be much smaller than the fracture length. For each
vertical plane, an elliptical shape is defined and it is assumed that plane strain
occurs. However, the stresses and deformations are different in each vertical plane.
The flow channel is elliptical and the flow rate is constant, assuming uniform
pressure proportional to the fracture width in vertical direction. This method
provides good approximations for elongated fractures with shorter heights.

Both PKN and KGD models are based on the assumptions that fracture height
is constant while the other dimensions in width and length increase during
propagation. The key difference between these methods is the way of considering
fracture width variation along vertical and horizontal directions. This difference
leads to two different ways of solving the hydraulic fracturing problem. In the PKN
model, the effect of the fracture tip is not considered so that the stress concentration
is controlled by the effect of viscous fluid flow. In the KGD model, however, the
stress concentration at the fracture tip is more important for the fracture propagation
(Youn, 2016).

These analytical solutions are limited to analyse very simple geometries in a
homogeneous and isotropic medium, but they provide fundamental understanding
about the asymptotic behaviour of the fracture tip (Youn, 2016). The strong
dependence of the solution on the asymptotic behaviour of the tip led several
authors to propose analytical solutions to cover different propagation regimes.

Desroches et al. (1993) studied the propagation on zero-toughness and impermeable
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formations. Lenoach (1995) suggested the zero-toughness and leak-off dominated
case, and Detournay and Garagash (2003) and Bunger, Detournay and Garagash
(2005) dealt with toughness-dominated regimes. These studies have showed that
hydraulic fractures may be controlled by toughness, viscosity, or fluid leak-off and
that the fracture regime may change while the fracture evolves (Detournay, 2004;

Adachi and Detournay, 2008).

2.1.3.
Numerical models

2.1.3.1. Modelling bi-planar fractures

For a wide variety of treatments and reservoir characteristics, it is common to
assume the facture as planar, perpendicular to the minimum confining stress. As
stated by Adachi, et al. (2007) simple computer models were developed using the
KGD and PKN geometries with proppant transport. These served as guides in the
treatment design and provided a method to show the sensitivity to critical input
parameters of injection rate, treatment volumes, fluid viscosity and leak-off, and
provided a basis for changing these parameters to increase the propped fracture
penetration and also to minimize proppant bridging and screen-outs. One should
notice that these models (PKN and KGD) were a base for several variations, such
as the introduction of the Carter Equation for leak-off (PKN-C and KGD-C) and
the consideration of a power law for non-newtonian fluids (PKN-a and KGD-w),
as presented by Valké and Economides (1995).

Since the 80s, these simpler models have been developed to become more
flexible and able to adapt to more realistic problems, such as multi-layer reservoirs,
variable injection rates and variation of the three dimensions of the fracture (width,
length, height), being usually called Pseudo 3D (P3D) models (Settari, 1988;
Meyer, 1989; Warpinski and Smith, 1989). These usually assume the sub-division
of the fracture length in cells with different heights, allowing the growth of height
and length, computed separately and based on KGD and PKN solutions,
respectively. The reservoir elastic properties are considered homogeneous and
Linear Elastic Fracture Mechanics governs fracture propagation. Leak-off is
generally assumed as unidimensional and in the fracture plane flow is usually

computed by the Finite Differences Method in one (length) or two directions.
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(Clifton and Abou-Sayed, 1981)

Although more complex than the analytical models and still CPU

inexpensive, these methods are limited to certain variations of geometry and do not

consider geometric variations in a 3D space.
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More complete models were also proposed, such as the Planar 3D (PL3D)
model (Clifton and Abou-Sayed, 1981). In this, it is assumed that the fracture
footprint and the coupled fluid flow equation are described by a 2D mesh of cells
oriented in a vertical plane and full 3D elasticity equations are used to describe
width as function of fluid pressure. Figure 2.3 shows some examples of the

mentioned models.
2.1.3.2. Modelling in the continuum

There is a rising tide of evidence from direct monitoring of actual field
treatments that suggests that fractures grow in a complicated manner, taking
advantage of local heterogeneities and layering. These factors complicate the design
of treatments and make numerical modelling far more challenging (Adachi et al.,
2007). It should be noted as well that many of the current hydraulic fracturing
simulators do not predict the correct wellbore fluid pressure even for planar
fractures (Carter et al., 2000).

Numerous 2D, pseudo-3D, and planar 3D hydraulic fracturing simulators
work relatively well in many cases where the geometry of the fracture is easily
defined and constrained to a single plane. However, there are instances where a
fully 3D simulator is necessary for more accurate modelling. Furthermore, many
hydraulic fracturing operations are performed in soft formations that are prone to
non-linear mechanical failure—a real challenge for current models that are based
on the principles of Linear Elastic Fracture Mechanics (LEFM). A fully 3D
simulation is also essential to understand the behaviour of a hydraulic fracture in a
reservoir with natural fractures, as well as the reciprocal influence of fractures when
the treatment comprises multiple injections.

In reviewed literature, many different methods to simulate 2D or 3D fracture
propagation in the continuum were found, mostly being based on a system of
differential equations to be solved applying numerical methods. The transient effect
in time is almost always admitted as quasi-static, with the solution obtained in each
time step being dependent of the previous time step using Finite Difference or
Newmark schemes.

It may be affirmed that the Finite Element Method is the most popular, but
other approaches were also successfully applied, such as the Boundary Element

Method, the Discrete Element Method or the Finite Differences Method. Although
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more often complex assumptions about crack tip behaviour are being made, such

as damage and cohesive laws, the LEFM approach is still used in many studies.

Finite Element Method

The Finite Element Method (FEM) is usually applied to either the mechanical
deformations, the fluid flow or the coupling of both phenomena. When coupled, it
is very common to use Biot’s Theory and when applied to fluid flow in separate,
the lubrication equation is solved.

For mechanical behaviour and discretization of the fracture, the following
groups of element formulations may be highlighted:

¢ Interface elements with cohesive laws (cohesive elements);
® Models based on concept of damage mechanics;
® Plastic flow models;

e Elements with enriched nodes (eXtended finite element method).

In the first group, the fracture path is an input for the model, as the interface
elements have to be placed according to the discontinuity position. In the remaining
groups, the crack path is a solution of the problem and complex geometries may be
obtained, although it depends on several factors, such as mesh geometry and
refinement.

Interface elements with cohesive laws are easy to implement and avoid stress
and pressure singularities at crack tip. In addition, the cohesive zone model has the
interesting capability of modelling microstructural damage mechanisms inherent to
hydraulic fracturing such as initiation of micro cracking and coalescence (Chen et
al., 2009). However, Shojaei, Dahi Taleghani and Li (2014) mentioned some
limitations of the cohesive models, such as difficulties in situations involving
intersecting discontinuities or the inability to predict changes in rock poroelastic
properties like Biot coefficient and Biot modulus.

Carrier and Granet (2012) used interface elements with a cohesive law and
the hydro-mechanical equations in a fully coupled approach to simulate four
limiting propagation regimes: toughness-fracture storage, toughness-leak-off,
viscosity-fracture storage and viscosity-leak-off dominated. Similarly, Bendezu et
al. (2013) used cohesive elements to successfully compare fracture propagation

with analytical solutions for toughness-dominated hydraulic fractures in KGD and
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Penny-shaped geometries. Chen et al. (2009) also compared models with cohesive
elements and reported excellent agreement between the finite element results and
analytical solutions for the case where the fracture process is dominated by rock
fracture toughness. Papanastasiou (1999) used cohesive elements, together with a
remeshing scheme was employed with fine mesh near the fracture tip during
propagation, to evaluate of the effective fracture toughness of the material,
assuming elasto-plastic behaviour for the rock medium.

Yao et al. (2010) ran three-dimensional models of a three-layer water
injection case to compare with a P3D model, PKN model and analytical solution.
Their results showed that, compared with the traditional methods, the models with
cohesive elements can predict the hydraulic fracture geometry more accurately.
Complex 3D models were also applied to real case studies, such as a staged
fracturing process of a horizontal well in the Daqing Oilfield, China (Zhang et al.,
2010).

Models based on the concept of damage mechanics were also used to simulate
hydraulic fracturing. Shojaei, Dahi Taleghani and Li (2014) pointed some
advantages of continuum damage based porous models, such as their capability to
capture crack initiation, propagation, interaction and possible branching in an
integrated framework, allowing material properties evolution during failure.
Another main advantage lies in the fact that common continuum elements are used
and there is no need to remesh, once the fractured elements have their properties
weakened when fracturing occurs, i.e. once a certain value of damage occurs, the
corresponding element is removed from the model by setting a small value for its
elastic modulus. Li et al. (2012) used the same concept to simulate hydraulic
fracturing on a laboratory sample, with the heterogeneity of rock considered by
assuming that the mechanical properties conform to the Weibull distribution. Hu et
al. (2014) simulated injection of water in a wellbore and hydraulic fracture at an arc
dam heel. The crack was described by an equivalent anisotropic continuum with
degraded material properties in the direction normal to the crack orientation.

The use of elasto-plastic constitutive models is mainly associated to cases of
unconsolidated formations, where shear failure seems to be more important than
tensile failure during the hydraulic fracturing process (Xu and Wong, 2010). The
models used to adjust to this behaviour were Mohr-Coulomb and Drucker-Prager,

associated with a tension cut-off. These can simulate not only fracture propagation
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due to plastification but also changes in effective stresses in the facture
surroundings due to leak-off, which is high in this kind of permeable mediums.
Busetti, Mish and Reches (2012) used an elasto—plastic damage model with
pressure-dependent yielding, strain hardening and softening, and strain-based
damage evolution to compare a four-point beam test, a dog-bone triaxial test and a
hydraulic fracturing event with experimental results. The authors showed that the
resolution of the damaged zone equivalent to a discrete fracture is determined by
the coarseness of the FE mesh.

The use of enriched degrees of freedom to represent cracks explicitly has been
gaining more and more focus by the academic community. Although this technique
had been applied previously to mechanical cracks (Belytschko and Black, 1999;
Dolbow, Moés and Belytschko, 2001) or simulation of flow in fractured medium
(Réthoré, Borst and Abellan, 2006), the incorporation of the capability to propagate
the hydraulic fracture has been developed more recently.

Mohammadnejad and Khoei (2013) and Khoei et al. (2014) developed a
numerical model based on the extended Finite Element Method (XFEM) for the
fully coupled hydro-mechanical analysis of deformable, progressively fracturing
porous media interacting with the flow of two immiscible, compressible wetting
and non-wetting pore fluids. The works point out that by allowing the interaction
between various processes, that is, the solid skeleton deformation, the wetting and
the non-wetting pore fluid flow and the cohesive crack propagation, the effect of
the geomechanical discontinuity can be completely captured.

Zielonka et al. (2014) Compared analytical solutions (KGD and “Penny-
Shaped”) with interface elements and XFEM elements with cohesive behaviour in
two and three dimensional models assuming toughness/storage dominated and
viscosity/storage dominated propagation regimes, showing that both methods
reproduce accurately the analytical solutions, and converge monotonically as the
mesh is refined. Chen (2013) implemented the extended finite element method
(XFEM) in Abaqus user subroutines for the solution of hydraulic fracture problems
comparing the finite element results with the analytical solutions available in the
literature.

Salimzadeh and Khalili (2015) used extended finite element method (XFEM)
with the cohesive crack model as fracturing criterion to simulate hydraulic

fracturing. Coupling between fracture and pore fluid was captured through a
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capillary pressure-saturation relationship, while the identical fluids in fracture and
pore are coupled through a so-called leak-off mass transfer term. Model verification
follows against analytical solutions available from literature. The authors showed
that the results by single-phase flow might underestimate the leak-off.

Remij et al. (2015) presented an enhanced local pressure model for
modelling fluid pressure driven fractures in porous saturated materials. The authors
reconstructed the pressure gradient due to fluid leakage near the fracture surface
based on Terzaghi’s consolidation solution, ensuring that fluid flow happens
exclusively in the fracture and that it is not necessary to use a dense mesh near the
fracture to capture the pressure gradient.

Sobhaniaragh, Mansur and Peters (2016) presented a numerical technique
based on the Cohesive Segments Method in combination with Phantom Node
Method, called CPNM, to simulate 3D non-planar hydraulically driven fracture
problem in a quasi-brittle shale medium. The authors used two different key
scenarios, including sequentially and simultaneously multiple hydraulic, showing
that later stages in sequentially hydraulic fracturing mainly secure larger values of
fracture opening than what is achieved with simultaneously hydraulic fracturing.
This effect can be attributed to the effect of stress interactions among fractures.

Mohammadnejad and Andrade (2016) modelled pump-in/shut-in tests in
order to capture the bottom-hole pressure/time records and extract the confining
stress perpendicular to the direction of the hydraulic fracture propagation from the
fracture closure pressure.

Youn (2016) presented in his thesis the development and validation of an
advanced hydro-mechanical coupled finite element program based on XFEM in
order to estimate wellbore bottom-hole pressure during fracture propagation. The
same research also considers material heterogeneity to check the effect of random
formation property distributions on the hydraulic fracture geometry. The work uses
a new stochastic approach combining XFEM and random field which is named

eXtended Random Finite Element Method (XRFEM).

Boundary Element Method

In the reviewed works that use the Boundary Element Method (BEM), the
method is often applied to simulate the rock mechanical behaviour, with subsequent

coupling to the flow solution of a finite element or finite differences method. This



40

method shows advantages because it only requires discretization along the fracture,
demanding less CPU capacity.

Carter et al. (2000), Carter, Ingraffea and Engelder (2000), Sousa, Carter and
Ingraffea (1993) use a linear elastic boundary element program with special
hypersingular integration techniques and provide an elastic influence matrix that
relates the unit pressures at the nodes on the crack surface with the elastic
displacements. This matrix is then used along with the equilibrium fluid pressures
to determine the overall structural response due to both the far field boundary

conditions and the fluid pressure in the crack.

Discrete Element Method

Two types of models based on the Discrete Element Method (DEM) were
found in the review. The Particle Flow Model and the Distinct Element Method.

The Particle Flow Model simulates the movement and interaction of circular
particles. The constitutive behaviour of the rock is simulated by associating a
contact model with each contact, as seen Figure 2.4 by Shimizu, Murata and Ishida

(2011).

Particles j

Figure 2.4 — Bonded particles model (Shimizu, Murata and Ishida, 2011)

Thus, HF can be modelled by assuming that a rock is made up of individual
particles of specific stiffness bonded with bonds of specific strength. Shimizu,
Murata and Ishida (2011) showed that under the applied load, the bonds between
the particles can break, and a small crack can form. The crack pattern develops
automatically with no need for remeshing. The calculation cycle is a time-stepping
algorithm that requires the repeated application of the law of motion for each
particle and a force-displacement law for each contact. The seepage effect can be

modelled by adopting a fluid "domain" and fluid "pipe" (see Figure 2.5).
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Figure 2.5 — Domains and flow paths in a bonded assembly of particles

(Wang et al., 2014)

A "domain" is defined as a closed chain of particles, in which each link in the
chain is a bonded contact. Each domain holds a pointer, via which all domains
become connected. Meanwhile, a "pipe" is not only a fluid channel in a solid but
also a channel connecting "domains", which is considered to be tangential to each
bonded contact. The aperture of a "pipe" is proportional to the normal displacement
of the contact. It changes when the contact breaks or when the particle moves. The
volume of a "domain" is related to the number and aperture of the surrounding
pipes. In addition, the water pressure in the "domain" continually changes as the
coupling calculation proceeds, and it is applied to each particle as a body force with
the flow in the channel being modelled using the Poiseuille equation (Wang et al.,
2014).

The second type of model based on DEM is the Distinct Element Method. It
refers to the particular discrete-element scheme that uses deformable contacts and
an explicit, time-domain solution of the original equations of motion (Nagel et al.,
2011). In this method, the rock mass assembly of deformable blocks interfaces a
joint network which describes the interaction between distinct blocks. The
deformation of each block is modelled by internal discretization. In Nagel et al.
(2011) and Hamidi and Mortazavi (2014) the deformable rock blocks are modelled
with the finite difference method. Considering the interaction of intact blocks and
joints, DEM can effectively calculate the mechanical behaviour of block systems
under different stress and displacement boundary conditions. Fracture propagation
occurs in the bounds between blocks when the stress state reaches a certain limit

value. Fluid flow occurs only in the joints and there is no porous flow in the rock
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matrix. Also, the numerical resolution of transient flow is done by using the finite

difference scheme (Hamidi and Mortazavi, 2014).

Finite Differences Method

The Finite Difference Method (FDM) is commonly associated to other
methods, such as the FEM. However, in the works reviewed, three applications use
exclusively the FDM. Two of them considered a continuum three-dimensional
medium with linear elastic (Zhou and Hou, 2013) or elasto-plastic (Agarwal and
Sharma, 2011) behaviour, using Biot’s theory to couple the mechanical and flow
phenomena, in a similar way as some of the reviewed FEM models.

One additional model used a a simplified, and also computationally more
efficient version of the particle flow model. A lattice, consisting of point masses
(nodes) connected by springs, replaces the particles and contacts (respectively) of
the particle flow model. Two springs that represent elasticity of the rock connect
the lattice nodes, one representing the normal and the other shear contact stiffness.
The solution of the equations of motion (three translations and three rotations) for
all nodes in the model adopts a central difference scheme FDM. The relative
displacements of the nodes are then used to calculate the force change in the springs.
If the force exceeds the calibrated spring strength, the spring breaks and a micro
crack forms. Fluid flow occurs through the network of pipes that connect fluid
elements, located at the centres of either broken springs or springs that represent
pre-existing joints. The model uses the lubrication equation to approximate the flow

within a fracture (Damjanac et al., 2013).

2.2.
Intersection between hydraulic and natural fractures

2.2.1.
Introduction

The behaviour of a hydraulic fracture near a natural fault or discontinuity is
of great importance for an efficient reservoir simulation, as natural discontinuities
can significantly influence the hydraulic fracturing process (Zhang and Ghassemi,

2011).
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As proven in laboratory tests, a variety of events may happen when a

hydraulic fracture intersects a natural fracture. Gu et al. (2012) gives a clear

description of the different phenomena that occur:

1.

First, the fracture tip reaches the interface (Figure 2.6a), but the fluid front
remains behind because of the fluid lag. At this moment, the net fluid
pressure (the difference between the fracturing-fluid pressure and the
minimum in-situ stress) at the intersection point can be considered zero, but
the natural fracture is already under the influence of the stress field
generated by the hydraulic fracture. This step can be analysed by the
mechanical interaction between the hydraulic fracture and the natural
fracture without considering fluid flow. There are two possible outcomes
from this interaction:

o slippage or arrest (Figure 2.6b),

o crossing (Figure 2.6¢).

The second step in the process occurs soon thereafter when the fluid front
reaches the natural fracture and fluid pressure at the intersection point rises.

o In the case of slippage, the fluid may flow into the natural fracture
and dilate it if the fluid pressure is larger than the normal
compressive stress on the natural fracture. If flow continues, the
dilated natural fracture becomes part of a hydraulic-fracture network
(Figure 2.6d), i.e., the hydraulic fracture turns and propagates along
the natural fracture.

o Two possibilities exist for the case of crossing. In the first case, the
natural fracture remains closed if the fluid pressure is less than the
normal stress on the natural fracture (Figure 2.6¢). In this case, the
hydraulic fracture remains planar, and there may be enhanced leak-
off if the filling material inside the natural fracture is permeable. The
other possibility is that the fluid pressure is greater than the normal
stress and the fluid flows into the opened natural fracture. In this
case, the hydraulic fracture branches into the natural fracture,
multiple fracture fronts propagate, and a complex network forms. As
pumping continues, the fracture behaviour continues to evolve. For
example, in the case of (Figure 2.6d), the hydraulic fracture may

leave the path of the natural fracture and propagate again along the
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preferred direction (perpendicular to the minimum horizontal
stress). The hydraulic fracture may reinitiate at the intersection point
(Figure 2.6f), at some weak points along the natural fracture, or at
the end of the natural fracture. In the case of Figure 2.6e, the natural
fracture may open later when the fluid pressure at the intersection

rises further and overcomes the normal stress on the natural fracture.

NF NF
HF HF
.l
(a) HF approaching NF (b) slippage / arrested (d) NF Dilation / HF
propagating along NF
N NF i
HF
— HF
(e) NF staying closed
(c) crossing
X NF,
HF

(f) branching into NF
after crossing

Figure 2.6 — Breakdown of the interaction process between hydraulic

fracture (HF) and natural fracture (NF) (Gu et al., 2012)

Both Academia and the Industry put effort in understanding the mentioned
phenomena by means of the monitoring of laboratory or field tests. The difficulties
associated with the observation of such phenomena gives way to the numerical tools

to work as a complement to increase the knowledge around the subject.

2.2.2.
Field and laboratory tests

In the early days of research in this subject, Lamont and Jessen (1963) have
tested 106 outcrop rock samples under triaxial stress conditions, showing that an
existing fracture would have little effect on the hydraulic fracture. They also
concluded that in every successful test there was fracture crossing. However, the

authors assumed that around 30% of the tests were unsuccessful when the hydraulic
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fractures did not cross the existing fractures because of bleed-off of the fracture
fluid at the top and bottom faces or at the ends of the existing fracture. In this
author’s opinion, this may lead to the assumption that in such cases the event of
natural fracture opening occured. Lamont and Jessen (1963) also stated that the
lower the angle between fractures, the further the path deviated from the centre line
of the model. This deviation was always toward that part of the existing fracture

which was closer to the injection end of the model, as Figure 2.7 shows.

Figure 2.7 — Leuders Lime model with angle of bearing of 70° (Lamont
and Jessen, 1963)

Daneshy (1974) performed experiments to study how hydraulic fractures
evolved in the presence of natural flaws, observing that crossing occurs when the
natural faults are closed and arrest happens in all other situations. Hanson, Shaffer
and Anderson (1981) used small-scale laboratory experiments to study the effects
of frictional characteristics on hydraulic fracture growth across unbounded
interfaces in rocks, concluding that decreasing friction reduces the tendency of the
crack crossing the interface.

Blanton (1982) executed laboratory tests on naturally fractured blocks of
Devonian shale and hydrostone using different intersection angles under different
triaxial states of stress. Figure 2.8 shows that the hydraulic fractures were mostly

arrested by the natural fracture or opened the natural fracture, with exception of
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cases with high differential stresses and high angles of approach, where crossing

occurred.
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Figure 2.8 — Type of interaction observed at different combinations of

differential stress and angle of approach (adapted from Blanton (1982))

Zhou and Xue (2011) carried out six tests on multiple naturally fractured
blocks varying the in-situ stresses. Three types of fracture network patterns after
propagation resulted. The authors showed that for high in-situ differential stresses
the hydraulic fracture tends to dominate. As the differential stresses decrease, the
hydraulic fracture propagates with branches. For extreme low differential stresses,
natural fractures tend to dominate fracture geometry.

Gu et al. (2012) conducted six tests on sandstone samples with varying
fracture angles and initial confining stresses, showing that the fracture is more likely
to turn and propagate along the interface than to cross it when the angle is less than
90°. Cheng et al. (2014) performed 24 tests on cement blocks with variation of
confining stresses and three-dimensional angle between fractures (dip and strike
angles). The results showed that crossing happens in models with high approaching
angles and high horizontal stress differences. The knowledge accumulated by the
mentioned tests allowed the authors to make predictions and further comparisons
with field microseismic results in a real case study. The same authors also showed
that above a critical pump displacement or above a critical viscosity, the hydraulic
fracture tends to cross the natural fracture. On the other hand, below the critical
values hydraulic fracture propagates along the natural fracture rather than crossing
it (Cheng, Jin, Y. Chen, et al., 2014)

Khoei et al. (2015) carried out hydraulic fracturing experimental tests in

fractured media under plane strain conditions, with the experimental tests being
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continued until the hydro-fracture merged with the natural fault. A number of
tentative experiments showed that the intersection of hydro-fracture with the natural
fault is characterized by an abrupt loss of the water level in the pump fluid tank

As expected, due to the complexity involved, the number of field tests found
in the literature is small. Murphy and Fehler (1986) used microseismic observations
to claim that the shear slippage along the natural discontinuities can be activated
before the conventional tensile failure occurs, especially in the presence of high
differences between the minimum and maximum in-situ stresses. Based on their
observations, the occurrence of slippage along the natural fracture faces leads to the
hydro-fracture branching, or dendritic evolution patterns, which are in agreement

with microearthquake locations.

" BOREHOLE|
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Figure 2.9 — Pictures from the mineback observations (Warpinski and

Teufel, 1987)

Warpinski and Teufel (1987) presented perhaps the only field study with
large-scale and direct observations in the literature. The authors integrated results
from mineback experiments (425 m depth) with laboratory experiments to explain
the influence of geologic discontinuities in hydraulic fracturing. Figure 2.9 presents
some pictures of the mineback work. This study concluded that geologic
discontinuities may influence fracture height, length, leak-off, treatment pressure,
and proppant transport. The effect of the discontinuities depends on many

parameters, such as the permeability of the joints, frictional properties, in-situ
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stresses, joint spacing and orientation, treatment pressure, and fracture fluid leak-

off viscosity.

2.2.3.
Analytical models

In some of the research works mentioned in Section 2.2.2, the field tests gave
empirical support to analytical methods developed by the authors. These methods
mainly focus on predicting the intersection behaviour. Most of these criteria depend
on the differential in-situ stress, angle of approach, friction in the natural fracture,
rock tensile strength and fracture energy.

Blanton (1982) used an equation to compute the fracture stress state, and then
define which type of intersection occurs by comparing the stress state with the
pressure applied by the fluid. Figure 2.10 shows plotting of the analytical solutions

(for different fracture energies) against the laboratory tests.
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Figure 2.10 — Comparison of laboratory tests with analytical criteria. a)

Opening criterion. b) Arresting criterion (Blanton, 1982)

Zhou et al. (2008) studied the hydraulic fracture propagation behaviour in
naturally fractured reservoirs through a series of triaxial fracturing experiments,
operating different values of horizontal stress, angle of approach, and shear strength
of pre-existing fracture. The authors observed two hydraulic fracture patterns in
different stress regimes. In a normal stress regime, it leads to fractures, with
interacting branches because of the pre-existing fracture. Tortuous fractures were
found along the fracture height when one of the horizontal stresses is the maximum
principle stress.

Gu et al. (2012) have developed a criterion to determine if a fracture crosses

a frictional pre-existing interface at non-orthogonal angles, validating it with
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laboratory tests as stated previously. This criterion is an extension of Renshaw and

Pollard (1995) for orthogonal intersections of fractures with material interfaces.

Figure 2.11 shows the results obtained in the reference. .
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Figure 2.11 — Comparison of laboratory tests with Gu’s

criterion. a) Gu’s tests. b) Blanton’s tests

analytical

Cheng et al. (2014) developed a three-dimensional analytical model to predict

crossing which assumed that crossing occurs when two conditions are met: first, the

maximum tensile stress at the hydraulic fracture tip is equal to the tensile strength

of the rock on the opposite side of the natural fracture; second, no shear slippage

occurs on the natural fracture surface. Results of Figure 2.12 show that the criterion

fits very well to the laboratory tests for the relations between dip angle, strike angle

and differential confining stress.
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(Cheng et al. (2014))
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2.2.4.
Numerical models

Despite the advances in modelling with numerical tools, most models in the
literature still assume that the hydraulic fracture is a single planar fracture. This
contrasts with the fact that multistranded hydraulic-fracture geometry is a common
occurrence (Dahi-Taleghani and Olson, 2011; Zhang and Ghassemi, 2011).
Consequently, single-crack models may result in loss of accuracy if fracture
interaction with natural fractures is not taken into account.

In the past few years, researchers focused more on this specific subject,
resulting in developments in understanding how natural fractures affect a hydraulic
fracturing treatment. Similarly to the studies described in Chapter 2.1.3.2, different
techniques were used to simulate numerically the interaction between hydraulic and

natural fractures.

Finite Element Method

Dyskin and Caballero (2009) investigated the interaction between the
hydraulically driven fracture and frictionless natural fault using the finite element
method, and illustrated that a relatively long frictionless and cohesionless fault is
capable of arresting the hydraulic fracture propagation.

Dahi-Taleghani and Olson (2011) presented a numerical model based on
enriched nodes to study fracture intersections by tracking fluid fronts in the network
of reactivated fissures, where the hydraulic fracture was arrested by pre-existing
natural fractures, and/or was controlled by shear strength and potential slippage at
the fracture intersections. The same authors performed analyses in full scale
fractured reservoirs (see Figure 2.13) and showed that when natural fractures are
perpendicular to the direction of the hydraulic fracture, the largest possible
debonded zone may form, which is equivalent to the optimum case to stimulate a

rESErvolr.
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Figure 2.13 — Resultant hydraulic fracture pattern and rose diagram in
the case where natural fractures make a 45° angle with the original orientation

of the hydraulic fracture (Dahi-Taleghani and Olson, 2011)

Zhang and Ghassemi (2011) performed a comprehensive study on the
interaction between the hydraulic fracture and natural fault, and concluded that the
fault influence is conditioned by its shear stiffness, its inclination, and its distance
from the hydraulic fracture. It was also highlighted that the hydraulic fracture
always tends to propagate along the maximum compressive stress direction.

Keshavarzi, Mohammadi and Bayesteh (2012) studied the interaction
between hydraulic and natural fractures using the XFEM, considering a constant
and uniform net pressure throughout the hydraulic fracture system. They compared
numerical simulations with the laboratory tests of Blanton (1982) and showed that
natural fractures most probably divert hydraulic fractures at low angles of approach
while at high horizontal differential stress and angles of approach of 60 or greater,
the hydraulic fracture crosses the natural fracture. Keshavarzi and Jahanbakhshi
(2013) compared the XFEM results of fracture interactions studies (see Figure 2.14)
with a neural network that was developed based on horizontal differential stress,
angle of approach, interfacial coefficient of friction, Young’s modulus of the rock
and flow rate of the fracturing fluid. The results indicated that the developed
Artificial Neural Network was not only feasible but also yields quite accurate

outcome.
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Figure 2.14 — Hydraulic fracture and natural fracture behaviour as
hydraulic fracture is propagating toward the pre-existing natural fracture and
intersects with it. Light blue represents the debonded zone of the natural

fracture (Keshavarzi, Mohammadi and Bayesteh, 2012)

Khoei, Vahab and Hirmand (2016) modelled the interaction between the
fluid-driven fracture and frictional natural fault using an enriched-FEM technique
based on the partition of unity method. The intersection between two discontinuities
was modelled by introducing a junction enrichment function. The medium is
considered impermeable and the fluid pressure within the fracture was assumed
constant throughout the propagation process. The frictional contact behaviour along
the fault faces was modelled using an X-FEM penalty method. The authors showed
that a lower value of fault length together with a larger frictional resistance along
the natural fault produces a larger vertical tensile stress ahead of the intersection
point of two discontinuities, and increases the possibility of penetration of the
hydro-fracture through the natural fault. One further conclusion of the work is that
the far-field stress conditions have a significant effect on the performance of
internal pressure imposed on the hydro-fracture faces, and plays an important role
on the mechanism of interaction between the hydro-fracture and natural fault.
Moreover, it was concluded that there is a wide range of parameters that may affect
the overall behaviour of the interaction mechanism, including the hydraulic
fracture/natural fault configuration, the fault inclination angle, far-field stress
conditions, and the frictional resistance along the natural fault.

In Khoei ez al. (2015) the results of two hydraulic fracturing experimental
tests performed on impermeable rock blocks with natural discontinuities were
compared with those obtained from the X-FEM numerical model, showing very
good agreement between the numerical and experimental results. It was shown that

the shear strength of the natural fault plays a key role in the mechanism of
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interaction, including the arrest, penetration, offset crack propagation, and diversion

when the hydro-fracture merges with the natural fault.

Other Methods
Dong and De Pater (2001) used the boundary element method for the

simulation of hydraulic fracturing and its interaction with faults. The work was
based on the displacement discontinuity method, which was first presented by
Crouch and Starfield (1983), and concluded that a fault has an evident effect on the
crack propagation.

Zhang and Jeffrey (2006) modelled a fluid-driven fracture intersecting a
pre-existing fracture using the displacement discontinuity method and the finite
difference method to deal with the coupling mechanism of rock fracture and fluid
flow. It was stated that in the presence of pre-existing fractures, the fluid-driven
cracks can be arrested or retarded in growth rate as a result of diversion of fluid
flow into and frictional sliding along the pre-existing fractures. Frictional behaviour
significantly affects the ability of the fluid to enter or penetrate the pre-existing
fracture only for those situations where the fluid front is within a certain distance
from the intersecting point. The authors also showed that fracture re-initiation from
secondary flaws can reduce the injection pressure, but re-initiation is suppressed by
large sliding on pre-existing fractures that are frictionally weak.

Nagel et al. (2011) used the Distinct Element Method to model discontinuities
governed by Mohr Coulomb as boundary interactions between blocks. The
deformable blocks were subdivided into a mesh of finite differences elements and
the flow model included a system of flow planes. The simulation of injected well
with natural fractures was performed and the fracture geometry was defined by
means of a Discrete Fracture Network (DFN), as shown in Figure 2.15.

Kresse et al. (2014) proposed a tool that, although based on very simple
methods, gathered many phenomena that affect hydraulic fracture propagation in
fractured reservoirs. The coupled fluid flow and elastic deformation equations were
defined with similar assumptions of conventional pseudo-3D fracture models and
the stress effects between fractures given by Theory of Dislocations. The interaction
with natural fractures is based on an analytical crossing model and the fracture
geometry is defined in an unconventional fracture model (UFM), as shown in

Figure 2.16. The implemented model solves a system of equations governing
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fracture deformation, height growth, fluid flow, and proppant transport in a
complex fracture network with multiple propagating fracture tips. Simulation
results from the model showed that stress anisotropy, natural fractures, and

interfacial friction play critical roles in creating fracture network complexity.

Vertical
injection well

Figure 2.15 — Pore pressures in the model (Nagel et al., 2011)

Figure 2.16 — Fluid pressures in the fracture network (Kresse et al., 2014)

Damjanac et al. (2013) presented a code that uses a three-dimensional lattice
representation of brittle rock consisting of point masses (nodes) connected by
springs with the pre-existing joints being derived from a user-specified discrete
fracture network (DFN). Non-steady, hydro-mechanically coupled fluid flow and
pressure within the network of joint segments and the rock matrix were also
considered. The equation of motion is solved for all lattice nodes using the Finite
Difference Method. The springs between the nodes break when their strength (in

tension) is exceeded, corresponding to the formation of microcracks, which link to
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form macro scale fractures. The authors applied the proposed code to the simulation

of an injected well with natural fractures, as Figure 2.17 shows.

HF Simulator 1.0

22012 ftasca Consulting Graug, Inc
Step 0
162017 113943 AM
Sketch Model
Elements

licro Cr:

Figure 2.17 — Hydraulic fractures generated in a medium with three pre-

existing joints (blue disks are microcracks) (Damjanac et al., 2013)

2.3.
The eXtended Finite Element Method

2.3.1.
Introduction

The eXtended finite element method (XFEM) is a technique to model strong
(displacement) or weak (strain) discontinuities over a conventional finite element
model. This technique was first presented by Belytschko and Black (1999),
following research on enrichment strategies presented Benzley (1974). It was
presented as a minimal remeshing finite element method for crack growth based on
setting special enrichment functions to extra degrees of freedom along the fracture
tip to capture the field singularities. The authors supported the method in the
partition of unity property, presented by Melenk and Babuska (1996), which
basically states that the shape functions in any point inside a finite element may be
affected of local approximation functions, as its sum is kept equal to one.

Moes and Dolbow (1999) developed the method in order to avoid any type of
remeshing, by using the Haar function in the fracture body and tip functions in the
fracture tip. Figure 2.18 shows the nodes that are affected by the method, where
the circled nodes represent the fracture body and the squared nodes the fracture tip.

The method treats the crack as a completely separate geometric entity and the only



56

interaction with the mesh occurs in the selection of the enriched nodes. The authors
highlight how accurately the stress intensity factors can be computed with relatively
coarse meshes and how it is readily generalized to other problems such as those in
three dimensions and involving nonlinear materials. As the main drawback, it is
pointed out that there is the need to account for a variable number of degrees of

freedom per node.
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Figure 2.18 - Discontinuity on a structured mesh (a) and on an
unstructured mesh (b). The circled nodes are enriched by the jump function
whereas the squared nodes are enriched by the branch tip functions (Moés and
Belytschko, 2002)

Sukumar et al. (2000) scaled the XFEM implementation for three-
dimensional problems, comparing the results with penny and elliptical analytical
solutions and showing that a good agreement was obtained. Wells and Sluys (2001)
and Moés and Belytschko (2002) extended the implementation to quasi-brittle
materials, by considering a cohesive zone at the crack tip, showing the effectiveness
of the proposed method through simulations of cohesive crack growth in concrete.

The use of the XFEM in quadratic elements was presented by Stazi et al.
(2003). Lee et al. (2004) combined a mesh superposition method with the XFEM
to model stationary and growing fractures. The fracture tip field was modelled by
superimposed quarter point elements on an overlaid mesh, and the body of the

discontinuity was implicitly described by a step function on partition of unity.
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Khoei (2008) presents in his book an extensive overview about the theoretical
and practical application of the XFEM in continuum mechanics.

Similarly to the present research, different authors have implemented the
XFEM using commercial software, such as Abaqus. Giner et al. (2009) and Silva
(2015) implemented an XFEM element using Abaqus UEL user subroutine to
simulate mechanical problems based in linear elastic fracture mechanics and non-
linear frictional contact analyses. Chen (2013) also considered fluid pressure
degrees of freedom to describe the fluid flow within the crack and its contribution

to the crack deformation, thus modelling hydraulic fracture problems.

2.3.2.
Fracture geometry in XFEM

In the XFEM, the fracture geometry is independent of the mesh and its
presence is taken into account by creating enrichment degrees of freedom and
applying local functions to those. In order to correctly and efficiently represent the
fracture geometry, different techniques were used.

The level set function (LSF), by Osher and Sethian (1988) is the most
frequently used technique with the XFEM to implicitly define the location and
geometry of a discontinuity. Basically, two functions are used to represent the
fracture at any point of the domain, one for the crack body and the other for the
crack tip. Then, the values of the enrichment functions at any degree of freedom
may be taken from the LSF, directly (signed distance) or indirectly (tip enrichment
functions) (Fries and Baydoun, 2012). This technique may also be used for crack
growth as new segments update the LSF when propagation occurs.

More advanced LSF techniques where developed later, such as Ventura,
Budyn and Belytschko (2003) who introduced the LSF consisting of vectors to
describe a propagating fracture in the element-free Galerkin method. Ji, Chopp and
Dolbow (2002) presented a hybrid XFEM-LSF to model the evolution of fluid
phase interfaces to represent temperature jump.

Sukumar et al. (2008) solved three-dimensional problems by combining the
XFEM with the fast marching method, which was originally developed by Sethian
(1996) and is characterized by avoiding the need to represent the geometry of the
interface during its evolution by tracking the first arrival of the interface as it passes

a point.
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2.3.3.
XFEM with coupled problems

The flow of fluids in deformable porous media has been studied via the
XFEM framework to analyse the physical behaviour of many issues in geotechnical
and petroleum engineering (Youn, 2016). De Borst, Réthoré and Abellan (2006)
analysed a two phase fluid saturated media for a biaxial plane strain case with a
discontinuity propagation. Réthoré, de Borst and Abellan (2006) presented a two-
scale approach of the XFEM for fluid flow within a deforming unsaturated and
progressively fracturing porous medium and Réthoré, de Borst and Abellan (2007)
modelled dynamic shear band propagation in a fluid-saturated medium. Gracie and
Craig (2010) applied the XFEM for predicting the steady state leakage from layered
sedimentary aquifer systems perforated by abandoned wells, showing that for
coarse meshes this technique proved to be more than two orders of magnitude more
accurate than the standard FEM. Huang ef al. (2011) proposed an enrichment
scheme to compute model fractures and other conduits in porous media flow
problems that could capture effects of local heterogeneities introduced by
subsurface features of the pressure solution.

Silvestre et al. (2015) implemented an enriched element to compare the
coupled behaviour of fractured materials with analytical solutions and with
examples simulated in other software. Lamb, Gorman and Elsworth (2013)
presented a fracture mapping approach combined with the extended finite element
method to simulate coupled deformation and fluid flow in fractured porous media
using a transfer function to model the flow interaction between the porous matrix
and existing fractures. Sheng et al. (2015) (see Figure 2.19) presented a numerical
framework to simulate coupled deformation and fluid flow in porous media, also
addressing problems with arbitrary orientation and intersection of sealed fractures.

As the modelling of hydraulic fractures is also a coupled problem, many other

research works in this area are presented in Chapters 2.1.3 and 2.2.4.
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Figure 2.19 — Excess pore pressure field (Sheng et al., 2015)

2.34.
XFEM with fracture branching or crossing

The consideration of multiple fractures that intersect each other within the
XFEM concept was introduced by Daux, Moes and Dolbow (2000), through the
concept of an enriched junction function to be used at each intersection. Budyn et
al. (2004) applied the XFEM technique for multiple fractures growing and
interacting within both homogeneous and inhomogeneous brittle materials. Zi et al.
(2004) provided an approach to model multiple fracture propagation and
intersection in a quasi-brittle cell with random minor fractures.

Duarte, Reno and Simone (2007) presented high-order implementations of a
generalized finite element method for three-dimensional branched cracks (see
Figure 2.20) showing that convergence rates obtained are close to those of problems
with smooth solutions.

The same methodology was used by Chen and Lin (2010) to compute the T-
Stress in the branch crack problem and Das, Sandha and Narang (2013) to study the
behaviour of rock bolts for improvement in ground support.

Siavelis et al. (2013) used junction functions to simulate large sliding along
branched discontinuities, running several examples, including a 3D geological

graben with branching faults.
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Figure 2.20 — Enriched nodes represented by circles (Duarte, Reno and

Simone, 2007)

2.3.5.
Crack tip behaviour in XFEM

In the early years of research with XFEM, most academic works (Belytschko
and Black, 1999; Sukumar et al., 2000; Belytschko et al., 2001; Ventura, Budyn
and Belytschko, 2003; Zi et al., 2004) considered the tip behaviour by using a
specific enrichment function based on an asymptotic stress field, following the
Linear Elastic Fracture Mechanics (LEFM). Figure 2.18 shows that the tip nodes
are considered only near the fracture tip. The asymptotic functions were based in
sinusoidal functions and allowed to use propagation criteria based on stress
intensity factors. Basically, a new fracture segment is created when the stress
intensity factors at fracture tip are reached.

Aware of the relevance of the small-scale processes that occur at the fracture
tip, which control the global response of the fracture, and of the complexity
involved in constructing solutions for fluid driven factors (Detournay, 2004),
Lecampion (2009) presented an XFEM formulation for the solution of hydraulic
fracture problems by introducing special tip functions encapsulating tip asymptotic
functions that represent the different regimes typically encountered in hydraulic
fractures.

However, LEFM is only applicable when the size of the fracture process zone
(FPZ) at the crack tip is small compared to the size of the crack and the size of the

specimen (Bazant and Planes, 1998). In order to extend the use of XFEM to quasi-
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brittle materials, Wells and Sluys (2001) and Moé&s and Belytschko (2002) applied
the cohesive crack concept, where the propagation is governed by a traction—
displacement relation (see Figure 2.21a) across the crack faces near the tip. This
behaviour is assigned to the region between the real physical tip and the
mathematical tip, where the process zone ends (see Figure 2.21b). Moés and
Belytschko (2002) considered that, since the stresses at the tip are not singular, non-
asymptotic functions should be used for tip enrichment. Other authors used
enriched techniques to simulate cohesive crack growth and showed it applicability
to problems such as Mode I and Mixed Mode experimental tests (Mariani and
Perego, 2003; Cox, 2009) or three and four point beam bending tests (Mergheim,
Kuhl and Steinmann, 2005).

A cohesive traction f
fu rectangular
a//f
~ ;
# linear
crack opening
W
W w
Yl c2
a)

fracture process zone (FPZ)

v

\ mathematical

\ tip at time
physical tip at time
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Figure 2.21 — Modelling of the fracture process zone. (a) Two cohesive
laws with the same cohesive strength and fracture energy. (b) The extent of the

cohesive zone at a certain moment (Moés and Belytschko, 2002; Wang, 2016)

Wells and Sluys (2001) modelled cohesive crack growth by considering only
the jump function to represent the fracture and guaranteeing the closure of the tip
by deactivating the jump enhancement at the nodes closest to the tip. This facilitates

implementations, as only one enrichment function is required and concerns are
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avoided, such as the existence of blending elements. However, it must be stated that
the fracture tip cannot lie inside one element, but only on its borders. Therefore, a
propagation segment must always cross the element totally. Other research works
were developed under this premise (Zi and Belytschko, 2003; de Borst, Remmers
and Needleman, 2006; Comi and Mariani, 2007; Mougaard, Poulsen and Nielsen,

2007), as well as commercial software (Simulia, 2014).

2.3.6.
Contact problems in XFEM

To simulate situations where compressive stresses lead to contact between
fracture faces, different types of contact models have been implemented. The
literature review identifies the most frequently used contact models in association
with XFEM simulations are:

e Penalty Method;

e [Lagrange Multipliers;

e Augmented Lagrange Multipliers;
e [LATIN method.

The penalty method consists in using a high stiffness (penalty coefficient)
between the fracture faces, when the faces are in contact. This way, when under
compressive contact, two fracture faces suffer a slight overlap and the stresses
obtained from that relative displacement are the normal contact stresses. This
method is easy to implemented which does not require the introduction of
constraints or degrees of freedom to represent contact. It also does not require the
introduction of outer iterative loops for constraint check. On the other hand, the
accuracy of satisfying equilibrium highly and ovelapping restrictions depends on
the magnitude of penalty parameter. The larger the value of the penalty parameter,
the more accurate is the solution. However, very large values for the penalty
parameter may result in an ill conditioned formulation when the penalty parameter
is combined with finite stiffness of bodies in contact. As stated by Grazina (2009),
the process may intensify instability problems for paths that impose randomness in
the relative displacements evolution. Khoei and Nikbakht (2006) and Liu and Borja
(2008) applied this method to simulate frictional contact using standard Coulomb

friction. More recently, Khoei and Mousavi (2010) presented a node-to-node
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contact algorithm for XFEM to model the large deformation-large sliding contact
problem using the penalty approach.

The Lagrange Multipliers Method, considers extra degrees of freedom so the
contact forces are computed as primary unknowns. The restriction of null relative
displacement of the faces in contact is enforced exactly. The major limitation of this
method is that it requires extra variables in the model, affecting the dimension and
sparsity of the system of equations. According to Khoei (2008), other limitations
may exists, such as the existence of diagonal values that take the value zero, leading
to difficulties in finding a solution. Nistor et al. (2009) coupled the X-FEM with
the Lagrangian large sliding frictionless contact algorithm while Siavelis et al.
(2013) applied the same technique to three-dimensional problems where fractures
intersect and branch.

The Augmented Lagrangian Method eliminates the drawbacks of penalty and
Lagrange multipliers techniques, and attempts to achieve a predetermined tolerance
for the contact constraint through an iterative procedure. The main idea of this
technique is to combine the penalty and Lagrange multipliers methods to inherit the
advantages of both techniques, that is, decreasing the ill-conditioning of governing
equations, and essentially satisfying the contact constraints with finite values of
penalty parameters (Khoei, 2008). The values of the penalty parameter are
calculated iteratively in an outer loop until a predetermined tolerance is achieved
and then, the non-linear FEM problem is solved in an inner loop. Elguedj, Gravouil
and Combescure (2007) present an augmented Lagrangian formulation in the
XFEM framework that is able to deal with elasto—plastic fatigue crack growth.
Hirmand, Vahab and Khoei (2015) implemented this method using a return
mapping algorithm for the Coulomb friction rule, showing good accuracy of the
proposed model in simulations of straight, curved and wave-shaped discontinuities.

The LArge Time INcrement (LATIN) Method shares similar features with
the Augmented Lagrangian Method, i.e. runs two iterative procedures, one for the
convergence in the penalty constraint, and other for the non-linear system of
equations. The two iterative procedures are solved separately until convergence is
achieved in both, as Figure 2.22 shows. Dolbow, Moés and Belytschko (2001) were
the first to incorporate contact and friction in crack faces with the XFEM to simulate

crack growth under opening/closing modes using the LATIN Method. Gravouil,
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Pierres and Baietto (2011) scaled the same method to three dimensional models

under cyclic fretting loading.

Al

Figure 2.22 — The iterative procedure in the LATIN algorithm (Dolbow,
Moés and Belytschko, 2001)
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XFEM Formulation for Coupled Problems

This chapter focus on the theoretical formulations that give base to the
implemented code in this thesis. As stated before, the eXtended Finite Element
Method shares its base characteristics with the Finite Element Method.
Consequently, the base concepts of the Finite Element Method (p. ex. the definition
of topology or shape function) are not explained in this chapter and further reading
about this may be done in works by Zienkiewicz, Taylor and Zhu (2013) or Potts
and Zdravkovi¢ (1999).

The physical differential equations that govern the behaviour of the
implemented model are presented, as well as the developments and transformations
made for them to be numerically computed. The physical equations are defined to
couple both the hydro-mechanical behaviour in the porous region and in the
fracture. Then the space is discretized by enrichments functions, which were
established by Moes and Dolbow (1999) and Belytschko and Black (1999) and
extended for intersections by Daux, Moes and Dolbow (2000), and time discretized
by the Newmark technique. The set of resulting non-linear equations is linearized
and solved using the Newton-Raphson method. The formulation follows the
mathematical notation presented by Khoei et al. (2014).

Finally, the constitutive model used to simulate the behaviour of the natural
fractures is presented. Although used together, the formulation for the contact and
friction models is presented separately. The former is based on the penalty method

while the latter uses Rueda et al. (2014) as reference.

3.1.
Governing equations

Modelling of hydraulic fracture propagation in porous fractured media
involves coupling of various physical phenomena. In the implementation presented
in this work the following effects are considered: deformation of the continuous

medium, deformation and friction in the fracture, pore fluid flow through the porous
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medium surrounding the fracture, fluid flow within the fracture, fluid exchange
between the fracture and the surrounding porous medium, and propagation of the
fracture. Two different partial differential equations are used to correctly simulate
those phenomena, equilibrium equation for the mechanical behaviour and
continuity equation for the fluid flow.

Some simplifications or assumptions are made. It is assumed that the porous
medium is saturated and both pore and fracture flow occur under laminar regime.
In addition, both grains and pore fluid have a bulk modulus which is several orders
of magnitude higher than the skeleton's bulk modulus, so they can be considered
incompressible. Also, all inertial effects and body forces are neglected, as the in situ
stress state is defined as an input. Though relevant in certain situations, these
assumptions do not substantially affect the overall behaviour of the hydraulic
fracture models.

The partial differential equations apply to the generalized fractured domain

defined in Figure 3.1.

a) b)

Figure 3.1 — Generalized fractured domain. a) Boundary conditions of a
fractured body Q with a geomechanical discontinuity I'.. b) Geometry of the

fracture domain Q’ (adapted from Khoei et al. (2014)

Considering np the outward unit normal vector to the general domain £, the
boundary conditions (BC) of the domain are as follows:
e u =1 on [} (essential BC) and o - ny = ton I} (natural BC), for the

porous medium
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® p=p onl, (essential BC) and W np = q on I, (natural BC), for

the fluid phase

Additional BC apply to the discontinuities having nr, as the unit normal

vector which points to the positive side 2% and [w] as the jump of fluid velocity in
the discontinuity:

* o0-np, = —pr-ng, and [W] - np, = G on I (natural BC).

The linear momentum balance that characterizes the mechanical behaviour of

the porous medium is given by
V-o=0 (3.1
where o is the stress tensor and V the vector gradient operator.

The total stress tensor may be defined as ¢ = @' — p.1, where @’ is the
effective stress tensor, p the average pressure of pore fluid and I the identity matrix.
In this context, compressive stresses are negative.

The continuity equation governs the fluid phase. Although belonging to the
same phase, different equations describe porous and fracture flow. This allows
representing loss of pressure between fracture faces and surrounding porous
medium, as the filter cake effect. Considering a saturated medium with
incompressible fluid, the simplified continuity equation for the porous and the
fracture flow follows

V-w+V-u=0 (3.2)
where W is the fluid velocity, while @ is the solid-fluid mixture velocity, if the
equation is applied on the porous or the fracture domain, or the fracture opening
velocity, if on the fracture domain.

The constitutive mechanical equation for the porous medium is introduced as
the strain- effective stress relationship in Eq. (3.3), where D is a fourth order
tangential stiffness matrix of the bulk material. Due to assumption of small strains
and displacements the strain-displacement kinematic relation is given by Eq. (3.4),
where V is the symmetric part of the gradient operator . The mechanical behaviour
of the fracture is given by a traction-displacement relationship, such as the one in
Eq. (3.5) where Dg represents a second order tangential stiffness matrix, ty the
fracture tractions and [u] the fracture relative displacements.

do' = D.de (3.3)
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&£ =Vsu 3.4)
w = —Kk.Vp (3.6)

One further assumption is laminar flow without gravitational effects both in

the porous medium and in the fracture medium, following Darcy’s Law, Eq. (3.6),

where p is the pressure and q the flow rate. The variable k depends on the domain
of interest:

¢ In the porous medium, it represents the hydraulic conductivity matrix (Kg),

which is given by the constant second order matrix

k., 0
[5 )
e In the fracture tangential direction, k represents the fracture longitudinal
transmissibility, which affects the longitudinal flow represented in Figure

3.2a. This is a scalar that is assumed to follow a cubic law, depending on

the fracture aperture @ and fluid dynamic viscosity p, given by Eq. (3.7).

ke, = w?/12p (3.7
® In the fracture-porous region interface, it represents the conductivity of a
very thin layer that causes loss of pressure in the flow transversal to the
fracture (see Figure 3.2b). A scalar parameter ¢, named fracture face
transversal conductivity, quantifies this effect. Although having different
dimensions, this parameter is physically similar to the so-called leak-off
coefficient. Considering py the fluid pressure in the discontinuity, p the
pressure in the surrounding porous region and g as the flow rate between

both, the adaptation of Darcy’s equation gives

qr = c(p — pF) (3.8)
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Figure 3.2 — Representation of fracture flow. a) Longitudinal flow. b)

Transversal flow

3.2.
Weak formulation

The weak form of the governing differential equations is obtained by
integrating the product between each equation and admissible test functions. Then,
in order to represent correctly the fractured domain, the Divergence Theorem for
discontinuous functions is applied, as given in Eq. (3.9), in order to correctly

represent the fractured domain.

f div F dQ = f F-npdl'— | [F]-ngdl (3.9)
0 r I'g

N¢
f dideQ=f F-np dr—Zf [F] - ny, dr (3.10)
o) r — Jry, !

[F] represents the jump of the function F, being [F] = F* —F~, i.e. F* is
the value of F at the boundary njand F~ is the value of F at ny. If more than one
discontinuity exists, the Divergence Theorem may be generalized to Eq. (3.10),
where N is the number of discontinuities in the domain.

Defining u(x, t), p(x,t) and pg(x, t) as trial functions and Su(x, t), ép(x,t)
and Spp(x,t) as test functions and integrating over the domain Q, the weak form

of equations (3.1) and (3.2) is respectively

f oulV-0)d2 =0 (3.11)
0

f Sp(V-w+V-u)dR =0 (3.12)
n
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As for the fracture domain 2’ presented in Figure 3.1b, the weak form of
equation (3.2) is
Spr(V- W+ V-1)d2 =0 (3.13)
_QI
Applying to Egs. (3.11) to (3.13) the mechanical and hydraulic constitutive

relationships, Egs. (3.3) to (3.8), in the continuous region and in the fracture, gives

f be.o’ d) — f deem.pdQ + | [6u] (tg — pp.npg)dl
@ @ Fa (3.14)
— | éutdr=0

It

f VépksVp d + 6p[[v'v]]nrdd1"+j dp.vadn
0 0

Fa (3.15)
+ | 6p.qdl =0
Iy
Q' Ig o'

For simplicity, Egs. (3.14) to (3.16) reflect the presence of one discontinuity.
However, this formulation may be generalized to any number of discontinuities,
according to Eq. (3.10). At this point, the hydro-mechanical coupling is evident in
each equation. In Eq. (3.14) the hydraulic coupling arises from the pore and fracture
pressures, which are present in the second and third term, respectively. In Eq. (3.15)
the fluid exchange through the fracture wall is in the second term, followed by the
mechanical coupling in the third term. Finally, in Eq. (3.16) the fluid exchange with
the porous medium is in the second term — repeating the exchange term of Eq. (3.15)
— and the fracture deformation in the third term.

Considering the integrals over the discontinuity domain (£2”) presented in Eq.
(3.16) and the fact that discontinuities have an aperture many orders of magnitude
smaller than the other dimensions, a simplification is convenient. It consists in
assuming the fluid pressures along the discontinuity cross section as constant,
reducing the integration domain in one order — from £’ to I". Thus, the first and

third term of Eq. (3.16) are redefined as
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f Vopek, Vprd = | 2Pk on %PEar 3.17)
_Q’ fF 1" ax, fF ax,
d
. 0u, .
Spp.VidQ = | 8pp.2h.(==)dl + | 6pg. i, ] dr (3.18)
Q' rq 0x Iy

where x” and y’ are the local coordinates of the discontinuity, as seen in Figure 3.1b,
and h is the half-aperture of the fracture. The local x” and y’ components of the
velocity vector projected on the longitudinal and transversal directions are 1,/ and

i,

respectively, which are assumed to vary linearly in the transversal direction.
According to this hypothesis, the derivative of the velocity in x’ direction may take
an average value (Z) = (% + £7)/2. Substituting the redefined terms in Eq.
(3.16) and taking the flow rate jump, i.e. the flow through the fracture faces, as

(W] = g, gives the following equation

00pr Opr
—— ko 2h.——=dI' — | 6ppqpnpq dl’
r, 0x ox r
d a (3.19)
auxr .
+ | &pp2h(==)dl + | 6pg. i, ]dr =0
I'g ox Iy

3.3.
Spatial discretization

3.3.1.
XFEM discretization

The eXtended Finite Element Method (XFEM) to discretize Eqs (3.14), (3.15)
and (3.19) consists in adopting special spatial discretization fields. In the standard
FEM, the displacement and pressure fields, u(x, t) and p(x, t), respectively, within
an element are given by the product between the vector of node variables in one
element u;(t) and shape functions related to each node Nj, as Eq. (3.20) shows. V'

is the set of all nodal points in the domain.

u(x,t) = Z (D). N (3.20)
=
Independently of the number of nodes per element, the shape functions used

in the standard FEM are smooth and continuous. As a consequence, the resulting

fields are also continuous. Figure 3.3 shows an example of the values along the
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element of a shape function for a node i, considering a 4-node element. Three

perspectives are presented for easiness of understanding.

a) b) c)

Figure 3.3 — Value of shape function in node i for a 4-node element. a)

View 0°. b) View 70°. ¢) View 250°

The basic idea of the XFEM is to change shape functions to represent
discontinuities in the displacement fields (or any other variable). For example, in
order to represent a fracture explicitly within one element, for each standard degree
of freedom the XFEM considers an additional degree of freedom (or “enriched
degree of freedom”) which is multiplied by a discontinuous shape function, as seen

in Eq. (3.21).

u(x, t) = Z u; (). Nt + Z a;(6)- N (3.21)

= jendis
This provides a discontinuous field that represents the jump in the
displacement field given by the fracture faces. The additional degrees of freedom
a;j are often called “enriched degrees of freedom” and the enriched shape function

N,f;‘r is given by the product between the standard shape functions lefd and an
enrichment function 9, as seen in Eq. (3.22). The influence of these degrees of

freedom is only considered in the V3, which is the set of nodes whose support is

bisected by the crack as seen in Figure 3.4.
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@ Standard Shape
Functions — Set v’

[ Enriched Shape
Functions — Set J\Vdis

Figure 3.4 — Standard and Enriched degrees of freedom and their

positions

It should be highlighted that the shape function NS¢ used to define the
enriched shape function NZ™ does not have to be the standard shape function.
However, in this work, the standard shape functions are also used to compute the
enriched shape functions.

NEY = NSt 9 (3.22)

According to Fries and Belytschko (2010), the approximation presented in
Eq. (3.21) can reproduce any enrichment function exactly in Q as long as the

Partition of Unity is valid, i.e.

Z NG = (3.23)

jeNdis

3.3.2.
Enrichment functions

As the XFEM is generalized for any kind of enrichment function 9, proper
functions must be defined considering the type of problem of interest. In this study,
only linear quadrilateral elements are used, i.e. 4 node elements, so it must be
considered that the chosen enrichment functions are multiplied by linear shape
functions.

For the simulation of hydraulic or natural fractures these functions must meet
the following requirements: 1) show a discontinuity in the fracture position; 2) have
a discontinuous derivative in the fracture position; and 3) be linear on each side of

the fracture. A signed level set function guarantees these conditions.

@(x) = min||x — x*||. sign ((x - x*)- nrd) (3.24)
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The level set function for a point x is the closest distance to the point x*

located on the discontinuity. The signed level set function H is

_(+1,  e(x) =0
Hlp() = {—1, p(x)<0

As for the pore pressure fields, two different types of patterns are expected to

(3.25)

occur in the studied problems. For the sake of simplicity, these will be called
hydraulic fracture type and natural fracture type. Fluid injection in hydraulic
fractures usually induces longitudinal and transversal flow. This leads to high
pressures inside the fracture, which dissipate in the surrounding porous medium
(Figure 3.5a). Furthermore, the possible occurrence of a filter cake may lead to loss
of pressure on the fracture faces. As seen in Figure 3.5b, this loss of pressure may
be different on both faces of the fracture. The hydraulic or mechanical conditions

may also differ between fracture faces, resulting in P4, # Pp (Figure 3.5¢).
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Figure 3.5 — Pore pressure patterns (section A-A’) near a hydraulic
fracture. a) Filter cake not considered. b) Filter cake with loss of pressure.

¢) Filter cake with different top and bottom leak-off conditions

In natural fractures, a different pattern is expected. In the cases of dominant
transversal flow, loss of pressure related to the fracture may be significant or not,
as seen in Figure 3.6. Regarding the focus of this research on studying the
intersection between hydraulic and natural fractures, high pressures inside a natural
fracture may occur, causing a change of behaviour from the patterns represented in

Figure 3.6 to the ones presented in Figure 3.5.
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Figure 3.6 — Pore pressure patterns (section A-A’) near a natural
fracture. a) Without loss of pressure through the fracture. b) With loss of

pressure in the fracture

Based on these considerations, the pore pressure field of a fractured element
must: 1) show a discontinuity in the fracture position; 2) have a derivative which is
discontinuous at the fracture face; and 3) be linear at each side of the fracture. These
are the same conditions as those for the displacement fields. Consequently, the same
enrichment function (signed level set function H) is adequate to represent the pore
pressure fields in a fractured domain.

For hydro-mechanical coupling in the element domain, it may be stated that
the sets V" and V%S are the same for both mechanical and hydraulic discretization,

(3.26) and (3.27), respectively.

u(x,t) = Zui(t).Nﬁfd + Z a(0). N5 H (x) (3.26)
iEN jE]\I‘diS

PO = D PN+ D p (0N H) (327)
iEN jendis

As stated by Belytschko ez al. (2001), it is beneficial to replace the enrichment
function in Egs. (3.26) and (3.27) by (H(x) — H;). The enrichment function then
vanishes in all elements except those that contain the discontinuity. Another
advantage is that the enrichment variable vanishes in the nodal points, which means
that the interpretation of the results on those nodes only depends on the standard

part of the solution. This variation, often called shifted formulation, is applied in all
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enrichments used in this work. However, for the sake of notation simplicity, the
shifted formulation is represented by H in further developments.

It should be highlighted that, since only a sign function is used to enrich the
degrees of freedom, there should not be a concern about blending elements, i.e. the
non-fractured elements that have coincident nodes with enriched elements. As
stated by Fries (2008), the sign enrichment is a special case that does not lead to
problems in blending elements. The reason is that the sign enrichment is a constant
function in the blending elements and as long as the partition of unity functions are
of the same or lower order than the shape functions, the unwanted terms in the
blending elements can be compensated.

From Eq. (3.10) it is noticeable that the coupled hydro-mechanical problem
may be expanded to several fractures in the domain. Eq. (3.28) presents the

displacement discretization of a domain with N fractures.

Nc¢
u(x,t) = Z u; (). N5 + Z Z @i (£). N3t Hye(x) (3.28)
iEN k=1 jeyrdis

Figure 3.7 shows the values of the shape function for a node j multiplied by

the enrichment shifted function (H(x) — H;), considering a 4-node element.

Figure 3.7 — Value of shape function in node j multiplied by the

enrichment shifted function (H(x) — H;) for 4-node element. a) View 0°. b)

View 70°. c¢) View 250°

3.3.3.
Intersections

If fractures intersect each other, then the discretization needs to be adapted so
it represents the intersections correctly. A junction enrichment function, J,

represents an intersection between two fractures (Daux, Moes and Dolbow, 2000).
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This function depends on the enrichment functions of each fracture, H; and H;, as

Eq. (3.29) and Figure 3.8 present.

(0 Hi(x)=0
J69 = {Hu(x). H;(x) <0 (3:29)
1 a9
gl ) 1 /
f— _1 .“
1 0
Main fracture (H)) Secondary fracture (H,) Intersection (J,)

Figure 3.8 — Enrichment function J (adapted from (Daux, Moes and
Dolbow, 2000)

Figure 3.9 shows the values along the element of a shape function for a node
J multiplied by the enrichment shifted function (J(x) — J;), considering a 4-node

element.

Figure 3.9 — Value of shape function in node j multiplied by the

enrichment shifted function (J(x) — J;) for a 4-node element. a) View 0°. b)

View 70°. ¢) View 250°

The application of the new enrichment function, requires a new set of degrees

of freedom V™, Figure 3.10 pictures the different enhanced degrees of freedom

and shape functions for an intersection situation.
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X Enriched Shape
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0 Enriched Shape
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Figure 3.10 —Intersection enriched degrees of freedom and their positions

The generalization of the junction enrichment functions for a number of
fracture intersections is straightforward. Yet, a particular case requires special
attention. When one fracture crosses another, this must be treated as two different
intersections. In this way, one main and two secondary fractures are defined. Thus,
different junction enrichments J; and J,; describe the intersection between the main
fracture and each secondary fracture. Figure 3.11 shows this pattern and the

enrichment functions.

N ________.\__.-—-—"‘—

V 1

\
1

= Main fracture (H,)
------ Secondary fracture (H,)
= == Secondary fracture (H,,)

\
1 \
-1 =1
= \
\
Main fracture (H)) Secondary fracture (H,) Secondary fracture (H,)
1 : 0
-1 0 :
__'_____.r-—-—‘—'——_ —'___.gr/
v 0 v 1
0 \ 1 \
i i
First Intersection (J,) Second Intersection (J,)

Figure 3.11 —Secondary fracture enrichment when crossing occurs
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Each fracture intersection requires a new enriched degree of freedom b related
to a specific enrichment function J. Eq. (3.30) provides the displacement field

generalized for N, intersections and N, fractures.

N¢
ux.t) = Z 1 (6). Nt + Z Z )1 (D). NSH. Hy ()

] = i dis
e Kstjen (3.30)
T b NS0
k=1jE]\[int

All considerations regarding enrichment functions and discretizations for
displacements are considered applicable to the pore pressure discretization at
intersections, once the pore pressure enrichment functions are the same.
Consequently, the discretization of a pore pressure field with intersecting

discontinuities follows

N¢
PO = ) PN+ D g (0N Hie(3)

= k=1 jejdis (3.31)

Ny
FD D Py O-NE ()

k=1 je]\/‘int

3.3.4.
Fracture discretization

Unlike the displacements and pore pressures, which are integrated in the
domain €, the fracture fluid pressures, given by pp, are integrated and discretized
within the fracture level I'. This allows the consideration of a jump between the
fracture pressure and the surrounding pore pressures, as observed in Figure 3.5c.
The discretization of the fracture pressure using Eq. (3.32), new degrees of freedom
are placed at every intersection between the fracture and the element sides.
Additional degrees of freedom are introduced at intersections between fractures, as

Figure 3.12 presents.

PrCut) = ) pp (0. NS (3.32)

iend
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Figure 3.12 —Fracture pressure degrees of freedom and their positions

3.3.5.
Resulting space discretization

Without loss of generality the test functions du, p and §pg follow the same
discretization rules as the corresponding fields. Thus, the substitution of the discrete
fields and their derivatives in Egs. (3.14), (3.15) and (3.19) gives the following non-

linear system of equations (see Annex A for details)

[KI{T} - [QI{P} + fi* — £ = 0 (3.33)
[QTH{T} + [H + L1]{F} - [L2]{P¢} — q = 0 (3.34)
—[L2T]{P} + [Hg + L3]{Ps} — g} = 0 (3.35)

3.4.
Time discretization

The volume-related terms in the formulation (a, a, [a], and (V1)) require a
time discretization. In this work a first order Generalized Newmark scheme (GN11)
is employed for the displacement field, as seen in Eq. (3.36). This relation
establishes a relation between two consecutive time steps n and n+1, whose time
value is, respectively, t, 41 and t,,, with At = t,,,.1 — t,,.

Uy = ﬁ (Dpgy — D) — (% -1)0, (3.36)
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According to Zienkiewicz, Taylor and Zhu (2013), the solution is implicit and

unconditionally stable for § =y = 6 = 1, then

U,y = (%tn) (3.37)

Attributing the time index and substituting Eq. (3.37) in Eq. (3.34), the

following equations are obtained

YUy = KUpp1 — QPuyq + 2, — X =0 (3.38)

‘Pp ='E'QTEj+1'+(}l+'L1)F +1—'L2P¥ —'qu

n n n n
+1 7 At ) n+1 +1 (3.39)

T —
-—Q'U,=0
At Q n

‘IlpFnH = —L2"P, ;1 + (Hf + L3)]I_Dpn+1 — q%‘:ﬂﬂ =0 (3.40)

3.5.
Newton-Raphson algorithm

The set of Egs. (3.38), (3.39) and (3.40) may be non-linear if at least one of
three conditions occur: material non-linearity in the porous region — Eq. (3.3),
material non-linearity in the fracture region — Eq. (3.5), or fracture longitudinal
transmissibility depending on fracture aperture — Eq. (3.7). In this case, the
equations need to be linearized in order to be solved. The Newton-Raphson iterative
algorithm solves the system of discrete non-linear equations. By expanding Eqs.
(3.38), (3.39) and (3.40) with the first-order truncated Taylor series, the linear

approximation of the coupled system is obtained

'04ﬁj aqﬁj 6¥ﬁjj
i+1 wi 10 oP  dP; =i
Un Un dU
WL-J i s oWp OWp OWp dﬁ’?
Poa (77 " P U oP AP " (3.41)
Wil Ve oWs.  OWs  OWs dPr,
Fn+1 Fn+1 Pr Pr Pg
| 90U oP  0P;

n+1

=0
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The solution for a certain step n+1 follows by solving Eq. (3.41) iteratively until

— —_— — ] T . .
reaching convergence, i.e. the vector of residuals {dU}, dP; dP F;} at iteration

i is smaller than a pre-defined tolerance. The Jacobian term J is a non-symmetric

matrix given by

(G’I’[U O‘I’.U G’I’U ]
oU oP oPg
BRI
I=1%0 P Py
o¥Yp, 0¥p, 0¥,
9 9P 9Py
( int at{:int afint (342)
K+ — -Q+—= 0
a0 P P
1
- EQT (H+L1) 12
— aq%: -L27 - —q%l: (Hg + L3) — aq]%l;
oU oP F 0P, |

In order to optimize computations, the Jacobian may be transformed into a
symmetric matrix (Khoei et al., 2014). Both the definition of the terms and the
changes on the matrix are presented in Annex B. As a result, the implemented

Jacobian matrix is

K+ T -Q —Qf
J=|-Q" —At(H+L1) At. L2 (3.43)
—QF’ At.L27T —At. (Hg + L3)

Scaling of the Jacobian in Eq. (3.43) is possible for as many enriched degrees of
freedom of displacement (p and ), pore-pressure (8 and () as present in the model

(see Annex B for example). Therefore, the integrals that compose the Jacobian are

Kgy = jﬂ (BE)TDBK dn (3.44)

Tg, = fr [N®] Dy [NY]ar (3.45)
a

Qp; = fn (B%) m NS do (3.46)

Qpyp, = fﬂ [N®] g N3t a0 (3.47)
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Hy; = f (B8) Ky B d2 (3.48)
02
Lig; = | (N8) ¢N§ dr (3.49)
I'q
L2sp, = | (N3)" c N3 ar (3.50)
Iq
L3=| (N39) cNSt gr (3.51)
g
Hp = | (BS9) tr, (2h)kpq BSY tr, dI (3.52)
g

with m={1 1 0}. Moreover, the following integrals are used to

compute Egs. (3.38), (3.39) and (3.40).

T
ft= [ (N§) #dr (3.53)
I
= | (N&) g,dr (3.54)
Iw
. T _ T
fit=| [N§] Degar—| [NS] (pempo)dr (3.55)
g I'g
qnt = [ (NSt 2R)(ViD) tr, I + | (NS9)' [iilng, dr (3.56)
] g
3.6.

Fracture constitutive behaviour

3.6.1.
Contact penalty method

When studying interaction between fractures, it is expected that the relative
displacements between fracture faces vary considerably. For example, while a
hydraulic fracture approaches a natural fracture, compression and friction between
the natural fracture faces may occur. However, right after the intersection between
hydraulic and natural fracture, the fluid starts filling and pressurizing the natural
fracture faces, resulting in a separation of its faces. Therefore, the difference of
behaviour that occurs between compression and separation must be correctly

modelled.
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A formulation based on the contact penalty method limits fracture closure in
this work. This method assumes the following conditions, known as the standard

Kuhn-Tucker conditions (Khoei, 2008).

gy =0 (3.57)
ty <0 (3.58)
gn-ty =0 (3.59)

Eq. (3.57) indicates that the normal fracture opening gy = [ulnr ; cannot be
negative, i.e. no superposition of faces occurs. Eq. (3.58) governs the normal
tractions on the interface, which must always be compressive. Finally, Eq. (3.59)
designates that the normal tractions on the interface vanish when there is a gap, i.e.
the fracture is open.

The contact constrains are guaranteed through the integral of the fracture
material constitutive matrix T in Eq. (3.45), where the stiffness matrix Dy is defined
by the tangential and normal stiffness, k; and k,,, respectively.

Dy = [’g I?n (3.60)

In the case of a compressive traction on the fracture faces, the value of the
normal stiffness k,, takes the value of a penalty factor. The accuracy of satisfying
contact constraints highly depends on the penalty factor, which should take an order
of magnitude higher than the deformability of the surrounding medium. The larger
the value of the penalty parameter, the more accurate contact constraints are.
However, very large values for the penalty parameter result in an ill conditioned
formulation (Khoei, 2008).

Another evident limitation of this method exists when intersections are
modelled. Figure 3.13a shows an eventual fracture intersection and the integration
points of each fracture that are closer to the intersection. The colour scheme
indicates that each integration point only avoids fracture superposition in its
corresponding fracture, i.e. only fracture faces with the same colour check the
contact against each other. When a state of deformation similar to the presented in
Figure 3.13b is obtained, the contact model is applied between faces of each fracture
(yellow faces and green faces do not overlap) but it is not applied in the intersection
(yellow and green faces overlap with red and blue faces, respectively). Therefore,
a superposition, represented by an orange region in Figure 3.13b, exists in the

model.
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Although being an important effect in certain cases, in this research it is
considered that this limitation does not have a strong influence in hydraulic fracture
models, where the fractures tend to open as intersections are created (due to fluid

pressure) and contact is less likely to occur.

A AV
= 0 %%
o

a) b)

Figure 3.13 — Zoom of an intersection and fractures integration points.

a) Situation with all fractures opened. b) Situation of contact between fractures

3.6.2.
Mohr-Coulomb model

Simulation of frictional behaviour of natural fractures adopts a
Mohr-Coulomb model for discontinuities. The formulation of this model is based
on the research by Rueda et al. (2014). The Mohr-Coulomb model is an
elastoplastic constitutive model with a failure surface represented by a function f,
seen in Figure 3.14 and given by Eq. (3.61).

f=1t4+0,Xtang — (3.61)

f=t+o,xXtang - ¢

Figure 3.14 — Mohr Coulomb failure surface

where T is the shear stress, o', the normal stress, ¢’ the effective friction angle and

¢’ the effective cohesion of the fracture filling.
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Additionally, a tensile cut-off failure surface f;, is defined to limit tension
stresses, as Eq. (3.62) and Figure 3.15 show.
fa=0n—R; (3.62)

Figure 3.15 — Tensile cut-off failure surface

The constitutive model must define both an elastoplastic stiffness matrix and
the stress state, considering the actual deformation state. As the final stress state is
not known a-priori, an implicit procedure is used. In this work both functions (3.61)
and (3.62) are verified to check if plastic deformations occur. If f or f, are positive,
it means the stress state g;,4;, 1S not admissible, so it should be corrected and the
plastic deformations computed. Two correction paths are formulated, vertical and
perpendicular to the failure surface, as seen in Figure 3.16. The first may be called
a non-associated formulation without occurrence of dilatation, while the second is

an associated formulation.

Girial

l<——Otrial G'n

Figure 3.16 — Return paths for Mohr Coulomb model. a) vertical return.

b) perpendicular return

The final change in stress state and the elastoplastic stiffness are given by Eq.

(3.63) and Eq. (3.64), respectively.

{Ac} = [D¢]{Ae} — [D®]{AeP} = [D°]{Ae} — [D¢]A {Z—‘Z} (3.63)



g (01"
01 {5e} (55} (2]
N tper (24
(oo} P1{5E}
where [D€] is the elastic stiffness matrix, given in Eq. (3.60) and

a M . . .
i {é} is the derivative of the failure surface

[D€?] = [D°] -

1
o Mohr Coulomb surface: {ﬂ} = { }

do tan 90’
o Tensile cut-off surface: {%} = {2}

29) - . ) _ _
L {ﬁ} is the derivative of the plastic potential function
o Mohr Coulomb surface:

. a
= Vertical return: {—g} = {
do

1
= Perpendicular return: {Z—i} = {t an <p'}

o Tensile cut-off surface: {%} = {(1)}

e A is a parameter that guarantees that f (0¢iq;) = 0

o Mohr Coulomb surface:

trial
= Vertical return: A = %
S
. f(o_trial)
| | . —__Jw J
Perpendicular return: A T
f (O.trial)

o Tensile cut-off surface: A = -2 p
n
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(3.64)
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Implementation

The core of this research is the delivery of an implementation that is capable
of simulating the propagation of hydraulic fractures and their intersection with
existing fractures. Different codes in different languages were implemented and put
together in a suite named XFEMHEF. In this chapter all the implementation steps are
presented explained. A more detailed description is made of the subroutines that are
plugged in a finite element solver, which is the software Abaqus, by Simulia (2014).

First, the Abaqus software is presented, with focus to the user subroutines
tool. Then, after an overview of every step of the XFEMHF code, each of the
subroutines are explained in detail. An explanation on the type of elements and their
integration procedures is also given and, finally, the limitations of the

implementation are discussed.

4.1.
Abaqus Software

4.1.1.
General Description

Abaqus is a widely used commercial software, both in industry and academia,
mainly known for its adaptability to very different kinds of numerical problems. In
its essence, it is a solver for linear system of equations which allows the
incorporation of non-linear problems with different physics in various types of
finite elements.

Within a wide variety of modules and add-ons, the Abaqus finite element
suite includes a graphical interface for input, monitoring of simulations and output
interpretation (Abaqus/CAE) and three modules: Abaqus/Standard, a general-
purpose finite element program, Abaqus/Explicit, an explicit dynamics finite
element program and Abaqus/CFD, a general-purpose computational fluid

dynamics program (Simulia, 2014). For the sake of simplicity, from this point the



89

word Abaqus is meant to represent the module used in this work, which is
Abaqus/Standard v6.14.

Abaqus offers an extensive diversity of element types and material models,
applicable to different physical analyses: mechanical, pore hydraulic, thermal,
electrical, electromagnetic and acoustic. Some of the available elements also allow
coupled simulations between two or more of the previously mentioned physics.

Although it offers a wide variety of functionalities, also allows users to
integrate their own subroutines in the calculation, which expand even more the
software capabilities. More than 50 available user subroutines have many different
functions, such as definition of complex constitutive models (p. ex. CREEP,
HARDINI, UDMGINI, UMAT), definition of complex boundary conditions (p. ex.
DFLOW, DLOAD, DISP), definition of constraints (p. ex. MPC,
UMESHMOTION), definition of elements (p. ex. UEL and UELMAT) and
management with external applications (UEXTERNALDB).

Abaqus solves non-linear problems by breaking the simulation into a number
of time increments and finds the approximate equilibrium configuration at the end
of each time increment. Using the Newton method, it often takes Abaqus several
iterations to determine an acceptable solution to each time increment (Simulia,
2014). The calculations may be subdivided in:

e Steps: define an analysis procedure or loading. Different loads,
boundary conditions, analysis procedures, and output requests can be
used in each step,

® Increments: are part of a step. In nonlinear analyses each step is
broken into increments so that the nonlinear solution path can be
followed. The size of each increment may be fixed by the user or
automatically chosen by Abaqus,

e Jterations: are an attempt at finding an equilibrium solution in an
increment. If the model is not in equilibrium at the end of the iteration,

Abaqus tries another iteration.
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4.1.2.
XFEM in Abaqus

Abaqus presents different techniques or elements to simulate discontinuities
in a FEM model. Within the XFEM, which is called in the Abaqus Documentation
as an ‘“‘enriched feature”, the software differentiates between stationary and
propagating cracks. Considering the focus of this research, in this chapter only the
coupled hydro-mechanical element with XFEM for propagating cracks is detailed.

Abaqus implements the XFEM using the Phantom Node technique (Song,
Areias and Belytschko, 2006), which was based on a previous work by Hansbo and
Hansbo (2004). This technique considers the duplication of the mesh elements,
being the duplicated nodes called “Phantom Nodes”, represented in Figure 4.1 by
hollow circles. Moreover, additional nodes, known as “Edge-Phantom Nodes” (red
triangles in Figure 4.1), allow the representation of the fluid pressure inside the
fracture. Prior to damage initiation only one copy of the element is active. Upon
damage initiation the displacement and pore pressure degrees of freedom associated
with the corner phantom nodes are activated and both copies of the element are
allowed to deform independently, pore pressures are allowed to diffuse
independently, and the created interface behaviour is enforced with a traction-
separation cohesive law. The pore fluid pressure at the top and bottom faces of the
fracture are interpolated from the pore pressure degrees of freedom at the corner
real nodes and phantom nodes. The difference with the fracturing fluid pressure
(interpolated at the edge-phantom node) is the driving force that controls the
leakage of fracturing fluid into the porous medium (Zielonka et al., 2014).

The fracture geometry is mathematically described by the Level-Set Method,
which assumes that two signed distance functions per node are generally required
to describe a crack geometry (Simulia, 2014).

The propagation criterion may be based on stress or strain state, which
interpolated to the crack tip or computed in the element ahead of the crack tip. Its
direction is set to have perpendicular direction to the minimum principal stress in

the tip region.
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Undefonnled Undeformed Deformed 2
configuration configuration configuration
before damage after damage after damage

Figure 4.1 — Implementation of the XFEM with “corner” and ‘“edge”
phantom nodes (Zielonka et al., 2014)

Areias and Belytschko (2006) showed that the kinematic decomposition in
the Phantom Node method is equivalent to the one in the extended finite element
method (XFEM) by Moes and Dolbow (1999) and Belytschko and Black (1999),
having the advantage of being of easier implementation in a standard FEM code.
On the other hand, it turns the implementation of partially cracked elements
cumbersome.

The Abaqus XFEM elements have had a very positive effect of facilitating
the use of this technique both in industry and academia (see Chapter 2). However,
these cannot be used in the scope of this research, once Abaqus refers that XFEM
elements cannot be intersected by more than one fracture (Simulia, 2014).
Therefore, the built-in Abaqus XFEM elements are not part of this research, being

substituted by the use of user elements coded in subroutines.

4.1.3.
Abaqus User Subroutines

To achieve this thesis's proposed goals, two Abaqus user subroutines were
used. The two user subroutines that manage and organize the workflow composed
by most of the code written for this research are presented next. Figure 4.2 shows
the flow of an Abaqus calculation and when each of the subroutines are called.

UEXTERNALDB

Though very simple, this is an extremely helpful subroutine when the user

needs external procedures to be run during the simulation. This user subroutine is
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called once at the beginning of the analysis, at the beginning of each increment, at
the end of each increment, and at the end of the analysis (in addition, the user
subroutine is also called once at the beginning of a restart analysis). In addition to
the number of the step, number of the increment and the time interval information,
the variable LOP given to the user defines in which phase of the calculation (step,
increment, etc.) the subroutine is being called. This way, it is possible to manage
the calls to:

e Read the input files at the beginning of the calculation,

e Other processes or subroutines at the beginning/end of each

increment/step

® Prepare output files at the end of each step or the calculation.

UEL

The User ELement subroutine gives the user the freedom to define any type
of element topology and which governing equations are considered in that element.
The user defines in the input the number of nodes of the element and their position.
Furthermore, the input must also define the degrees of freedom, up to 30, that are
attributed to each node.

Each time element calculations are required, i.e. for every element in every
iteration, the UEL subroutine is called. Then, the code must perform all the
calculations that are appropriate for the topology and the physics of the element.
The subroutine must deliver the jacobian matrix of the Newton-Raphson method
(AMATRX), the right-hand-side vector of the overall system of equations (RHS)
and an array containing the values of the eventual solution-dependent state variables

associated with the element (SVARS).
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Beginning of Analysis ]

UEXTERNALDB ————— ]
Start of Step ]

UEXTERNALDB ———— 8
Start of Increment ]

UEXTERNALDB ———

Start of Iteration ]

UEL: Define K and Rt
UEL — for every user element

!

| Define External Loads R®® |

| Assemble Global Matrices |

Solve system of equations
K.u =R+ Rt

UEXTERNALDB ——— | Yes To Start of

End of Step?
Yes To Start

= of Step
< End of Analysis? >—
No
UEXTERNALDB 4’1 Yes
End of Analysis

Figure 4.2 — Calls of user subroutines within the flow in Abaqus

To Start of
Iteration

Increment

UEXTERNALDB

4.2,
XFEMHF code

4.2.1.
Overview

As usual in research focused in code implementation, different software or
codes were used to achieve the proposed goals.

A known limitation of the Abaqus graphical interface (Abaqus/CAE) is that
it does not support the definition and visualization of user elements. Although not
being the main focus of the research, the input and output tools are also essential.
In a first step, during implementation, as they make the code validation easier. In a
second step, because they guarantee that other users run simulations without need
of advanced knowledge about the background process, allowing further
contributions to the research topic.

The whole process of preparing, running and analysing a simulation may be

described in three main steps, as seen in Figure 4.3.



94

Input Generator  Viime®®

Tor Apglications

Node Mesh Fractures Abaqus
Data File Data File Data File Data File

2y
>
S siMmuUuLIa
Abaqus/Standard 2 \JLIA
P e e e e e e e e j
1
I ‘ Abaqus External | Fortran | # pgthoﬂ:
1
|
: User Element P, 1 ﬁ‘:?nu;
: Pre-Processor Subroutine Procas Output Writer :
: {UEL) i
i 1

g
Output ﬁ h%ﬁm?

Fracture OQutput
Files

Neutral Files

Figure 4.3 — Main steps of a simulation

Input generator

Four input files must be defined for every simulation: node data, mesh
(topological) data, fracture data and Abaqus regular input data. These files are
automatically generated by a code developed in VBA — Visual Basic for
Applications.

Abagqus internal and external subroutines

The core code of this research is written in Fortran and compiled by
Abaqus/Standard; therefore, this Chapter focus specifically in this step. The XFEM
formulation is implemented in the external Abaqus User Subroutines, while several
processes that are common with the standard FEM, such as the global stiffness
matrix assembling or the convergence checker, are left to be done by the Abaqus
internal subroutines. In specific cases, which will be referred in Chapter 4.2.2.2, a
Python Script is used to interpret and adapt results during the simulation.

Output

The results may be visualized in the software Pos3D (Carvalho, Martha and
Filho, 1997) which reads a Neutral File type generated during the simulation. For
some specific variables along the fractures, a code developed in VBA interprets the

fracture results and properly shows them in MS Excel graphs.
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4.2.2.
Abaqus algorithm

4.2.2.1. General algorithm

As mentioned before, the core of the implementation of this research is the
Abaqus + User subroutines algorithm, i.e. the intermediate step of Figure 4.3. A
more detailed flow of this algorithm is shown in Figure 4.4, where the boxes with
dashed outlines represent the parts of the simulation where the code implemented
in this research is called.

Starting by doing some Abaqus internal checks, the simulation then runs a
user subroutine that reads all the input files generated in the first step of Figure 4.3
and allocates the auxiliary matrices and vectors in memory. Next, a geometry pre-
processor is run. Based on the mesh and initial fracture information provided in the
input files, this processor attributes all the values related with enrichment functions
to the nodes and integration points of the model. Further information about the
geometry pre-processor is present in Chapter 4.2.3. Then, the loops over steps,
increments and iterations start. At the beginning of a new increment, the simulator
checks if propagation occurred at the end of the previous increment — evidently, this
does not happen at the first increment of the first step of the simulation. If
propagation occurred, then new enriched degrees of freedom are active and the pre-
processor is run, in order to update all the enrichment related data in the newly-
propagating segments.

The loop over the iterations starts with a loop over all mesh elements. For
each element the UEL subroutine computes the Jacobian matrix, the right-hand-
side and the state variables are computed. This procedure is explained in more detail
in Chapter 4.2.4. After assembling all the external forces defined in the input, the
internal functions of Abaqus use the element matrices to assemble the global
matrices and solve the linear system of equations. If convergence is not attained,
another iteration is run.

When the solution converges, the increment finishes and a fracture geometry
post-processor is called. This procedure checks if propagation criteria are meet
anywhere in the model. In case propagation occurs, the direction and length of the
new fracture segments are also computed. A more detailed explanation of this

procedure is delivered in Chapter 4.2.5. When the loop over the increments restarts,



96

the coordinates of the new fracture segments are used by the pre-processor to place
them in the mesh and compute their enrichment data, which will be used in the next
increment.

Finally, when the last increment of the last step converges, the simulations
finishes by writing all Abaqus output files and also the user output files that are

interpreted in the third step of Figure 4.3.
4.2.2.2. The specific case of in-situ stress state

In most geotechnical events involving hydraulic and natural fractures the
overburden cannot be neglected. Furthermore, it is widely known that the in-situ
stress state extremely affects the way fractures behave and propagate.
Consequently, this effect must also be considered in the developed simulator.

The in-situ stress state occurs due to various phenomena that happened during
the geological history of the layer, such as overburden, tectonic movements and
metamorphism. The modelling of all these effects to attain a correct in-situ stress
state is extremely difficult. For that reason, that modelling is usually disregarded
when only short periods of time (in a geological time scale) are to be simulated,
being substituted by the input definition of an initial stress state. Therefore, the
consideration of in-situ stresses in Abaqus is not straightforward, given that an
initial stress field must be simulated as an equilibrium state which is the result of
the gravitational fields and the model’s boundary conditions. Due to the use of a
User Element Subroutine (UEL), Abaqus cannot interpret the in-situ stresses from

the input file and consequently a specific algorithm has to be defined.
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Figure 4.4 — Flow of a XFEMHF simulation — dashed outlines represent

coded subroutines and continuous represent Abaqus internal routines

The implemented code contemplates the following steps, in order to consider

in-situ stresses in the model (see Figure 4.5):

On a first Abaqus analysis, all degrees of freedom of the mesh are
considered to be fixed (i.e. boundary conditions set to zero). The in-

situ stresses are applied to the whole model as internal stresses and
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one calculation step is run. The obtained reactions in every degree of
freedom are output to a specific file and the simulation finishes;

A Python script compiled by Abaqus is then run. This script translates
the reactions in the previous mentioned output file to a new format,
which is readable by Abaqus;

A second Abaqus analysis is run. In the first step of this simulation,
all the reactions obtained in the first simulation are applied to all
degrees of freedom. Together with the internal stresses applied
previously, this will guarantee that the simulation starts in equilibrium
with zero displacement and the defined in-situ stress. Then, all the
steps are defined as in a regular simulation, with all the loads and

boundary conditions that the user requests.

Due to Abaqus limitations, this simulation must be run in two separated

analyses. If this process was run in one single analysis, the Abaqus preparation

subroutines would search for the files with the reactions generated by the Python

script at the beginning of the analysis. As these files are generated after the geostatic

step of the simulation, the preparation subroutines would deliver an error and

Abaqus would abort before starting computations.

Run XFEMHF Analysis only
for Geostatic Case

Read all reactions from

i
1
1
! Geostatic Case
Python !
! |
1
1
1
1
1

Write reactions to
external files

Run XFEMHF Analysis

Figure 4.5 — General flow of a XFEMHF simulation with initial stress

state

4.2.3.

Fracture geometry pre-processor

The fracture geometry pre-processor runs at the beginning of the simulation

and then updates data at the beginning of each increment that follows a propagation
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event, as seen in Figure 4.4. It should be noted that fractures do not change geometry
during the iterations of an increment, so there is no need to run this procedure inside
the increment loop.

The goal of this procedure is to define the enrichment data for the mesh, so
the element matrices are built accordingly. The following information is delivered
by the pre-processor:

e  Which nodes and elements in the mesh are enriched, and which
fracture is associated with that enrichment

e Enrichment function values at every enriched node

e Local coordinates and weight of integration points in enriched
elements

¢ Enrichment function values at every integration point of the enriched
elements

e Position of all fracture segments

¢ Local coordinates and weight of all fracture integration points

¢ Value of the jump function at every fracture integration point

® Fracture segments direction and length

At the first run, which can be called the "general definition stage", the
pre-processor has the flow presented in Figure 4.6. After the reading of all the input
data, each set of enrichment functions (H;, Hii, Hiii, etc.) is attributed to the initial
fractures. Then, all the nodes and elements that are affected by fractures have their
enrichment degrees of freedom activated. It must be noted that, because specific tip
enrichments are not being used, the representation of the tip is achieved by
deactivating the enrichment in the nodes that belong to the element border that is
touched by the tip.

In sequence, all the elements that are cut by fractures are divided into
sub-domains, allowing definition of the position of the integration points, as
explained in Chapter 4.2.7.2. Next, the enrichment functions in every enriched node
and integration points of enriched elements are computed. Although different types
of enrichment functions are allowed in this implementation, only the signed level
set function (H) is used in the simulations, as stated in Chapter 3.3.2.

Following, the fracture pressure degrees of freedom are attributed to the

nodes, using the methodology described in Chapter 4.2.6. Then, the fracture
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integration points are placed and their weights attributed. Finally, the geometry of

the fractures segments is stored, after computing their lengths and directions.

Attribution of enrichment
degree of freedom set to
each fracture

l

Attribution of enrichment to
nodes and elements

|

Sub-division of elements cut
by fractures and placement
of integration points
|
Computing of enrichment
functions to every enriched
node

}

Computing of enrichment
functions to every integration
point of enriched elements

!

Attribution of fracture
pressure degrees of freedom

!

Placement of fracture
integration points

!

Computing of fracture length
and direction

Figure 4.6 — General flow of the general definition stage of the pre-

processor

The update stage run the same procedure for the enrichment data in the newly
fractured elements and nodes, while the data in elements and nodes that had no
change is kept the same.

A special procedure is considered in the geometry pre-processor in specific
cases, when the continuous region is impermeable. As leak-off does not occur and
no injection or fixed pressure points exist inside the fracture, there is no border or
point for fluid to leave or enter it. Therefore, because the fluid is incompressible,
the fracture cannot have any volumetric deformation to comply with the continuity

equation. This way, all the displacements between the natural fracture faces may be
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highly compromised before intersection with hydraulic fractures occur. A way to
overcome this problem is to define a criterion of fracture pressure activation, which
allows the fracture pressure degrees of freedom to be deactivated at the beginning
of the simulation and then be activated. Three types of criterion are implemented:

e The fracture pressure in a segment is activated as soon as that segment
is in contact with another segment which has its pressure activated;

e The fracture pressure in a segment is activated as soon as a limit value
of a pre-defined grandness — fracture aperture, fracture normal stress,
fracture shear stress, fracture relative stress;

¢ A mixture of the previous two criteria, i.e., the pressure in a segment
is activated when that segment is in contact with another segment with

activated pressure and if a certain limit value is reached.

4.2.4.
UEL algorithm

This is an essential step for any FEM simulation, as it is where the physical
behaviour of the governing equations is represented through the construction of the
elemental matrices that compose the global system of equations. These matrices are
obtained by computing the integrals presented in Eqgs. (3.38) to (3.40) and Eq.
(3.43). Auxiliary procedures are also used to compute the non-linear terms, such as
the elastoplastic stiffness matrix for material constitutive behaviour or the fracture
longitudinal transmissibility.

A general flow of the coded UEL subroutine is presented in Figure 4.7. As
stated previously, this procedure is run for every user element in every iteration of
the simulation. Therefore, the first step of the routine is to select, both from the
input files or the pre-processor, only the data relevant to that particular element.
Then, two domains are integrated separately: the continuous region and the fracture.

First, the procedure loops over all the integration points in the continuous
area. For each, it builds the shape functions and their derivatives (N and B,
respectively), for both standard and enriched degrees of freedom, and also for both
displacements and pore-pressures. Then, the code computes the stresses and the
material stiffness matrix, which is elastic in the continuous region (see Figure 4.8).
These matrices are then used to compute the contribution of the integration point

for each of the area integrals, K, Q and H present in Eq. (3.43).
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Second, the procedure loops over all the integration points in the fractures.
Evidently, this part of the procedure is not run if there are not fractures in the
element. For each fracture integration point, the routine builds the shape functions,
their derivatives and the jump functions (N, B and [N], respectively), considering
the contribution of the fracture pressure degrees of freedom. After, the code
computes stresses and the material stiffness matrix, which may be elastoplastic in
the fracture region (see Figure 4.8). The fracture longitudinal transmissibility is then
computed, by applying the cubic law is used. It should be noted that the cubic law
uses the fracture aperture to compute the transmissibility. Considering that, even
when in contact, fractures present a larger transmissibility due to its roughness, a
hydraulic aperture is used. At the beginning of a simulation, the hydraulic aperture
is different from the mechanical aperture, taking a value defined by the user in the
input files. All the previously mentioned matrices are then used to compute the
contribution of the integration point for each of the fracture integrals, 7, L, Q,,, and
H, », presentin Eq. (3.43).

Finally, all the computed integrals are inserted in the jacobian and the right-
hand-side matrices and all the rows and columns related with deactivated degrees
of freedom are zeroed.

It should be noted that every time the procedure is run, it stores and updates
significant state variables related with every integration point, namely the stress
tensor and plastic deformations.

Figure 4.8 presents the general steps taken to compute the stresses and the
material stiffness matrix in every integration point (from continuous or fracture

region), based on the material constitutive behaviour defined by the user.
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4.2.5.
Fracture geometry post-processor

At the end of each increment, the algorithm checks the occurrence of fracture
propagation. The verification is made using a user-defined propagation criterion. If
a fracture propagates, then both the direction and length of propagation are
computed. As seen in Figure 4.9, the post processor starts by defining in which
regions of the model the propagation should be checked. Then, the propagation
criterion is verified in each region. For every region where propagation occurs, the
direction of the propagating segment is defined based on the direction criterion.
Finally, the length of the propagating segment is computed. With the computed
direction and length, the new coordinates for the propagating segments are

obtained.

Definition of regions to be
checked

!

[ Loop over regions ]

|
Application of propagation
criterion

Next
Region

Propagation
occurs?

Yes

Application of direction
criterion

|

Application of length
criterion

Figure 4.9 — General flow of the fracture geometry post-processor

The adopted propagation criterion is based on the average minimum principal
stress at the integration points of a region that is perpendicular to the fracture tip, as
seen in Figure 4.10. The region may have different shapes. However, in this
implementation, the region may be square or rectangular, depending on the user’s
choice. If it is square, its side is equal to the dimension of the average. If it is

rectangular, then it's dimensions are equal to the mesh average element.
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propagation

0 Integration points
inside region

Figure 4.10 — Examples of regions where propagation is checked

A specific treatment is made when a fracture tip is close to another fracture.
Considering that stress fields are usually different at each side of a fracture, it would
not be correct to pick the stresses in the opposite side of the fracture tip. This way,
the region is redefined considering only the part that is of interest to the fracture tip,

as seen in Figure 4.11.
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Figure 4.11 — Examples of regions close to other fractures
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Once the borders of the region are defined, the following criterion is applied
03 > 0y 4.1)

Where o3 is the average of the minimum principal stresses in the region’s
integration points and a; is the tensile strength of the rock. The direction criterion
used is also based on the average of the principal stresses. Propagation occurs
perpendicularly to the average of the minimum principal stress in the computed
region.

Finally, the length of a propagating segment is such that propagation always
extends up to the next element border. Consequently, only one element is allowed
to propagate per increment. This is a similar approach as the one used in the Abaqus
built-in XFEM elements. Despite the fact that this approach may lead to a decrease
of the crack tip speed, as mentioned by Song, Areias and Belytschko (2006), this

problem can be overcome by using sufficiently refined meshes.

4.2.6.
Element topology

As mentioned previously, the Abaqus user element subroutine allows the
implementation of any kind of finite element in the code. In this work, only one
element was coded. However, its implementation is flexible enough to model
different situations: standard porous finite element with hydro mechanical coupling,
enriched porous finite element with coupling between the hydro mechanical porous
region and the fracture fluid pressure, enriched porous finite element with multiple
fractures and intersections with coupling between the hydro mechanical porous
region and the fracture fluid pressure.

This flexibility is achieved by allocating degrees of freedom to all the
mentioned situations, activating and deactivating them during the simulation
depending on the modelling needs. For example, if there is need to simulate an
impermeable element with one fracture, all the pore pressure degrees of freedom
and intersection degrees of freedom should be deactivated. Once Abaqus does not
allow run time deactivation, this is achieved by zeroing every coefficient related to
those degrees of freedom.

The basis of the user element is a Q4 plane strain linear segment, with the

corner nodes storing the standard displacement and pore pressure degrees of
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freedom. Additionally, the same corner nodes also store the displacement and pore
pressure enriched degrees of freedom.

These degrees of freedom would be enough to model a multi fractured porous
medium if there was no need to consider the fracture fluid pressure. However,
considering the importance of working with the fracture fluid pressure as a variable
(as explained in Chapter 3.1), additional degrees of freedom are added to consider
it.

By principle, it would be correct to place the fracture pressure degrees of
freedom coincident with the fracture segments extremities. However, as seen in
Figure 4.12, that is not possible with Abaqus. As known, XFEM is a technique that
allows simulation of fracture propagation without prior knowledge of the fracture
path, i.e. each new fracture segment is positioned as the simulation runs.
Consequently, at the beginning of the simulation it is not possible to know which
elements will me intersected by fractures or to state where the fracture pressure
degrees of freedom will be. As Abaqus does not allow the placement of new nodes
in elements while the simulation runs, it is impossible to guarantee that the fracture

pressure degrees of freedom will be positioned coincident with the fracture

segments.
] — Initial fracture
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4
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Figure 4.12 — Possible positions of fracture pressure degrees of freedom

in possible fracture propagation segments

To overcome this situation, the following workaround is implemented (see

Figure 4.13):
® 9 nodes are considered in every element since the beginning of the
simulation — the already existing 4 corner nodes + 4 element border

middle nodes + 1 node at the element centroid
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e Every time a fracture propagates into a new element, an algorithm in
the pre-processor defines which nodes should store the new fracture
variables

e If other fractures propagate into the same element (creating an
intersection), the algorithm stores the new fracture variables in other

nodes that are still available

Modes that should stare
the fracture pressure
degrees of freedom

Element nodes that are
C kept inactive

O Element nodes that
store a fracture pressure
degree of freedom
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A
p, SRR

N
T ——
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Sy » < sl
&= - == -

Figure 4.13 — Storage of fracture pressure degrees of freedom

4.2.7.
Numerical integration

4.2.7.1. Introduction

As stated previously, the Finite Element Method demands the problem sub-
domains (i.e. elements) to integrate smooth and continuous functions. In such cases
as the discretization with interface elements, the integration on both sides of the
fracture is made in separate continuous elements and the fracture domain
integration is made directly in the interface elements that represent that fracture. In

XFEM, the fracture domain is within the continuous region, leading to the need of
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performing two types of integrations in the same element. In 2D the fracture domain

(I') requires line integration and the element domain (£2) requires area integration.

Interface Elements XFEM Elements

Figure 4.14 — Difference of element definition between Interface elements
and XFEM elements. On the left, black continuous lines represent element
borders, grey hatches represent continuous elements and green hatches
represent interface elements. On the right, black continuous lines represent
element borders, grey hatches represent continuous elements and dashed lines

represent the fracture inside the element domain
4.2.7.2. Continuous Region

In this work, the integration over continuous regions, i.e. £2 in 2D elements,
is performed by using the Gauss Method. In elements where all the enriched degrees
of freedom are deactivated, i.e. non-fractured elements, the integration may be
performed following the conventional techniques, such as presented in Potts and
Zdravkovi¢ (1999).

For enriched elements, the explicit consideration of fractures inside the
element domain requires the implementation of non-standard techniques for
element integration. The integrand in the element domain is no longer continuous
with continuous derivative (C' class) due to the presence of the enrichment
functions (see Figure 3.7 or Figure 3.9). However, functions that develop on both
sides of the fracture are C' class and therefore the standard Gauss integration

technique applies. Thus, sub-regions within the element where continuity applies
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may be integrated separately and the results be summed. Eq. (4.2) shows a Gauss

integration procedure applied to the element sub-regions nsubreg. ilPsub is the

number of integration points in the sub-region, W the Gaussian weight and f the

function to be integrated.

nSubReg kIPsub

U:f(% y)dxdy = Z ; W 'f(xi,jr}’i,j)

j=1

(4.2)

The subdivision process starts by cutting the element in sub-regions delimited

by the fracture. Then the following rules apply:

[ ]

If the sub-region has four sides, Gauss integration for quadrilateral elements
apply, as in the sub-regions defined in Figure 4.15a) and b);

If the sub-region has three sides, Gauss integration for triangular elements
apply, as seen in the lower left sub-region in Figure 4.15¢);

If the sub-region has five sides or more, further subdivision defines triangles
with vertices coinciding with the original sub-region vertices and its
centroid. In these triangles, Gauss integration for triangular elements

applies, as seen in the upper right sub-regions in Figure 4.15¢);
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Figure 4.15 — Examples of integration points position in sub-regions

For both non-fractured elements and sub-regions, the Gauss integration order

is defined by the user, varying on a range from 1 to 7.

4.2.7.3. Discontinuous Region

The integrals over fracture regions, i.e. [, are computed along fictitious line

elements that coincide with the fracture position. Although these elements do not

exist in the mesh topology, their implementation is critical to represent the fracture

hydraulic and constitutive behaviour. The integration performed over these
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elements also uses the Gauss integration rule. It is worth pointing out that a fracture
intersected by another fracture may show a different behaviour on each side of the
intersection. Therefore, the placement of Gauss points must consider not only the
fracture position but also its intersections. Figure 4.16 shows some examples of the
positioning of integration points along the discontinuity. In this research, only a

second order integration scheme is used.
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Figure 4.16 — Examples of integration points position in fractures

4.2.8.
Limitations of the implementation

Abaqus is a powerful and very versatile tool, both for the built in and external
user implementations. Nevertheless, the use of a commercial software where only
a part of the code algorithm is reachable by the user brings naturally some
limitations.

An already mentioned limitation of Abaqus is the impossibility to use the
graphical interface both for input and output when using user elements. This issue
which was overcome by the additional codes and software referred in Chapter 4.2.1.

The main limitation of the implementation is the way Abaqus deals with
degrees of freedom of user elements. The degrees of freedom that are access by a
user element must be defined in the input before the simulation starts. As stated
before, the principle of XFEM develops around the concept of activation of new
degrees of freedom in the run. To guarantee that all possible degrees of freedom
will be available during the simulation, they need to be previously declared in the
input. This means that many elements that are never fractured during a simulation
have stored within them the deactivated degrees of freedom. This has obviously a
negative effect in the calculation time and memory consumption.

Other related limitation is the number of degrees of freedom that Abaqus

allows for user elements, which is limited to 30 per node. This is overcome by
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attributing the same enrichment degree of freedom to different fractures, which is
not problematic as long as different fractures do not share the same enriched nodes.
However, when modelling intersection between fractures there are nodes that have
enriched degrees of freedom from different fractures, so these fractures must have
different enrichment degrees of freedom. This to say that with a limited number of
degrees of freedom per node the number of fractures in the model is not limited, but
the number of intersections inside one element is.

The degrees of freedom of user elements may be attributed to any physical
grandness, as the differential equations are defined in the code. However, every
time Abaqus runs a step, a keyword related with the type of calculation must be
defined. For example, static problems, where only displacement (position 1to 3)
and rotation degrees of freedom (position 4 to 6) are active, or consolidation, where
both displacement (position 1 to 3) and pore pressure (position 8) degrees of
freedom are active. Although the implemented code has only intent of computing
displacements and fluid pressures, the need of extra degrees of freedom for the
enrichments demands a type of calculation that allows the maximum number of
degrees of freedom possible. This is achieved by choosing a coupled
displacement-temperature calculation. This way, the degrees of freedom 1 to 6
(displacement and rotation) and 7 and 11-30 (temperature) are available.

Finally, it must be highlighted that the computational geometry functions
used in the fracture geometry pre and post-processor allow only the use of regular

meshes.
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Validation tests

The implementation described previously is validated in this chapter. This is
achieved by comparing the results of the XFEMHF code with analytical or other
software solutions. First, the results of a single propagating planar fracture are
compared with the analytical solution of the near-K vertex of the KGD model.

Next, a group of simulations focus in flow through fractured media. A
problem with unidimensional flow in a fractured element is compared with the
analytical solution. Plus, bi-dimensional flow both in permanent and transient
regimes is tested in three examples and compared with models with interface
elements. In all models of this section a variation of hydraulic parameters is applied,
in order to validate different percolation behaviours.

Finally, the validation of the contact model with friction is achieved, first by
using a one-element mesh with a single fracture followed by a multi-fractured
problem. The single element models are used for three different situations where
fracture position or load conditions change. First, an element with a horizontal
fracture is subjected to a vertical cyclic displacement applied at its top. Second, an
element with a horizontal fracture is subjected to a horizontal monotonic
displacement at its top for three different vertical confining stresses. Third, an
element with an inclined fracture is subjected to a vertical cyclic displacement
applied at its top. In the multi-fractured model an unconfined compression test is
simulated and the stress trajectories of the fractures are plotted against the

implemented Mohr-Coulomb failure surface.

5.1.
KGD analytical solution

General description of the simulation

As stated in Chapter 2, there are analytical formulations for propagating
fractures in a homogeneous medium. The KGD solution assumes a fracture which

is infinite in one of its dimensions, so this means it can be modelled using a two-
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dimensional plane strain model. In this simulation, a numerical model is compared
with the KGD K-vertex analytical storage-toughness solution, as presented by

Bunger, Detournay and Garagash (2005).

Model geometry and mesh

The model’s dimensions are 45 m x 30 m and the mesh is regular with 75
elements in each direction, as seen in Figure 5.1. An initial fracture of 1,2 m is

placed at half-height on the left side of the model.
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Figure 5.1 — Geometry of the mesh and boundary conditions

Material properties

The material properties are presented in Table 5.1 and Table 5.2. Considering
that the KGD K-vertex storage-toughness solution is valid for almost impermeable
materials, it is assumed that the rock is impermeable. The parameters are adopted

based in the work by Zielonka et al. (2014).
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Table 5.1 — Hydraulic properties

Parameter All Models
Initial hydraulic 5
Fractures aperture (m) 2x10”
Fluid Viscosity (kPa.s) 107
Table 5.2 — Mechanical properties
Parameter
E (kPa) 17x107
Continuous v 0,2
Region o: (kPa) - Numerical 1250
Kic (kPa.m'?) - Analytical 1460

Boundary and loading conditions

Along the borders of the model the displacements are fixed in the
perpendicular direction, as seen in Figure 5.1. The simulations are set to run one
single step of 10 s with time increments of size between 0,5 s and 2 s. The fluid
injection in the fracture is given by a constant volumetric flux of 1x10? m%s at the

hydraulic fracture mouth. No in-situ stress state was defined for this analysis.

Results

Figure 5.2 presents the variation of injection pressure, fracture aperture and
fracture length over time, for both analytical and numerical solution. It is noticeable
that, although some slight differences exist, the results and the tendencies of the
numerical model are in good agreement with the analytical solution.

The differences in results may be explained mostly due to three factors. First,
it is known how mesh refinement influence the results. As stated by Zielonka et al.
(2014), the relative error between solutions decrease monotonically as the mesh is
refined. Second, the fact that the model has finite dimensions, in opposition to the
infinite medium of the analytical solution, thus leading to possible influence of the
boundary conditions at the borders of the model. Third, the theoretical formulations

are different. As the KGD solution relies on the stress intensity factor for fracture
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propagation, the numerical model bases its propagation criterion on the average
stress state in a region in the front of the crack tip. As there is no analytical relation
between critical stress intensity factor and tensile strength, the solutions may be
similar but exact match would only be possible by doing back-analysis to find the

correspondent tensile stress.
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Figure 5.2 — Plots for KGD analytical and numerical solution.

a) Injection pressure vs time. b) Fracture maximum aperture vs time.

¢) Fracture length vs time.
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5.2.
Flow in a fractured medium

5.2.1.
Unidimensional percolation

General description of the simulation

A unidimensional flow simulation of two distinct situations — percolation
through (Situation 1) and percolation from (Situation 2) a fracture — may be
compared with an analytical solution. Figure 5.3 shows a schematic model for flow
through materials with different permeabilities. On the left side of Figure 5.3 a
gradient of pore pressure is imposed in the bottom and top of the model (Prp and
P:1), leading to a one-way flow. On the right side of Figure 5.3 a pressure is imposed
inside the fracture (Pr) and a gradient is created by imposing a lower pressure on
the bottom and top of the model (Prp and Pyy). It is assumed that the filter cake is a
layer of infinitesimal length with conductivity equivalent to the fracture face

transversal conductivity being ¢ = k/L.

Situation 1 Situation 2

s PI’,t i

Lt k k
o Pf,t T
EOE Pf &
i Pf,b

Ly k k
I Pl’,b-

Figure 5.3 — Two situations of unidimensional fluid percolation in a
model with different layers. On the left side, percolation from the bottom to
the top of the model. On the right side, percolation from the fracture to the

porous medium

Considering that the different layers are placed in series, the equivalent
resistance (or conductivity) may be computed as
_il
eq — _L
oy

Therefore, following Darcy’s law the volumetric flux in the model is given by

k (5.1)
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Situation 1 Situation 2
B} YL L, + L, . XL L
M@ GL Ly, 1 1 L M@ GL L, 1
Zk k+cb+ct+k z:k k+cb
Ap Prt = Prp Ap Prt — Df
=—k—=—k =—k—=—k
a L 4T ¥ 1L, 4 L e[

The pressures may then be computed for both situations as

Drt — Prt o _ _ &
—Lt Prt = Pre— 4 X

Prb = Prb _ Ly
—Lb Pfp = Prpb — 4 k

q=-k
q=-k

q= —Cb(Pf - Pf,b) S Ppr =Drp — % (only for situation 1)

Model geometry and mesh

Given that a unidimensional situation is being modelled, the single element

model presented in Figure 5.4 was defined.

Prt Pr,t
O L
0,5m
P @ @ Ps
0,5m
@ @
Prb Pr,b

Figure 5.4 — Geometry and boundary conditions of the mesh

Material properties

Six different simulations were defined by changing material properties or
boundary conditions. The hydraulic properties both for the porous region and the

fractures are presented in Table 5.5.
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Table 5.3 — Hydraulic properties

Situation 1 Situation 2
Case | Case | Case | Case | Case | Case
Parameters
1 2 3 4 5 6
Porous Region
k = kx = ky
Hydraulic 108
(m/s)
Conductivity
Cto
Fracture face b 10710
(m/s.kPa‘l)
transversal 1 108 | 1018 1 108
o Cbottom
conductivity. 108
(m/s.kPa‘l)

Boundary and loading conditions

The flow regime is guaranteed by imposing constant pressures in the bottom
and the top of the model (and also in the fracture, in Situation 2), following the
values presented in Table 5.4. Considering that a permanent regime occurs, the time

interval and the number of steps are indifferent.

Table 5.4 — Model boundary conditions

Situation 1 Situation 2
Case | Case | Case | Case | Case | Case
1 2 3 4 5 6
P:p (kPa) 1000 0
P.: (kPa) 0 0
Pr(kPa) i 1000

Results

The pressure profiles along a vertical section of the model are presented in
Figure 5.5. It is evident that the numerical simulation results match exactly the
analytical solutions. When the fluid flows from the bottom to the top of the model
(situation 1) it is noticeable how the decrease of the fracture face transversal

conductivity ¢ increases the jump of pressure between the fracture faces. When the
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injection is made from the fracture (situation 2) the XFEM element is capable of
simulating both the loss of pressure in the fracture faces (filter cake) and through
the porous medium. Results of Calculation 6 show how different fracture face
transversal conductivity in the top and bottom faces of the fracture influence the

pressure profile in both halves of the model.

Situation 1 (Pr,p = 1000 | Pt = 0)

Case 1 (ctop = Cpottom = 1) Case 2 (ctop = Cpottom = 10-8) Case 3 (ctop = Chottom = 10-13)
1 1 1
09 09 09
08 08 08
0.7 0.7 0.7
0.6 06 0.6
E E E
< 05 < 05 < 05
04 04 04
03 03 03
0.2 0.2 0.2
01 01 01
0 0 0
0 500 1000 0 500 1000 0 500 1000
P (kPa) P (kPa) P (kPa)
—Analytical X XFEMHF Analytical X XFEMHF — Analytical X XFEMHF
Situation 2 (Pr,p = Pre= 0 1 Pr=1000)
Case 4 (ctop = Chottom = 1) Case 5 (clop = Chottom = 10.8} Case 6 (clop = 10.10 | Chottom = 10.8)
1 1 1
09 09 09
08 08 08
0.7 < 0.7 0.7
0.6 06 0.6
E E E
< 05 < 0s < o0s
04 04 04
03 03 03
0.2 0.2 0.2
0.1 0.1 0.1
0 0 0
0 500 1000 0 500 1000 0 500 1000
P (kPa) P (kPa) P (kPa)

Analytical X XFEMHF

Analytical X XFEMHF

Analytical X XFEMHF

Figure 5.5 — Pressure profiles of the model and analytical solution for

each calculation



121

5.2.2.
Injection in fracture intersection

General description of the simulation

This model contemplates two intersecting fractures with a flow injection in
the intersection. The pressure gradient between the injection point and the porous
medium is created by imposing a null pressure in the corner nodes of the model. In
this model, only hydraulic variables are considered: pore-pressures and fracture
pressures. As there are no deformations in the model, a permanent regime is
obtained.

Two calculations are performed with variation of the fracture faces
transversal conductivity. The results are compared with an Abaqus model with

interface elements.

Model geometry and mesh

The model is symmetric, both in horizontal and vertical direction. Its
dimensions are 10 m x 10 m and the mesh is regular with 15 elements in each

direction, as seen in Figure 5.6.

LA |B
P=0kPa @ @ P=0kPa
Fracture 1 10m
|P=100Q kPq |
®
|
P=OkPa A g racture? P=0kPa
10m

Figure 5.6 — Geometry of the mesh and boundary conditions
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Material properties

The hydraulic properties both for the porous region and the fractures are
presented in Table 5.5. An isotropic hydraulic conductivity and equal fracture face

transversal conductivity for every fracture are used.

Table 5.5 — Hydraulic properties

Parameter Casel | Case?2

Porous Hydraulic conductivity:

Region k =kx =ky (m/s)

108

Fracture face transversal conductivity:

C = Ctop = Cbottom (m/ s.kPa‘l)
Fracture

Hydraulic aperture (m) 2x10° | 2x107?
Fluid Viscosity (kPa.s) 10°¢

Boundary and loading conditions

The flow regime is guaranteed by imposing a constant pressure in the fracture
intersection of 1000 kPa and a pressure of O kPa in the corners of the node, as
indicated in Figure 5.6. Considering that a permanent regime occurs, the time

interval and the number of steps are indifferent.

Results

Figure 5.7 shows the pore-pressure fields for the two calculations run, as well
as the results obtained using Abaqus with interface elements. Figure 5.8 presents
the values of the pore-pressures along the sections A-A and B-B (defined in Figure
5.6). It is easily noticeable that the comparison of the two simulation tools shows a
very good agreement. Slightly differences are due to the way the different output
tools plot their results.

As the porous medium and the fracture longitudinal transmissibility are the
same in both calculations, the change in the fracture face transversal conductivity
strongly affects the pore-pressure fields. For lower values of the coefficient (Case
1: ¢ = 10") a drop of pressure from 1000 kPa to around 30 kPa occurs between the
fracture and the porous medium in both sections. On the other hand, a much smaller
drop of pressure is verified in Case 2, since the increase of the coefficient obviously

reduces the gradient.
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Overall, it is shown that the implemented code is able to simulate the effect
of the hydraulic behaviour in intersection of fractures and the leak-off to the porous
region.

Case 1 (c=10"?)

XFEMHF Abaqus
Case 2 (c = 10?)

XFEMHF Abaqus
Figure 5.7 — Pore-pressure fields
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Figure 5.8 — Pore-pressures in sections A-A and B-B
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5.2.3.
Percolation through a fractured medium

General description of the simulation

In this model, four randomly orientated fractures intersect each other. A
pressure gradient is created. Only the hydraulic variables are considered: pore-
pressures and fracture pressures, obtaining a permanent regime. Four calculations
are performed with variation of the fracture face transversal conductivity and the
fracture hydraulic aperture. The results are compared with a model where the

fractures are represented by interface elements.

Model geometry and mesh

The model dimensions are 30 m x 15 m and the mesh is regular with 30 and
15 elements in the horizontal and vertical directions, respectively, as seen in Figure
5.9. The fractures have different orientations and lengths that were defined
randomly.

Figure 5.10 shows the mesh with interface elements represented in red. A
total of 1382 elements are used, where 73 are 4-node two-dimensional cohesive
elements (COH2DA4P) and 1309 are 4-node bilinear displacement and pore pressure
elements (CPE4P).

B

A ‘/ h‘\ A |15m

P = 1000 kPa P =0 kPa

30m

Figure 5.9 — Geometry of the mesh and boundary conditions
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Figure 5.10 — Geometry of the mesh of Abaqus with interface elements

model

Material properties

The hydraulic properties both for the porous region and the fractures are

presented in Table 5.6. The porous media is isotropic and the fracture face

transversal conductivity and hydraulic apertures are the same for every fracture in

each of the calculations.

Table 5.6 — Hydraulic properties

Parameter Casel | Case2 | Case3 | Case4
Porous Hydraulic conductivity: 0%
Region k = kx = ky (m/s)
Fracture face transversal
conductivity: 107 107 1012 10712
Fracture | € = Ciop = Cbottom (m/s.kPa™!)
Hydraulic aperture (m) 2x10% | 2x10° | 2x107 | 2x10°
Fluid Viscosity (kPa.s) 10°©

Boundary and loading conditions

The flow regime is guaranteed by imposing a constant pressure of 1000 kPa

at the left border and a null pressure at the right border, as indicated in Figure 5.9.

Considering that a permanent regime occurs, the time interval and the number of

steps are indifferent.
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Results

Figure 5.11 shows the pore-pressure fields for the four simulations, as well as
the results obtained using Abaqus with interface elements. Figure 5.12 presents the
values of the pore-pressures along sections A-A and B-B defined in Figure 5.9. It
is easily noticeable from both figures that the XFEMHF simulations show very
good agreement with the interface element solution.

A sensitivity analysis of two parameters — fracture longitudinal
transmissibility and fracture face transversal conductivity — shows the strong
influence that these have on the pressure fields.

The calculation with higher values of fracture transversal and longitudinal
transmissibility (Case 1: ¢ = 107 Il wine = 2x107%) shows that when both
permeabilities are high, fluid easily flows to the fractures, showing an effect of
“drainage canals”. The fluid from the porous region tends to flow to the fracture,
reducing the fluxes in the middle part of the model. Then, it leaves the right sided
fracture to reach the model border, as seen in Figure 5.13. This effect also proves
that the fracture intersections are capable of transmitting the fluid flow between
different fractures.

In Case 2 (¢ = 107 Il winit = 2x10°9), the longitudinal transmissibility is reduced
by means of the fracture aperture. Keeping a higher transversal conductivity, the
flow easily enters or leaves the fractures. However, the drainage effect related with
the longitudinal flow no longer occurs. This way, the flow crosses the fractures but
does not enter in this preferential path, keeping the same direction in the porous
region.

Case 3 (¢ = 107" Il winit = 2x107) and Case 4 (¢ = 107" Il wini = 2x107) show
that the reduction of the fracture face transversal conductivity decreases the
transversal conductivity to a point that the flow is no longer capable of entering the
fractures. Therefore, the fractures represent a barrier and the fluid has to deviate to
continue to flow through the porous region, as seen in Figure 5.13. Despite the
difference in the longitudinal transmissibility between Case 3 and Case 4, there is

no significant difference in the results, as the flow does not flow along the fractures.
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Case 1 (c = 107 Il winie = 2x107)

Case 2 (¢ = 107 Il Wiy = 2x10)

i 1 i

XFEMHF Abaqus
Case 3 (¢ = 1072 Il winy = 2x1073)

XFEMHF Abaqus
Case 4 (¢ = 102 |l wipy = 2x10)

XFEMHF Abaqus

Figure 5.11 — Pore-pressure fields
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Case 1 (c = 107 Il Wini = 2x107)
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Figure 5.12 — Pore-pressures in sections A-A and B-B
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Case 1 (c = 107 Il Wini = 2x107)
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Figure 5.13 — Flow vectors along the model

5.2.4.
Consolidation in a fractured medium

General description of the simulation

In this model, a distributed uniform load is applied at the top of the model
while the pressure is imposed to be zero in the same border. All the physics are
considered and coupled: displacements, pore-pressures and fracture pressures,
obtaining a transient regime. The displacement boundary conditions are set to the
model to represent a unidimensional consolidation problem. However, four
randomly orientated and intersected fractures exist in the model. Four calculations

are performed with variation of the fracture face transversal conductivity and the
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fracture hydraulic aperture. The results are compared with a model with interface
elements generated and run in the software GeMA (Mendes, Gattass and Roehl,

2016).

Model geometry and mesh

This model has the same geometry as the one presented in Chapter 5.2.3. The
model’s dimensions are 30 m x 15 m and the mesh is regular with 30 and 15
elements in the horizontal and vertical directions, respectively, as seen in Figure
5.14. The fractures have different orientations and lengths that were defined
randomly.

Figure 5.15 shows the mesh used in the GeMA simulation, with the interface
elements represented in red. The mesh was generated by the software Sigma2D
(Miranda and Martha, 2017) and total of 1382 elements are used, where 73 are 4-
node two-dimensional cohesive elements and 1309 are 4-node bilinear

displacement and pore pressure elements.
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Figure 5.14 — Geometry of the mesh and boundary conditions
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Material properties

The hydraulic properties both for the porous region and the fractures are
presented in Table 5.6. An isotropic hydraulic conductivity is used in the porous
medium. The fracture face transversal conductivity and initial hydraulic apertures
are the same for every fracture in each of the calculations and the variation between
analyses is similar to the one presented in Chapter 5.2.3. As this model contemplates

deformations, the hydraulic aperture changes during the simulation.

Table 5.7 — Hydraulic properties

Parameter Casel | Case2 | Case3 | Case4
Porous Hydraulic conductivity: .
Region k =kx =ky (m/s)

Fracture face transversal
conductivity: 107 107 1071 104

C = Ctop = Chottom (m/S.kPa")
Fracture

Initial hydraulic aperture

(m)
Fluid Viscosity (kPa.s) 107

2x1072 | 2x10° | 2x107% | 2x10°

The mechanical properties of the porous region are defined in Table 5.8. The
fractures have a traction free behaviour. However, if subjected to compression, the

contact between faces is modelled.
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Table 5.8 — Mechanical properties

Parameter Casel | Case2 | Case3 | Cased
Porous E (kPa) 40x10°
Region v 0,3

Boundary and loading conditions

To simulate an effect similar to a unidimensional consolidation problem the
bottom border of the model is fixed in the vertical direction, while the right and left
borders are restrained to horizontal displacements. The displacement of the model
is guaranteed by a uniform distributed load of 1000 kPa in the top border. As for
hydraulic boundary conditions, the top border is fixed to a pressure of 0 kPa.

The previous mentioned boundary conditions are applied in a first step with
a time interval of 107 s. This very small time interval may be considered as an
instantaneous application of the load, guaranteeing that consolidation practically
does not occur during the step.

The loads and boundary conditions are then kept constant for 50 varying time

intervals, while consolidation occurs.

Results

Figure 5.16 shows the pore-pressure fields for the four simulations at the same
time (t = 95 x 107s), as well as the results obtained using GeMA with interface
elements. Figure 5.17 presents the values of the pore-pressures along the sections
A-A and B-B (defined in Figure 5.14). It is easily noticeable from both figures that
the XFEMHF simulations show a very good agreement with the GeMA built-in
with interface elements.

Similarly to Chapter 5.2.3, a very simple sensitivity analysis of two
parameters — fracture longitudinal transmissibility and fracture face transversal
conductivity — shows the strong influence that these have in the pressure fields and
model behaviour.

The calculation with higher values of fracture transversal and longitudinal
transmissibility (Case 1: ¢ = 107 Il wini = 2x107) shows that when both
permeabilities are high, then fluid easily flows to the fractures, which have an effect
of “drainage canals”. The fluid from the porous region tends to flow to the fracture,

reducing the pore pressures drastically in the vicinity of the fractures. Figure 5.18
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shows how the fractures work as drains, collecting fluid from the more pressurized
regions to as near as closer to the top border. This effect also proves that the fracture
intersections are capable of transmitting the fluid flow between different fractures.
This way, it should be expected that with influence of the “drains”, the
consolidation occurs faster that in a standard unidimensional consolidation, as seen
in Figure 5.19

In Case 2 (c = 1077 Il winie = 2x10°6), the longitudinal transmissibility is reduced
by means of the fracture aperture. Keeping a higher transversal conductivity, the
flow easily enters or leaves the fractures. However, the drainage effect related with
the longitudinal flow no longer occurs, due to the reduction of longitudinal
transmissibility. This way, the flow crosses the fractures but does not enter in this
preferential path, keeping the same direction in the porous region. The lack of
influence of the fractures is visible in Figure 5.19, as the curve for this calculation
overlaps the standard unidimensional consolidation solution.

In Case 3 (c = 107" Il winit = 2x107) and Case 4 (c = 107 Il winie = 2x107%) it is
shown that the reduction of the fracture face transversal conductivity decreases the
transversal conductivity to a point that the flow is no longer capable of entering the
fractures. Therefore, the fractures represent a barrier and the fluid has to deviate to
continue to flow along the porous region. As seen in Figure 5.18, the flow is almost
inexistent under the group of fractures. Despite the difference in the longitudinal
transmissibility between Case 3 and Case 4, there is no significant difference in the
results, as the flow does not flow along the fractures. The influence that the
reduction of fracture transversal flow has in the model is visible in Figure 5.19, as
the time vs deformation curve shows that in Case 3 and 4 the sample takes more

time to consolidate.
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Case 1 (c = 107 Il winie = 2x107)

XFEMHF GeMA
Case 2 (¢ = 107 Il wiyi = 2x10)

Case 3 (¢ = 107" |l wipy = 2x1073)

XFEMHF
Case 4 (¢ = 10 1l wipy = 2x1079)

XFEMHF GeMA

Figure 5.16 — Pore-pressure fields at time 95 x 103 s
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Case 1 (c = 107 Il Wini = 2x107)
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Figure 5.17 — Pore-pressures in sections A-A and B-B at time 95 x 103 s
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Case 1 (c = 107 Il Wini = 2x107)

Case 4 (c = 107" Il wini = 2x107°)

Figure 5.18 — Flow vectors along the model at time 95 x 10° s
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Figure 5.19 - Vertical displacement in the top border’s mid-point for all

four analyses with XFEMHF
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5.3.
Contact and friction

5.3.1.
Single element with horizontal fracture

5.3.1.1. Vertical cyclic load

General description of the simulation

The objective of this simulation is to show in a simplistic manner how the
implemented contact model works. A cyclic prescribed displacement is applied in
the top of a single element with one horizontal fracture and the fracture behaviour
depends on its relative position. If the fracture faces touch each other, contact exists.
If not, fracture faces move independently. In this simulation only mechanical

degrees of freedom are used.

Model geometry and mesh

The model has a single square element with dimensions 1,0 m x 1,0 m, as

seen in Figure 5.20. The fracture is horizontal at half-height of the element.
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Figure 5.20 — Geometry of the mesh and boundary conditions

Material properties

The mechanical properties of the solid region are defined in Table 5.9. The
fractures have a traction free behaviour. However, if subjected to compression, the

contact between faces is modelled using a penalty parameter of 10'' kPa.
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Table 5.9 — Mechanical properties

Parameter Value
Solid E (kPa) 10°
Region v 0,3

Initial conditions

To assess the effect of initial stresses in the contact behaviour, two distinct
calculations are made, one without initial stresses and other with an initial vertical

stress of 500 kPa.

Boundary and loading conditions

The boundary conditions are set in order that only vertical displacements
occur in the model, as seen in Figure 5.20. A prescribed vertical displacement at the
top of the model, u, is applied in 65 increments of a fixed length of 1 second each
and follows the sinusoidal function presented in Figure 5.21. It must be reminded

that, although the notion of time is used, the calculation in each increment is static.
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Figure 5.21 — Prescribed vertical displacement at the top of the model

Results

The results show that the contact model simulates the effect of contact
between faces correctly. Figure 5.22 shows a set of frames taken from the deformed
mesh at the end of 8 increments, with the undeformed mesh being represented by
grey dashed lines. In both models it is visible that when contact exists in the fracture

faces, the compression in the continuous region is transmitted and the whole model
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deforms monolithically (see t = 0,3 s and t = 2,9 s). It is also noticeable that when
the fracture faces are not in contact, the upper half of the model translates vertically
without affecting the lower half (see t=1,6s, t=2,0s and t=2,6s). The main
difference between the simulations with and without in-situ stress is visible in
increment t = 1,4 s. In the case without in-situ stress, a positive displacement at the
top of the model results in an opening of the fracture. On the other hand, when
in-situ stresses exist, the before fracture opening the model expands to relieve the
initial stresses. This way, as seen in t=1,4 s the two element halves are still in

contact and therefore the fracture opening will be smaller.
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Figure 5.22 — Deformed mesh at the end of 8 increments. a) Time
increments represented. b) Model without in-situ stress. ¢) Model with in-situ

stress of 500 kPa

Figure 5.23 gives further insight about the contact behaviour. As expected,
while in compression, the fracture opening assumes a very small negative value,
which can be considered zero, i.e. the fracture faces are in contact. When the

fracture faces move apart, there is no stress transmission between the two halves of
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the model. Consequently, the vertical stress in the continuous region is reduced to
Zero.

As stated previously, the expansion due to the stress relief in the model with
initial stresses results in a smaller fracture opening (see Figure 5.23a). Therefore,
the contact and the compressive stresses in the model occur in longer periods, as

seen in Figure 5.23b.
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Figure 5.23 - Fracture opening (a) and vertical stress in the continuous

region (b)

Finally, it is visible in Figure 5.24 that the initial normal stress in the fracture
is correctly computed, as a value of 500 kPa is obtained in the first increment of
Figure 5.24b. It may also be stated that the penalty method correctly represents the
effect of compression when in contact and a stress-free situation when the fracture

opens.
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Figure 5.24 — Fracture opening vs Normal stress in the fracture for every
increment (grey circle points the first increment). a) Simulation without in-situ

stress. b) Simulation with in-situ stress

5.3.1.2. Horizontal load

General description of the simulation

This model shows how the implemented contact and friction models work. A
horizontal prescribed displacement is applied in the upper half of a single element
with one horizontal fracture. The boundary conditions are defined in a way that only
shear stress occur, and different initial stress conditions are defined to confirm the

effect that confinement has in shear strength.

Model geometry and mesh

The model has a single square element with dimensions 1,0 m x 1,0 m, as

seen in Figure 5.25. The fracture is horizontal at half-height of the element.

v
R P
> <l
0.5m
Ay »

Figure 5.25 — Geometry of the mesh and boundary conditions
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Material properties

The mechanical properties of the solid region and the fracture are defined in
Table 5.10. The fracture has a friction behaviour given by the Mohr Coulomb
model. A non-associated law is used, i.e. no dilatation occurs due to shear

deformations.

Table 5.10 — Mechanical properties

Parameter Value
Solid E (kPa) 109
Region v 0,3
K. (kPa) 0"
K (kPa) 107
Fracture

o' (°) 35

c' (kPa) 0

*#yalue in traction. In compression, a penalty factor is applied

Initial conditions

To assess the effect of the confinement stresses in the friction behaviour, six

distinct initial stresses are defined, as seen in Table 5.11.

Boundary and loading conditions

The defined boundary conditions (see Figure 5.25) fix the lower half of the
model in every direction, while the upper half is only able to translate horizontally.
After a first step for definition of initial stress, a horizontal displacement is
prescribed and subdivided in 20 increments. In the first three tests a positive
displacement is applied, while in the other three tests a negative value is used, as

seen in Table 5.11.



Table 5.11 — Prescribed horizontal displacement and

initial vertical stress

Initial vertical stress | Prescribed horizontal
(kPa) displacement (m)
Test 1 -1346,1 5x10
Test 2 -2692,3 5x10™
Test 3 -4038.,4 5x10™
Test 4 -673,1 -5x10
Test 5 -2019,2 -5x107™
Test 6 -3365.,3 -5x107™

Results
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In the deformed mesh presented in Figure 5.26 it is visible that only

translation between both parts of the model occurs. Figure 5.27 shows the resulting

shear stress in the fracture. As expected, the fracture behaves elastically initially

and when failure occurs it deforms at constant shear stress. It is also visible that the

value for which the failure is reached changes for each confinement stress.

Figure 5.26 — Deformed mesh
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Figure 5.27 — Horizontal displacement versus shear stress in the fracture

In Figure 5.28, the normal and shear stresses in the fracture are plotted, so is
the Mohr-Coulomb failure surface (in dashed lines). As only the shear stress varies
during the simulations, the stress paths are vertical. It is evident that failure occurs
at different shear values, depending on the normal stress, as stated by the

Mohr-Coulomb constitutive law.
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Figure 5.28 — Normal stress versus shear stress in the fracture

5.3.2.
Single element with inclined fracture

General description of the simulation

As stated by several authors (Jiao and Qiao, 2008; Das, 2013; Esterhuizen,
2014), the results of a uniaxial compression test of a sample with a single fracture
are strongly dependent on the fracture inclination. In order to simulate that effect, a

model with a single element and one inclined fracture is subjected to uniaxial
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compression so the uniaxial strength is obtained for different fracture inclinations
and compared with the analytical solution.

The analytical strength of a single fractured sample subjected to uniaxial
stress may be obtained by the Mohr-Coulomb equation, as presented by Das (2013).
The equation is given by

_ 2.c
" (1—-tang.cotB)sin2p

oy (5.2)

where c is the fracture cohesion, ¢ the friction angle and f the fracture angle with
the horizontal. This solution is only valid for values of the inclination angle between
@ and 90°, where it takes values of infinite. Therefore, it is assumed that the intact
rock strength is 20 MPa so the fracture influences the results in a range between 36°

and 84°. Moreover, the lowest strength is achieved for a fracture angle of /4 +

@/2.

Model geometry and mesh

The model has a single rectangular element with dimensions 0,1 m x 0,01 m,
as seen in Figure 5.29. A high height-width ratio is used in order to be sure that for
all the tested inclinations the fracture crosses the element in the vertical boundaries.
This way, different influence of the boundary conditions for different inclinations
is avoided. Although it is widely known that such ratios are not recommended, it is
considered that in this simple model it does not affect the results.

The fracture left extremity position is constant, while the right extremity
changes with the fracture inclination. Seven different inclinations are tested: 37°,

40°, 50°, 60°, 70°, 80° and 83°.

010m

CDlmI

»

>
001m

Figure 5.29 — Mesh and boundary conditions
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Material properties

The mechanical properties of the solid region and the fracture are defined in
Table 5.12. The fracture has a friction-cohesive behaviour given by the Mohr
Coulomb model. A non-associated law is used, i.e. no dilatation occurs due to shear

deformations.

Table 5.12 — Mechanical properties

Parameter Value

Solid E (kPa) 5x10°
Region v 0,25
K. (kPa) 0~
Ks (kPa) 108

Fracture

o) 30

¢ (kPa) 2000

*#yalue in traction. In compression, a penalty factor is applied

Boundary and loading conditions

As seen in Figure 5.29, the model is fixed in its bottom and a prescribed

displacement is applied at its top until failure occurs.

Results

Figure 5.30 shows that the obtained results match with the analytical solution.
As expected, the fracture inclination affects the uniaxial strength in a range between
36° and 84°. As the inclination increases from 36°, the strength reduces reaching
its bottom value at 60°, such as predicted by the Mohr-Coulomb model (/4 +
¢@/2 = 60°). Figure 5.31 presents the fracture stress paths (normal and shear
stresses) for the different inclinations. It is noticeable that failure occurs when the
Mohr-Coulomb surface is reached and that the values of normal and shear stress at
failure increase with a decrease of fracture inclination. This happens because lower

inclinations imply higher normal stresses and consequently higher shear strength.
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Figure 5.31 — Fracture stress paths for different fracture inclinations

5.3.3.
Multi-fractured medium

General description of the simulation

In this simulation, a sample with three intersecting fractures is subjected to a
uniaxial compression at its top until failure is reached. As there is no analytical
solution for this problem, the objective of this simulation is to assure that no fracture

point crosses the failure surface defined by the Mohr-Coulomb model.

Model geometry and mesh

The model’s dimensions are 15 m x 20 m and the mesh is regular with 15 and

20 elements in the horizontal and vertical directions, respectively, as seen in Figure
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5.32. Three fractures are positioned in the sample in a way that two intersections

occur.
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Figure 5.32 — Mesh and boundary conditions

Material properties

The mechanical properties of the solid region and the fractures are defined in
Table 5.13. The fractures have a friction-cohesive behaviour given by the Mohr
Coulomb model. A non-associated law is used, i.e. no dilatation occurs due to shear

deformations.

Table 5.13 — Mechanical properties

Parameter Value
Solid E (kPa) 10°
Region v 0,3
Kn (kPa) 0"
Ks (kPa) 10S
Fractures

o) 25

¢ (kPa) 0

**yalue in traction. In compression, a penalty factor is applied
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Boundary and loading conditions

As seen in Figure 5.32, the model is fixed in its bottom and a prescribed
displacement of 0,15 m separated in 40 increments is applied at its top. Each
increment size is defined by Abaqus automatic time incrementation algorithm,
which reduces the increment size when convergence is harder to achieve and

increases the increment size when few iterations are needed to converge.

Results

The simulation returned the expected behaviour of the model when subjected
to the uniaxial load. In the deformed meshes at the end of two increments present
in Figure 5.33 it is visible that relative movement between fracture faces occurred
in every fracture.

Along the model there is no noticeable superposition of faces, except in the
intersections (highlighted by grey dashed circumferences). This is an expected

limitation of the model, as explained in Chapter 3.6.1.

V|

\\\

d=0,0m d=0,045m d=0,15m

Figure 5.33 — Deformed mesh in different increments

Figure 5.34 shows the curve displacement-reaction at the top of the model.
Although the Mohr-Coulomb model has an elastic-perfectly plastic constitutive
behaviour, the whole model reacts with a stronger non-linearity due to the

geometric position of the fractures.
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Figure 5.34 — Prescribed displacement vs reaction at the top of the model

Figure 5.35 presents the stress state in every fracture integration point of the
model for each of the 3 fractures separately (see Figure 5.32 for each fracture
number). Right after the first increment (Figure 5.35a), it is noticeable that even
subjected to normal stress, all fractures are still in the elastic region. At an
intermediate increment (Figure 5.35b), the shear stresses acting in the fractures
increases. Shear stresses in fractures 1 and 2 take positive signs while fracture 3 has
mostly negative values, as expected, due to each fracture inclination. It is also
visible in Figure 5.35b that fracture 3 already has part of it in a failure situation.
Finally, in the last increment of the simulation Figure 5.35c¢ all the points in
fracture 3 are in failure. Given that fracture 3 crosses the model from one side to
the other, this corresponds to a generalized failure, as visible in Figure 5.34.

From the obtained results, it is noticeable that after reaching failure,
deformation occurs at constant stress, so it may be concluded that all the fractures

are modelling correctly the implemented contact-friction behaviour.
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Applications

A group of tests was defined in order to prove the applicability of the
developed tool. This chapter presents the characteristics of the models, as well as
the results, comparisons and discussion regarding the advantages and limitations of
the implemented code.

In the first part of the Chapter, modelling of laboratory situations is carried
out to study the intersections between hydraulic and natural fractures. Four research
works mentioned in the literature review (Chapter 2.2.2) are used as basis for the
simulation and the published laboratory results are compared with the numerical
modelling.

In the second part, a more complex situation is modelled, by considering
multiple and intersecting natural fractures in a synthetic model. A sensitivity
analysis is also performed in order to understand the effect that two parameters have
in the model behaviour.

Finally, a different application is tested. The percolation under a dam
foundation is modelled and a comparison with existing results in the literature is
made. Additionally, an analysis of the influence that fracture location and aperture

may have in the hydraulic behaviour of the foundation is carried out.

6.1.
Comparison with laboratory tests

6.1.1.
Blanton tests

General description of the simulation

As stated in the Literature Review (Chapter 2.2.2), Blanton (1982) performed
a group of laboratory tests, demonstrating the applicability of some analytical
formulations to predict what happens when a hydraulic fracture intersects a natural
fracture. The research work includes 11 laboratory tests in hydrostone where the

natural fracture orientation and the confining stresses vary, with the results shown
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in Figure 2.8. In this research, four different natural fracture angles of approach and
six different differential stresses are combined, in order to represent the 11
laboratorial tests.

As there is no allusion to conductivity parameters in the reference paper, the
hydrostone is considered to be impermeable, i.e., only displacements and fracture
pressures are computed.

A qualitative analysis of the results is made, by checking the type of

interaction that occurs between fractures and comparing it with the laboratory tests.

Model geometry and mesh

The same geometry is used for all simulations, with a 0,0305 m x 0,0305 m
square model divided in a 51x51 element grid. Figure 6.1 shows the mesh used in
the analyses with two different orientations for the natural fracture, 60° and 90°.
The small circular perforation of the laboratory specimens is represented by a small

initial fracture.

Material properties

The material properties are presented in Table 6.1 and Table 6.2. As the
samples were created in laboratory, the roughness is expected to be very low, so a
value of the initial hydraulic aperture of 1x107 is adequate. The fracture parameters
were not provided by Blanton (1982), so a friction coefficient of 36,9° and
cohesionless behaviour are assumed to be suitable. The tangential stiffness before
plastification, i.e., for very small relative displacements and high compression
stresses, takes the value 1x10'° kPa. A non-associated law is used, i.e. no dilatation

occurs due to shear deformations.

Initial conditions

The laboratory tests were made applying different combination of
confinement pressures so these are also taken into account in the numerical models,
by means of a geostatic step. The applied in-situ stresses are presented in Table 6.3.
Considering that in every numerical model the propagation is horizontal, the
maximum and minimum stresses are applied in the horizontal and vertical

directions, respectively.
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Figure 6.1 — Models used to simulate the different fracture orientations.

a) 30°. b) 45°. ¢) 60°. d) 90°

Table 6.1 — Hydraulic properties
Parameter All Models
Initial hydraulic
Y 1x10°"
Fractures aperture (m)
Fluid Viscosity (kPa.s) 10

*assumed value



Table 6.2 — Mechanical properties

Parameter All Models

E (kPa) 1x107

Porous
Y% 0,22

Region _

o: (kPa) 3100

K, (kPa) 0"
Natural K; (kPa) 1x10'%"
Fracture o' (°) 36,9

c' (kPa) 0"

*assumed values

*#yalue in traction. In compression, a penalty factor is applied

Table 6.3 — In-situ Stresses

Model Omax (kPa) | Omin (kPa)
4 12x10° 10x10°
7 19x10° 10x10°
8 20x10° 5x10°
9 20x10° 5x10°
11 20x10° 5x10°
12 18x10° 5x10°
13 16x10° 5x10°
14 16x10° 5x10°
20 14x10° 5x10°
21 14x10° 5x10°
22 10x10° 5x10°

Boundary and loading conditions
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The contact with the flatjacks is simulated by displacement fixities and the

fluid injection in fracture is defined by a prescribed constant volumetric flux of

8,19x10”7 m¥s inside the initial hydraulic fracture.

Once the surrounding material is impermeable, the third pressure activation

criterion (see Chapter 4.2.3) is used in the natural fracture. This means that when

the simulation starts, the natural fracture has its fracture pressure degrees of



156

freedom deactivated, so its deformations occur without the influence of the vacuum
created by the fracture fluid. Then, when the hydraulic fracture intersects the natural
fracture, the segments of the natural fracture with an aperture larger than 2x107 m

have the fracture pressure degrees of freedom activated.

Results

Overall, it may be stated that the numerical procedure provided very good
agreement with the laboratory tests. Figure 6.2 presents the intersection behaviour
observed in each of the 11 models plotted against the laboratory tests. All models
except number 8 predicted the intersection behaviour correctly. As expected, the
models with lower angles of approach and differential stresses predict opening,
while the model with a perpendicular intersection shows crossing. In all the other
simulations with intermediate values of angles and differential stresses, the

predicted behaviour is arrest.
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Figure 6.2 - Comparison of the numerical simulations with the

laboratory tests numbered according to Blanton (1982)

Figure 6.3 shows the deformed models and compares them with pictures of
the available laboratory tests. According to the test photos, the author used the same
sample to perform two tests, by rotating the applied confining stresses between
tests. Thus, the same sample provided two results for different differential stresses
and angles. For the sake of clearness, in some occasions the pictures are rotated in
order to match the directions used in the numerical models. Lines are also drawn to

highlight the hydraulic fracture paths in each laboratory test.
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From a more attentive analysis of Figure 6.3 it is noticeable that when opening
occurs (models 4, 7 and 22), only half of the pre-existing fracture opens. This is
mainly due to the compression that the hydraulic fracture induces in the closer half
of the pre-existing fracture. Contrarily, on the other half of the pre-existing fracture
tension occurs, leading to its opening. Despite the superposition with the other
direction’s test, it may be assumed by the picture taken that this occurred in the
tests. It should also be noted that when opening events occur the propagation length
on the opposite side of the pre-existing fracture tends to be smaller. This is easily
understood considering that the fluid is stored in the pre-existing fracture, reducing
the pressure inside the hydraulic fracture.

When arrest events occur (models 8,9, 11, 12, 13, 14 and 21) slight opening
may be spotted in the pre-existing fracture. However, the hydraulic fracture is not
capable of opening or crossing the pre-existing fracture, propagating instead to the
opposite direction. This was also observed by the author, who stated that the
opposite fracture wing grew to a greater length and no fluid flow occurred along
the pre-existing fracture (Blanton, 1982).

In model 20 crossing takes place and it is visible how the pre-existing fracture
almost does not influence the hydraulic fracture behaviour. This is mainly due to
the high differential stresses, which result in a high compressive stress in the pre-
existing fracture faces. Associated with the high angle of approach of 90° the
entrance of fluid in the pre-existing fracture is highly constrained.

Only one numerical simulation — number 8 — predicted a different intersection
type. The main reason for this difference may be related with other parameters that
also influence the intersection behaviour. Other researchers have shown that also
fracture friction (Hanson, Shaffer and Anderson, 1981), fracture length (Lamont
and Jessen, 1963) or viscosity of the injection fluid (Cheng, Jin, Y. Chen, et al.,
2014) also influence fracture interaction. Obviously, many other limitations of the
model may have led to this result, such as the negligence of dynamic or pore-
pressure effects, or even a less realistic computing of the stress at the crack tip due

to the use of the signed enrichment function.
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Figure 6.3 (cont.) — Comparison of deformed models with the
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Figure 6.3 (cont.) — Comparison of deformed models with the laboratory

tests (when available)

The output of fracture variables allows a better knowledge of the behaviour
of the existing fracture around the intersection. By plotting the relative shear (shear
stress divided by the shear strength) along the pre-existing fracture for model 22, as
seen in Figure 6.4, it is clear that the closer to the intersection, the higher is the
relative shear acting in the faces. In the first presented time increment (t = 0,06 s),
the high compression under the hydraulic fracture increases the shear strength,
therefore decreasing the relative shear. As intersection occurs (t = 0,07 s), the flow
enters the pre-existing fracture and a reduction of the horizontal fracture aperture
happens. This brings a rapid reduction of the effect of the hydraulic fracture in the
pre-existing fracture, i.e., a decrease of the compression in the region under the

hydraulic fracture that leads to an increase of the relative shear and a reduction of
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the tensile forces in the region above the hydraulic fracture that leads to a decrease

of the relative shear. As the fluid enters the pre-existing fracture (t = 0,09 s and

t=0,11s), the fracture faces lose contact and the shear strength is lost (relative

shear of 100%). Then, the fluid has more and more impact in separating and

pressurizing the fracture faces, continuing the opening event.

1

0.9

<
in

Natural Fracture Relative Length
=)
=

=)
w

0.2

0% 50% 100%

Relative Shear

t=0,06s

Matural Fracture Relative Length

1

0.9

©
w

°
f

o
o

°
i

o
»

0% 50% 100%

Relative Shear

t=0,07s

1

09

08

07

0.6

05

04

Natural Fracture Relative Length

03

0.2

0.1

0
0% 50% 100%

Relative Shear

t=0,09s

Natural Fracture Relative Length

1

035

0.8

07

0.6

0.5

0.4

03

0.2

01

0 :
0% 50%  100%
Relative shear

t=0,11s

Figure 6.4 — Relative shear stresses in the pre-existing fracture for model

22. Red dashed lines denote the extremities of the fracture represented in the

near figure. Orange line represents the level of the intersection.

A similar analysis, yet with different results, may be done to model 20 (see

Figure 6.5). Naturally, the region closer to the intersection is subjected to higher
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relative shears. Until the hydraulic fracture reaches the pre-existing fracture, the
relative shears are very low, as seen in the increment previous to the intersection
(t=0,07 s). As the compression in the fracture faces is high, the strength increases
and the transmission of shear stresses between the fracture faces generate tensile
stresses on the opposite side. Consequently, the tensile strength is reached on the
across the pre-existing fracture and the hydraulic fracture continues to propagate.
When the intersection occurs (t = 0,08 s), there is a sudden increase of the
relative shears, but only the closest points to the intersection reach the shear strength
and failure. The rest of the fracture keeps a compressive state, which does not allow
the penetration of fluid in the pre-existing fracture. Then, as the hydraulic fracture
moves away from the intersection (t = 0,09 s and t = 0,12 s), the displacements due
to hydraulic fracture tend to be similar in both sides of the pre-existing fracture,

reducing the shear stresses.
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near figure. Orange line represents the level of the intersection.

6.1.2.
Khoei tests

General description of the simulation

Khoei et al. (2015) performed hydraulic fracturing laboratory tests in two

naturally fractured nearly impermeable carbonate rock samples. Moreover, the

authors compared the laboratory tests with numerical simulations using the XFEM
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technique. In this section, the simulation of the two laboratory tests is performed
and compared with both the laboratory and numerical results of Khoei et al. (2015).

As referred by Khoei et al. (2015), the rock is considered to be impermeable,
i.e., only displacements and fracture pressures are computed. A qualitative analysis
of the results is made, by checking the type of interaction that occurs between

fractures and comparing it with the laboratory tests.

Model geometry and mesh

Two models are defined to match the laboratory specimens’ dimensions.
Figure 6.6 shows a schematic representation of the models and Figure 6.7 the
meshes used in the analyses. Table 6.4 indicates the dimensions of the models and

the coordinates of the initial notch and the natural fracture.
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Figure 6.6 — Schematic view of the geometry and boundary conditions of

hydraulic fracturing experimental tests
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Figure 6.7 — Meshes used in the simulations. a) Specimen 1. b) Specimen 2

Table 6.4 — Geometry and material properties of the two hydraulic

fracturing experiments

Width Height (x1,y1) (X2,y2) ¥o

(mm) (mm) (mm) (mm) (mm)
Specimen 1 111 45 (30,5:4) (55,4;42,16) 27,9
Specimen 2 110 54 (12,13;8,82) | (98,12:46,07) | 26,9

Material properties

The material properties are presented in Table 6.8 and Table 6.6. Some

parameters were not provided in the reference paper, so values based in

accumulated experience with rocks were assumed. It must be noted that the tensile

strength values provided in the reference are considered to be much higher than

acceptable values for rocks. Therefore, a value for the tensile strength was also

assumed in these simulations.
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Table 6.5 — Hydraulic properties

Parameter All Models
Initial hydraulic aperture (m) 5x107°
Fractures _
Fluid Viscosity (kPa.s) 106
*assumed value
Table 6.6 — Mechanical properties
Parameter Specimen 1 | Specimen 2
E (kPa) 36,5x10° 32,5x10°
Porous
% 0,25 0,25
Region - 7
o (kPa) 6000 6000
K, (kPa) 0~ 0~
Natural K; (kPa) 1x10% 1x10%
Fracture o' (°) 36,7 36,7
c' (kPa) 0 0

*assumed values

**value in traction. In compression, a penalty factor is applied

Boundary and loading conditions

The contact test apparatus is simulated by displacement fixities and the fluid
injection in fracture is defined by a prescribed constant pressure of 39300 kPa inside
the initial hydraulic fracture.

Once the surrounding material is impermeable and the confinement level is
low, i.e. there are no initial stresses applied in the model, the first pressure activation
criterion (see Chapter 4.2.3) is used in the natural fracture. This means that when
the simulation starts, the natural fracture has its fracture pressure degrees of
freedom deactivated, so its deformations occur without the influence of the vacuum
created by the fracture fluid. Then, when the hydraulic fracture intersects the natural
fracture, all the segments of the natural fracture have their fracture pressure degrees

of freedom activated.

Results
Figure 6.8 shows the crack trajectories obtained in the laboratory tests and

numerical simulations with XFEMHF and by Khoei et al. (2015). The numerical
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simulation trajectories obtained for both specimens are in very good agreement with
the laboratory trajectories. Effects that are not taken into account in the numerical
simulations, such as the heterogeneity of the material, may explain the slight
differences in the comparison with the laboratory tests. It is easily noticeable how
the presence of the natural fracture affects the hydraulic fracture trajectory, which
has tendency to curve so the junction between fractures occurs closer to

perpendicular.

——— XFEMHF Lab. Test (Khoei et al 2015) - --- Numerical (Khoei et al 2015)

a)

— XFEMHF = Lab. Test (Khoei et al 2015) - - - - Numerical (Khoei et al 2015}
b)

Figure 6.8 — Comparison of crack trajectory between the numerical
solution with XFEMHTF, laboratory test and numerical solution by Khoei et al.
(2015). a) Specimen 1. b) Specimen 2

Figure 6.9 presents the displacement fields in both numerical analyses,
XFEMHF and the one presented by Khoei ef al. (2015). As stated before, Khoei et
al. (2015) used the XFEM and a very similar formulation to perform the
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simulations. However, it must be noted that slight differences that exist between the
formulations and the implementations applied in each research work may explain
the differences in the numerical results. It is known that the tip enrichments are
different, and so are the criteria involved with propagation. Therefore, the
comparison between numerical tools is carried out more in a qualitative perspective
than quantitative. From that viewpoint, it is noticeable how the displacement fields
show similar tendencies.

The same qualitative analysis may be performed by comparing the aperture
and normal stress profiles along the natural fracture in three different phases of the
analysis, defined by the length of the hydraulic fracture Ly. Figure 6.10 and Figure
6.11 compare the results between research works. Despite slight differences in the
values, the shape and the development in time show a very good agreement between
simulations. In both specimen simulation is noticeable that as the hydraulic fracture
approaches the natural fracture, the latter tends to open at its mid-length, where the
hydraulic fracture is closer. Moreover, the contact stress in the region farer to the
contact increases, due to the displacements that occur in the hydraulic fracture.

Comparing the two specimens, the different natural fracture inclinations show
that, the more vertical is the natural fracture (specimen 1), the more symmetric is
the normal stress increase in its extremities. On the other hand, a lower angle of
approach (specimen 2) show that the compressive stresses in the lower part of the
natural fracture are much higher, while the variations in the upper part are almost
none.

Finally, Figure 6.12 presents the plots for two different time increments of the
maximum principal stress at the right side of the natural fracture, i.e. at the opposite
side of the hydraulic fracture. It is visible that the results obtained with XFEMHF
are much smoother than the ones obtained by Khoei ef al. (2015). However, the
same tendency is patent, showing that an increase of the maximum principal stress
occurs closer to the junction and at the natural fracture tips as the hydraulic fracture
approaches. This shows how the presence of a hydraulic fracture increases the

chances of propagation from the natural fracture, both from its tips or the junction.
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experiment 1

Displacement 4y r

XFEMHF Khoei et al.

Specimen 1 — Vertical displacements

Displacement # L
Y 002

XFEMHF Khoei et al.

Specimen 2 — Horizontal displacements
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XFEMHF Khoei et al.

Specimen 2 — Vertical displacements

experiment 2

Displacement #,

-0.025

XFEMHF Khoei et al.

0.025

Figure 6.9 — Comparison of displacement fields when junction occurs

between numerical solutions (the same colour scale is used in both simulations)
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Specimen 1 — Natural fracture aperture
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Figure 6.10 — Comparison of fracture aperture and normal stress along

the natural fracture between numerical solutions for specimen 1
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Specimen 2 — Natural fracture aperture
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Specimen 1 — Maximum principal stress G, at the right side of the natural fracture
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Figure 6.12 — Comparison between numerical solutions for specimen 1 of

maximum principal stress o1 at the right side of the natural fault

6.2.
Propagation of hydraulic fracture in multi-fractured medium

General description of the simulation

The simulations presented in Chapter 6.1 show how to use the developed
research in understanding the behaviour of the intersection between one hydraulic
fracture and one natural fracture. However, the implementation is generalized for
any number of fractures and fracture intersections. Therefore, it is relevant to go
further and apply the XFEMHF code in simulations where more fractures and
intersections occur.

To the knowledge of the author, no clear information on laboratory tests or
numerical simulations of hydraulic fractures propagating in a multi-fractured
porous medium exists. Therefore, this work proposes a synthetic model of
propagation in a multi-fractured medium.

The model’s geometry is defined and a sensibility analysis is performed by
changing two parameters, setting a combination of thirty different simulations to be
run. The changed parameters are the differential in-situ stress and the in-situ
fracture aperture. The sensibility of the created fracture network to each of the

varying parameters is analysed in the results.
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Additionally, a qualitative comparison is made with the conclusions presented
by Zhou and Xue (2011). In their research work, Zhou and Xue (2011) performed
hydraulic fracturing laboratory tests in cement blocks that were previously
subjected to heat and cooling, in order to form natural fractures inside the blocks.
By performing the injections at different differential stresses, the authors found that
these influence the fracture network patterns, as Figure 6.13 shows. Three types of
geometries were observed in the laboratory tests. The first is a vertical dominating
fracture with multiple branches, which was created at high difference stresses, with
the dominating fracture still propagating close to the preferred direction, i.e. the
direction of maximum stress. The second is a radial net-fracture geometry around
the wellbore, which occurs for low stress difference. The third is a partly vertical
fracture with random branches for intermediate values of stress difference. Figure
6.14 shows a plot of the results for each test against the differential in-situ stresses.
The results show that the higher the differential in-situ stresses, the less the natural

fractures affect the hydraulic fracture path.

Feadial randsm
met-fractures

a) b)

Figure 6.13 — Fracture patterns obtained in different tests. a) Dominating
fracture with multiple branches at large difference of horizontal stress. b)
Radial random net-fractures at low difference of horizontal stress (Zhou and

Xue, 2011)
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Figure 6.14 — The relation between fracture geometry and in-situ stress

contrast (Zhou and Xue, 2011)

Model geometry and mesh

All simulations use a 2,0 m x 1,5 m rectangular model divided in a 75x51
regular element grid. Figure 6.15 shows one initial hydraulic fracture and 9 natural
fractures that are placed in a way that two sets of natural fractures are represented
with inclinations of 81° (sub-vertical) and - 14° (sub-horizontal). The natural

fractures are positioned so 5 intersections occur.
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Figure 6.15 —Geometry of the model and boundary conditions.
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Material properties

Table 6.7 and Table 6.8 present the fixed parameters chosen for the materials.
Although assumed, it is judged that the parameters are within a range of
representing correctly a typical fractured rock medium. As for the fracture
mechanical behaviour, a non-associated law is used, i.e. no dilatation occurs due to

shear deformations.

Table 6.7 — Hydraulic properties

Parameter All Cases
Hydraulic
Porous .
conductivity: 101
Region

Fracture face

transversal
conductivity: 103
Fractures | ¢ = Ctop = Cbottom
(m/s.kPa™)
Fluid Viscosit
Y 10
(kPa.s)
Table 6.8 — Mechanical properties
Parameter All Cases
E (kPa) 1x10’
Porous
A% 0,22
Region
o (kPa) 1100
K, (kPa) 0"
Natural K (kPa) 103
Fractures 0' () 36,9
c' (kPa) 0

*#*yalue in traction. In compression, a penalty factor is applied

Variable properties

The sensibility analysis is performed by varying the in-situ hydraulic fracture

aperture and the in-situ stresses. The in-situ hydraulic fracture aperture varies
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within three values: 1x10°, 5x107, 5x10* m. The maximum and minimum value
of in-situ hydraulic fracture aperture, 5x10™*and 1x10 m, respectively, are thought
to be representative of limit values for fracture aperture. Those orders of magnitude
agree with the range of values studied by Witherspoon et al. (1980), who validated
the cubic law for use in fracture flow of rock samples subjected to in-situ stresses
up to 20 MPa with apertures between 2,5x10 and 4x10°° m.

A geostatic step is used to apply ten different combinations of initial stresses
with the values presented in Table 6.9. The maximum and minimum stresses are
applied in the horizontal and vertical directions, respectively. The maximum in-situ
stress is kept with a constant value of 5x10* kPa while the minimum in-situ stress
varies between 5x10° and 0,312x10°kPa. A dimensionless parameter Kj, is used to

indicate the relation between maximum and minimum in-situ stresses.

Table 6.9 — In-situ Stresses

g — O mi
Omax (kPa) | Omin (kPa) | Kp=—>T%
Omin
5x10° 5x10° 0
5x10° 4,545x10° 0,1
5x10° 2,5x10° 1
5x10° 2.0x10° 1,5
5x10° 1,428x10° 2.5
5x10° 1,0x10° 4
5x10° 0,769x10° 5,5
5x10° 0,625x10° 7
5x10° 0,454x10° 10
5x10° 0,312x10° 15

Boundary and loading conditions

Along the whole model border the displacements are fixed perpendicularly to
it, as seen in Figure 6.15. To allow the flow of fluid outside the model, the pressure
at the top and bottom borders is fixed.

The simulations are set to run one single step of 100 s with increment time
limited to a maximum of 2 s. Fluid injection in the hydraulic fracture is given by an

imposed fracture pressure that follows the ramp function Pr = 2000.¢t., as

presented in Figure 6.16.
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Figure 6.16 — Fluid Pressure applied at the hydraulic fracture mouth

Results

The results show that the implemented code is capable of simulating the
propagation of a hydraulic fracture in a multi-fractured medium. It may be stated
that the created fracture networks are highly dependent on the parameters that
varied. Figure 6.17 shows the deformed geometry and the pore pressure fields for
three calculations with very different in-situ stress relations. It is evident that as the
stress parameter Ky increases, the events of fracture opening are less likening to
occur and the hydraulic fracture tends to cross the natural fractures. For a low value
of Ki, opening occurs in the natural fractures and their tips propagate until reaching
other natural fractures.

The pore-pressure fields indicate that the pattern of pore-pressures is strongly
affected by the leak-off in the fractures. For higher values of Ki, higher pore-
pressures concentrate close to the hydraulic fracture. On the other hand, for lower
values of Ku, the higher-pressure regions are much more dependent on the natural

fractures position and depend on their communication.
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K= 0,1 Il Winit = 5X10'4
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K= 15 Il Winit = 1x106

Figure 6.17 — Deformed models and pore-pressure fields at t = 100 s
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In order to analyse the effect that the parameter variation has on the final
fracture network pattern, Figure 6.18 shows the fracture networks for every
computed simulation and highlights the propagated segments in blue. Different
intersection types showed in previous examples are observed, namely crossing and
opening. It is noticeable from all the deformed models that the natural fracture tips
also propagate when their fluid pressure increases. It is also easily visible how
higher differential stresses result in networks with more propagation segments. This
is explained by the fact that, with a constant maximum in-situ stress in between
simulations, a higher value of K is the result of a lower minimum in-situ stress,
which consequently increases the possibility of propagation events.

For every simulation with very low differential stress parameters Ky at or near
an isotropic state (Kn = 0 or Ky = 0,1), only opening events occur. As the parameter
K increases, crossing becomes more and more predominant and the fracture
network becomes more complex, increasing communication between natural
fractures.

Comparisons of results for equal in-situ stress states show that for a very low
in-situ hydraulic aperture (1x10° m) crossing events tend to happen more often.
This may be explained by the difficulty of the fluid to enter natural fractures. For
high and intermediate fracture apertures, 5x10* m and 5x10~ m, respectively, the

results are slightly similar.
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Figure 6.18 — Final fracture network (t = 100 s). Initial fractures in light

grey and propagated segments in blue

Figure 6.19 complements the analysis of the results by showing the relative
fracture aperture, i.e. the fracture aperture divided by the maximum fracture
aperture in each simulation, at the end of the treatment. In this figure, it is visible
that sub-horizontal fractures experience much larger apertures than the sub-vertical
ones. This is expected, as the minimum in-situ stress acts in the vertical direction.

For values of Ky lower than 1, the fracture apertures tend to increase
uniformly in the fracture network, indicating that the network grows in a more
random manner, depending on the natural fracture position and not so much on the
simulation parameters.

As the differential stress increases, the natural fractures aperture are much

higher on the sub-horizontal fractures and the fracture network tends to develop
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towards the preferred direction, i.e. the maximum in-situ-stress. For lower values

of in-situ fracture aperture, this effect is even more evident.

The effect of stress shadowing between fractures is also noticeable in Figure

6.19. When the fracture network develops in parallel fractures (e.g. the simulation

with Kn = 7 and winie = 5x107), both fractures show a decrease in their aperture due

to the compression effect between each other.
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Figure 6.19 — Relative fracture opening in the final fracture network
(t=100s).

Finally, a qualitative evaluation of the fracture pattern based in Figure 6.19 is

plotted in Figure 6.20. Although being a very subjective analysis, three types of

fracture network patterns are differentiated: random growth of fractures that is

dependent on the initial fracture network, a partial horizontal hydraulic fracture
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with multiple branches and a main horizontal hydraulic fracture with branches. It is
concluded that high values of differential in-situ stress result in propagation of the
hydraulic fracture in the preferred direction, while the in-situ fracture aperture may
influence the flow of injection fluid into the natural fractures. For lower values of
differential in-situ stress, the final fracture network tends to be similar to the initial
one.

Even considering that it is not the object of this chapter to simulate a real
laboratory test, the resulting plot of Figure 6.20 may be compared with the plot
presented by Zhou and Xue (2011) (see Figure 6.14). Though many aspects of the
simulation, such as rock parameters, boundary conditions and model geometry, are
not the same, a similar behaviour may be interpreted from both numerical and

laboratory results.
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Figure 6.20 — Description of the final fracture network pattern (t = 100 s).
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6.3.
Percolation through a dam foundation

General description of the simulation

The main objective of this simulation is to demonstrate that the implemented
code can be applied to simulate engineering problems other than intersection
between hydraulic and natural fractures. The explicit consideration of fractures and
their longitudinal and transversal flow is essential in many problems in rock
foundations or reservoir geomechanics. In this simulation, the percolation through
a fractured dam foundation is analysed in two sets of calculations.

In the first set, a foundation with one family of fractures equally spaced is
subjected to a variation of the parameters that influence fractures longitudinal and
transversal permeabilities. The models are based in the work by Segura and Carol
(2004), as seen in Figure 6.21, and results are compared to the ones presented by
the authors. The authors used and compared three types of interface elements — one,
two and three nodes in the transversal direction. In this chapter, the current
implementation is compared with the solutions of the models where the element

with three nodes in the transversal direction was used.

6 m

- —
as™ I
Fm am Zm

Figure 6.21 — Schematic model used by (Segura and Carol, 2004)

In the second set of calculations, a second family of fractures is introduced
and its influence is analysed. All the performed calculations consider only the
variables of the hydraulic part, i.e. the pore-pressures and the fracture fluid

pressures.
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Model geometry and mesh

Four different geometries — Dam0O, Dam1, Dam2, Dam3 — were defined to
perform the analyses and are presented in Figure 6.22. The first geometry (DamO)

is for the benchmark analysis of a homogeneous medium without fractures. Dam1,

which is used in the first set of calculations, has 29 fractures equally spaced v2 m
with inclination angle of 45°. For the second set of calculations, the geometries
Dam?2 and Dam3 are used. In the geometry Dam2 one fracture with inclination of
10° is introduced and in model Dam3 this fracture is replicated with a spacing of
1,5 m.

Both Dam0O and Daml have a 15 x 60 quadrilateral element regular mesh,
while Dam2 and Dam3 have more refined meshes with 30 x 120 elements.
Although a pre-study revealed that the coarser mesh provides results with sufficient
quality, the existence of more fractures demands the use of a finer mesh to avoid
the repetition of the same degree of freedom for different fractures in the same

element (explained in Chapter 4.2.8).

Material properties

The parameters chosen for both the porous region and the fractures are presented
from Table 6.10 to Table 6.12. Given the relation between hydraulic head 4 and
hydraulic pressure p
p=hXy, (6.1)
where y,, is the water’s volumetric weight, the flow rate and the transversal
permeability in Segura and Carol (2004) may be presented as
ke

q = kAR = y—Ap (6.2)
w

where the conductivity term k. /y,, (units [1/T]/ [F/LY)) may be defined to be
equal to the fracture face transversal conductivity as implemented in this research

(units [L/T]/[F/L?]).
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Figure 6.22 - Geometry and boundary conditions for the models:

a) Dam0. b) Daml. ¢) Dam2. d) Dam3
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Table 6.10 — Hydraulic properties

Parameter Dam0 Daml | Dam2 | Dam3

Hydraulic
Porous
conductivity: 107

Region
k = kx =ky (m/s)

Hydraulic
- See Table 6.12
aperture: Winit (m)

Fracture face See
transversal Table
Fractures |  conductivity: - 6.11 10°

C = Ctop = Cbottom

(m/s.kPa™)

Fluid Viscosity
(kPa.s)

10

In the first set of calculations, the fracture hydraulic parameters — fracture
hydraulic aperture and fracture face transversal conductivity — vary according to the
analyses performed by Segura and Carol (2004). Table 6.11 presents the values
used in every calculation.

In the second set of calculations, a second family of fractures is introduced.
The fracture properties vary so the influence of the second set of fractures may be
understood. To reduce the complexity of the analysis, only the hydraulic aperture
varies, while the fracture face transversal conductivity is kept constant with a value
of 10> m/s.kPa™'. This value was chosen sufficiently high so that the transversal
conductivity would not affect the results. The values of the hydraulic aperture for

each calculation is presented in Table 6.12.



Table 6.11 — Hydraulic properties of fractures in the first

set of calculations

Model Winit (M) ¢ (m/s.kPa)
Damla 1x10™ 107
Daml1b 1x 10 108
Damlc 1x 10* 10
Damld 5x107 10°
Damle 5x107 1078
Damlf 5x107 10”
Damlg 1x10” 107
Dam1h 1x107 10®
Damli 1x107 10”

Table 6.12 — Hydraulic properties of fractures in the

second set of calculations

Model Fracture family Winit (Im)

45° 1x10™*
Dam?2a

10° 1x 10

45° 1x 10
Dam?2b

10° 1x 1073

45° 1x10™
Dam3a

10° 1x10™*

45° 1x10™*
Dam3b

10° 1x103

45° 1x1073
Dam3c

10° 1x10™*

Boundary and loading conditions
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As seen in Figure 6.22, the boundary conditions were set equally to every

calculation. The effect of the water levels of 12 m and 6 m is introduced as imposed
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pressures in the boundaries of 120 kPa and 60 kPa, respectively. All calculations

are performed in a single increment, assuming that a permanent regime exists.

Results — Set 1 of Calculations — Comparison with Segura and Carol (2004)

The pore-pressure shadings for all the models with geometry Dam1 (1 set of
fractures) are presented in Figure 6.23, together with the values of fracture face
transversal conductivity and hydraulic aperture used in each calculation. It may be
easily observed that the pore-pressure field changes considerable between each
calculation.

For the calculations with the lowest fracture face transversal conductivity
(leftmost column — 1x10” m/s.kPa™!), the fractures work as barriers to the fluid
flow, retaining values of similar pressure in each space between fractures. With the
increase in the transversal conductivity (middle and rightmost columns — 1x1078 and
1x10° m/s kPa™), the percolation occurs with less loss of energy and this “barrier
effect” vanishes.

As for the longitudinal transmissibility, which is directly related with the
fracture aperture, it is noticeable that a lower conductivity (upper row — 1x10~ m)
results in a more distributed pressure field. Higher apertures (middle and lower rows
— 5x107 and 1x10™* m) facilitate the use of the fractures as canals for the fluid
percolation. This leads to a concentration of pressure gradients in the middle of the
model, which is the region where the fluid needs to leave the fractures and cross the

less permeable porous medium.

¢ (m/s.kPa™!)
1x107? 1x10% 1x107
E
=
2|,
— (e}
E|l =
B "o
5
=

Figure 6.23 — Resulting pore pressures in models Damla to Damli

(colour scale: red is 120 kPa, blue is 60 kPa)
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From the analysis of Figure 6.24, it may be observed how the volume of fluid
that enters (or leaves) the model decreases with the decrease of both longitudinal
and transversal conductivity, as expected. In the cases with high values of fracture
face transversal conductivity, the results almost match the ones presented by Segura
and Carol (2004). As the fracture transversal flow decreases, the relative error
between methods increases. The same assumptions may be made from observation
of Figure 6.25. The pore-pressures along section A-A match for the models with
high fracture face transversal conductivity, while a slight error is observable in the
cases with lower values.

-1.2E-06

Q (mf5)
(=2}

iy

TN
T

Jummmm
I

=

=10° =10% c=10° c=10° c=10% =10° =105 =108 c=10°

]

w=10 w=5x10 w=10>
Segura = XFEMHF

Figure 6.24 — Volumetric flow rate in models Dam1la to Dam1i

Although the comparison is made between different types of elements, it may
be stated that the results show good agreement. It must be highlighted that the
results from Segura and Carol (2004) were taken from printed plots, which may
explain some of the differences. Other reasons may be the type mesh used by the
authors and the way boundary conditions are applied, which were not detailed in

the paper.
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Figure 6.25 — Pore Pressure values in section A-A. a) Models Damla,
Dam1b and Damlc — winie=10* m. b) Models Damld, Damle and Damlf —

winit=5x10" m. ¢) Models Dam1g, Dam1h and Dam1i — wini¢=10"> m.

Results — Set 2 of Calculations

In the second set of calculations, more fractures are introduced and higher
fracture longitudinal permeabilities are used, so their effect is quantified. The values
of the volumetric flow rates are presented in Figure 6.26 for comparison between

models and the model DamQ (without fractures) is used as benchmark. As seen in
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Figure 6.27, the pore pressures field in model DamO shows a wide gradient of pore
pressures along the model, with volumetric fluxes of the same order of magnitude
of model Damla. As a new fracture is introduced with the same longitudinal
transmissibility (model Dam?2a), the volumetric fluxes increase as expected, as well
as the pore-pressure gradients are more concentrated. However, with the increase
of the longitudinal transmissibility of that single fracture (model Dam?2b) a change
of magnitude order of the volumetric flux is observed. It is also noticeable from
Figure 6.28 that the gradient in the porous mediums reduces drastically, as almost
all the pressure dissipates when the 10° fracture is reached. As expected, the
increase of longitudinal transmissibility of this fracture creates a “canal” for the
fluid to flow directly to the outer boundary.

The models Dam3a, Dam3b and Dam3c show that the hydraulic aperture and
fracture position have much more influence in the flow than the number of fractures
itself. As seen in Figure 6.29 together with Figure 6.26, the existing of a second set
of fractures with the same longitudinal transmissibility increases the volumetric
fluxes in a low level (model dam3a). However, an increase in the longitudinal
transmissibility, as in models Dam3b and Dam3c, considerably increases the
volumetric fluxes and changes the pore pressure gradients. The differences between
models Dam3b and Dam3c show that the geometrical position of each set of
fractures strongly influences the results, i.e. the increasing of longitudinal
transmissibility is much more effective in fractures that are in a position that create
paths for the fluid to flow easily. This is also supported if the fluxes and pore
pressure fields of models Dam2b and Dam3b are compared. Despite the increasing
in the volumetric fluxes, the presence of more fractures does not change the pore
pressure fields considerably, as the single fracture of model Dam2b is the only

fracture in model Dam3b that reaches directly the outer boundary of the model.
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Figure 6.26 — Volumetric flow rate in models Dam(0, Damla, Dam2a,
Dam2b, Dam3a, Dam3b and Dam 3¢

Figure 6.27 — Pore Pressure values for model Dam0 (colour scale: red is
120 kPa, blue is 60 kPa)

Dam2a (45° winit = 1x10# , 10° Winit = 1x10™%)

Dam2b (45° winit = 1x10"* , 10° winit = 1x10-3)

Figure 6.28 — Pore Pressure values for models Dam2a and Dam 2b

(colour scale: red is 120 kPa, blue is 60 kPa)
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Dam3c (45° winit = 1x10-3, 10° winit = 1x10%)

Figure 6.29 — Pore Pressure values for models Dam3a, Dam3b and

Dam3c (colour scale: red is 120 kPa, blue is 60 kPa)



7
Conclusions

This thesis presents a new finite element based on the eXtended Finite
Element Method, which is able to represent complex phenomena of fracture
intersection and crossing with frictional behaviour. In addition, the formulation
takes into account fully coupled behaviour with exchange of fluid between the
fracture and the surrounding medium. The use of a fracture face transversal
conductivity allows the eventual loss of pressure given by a filter cake when
leak-off occurs.

The main objective of this thesis was achieved, as the implemented code
provides very good predictions of the coupled fluid-rock fracture behaviour and is
capable of correctly simulating the interaction between hydraulic and natural
fractures. Overall, it may be stated that the implemented element can bring a
valuable contribution to a deeper understanding of the phenomena involving
propagation of hydraulic fractures in naturally fractured rocks. This knowledge is
fundamental to the correct modelling of hydraulic fracturing in unconventional
reservoirs.

During the development of each different step of the thesis, i.e. literature
review, formulation, implementation and application, many interesting

considerations were registered and can be compiled in the following items.

Literature Review

e The XFEM is a recent technique (~20 years) that is being applied by many
researchers that work with fracture mechanics. The growing interest in this
technique to simulate hydraulic fracturing is even more recent and noticeable
by the increasing number of research works published in the past few years.

e A few research works have focused on using XFEM to simulate intersection
between hydraulic and natural fractures and none was found that could show all

the capabilities proposed in this work.
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Only a reduced number of laboratory tests to simulate the interaction between
hydraulic and natural fracture were found. The results are usually interpreted
qualitatively, i.e. by describing the behaviour of fracture interaction in different
patterns, mainly crossing, arresting and opening.

Very simple analytical solutions to predict the behaviour of fracture interaction
exist. Those have shown to be accurate when compared with laboratory tests of

interaction between one hydraulic and one natural fracture.

Formulation and Implementation

[ ]

The presented element formulation may be generalized for any number of
discontinuities and intersections within the problem domain.

The XFEM discretization only requires the presence of enriched degrees of
freedom in the nodes surrounding the discontinuities, leading to a very reduced
influence in the global jacobian matrix size.

Independently of the fracture position, the degrees of freedom that store the
enrichment for the displacements and the pore pressure are coincident with the
original mesh. On the other hand, to take into account the variable of the fluid
pressure within the fracture, extra degrees of freedom must be considered

The implementation of the proposed XFEM element is complemented with two
algorithms. The first defines the geometric attributes of the discontinuities, such
as the values of the enrichment functions in the mesh nodes, position of the
pressure fracture degrees of freedom, fracture intersections and position of the
integration points in the integration sub-domains. The second algorithm
computes if propagation occurs based in user defined criterion and which
direction and length the propagating segment takes.

Abaqus is a powerful tool that allows the use of several user subroutines to be
integrated with the solver. The proposed element is completely implemented by
using two user subroutines: UEL and UEXTERNALDB.

Despite the high level of usability provided by Abaqus user subroutines, some
difficulties arise from the fact that only part of the process is accessible, i.e. the
Abaqus software architecture is fixed and cannot be adapted. The main
limitations are the limited number of degrees of freedom per node and the need

to activate all the degrees of freedom beforehand.



197

Application

[ ]

Comparisons of permanent regime models with interface elements
(Chapter 5.2) shows very good agreement in the problems of flow in fractured
medium.

The numerical procedure proves to be very efficient in predicting the results
obtained in laboratory tests (Chapter 6.1).

The example in Chapter 6.2 shows the capability of the proposed XFEM
element to simulate different fracture paths in complex fractured rocks. Not
only the hydraulic fracture but also the natural fractures tips were able to
propagate in any direction.

In this thesis the effect of some parameters on interaction between propagating
and natural fractures was also investigated. In agreement with the literature, the
computed examples indicate that differential in-situ stresses and angles of
approach play an essential role.

However, other parameters may completely change the fracture network
affected by the treatment, such as the initial hydraulic aperture, which is directly
related with fracture roughness.

The fracture face transversal conductivity coefficient ¢ represents a transversal
conductivity of the fracture for cases of percolation through fractured media. It
is visible that a very low fracture face transversal conductivity makes the
fracture play as a barrier to the fluid flow, while high values facilitate the
percolation into the fracture.

As any other method based in the FEM, the accuracy of results depends on mesh
quality. However, by using the XFEM technique the mesh geometry takes a less
important role, as seen in all the examples of this thesis, where regular meshes
are used.

It is evident that fractures may take unpredictable paths in fractured rocks.
Therefore, XFEM is a very effective tool on modelling fracture propagation in
fractured mediums, as there is no need to previously conform the mesh to the

fracture path.

Further research and implementation work

As stated widely in the literature, the tip behaviour has extreme influence on the

way a fracture propagates. Therefore, it is recommended that specific tip
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enrichment is implemented. Tip behaviour prediction may also be improved if
more realistic constitutive models are used, such as a cohesive one.

The propagation criterion has a strong influence on the path that the fracture
follows. Further studies should be addressed with the objective of clarifying
which criteria suit better to each kind of problem.

Considering that it was shown that fracture transversal and longitudinal
transmissibility strongly influence the behaviour of the hydraulic and natural
fractures, further numerical and laboratory research should focus on defining
different longitudinal transmissibility laws that consider effects such as fracture
roughness.

Modelling the presence of proppant within the injection fluid may bring further
knowledge about screen out in the intersections between hydraulic and natural
fractures.

Fractures are surfaces that develop in a three-dimensional space. Although some
simplification assumptions may be taken to obtain good results in plane strain
models, realistic predictions of field problems can only be achieved with 3D
models. It must be taken into account that the level of complexity strongly

increases when implementing geometric pre and post-processors in 3D.
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Annex A
Resulting space discretization

The weak formulation of the differential equations gives the following

equalities (repeated from equations presented in Chapter 3 of the main document):

f Se.a'dn — f de.m.pd + | [6u] (tr —pp.-nrg)dl’

— | éu.tdlr =0

It

f VépksVpd2 + | Splwlnrg dl"+j p. Vi dQ
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I'a dx I'a

It may be admitted that the test functions du, §p and Spp follow the same
discretization rules as the variables u, p and pg. It is also considered that the vector
of the nodal variables for each element node is given by u. Although generalized
for any number of enriched degrees of freedom, for the sake of clearness the
discretization is developed for one enriched displacement variable a and one
enriched pressure variable p.. Eq. (A.4) to Eq. (A.16) present the discretization of

the variables and their derivatives.

u = N34 + NSV a (A.4)
Su = NS§u + NE" Sa (A.5)
[ul = INg*1a + [Ng™]a = [N ]a (A.6)

£ = B + Bf"a (A7)
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8e = B3' 58U + BE" Sa (A.8)
Vi = B + BEVa (A9)

p = N3"p + NF"'p, (A.10)
8p = N3'6p + NE™ 6P, (A.11)
Vp = B;"“p + B, (A.12)
8Vp = B5*6p + BS™ 6D, (A.13)
pr = N3tp (A.14)

Spr = N3t46pr (A.15)

Vpr = BSthF (A.16)

Replacing the variables in Eq. (3.14), the following equation is obtained
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Assembling the test functions, it gives
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Considering that this condition is valid for any test function, the term within
the brackets must equal zero. Arranging the terms into a matrix form, the following

relation is obtained

[ by | L B oM B A19
where
Ky = j (BS*)TDBS' dn (A.20)
n
Koo = f (BSt4)TDBEM dp) (A21)
n
K, = f (BEm)TDBSH d) (A.22)
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Quc = f (BFH)TmNE™ d (A.25)
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Generalizing the equations and terms, it gives
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For the continuity in the porous region, the replacement of Egs. (A.4) to

(A.16) in Eq. (A.2) gives
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Assembling the test functions, it gives
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Arranging the terms into a matrix form, the following relation is obtained
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[QTI{T} + [H + L1]{P} — [L2]{F;} — g = 0 (A.57)
Hs; = f (B) kp BS d0 (A.58)
0

Llg = f (NS)' ¢ N§ ar (A.59)
r

d
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T
L2sp, = ) (NJ) ¢ Nt dr (A.60)
d

g = | (N3) quar (A.61)

Iw

For the continuity in the fracture region, the replacement of Egs. (A.4) to

(A.16) in Eq. (A.3) gives

d6pF opr
—ks .2h.—drl’ Opr. — ar
rd axl kfF axl + rd pF C(pF p)nrd
o, .
+ | 6pp.2h.( T ydr + f 8pg- i, ] dr
I'g X I'q

T _ —
= | (B3t tr, 6PF 2h)ksp VD tr, dI
g
— | (Nst) spp ¢ NS* pdr
T'a (A.62)
— | (Nt 5p7 ¢ Nem g dr
I'g

T —
+ | (N5) 6DF ¢ N5S prdl
g
T _ .
+ j (Nst) tr,6DF (2h)(VaL) ¢, dI
Iy
T .
+ | (Nst) 6pF [idnp, dI = 0
I'g
Assembling the test functions, it gives
= std\T =
6pp{ (Bst*) tr, (2h)ksp VPE tr, dI
Iq
T .
+ fr (N3E) tr, (2h)(Var) ¢, dr
d
T ..
+ | (Nst) [adng, dr
I'a (A.63)
- | (V) eng par
I'q
- f (Nst)" ¢ Nenr gz dr
I'q
+] (s " e Nt ﬁ;dr}
d

Arranging the terms into a matrix form, the following relation is obtained
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[Lpr LpFC] {%} + [prpp + Lpppp]{f);} = Qg;t (A64)
where
T —
Hyppp = f (B3:") try (20)kpq VP tr, dI (A.65)
g

Lyror = fr (Nst)" ¢ N2t ar (A.66)

d
Lypp = j (N,g;d)T c N5t dr (A.67)

I'q
Lyoe = | (N5t ¢ Nemr ar (A.68)

Ig

gnt = | (Nst) tr, (2h)(Vii) tr, dI

e (A.69)

+ g T ar
I'q

Generalizing the equations and terms, it gives

—[L2"{P} + [Hp + L3]{Pr} — qg = 0 (A.70)
where

L2sp, = | (N$)" ¢ NSt ar (A71)

rq
L3= [ (Nst4)' ¢ NSt ar (A72)

I'q

T

Hp= | (B3) tr, (2h)keq B3t tr, dI (A73)
g

Ty = ; (Nst) tr, (2n)(ViD) tr, dI
d

(A.74)
+ | (v32)" [inp, dr
I'q

The values related with velocity are defined as
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. Vut+va-
(Vi) = ————
2 1
=5 [(Biu + B @)t + (Biu + B a)7]
1 . . A.75
=5 [2.BSt% + BSY4(HY + H™)a] (A73)
= B3 + B'(H)a
(ﬂn - an—l) (C_ln - C_ln—l)
— Bstd— Bstd HYy— MM =
[ = &+ — i
= (Nt + N HY )
_ (N{:td‘ﬁ + N{ztd_H—a) — letd [[H]]C_l (A.76)
(an — an—1)
— Nstd Hl ———
Given that
Nstd"' — letd_ — letd (A.77)
Nﬁnr+ — Nzlqtd+H+ = NStaf+ (A.78)
Nﬁnr— — Nitd_H_ — Nljth_ (A.79)
+ =
Blitd — Blitd — Blitd (A.SO)
Bﬁnr'l' — Bitd+H+ — B"jth+ (A81)
Bew™ = pstd” - = pstdpy- (A.82)

Where H* and H™ represent the values of the enrichment function H in the
fracture top and bottom faces, respectively. In u,, — U,,_;, n represents the current
increment and n-/ the previous one.

Generalizing a number of degrees of freedom equal to ndof, it gives

ndof

vy = ). <B{f>(k"_A—f"‘1) (A.83)
k
ndof - —
=) [[NZ:]]W (A.84)
k

with (B¥) = B35t and (BZ) = BS'**(H,)



Annex B

Newton-Raphson Algorithm

The Jacobian of derivatives is given by

(a‘l’[u 0‘1’[” O'PM'
au 0P 0P,
0¥ O0¥p 0¥
I=130 7P oP;
0¥p, 0¥p, 0¥p,
90 0P 0Py |
- gnt afuﬁ'nt af[é'nt (Bl)
K+——— -Q+—7= =
ou P 0Py
1
_| ot
AtQ (H+1L) L
aqint aqint qint
——E M ——E  (Hp+Lp) — ==~
ou P 0P |
Multiplying the second and third lines for At, it gives
‘B‘I’U allu[u 8’1’[[]'
ou  oP 0P
| 9¥p 0¥p 0¥p
=130 P Py
0¥p, 0¥p, 0¥p,
| 9U - oP OFF_' , - (B.2)
O ofi" of"
K — - — =
* au e+ P 0Py
= QT At(H + L) At.L
int int int
i dqp ap
—At—= At| LT ——==| At(Hp +Lp) — At—=F
aT < an») (Hp + L) 0P |

Re-scaling the problem formulation for one standard u and one enriched

degree of freedom a, the derivatives for the mechanical equation are



) (3 0 T
afujnt _ ﬁ
10] 0 [N 1T (D @ — pripg)dl
— I'g
Ja
0 0
_ _ [O O]
10 INS™ 1" D [NS™1dl | T [0 T,
I'q
0 T
) —_ 0
ofi™ _ ) op 0
oP | 0 [N 1T (D @ — ppnpg)dl
p— T'a
0Da
) 0
afu}"t _ d
0P,  0pr INS™ 1" (Dr @ = penpg)dl’
I'q
0
_ _ 0
"= | ING"1" npg Nyttar( — {_Qapp}

={

I'g

The derivatives for the continuity equation in the fracture are

t N
a0 {%_u} {fl"d (sz;d)Ttrd (2h)(va) tp, dI + ffd (sz;d)T[[u]]nrd dl"}

da

T 1
(V) "t (2h) (B;fd E) tr, dI
I'q

1 1
f (N3t) e, (2h) (Bgfdw)—) tr, dI + f (N5t) N TH] —ny, dI
,d Y: y Y:

1

A_tSPfu
b )
ESPfa + A_tVPfa

0
aq%ﬂ.t a_ﬁ r .
a]I_DF = i {Ld (Nggd) tr, (2h)(Vu) tr, ar
0Dq
T .
+ | (N32) [ulng, dl"}z 0
Iq
aqgff d T
e —— NStA) t. (2h){(Vu) t,, dI
a]P)F am(rd( pF) ['d( )< u) Fd

+ f (N5t [adny, dr) =0
rq

Substituting the derivatives in the Jacobian, it gives
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(B.3)

(B.4)

(B.5)

(B.6)

(B.7)

(B.8)
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J
Kuu Kua _Qup _Quc 0
Kau Kog +Tq _Qap —Qac _Qapp
_ ¢ ) (B.9)
=| Qpu pa At(pr + Lpp) At(Hpc + ch) tLppy
Qu Qca At(Hgy + Lep)  At(Hee + Leo) At. Lep,
_SPfu - (SPfa + VPfa) At. Lpr At. LpFC At(HPFPF + LPFPF)

If both porous and fracture material constitutive behaviour are such that their
matrices K and 7 are symmetric, the Jacobian may be symmetric if the following
simplifications are considered:

e The lines relative to pore and fracture pressures (third, fourth and fifth lines)
are multiplied by -1
b SPfu =0
® (SPfa + VPfa) = Qppa = QapFT
The resulting Jacobian matrix is then given by
J
Kuu Kua _Qup _Quc 0
Kou Koo+ T, _Qap —Cac _Qapp
B.10
= [—Cpu ~Cpa _At(HPP + LPP) _At(Hpc + ch) —AL Lpp, ( )
~Qeu ~Qca —At(Hgp +Lep) —At(He + Lo) —AL Ly

0 _Qp):‘a —At. Lpr —At. Lppc _At(HPFPF + LPFPF)

Generalizing the terms, it gives

J=|-0" —At(H+L1) At. L2 (B.11)
—Q;" At.L2T —At. (Hp + L3)
Where the matrices are given by Egs. (A.34), (A.35), (A.58) to (A.60), (A.71)
to (A.73), and
T
Ts, =f [NE] De [N ]ar (B.12)
g

T
Qrpp, = fﬂ [[Nf]] nrq N3 d0 (B.13)



