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Introduction

Cancer is one of the major causes of mortality in developed
countries.[1] Breast cancer, in particular, is the most frequent in
postmenopausal women, and about 80% of breast cancers ex-
press hormone receptors that are responsive to the mitogenic
effects of estrogens.[2] In postmenopausal women, estrogens
are no longer synthesized in the ovaries, but other tissues such
as adipose and breast tissue have the ability to produce
them.[3] Thus, estrogen levels in breast tissue are maintained
nearly at the same level as in premenopausal women, suggest-
ing that estrogen production in or near the tumor can be de-
terminant for its progression. Aromatase is a cytochrome P450
(CYP19) enzyme that catalyzes the conversion of androstene-
dione and testosterone to the aromatic estrogenic steroids es-
trone and estradiol, respectively. As such, suppression of estro-
gen biosynthesis by a mechanism of aromatase inhibition rep-
resents an effective approach for the treatment of hormone-
sensitive breast cancer. The importance of this enzyme in
breast cancer development has led to intensive research
aiming for new compounds with the ability to inhibit aroma-
tase, ranging from androstenedione analogues to nonsteroidal
derivatives.[4]

Besides these molecules, natural polyphenolic compounds
have been recognized as aromatase inhibitors with moderate
to strong potency.[5] Flavonoids are the most abundant poly-
phenols in nature and share a common phenylchromanone
structure.[6] Other classes of phenolic compounds include cou-
marins, found in fruits and green tea, and stilbenes, like resver-
atrol, one of the main components of red wine. Oleuropein,
the major polyphenolic constituent of olive oil, is another

structurally different phenolic compound.[7] All these com-
pounds have demonstrated a host of biological activities, dis-
playing excellent antioxidant,[8, 9] antitumor,[10,11] antiviral,[12] an-
timicrobial,[13] and anti-atherogenic[14,15] properties.

The use of natural compounds as starting leads represents
an attractive strategy for the discovery of new breast cancer
drugs based on the aromatase inhibition mechanism. Several
examples have recently been documented: derivatization with
imidazole, triazole, and pyridinyl moieties markedly increased
the anti-aromatase potency of flavones and isoflavones
through coordination between the nitrogen-containing hetero-
cycle and the Fe2+ ion of the aromatase heme group.[16,17]

However, to fully understand the pharmaceutical and thera-
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Aromatase, an enzyme of the cytochrome P450 family, is a very
important pharmacological target, particularly for the treatment
of breast cancer. The anti-aromatase activity of a set of natural
polyphenolic compounds was evaluated in vitro. Strong aroma-
tase inhibitors including flavones, flavanones, resveratrol, and
oleuropein, with activities comparable to that of the reference
anti-aromatase drug aminoglutethimide, were identified. Through
the application of molecular modeling techniques based on grid-
independent descriptors and molecular interaction fields, the
major physicochemical features associated with inhibitory activi-

ty were disclosed, and a putative virtual active site of aromatase
was proposed. Docking of the inhibitors into a 3D homology
model structure of the enzyme defined a common binding mode
for the small molecules under investigation. The good correlation
between computational and biological results provides the first
rationalization of the anti-aromatase activity of polyphenolic
compounds. Moreover, the information generated in this ap-
proach should be further exploited for the design of new aroma-
tase inhibitors.
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peutic potential of these natural compounds in the treatment
of breast cancer, a deeper rational study of the physicochemi-
cal determinants of their aromatase binding is needed.

To this end, we used a combination of experimental and
theoretical approaches to correlate concentration–response
curves of in vitro aromatase inhibition with calculated align-
ment-independent three-dimensional structure descriptors.[18]

Based on these preliminary data, molecular interaction fields
(MIFs)[19] were translated into the main relevant non-bonded
interactions expected to occur in the process of enzyme–inhib-
itor recognition and binding, allowing us to obtain a represen-
tation of the putative active site. Finally, this virtual receptor
site was compared with the active site structure of a homology
model of the enzyme.[20] The good agreement between hydro-
phobic and hydrophilic portions of the 3D QSAR virtual recep-
tor site with the homology model prompted us to perform
semi-flexible docking at the binding cavity using the GLUE[21]

v 1.0 docking software. With this strategy we were able to
identify a common binding mode in all inhibitors tested and
propose structure–activity rules that might be extrapolated to
other types of compounds and used to optimize the activity of
existing derivatives.

Compounds

For the evaluation of the anti-aromatase potency by a bio-
chemical assay, we tested 12 flavones (Table 1), five flavanones
(Table 2), one anthocyanin and one anthocyanidin (Table 3),
four coumarins (Table 4), and trans-resveratrol and oleuropein
(Table 5). The first-generation aromatase inhibitor, aminoglute-
thimide (AG), was also tested and used as a reference com-
pound (Table 5).

Biochemical assays

The compounds in this study were tested for the ability to in-
hibit aromatase (CYP19), which performs the aromatization of
ring A of androgens into estrogens. Aromatase inhibition was
studied through an assay reported by Siiteri and Thompson[22]

by using human placental microsomes as the source of aroma-
tase.[23] Full concentration–response curves were obtained, al-
lowing the determination of the half-maximal inhibitory con-
centration (IC50). The concentration–response curves for the
most active compound 5,7,3’,4’-tetrahydroxyflavanone 14, fla-
vone 12, and AG, the reference inhibitor, are shown in
Figure 1. The IC50 values obtained are shown in Tables 1–5.

Results and Discussion

Biochemical evaluation

Several natural compounds, with scaffolds ranging from low to
high molecular weight and with various degrees of hydropho-
bicity, were considered in this study. Flavones inhibited aroma-
tase with a potency between 7.2 and 100 mm (Table 1). Several
structural variations such as hydroxylation and methoxylation
at C5, C7, C3’, C4’, and C5’ were considered in order to gener-

ate a high number of hypotheses about the spatial distribution
of hydrophilic, hydrogen bond donors and acceptors, and
small cavities within the active site of the enzyme. Most of
these molecules had stronger activity than the unsubstituted
flavone 12, confirming the potential of this type of inhibitor
for lead optimization.

Hydroxylation at C7 markedly increased the anti-aromatase
activity, as observed in flavones 1, 3, 5, and 6, which have
stronger activity than AG, the reference aromatase inhibitor
tested. These molecules inhibited aromatase with 8- to 9-fold
greater activity than the unsubstituted flavone 12. Compound

Figure 1. Concentration–response curves of compounds 14 (!) and 12 (*).
Aminoglutethimide (&) was tested as a reference aromatase inhibitor. Each
point represents the mean of three assays performed in triplicate (n =3),
and the vertical bars indicate standard error of the mean (SEM). The data
were analyzed by nonlinear regression using a sigmoidal concentration–re-
sponse curve with variable slope.

Table 1. Estimated binding energies (EBE) and aromatase inhibitory activ-
ities of flavones 1–12.

Compd R1 R2 R3 R4 R5 EBE
[kcalmol�1][a]

IC50 [mm][b]

1 OH OH H H H �16.5 8.9�0.1
2 OH OH H OH H �16.2 15�0.2
3 OH OH OH OH H �16.1 8.6�0.07
4 OH OH OH OCH3 H �15.6 27�0.7
5 OH OH OCH3 OH H �15.8 7.2�0.09
6 H OH H H H �16.2 8.2�0.1
7 H OH OH OH H �15.4 38�0.5
8 H OH OH OH OH �16.1 45�0.7
9 H H OH OH H �15.1 100�3.5
10 H H OCH3 OH H �16.0 73�1.6
11 H H OCH3 OCH3 H �15.8 42�0.8
12 H H H H H �16.2 67�1.0

[a] Binding energies were estimated on a model of the aromatase active
site using the GRID force field implemented in the GLUE[21] docking soft-
ware. [b] Results shown are the mean �SEM.
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6, with just a single hydroxy group at C7, was the least func-
tionalized flavone with potent aromatase inhibition activity.
Furthermore, comparing the activities of flavone 7 and flavone
9, hydroxylation at C7 provided a 3-fold increase in inhibitory
potency.

Simultaneous hydroxylation at C5 and C7 was also important
to the anti-aromatase activity, as observed with flavones 1, 3,
and 5. Comparison of the inhibitory potencies of compounds
3 and 5 (respectively 8.6 and 7.2 mm) with those of compounds
9 and 10 (respectively 100 and 73 mm), simultaneous hydroxyl-
ation at C5 and C7 appears to play an important role in aroma-
tase inhibition. Hydroxylation at C4’ is present in some of the
most active flavones, compounds 2, 3, and 5, and seems to
contribute, at least partially, to the anti-aromatase activity of
these molecules.

Flavanones lack the C2 unsaturation present in flavones,
which decreases the planarity at ring C and introduces new
stereocenters in the molecule, making it chiral. Conformational
analysis (described in more detail below in the Experimental
Section) confirms, however, that both global minimum-energy
conformations of flavone 12 and flavanone 17 are very well su-
perimposed, particularly at the 4-oxo group and at C5, C7, and
C4’ (Figure 2).

As expected, substituted flavanones had greater activity
than the nonfunctionalized flavanone 17. The effect of substi-
tutions is dependent on their positions (Table 2) and followed
a similar pattern to that observed with flavones. However,
compound 15 was less potent than flavone 5, which might be
the result of ring B rotation around the C2�C1’ axis due to the
transition from sp2 to sp3 geometry at C2, imposing a different
spatial disposition for the methoxy group at C3’ (Figure 2).

The anthocyanidin 18, cyanidin (Table 3), shares some struc-
tural similarities with the most potent flavone and flavanone
inhibitors tested, namely a similar scaffold and hydroxy groups
at C5, C7, C3’ and C4’. However, the anti-aromatase activity is
much lower (IC50 =72 mm). Two structural differences may ex-
plain this: the extended hydroxylations at positions C3 and

C5’, which agree with the decreased activity of compound 8
relative to the less hydroxylated compound 7, and the absence
of a 4-oxo acceptor group.

On the other hand, anthocyanin 19, malvidin-3-O-glucoside,
failed to show significant anti-aromatase activity in our assay
conditions (Table 3). This compound shares the 5,7,4’-trihy-
droxy and 3’-methoxy groups found in the strongest flavone
inhibitor tested, 5, but a glucose moiety at C3 might impose a
different alignment at the aromatase active site. In contrast,
oleuropein 25, a large glycosylated molecule, shows surprising-
ly strong anti-aromatase activity (Table 5). Unlike malvidin-3-O-
glucoside 19, oleuropein 25 is a highly flexible molecule and
may therefore align several hydrogen bond donor and accept-
or groups in favorable positions on the active site of aroma-
tase.

The coumarins studied showed greatly decreased anti-aro-
matase activity (Table 4). Low molecular volumes and simple
scaffolds may be responsible for their poor interaction with
the aromatase active site.

Although not equipped with the flavone phenylchromanone
scaffold, trans-resveratrol 24 (Table 5) has a simple hydropho-
bic skeleton with two aromatic rings connected by an ethylene
bridge, with hydroxy groups at C3, C5, and C4’, positions anal-
ogous to C5, C7, and C4’ of the flavonoid inhibitors tested. In-

Figure 2. Superimposition of the global minimum-energy conformation
found for flavone 12 and flavanone 17 using the Merck molecular force field
(MMFF)[34] and a water-generalized Born equation/surface area (GB/SA)[35]

continuum solvation. Distances separating equivalent C2, C3’, and C5’ are
displayed. The RMSD of both structures is equal to 0.35 K.

Table 2. Estimated binding energies (EBE) and aromatase inhibitory activ-
ities of flavanones 13–17.

Compd R1 R2 R3 R4 EBE [kcalmol�1][a] IC50 [mm][b]

13 OH OH H H �16.1 10�0.1
14 OH OH OH OH �17.3 5.3�0.06
15 OH OH OCH3 OH �15.9 25�0.4
16 H OH H H �16.9 10�0.1
17 H H H H �16.5 32�0.3

[a] Binding energies were estimated on a model of the aromatase active
site using the GRID force field implemented in the GLUE[21] docking soft-
ware. [b] Results shown are the mean �SEM.

Table 3. Estimated binding energies (EBE) and aromatase inhibitory activ-
ities of cyanidin 18 and malvidin-3-O-glucoside 19.

Compd R1 R2 R3 EBE [kcalmol�1][a] IC50 [mm][b]

18 OH OH OH �14.8 72�0.7
19 OGlc OCH3 OCH3 �11.6 299�3.4

[a] Binding energies were estimated on a model of the aromatase active
site using the GRID force field implemented in the GLUE[21] docking soft-
ware. [b] Results shown are the mean �SEM.
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terestingly, trans-resveratrol is a good aromatase inhibitor
(IC50 =12.8 mm) with potency similar to that of the related fla-
vone 2. This suggests that the lack of the 1-oxa and 4-oxo
functionalities of the flavone scaffold is well balanced by the
three hydrogen bond donor/acceptor groups with a good spa-
tial disposition present in trans-resveratrol 24.

3D QSAR with GRIND descriptors

The three-dimensional quantitative structure–activity relation-
ships (3D QSAR) between the anti-aromatase activity of the fla-
vones in this study and their 3D properties were analyzed
using grid-independent descriptors (GRIND).[18] The bioactive
conformation of the flavones on the active site of aromatase is
unknown. Therefore, the minimum-energy conformation, ob-
tained by a conformational search described in detail in the Ex-
perimental Section, was chosen as representative. Although
the quality of the model is critically dependent on the 3D con-
formation chosen, the extended aromatic conjugation makes
these molecules rigid and therefore less prone to conforma-
tional changes.

GRIND descriptors are alignment-independent descriptors
that represent important non-bonding interactions in the rec-
ognition and binding of the active site of a macromolecular
target. A two-step procedure, described in detail in the Experi-
mental Section, allowed the calculation of these descriptors
from molecular interaction fields (MIFs)[19] calculated with three
chemical probes: DRY, O, and N1. These probes report the in-
teraction between the molecules under study and a hydropho-
bic group, a hydrogen bond acceptor, and a hydrogen bond
donor group, respectively. The MIFs chosen represent impor-
tant types of interactions expected to guide the binding of fla-
vones to the active site of aromatase. Besides chemical com-
plementarity, good shape fit between the ligand and the pro-
tein is essential to binding. Therefore, the shape probe (TIP)[24]

was used to search for highly convex regions of the molecules.
These regions interact most with the binding cavity. Therefore,
10 correlograms were obtained: four autocorrelograms (DRY–
DRY, O–O, N1–N1, and TIP–TIP) and six cross-correlograms
(DRY–O, DRY–N1, DRY–TIP, O–N1, O–TIP, and N1–TIP). Multivari-
ate analysis with partial least-squares regression (PLS) was
used to correlate the calculated descriptors with the activity,
and the quality of the model was evaluated by the predictive
correlation coefficient (q2), obtained by leave-one-out (LOO)
cross-validation or by a 3 random groups (3RG) procedure.

3D QSAR studies usually require the calculation of hundreds
of descriptors, most of them not correlated with the activity.
Therefore, the fractional factorial design (FFD),[25] a variable se-
lection procedure implemented in ALMOND[21] v 3.3, was per-
formed, excluding variables that increase the standard devia-
tion of errors of prediction (SDEP). Variables decreasing the
SDEP or those with an unclear effect were retained.

Optimal predictive ability for the anti-aromatase 3D QSAR
model appears with a model dimensionality of three latent var-
iables (q2

LOO =0.85 and q2
3RG =0.53) when it is able to explain

98% of the anti-aromatase activity variance (r2 =0.98). The re-
siduals are shown in Table 6, and a plot of the predicted activi-

Table 4. Estimated binding energies (EBE) and aromatase inhibitory activ-
ities of coumarins 20–23.

Compd R1 R2 EBE [kcalmol�1][a] IC50 [mm]

20 OH OH �11.4 NO[b]

21 OH OCH3 �11.9 >640
22 OCH3 OH �12.7 >640
23 OCH3 OCH3 �12.9 >640

[a] Binding energies were estimated on a model of the aromatase active
site using the GRID force field implemented in the GLUE[21] docking soft-
ware. [b] Inhibition was not observed at concentrations �640 mm.

Table 5. Estimated binding energies (EBE) and aromatase inhibitory activ-
ities of trans-resveratrol (24), oleuropein (25) and dl-aminoglutethimide
(AG).

Compd EBE [kcalmol�1][a] IC50 [mm][b]

24 �13.0 12.8�0.2
25 �16.5 27�2.3
AG ND[c] 10�0.09

[a] Binding energies were estimated on a model of the aromatase active
site using the GRID force field implemented in the GLUE[21] docking soft-
ware. [b] Results shown are the mean �SEM. [c] Not determined.

Table 6. LOO and 3RG cross-validation of the PLS 3D QSAR regression
model.

Compd pIC50exptl
[a] pIC50pred (LOO)[b] d (LOO)[d] pIC50pred (3RG)[c] d (3RG)[e]

1 5.05 5.10 �0.05 4.91 0.14
2 4.83 5.01 �0.18 4.94 �0.11
3 5.07 4.84 0.23 4.77 0.30
4 4.56 4.50 0.06 4.53 0.03
5 5.14 4.93 0.21 4.84 0.30
6 5.09 4.85 0.24 4.70 0.39
7 4.42 4.57 �0.15 4.62 �0.20
8 4.35 4.50 -0.15 4.64 �0.29
9 4.00 4.12 �0.12 4.24 �0.24
10 4.14 4.32 �0.18 4.40 �0.26
11 4.38 4.44 �0.06 4.46 �0.08
12 4.17 4.19 �0.02 4.33 �0.16

[a] pIC50 determined experimentally. [b] pIC50 predicted by leave-one-out
(LOO) cross-validation. [c] pIC50 predicted by 3 random groups (3RG)
cross-validation. [d] Residuals (pIC50exptl�pIC50pred) from LOO cross-valida-
tion. [e] Residuals (pIC50exptl�pIC50pred) from 3RG cross-validation.
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ty (LOO) versus the experimental activity is represented in
Figure 3. All compounds were predicted with good confidence.

Further understanding of the PLS model was pursued using
the PLS coefficients of the variables in study. Variables with
high PLS coefficients are important for the biological activity
fitting, whereas those with low
coefficients are less important.
Positive coefficients have a
direct impact on the biological
activity (that is, the greater the
interaction energy, the stronger
the inhibitor), whereas negative
coefficients have an inverse
impact. The PLS coefficients are
plotted in Figure 4, and the
most influential variables are in-
dicated with an arrow. Interest-
ingly, only a few variables have
coefficients of high absolute
value and therefore have critical
importance to the model fitting.
These arise from the O–O, O–N1,
and O–TIP correlograms (direct

impact) and the N1–N1, DRY–O, O–N1, and N1–TIP correlo-
grams (inverse impact), and are interpreted in Table 7.

Virtual receptor site derivation

Because GRIND variables are the energy product of MIF pairs
of grid points, tracing back the original grid nodes around the
molecules under study gives information about essential phar-
macophoric groups. Maximum auto and cross-covariance
(MACC2)[18] energy products and grid-filtered MIFs are shown
in Figure 5 for correlograms O–O, O–N1, and O–TIP obtained
with the most active flavone 5 and flavone 12, a weak inhibi-
tor. The three most relevant variables with direct impact on
biological activity (OO-9, ON-43, and OT-14) are indicated with
an arrow in the MACC2 profile, and the pairs of points con-
nected by a line in the filtered MIFs. As expected, these most
relevant variables have higher values for the potent inhibitor,
the 5,7,4’-trihydroxy-3’-methoxyflavone 5, and lower values or
even none for flavone 12. This is explained by the lack of hy-
drogen bond donors and protruding groups in compound 12.
Contrarily, appropriate substitutions in compound 5 optimally

Figure 3. Plot of the predicted versus experimental pIC50 from the optimal
PLS model with three latent variables (q2

LOO =0.85).

Figure 4. PLS coefficients plot of the GRIND variables used in the model. Different correlograms are separated by
dotted lines and the pairs of probes are defined at the bottom. The most relevant variables are indicated by the
variable number with an arrow.

Table 7. Relevant variables with high impact on the GRIND PLS model with three latent variables.

Probe
pair

Variable
number

Impact Coeff Interpretation[a]

O–O OO-9 Direct 0.25 Interaction of the groups at C5 and C7 (ring A) with the probe O

N1–N1 NN-38 Inverse �0.14 Interaction of the 4-oxo group (ring C) and the group at C4’ (ring B) with the probe N1

DRY–O DO-8 Inverse �0.19 Interaction of the group at C3’ (ring B) with the probe O and hydrophobic properties of ring C

O–N1 ON-43 Direct 0.20 Interaction of the group at C7 (ring A) with the probe O and the group at C4’ (ring B) with the probe N1

O–N1 ON-35 Inverse �0.20 Interaction of the group at C3’ and C4’ (ring B) with the probe O and the 4-oxo group (ring C) with the probe N1

O–TIP OT-14 Direct 0.24 Interaction of the group at C4’ (ring B) with the probe O and shape of the group at C3’ (ring B)

N1–TIP NT-43 Inverse �0.17 Interaction of the group at C4’ (ring B) with the probe N1 and shape of ring A

[a] Ring identification and carbon numbering are defined in Table 1.
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place chemical functions that are able to increase the interac-
tion energy products and therefore these are recognized by
the model as important structural features.

On the other hand, variables with a high negative impact on
the biological activity are increased for the weaker inhibitors
found (for example, molecules 9 and 10). These refer mostly to
pairs of points between ring B (interaction of hydrogen bond
donors/acceptors with groups at positions C3’ and C4’) and
ring C (Table 7), which suggests that in the absence of hydrox-
ylations on ring A (positions C5 and C7), the structure–activity
relationships of ring B are different, favoring more hydrophobic
groups (IC50 : 9>10>11).

GRID probes use the GRID force field to calculate the inter-
action energy, which is the sum of several binding contribu-
tions (EGRID = ELJ +EEL +EHB +Eentropy), namely van der Waals inter-
actions (ELJ) given by the Lennard–Jones potential, electrostatic
interactions (EEL) given by the coulomb potential, and hydro-
gen bond interactions given by a distance-, angle-, and
charge-dependent function (EHB). The entropy decrease due to
the freezing of degrees of freedom during the binding to the
receptor is also considered with an entropic energy function
(Eentropy). Therefore, GRIND descriptors are based on the idea of
a virtual receptor site with which the inhibitors interact. When
the three selected variables with direct impact on the biologi-
cal activity (OO-9, ON-43, and OT-14) were applied to the most
active flavone 5, a virtual receptor site was obtained (Figure 6).

Two hydrogen bond acceptor regions are expected to be lo-
cated in the vicinity of C5 and C7 of the flavone ring A. Hydro-
gen bonding with these hydroxy groups explains the increased
activities of flavones 1, 3, and 5. Position C4’ on ring B is ex-
pected to lie close to a hydrogen bond donor/acceptor region.
Furthermore, favorable steric and van der Waals interactions
(good shape complementarity at the active site cavity) be-
tween the substitution at C3’ (ring B) and the enzyme are also
responsible for an increase in activity. In this virtual receptor
model, hydrophobicity is important because of the apolar
nature of the flavonoid scaffold, and one hydrogen bond
donor region was also considered, close to the 4-oxo group.

Comparison with an aromatase homology model

Knowledge of the 3D structure of a target protein is important
to understand its mechanism of action and inhibition. Unique
information can be extracted from the atomic detail of the
binding site and used in the identification of key interactions
between the protein and the ligand.

Several cytochrome P450 enzymes have already been crys-
tallized. Despite the low sequence identity (10–30%) between
members of different P450 families, they all share the same
overall topology and secondary structure elements.[26] Further-
more, the internal heme binding pocket cavity shows a high
percentage of sequence identity. Homology models have

Figure 5. MACC2 interaction energy product and graphical representation of the three most relevant GRIND variables with direct impact obtained for the
most active flavone, 5,7,4’-trihydroxy-3’-methoxyflavone (compound 5, left), and flavone 12 (right), a moderate aromatase inhibitor. Arrows point to the most
important variables OO-9, ON-43, and OT-14 in the MACC2 correlograms, and respectively correspond to the pairs of grid nodes O–O, O–N1, and O–TIP linked
in the filtered MIFs shown. Molecules are shown (O, red; C, gray; H, white) at the minimum-energy conformation. The filtered MIFs are shown in colored con-
tour (O probe, red; N1 probe, blue; shape probe, green).
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therefore been proposed for a variety of cytochrome P450
binding sites, including aromatase, based on the known struc-
tures. One of these models was proposed by Favia et al.[20]

(PDB code 1TQA from the theoretical model section) using the
human cytochrome P450 2C9 as template.[27] This model was
used in the current study to predict possible binding modes
for the compounds under evaluation by using MIFs calculated
within the active site with appropriate probes, and the results
obtained were compared with the 3D QSAR virtual receptor

site. DRY (hydrophobic) and OH (aromatic hydroxy group)
probes were initially computed. As expected, the active site
cavity of the aromatase model is extremely hydrophobic
owing to a large number of residues with apolar side chains,
such as Leu120, Ile133, Phe134, Leu227, Ile305, Val373,
Met374, and Leu477, shown in Figure 7. The probe DRY inter-
acts with these residues, defining a hydrophobic contour rep-
resented in Figure 7 that is large enough to accommodate the
inhibitors in study and place them close to the heme group,
thus competing with the substrate for the active site of the
enzyme. The OH probe accounts for hydrophilic portions of
the active site that are prone to form hydrogen bonds with
the ligands. This probe reveals several hydrophilic regions in
the active site of aromatase, three of which contour the hydro-
phobic plane obtained with the DRY probe with a spatial dis-
position similar to the 3D QSAR model previously described
(Figure 7). Contributions to these hydrophilic regions arise
from backbone peptide bonds: the Ser118 amide nitrogen
atom and the Phe116 and Met374 carbonyl oxygen atoms
(zone 1); the Tyr244 hydroxy group, the Asp222 carboxylate,
and the Ala226 carbonyl oxygen atom (zone 2); and finally, the
Thr310 hydroxy group, the Ile305 and the Ala306 carbonyl
oxygen atoms, and the heme iron (zone 3).

Docking calculations

The similarities between the 3D QSAR virtual receptor site and
the hydrophobic/hydrophilic regions inside the active site
prompted us to search for possible binding modes for the aro-
matase inhibitors studied. GLUE[21] is a docking software that
uses the GRID MIFs to generate binding poses for the ligands,
and the GRID force field to calculate the respective binding
energy. The aromatase binding cavity was initially explored
with eight GRID probes that represent the most important
non-bonded binding interactions: H2O recognizes hydrophilic

Figure 6. Virtual receptor site obtained when the most relevant descriptors
with direct impact on the biological activity are coded into pharmacophoric
regions around the strongest flavone tested, 5. Two hydrogen bond accept-
or regions (HBA-1 and HBA-2), a mixed hydrogen bond donor/acceptor
region (HBD-HBA) and one cavity edge (TIP) were found. One additional
large hydrophobic region (DRY) is responsible for the anchor of the flavone
scaffold, and one hydrogen bond donor (HBD) stabilizes the binding to the
active site through hydrogen bonding with the 4-oxo group. The flavone is
shown (O, black; C, gray; H, white) at the minimum-energy conformation.
The pharmacophoric regions are linked by an arrow showing the GRIND var-
iable number.

Figure 7. MIF isosurfaces obtained with the probe DRY (left) and OH (right) on the homology model of the aromatase active site.[20] The protein is shown in
ribbons with the residues responsible for the interactions labeled with residue name and number; the heme group appears at the bottom (C, cyan; O, red; N,
blue; S, yellow; Fe, green). The DRY (hydrophobic) MIF is represented in brown at an energy level of �0.4 kcalmol�1, and the OH (aromatic hydroxy group)
MIF is represented in blue at an energy level of �7.0 kcalmol�1. The three hydrophilic zones are numbered 1–3.
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regions and evaluates competition with water molecules; DRY
recognizes hydrophobic regions; H evaluates protein shape;
N1 hydrogen bond donor to evaluate hydrogen bond acceptor
groups; O hydrogen bond acceptor to evaluate hydrogen
bond donor groups; OD partially charged carboxylate group to
evaluate positively charged regions; N+ positively charged ni-
trogen to evaluate negatively charged regions; OH donor/ac-
ceptor probe to evaluate mixed groups (see Experimental Sec-
tion for further details). The MIFs local energy minima calculat-
ed with the probes DRY, N1, O, OD, N+ , and OH represent favor-
able interaction points between the probes and the protein
and correspond to pharmacophoric locations where similar
groups of a ligand might be placed. A set of these site points
was recorded for each probe and together combined in a
large number of pharmacophoric quadruplets. The large
number of possible pharmacophoric alignments in the binding
site was then confronted with the inhibitors under study, and
only similar pharmacophoric quadruplets found in the mole-
cules were accepted. The conformational flexibility of the li-
gands was taken into account as described in the Experimental
Section.

The estimated binding energy (EBE) of each best pose in the
active site is shown in Tables 1–5. These results show that the
docking program was able to discriminate between active and
inactive compounds with good qualitative correlation between
EBE and experimental activity, scoring coumarins 20, 21, 22,
23, and malvidin-3-O-glucoside 19, weak aromatase inhibitors,
with less-favorable binding energies.

Best-docked poses (that is, minimal EBE found) were further
analyzed. Active site bound conformations found for flavone 5
(Figure 8), malvidin-3-O-glucoside 19 (Supporting Information
figure 1), oleuropein 25 (Figure 9), coumarin 20 (Supporting In-

formation figure 2), and trans-resveratrol 24 (Figure 9) are rep-
resented.

The most active flavone 5 fits the active site cavity with the
apolar scaffold in the hydrophobic core (Figure 8, left side).
This apolar region extends across the whole skeleton of the
molecule and is relatively planar. A bulky residue (Phe134)
close to ring B of the flavone imposes planarity for this type of
aromatase inhibitor (Figure 8, right side). In agreement with
the virtual receptor site, the three hydrophilic zones are occu-
pied by the 4-oxo and hydroxy groups. The C4’ hydroxy group
lies close to the hydrophilic zone 3 on the vicinity of the heme
group, establishing a hydrogen bond with the hydroxy group
of Thr310. The 4-oxo and the C5 hydroxy functions are located
close to zone 1. The C5 hydroxy accepts a hydrogen bond
from the amide N atom of Ser118, and the C7 hydroxy group
lies close to zone 2, hydrogen bonding Ala226. Also consistent
with the 3D QSAR model, the presence of a C3’ methoxy
group allows better shape complementary between the flavo-
noid and Val373, filling a small hydrophobic cavity. Other fla-
vones and flavanones share similar docking conformations.
Particularly interesting is the anti-aromatase activity (IC50 =

8.2 mm) of 7-hydroxyflavone 6, the least functionalized strong
inhibitor. Despite having only one hydroxy group, this flavone
places one hydrogen bond acceptor, the 4-oxo group, in one
hydrophilic region and one hydrogen bond donor/acceptor,
the C7 OH group, in another, and therefore retains most of the
aromatase inhibitory potency.

Cyanidin 18 and malvidin-3-O-glucoside 19 form quinoidal
bases at pH 7.5 due to double bond conjugation (Supporting
Information figure 3) and hydroxy groups at positions C5, C7,
and C4’. Therefore, the three different resonance forms were
conformationally analyzed and docked. Docking results with
malvidin-3-O-glucoside 19 agree with the experimental data,

Figure 8. Docked pose of 5,7,4’-trihydroxy-3’-methoxyflavone 5. MIF isosurfaces for the probes DRY (hydrophobic) and OH (aromatic hydroxy group) are
shown at an energy level of �0.4 kcalmol�1 (brown) and �7.0 kcalmol�1 (blue), respectively. Val373 is displayed on the left, and dashed lines are drawn be-
tween the molecule and the residues involved in hydrogen bonding. Phe134 is displayed on the right.
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as the EBE is higher than the most active compounds. Detailed
analysis of the EBE reveals a large steric penalty due to close
contacts between the molecule and active site residues,
namely Phe134, Val 373, Met374, and Leu477 (Supporting In-
formation figure 1). These contacts are related to the de-
creased flexibility of this molecule, and the presence of two
bulky groups, a dimethoxy hydroxyphenyl group and a glu-
cose moiety, linked at adjacent positions. This Y-shaped rigid
structure does not fit well in the active core of the enzyme.

Despite the large molecular volume of oleuropein 25, sever-
al rotatable bonds connecting the phenol moiety to the heter-
ocyclic ring are determinant to a good fit within the active site
of aromatase. The docked molecule reveals that the glucose
lies at the bottom of hydrophilic zone 3, close to the heme
group, which allows anchoring of the phenol moiety at the
top of the same area (Figure 9, left side). The two remaining
hydrophilic areas are occupied by carboxy groups. Therefore,
superimposition of oleuropein 25 with 5,7,4’-trihydroxy-3’-me-
thoxyflavone 5 in the active site conformation predicted with
GLUE[21] makes it clear that although apparently different,
these two molecules share structural and pharmacophoric fea-
tures (Figure 10). The heterocyclic carboxy group lies in an in-
termediate position between the flavone 4-oxo and the C5 hy-
droxy groups. The carboxy group in the phenol heterocyclic
linker lies close to the flavone C7 hydroxy group, and both the
sugar and the phenol point in the same direction of the fla-
vone ring B. The length of both molecules is very similar, and
the hydrophobic scaffolds are well overlapped. Different bind-
ing modes of the flexible molecule 25 could also be hypothe-
sized in which a dynamic fitting of the substrate and the re-

ceptor lead to conformational changes that eventually deter-
mine a complex in which the sugar moiety is exposed to the
solvent. P450 enzymes have actually been shown to undergo
conformational changes upon substrate binding, characterized
by the opening of solvent access channels.[28,29] Moving the hy-
drophilic glucose moiety to a different orientation might deter-
mine a different energetically favorable binding configuration
represented by an open conformation with a solvent-exposed
sugar moiety. This hypothesis cannot be ruled out at this stage
of calculations. It should be confirmed, however, with the use
of molecular dynamics simulations allowing the full flexibility

Figure 9. Docked pose of oleuropein (compound 25, left) and trans-resveratrol (compound 24, right). MIF isosurfaces for the probes DRY (hydrophobic) and
OH (aromatic hydroxy group) are shown at an energy level of �0.4 kcalmol�1 (brown) and �7.0 kcalmol�1 (blue), respectively.

Figure 10. Predicted superimposition of the 5,7,4’-trihydroxy-3’-methoxyfla-
vone (compound 5, dark-gray C atoms) and the oleuropein (compound 25,
white C atoms) in the active site of the aromatase model. Oxygen atoms are
represented in black.
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of the whole system, which were outside of the scopes of this
paper.

6,7-Dihydroxycoumarin 20 (Supporting Information figure 2)
aligns well in the same hydrophobic region as the other poly-
phenolic compounds. However, this short scaffold fails to put
the hydroxy groups in the vicinity of the hydrophilic areas. To-
gether with the decreased hydrophobicity, this explains the ex-
perimentally observed low anti-aromatase potency and the
higher EBE.

trans-Resveratrol 24, a strong aromatase inhibitor, had an
unfavorable EBE relative to the other active molecules. Because
this molecule docks within the active site, perfectly aligned
with the hydrophobic region, with three hydroxy groups ori-
ented toward polar regions (Figure 9, right side), the EBE value
might be related to the lower hydrophobicity of the stilbene
scaffold and the absence of the 4-oxo group. However, this is
well balanced by a perfect planar conformation and a good
disposition of the phenyl and hydroxyl groups, increasing the
strength of the interaction. Superimposition of resveratrol 24
and the strongest flavone inhibitor 5 in the active site docked
conformation shows a good pharmacophoric alignment be-
tween these two molecules (Figure 11). This simple molecule
therefore gives important information about the molecular de-
terminants for the binding of polyphenolic inhibitors to the
active site of aromatase.

In summary, the anti-aromatase activity of a set of natural
polyphenolic compounds was rationalized through the combi-
nation of experimental data and molecular modeling. In the
absence of an experimental 3D structure of the enzyme, a vir-
tual receptor site was defined and validated. The binding site
cavity of the enzyme is expected to be strongly hydrophobic.
Three hydrophilic regions were predicted based on the models
and linked to the presence of the hydroxy functions at C5, C7,
and C4’ found in the strongest inhibitors tested. The C3’ posi-
tion was shown to be tolerant of bulky substituents, protrud-
ing towards a pocket near the active site. Docking of the com-
pounds into a 3D structure of aromatase based on homology
modeling is positively consistent with the results reported

above. The docking experiments were able to distinguish be-
tween active and inactive molecules, and could define a
common binding mode for all compounds in the study.

Conclusions

In the study reported herein, the anti-aromatase potency of a
set of 25 polyphenols was tested. Seven strong inhibitors,
compounds 1, 3, 5, 6, 13, 14, and 16, with equal or better ac-
tivity than the reference compound, AG, were identified. All
these molecules are flavone or flavanone derivatives, which
confirms the potential of natural polyphenols for lead optimi-
zation into strong aromatase inhibitors. Flavone hydroxylation
at position C7 of ring A proved to be determinant for good
anti-aromatase potency, as well as the double hydroxylation at
C5 and C7. Further improvement by C4’ hydroxylation and
either C3’ hydroxylation or methoxylation on ring B, as with
compounds 3 and 5, was observed. Flavanones gave results in
good agreement with the rules described above and led to
the identification of compound 14, the best aromatase inhibi-
tor studied.

The 3D QSAR study performed with the subset of flavones
explained the variance of the data and showed a good predic-
tive ability even with the use of a less conservative cross-vali-
dation procedure with random groups. The use of GRIND[18]

descriptors calculated with the GRID force field and extracted
from relevant MIFs (hydrophobicity, hydrogen bonding, and
molecular shape) was a valid strategy to characterize a virtual
receptor site and gain further insight into the molecular envi-
ronment surrounding polyphenol inhibitors on the active site
of aromatase. Variables with a direct high impact on the inhibi-
tory activity (Figure 4) defined a putative virtual receptor site
(Figure 6): two hydrogen bond acceptor regions are expected
to be close to C5 and C7 of flavone ring A, and a hydrogen
bond donor/acceptor area close to C4’ of ring B. C3’ was found
to be permissive to bulky substitutions, allowing good shape
complementarity with the active site. A hydrophobic scaffold is
common to all flavones, and a 4-oxo group should also be im-
portant for binding.

Analysis of an aromatase homology model with molecular
interaction probes that account for hydrophobicity and hydro-
gen bonding agreed with the virtual receptor site and showed
a large hydrophobic region within the active site surrounded
by three hydrogen bond donor/acceptor regions (Figure 7).
Docking calculations with the GLUE[21] software aligned the in-
hibitors under study on the hydrophobic plane, with polar
groups correctly oriented to the hydrophilic areas (Figure 8).
Therefore, hydroxylations at C5, C7, and C4’ strengthens the af-
finity for the active site and increases anti-aromatase potency.
The binding cavity is large enough to accommodate most of
the compounds studied without steric clashes, and it was
found that Val373 might be responsible for a better shape
complementarity between bulky substitutions at flavone C3’
and aromatase.

The higher EBE calculated for coumarins agrees with their
weak anti-aromatase potency, and the docked poses confirm
that the benzopyrone hydrophobic scaffold is too short for a

Figure 11. Predicted superimposition of the 5,7,4’-trihydroxy-3’-methoxyfla-
vone (compound 5, dark-gray C atoms) and the trans-resveratrol (compound
24, white C atoms) in the active site of the aromatase model. Oxygen atoms
are represented in black.
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strong interaction with the active site of the enzyme (Support-
ing Information figure 2). Extension of this scaffold with apolar
groups might increase the hydrophobicity and lead to strong
aromatase inhibitors, as shown recently.[30]

The simple and conformationally restrained trans-resveratrol
24 was another strong aromatase inhibitor tested (IC50 =

12.8 mm). Despite the absence of the 4-oxo group found in fla-
vones and flavanones, the two aromatic rings and the three
hydrogen bond donor/acceptor groups agree with the virtual
receptor site and the MIFs calculated on the active site model
(Figure 9, right side), leading to an increase in binding strength
to aromatase.

Herein we found that oleuropein 25, the major polyphenolic
constituent of olive oil[7] is a good aromatase inhibitor, with an
IC50 value of 27 mm. This strong inhibitory potency was ration-
alized based on a proper pharmacophoric superimposition
with the best flavone inhibitor tested (compound 5, Figure 10).
A good fit was found within the hydrophilic/hydrophobic re-
gions of the aromatase active site without steric clashes. The
flexibility introduced by the ethyl acetate chain that connects
the catechol to the glycosylated heterocyclic moiety is deter-
minant for the adoption of an U-shaped conformation that fits
well in the active site (Figure 9, left side). In contrast, the
strong conformational barriers of malvidin-3-O-glucoside 19 do
not allow a suitable conformation. Our docking protocol, with
an extensive conformational search of flexible molecules and
the use of adequate MIFs calculated with GLUE,[21] is therefore
a valid method to perform docking and molecular superimpo-
sition at the active site of a macromolecular target.

In conclusion, we have described a new methodology that
combines biochemical evaluation, 3D QSAR with alignment-in-
dependent descriptors, and screening for energetically favora-
ble binding sites for the rationalization of the anti-aromatase
activity of a set of diverse natural polyphenolic compounds.
Starting from experimentally determined inhibitory profiles,
our approach provided novel insight into the chemical and
steric environment within the active site of aromatase and on
the essential determinants for binding of polyphenolic inhibi-
tors. Based on this information, a virtual receptor site was
built, and a possible common binding mode was proposed.
This was further corroborated by the comparison with the re-
sults of docking experiments into a 3D homology model of ar-
omatase. The good agreement between experimental and pre-
dicted activity, and between the properties of the virtual recep-
tor model and the 3D homology model suggests that this ap-
proach could be extended to other cases for which the struc-
ture of the receptor is unknown. The use of the aromatase
virtual receptor model to perform 3D database searching and
molecular design of new strong aromatase inhibitors is under
investigation.

Experimental Section

Materials and general methods. 7-Hydroxyflavone, 5,7,4’-trihy-
droxy-3’-methoxyflavone, 5,7,4’-trihydroxyflavone, 3’,4’-dihydroxy-
flavone, 5,7,3’-trihydroxy-4’-methoxyflavone, flavanone, 7-hydroxy-
flavanone, 5,7-dihydroxyflavanone, 5,7,3’,4’-tetrahydroxyflavanone,

5,7,4’-trihydroxy-3’-methoxyflavanone, cyanidin chloride, resvera-
trol, and oleuropein were purchased from Extrasynthese (Genay,
France). Flavone, 5,7-dihydroxyflavone, 7,3’,4’-trihydroxyflavone,
5,7,3’,4’-tetrahydroxyflavone, 7,3’,4’,5’-tetrahydroxyflavone, 4’-hy-
droxy-3’-methoxyflavone, 3’,4’-dimethoxyflavone, 6,7-dimethoxy-
coumarin, 6,7-dihydroxycoumarin, 7-hydroxy-6-methoxycoumarin,
and 6-hydroxy-7-methoxycoumarin were purchased from Indofine
Chemical (Hillsborough, NJ, USA). Malvidin-3-O-glucoside was ob-
tained from Polyphenols (Hanaveien, Norway). NADPH and dl-ami-
noglutethimide were purchased from Sigma–Aldrich (St. Louis, MO,
USA). [1b-3H]Androstenedione (specific activity: 25.3 Cimmol�1)
and the liquid scintillation cocktail Optiphase Hisafe 2 were pur-
chased from PerkinElmer (Boston, MA, USA), and the radioactive
samples were counted on a Packard Tri-Carb 2000 CA liquid scintil-
lation analyzer.

Isolation of human placental microsomes. Human term placental
microsomes were obtained by differential centrifugation according
to the method described by Ryan,[23] and were used as a source of
aromatase. The microsomes were resuspended in buffer containing
0.1m sodium phosphate, 0.25m sucrose, 20% glycerol, and 0.5 mm

dithiothreitol, pH 7.4, and stored in aliquots at �80 8C until
needed.

Concentration–response study. Aromatase activity was evaluated
by quantifying the amount of 3H2O released upon enzymatic con-
version of the tritiated substrate, [1b-3H]androstenedione, into es-
trone. This method was first described by Siiteri and Thompson.[22]

Briefly, enzymatic assays were performed at 37 8C in a sodium
phosphate buffer (67 mm, pH 7.5) at a final volume of 500 mL, con-
taining [1b-3H]androstenedione (6.6N105 dpm) and 270 mm

NADPH. The inhibitors studied were dissolved in DMSO and added
to the assay in concentrations ranging from 316.2 to 640N103 nm.
The amount of DMSO in the assay was always <2%. The reactions
were started with the addition of microsomal protein (30 mg) and
stopped after 20 min with the addition of chloroform (1 mL) and
vortexing at 9000 rpm for 40 s. The tritiated water formed during
the aromatization reaction and released into the incubation
medium was quantified by liquid scintillation counting. Appropri-
ate controls without inhibitor were performed to determine the
maximum enzymatic activity to which the relative percentage of
inhibition was determined. The assays were performed three times
in triplicate, and the results were treated by nonlinear regression
analysis using a sigmoidal concentration–response curve with vari-
able slope.

Conformational search and geometry optimization. All com-
pounds were constructed with building fragments from the stan-
dard libraries of MAESTRO[31] v 5.1.016. Flexibility was taken into ac-
count by conformational search using the systematic unbounded
multiple minimum (SUMM)[32] routine implemented in MACROMO-
DEL[33] v 8.1 with the Merck molecular force field (MMFF)[34] and the
Polak–Ribiere conjugate gradient (PRCG) minimization method,
with an energy convergence criterion of 0.05 kJmol�1. The general-
ized Born equation/surface area (GB/SA)[35] continuum solvation
model was used with parameters for water, with a dielectric con-
stant (e) of 78. A maximum of 30000 conformations were generat-
ed and saved if within an energy window of 50 kJmol�1 over the
global minimum. Similar structures were excluded based on heavy
atom superimposition. All other settings were used as default.

3D QSAR using ALMOND. GRIND descriptors[18] were calculated for
the flavones studied with ALMOND[21] v 3.3 using MIFs[19] computed
with the chemical probes DRY (hydrophobic probe), O (hydrogen
bond acceptor interactions), and N1 (hydrogen bond donor inter-
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actions), and the molecular shape probe TIP,[24] with the grid spac-
ing set to 0.5 K. These descriptors encode geometrical relation-
ships between pairs of non-bonded interactions; therefore, to rep-
resent only the highly favorable interactions, one initial filtering
step was performed, and 100 low-energy interaction points, sepa-
rated from each other as much as possible, were extracted from
each MIF. To this step, the relative importance of the field values
was set to 50, and all other settings were set to default. Finally, the
filtered MIFs were encoded into GRIND variables through a maxi-
mum auto and cross-covariance (MACC) transformation performed
with the width of the smoothing window set to 0.8. These varia-
bles represent the product of MIF energy node pairs separated by
a certain distance around each molecule.

Statistical analysis. Partial least-squares regression (PLS) was used
to derive the 3D QSAR model by using the statistical tools included
in ALMOND[21] v 3.3. No scaling was applied to the variables. The
optimal dimensionality of the model was selected by cross-valida-
tion using either LOO or 3RG, recalculating the weights in both
cases. The random groups validation was repeated 200 times to
get a stable predictive correlation coefficient. The fractional factori-
al design (FFD),[25] a variable selection methodology implemented
in ALMOND[21] v 3.3, allowed the removal of descriptors not corre-
lated with activity, introducing only noise to the model. Uncertain
variables were kept. The FFD was forced to “fold over”, and the
combinations/variables ratio was set to 5 in order to better esti-
mate the effect of each variable in the model predictive ability. The
model noise level was evaluated by 20% of “dummy variables”.

Active site MIF calculations. GREATER, the graphical user interface
for the GRID[21] v 22a package of programs, was used to calculate
MIFs with the probes DRY (hydrophobic) and OH (aromatic hy-
droxy group) on the active site of a homology model of aromatase
(PDB entry 1TQA from the theoretical model section).[20] The pro-
tein was considered rigid, and a grid box was built within the
active site, including the heme group and all interacting residues.
This resulted in a cubic box of 8000 K3 (20 KN20 KN20 K) centered
at the aromatase binding cavity and containing the heme group at
the bottom. The MIFs were calculated with the grid spacing set to
0.25 K and the directive ALMD set to 1.

Binding mode prediction. GLUE[21] v 1.0 is a docking program that
uses the GRID MIFs to generate ligand poses within the active site
of a macromolecular target and the GRID force field to calculate
binding energies. The aromatase binding cavity was initially ex-
plored with eight GRID probes that mimic most of the chemical
groups present in the ligands: H2O (recognizes hydrophilic regions
and evaluates competition with water molecules), DRY (recognizes
hydrophobic regions), H (evaluates protein shape), N1 (hydrogen
bond donor to evaluate hydrogen bond acceptor groups), O (hy-
drogen bond acceptor to evaluate hydrogen bond donor groups),
OD (partially charged carboxylate to evaluate positively charged re-
gions), N+ (positively charged nitrogen to evaluate negatively
charged regions), and O1 (donor/acceptor probe to evaluate mixed
groups). The MIFs obtained from the interaction of these probes
with the active site were calculated in the same cubic box as de-
scribed previously. Local energy minima extracted from the DRY,
N1, O, OD, N+ and O1 MIFs were combined into a large number of
pharmacophoric quadruplets. For this step the distance tolerance
was set to 2.5, and the cavity expansion was set to 5 in order to
maximize the number of combinations saved, available to the next
steps. This large number of possible alignments was then filtered
through comparison with the inhibitors in study, with the steric tol-
erance set to 1. When the number of rotatable bonds was three or
fewer, several conformers were generated. When greater, a more

refined conformational search was performed with MACROMO-
DEL[33] v 8.1, and conformations found within an energy window of
15 kJmol�1 from the global minimum were submitted to GLUE.[21]

Both R and S flavanone stereoisomers were considered, and all cya-
nidin 18 and malvine-3-O-glucoside 19 equilibrium quinoidal bases
were studied independently (Supporting Information figure 3). The
filtered pharmacophoric quadruplets were then docked within the
active site of aromatase. Redundancy was avoided with a minimum
RMS set to 2 K, and a maximum of 2000 minimization iterations
were allowed in order to relax the ligands in the binding pocket.
The GLUE[21] scoring function was then applied to the binding
poses, with contributions for steric repulsion, hydrogen bonding,
and hydrophobicity. Top-ranked orientations were extracted and
further analyzed.
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