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Capillary network formation from dispersed endothelial cells: Influence of cell traction, cell
adhesion, and extracellular matrix rigidity
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The formation of a functional vascular network depends on biological, chemical, and physical processes being
extremely well coordinated. Among them, the mechanical properties of the extracellular matrix and cell adhesion
are fundamental to achieve a functional network of endothelial cells, able to fully cover a required domain. By the
use of a Cellular Potts Model and Finite Element Method it is shown that there exists a range of values of endothelial
traction forces, cell-cell adhesion, and matrix rigidities where the network can spontaneously be formed, and its
properties are characterized. We obtain the analytical relation that the minimum traction force required for cell
network formation must obey. This minimum value for the traction force is approximately independent on the
considered cell number and cell-cell adhesion. We quantify how these two parameters influence the morphology
of the resulting networks (size and number of meshes).
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I. INTRODUCTION

The different processes that give rise to the formation of
blood vessels in mammals are complex and extremely well
regulated. It is hard to overstate the importance to understand
these processes. In fact, the growth of new blood vessels
determine the progression of more than 50 pathologies, some
of which presenting a large burden in modern society [1].
For example, the inflammatory environment in the vicinity
of solid tumors often promotes the growth of neovessels
capable of delivering nutrients to the tumor [2,3], of completely
altering the flow pattern in the tissue [4,5] and, importantly,
of transporting metastatic tumor cells to new locations in
the body. The capacity for developing new collateral vessels,
on the other hand, is associated with successful prognosis
after a heart attack [6,7]. In endometriosis the development
of new dense vasculatures is essential for the endometriotic
lesions to survive outside the uterus [8]. In diabetic retinopathy,
the growth of many neovessels, together with the presence
of micro-aneurysms and hemorrhages in different locations
in the retina, leads progressively to blindness [9–11]. Blood
vessel growth is also pivotal in many non-disease-related
processes such as the ovary cycle, wound healing, or embryo
development [1,12–14].

Two main mechanisms lead to the formation of new blood
vessels: angiogenesis and vasculogenesis. Angiogenesis is
the growth of new blood vessels starting from an existing
vasculature [2]. As an example, in sprouting angiogenesis, new
blood vessels start as small sprouts from existing vessels and
migrate in the direction of the cells that require nourishment
[15–18]. In recent years several theoretical groups have devel-
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oped mathematical models to better understand the biological
and mechanical processes underlying sprouting angiogenesis
[19–21]. Vasculogenesis, on the other hand, is the process
by which the initial blood vessel plexus is formed directly
from the rearrangement and differentiation of the endothelial
precursor cells [22]. It occurs during embryo formation [23]
but is also important in wound healing [24,25]. The study
of vasculogenesis permits us to better understand how cells
move and are able to interact with each other to form complex
structures.

When endothelial cells are set in elastic biological matrices,
such as matrigel, they are able to form networks depending
on the mechanical and chemical properties of these matrices
[26–28]. Endothelial cells are able change their polarization
and alignment to follow local mechanical cues in the matrix
[29,30]. Though not unique to endothelial cells [31], the fact
that they are able to form these networks in vitro suggests
that these assays might be very informative regarding the
mechanisms used by endothelial cells during vasculogenesis
in vivo. In fact, the first step of vasculogenesis, and therefore
capillary network formation, is the organization of endothelial
cells in a network, similar to what happens in thesein vitro
assays [22]. Only afterwards the cells in vivo alter their shape
in order to form tubular structures capable of supporting blood
flow.

Progress has been done experimentally and theoretically in
the direction of understanding how endothelial cells form these
networks. Several mathematical models of this process were
developed, including both chemical and mechanical effects.
One of the initial efforts was done by Manoussaki et al. [32,33],
where the authors introduce a continuous mechanical model
for the formation of these networks. According to this model,
the endothelial cells exert a traction force in the matrix, which
behaves viscoelastically: the local stress depends on both the
strain and the strain rate. The mobility of the endothelial
cells in a particular direction is hypothesized to increase
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with the strain in that direction and with the compression
in the perpendicular direction. The endothelial cells exert an
isotropic force proportional to their local density. Later works
[34,35] have obtained vascular networks resulting from the
endothelial cells following the gradients of chemical factors
produced by themselves. In these works, the description of
the matrices mechanics is much simpler than in the previous
works, and the formation of the networks hinge on the inertia
term, i.e., the cells have inertia regarding the variation of their
velocity. Many other works have modeled the formation of
these networks [36–41], some considering as the main driving
force the chemotaxis of endothelial cells-produced growth
factors, others the mechanical forces exerted by endothelial
cells.

Recently, several experiments on traction force microscopy
shed light on the traction forces profile exerted by endothelial
and tumor cells in matrices [42–45]. In wild-type cells capa-
ble of forming networks, these traction forces are typically
pointed towards the cell center and are stronger at the border
of the cell. The ensuing deformation of the matrix permits
cell-cell communication mediated by the matrix strain [42].
This information was readily included into the Cellular-Potts
Model developed by van Oers et al. [46], which implements
directly the typical force field exerted by endothelial cells
in two-dimensional matrices. Moreover, this computational
model includes both passive forces (adhesion) and the active
traction forces. Cell polarization is then influenced by the local
strains produced by the traction forces. In this model the strain
leads to an increase in tissue rigidity (strain-stiffening), which
promotes cell polarization through durotaxis [29,30]. In the
model, this alignment of the cell polarization with the strain
is instantaneous. The dynamics observed in this cell-based
model is also a function of the cells’ surface tension and of
the adhesion between the different cells of the system. These
factors play a decisive role in regulating cell shape [47,48].
The authors have verified that there is a range of matrices’
Young’s moduli for which the endothelial cells are able to form
networks. Nevertheless, that work has not looked into how the
cell traction and the adhesion between the cells are able to
condition the final network, nor it has explored thoroughly
the types of networks obtained. In the present paper we will
analyze in detail the model by van Oers et al., discuss under
which conditions the cell networks are formed, and provide
a theoretical explanation for the formations of the networks
under this model.

In the next section we will briefly introduce the model by
van Oers et al. In the Methods section we will describe the
tools developed to classify and characterize the cell patterns
observed. We then present and discuss the results of this work,
where we systematically vary the matrices’ Young’s modulus,
the cell traction force, and the cell-cell adhesion. We also vary
the number of cells in the simulation and discuss the value
of matrix stiffness required for network formation (which is
almost independent of cell-cell adhesion and cell number).
Finally, we draw the conclusions of this work.

II. MODEL

The model introduced in Ref. [46] describes the dynamics
of a cell monolayer on top of an elastic biological substrate.

The cell migration dynamics, modeled by a Cellular Potts
Model (CPM), is a function of the displacements induced by
the traction forces applied by the cells on the substrate, which
are calculated using a Finite Element Method (FEM). These
traction forces are determined as a function of the cell shape.
In this section we will present an overview of the various
components of the model and how they interact with each other.

A. Cellular Potts Model

Consider a grid composed of pixels with side L. Each pixel
is assigned a tag, σ = 1,2, . . . , which represents the cell which
includes that pixel. The tag σ = 0 is reserved for the pixels in
the regions without cells. A cell is simply a set of pixels with
the same tag, σ �= 0. Let σi be the tag of the ith pixel. Each
configuration of the system corresponds then to an energy given
by the Hamiltonian

H =
∑
〈ij〉

Jσiσj
(1 − δσiσj

) +
∑
σ �=0

λσ

(
Vσ − Vt

Vt

)2

, (1)

where the first term represents the energy contribution by the
interfaces in the system (due to surface tension and adhesion
molecules) and the second term refers to the energy cost for
each cell having a volume Vσ other than the equilibrium target
volume, Vt . The sum over 〈ij 〉 is a shorthand notation for a sum
over every pairs of nearest neighbors i and j . Jσσ ′ corresponds
to the energy cost of cell σ being adjacent to cell σ ′ per pixel
contact, and δσσ ′ is the Kronecker delta. Assuming all cells are
of the same type and that Jαβ = Jβα , there are two relevant
adhesion cost parameters: the cell-matrix adhesion cost, J01,
and the cell-cell adhesion cost, J11. The parameter λ is the
elastic energy cost per cell of changing the volume of the cell,
which will be referred to as the inelasticity constant.

Other terms might be added to the Hamiltonian in order to
model other phenomena, for instance, perimeter constraints,
chemotaxis, and durotaxis. The last will be included in this
system and will be explained in more detail below.

Cell movement will be simulated using the Metropolis-
Hastings Algorithm (MHA), according to which only the
change in energy between two configurations, �H, needs to be
calculated. The MHA applied to the CPM consists of choosing
a target pixel and a random source pixel from its neighborhood;
a copy of the source’s tag to the target pixel is attempted and
corresponds to a change in energy �H; if the step is favorable
(�H < 0) then the step is always accepted; otherwise, it has
probability p = e−�H of being accepted.

A Monte Carlo step (MCS) is composed of a number of
consecutive MHA steps equal to the number of pixels in the
grid.

B. Traction force model

In this model, cells are able to apply traction forces to
the ECM underneath them. After computing the forces, the
mechanical response, i.e., the strain on the ECM, will be cal-
culated using a FEM (see the Appendix). At this point we do
not consider matrix remodeling or viscoelasticity. These effects
are important in capillary formation, and we expect to extend
the model in future studies to include them.
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The traction forces are obtained from the predictive model
proposed by Lemmon and Romer [49], which rests on the
assumption that each focal adhesion (FA) is pulled by every
other FA belonging to the same cell with a force proportional
to the distance between them. This is in accordance to the
traction force profiles observed experimentally [43–45]. It is
convenient to choose the locations where we calculate the
forces exerted by the cells as the nodes of the FEM grid. In
this way, the contribution to the force exerted applied to the
pixel area around node i by the FAs in node j from the same
cell is given by μ d ij , where μ is the traction force parameter
and d ij is a vector from node i to node j . Therefore, the total
force applied in node i is

f (σ )
i = μ

∑
j∈σ

dij . (2)

Moreover, if two or more cells exert force in the same node,
the resulting force is the sum of all force vectors applied in that
node.

Hence, the traction forces applied to all nodes are calculated
using this model after each MCS, and displacements are then
computed with the FEM to serve as input for the strain-
stiffening model described below.

C. Strain stiffening

Cells are able to respond to local ECM deformations.
They sense the strain and align according to the direction
of higher strain. This cell-ECM coupling has been shown
experimentally to rely on the nonlinear mechanical properties
of the ECM [50]. Strain stiffening is a nonlinear mechanical
response that a material can exhibit when being stretched when
a positive strain results in an increase in stiffness along the
strain direction. It is convenient to model this effect using
the principal strains of a strain tensor. Here the increase in
the material Young’s modulus is modeled by the following
expression:

E(ε) = E0 max

{
1,1 + ε

ε0

}
, (3)

where E0 is the material Young’s modulus at zero strain, ε is
the principal strain, and ε0 is the strain-stiffening constant. This
is a first order approximation. The magnitude of the strains
in the system justify the use of this linear strain-stiffening
approximation. In fact, when we implemented a power-law
strain-stiffening dependence, according to what is observed in
bundled fiber networks [51], we have found no appreciable
difference in the simulated cell patterns.

This phenomenon connects the strain caused by cell traction
force to the ECM mechanical changes, which will serve as an
input for cell migration.

D. Durotaxis

During each MHA step, when the source is copied to the
target, it is as if the source’s cell extends in the direction v of
the target, and the target’s cell retracts in the same direction.
Furthermore, it will be assumed that each cell pixel senses the
mechanical properties of the neighboring elements.

The expression used to model the difference in energy due
to durotaxis is

�HD = ±f (E(ε1))(v1 · v)2 ± f (E(ε2))(v2 · v)2, (4)

where the signs are positive for retractions and negative for
extensions, and where ε1 and ε2 are the eigenvalues of the
strain tensor computed at the center of the measured element,
v1 and v2 are the respective eigenvectors, and f (E) is a sigmoid
function of the form

f (E) = α

1 + e−β(E−E1/2) , (5)

with α the magnitude, β the steepness, and E1/2 the Young’s
modulus for a magnitude of α/2. This model assumes that
the durotaxis magnitude is proportional to FA maturation,
qualitatively described by the function f (E). In soft substrates
FAs are unable to fully form due to being difficult to attach to
the ECM. For medium ranges of E, FAs are able to mature, and
their maturation increases linearly with stiffness until a fully
matured state is reached, at very rigid substrates. For more
details on the model please refer to Ref. [46].

(a)

(c) (d)

(b)

FIG. 1. The postprocessing stages of a CPM configuration of
300 cells on a 300 × 300 pixel (750 × 750 μm2) grid with periodic
boundary conditions after 5000 MCS. (a) Resulting configuration.
(b) An undirected graph representing the connections between ad-
jacent cells. By splitting cells into different structures regarding
connectivity, dispersed cells are easily found. (c) The application of
a connected component algorithm to the background. Not only can
cells adjacent to these regions be labeled as network cells, but one can
also extract information about the number of meshes and their size.
(d) Visualization of the final classification. Each cell can be dispersed
(light gray), clustered (middle gray), or assembled into a network
(dark gray), in color online (red, green and blue, respectively). Colors
in (a), (b), and (c) simply help discern adjacent cells, nodes, and
patches.

012408-3



JOÃO R. D. RAMOS, RUI TRAVASSO, AND JOÃO CARVALHO PHYSICAL REVIEW E 97, 012408 (2018)

III. METHODS

In order to extract information from this model regarding
the morphology of the emerging cell pattern, the resulting
cell configurations must be studied using image analysis
techniques. Cells are classified into three distinct categories:
dispersed cells, clustered cells, and cells in a network (Fig, 1).

First, cells are grouped into disjoint structures [Fig. 1(b)]:
a cell belongs to a structure if it shares a boundary with an
element of that structure. If the number of cells in a structure is
below a certain threshold, those cells are considered dispersed.
Here, if a structure has more than nthreshold = 4 cells, it cannot
be considered dispersed.

Next, after applying a connected component algorithm to
the background pixels [Fig. 1(c)], each identified enclosed
patch corresponds to a network mesh. Each cell that borders
one of these patches is considered assembled into a network.
In order to improve the detection of meshes, applying a few
diffusion steps to the cell domains helps to close small gaps that
result from the system’s stochasticity. Similarly, a cutoff size
for the smaller possible patch is implemented. Furthermore,
from the connected component algorithm we also obtain the
number and size of the network meshes. Finally, the remaining
cells are regarded as clustered cells.

With this simple procedure we are able to identify ap-
proximately the cells in a network, in a cluster, and the
dispersed cells. However, if there is a cluster of cells inside
an enclosed patch, it will be classified as belonging to the
network. Although possible, this scenario is rather unlikely

since the short-range mechanically induced alignment that is
necessary for network pattern emergence disrupts the stability
of clusters.

The first quantities that we extract from the simulation are
the fractions of cells that belong to each of the aforementioned
categories. Having used the algorithm above, this procedure is
simply dividing the number of cells in a certain class by the
total number of cells. To help visualize these three values, we
will encode these fractions in RGB format, (fr,fg,fb), where
fr , the fraction of red, corresponds to the fraction of dispersed
cells, fg , the fraction of green, to the fraction of clustered
cells, and fb, the fraction of blue, to the fraction of cells that
are organized into a network.

Other two observables are extracted from this connected
component algorithm. The first one is the number of meshes,
Nm, in the network, which is equal to the number of patches
that are found. The second observable is the average patch
size, Ap, in number of pixels. Note that, as mentioned above,
patches smaller than the size of a cell are ignored.

IV. RESULTS AND DISCUSSION

The parameters explored in this article are the cell trac-
tion force constant, μ, cell-cell adhesion, J11, and substrate
stiffness, E0. Each result reported for each set of parameters
corresponds to an average of 10 simulations. The remaining
parameters are the same throughout this analysis, namely,
by order of appearance, L = 2.5 μm, ν = 0.45, J01 = 1.25,

Left Right

FIG. 2. (Left) RGB color-coded cell fractions, for simulations of 500 cells on a 300 × 300 pixel grid (0.5625 mm2) with rigidity E0 = 10
kPa, as a function of traction force parameter, μ, from μ = 0.0 Nm−1 to μ = 5.0 Nm−1 in steps of 0.2 Nm−1 and cell-cell adhesion cost, J11,
from J11 = 0.60 to J11 = 4.35 in steps of 0.15. The classification categories are as follows: dispersed cells (middle gray), clustered cells (light
gray), and network-like structures of cells (dark gray), in color online (red, green and blue, respectively). Therefore, the fraction of red, green,
and blue in a square represents the average fraction of cells, in the aforementioned categories, over 10 independent simulations with the same
values of μ and J11, with different random number generator seeds. (Right) Chosen examples from the results presented in the left panel are
shown. Scale bars: 100 μm. Each label from (a) through (i) represents different values of cell adhesion and cell traction force with coordinates
(μ,J11): a, (1.0,2.55); b, (1.0,4.20); c, (1.0,1.50); d, (0.8,2.55); e, (0.0,1.65); f, (0.0,3.60); g, (0.8,2.70); h, (1.8,1.35); i, (2.0,4.20).
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Left Right

FIG. 3. (Left) RGB color-coded cell fractions, for simulations of 300 cells on a 300 × 300 pixel grid (0.5625 mm2) with rigidity E0 = 10
kPa, as a function of traction force, μ, from μ = 0.0 Nm−1 to μ = 5.0 Nm−1 in steps of 0.2 Nm−1 and cell-cell adhesion cost, J11, from
J11 = 0.60 to J11 = 4.35 in steps of 0.15. The classification categories are as follows: dispersed cells (middle gray), clustered cells (light gray),
and network-like structures of cells (dark gray), in color online (red, green and blue, respectively). Therefore, the fraction of red, green, and
blue in a square represents the average fraction of cells, in the aforementioned categories, over 10 independent simulations with the same values
of μ and J11, with different random number generator seeds. (Right) Chosen examples from the results presented in the left panel are shown.
Scale bars: 100 μm. Each label from (a) through (i) represents different values of cell adhesion and cell traction force with coordinates (μ,J11):
a, (1.0,2.55); b, (1.0,4.20); c, (1.0,1.50); d, (0.8,2.55); e, (0.0,1.65); f, (0.0,3.60); g, (0.8,2.70); h, (1.8,1.35); i, (2.0,4.20).

λ = 500, Vt = 16π pixels = 314 μm2, ε0 = 0.1, α = 10,
β = 0.5 kPa−1, E1/2 = 15 kPa. These parameters were used
to validate the model by comparing with cell cultures of
bovine aortic endothelial cells [46]. Furthermore, every result
is obtained on a 300 × 300 (750 × 750 μm2) grid with periodic
boundary conditions after 5000 MCS. After this number of
iterations the observed fractions of cells dispersed, clustered,
and in networks were found to stabilize.

A. Classification of emerging cell structures

Starting from a random distribution of cells, akin to in vitro
assays of endothelial cells, cell structures obtained after 5000
MCS were classified into dispersed, clusters, and networks,
according to the procedure previously described, for different
values of traction force and cell-cell adhesion. These two
parameters were chosen not only because they are dependent
on different transmembrane proteins, but also because they are
critical to the formation of vessel-like structures. The substrate
stiffness in these initial runs was chosen to be E0 = 10 kPa.
The parameter space was explored for N = 500 cells (Fig. 2)
and for N = 300 cells (Fig. 3).

The classification as a function of cell traction force and cell-
cell adhesion for N = 500 cells [Fig. 2(a)] reveals that around
μ = 0.8–1.0 Nm−1 there is a transition from clusters and
dispersed cells to emerging networks. With further increase of
traction force the number of cell-forming networks decreases
until networks cease to emerge for high values of traction

force. The minimum traction force required for the formation
of networks is very robust to changes in cell-cell adhesion.
However, the range of possible values for traction force that
allow networks to emerge decreases when deviating from
medium values of cell-cell adhesion. Moreover, the value
of cell-cell adhesion for which there is a transition between
clusters and dispersed cells (at low traction force), J11 = 2.70,
is very close to the value for neutral adhesion J11 = 2J01 = 2.5
(i.e., for when the energy of a interface between two cells is
equal to the energy of the two interfaces, one from each cell,
between them and the ECM).

By comparing Figs. 2 (right, a), 2 (right, b), and 2 (right, c)
we observe the difference in changing cell-cell adhesion.
In these figures the cells are polarized, their force field is
able to deform the nearby matrix, and they are able to align
along the strain. However, as the adhesion increases the cells
become closer together. In Fig. 2 (right, b) the cells align in
a network formation. But, because at these low adhesions it
is energetically more favorable for cells to have interfaces
with the matrix than with each other, the cells do not touch
each other. As the adhesion increases, the cells start forming
interfaces [as in Fig. 2 (right, a)] and then forming some larger
groups of cells within the network [as in Fig. 2 (right, c)]. Since
the number of cells is the same in these simulations, when the
vessels become thicker [at higher adhesion, i.e., low J11; see
Figs. 2 (right, a) and 2 (right, c)], the meshes of the network
become larger.
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When comparing Figs. 2 (right, d) and 2 (right, a) we
observe that they are very different regarding cell polarization,
even though the only parameter difference is a small variation
in the cells’ traction force. We see that between traction force
values of 0.8 and 1.0 N/m the capacity for cells to polarize
increases dramatically.

Figures 2 (right, e) and 2 (right, f) show the clustered
and dispersed arrangements of cells. Figure 2 (right, g) is
an example of a mixed state near the transition to networks,
which results from networks being highly unstable due to a
lower cell-cell adhesion. Figure 2 (right, h) is an example of
a intermediate state between networks and clusters in which
there is a high variability in cell shape. This morphology is
the result of high cell-cell adhesion and high cell traction,
which strongly deforms the matrix. These two factors together
imply that the shape of each cell is strongly conditioned by the
position of other cells and by the forces they exert. For traction
forces higher than these values, the deformation of the matrix
is very high, and the cell culture looses its network structure.

For high cell traction and low cell-cell adhesion [e.g., Fig. 2
B (right, i)], cells align collectively with one another. For these
values the cells are polarized but do not form networks: they
form lattices, since they are too dispersed.

These behaviors are highly dependent on cell density.
Effectively, by preforming the same simulations for N = 300
cells [Fig. 3 (left)], networks emerge in only a very narrow
interval of cell traction force. This is the region of parameters
for which the cells are better polarized, so they are able to reach
each other and link into a network. Therefore, while Figs. 3
(right, a) and 3 (right, b) have roughly the same characteristics
as before, Figs. 3 (right, d) and 3 (right, g) no longer assemble
networks since there are not enough cells. In Fig. 3 (right, c)
cells adhere strongly to form small clusters that are linked to
each other through polarized cells.

For 300 cells, the transition between clusters and dispersed
cells appears to be smoother. However, at higher adhesions, the
low cell density in this simulation forces some of these clusters
to have very few cells, which leads to morphology of clusters
mixed with dispersed cells, as is observed in Fig. 3 (right, e).
Figure 3 (right, h) still displays high variability of cell shapes,
although they no longer align in network-like structures. Also,
at these low cell densities it is harder to obtain the collective
alignment observed previously for low adhesion and higher
traction forces [see Fig. 3 (right, i)].

B. Emerging network morphological data

When performing the connected component analysis of
the medium, we gathered the information about the average
number of meshes in a network and their average size. Since
these quantities make sense only in the presence of networks,
we look into the data only for the morphologies with a fraction
of network cells above 0.5, i.e., in the blue region of Figs. 2
(left) and 3 (left).

For values of μ � 1.0 Nm−1, the average number of
meshes for both N = 300 cells [Fig. 4(a)] and N = 500 cells
[Fig. 4(b)], decreases as cell-cell adhesion increases, since
the branches are thicker, as we saw above. This behavior is
accompanied by an increase in average network mesh size
(Fig. 5).

(a) (b)

FIG. 4. Average number of meshes out of (a) 300 and (b) 500
cells in a 300 × 300 pixel grid with rigidity E0 = 10 kPa, as a
function of traction force, μ, and cell-cell adhesion cost, J11. Each
data point represents the average of 10 simulations. Because this
result is relevant only in cases where networks emerge, only instances
where the fraction of networks is above 0.5 are represented. (a) Due
to the low cell concentration, the interval where networks emerge is
very narrow. The general trend is that decreasing cell-cell adhesion
increases average mesh number. (b) Below μ = 1, the number of
meshes remains low; on the other hand, for values equal or larger
than μ = 1, the average number of meshes increases as the cell-cell
adhesion decreases, as a general trend.

These results suggest that the cell traction force is mainly
responsible for the existence or nonexistence of a network
structure, and cell-cell adhesion regulates network morphology
(number of meshes and their size).

To obtain these results we did not need to describe explicitly
the intracellular cytoskeleton rearrangement dynamics, and we
assumed that the cells respond immediately to the mechanical
microenvironment. Strikingly, the formation of the networks
occurs in a larger range of traction forces in the case when
the cells take a finite time to respond to their mechanical
environment. In fact, in Fig. 6 we compare the previous results
with the average cell network fraction as a function of the cell
traction force when there is a delay in the cells’ response. We
observe that the fraction of cells forming a network is similar

(a) (b)

FIG. 5. Logarithm of the average size of patches (divided by the
target volume of a cell) obtained from (a) 300 and (b) 500 cells in
a 300 × 300 pixel grid with rigidity E0 = 10 kPa, as a function of
traction force, μ, and cell-cell adhesion cost, J11. Each data point
represents the average of 10 simulations. Because this result is relevant
only in cases where networks emerge, only instances where the
fraction of networks is above 0.5 are represented. (a) Due to the
low cell concentration, the interval where networks emerge is very
narrow. The general trend is that decreasing cell-cell adhesion also
decreases average mesh size. (b) Below μ = 1 Nm−1, the size of
meshes remains large; on the other hand, for values equal or larger
than μ = 1 Nm−1, the average size of meshes decreases as the cell-cell
adhesion decreases.
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FIG. 6. Average cell network fraction for 500 cells on a 300 × 300
pixel grid (0.5625 mm2) with rigidity E0 = 10 kPa, as a function of
traction force, μ, from μ = 0.5 Nm−1 to μ = 5.5 Nm−1 with cell-cell
adhesion cost of J11 = 2.55. The green data points correspond to
the results obtained when the endothelial cells take five Monte
Carlo steps to respond to the mechanical characteristics of their
microenvironment. Each point corresponds to the average of 10
simulations.

in both cases, but that the range of traction forces for which
the networks are observed is even larger in the case with a
small delay in cell response. We also observe that the minimum
traction force required for network formation is the same in the
case of time delay.

C. Dependence on ECM stiffness

We measured the fraction of networks for three different
values of stiffnesses, E0 = 3,10,14 kPa, as a function of the
traction force for a cell-cell adhesion cost of J11 = 2.55, for
N = 500 cells (Fig. 7) and N = 300 cells (Fig. 8). As the
stiffness increases, the cell traction force value range where
networks emerge gets narrower and shifted towards lower
values of μ. Also, for lower number of cells in culture, the
range of cell traction forces that lead to network formation is
smaller, yet the lower bound of each one of those intervals does
not change appreciably with the number of cells in culture.

This critical traction force for network formation, μc,
depends strongly on the ECM’s Young’s modulus. From Figs. 2
(left), 3 (left), 7, and 8, for J11 = 2.55, the critical value for μc

is approximately μc(E0 = 10 kPa) ≈ 0.9 Nm−1. Also from
Figs. 7 and 8, for E0 = 3 kPa, the critical value is approxi-
mately μc(E0 = 3 kPa) ≈ 2.25 Nm−1. Last, for E0 = 14 kPa
the value of μc is also approximately the same for N = 500 and
N = 300 cells, and given by μc(E0 = 14 kPa) ≈ 0.40 Nm−1.

Since the ECM rigidity is relatively simple to change in an
experimental setup, the measurement of the range of Young’s
modulus for which the networks can be observed as a function
of the number of cells in the culture could be used to validate
the model, and to infer the model’s parameters such as the
cell-cell adhesion and the traction force exerted by the cells.

FIG. 7. Average cell network fraction for 500 cells on a 300 ×
300 pixel grid (0.5625 mm2) with rigidities E0 = 3,10,14 kPa, as a
function of traction force, μ, from μ = 0.5 Nm−1 to μ = 6.0 Nm−1

with cell-cell adhesion cost of J11 = 2.55. Each point corresponds to
the average of 10 simulations.

The quasi-independence of the μc on the number of cells in
the culture, on the presence of a small delay in the intracellular
response, and on the adhesion suggests that we can estim-
ate its value by inspecting the steady-state behavior of a single
cell in an elastic matrix. The observation that the cells become
strongly polarized at μc supports this hypothesis. Therefore
we will estimate theoretically the value of μc.

Consider a rectangular cell in the simulation with sides lx
and ly pixels, and with fixed volume Vt = lx ly . Let γ = √

lx/ ly
be a measure of the degree of polarization of the cell. Note that
lx = √

Vtγ and ly = √
Vt/γ . Without loss of generality, we

FIG. 8. Average cell network fraction for 300 cells on a 300 ×
300 pixel grid (0.5625 mm2) with rigidities E0 = 3,10,14 kPa, as a
function of traction force, μ, from μ = 0.5 Nm−1 to μ = 6.0 Nm−1

with cell-cell adhesion cost of J11 = 2.55. Each point corresponds to
the average of 10 simulations.
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will consider that the cell is polarized along the x axis, such
that a small increase in γ implies a retraction along the y axis
and an extension along the x axis. Conversely, a small decrease
in γ implies a retraction along the x axis and an extension along
the y axis. We will look into the effect of the durotaxis term (4)
of the Hamiltonian, and we will see for which traction force it
will be energetically more favorable for the cells in the matrix
to acquire a value of γ larger than the unity.

Given a cell with shape defined by the parameter γ aligned
in the x direction, the number of lattice sites during a MHA step
that are able to be added to the cell along thex axis and along the
y axis are proportional to ly and lx , respectively. The acceptance
probability of increasing γ can then be approximated to the
probability of an expansion along x axis after having retracted
along the y axis, i.e., p(γ + δγ |γ ) = pe

x(γ )pr
y(γ ). Likewise,

a decrease in γ is approximately p(γ − δγ |γ ) = pe
y(γ )pr

x(γ ).
However, since the durotaxis term in the Hamiltonian is nega-
tive for extensions, pe

x(γ ) = pe
y(γ ) = 1. Considering that the

two states of the cell with γ and γ + δγ have approximately the
same probabilities of retraction, i.e., pr

x(γ ) ≈ pr
x(γ + δγ ) and

pr
y(γ ) ≈ pr

y(γ + δγ ), the equation for equilibrium between
both states becomes

lyp
r
y(γ ) = lxp

r
x(γ ), (6)

where the left-hand side represents the probability of in-
creasing γ weighted by the elements that are able to extend
along the x axis and, in a similar manner, the right-hand side
represents probability for decreasing γ . In equilibrium these
two probabilities are identical. Let χ = lyp

r
y(γ ) − lxp

r
x(γ ),

such that when χ > 0 the cell tends to become more polarized
(in the x direction), and when χ < 0, the cell dynamics tends
to decrease γ .

In order to calculate the probabilities of retraction, we will
start from looking into the forces acting on the ECM by the cell.
The traction force field of that cell is given by the continuum
version of the Lemmon and Romer traction force model (2)
applied to this particular cell:

f (x) =
∫ lx/2

−lx/2

∫ ly/2

−ly/2
dx ′ dy ′μ(x′ − x) = −μVt x. (7)

Note that μ is corresponds to the traction force parameter per
pixel in the simulation (Vt is the area of the cell in number
of pixels), and it is a scaled parameter already accounting for
ECM thickness, meaning that the force f (x) = −μVt x has
units of stress. By using the definition of the Young’s modulus,
the strain in the matrix can then be estimated by

εxx(lx/2,0) ≈ μVt lx

2E0
, (8)

εyy(0,ly/2) ≈ μVt ly

2E0
. (9)

Calculating the alteration of the Young’s modulus using the
strain-stiffening approximation (3) yields

Ex(γ ) = E0 + ρμγ, (10)

Ey(γ ) = E0 + ρμ

γ
, (11)

FIG. 9. Representation of the function χ , defined in Eq. (14), for
E0 = 10 KPa, as a function of the anisotropy parameter γ , for three
different values of μ. When μ < μc, there are two stable fixed points,
A and C, and one unstable fixed point, B. Since A is stable, near
isotropic cells prefer to remain apolar. As μ increases, the unstable
point B moves towards fixed point A until, at μ = μc, B ceases to
exist for μ > 0 and A becomes unstable. For values of μ > μc cells
prefer to polarize instead of becoming isotropic. Furthermore, it is
readily apparent that the value of the derivative of χ at γ = 1 dictates
whether A is stable or unstable. The values of γ at the C stable point
are overestimated due to not taking into account the interface energy
term of the CPM.

where Ex is the perceived Young’s modulus along the x axis
of the cell surface at x = lx/2, Ey is the perceived Young’s
modulus along the y axis of the cell surface at y = ly/2, and
ρ = V

3/2
t /(2ε0). The durotaxis term of each retraction, where

it is assumed all motion is performed along the eigenvectors
of strain, is simply given by f (Ex(γ )) and f (Ey(γ )), using
Eq. (5). Finally, the probabilities of retraction are given by

pr
x(γ ) = e

− α

1+e
−β(E0−E1/2+ρμγ )

, (12)

pr
y(γ ) = e

− α

1+e
−β(E0−E1/2+ρμ/γ )

, (13)

and χ is

χ (γ ) =
√

Vt

γ
e
− α

1+ζe−βρμ/γ −
√

Vtγ e
− α

1+ζe−βρμγ , (14)

where ζ = e−β(E0−E1/2).
By plotting χ as a function of γ for several values of μ (see

Fig. 9 for an example plotted for E0 = 10 KPa), it is possible to
observe a bifurcation of the nonpolarized configuration (γ =
1). In fact, this configuration is stable for μ below a critical
value μc, and it becomes an unstable fixed point for μ > μc.
Strikingly, increasing the traction force even further brings the
polarized cell stable fixed point to lower values of γ , until again
there is only a single fixed point at γ = 1.

From Fig. 9 it becomes readily apparent that when μ reaches
its critical value,

μ = μc ⇒ ∂χ (γ )

∂γ

∣∣∣∣
γ=1

= 0. (15)
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FIG. 10. Critical value of the traction force parameter, μc, as a
function of substrate stiffness, E0. Comparison between the theo-
retical prediction (16), blue line, and estimated values of μc from
simulated results for E0 = 3,6,10,12,14,16 kPa, for N = 500 cells.
The prediction for mid- to high values of E0 is fairly accurate,
considering the precision of the estimative and the approximations
made when deriving Eq. (16). The theoretical prediction of μc(E0)
is obtained by numerically searching for the smallest root of the
left-hand side of Eq. (16) for a fixed value of E0.

By plugging χ (γ ) from Eq. (14) into this condition for
criticality, we obtain the equation that μc must obey

cosh[β(E0 − E1/2 + ρμc)] − αβρ

2
μc + 1 = 0. (16)

This equation can have up to two solutions, depending on
the value of E0. When E0 is large, the durotaxis signal is
saturated according to Eq. (5), and there is no solution to this
equation. For the parameters α, β, E1/2, Vt , and ε0 used in this
work, the maximum value E0 can take and there still exist a
polarized stable fixed point is Emax

0 ≈ 17.2 kPa. Below that
value for the Young’s modulus, there are two solutions to the
above equation, with the transition from the unpolarized to
polarized cell being the one with smaller μc. Solving Eq. (16)
numerically and obtaining μc as a function of E0 (Fig. 10)
permits a comparison with the values of μc obtained from our
simulation results.

For such a simple prediction, supposing the cell a rectangle
and not considering the influence of cell-cell adhesion, the
agreement with the simulation works rather well, especially
for mid- to high values of ECM stiffness. This study indicates
that there is a critical traction force in the simulation that is
able to polarize the cells. When one cell becomes polarized, it
is able to exert more force in the matrix, deforming it more,
and guiding the neighboring cells to align with it. In this way
the networks are formed.

V. CONCLUSION

The formation of a functional capillary network is funda-
mental in many biological processes, from embryogenesis to
wound healing. This complex process involves many factors,

including endothelial cell adhesion and migration on the ECM.
We have shown, using a CPM connected with the FEM, that if
cell-cell communication and alignment in these 2D systems is
mainly driven by mechanical interactions, then the formation
of networks require the polarization and alignment of the en-
dothelial cells. This alignment occurs in substrates of suitable
rigidity that can be deformed by the cell’s traction forces. The
cell can then use the substrate’s strain-stiffening property to
become polarized. This implies the existence of a minimum
value of traction force required for the formation of networks.
This critical traction force is independent of the cell number or
of cell-cell adhesion. We have estimated analytically the value
for the critical traction force, and our estimative agreed quite
well with the simulation results. Moreover, cell-cell adhesion
is responsible for controlling how the cells group themselves,
either as dispersed cells, or as clusters. If the cells form
networks, cell-cell adhesion is then important to determine
the network morphology (number and size of meshes). This
can then be tested experimentally, for example, by observingin
vitro the resulting patterns formed by endothelial cells that have
different expression levels of adhesion molecules such as VE
cadherins.

Though these mechanical interactions have been shown to
be very important [29,30,42–45,49,50] other factors, such as
chemical gradients, may also play a role in network formation
in 2D substrates. Testing experimentally the predictions of
the model also tests the role that mechanics plays in pattern
formation. In particular, the forces exerted by cells on the
matrix could be measured in ECMs of different rigidities and
correlated with the cells’ capacity for polarization, motility,
and the observed pattern morphology. Moreover, the method
that we use to extract quantitative data from simulations
(fraction of cells in a network, dispersed or clustered) provides
a quantitative and reliable way to classify the morphologies
observed. This method can also be used to characterize the
morphologies observed in in vitro cell cultures.
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APPENDIX: FINITE ELEMENT METHOD (FEM)

The FEM reduces a difficult partial differential equation
problem into a large number of simpler equations solved
locally, eliminating all spatial derivatives in the process. The
domain is divided into smaller subdomains, called elements,
which are polygons whose vertices are called nodes. For a
steady state solution, this method results in a set of algebraic
equations that relate the nodes of adjacent elements. These
equations are solvable by error minimization.
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For our system, it is advantageous to divide the modeled
domain into a grid of square elements with the same length, L,
overlaying the CPM pixel grid.

The resulting system of equations can be written as

Kq = f , (A1)

where K is the stiffness matrix, q is a vector containing the
displacements of all nodes, and f is a vector containing the
forces applied to all nodes. Note that, since the displacements
and forces are vectorial quantities, q and f store both compo-
nents in a predetermined pattern. The matrix K is assembled
from smaller matrices that relate the displacements to the forces
on a single element. Since the elements’ shape and size are not
altered during the simulation, the local stiffness matrix, K (e),
needs to be computed only once.

The local set of equations is obtained by applying the
principle of virtual work. Consider a displacement field, u(e),
defined inside the element by interpolating the displacement
values at the nodes, q(e). The matrix K (e) of the resulting system
of equations is given by

K (e) =
∫ 1

−1

∫ 1

−1

L2

4
BT CB dξ dη, (A2)

where the integral is performed over the volume (area in
this case) of the element, with local coordinates ξ and η,
B = B(ξ,η) is a matrix that relates the node displace-

ment components to the strain tensor in vector form, ε =
(εxx,εyy,2εxy) = ε(ξ,η),

ε(ξ,η) = B(ξ,η)q(e), (A3)

and C is the stiffness tensor of the constitutive equation for an
homogeneous isotropic elastic material,

σ (ξ,η) = Cε(ξ,η), (A4)

where σ = (σxx,σyy,σxy) = σ (ξ,η) is the stress tensor in
vector form. The ECM is considered to be under plane stress
conditions, hence C depends only on the Young’s modulus,
E0, and on the Poisson’s ratio, ν,

C = E0

1 − ν2

⎛
⎝1 ν 0

ν 1 0
0 0 1

2 (1 − ν)

⎞
⎠. (A5)

The double integral is computed using the Gaussian quadrature
method for n = 2 twice. The global stiffness matrix is assem-
bled from the local matrices using the direct stiffness method,
which consists in simply adding the components of the local
stiffness matrices after correctly mapping local variables into
the global ones.

Here, after assembling the matrix K , by providing a force
vector, displacements are then computed using a precondi-
tioned conjugate gradient method.
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