
 
 

 

 

Filipa Alexandra Cardoso da Silva 

 

 

COMPOUND POISSON INTEGER-VALUED    

GARCH PROCESSES 
 

Tese de Doutoramento do Programa Inter-Universitário de Doutoramento 

em Matemática, orientada pela Professora Doutora Maria de Nazaré 

Mendes Lopes e pela Professora Doutora Maria Esmeralda Gonçalves e 

apresentada ao Departamento de Matemática da Faculdade de Ciências e 

Tecnologia da Universidade de Coimbra. 
 

Fevereiro 2016 
 
 

 

 





Compound Poisson integer-valued
GARCH processes

Filipa Alexandra Cardoso da Silva

UC|UP Joint PhD Program in Mathematics

Programa Inter-Universitário de Doutoramento em Matemática

PhD Thesis | Tese de Doutoramento

February 2016





Acknowledgements

Firstly, I would like to express my sincere gratitude to my advisors Prof. Dr. Nazaré and Prof. Dr.
Esmeralda for the continuous support on my PhD, for their patience, generosity, dedication, motivation
and immense knowledge. Their excellent guidance helped me in all the time of research and writing
of this thesis. I could not have imagined having better advisors for my PhD study. It was an honor to
work with them and to have been their student in several subjects during my training.

Besides my advisors, I would like to thank the rest of my professors that along this work gave me
some support and caring, in particular, the Prof. Dr. Adérito who always helped me with my Matlab
questions and the Prof. Dr. José Augusto for his encouraging words and advices. My sincere thanks
also goes to Prof. Dr. Christian H. Weiß and Prof. Dr. René Ferland, for their availability to visit
DMUC, for their valuable comments and for the great and stimulating seminars that they provided us.

A special thanks to the Fundação para a Ciência e a Tecnologia and to the Centro de Matemática
da Universidade de Coimbra for their financial support which was essential for the development and
dissemination of my work. Without them it would not be possible to conduct this research.

To the DMUP that welcomed me for one year, to the DMUC that once again proved to be a great
institution providing me an excellent atmosphere for doing research and for the Steering Committee
of the PhD Program in Mathematics, for them also I reserve my gratitude.

I would like to thank my old friends and the new ones that this experience gave me. As Cicero
said: "Life is nothing without friendship". I would also like to thank Joana Leite, the better roommate
and traveling companion of international conferences I could have had. For her willingness to help
me, for her support, advices, and for the great experiences we shared. My sincere thanks also goes to
my friend Fernando Marçal who kindly ceded me his painting for the front cover of this thesis.

Last but not the least, I would like to thank my family: my parents, my sisters and my godparents.
They were always supporting me and encouraging me with their best wishes, they never let me
demotivate. Thank you Júlia for all the fun we have had in the last four years and for endure my long
speeches about football. Thank you mother for letting me sleep late. Thank you parents, Elsa and
godfather for being my drivers when I needed.





Abstract

Count time series modeling has drawn much attention and considerable development in the recent
decades since many of the observed stochastic systems in various contexts and scientific fields are
driven by such kind of data. The first modelings, with linear character and essentially inspired by the
classic ARMA models, are proved to be insufficient to give an adequate answer for some empirical
characteristics, also observed in this type of data, such as the conditional heteroscedasticity. In order
to capture such kind of characteristics several models for nonnegative integer-valued time series arise
in literature inspired by the classic GARCH model of Bollerslev [10], among which is highlighted
the integer-valued GARCH model with conditional Poisson distribution (briefly INGARCH model),
proposed in 2006 by Ferland, Latour and Oraichi [25].

The aim of this thesis is to introduce and analyze a new class of integer-valued models having
an analogous evolution as considered in [25] for the conditional mean, but with an associated
comprehensive family of conditional distributions, namely the family of infinitely divisible discrete
laws with support in N0, inflated (or not) in zero. So, we consider a family of conditional distributions
that in its more general form can be interpreted as a mixture of a Dirac law at zero with any discrete
infinitely divisible law, whose specification is made by means of the corresponding characteristic
function. Taking into account the equivalence, in the set of the discrete laws with support N0, between
infinitely divisible and compound Poisson distributions, this new model is designated as zero-inflated
compound Poisson integer-valued GARCH model (briefly ZICP-INGARCH model).

We point out that the model is not limited to a specific conditional distribution; moreover, this
model has as main advantage to unify and enlarge substantially the family of integer-valued stochastic
processes. It is stressed that it is possible to present new models with conditional distributions with
interest in practical applications as, in particular, the zero-inflated geometric Poisson INGARCH and
the zero-inflated Neyman type-A INGARCH models, and also recover recent contributions such as the
(zero-inflated) negative binomial INGARCH [81, 84], (zero-inflated) INGARCH [25, 84] and (zero-
inflated) generalized Poisson INGARCH [52, 82] models. In addition to having the ability to describe
different distributional behaviors and consequently, different kinds of conditional heteroscedasticity,
the ZICP-INGARCH model is able to incorporate simultaneously other stylized facts that have been
recorded in real count data, in particular overdispersion and high occurrence of zeros.

The probabilistic analysis of these models, concerning in particular the development of necessary
and sufficient conditions of different kinds of stationarity (first-order, weak and strict) as well as the
property of ergodicity and also the existence of higher order moments, is the main goal of this study.
It is still derived estimates for the parameters of the model using a two-step approach which is based
on the conditional least squares and moments methods.





Resumo

A modelação de séries temporais de contagem conheceu nas últimas décadas grande impulso e
desenvolvimento, devido sobretudo ao fato de muitos dos sistemas estocásticos observados, nos mais
diversos contextos e áreas científicas, terem como resposta tal tipo de dados. As primeiras modelações,
de caráter linear e essencialmente inspiradas nos clássicos modelos ARMA, revelaram-se insuficientes
para dar resposta a algumas características empíricas, também observadas neste tipo de dados, como
a heteroscedasticidade condicional. De modo a ter em conta tal tipo de características, surgiram
na literatura vários modelos para séries temporais de valores inteiros não negativos inspirados nos
GARCH clássicos de Bollerslev [10], entre os quais se destacam os modelos GARCH de valores
inteiros com distribuição condicional de Poisson (designados modelos INGARCH), propostos em
2006 por Ferland, Latour e Oraichi [25].

O objetivo fundamental deste trabalho é introduzir e analisar uma nova classe de modelos de
valores inteiros com evolução para a média condicional análoga à considerada em [25] mas em
que se considera associada uma família abrangente de leis condicionais, nomeadamente a das leis
infinitamente divisíveis discretas com suporte em N0, inflacionadas (ou não) em zero. Consideramos
então uma família de leis condicionais que, na sua forma mais geral, podem ser interpretadas como
misturas de uma lei de Dirac com uma qualquer lei discreta infinitamente divisível, sendo a sua
especificação feita através da função característica. Em consequência da equivalência, no conjunto
das leis discretas com suporte N0, entre leis infinitamente divisíveis e leis de Poisson compostas, este
novo modelo denomina-se modelo GARCH de valor inteiro Poisson Composto inflacionado em zero
(abreviadamente ZICP-INGARCH).

Para além de não se limitar a considerar como lei condicional uma lei específica, este modelo
tem como principal vantagem unificar e alargar significativamente a família de processos estocásticos
de valores inteiros. Destaca-se que é possível evidenciar novos modelos com leis condicionais com
interesse nas aplicações práticas como, em particular, os modelos INGARCH Poisson geométrico e
INGARCH Neyman tipo-A eventualmente inflacionados em zero, e também reencontrar contribuições
recentes como os modelos INGARCH binomial negativo [81, 84], INGARCH Poisson [25, 84] e
INGARCH Poisson generalizado [52, 82] eventualmente inflacionados em zero. Para além de ter a
capacidade de descrever diferentes comportamentos distribucionais e, consequentemente, diferentes
tipos de heteroscedasticidade condicional, o modelo ZICP-INGARCH consegue incorporar outros
factos estilizados muito associados a séries de contagem, nomeadamente a sobredispersão e a elevada
ocorrência de zeros. A análise probabilista destes modelos, no que diz respeito em particular ao
desenvolvimento de condições necessárias e suficientes de estacionaridade (de primeira ordem, forte e
fraca) e ergodicidade e também de existência de momentos de ordem elevada, é o objeto principal
deste estudo. São ainda determinados estimadores para os parâmetros do modelo seguindo uma
metodologia em duas etapas que envolve o método dos mínimos quadrados e o dos momentos.
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Chapter 1

Introduction

"God made the integers, all the rest is the work of man." - Kronecker

A time series is a collection of observations made sequentially through time. The list of areas
in which time series are studied is endless. Examples include meteorology (e.g., the temperature at
a particular location at noon on successive days), electricity (e.g., electricity prices in a particular
country for successive one-hour periods), or tourism (e.g., the monthly number of tourist arrivals in a
certain city). The main goal of time series analysis is to develop mathematical models that enable plau-
sible description of the phenomena, allowing to understand its past and to predict its future behavior.

1.1 Count time series

Until the end of the seventies, the studies of time series models were dominated by real-valued
stochastic processes. However, many authors have underlined that such models do not give an
adequate answer for integer-valued time series. For instance, when we deal with low dimension
samples disregarding the nature of the data leads, in general, to senseless results as the asymptotic
behavior of the corresponding statistical parameters or distributions is not available ([27]).

Thus, the investigation of appropriate methodologies for integer-valued time series has attracted
much attention in the last years, also motivated by its importance and common occurrence in various
contexts and scientific fields. In particular, the interest in nonnegative integer-valued time series, or
count time series, has been growing since integer-valued time series often arise as counts of events.
The hourly number of visits to a web site, the daily number of hospital patient admissions, the monthly
number of claims reported by an insurance company, the yearly number of plants in a region or the
annual number of couples who marry in Portugal are some examples of count time series.

This type of data exhibits certain empirical characteristics which are crucial for correct model
specification and consequent estimation and forecasting. The variance greater than the mean (or
overdispersion) and an excess of zeros (or zero inflation) are commonly observed in count time series
being its modeling of great interest for many researchers. The reasons frequently reported in literature
for such overdispersion are the presence of positive correlation between the monitored events or a
variation in the probability of the monitored events (see Weiß [77] and references therein).

1



2 Introduction

The observed overdispersion may also be the result of excess of zeros in the count data. Such
data sets are abundant in many disciplines, including econometrics, environmental sciences, species
abundance, medical, and manufacturing applications ([67]). This potential cause of overdispersion
is of great interest because zero counts frequently have special status. First, the zeros may be true
values concerning the absence of the event of interest (e.g. no pregnancies, no diseases, no alcohol
consumption and no victimizations). These are called expected or sampling zeros. Second, some of
the zeros may reflect those individuals who produce always a zero in the event of interest. For example,
it is reasonable to assume that among the women who have not been pregnant, at least a few of them
are simply unable to get pregnant; an individual may have no disease response because of immunity
or resistance to the disease; a student may never drink alcohol for health, religious, or legal reasons.
These zeros are inevitable and are called structural zeros. Finally, the zeros may be the result of
underreporting of the occurrence of the event or they may be due to design, survey or observer errors.
For example, respondents may not report victimizations due to forgetfulness or social desirability.
It has also been noted that certain crimes go unreported to the police such as victimless crimes (e.g.
drug offenses, gambling, and prostitution), intimate partner violence, and minor offenses in general
([62]). Zuur et al. [87], about the bird abundances in forest patches, referred that a design error can be
obtained from sampling for a very short time period, sampling in the wrong season, or sampling in a
small area. Sometimes these zeros are called false zeros. The production of structural zeros or the
underreporting events can be conceptualized as sources of zero inflation. Perumean-Chaney et al. [62]
used simulations to assess the importance of accounting for zero inflation and the consequences of its
misspecifying in the statistical model.

To illustrate the importance of taking into account the characteristics referred above we consider a
time series that represents counts of hours in a day in which the prices of electricity for Portugal and
Spain are different. OMIE is the company that manages the wholesale electricity market (referred
to as cash or “spot”) on the Iberian Peninsula. Electricity prices in Europe are set on a daily basis
(every day of the year) at 12 noon, for the twenty-four hours of the following day, known as daily
market. The market splitting is the mechanism used for setting the price of electricity on the daily
market. When the price of electricity is the same in Portugal and Spain, which corresponds to the
desired situation, it means that the integration of the Iberian market is working properly. (1)

Fig. 1.1 Daily number of hours in which the price of electricity of Portugal and Spain are different.

1This information was taken from the OMIE site (http://www.omie.es).
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The data presented in Figure 1.1 consists of 153 observations, starting from April 2013 and ending
in August 2013. Empirical mean and variance of the data are 1.8039 and 9.4481, respectively. There
are 92 zeros which corresponds to 60.13% of the series. Thus, this series presents a large proportion of
zeros, as well as evidence of overdispersion. Let us observe that this series exhibits also characteristics
of heteroscedasticity.

1.2 A review in count data literature

It is not possible to list here all the integer-valued models available in the literature. We present a
sample of what has been developed hoping to illustrate the great interest in this subject in recent
years. Many of the proposed integer-valued models take as reference the modeling by the real-valued
stochastic processes, namely the autoregressive moving average (or briefly, ARMA) evolution.

One of these approaches was proposed by Jacobs and Lewis [43, 44] developing a discrete
ARMA (DARMA) model using a mixture of a sequence of independent and identically distributed
(i.i.d.) discrete random variables. Another way to obtain models for integer-valued data consists
in replacing the usual multiplication in the standard ARMA models by a random operator, which
preserves the discreteness of the process, denominated thinning operator. This operator was introduced
as the binomial thinning and leads to the family of integer-valued ARMA (INARMA) models.
Although originally introduced by Steutel and van Harn [72] for theoretical purposes, adding to its
intuitive interpretation and mathematical elegance the fact that it has similar properties with the scalar
multiplication turned it quite popular. The first INARMA model, the INAR(p) model, was proposed
by McKenzie [54] and Al-Osh and Alzaid [4] for the case p = 1, and it has been developed by several
authors (e.g., [6], [20], [70] and [71]). Therefore, several alternative thinning concepts have been
developed as the signed thinning or the generalized thinning, yielding the SINAR(p) model [49] and
the GINAR(p) model [30], respectively. The first INMA(q) models have been introduced by Al-Osh
and Alzaid [5] and McKenzie [55] and more recent approaches may be found in [11] and [76]. For a
recent review of a broad variety of such thinning operations as well as how they can be applied to
define ARMA-like processes we refer, for example, Weiß [76] and Turkman et al. [74, chapter 5].

Alternatively to the thinning operation, Kachour and Yao [48] used the rounding operator to the
nearest integer to introduce the called p-th order rounded integer-valued autoregressive (RINAR(p))
model. One of the advantages of this model is the fact that it can be used to analyse a time series with
negative values, a situation also covered by the SINAR(p) model. Recently, Jadi et al. [45] studied
the INAR(1) process with zero-inflated Poisson innovations and Kachour [47] proposed a modified
and generalized version of the RINAR(p) model. Some integer-valued bilinear models have been also
introduced by Doukhan et al. [18] and Drost et al. [19].

As in real-valued modeling, the introduction of conditionally heteroscedastic models seems to be
very useful in many important situations. To take into account this feature, Heinen [40] defined an
autoregressive conditional Poisson (ACP) model by adapting the autoregressive conditional duration
model of Engle and Russell [23] to the integer-valued case, assuming a conditional Poisson distribution.
Because of its analogy with the standard GARCH model introduced by Bollerslev [10] in 1986, Ferland
et al. [25] suggested to denominate these models as integer-valued GARCH (INGARCH, hereafter)
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processes. Specifically, they defined the INGARCH model as a process X = (Xt , t ∈ Z) such that
Xt |X t−1 : P(λt), ∀t ∈ Z,

λt = α0 +
p

∑
j=1

α jXt− j +
q

∑
k=1

βkλt−k,

(1.1)

with α0 > 0, α j ≥ 0, βk ≥ 0, j = 1, ..., p, k = 1, ...,q, p ≥ 1, q ≥ 1, X t−1 the σ−field generated by
{Xt−1,Xt−2, . . .} and where P(λ ) represents the Poisson distribution with parameter λ . If q = 1 and
β1 = 0, the INGARCH(p,q) model is simply denoted by INARCH(p).

This model has already received considerable study in the literature. In particular, it has been
presented by Heinen [40] a first-order stationarity condition of the model for any orders p and q, and
the corresponding variance and autocorrelation function for the particular case p = q = 1. Ferland et al.
[25] extended the studies of this model establishing a condition for the existence of a strictly stationary
process which has finite first and second-order moments and deduced the maximum likelihood
parameters estimators. They also stated a condition under which all moments of an INGARCH(1,1)
model are finite. Fokianos et al. [26] considered likelihood-based inference when p = q = 1 using
a perturbed version of the model. Weiß [77] derived a set of equations from which the variance
and the autocorrelation function of the general model can be obtained. Neumann [56], Davis and
Liu [16] and Christou and Fokianos [13] discussed some aspects related to the ergodicity. For the
INARCH(p) model, Zhu and Wang [86] derived conditional weighted least squares estimators of the
parameters and presented a test for conditional heteroscedasticity. Given the simple structure and
the practical relevance of the INARCH(1) process, Weiß [77, 78, 79] studied its properties in more
detail. He characterized the stationary marginal distribution in terms of its cumulants, showed how
to approximate its marginal process distribution via the Poisson-Charlier expansion and calculated
its higher-order moments and jumps. He also provided a conditional least squares approach for the
estimation of its two parameters and constructed various simultaneous confidence regions.

Although the INGARCH model had been applied to several fields and appears to provide an
adequate framework for modeling overdispersed count time series data with conditional heteroscedas-
ticity, some authors pointed out that one of its limitations is to have the conditional mean equal to the
conditional variance. For instance, Zhu [81] referred that this restriction of the model can lead to poor
performance in the existence of potential extreme observations. In order to address this issue and to
improve the model, some authors proposed to replace the Poisson distribution by other discrete ones.

Based on the double-Poisson (DP) distribution ([21]), Heinen [40] introduced two versions of an
INGARCH(1,1) model and Grahramani and Thavaneswaran [37] extended its results to higher orders.
This DP-INGARCH(p,q) model is difficult to be utilized because of the intractability of a normalizing
constant and moments. On the other hand, Zhu [81] used the negative binomial distribution instead
of the Poisson to introduce the NB-INGARCH(p,q) model. The numerical results obtained in the
study of the monthly counts of poliomyelitis cases in the United States from 1970 to 1983 indicated
that the proposed approach performs better than the previously referred Poisson and double-Poisson
model-based methods. Other alternatives proposed by Zhu were INGARCH models based on the
generalized Poisson and the Conway-Maxwell Poisson ([69]) distributions namely, the GP-INGARCH
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([82]) and the COM-Poisson INGARCH ([83]) models. Motivated by the zero inflation phenomenon,
Zhu [84] also recently introduced the ZIP-INGARCH and the ZINB-INGARCH models and Lee et al.
[52] the ZIGP AR model, replacing the conditional Poisson distribution by the zero-inflated Poisson,
zero-inflated negative binomial and zero-inflated generalized Poisson distributions, respectively. The
analysis of the weekly dengue cases in Singapore from year 2001 to 2010 encouraged Xu et al. [80]
to propose a more general model, the DINARCH (which includes as special cases the INARCH,
DP-INARCH and GP-INARCH models), where the conditional mean of Xt given its past is assumed to
satisfy the second equation of (1.1) with q = 1, β1 = 0 and the ratio between the conditional variance
and the conditional mean is constant. Let us observe that the DP-INGARCH, the GP-INGARCH,
the DINARCH and the COM-Poisson INGARCH models referred above were proposed with the
aim of capturing overdispersion and underdispersion in the same framework. In fact, the opposite
phenomenon to the overdispersion, that is, the underdispersion (which means variance less than the
mean) occurs less frequently but it may be encountered in some real situations (see [66] and references
therein for some examples).

1.3 Overview of the Thesis

In this thesis, instead of specifying the discrete conditional distribution, we propose a wide class of
integer-valued GARCH models which includes, as particular cases, some of the recent contributions
referred above as well as new interesting models with practical potential. The study of the above
INGARCH-type models, especially the Poisson INGARCH, NB-INGARCH, GP-INGARCH and
NB-DINARCH models, showed us that there was a common fundamental basis between some of
them: the conditional distribution is nonnegative integer-valued infinitely divisible and the evolution
of the conditional mean satisfies, unless a scale factor, the second equation of (1.1).

The family of infinitely divisible distributions is huge and particularly important. Thus, the
introduction of an INGARCH model with a conditional nonnegative integer-valued infinitely divisible
distribution seems to be natural since it unifies the study of several models already introduced in
literature and assures the enlargement of the class of the INGARCH models. The equivalence, in
the discrete case, between the infinitely divisible distributions and the compound Poisson ones ([24])
allows us to define easily this new general model. Given the importance of this equivalence we decide
to denominate the model as compound Poisson INGARCH (CP-INGARCH hereafter).

Due to the recent enthusiasm to the zero-inflated INGARCH models and in order to add the
characteristic of zero inflation to the general class of models introduced, we extend it and we propose
the Zero-Inflated Compound Poisson INGARCH model, denoted ZICP-INGARCH. This model is
able to capture in the same framework characteristics of zero inflation and, in a general distributional
context, different kinds of overdispersion and conditional heteroscedasticity.

After the Introduction, this Thesis is organized as follows:
In Chapter 2 we introduce the compound Poisson INGARCH model by means of the conditional

characteristic function, as it is a closed-form of characterizing the class of discrete infinitely divisible
laws. The wide range of this proposal is stressed referring the most important models recently studied
and also presenting a general procedure to obtain new ones. In fact, we show the main nature of
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the processes that are solution of the model equations, namely the fact that they may be expressed
as a Poissonian random sum of independent random variables with common discrete distribution.
Among the discrete infinitely divisible laws with support in N0, we highlight the geometric Poisson
and the Neyman type-A ones which allow us the introduction of new models: the geometric Poisson
INGARCH and the Neyman type-A INGARCH. We point out the practical interest of these models as
the associated conditional laws are particularly useful in various areas of application. The geometric
Poisson distribution is, for instance, useful in the study of the traffic accident data and the Neyman
type-A law is widely used in describing populations under the influence of contagion ([46]).

Chapter 3 is dedicated to the properties of stationarity and ergodicity of this new class of processes
which leads us to impose some hypotheses which, as we will see, are not too restrictive. A very
simple necessary and sufficient condition on the model coefficients of first-order stationarity is given.
Imposing an assumption on the family of the conditional distributions, which do not exclude any of
the particular important cases referred above, we also state a necessary and sufficient condition of
weak stationarity by a new approach based on a vectorial state space representation of the process.
This condition is illustrated by the study of some particular cases. The autocorrelation function of the
CP-INGARCH(p,q) is deduced and, from the general closed-form expression of the m-th moment
of a compound Poisson random variable, a necessary and sufficient condition ensuring finiteness of
its moments is established in the case p = q = 1. Finally, we finish the chapter presenting a strictly
stationary and ergodic solution of the model in a wide subclass. The existence of such solution is
guaranteed under the same simple condition of first-order stationarity.

Chapter 4 is focused on the CP-INARCH(1) model. Its importance and great practical relevance is
supported by the applications already studied and reported using the model with particular conditional
distributions: the monthly claims counts of workers in the heavy manufacturing industry [77], the
weakly number of dengue cases in Singapore [80] or the monthly counts of poliomyelitis cases in the
U.S. [81] are some examples of real data where the model performs well. We determine its moments
and cumulants up to order 4 and deduce its skewness and kurtosis. A procedure to estimate the model
parameters, without specifying the conditional law by its density probability function, is presented
based on a two-step approach using the conditional least squares and moments estimation methods.
We finish presenting a simulation study to examine its performance.

In Chapter 5 we add the characteristic of zero inflation to the family of conditional distributions
defining the ZICP-INGARCH model. The chapter is dedicated to generalize some of the results stated
previously in what concerns the properties of stationarity, the autocorrelation function, expressions for
moments and cumulants and a condition ensuring the finiteness of the moments of the process.

Finally, conclusions and some suggestions for future research are presented.



Chapter 2

The compound Poisson integer-valued
GARCH model

The aim of this chapter is to introduce a new class of integer-valued processes namely the compound
Poisson integer-valued GARCH model. We start, in Section 2.1, by reviewing general concepts and
results directly related to the infinitely divisible laws. In particular, we present a relation between
discrete infinitely divisible and compound Poisson distributions. Using this relation, we define a new
integer-valued GARCH model in Section 2.2, making explicit the conditional distribution by using the
characteristic function of a compound Poisson law. In Section 2.3 we make an overview of important
examples that can be included in this new framework.

2.1 Infinitely divisible distributions and their fundamental properties

Infinitely divisible distributions play an important role in varied problems of probability theory.
This concept was introduced by de Finetti [17] in 1929 in the context of the processes with

stationary independent increments, and the most fundamental results were developed by Kolmogorov,
Lévy and Khintchine in the thirties. In this section we define infinitely divisible distributions and
describe their main properties. Then we present compound Poisson distributions and from the relation
between them we introduce, in the next section, an integer-valued GARCH model with a discrete
infinitely divisible conditional distribution with support in N0.

Definition 2.1 (Infinite divisibility) A random variable X (or equivalently, the corresponding distri-
bution function) is said to be infinitely divisible if for any positive integer n, there are i.i.d. random
variables Yn, j, j = 1, ...,n, such that X d

= Yn,1 + . . .+Yn,n, where d
= means "equal in distribution".

The notion of infinite divisibility can also be introduced by means of the characteristic function.
In fact, for an infinitely divisible distribution its characteristic function ϕX turns out to be, for every
positive integer n, the n-th power of some characteristic function. This means that there exists, for
every positive integer n, a characteristic function ϕn such that ϕX(u) = [ϕn(u)]n, u ∈ R. In this case,
we say that ϕX is an infinitely divisible characteristic function. The function ϕn is uniquely determined
by ϕX provided that one selects the principal branch of the n-th root.

Most well-known distributions are infinitely divisible. We give some examples in the following.

7
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Example 2.1 a) Let X = a ∈R, with probability 1. For every n ∈N, there are i.i.d. random variables
Yn, j, j = 1, ...,n, with the distribution of Yn, j concentrated at a

n , such that X has the same
distribution as Yn,1 + . . .+Yn,n. Therefore a degenerate distribution is infinitely divisible.

b) Let X have a Poisson distribution with mean λ > 0. In this case the characteristic function is
ϕX(u) = exp{λ (eiu −1)}, u ∈ R, which is infinitely divisible since ϕn(u) = exp{λ/n(eiu −1)}
is the characteristic function of the Poisson distribution with mean λ/n and ϕX(u) = (ϕn(u))n.

c) Let X have the gamma distribution with parameters (α,λ ) ∈]0,+∞[×]0,+∞[. In this case the
characteristic function is given by ϕX(u) = (λ/(λ − iu))α , u ∈ R. Thus X is infinitely divisible
since ϕn(u) = (λ/(λ − iu))α/n is the characteristic function of the gamma distribution with
parameters (α

n ,λ ) and ϕX(u) = (ϕn(u))n. In particular, the exponential distribution with
parameter λ (recovered when α = 1) is also infinitely divisible.

d) Stable laws form a subclass of infinitely divisible distributions. A random variable X is called
stable (or said to have a stable law) if for every n ∈ N, there exist constants an > 0 and bn ∈ R
such that X1 + ...+Xn

d
= anX + bn, where X j, j = 1, ...,n, are i.i.d. random variables with

the same distribution as X. Examples of such laws are the normal, the Cauchy and the Levy
distributions (1). By the definition of stability, for every n ∈ N, there exist an > 0 and bn ∈ R
such that 1

an
(X1 + ...+Xn −bn) = ∑

n
j=1

1
an

(
X j − bn

n

)
has the same law as X. But 1

an

(
X j − bn

n

)
,

j = 1, ...,n, are i.i.d. random variables, and hence the stable law of X is infinitely divisible.

e) The class of the compound Poisson distributions is also infinitely divisible. Because of its impor-
tance in the study of infinite divisibility we discuss them in detail later.

A random variable with a bounded support cannot be infinitely divisible unless it is a constant.
This fact, proved in the following theorem, immediately excludes the uniform, the binomial and the
beta distributions from the class of infinitely divisible distributions.

Theorem 2.1 A non-degenerate bounded random variable is not infinitely divisible.

Proof: We make the proof by contradiction. Let us suppose that X is an infinitely divisible random
variable such that |X | ≤ a < ∞, with probability 1 and non-degenerate. Then for every positive integer
n, by Definition 2.1, there exist i.i.d. random variables Yn, j, j = 1, ...,n, with some distribution Fn

such that X has the same distribution as Yn,1 + ...+Yn,n. Since X takes values in the interval [−a,a],
the supremum of the support of Fn is at most a/n. This implies V (Yn,1)≤ E(Y 2

n,1)≤ (a/n)2 and hence

0 ≤V (X) = n V (Yn,1)≤ n(a/n)2 = a2/n, ∀n ∈ N,

that is, 0 ≤V (X)≤ infn∈N a2/n = 0. So X is a constant, which is the contradiction. �

Also the laws with characteristic functions having zeros cannot be infinitely divisible. The next
theorem shows this result and some other important properties of infinitely divisible distributions.

1For more information on stable laws see [58] and [73].
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Theorem 2.2 We have the following properties:

(i) The product of a finite number of infinitely divisible characteristic functions is also an infinitely
divisible characteristic function. In particular, if ϕ is an infinitely divisible characteristic
function then ψ = |ϕ|2 is also infinitely divisible;

(ii) The characteristic function of an infinitely divisible distribution never vanishes;

(iii) The distribution function of the sum of a finite number of independent infinitely divisible random
variables is itself infinitely divisible;

(iv) A distribution function which is the limit, in the sense of weak convergence, of a sequence of
infinitely divisible distributions functions is itself infinitely divisible.

Proof:

(i) Regarding the recurrence property, it is sufficient to consider the case of two characteristic
functions. So, let θ and φ be infinitely divisible characteristic functions with θ(u) = [θn(u)]n

and φ(u) = [φn(u)]n, u ∈ R, ∀n ∈ N. The function ϕ = θφ is a characteristic function and

ϕ(u) = [θn(u)]n[φn(u)]n = [θn(u)φn(u)]
n = [ϕn(u)]n, u ∈ R,

for every n ∈ N, where ϕn = θnφn is a characteristic function. Hence, ϕ is infinitely divisible.

(ii) Let ϕ be an infinitely divisible characteristic function. From (i), |ϕ|2 is also infinitely divisible
and then, for any n ∈ N, θn = |ϕ| 2

n is a characteristic function. But

∀u ∈ R, lim
n→∞

θn(u) = lim
n→∞

|ϕ(u)|
2
n =

{
0, for {u : ϕ(u) = 0}
1, for {u : ϕ(u) ̸= 0}.

Since ϕ is uniformly continuous in R and ϕ(0) = 1, then ϕ(u) ̸= 0 in a neighborhood of
0. Hence limn→∞ θn(u) = 1 in a neighborhood of 0. By the Lévy Continuity Theorem (2),
limn→∞ θn(u) is a characteristic function. Since its only possible values are 0 and 1, and since
all characteristic functions are uniformly continuous in R, it cannot be zero at any value of u.

(iii) As in (i), we just have to prove the statement for two random variables. Let ϕX and ϕY be
characteristic functions of X and Y , respectively, with X and Y independent infinitely divisible
random variables. For each positive integer n, let θn and φn be characteristic functions which
satisfy ϕX(u) = [θn(u)]n and ϕY (u) = [φn(u)]n, u ∈ R. Then, from the independence,

ϕX+Y (u) = ϕX(u) ·ϕY (u) = [θn(u) ·φn(u)]n, n ≥ 1.

Since θn ·φn is a characteristic function, the result follows.

2Let {Xn}n∈N be a sequence of random variables with Xn having characteristic function φn. If Xn converges weakly (or
in law) to X then limn→∞ φn(u) = φX (u), u ∈ R. Conversely if φn converges pointwise to a function φ which is continuous
at 0, then φ is a characteristic function of a random variable X , and Xn → X . For a proof see, e.g., [65, p. 304].
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(iv) Let us suppose that the sequence
(
F [k]
)

of infinitely divisible distribution functions converges to
the distribution function F , as k → ∞. If ϕ [k] and ϕ are the characteristic functions of F [k] and
F , respectively, then from the Lévy Continuity Theorem, limk→∞ ϕ [k](u) = ϕ(u), u ∈ R. By
the condition of infinite divisibility, for every n ∈ N, ϕ

[k]
n (u) = [ϕ [k](u)]1/n is a characteristic

function and never vanishes for any u ∈ R (from (ii)). Thus, for any n ∈ N,

lim
k→∞

ϕ
[k]
n (u) = lim

k→∞

[ϕ [k](u)]1/n = [ϕ(u)]1/n = ϕn(u), ∀u ∈ R.

As ϕ is a characteristic function it follows from the Bochner’s Theorem (3) that ϕn is a
characteristic function. Since ϕ(u) = [ϕn(u)]n, u ∈ R, for every n ∈ N, with ϕn a characteristic
function, the proof is complete. �

Remark 2.1 We note that, generally, the converse of the statements of Theorem 2.2 are not true.
For instance, in (ii) let us consider the Bernoulli distribution with parameter p ̸= {0, 1

2 ,1}. It
is not infinitely divisible because its support is {0,1}, so bounded (Theorem 2.1). Its characteristic
function is given by ϕ(u) = 1− p+ peiu and has no real roots, except when p = 1

2 . In fact,

ϕ(u) = 0 ⇔ cos(u)+ isin(u) = (p−1)/p

⇒ sin(u) = 0 ⇔ u = kπ, k ∈ Z,

⇒ cos(kπ) =

{
−1, if k odd

1, if k even.

Then ϕ(u) = 0 only when p = 1
2 , u = kπ , and k odd. So we have an example of a distribution with a

characteristic function that has no real roots but it is not infinitely divisible.
For the statement (i) and (iii), Gnedenko and Kolmogorov [31, p. 81] proved that ϕ such that

∀u ∈ R, ϕ(u) =
1−β

1+α

1+αe−iu

1−βe−iu , 0 < α ≤ β < 1,

and ϕ are not infinitely divisible characteristic functions whereas |ϕ|2 is the characteristic function of
an infinitely divisible law, and so the converse of (i) fails. The same example illustrates the falseness of
the converse of (iii). In fact, considering X and Y i.i.d. random variables with characteristic function
ϕ , the function ψ = ϕX−Y = |ϕ|2 is infinitely divisible.

Finally, the Poisson distribution is the limit, in the sense of weak convergence, of a sequence of
binomial distributions which proves that the converse of (iv) is false.

Theorem 2.3 If ϕ is the characteristic function of an infinitely divisible distribution function, then
for every c > 0 the function ϕc is also a characteristic function.

Proof: For c = 1/n, n ∈ N, the result follows from the definition of infinite divisibility. Since the
product of characteristic functions is again a characteristic function the statement holds for any rational

3[53, p. 60]: A continuous function φ : R→ C with φ(0) = 1 is a characteristic function if and only if φ is positive
definite, i.e., for all n ∈ N, ∑

n
j=1 ∑

n
k=1 φ(u j −uk)z jzk ≥ 0, u j ∈ R, zk ∈ C.
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number c > 0. Finally, for an irrational number c > 0 the function [ϕ]c can be approximated uniformly
in every finite interval by the function [ϕ]c

(n)
1 , where c(n)1 is a sequence of rational numbers that goes to

c. Then from the statement (iv) of Theorem 2.2 the result holds. �

Now, we present the notion of compound Poisson random variable and some of its properties. This
class of distributions is known in the literature under a wide variety of names such as stuttering Poisson
or Poisson-stopped sum distributions [46, sections 4.11 and 9.3] and it includes several well-known
laws as Poisson, negative binomial or generalized Poisson.

Definition 2.2 (Compound Poisson distribution) A random variable X is said to be compound
Poisson if X d

= Y1 + ...+YN , where N is a Poisson random variable with parameter λ > 0, and
{Yj} j≥1 are i.i.d. random variables which are also independent of N. The distribution of Yj is called
compounding or secondary distribution and we assume X equal to zero if N = 0 (4).

The following theorem provides a characterization of random variables with compound Poisson
distribution via their characteristic functions. This is a simple, but useful result.

Theorem 2.4 Let Y1, Y2, . . . be i.i.d. random variables having common characteristic function ϕY

and let N be a Poisson random variable with parameter λ , independent of {Yj} j≥1. The characteristic
function of the compound Poisson random variable X = Y1 + ...+YN is given by

ϕX(u) = exp{λ (ϕY (u)−1)}, u ∈ R.

Proof: Let us establish the result in a more general setting. Let N be a non-negative integer-valued
random variable independent of {Yj} j≥1 and having characteristic function ϕN . We have

ϕX(u) =
∞

∑
n=0

E
[
eiuX |N = n

]
P(N = n) =

∞

∑
n=0

E
[
eiu(Y1+...+YN) |N = n

]
P(N = n)

=
∞

∑
n=0

ϕ
n
Y (u)P(N = n) =

∞

∑
n=0

ein(−i lnϕY (u))P(N = n) = E[eiN(−i lnϕY (u))] = ϕN(−i lnϕY (u)),

in view of the assumptions of independence. Therefore, when N is a Poisson random variable with
parameter λ , ϕN(v) = exp{λ (eiv −1)}, v ∈ R, and the result holds. �

Following this approach we may show that the Poisson distribution with parameter λ is itself a
compound Poisson law and arises considering the random variables Y1, Y2,... Dirac distributed on {1}.

Alternatively, when X is a nonnegative integer-valued discrete random variable, we can characteri-
ze the distribution of X using its probability generating function, namely gX(z) = E(zX) = eλ (g(z)−1),
for any z ∈ C such that the expectation is finite, using the same conditioning technique as used in
Theorem 2.4, where g represents the common probability generating function of Yj, j = 1,2, ....

4We note that the distribution of Y j may be continuous. Despite this, we will see in the following that we are only
interested in discrete compound Poisson distributions so Y j will be a discrete random variable. A more general definition is
given when N is a nonnegative integer-valued random variable. In this case, X is said to have a compound distribution and
the distribution of N is called counting or compounded distribution.
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Remark 2.2 From Theorem 2.4, we can deduce that when E(Y 2
1 )< ∞, the mean and the variance of

X are given by E(X) =−iϕ ′
X(0) = λE(Y1) and V (X) =−ϕ ′′

X(0)−λ 2[E(Y1)]
2 = λE(Y 2

1 ). This means
that, except when the compounding distribution is the Dirac law on {0} or the Dirac law on {1}
(hence X is Poisson distributed), all the nonnegative integer-valued compound Poisson distributions
are overdispersed, i.e., have variance larger than the mean, since

V (X)

E(X)
=

E(Y 2
1 )

E(Y1)
= 1+

E[Y1(Y1 −1)]
E(Y1)

> 1.

Remark 2.3 The moments of any order m ≥ 1 of a compound Poisson distribution can be calculated
using the closed-form formulae provided by Grubbström and Tang [39]. They stated that for a
compound Poisson random variable X its m-th moment is given by

E(Xm) =
m

∑
r=0

1
r!

E

[
r−1

∏
k=0

(N − k)

]{
r

∑
k=0

(
r
k

)
(−1)r−kE

[(
k

∑
j=1

Yj

)m]}
, (2.1)

interpreting ∑
k
j=1Yj to be zero for k = 0. Since N follows a Poisson distribution with parameter λ its

r-th descending factorial moment is E[∏r−1
k=0 (N − k)] = λ r, for r ≥ 1 [46, p. 161]. (5)

We now give some examples of compound Poisson laws which are relevant in the following:
the negative binomial, the generalized Poisson, the Neyman type-A and the geometric Poisson
distributions. More examples can be found in [46, chap. 9].

Example 2.2 (Negative binomial distribution) Given r ∈N and p∈]0,1[, let {Yj} j≥1 be a sequence
of i.i.d. logarithmic random variables with parameter 1− p, i.e., with probability mass function

P(Yj = y) =−(1− p)y

y ln p
, y = 1,2, . . . ,

and let N be a random variable independent of {Yj} j≥1 and having Poisson law with mean −r ln p.
Then X = Y1 + ...+YN follows a negative binomial (NB for brevity) law with parameters (r, p), i.e.,

P(X = x) =

(
x+ r−1

r−1

)
pr(1− p)x, x = 0,1, ...

Indeed, from Theorem 2.4, the characteristic function of X has the form

ϕX(u) = exp{−r[ln(1− (1− p)eiu)− ln p]}=
(

p
1− (1− p)eiu

)r

,

since λ = −r ln p and ϕ(u) = ln(1− (1− p)eiu)/ ln p (which is the characteristic function of the
logarithmic distribution). So, the NB(r, p) distribution (and also the geometric(p) as particular case
when r = 1) belongs to the class of compound Poisson distributions. We observe that

E(Y1) =−1− p
p ln p

, E(Y 2
1 ) =− 1− p

p2 ln p
, E(X) =

r(1− p)
p

, and V (X) =
r(1− p)

p2 .

5In fact, Grubbström and Tang [39] proved that formula (2.1) is valid for any compound distribution.
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Example 2.3 (Generalized Poisson distribution) For 0 < κ < 1 and λ > 0, let {Yj} j≥1 be a se-
quence of i.i.d. random variables distributed according to the Borel law with parameter κ , i.e.,

P(Yj = y) =
(yκ)y−1e−κy

y!
, y = 1,2, . . . ,

and let N be a Poisson random variable independent of {Yj} j≥1 with mean λ . Then X = Y1 + ...+YN

has a generalized Poisson (GP for brevity) distribution with parameters (λ ,κ), i.e.,

P(X = x) =
λ (λ +κx)x−1e−(λ+κx)

x!
, x = 0,1, ...

In fact, for 0 < κ < 1, the probability generating function of X is given by gX(z) = eλ (z−1) where
z = ueκ(z−1) represents the probability generating function of the Borel law (6). In this case we have

E(Y1) =
1

1−κ
, E(Y 2

1 ) =
1

(1−κ)3 , E(X) =
λ

1−κ
, and V (X) =

λ

(1−κ)3 .

The next two examples will be fundamental in Section 2.3 because they allow us to introduce
some new particular integer-valued GARCH models. Because of their importance in our study and
since they involve less well-known distributions we give them more attention.

Example 2.4 (Neyman type-A or Poisson Poisson distribution) The Neyman type-A law was de-
veloped by Neyman [57] to describe the distribution of larvae in experimental field plots. It is widely
used in order to describe populations under the influence of contagion, e.g., entomology, accidents,
and bacteriology. This is a compound Poisson law with a Poisson compounding distribution.

In fact, given λ > 0, φ > 0, let {Yj} j≥1 be a sequence of i.i.d. Poisson random variables with
mean φ and let N be a Poisson random variable with mean λ and independent of {Yj} j≥1. The random
variable X = Y1 + ...+YN follows a Neyman type-A (NTA for brevity) distribution with parameters
(λ ,φ), i.e., its characteristic function is given by

ϕX(u) = exp
{

λ
[
exp
(
φ(eiu −1)

)
−1
]}

,

and its probability mass function can be expressed as

P(X = x) =
exp
{
−λ +λe−φ

}
φ x

x!

x

∑
j=1

S(x, j)λ je− jφ , x = 0,1, ...,

where the coefficient S(x, j) represents the Stirling number of the second kind (7).

We observe that E(X) = λφ and V (X) = λφ(1+φ).

6We note that the general definition of the GP distribution allows the parameter κ to take negative values, namely
max(−1,−λ/m) ≤ κ < 1, with m (≥ 4) the largest positive integer for which λ + κm > 0. Despite of this, only for
nonnegative values of κ (when κ = 0, the GP law reduces to the usual Poisson distribution with mean λ ) we can include this
distribution in the class of the compound Poisson distributions. For more details concerning the Borel and the generalized
Poisson distributions see, e.g., [14], pp. 158-160 and Chap. 9.

7We note that S(0,0) = 1, S(x,0) = 0, for x ̸= 0, S(x,1) = S(x,x) = 1, S(x, j) = 0 if j > x and these numbers satisfy the
recurrence relation S(x, j) = S(x−1, j−1)+ jS(x−1, j). For details, see e.g. [1].
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From [46, Section 9.6], when φ is small X is approximately distributed as a Poisson variable
with mean λφ and if λ is small X is approximately distributed as a zero-inflated Poisson (ZIP for
brevity, see Section 5.1) variable with parameters (φ ,1−λ ). We illustrate these properties with the
graph present in Figure 2.1, where we represent the probability mass function (p.m.f.) of the NTA
distribution considering different values for the parameters (λ ,φ).

Fig. 2.1 Probability mass function of X ∼ NTA(λ ,φ). From the top to the bottom in abscissa
x = 2, (λ ,φ) = (10,0.1) (approximately Poisson(1), with p.m.f. represented in blue), (4,1), (0.3,4)
(approximately ZIP(4,0.7), with p.m.f. represented in red).

Example 2.5 (Geometric Poisson or Pólya-Aeppli distribution) The geometric Poisson law was
described by Pólya [63] and has been applied to a variety of biological data, in the control of defects
in software or in traffic accident data (8). This is an example of a compound Poisson law with a
geometric compounding distribution. Indeed, given λ > 0 and p ∈]0,1[ let {Yj} j≥1 be a sequence of
i.i.d. geometric random variables with parameter p, i.e., with probability mass function

P(Yj = y) = p(1− p)y, y = 0,1, . . . ,

and let N be a Poisson random variable with parameter λ

1−p and independent of {Yj} j≥1. The
random variable X =Y1 + ...+YN follows a geometric Poisson (GEOMP for brevity) distribution with
parameters (λ , p), i.e., its characteristic function is given by

ϕX(u) = exp
{

λ

(
eiu −1

1− (1− p)eiu

)}
,

and its probability mass function can be expressed as

P(X = 0) = e−λ ,

8For more details see, e.g., [46, Section 9.7] or [59].
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P(X = x) =
x

∑
n=1

e−λ λ n

n!

(
x−1
n−1

)
pn(1− p)x−n, x = 1,2, ...

We observe that E(X) = λ/p, V (X) = λ (2− p)/p2 and when p = 1 the geometric Poisson
distribution reduces to the Poisson law with parameter λ . In Figure 2.2, we represent the probability
mass function of the GEOMP distribution considering different values for the parameters (λ , p).

Fig. 2.2 Probability mass function of X ∼ GEOMP(λ , p) with λ/p = 10 and p taking several values.
From the top to the bottom in abscissa x = 10, p equals 1, 0.8, 0.6, 0.4, 0.2.

Let us now prove that a compound Poisson distribution is infinitely divisible. From Theorem
2.4, we know that if X is a compound Poisson random variable then its characteristic function
has the form ϕX(u) = exp{λ (ϕ(u)− 1)}, u ∈ R, for some λ > 0 and ϕ a characteristic function.
Then, for any n ∈ N, ϕX can be represented as ϕX(u) = [ϕn(u)]n with ϕn(u) = exp

{
λ

n (ϕ(u)−1)
}

the characteristic function of the random variable Y1 + ...+YNn , where the random variable Nn has
the Poisson distribution with parameter λ/n and is independent of the random variables Y1, Y2,...
Therefore compound Poisson distributions belong to the class of infinitely divisible distributions.

Although the converse of this statement is not true, all the infinitely divisible distributions may be
obtained from the family of compound Poisson as stated in the following theorem whose proof can be
found in Gnedenko and Kolmogorov [31, p. 74].

Theorem 2.5 The class of infinitely divisible distributions coincides with the class of the compound
Poisson laws and of limits of these laws in the sense of the weak convergence.

As, in this work, we are developing models for the study of time series of counts, we now
concentrate our attention on the set of the nonnegative integer-valued discrete infinitely divisible laws.

Generally a nonnegative integer-valued discrete random variable X is called infinitely divisible
when, according to Definition 2.1, Yn, j, j = 1, ...,n, are i.i.d. nonnegative integer-valued discrete
random variables as well. Sometimes, to make a clear distinction, X is said to be "discretely infinite
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divisible" ([38, p. 26]). For instance, the discrete random variable X = 1, with probability 1, is
infinitely divisible (Example 2.1a)) but not discretely infinite divisible since, for any n ∈ N, Yn, j =

1
n

with probability 1. In the next theorem, we present necessary and sufficient conditions that allow us to
distinguish the class of the infinitely divisible laws on N0 whose components are integer-valued from
those whose components are real-valued. We will see that the extra requirement of integer-valued
components is equivalent to the condition that P(X = 0)> 0, which is also equivalent to the statement
that the support of X coincides with that of its components Yn, j, j = 1, ...,n.

Theorem 2.6 Let X be a nonnegative integer-valued infinitely divisible random variable.
The following statements are equivalent:

(i) The support of X coincides with that of each component Yn, j, j = 1, ...,n, for every n ∈ N;

(ii) For every n ∈ N, Yn, j, j = 1, ...,n, are nonnegative integer-valued;

(iii) P(X = 0)> 0.

Proof:

(i) ⇒ (ii) It is obvious from the definition of X .

(ii) ⇒ (iii) Under the assumptions on X , for all n ∈ N, there are i.i.d. nonnegative integer-valued
random variables Yn, j, j = 1, ...,n, such that X d

= Yn,1 + . . .+Yn,n. We make the proof by
contradiction. So, let us suppose that P(X = 0) = 0 and let k > 0 be the smallest integer such
that P(X = k) > 0. Since P(X = 0) = [P(Yn, j = 0)]n, for every n ∈ N then P(Yn, j = 0) = 0
which implies Yn, j ≥ 1 almost surely (a.s.). So, for a fixed n such that n < k we cannot have the

representation X d
= Yn,1 + . . .+Yn,n with Yn, j, j = 1, ...,n, nonnegative integer-valued, which is

the contradiction.

(iii) ⇒ (i) For any x > 0,

P(X = x)≥ P

(
n⋃

j=1

{
Yn,1 = 0, . . . , Yn, j−1 = 0, Yn, j = x, Yn, j+1 = 0, . . . , Yn,n = 0

})

= nP(Yn, j = x)[P(Yn, j = 0)]n−1 ≥ nP(Yn, j = x)P(X = 0), ∀n,

since [P(Yn, j = 0)]n−1 ≥ [P(Yn, j = 0)]n = P(X = 0). So in the presence of the hypothesis
P(X = 0)> 0 any possible value of Yn, j, i.e., a value taken with positive probability, is also a
possible value of X . To prove the converse inclusion see, for instance, [42, Lemma 1]. �

The following theorem characterizes all nonnegative integer-valued discrete infinite divisible
random variables and is the key for the construction of the new class of models that we propose. To
prove it we need an auxiliary lemma whose proof can be found at [28, p. 73].

Lemma 2.1 (Characterization of probability generating functions) A real-valued function g de-
fined on [0,1] is a probability generating function of a nonnegative integer-valued random variable if
and only if g(1) = 1, g(1−)≤ 1, g(0)≥ 0, and all derivatives of g are finite and nonnegative on [0,1[.
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Theorem 2.7 Let X be a nonnegative integer-valued random variable such that 0 < P(X = 0)< 1.
Then, X is infinitely divisible if and only if X has a compound Poisson distribution.

Proof: We need only to prove the necessary condition of infinite divisibility. So, let g be the
probability generating function of X which is infinitely divisible. We note that 0 < g(0)< 1. Then, for
every n ∈ N, gn = g1/n is a probability generating function. Let us define the function h in the form

hn(z) =
gn(z)−gn(0)

1−gn(0)
= 1− 1−g(z)1/n

1−g(0)1/n .

Since hn(0) = 0, hn(1) = 1 (because gn(1) = 1), hn(1−)≤ 1 and there exist all the derivatives of

hn, namely h(k)n (z) = g(k)n (z)
1−gn(0)

, which are nonnegative in [0,1[ because 1− gn(0) > 0, then from the
previous lemma hn is a probability generating function.

Letting n → ∞ and using the fact that lnα = limn→∞ n(α1/n −1) for α > 0, we have

lim
n→∞

hn(z) = 1− lim
n→∞

n(−1+g(z)1/n)

n(−1+g(0)1/n)
= 1− lng(z)

lng(0)
= h(z),

and then from the continuity theorem (9) we conclude that the function h is a probability generating
function. Then, it follows that g(z) = exp{λ (h(z)− 1)} with λ = − lng(0), i.e., g is a probability
generating function of a compound Poisson distribution, which concludes the proof. �

Let us note that any nonnegative integer-valued compound Poisson random variable X assumes the
value zero with positive probability, namely, P(X = 0) = gX(0) = e−λ (1−g(0)), which is in accordance
with the hypothesis of the previous theorems.

2.2 The definition of the CP-INGARCH model

Let X = (Xt , t ∈ Z) be a nonnegative integer-valued stochastic process and, for any t ∈ Z, let X t−1 be
the σ -field generated by {Xt−s,s ≥ 1}.

Definition 2.3 (CP-INGARCH(p, q) model) The process X is said to follow a compound Poisson
integer-valued GARCH model with orders p and q (where p,q ∈ N), briefly a CP-INGARCH(p,q), if,
for all t ∈ Z, the characteristic function of Xt conditioned on X t−1 is given by

ΦXt |X t−1
(u) = exp

{
i

λt

ϕ ′
t (0)

[ϕt(u)−1]
}
, u ∈ R, (2.2)

with

E(Xt |X t−1) = λt = α0 +
p

∑
j=1

α jXt− j +
q

∑
k=1

βkλt−k, (2.3)

9Let {Xn}n∈N be a sequence of nonnegative integer-valued random variables with Xn having probability generating
function gn. If Xn converges weakly to X then limn→∞ gn(z) = gX (z) for 0 ≤ z ≤ 1. Conversely, if limn→∞ gn(z) = g(z)
for 0 ≤ z ≤ 1 with g a function that is (left-) continuous at one, then g is the probability generating function of a random
variable X and Xn converges weakly to X . See, for example, [73, p. 489].
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for some constants α0 > 0, α j ≥ 0 ( j = 1, ..., p), βk ≥ 0 (k = 1, ...,q), and where (ϕt , t ∈ Z) is a
family of characteristic functions on R, X t−1-measurables, associated to a family of discrete laws
with support in N0 and finite mean (10). i represents the imaginary unit.

If q = 1 and β1 = 0, the CP-INGARCH(p,q) model is simply denoted by CP-INARCH(p).

Assuming that the functions (ϕt , t ∈ Z) are twice differentiable at zero, in addition to the condi-
tional expectation λt we can also specify the evolution of the conditional variance of X as

V (Xt |X t−1) =−Φ
′′
Xt |X t−1

(0)−λ
2
t =−i

ϕ ′′
t (0)

ϕ ′
t (0)

λt . (11)

Remark 2.4 The CP-INGARCH model is able to capture different kinds of overdispersion. This
results from the fact that whenever the conditional distribution is overdispersed we deduce from
well-known properties on conditional moments (12) that

V (Xt)

E(Xt)
≥

E(V (Xt |X t−1))

E(Xt)
>

E(E(Xt |X t−1))

E(Xt)
= 1;

moreover, if we have a conditional Poisson distribution the corresponding unconditional law is
overdispersed as V (Xt) = E(λt)+V (λt)> E(Xt), whenever we have conditional heteroscedasticity.

Similarly to what was established by Bollerslev [10] for the GARCH model, it is possible, in some
cases, to state a CP-INARCH(∞) representation of the CP-INGARCH(p,q) process, i.e., Xt may be
written explicitly as a function of its infinite past. With this goal, let us consider the polynomials A
and B of degrees p and q given, respectively, by

A(L) = α1L+ ...+αpLp,

B(L) = 1−β1L− ...−βqLq,

whose coefficients are those presented in equation (2.3) and L is the backshift operator (13). Further-
more, to ensure the existence of the inverse B−1 of B, let us suppose that the roots of B(z) = 0 lie
outside the unit circle. In fact, under this assumption, we can write

B(L) = 1−
q

∑
j=1

β jL j =
q

∏
j=1

(
1− L

z j

)
10We note that, as ϕt is the characteristic function of a discrete distribution with support in N0 and finite mean, the

derivative of ϕt(u) at u = 0, ϕ ′
t (0), exists and is nonzero.

11We observe that

Φ
′
Xt |X t−1

(u) = i
ϕ ′

t (u)λt

ϕ ′
t (0)

exp
{

i
λt

ϕ ′
t (0)

[ϕt(u)−1]
}
,

Φ
′′
Xt |X t−1

(u) =

[
i
ϕ ′′

t (u)λt

ϕ ′
t (0)

−
(

ϕ ′
t (u)λt

ϕ ′
t (0)

)2
]

exp
{

i
λt

ϕ ′
t (0)

[ϕt(u)−1]
}
, u ∈ R.

12E(Xt) = E[E(Xt |X t−1)] and V (Xt) = E[V (Xt |X t−1)]+V [E(Xt |X t−1)].
13For any integer j, L jXt = Xt− j.
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where z1, ...,zq are the roots of the polynomial B(L). From this equality it follows that B(L) will be
invertible if the polynomial 1− L

z j
is invertible, for all j ∈ {1, ...,q}. But 1−θL is invertible if and

only if |θ | ̸= 1 ([36]) and thus, if we assume |z j|> 1, for all j ∈ {1, ...,q}, then B(L) is invertible (14).

Let us consider in the following the Hypothesis H1:
q

∑
j=1

β j < 1.

Lemma 2.2 The roots of the polynomial B(z) = 1−β1z− ...−βqzq, with nonnegative β j, j = 1, ...,q,
lie outside the unit circle if and only if the coefficients β j satisfy the hypothesis H1.

Proof: If ∑
q
j=1 β j ≥ 1, then B(1)≤ 0. As B(0) = 1 > 0 and B(z) is a continuous function in [0,1],

then there is a real root of B(z) in the interval ]0,1]. On the other hand, if ∑
q
j=1 β j < 1, let us suppose

by contradiction that there is at least a root z0 of B(z) such that |z0| ≤ 1. Under these conditions,

B(z0) = 0 ⇔ 1−
q

∑
i=1

β jz
j
0 = 0 ⇔ 1 =

q

∑
j=1

β jz
j
0 =

∣∣∣∣∣ q

∑
j=1

β jz
j
0

∣∣∣∣∣≤ q

∑
j=1

β j |z0| j ≤
q

∑
j=1

β j,

so 1 ≤ ∑
q
j=1 β j < 1, which is a contradiction. �

So, given the polynomials A(L) and B(L), and assuming the hypothesis H1, we can rewrite the
conditional expectation (2.3) in the form

B(L)λt = α0 +A(L)Xt ⇔ λt = B−1(L)[α0 +A(L)Xt ]

⇔ λt = α0B−1(1)+H(L)Xt ,

with H(L) = B−1(L)A(L) = ∑
∞
j=1 ψ jL j, where ψ j is the coefficient of z j in the Maclaurin expansion

of the rational function A(z)/B(z), that is,

ψ j =



α1, if j = 1,

α j +
j−1

∑
k=1

βkψ j−k, if 2 ≤ j ≤ p,

q

∑
k=1

βkψ j−k, if j ≥ p+1,

and then, denoting α0B−1(1) as ψ0, we get

λt = ψ0 +
∞

∑
j=1

ψ jXt− j, (2.4)

which together with (2.2) expresses a CP-INARCH(∞) representation of the model in study. This
representation will be useful in the construction of a solution of the model presented in Section 3.4.

14We note that for B(L) to have inverse it is sufficient that the roots of B(z) = 0 are, in module, different from 1. However,
in what follows we will consider them outside the unit circle, since this condition will allow us to express the conditional
expectation λt only in terms of the past information of Xt .
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2.3 Important cases - known and new models

The functional form of the conditional characteristic function (2.2) allows a wide flexibility of the
class of compound Poisson INGARCH models. In fact, as we assume that the family of discrete
characteristic functions (ϕt , t ∈Z) (respectively, the associated laws of probability) is X t−1-measurable
it means that its elements may be random functions (respectively, random measures) or deterministic
ones. So, it is not surprising that this new model includes a lot of recent contributions on integer-valued
time series modeling as well as several new processes.

To illustrate the large class of models enclosed in this framework, let us recall that since the
conditional distribution of Xt is a discrete compound Poisson law with support in N0 then, for all t ∈ Z
and conditioned on X t−1, Xt can be identified in distribution with the random sum

Xt
d
= Xt,1 +Xt,2 + . . .+Xt,Nt , (2.5)

where Nt is a random variable following a Poisson distribution with parameter λ ∗
t = λt/E(Xt, j), and

Xt,1, Xt,2, ... are discrete and independent random variables, with support contained in N0, independent
of Nt and having common characteristic function ϕt , with finite mean.

Some concrete examples that fall in the preceding framework are discussed in the following.

1. The INGARCH model [25] corresponds to a CP-INGARCH model considering λ ∗
t = λt and ϕt

the characteristic function of the Dirac’s law concentrated in {1}, i.e., ϕt(u) = eiu, u ∈ R.

2. Inspired by the INGARCH model, Zhu [81] proposed the negative binomial INGARCH(p,q)
process (NB-INGARCH for brevity), defined as

Xt | X t−1 ∼ NB
(

r,
1

1+λt

)
, λt = α0 +

p

∑
j=1

α jXt− j +
q

∑
k=1

βkλt−k,

with r ∈ N, α0 > 0, α j ≥ 0, βk ≥ 0, j = 1, ..., p, k = 1, ...,q. We observe that in this model
E(Xt |X t−1) = rλt and V (Xt |X t−1) = rλt(1+λt).

Considering in the representation (2.5), the random variables Xt, j, j = 1,2, ..., having a loga-
rithmic distribution with parameter λt

1+λt
and λ ∗

t = r ln(1+λt) (see Example 2.2) we recover,
unless a scale factor, the NB-INGARCH(p,q) model.

3. To handle both conditional over-, equi- and underdispersion, Zhu [82] introduced a generalized
Poisson INGARCH(p,q) process (GP-INGARCH for brevity) by considering

Xt | X t−1 ∼ GP((1−κ)λt ,κ) , λt = α0 +
p

∑
j=1

α jXt− j +
q

∑
k=1

βkλt−k,

where α0 > 0, α j ≥ 0, βk ≥ 0, j = 1, ..., p, k = 1, ...,q and max{−1,−(1−κ)λt/4} < κ < 1.
In this case we have E(Xt |X t−1) = λt and V (Xt |X t−1) = λt/(1−κ)2.

For 0 < κ < 1, we recover the GP-INGARCH(p,q) model from the CP-INGARCH(p,q)
considering that in the representation (2.5) the common distribution of the random variables
Xt, j, j = 1,2, ..., is the Borel law with parameter κ and λ ∗

t = (1−κ)λt (see Example 2.3).
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4. Xu et al. [80] recently proposed the family of dispersed INARCH models (DINARCH for
brevity) to deal with different types of conditional dispersion assuming that the conditional
variance is equal to the conditional expectation multiplied by a constant α > 0. As a particular
case of this model, they present the NB-DINARCH(p) for which the conditional law is a
negative binomial one, where the random parameter is the order of occurrences and not its
probability as in the NB-INARCH(p) of Zhu [81]; namely they considered

Xt | X t−1 ∼ NB
(

λt

α −1
,

1
α

)
, λt = α0 +

p

∑
j=1

α jXt− j,

with α > 1, α0 > 0, α j ≥ 0, j = 1, ..., p. We note that E(Xt |X t−1) = λt and V (Xt |X t−1) = αλt .
This process results from the CP-INARCH(p) model considering in the representation (2.5)
the random variables Xt, j with a logarithmic law with parameter α−1

α
and λ ∗

t =− λt
α−1 ln

( 1
α

)
.

In the NB-INGARCH model (case 2) the parameter involved in the distribution of the random
variables Xt, j, j = 1,2, ..., depends on λt , and thus depends on the previous observations of the process;
so, it is a clear example of a CP-INGARCH model where the characteristic function ϕt is a random
function. In the other particular CP-INGARCH models presented (cases 1, 3 and 4) the law of the
random variables Xt, j have the same parameter for every t ∈ Z (1, κ and α−1

α
, respectively). So, in the

INGARCH, GP-INGARCH and NB-DINARCH models, the characteristic function ϕt is deterministic
and independent of t. For that reason, in such cases we will refer these functions simply as ϕ .

Specifying the distribution of the random variables Xt, j, j = 1,2, ..., in representation (2.5) enables
us to find new interesting models as, for instance, the GEOMP-INGARCH and the NTA-INGARCH
ones. We note that these new models are naturally interesting in practice as the associated conditional
distributions, namely the geometric Poisson and the Neyman type-A, explain phenomena in various
areas of application (recall Examples 2.4 and 2.5).

In the following examples we present some of these new models in which we also find situations
where (ϕt , t ∈ Z) is a family of dependent on t deterministic characteristic functions (namely case 7).

5. Let us define a geometric Poisson INGARCH(p,q) model (GEOMP-INGARCH) as

Xt | X t−1 ∼ GEOMP
(

rλt

λt + r
,

r
λt + r

)
, λt = α0 +

p

∑
j=1

α jXt− j +
q

∑
k=1

βkλt−k,

with r > 0, α0 > 0, α j ≥ 0, βk ≥ 0, j = 1, ..., p, k = 1, ...,q. Let us note that E(Xt |X t−1) = λt and
V (Xt |X t−1) = λt

(
1+ 2

r λt
)
. Thus, if we consider in representation (2.5) the random variables

Xt, j, j = 1,2, ..., following the geometric distribution with parameter r
r+λt

and λ ∗
t = r we recover

this model, which means that it satisfies a CP-INGARCH model.

6. Let us consider independent random variables (Xt, j, t ∈ Z) following the same discrete distribu-
tion with constant parameters, finite mean and support contained in N0. The process X defined
by (2.5) with Nt independent of each Xt, j, j = 1,2, ..., and having a Poisson distribution with
parameter λt/E(Xt, j) satisfies a CP-INGARCH model.
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For instance, if we consider

(a) the geometric distribution with parameter p∗ ∈]0,1[ for Xt, j, j = 1,2, ..., and the parameter
p∗λt

1−p∗ in the Poisson law of the variable Nt we obtain as conditional distribution

Xt | X t−1 ∼ GEOMP(p∗λt , p∗) , λt = α0 +
p

∑
j=1

α jXt− j +
q

∑
k=1

βkλt−k,

with α0 > 0, α j ≥ 0, βk ≥ 0, j = 1, ..., p, k = 1, ...,q. We observe that E(Xt |X t−1) = λt

and V (Xt |X t−1) = λt

(
2−p∗

p∗

)
. This model will be denoted by GEOMP2-INGARCH(p,q)

to distinguish it from the model presented in case 5. In fact, although these two models
have as conditional distribution the geometric Poisson law, the difference between them
results from the parameter of the geometric distribution which involves or not λt .

(b) the Poisson distribution with parameter φ > 0 for Xt, j, j = 1,2, ..., and the parameter λt/φ

in the Poisson distribution of Nt , we define the Neyman type-A INGARCH(p,q) model
(NTA-INGARCH for brevity), that is,

Xt | X t−1 ∼ NTA
(

λt

φ
,φ

)
, λt = α0 +

p

∑
j=1

α jXt− j +
q

∑
k=1

βkλt−k,

with α0 > 0, α j ≥ 0, βk ≥ 0, j = 1, ..., p, k = 1, ...,q.

We note that E(Xt |X t−1) = λt and V (Xt |X t−1) = λt (1+φ).

7. (a) Let (Xt, j, t ∈ Z) be independent random variables following a binomial distribution with
parameters r ∈ N and e−|t|, that is, ϕt(u) =

(
eiu−|t|+1− e−|t|)r

, u ∈ R, t ∈ Z, and let Nt

be an independent of Xt, j random variable following a Poisson distribution with parameter
λt/re−|t|. The process X defined by (2.5) satisfies a CP-INGARCH model.

(b) Changing the success probability of the binomial distribution by (t2 + 1)−1, that is,
considering the characteristic function ϕt(u) = ( eiu+t2

t2+1 )r, u ∈ R, t ∈ Z, and the mean of
the Poisson law equal to λt(t2 +1)/r, the process X still satisfies a CP-INGARCH model.

Remark 2.5 We note that the pair (λ ∗
t ,ϕt) is not uniquely determined by ΦXt |X t−1

, but it will happen,
if we choose ϕt such that P(Xt, j = 0) = 0, what can always be done. In fact, modifying the probability
at zero in the distribution of Xt, j, j = 1,2, ..., does not add a new conditional distribution because it is
equivalent to modifying the parameter λ ∗

t in the Poisson distribution, [60, Theorem 5.11].

For example, let us consider the GEOMP2-INGARCH model. This process was obtained taking ϕt

the characteristic function of a geometric law with parameter p∗ and then λ ∗
t = p∗λt

1−p∗ . But we can also
obtain the same process considering ϕt the characteristic function of a shifted geometric law (15) with
parameter p∗ and in this case λ ∗

t = p∗λt . Nevertheless, when we refer to the GEOMP2-INGARCH
model it must be considered as it was initially defined. The same for the other models.

15The probability mass function of a random variable Y following a shifted geometric distribution with parameter p ∈]0,1[
is given by P(Y = y) = p(1− p)y−1, for y = 1,2, . . . So, E(Y ) = 1/p and V (Y ) = (1− p)/p2.
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Using the methodology here proposed we generate some CP-INGARCH(1,1) processes by
considering Poisson (Figure 2.3), Neyman type-A (Figure 2.4) geometric Poisson (Figure 2.5 and
Figure 2.7), binomial (Figure 2.6) and generalized Poisson deviates (Figure 2.8) (16). Let us note that
all the possibilities for the nature of the characteristic functions ϕt are illustrated in the figures. The
trajectories of these series as well as their basic descriptives are presented in the following.

Fig. 2.3 Trajectories and descriptives of INGARCH(1,1) models with α0 = 10, α1 = 0.4 and β1 = 0.5
(on top); α0 = 10, α1 = 0.5 and β1 = 0.5 (below).

Fig. 2.4 Trajectory and descriptives of a NTA-INGARCH(1,1) model with α0 = 10, α1 = 0.4, β1 = 0.5
and φ = 2.

16The programs used in the simulation of these trajectories were developed by us with the aid of the software Eviews
and can be found in Appendix D.1. For each trajectory, the first 100 observations were discarded to eliminate the effect of
choosing the values of the first observations.
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Fig. 2.5 Trajectory and descriptives of a GEOMP-INGARCH(1,1) model with α0 = 10, α1 = 0.4,
β1 = 0.5 and r = 2.

Fig. 2.6 Trajectory and descriptives of a CP-INGARCH(1,1) model with ϕt the characteristic function
of a binomial(5000, 1

t2+1) distribution considering α0 = 10, α1 = 0.4, and β1 = 0.5.

Fig. 2.7 Trajectory and descriptives of a GEOMP2-INARCH(1) model with α0 = 10, α1 = 0.4, and
p∗ = 0.3.

Fig. 2.8 Trajectory and descriptives of a GP-INARCH(1) model with α0 = 10, α1 = 0.4, and κ = 0.5.
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Comparing the two trajectories presented in Figure 2.3 it is evident that the change made in the
coefficient α1 results in a non-stationary process, namely, in mean. So, it seems natural to think that
the stationarity of the CP-INGARCH model is strongly related to the coefficients involved in the
evolution of the conditional mean λt . The unconditional mean, when we consider the same coefficients
α0, α1 and β1, does not seem to be affected by the conditional distribution nor by the nature of the
characteristic functions ϕt . In fact, it presents similar values when we compare the processes with the
same orders namely 99.819, 101.25, 99.461, 100.93 (figures 2.3 on top, 2.4, 2.5 and 2.6, respectively)
and 17.183, 16.797 (figures 2.7 and 2.8, respectively).

The CP-INGARCH trajectories represented seem to concern processes with characteristics as
overdispersion, leptokurtosis (figures 2.5, 2.6, 2.7 and 2.8) and asymmetry around the mean. We
point out also the strong volatility in all the cases but especially in the NTA-INGARCH and GEOMP-
INGARCH models.

The aim of the next chapter is to develop a unified and enlarged study on the probabilistic
properties within the class of the integer-valued GARCH models.





Chapter 3

Stationarity and Ergodicity in the
CP-INGARCH process

An important property of a process is its stationarity or, in other words, its invariance under translation
in time. In time series modeling, to evaluate stability properties over time is important particularly
in statistical developments for instance to reach good forecasts. Moreover, we are in conditions to
analyse all the characteristics of a process from a single (infinitely long) realisation when we have an
ergodic process. This is very important, since in the study of a time series only a single realization
from the series is available. Stationarity and ergodicity are then the two cornerstones on which the
time series analysis rests and they will be the subject of study in this chapter.

Necessary and sufficient conditions of first and second-order stationarity expressed in terms of the
coefficients of a CP-INGARCH(p,q) process are discussed respectively in Section 3.1 and 3.2, and
illustrated by the study of some particular cases. Then, in Section 3.3, we obtain its autocorrelation
function and we investigate the existence of higher-order moments when p = q = 1. We finish the
chapter establishing a necessary and sufficient condition to ensure the strict stationarity and the
ergodicity of the CP-INGARCH(p,q) process. We should remark that the assumptions considered on
the family of characteristic functions to establish these properties concern a huge class of processes.

3.1 First-order stationarity

The following theorem is the starting point for establishing the weak stationarity for the CP-INGARCH
process in the next section. We notice that the result obtained is not affected by the form of the
conditional distribution but mainly by the evolution of λt specified in (2.3).

Theorem 3.1 Let X be a process satisfying the CP-INGARCH(p,q) model as specified in (2.2) and
(2.3). This process is first-order stationary if and only if

p

∑
j=1

α j +
q

∑
k=1

βk < 1.

27
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Proof: To establish the first-order stationarity we should prove that E(Xt) exists and is independent
of t, for any t ∈ Z. As Xt is a positive measurable function, we can write formally

µt = E(Xt) = E(E(Xt |X t−1)) = E(λt) = E

(
α0 +

p

∑
j=1

α jXt− j +
q

∑
k=1

βkλt−k

)

⇔ µt = α0 +
p

∑
j=1

α jµt− j +
q

∑
k=1

βkµt−k,

taking into account that the involved sums exist although they may be non finite. This non-
homogeneous difference equation has a stable solution, which is finite and independent of t, if
and only if all roots z1, ..., zmax(p,q) of the equation 1−∑

p
j=1 α jz j −∑

q
k=1 βkzk = 0 lie outside the unit

circle, that is, if and only if ∑
p
j=1 α j +∑

q
k=1 βk < 1. �

Remark 3.1 As a consequence of the Theorem 3.1, provided that ∑
p
j=1 α j+∑

q
k=1 βk < 1, the processes

λ = (λt , t ∈ Z) and X are both first-order stationary and its common unconditional mean is

E(Xt) = E(λt) = µ =
α0

1−∑
p
j=1 α j −∑

q
k=1 βk

.

From Theorem 3.1 we have assured that if the sum of the parameters α j’s and βk’s, j = 1, ..., p,
k = 1, ...,q, is greater than or equal to 1 then the process X is not first-order stationary and, obviously,
it will also not be a weakly stationary process. The second trajectory presented in Figure 2.3 is an
INGARCH(1,1) process where the sum of the parameters α1 and β1 is equal to 1 and, as referred
before, it is an example of a non-stationary process.

Moreover, we will see later that the condition of first-order stationarity displayed is also a necessary
and sufficient condition to obtain a strictly stationary solution of this model.

3.2 Weak stationarity

In this section, we analyse weak stationarity conditions for the CP-INGARCH(p,q) model. With this
goal and in order to assure the existence of the corresponding distribution variance, we assume in
what follows that the family of characteristic functions (ϕt , t ∈ Z) is twice differentiable.

The general class of models considered and the complexity in the study of the weak stationarity in
this class leads us to fix ourselves in the subclass of the CP-INGARCH(p,q) models for which the
characteristic functions ϕt satisfy the following condition:

Hypothesis H2 : − i
ϕ ′′

t (0)
ϕ ′

t (0)
= v0 + v1λt ,

with v0 ≥ 0, v1 ≥ 0, not simultaneously zero. We note that
V (Xt |X t−1)

E(Xt |X t−1)
=−i

ϕ ′′
t (0)

ϕ ′
t (0)

.

Despite the restriction, a quite general subclass is considered containing both random and deter-
ministic characteristic functions ϕt . Recalling the variance of the involved conditional distributions,
many of the examples presented in Section 2.3 can be included in this subclass. Namely,
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• INGARCH(p,q) model with v0 = 1;

• GP-INGARCH(p,q) model with v0 =
1

(1−κ)2 ;

• NB-DINARCH(p) model with v0 = α;

• GEOMP2-INGARCH(p,q) model with v0 =
2− p∗

p∗
;

• NTA-INGARCH(p,q) model with v0 = 1+φ ,

all of them with v1 = 0, and also the

• NB-INGARCH(p,q) model with v0 = v1 = 1;

• GEOMP-INGARCH(p,q) model with v0 = 1 and v1 =
2
r

.

Let us note that all the characteristic functions ϕt which are deterministic and independent of t
satisfy the hypothesis H2 since they imply v1 = 0.

Remark 3.2 Let us consider a real function k such that k′(0)/k(0) = 1. Considering

−i
ϕ ′′

t (u)
ϕ ′

t (u)
= (v0 + v1λt)

k′(u)
k(u)

, u ∈ R,

we may write
d
du

(
−i ln(ϕ ′

t (u))+θ(t)
)
= (v0 + v1λt)

k′(u)
k(u)

which implies
−i ln(ϕ ′

t (u))+θ(t) = (v0 + v1λt) ln(k(u))+ ζ̃ (t)

and so
ϕ
′
t (u) = exp{i(v0 + v1λt) ln(k(u))+ζ (t)}, u ∈ R.

Thus the following general class of characteristic functions ϕt such that

ϕt(u) = eζ (t)
∫

k(u)i(v0+v1λt)du+δ (t), u ∈ R,

is solution of H2. For instance, the characteristic function ϕ(u) = eiu, u ∈ R, can be written in this
form with v0 = 1, v1 = 0 and considering k(u) = eu, δ (t) = 0 and ζ (t) = ln i.

Remark 3.3 As noted in Remark 2.2, the family of conditional distributions considered can be equi-
or overdispersed. Despite this, some of the next results are not restricted to these cases. In fact,
we observe that when v1 = 0 the hypothesis H2 allows conditional underdispersion since the ratio
between the conditional variance and the conditional mean, which corresponds to v0, can be in ]0,1[.
Thus, the DINARCH(p) model proposed by Xu et al. [80] is also included in this study.
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In order to obtain a necessary and sufficient condition of weak stationarity we begin by establishing
a vectorial state space representation of X . To accomplish this let us observe that

E(Xt− jλt−k) = E
[
E(Xt− j|X t− j−1)λt−k

]
= E(λt− jλt−k), if k ≥ j, (3.1)

E(Xt− jλt−k) = E [Xt− jE(Xt−k|X t−k−1)] = E(Xt− jXt−k), if k < j, (3.2)

from which we can deduce the expressions

E(XtXt−h) = E [E(Xt |X t−1)Xt−h] = E(λtXt−h)

= E

([
α0 +

p

∑
j=1

α jXt− j +
q

∑
k=1

βkλt−k

]
Xt−h

)

= α0E (Xt−h)+
p

∑
j=1

α jE (Xt− jXt−h)+
q

∑
k=1

βkE (λt−kXt−h)

= α0E (Xt−h)+
p

∑
j=1

α jE (Xt− jXt−h)+
h−1

∑
k=1

βkE(Xt−kXt−h)+
q

∑
k=h

βkE(λt−kλt−h), h ≥ 1, (3.3)

and in a similar way

E(λtλt−h) = E

([
α0 +

p

∑
j=1

α jXt− j +
q

∑
k=1

βkλt−k

]
λt−h

)

= α0E (λt−h)+
p

∑
j=1

α jE (Xt− jλt−h)+
q

∑
k=1

βkE (λt−kλt−h)

= α0E (λt−h)+
h

∑
j=1

α jE (λt− jλt−h)+
p

∑
j=h+1

α jE(Xt− jXt−h)+
q

∑
k=1

βkE (λt−kλt−h), h ≥ 0. (3.4)

Proposition 3.1 Let X be a first-order stationary process following a CP-INGARCH(p,q) model
such that H2 is satisfied. The vector Wt , t ∈ Z, of dimension p+q−1 given by

Wt =



E(X2
t )

E(XtXt−1)

· · ·
E(XtXt−(p−1))

E(λtλt−1)

· · ·
E(λtλt−(q−1))


satisfies an autoregressive equation of order max(p,q):

Wt = B0 +
max(p,q)

∑
k=1

BkWt−k, (3.5)

where B0 is a real vector of dimension p+ q− 1 and Bk (k = 1, ...,max(p,q)) are real squared
matrices of order p+q−1.
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Proof: We begin noting that E(X2
t ), E(XtXt−k) and E(λtλt−k) are not necessarily finite but, as

we have positive and measurable functions, we may apply the operator expectation E. For sake of
simplicity, we focus the proof on the case p = q since the other cases can be obtained from this one
by setting additional parameters to 0.

Let us start by calculating E(X2
t ) for any t ∈ Z. We have E(X2

t ) = E[E(X2
t |X t−1)] and

E(X2
t |X t−1) =V (Xt |X t−1)+ [E(Xt |X t−1)]

2 =−i
ϕ ′′

t (0)
ϕ ′

t (0)
λt +λ

2
t = v0λt +(1+ v1)λ

2
t

= v0

[
α0 +

p

∑
j=1

α jXt− j +
p

∑
k=1

βkλt−k

]
+(1+ v1)

[
α

2
0 +2α0

(
p

∑
j=1

α jXt− j +
p

∑
k=1

βkλt−k

)

+

(
p

∑
j=1

α jXt− j

)2

+2
p

∑
j=1

α jXt− j

p

∑
k=1

βkλt−k +

(
p

∑
k=1

βkλt−k

)2


= v0α0 +(1+ v1)α
2
0 +[v0 +2α0(1+ v1)]

(
p

∑
j=1

α jXt− j +
p

∑
k=1

βkλt−k

)
+(1+ v1)

[
p

∑
j=1

α
2
j X2

t− j

+
p

∑
j,k=1
j ̸=k

α jαkXt− jXt−k +2
p

∑
j=1

p

∑
k=1

α jβkλt−kXt− j +
p

∑
j=1

β
2
j λ

2
t− j +

p

∑
j,k=1
j ̸=k

β jβkλt− jλt−k

 .
So, using the first-order stationary hypothesis, we conclude

E(X2
t ) = C̃+(1+ v1)

 p

∑
j=1

α
2
j E(X2

t− j)+
p

∑
j,k=1
j ̸=k

α jαkE(Xt− jXt−k)

+2
p

∑
j,k=1

α jβkE (Xt− jλt−k)+
p

∑
j=1

β
2
j E(λ 2

t− j)+
p

∑
j,k=1
j ̸=k

β jβkE(λt− jλt−k)

 , (3.6)

where C̃ = v0µ +(1+ v1)
[
2α0µ −α2

0
]

since µ −α0 = µ ∑
p
j=1 (α j +β j). We note that C̃ is a positive

constant independent of t. Now, let us take into account the fact:

E(X2
t ) = v0E(λt)+(1+ v1)E(λ 2

t ) ⇔ E(λ 2
t ) =

E(X2
t )− v0µ

1+ v1
, (3.7)

from where we deduce that X is a second-order process if and only if the same happens to the process
λ . Applying the expressions (3.1), (3.2) and (3.7) in (3.6), we finally obtain

E(X2
t ) = C̃+(1+ v1)

 p

∑
j=1

α
2
j E(X2

t− j)+
p

∑
j=1

β
2
j

E(X2
t− j)− v0µ

1+ v1
+2

p

∑
j,k=1
j<k

α jαkE(Xt− jXt−k)

+2
p

∑
j,k=1
j≤k

α jβkE(λt− jλt−k)+2
p

∑
j,k=1
j<k

αkβ jE(Xt− jXt−k)+2
p

∑
j,k=1
j<k

β jβkE(λt− jλt−k)
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=C+(1+ v1)

[
p

∑
j=1

(
α

2
j +

2α jβ j +β 2
j

1+ v1

)
E(X2

t− j)

+2
p−1

∑
j=1

p

∑
k= j+1

αk(α j +β j)E(Xt− jXt−k)+2
p−1

∑
j=1

p

∑
k= j+1

βk(α j +β j)E(λt− jλt−k)

]
, (3.8)

where C = C̃− v0µ ∑
p
j=1 (2α jβ j +β 2

j ) is a positive constant independent of t. We observe that the
positivity of the constant C is a consequence of the first-order stationarity of X since from it we have
1 > (∑

p
j=1 (α j +β j))

2 > ∑
p
j=1 (α j +β j)

2 > ∑
p
j=1 (2α jβ j +β 2

j ).

Using again the hypothesis of first-order stationarity and the expression (3.7) stated above, we
have from (3.3) and (3.4),

E(XtXt−h) = α0µ +αhE(X2
t−h)+

p

∑
j=1
j ̸=h

α jE (Xt− jXt−h)+
h−1

∑
k=1

βkE(Xt−kXt−h)

+βhE(λ 2
t−h)+

p

∑
k=h+1

βkE(λt−kλt−h)

=

[
α0 −

v0βh

1+ v1

]
µ +

[
αh +

βh

1+ v1

]
E(X2

t−h)+
p

∑
j=h+1

β jE(λt− jλt−h)

+
h−1

∑
j=1

(α j +β j)E(Xt− jXt−h)+
p

∑
j=h+1

α jE(Xt− jXt−h), h ≥ 1, (3.9)

E(λtλt−h) = α0µ +
h−1

∑
j=1

α jE (λt− jλt−h)+
p

∑
j=h+1

α jE(Xt− jXt−h)

+(αh +βh)E(λ 2
t−h)+

p

∑
k=1
k ̸=h

βkE(λt−kλt−h)

=

[
α0 −

v0(αh +βh)

1+ v1

]
µ +

αh +βh

1+ v1
E(X2

t−h)+
p

∑
j=h+1

α jE(Xt− jXt−h)

+
h−1

∑
j=1

(α j +β j)E(λt− jλt−h)+
p

∑
j=h+1

β jE(λt− jλt−h), h ≥ 1. (3.10)

From expressions (3.8), (3.9) and (3.10) it is clear now that the vector Wt satisfies the autoregres-
sive equation of order p, Wt = B0 +∑

p
k=1 BkWt−k, with B0 = (b j) the vector such that

b j =


C, j = 1

µα0 −µ
v0β j−1

1+ v1
, j = 2, ..., p

µα0 −µ
v0(α j−p +β j−p)

1+ v1
, j = p+1, ...,2p−1

and Bk (k = 1, ..., p) the squared matrices having generic element b(k)i j given by
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• row i = 1:

b(k)1 j =


(1+ v1)α

2
k +2αkβk +β 2

k , if j = 1
2(1+ v1)(αk +βk)α j+k−1, if j = 2, ..., p
2(1+ v1)(αk +βk)β j+k−p, if j = p+1, ...,2p−1

• row i = k+1, (k ̸= p):

b(k)k+1, j =


αk +

βk

1+ v1
, if j = 1

α j+k−1, if j = 2, ..., p
β j+k−p, if j = p+1, ...,2p−1

• row i = k+ p:

b(k)k+p, j =


αk +βk

1+ v1
, if j = 1

α j+k−1, if j = 2, ..., p
β j+k−p, if j = p+1, ...,2p−1

• row i = k+ j:

b(k)k+ j, j =

{
αk +βk, if j = 2, ..., p− k, p+1, ...,2p−1− k
0 if j = p− k+1, ..., p

and for any other case b(k)i j = 0, where we consider α j = β j = 0, for i > p. The general form of these
matrices Bk can be found in Appendix A.1. �

For a CP-INARCH(p) model the entries of the vector B0 and of the matrices Bk, (k = 1, ..., p)
become quite simpler and the previous result assumes the form presented in the following corollary.

Corollary 3.1 Let X be a first-order stationary process following a CP-INARCH(p) model such that
H2 is satisfied. The vector Wt , t ∈ Z, of dimension p given by

Wt =


E(X2

t )

E(XtXt−1)

· · ·
E(XtXt−(p−1))


satisfies an autoregressive equation of order p:

Wt = B0 +
p

∑
k=1

BkWt−k,

where B0 is the vector of dimension p given by B0 = (v0µ +α0(1+ v1)(2µ −α0),α0µ, ...,α0µ) and
Bk (k = 1, ..., p) are the squared matrices of order p with generic element b(k)i j given by:

• row i = 1:

b(k)1 j =

{
(1+ v1)α

2
k , if j = 1

2(1+ v1)αkα j+k−1, if j = 2, ..., p
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• row i ̸= 1:

b(k)i j =


α j+k−1, if i = k+1, j = 1, ..., p
αk, if i = k+ j, j = 2, ..., p
0, otherwise,

where α j = 0 for j > p.

Now we state a necessary and sufficient condition of weak stationarity of the process under study.

Theorem 3.2 Let X be a first-order stationary process following a CP-INGARCH(p,q) model such
that H2 is satisfied. This process is weakly stationary if and only if

P(L) = Ip+q−1 −
max(p,q)

∑
k=1

BkLk

is a polynomial matrix such that detP(z) has all its roots outside the unit circle, where Ip+q−1 is
the identity matrix of order p+q−1 and Bk (k = 1, ...,max(p,q)) are the squared matrices of the
autoregressive equation (3.5). Moreover, denoting the covariance function of X and λ by respectively
Γ( j) =Cov(Xt ,Xt− j) and Γ̃( j) =Cov(λt ,λt− j), we have under the weak stationarity of X

Γ( j) = e j+1[P(1)]−1B0 −µ
2, j = 0, ..., p−1,

Γ̃( j) = ep+ j[P(1)]−1B0 −µ
2, j = 1, ...,q−1,

with e j denoting the j-th row of the identity matrix.

Proof: Let us consider C0 = Ip+q−1 and Ck = Bk, k ≥ 1. Since Ck = 0 when k > max(p,q), the
autoregressive equation Wt = B0 +∑

max(p,q)
k=1 BkWt−k can be rewritten in the form

Wt = B0 +
max(p,q)

∑
k=1

CkWt−k ⇔ Wt = B0 +
t

∑
k=0

Ct−kWk −Wt , when t ≥ max(p,q). (3.11)

Introducing the z-transform (1) of Wt and that of Ct , namely W̃ (z) = ∑
∞
k=0Wkz−k and

C̃ (z) =C0 +∑
max(p,q)
k=1 Ckz−k, and taking the z-transform of both sides of equation (3.11) we get

W̃ (z) = B0 +C̃ (z)W̃ (z)−W̃ (z) ⇔
(

Ip+q−1 −C̃ (z)+ Ip+q−1

)
W̃ (z) = B0.

So, according to [22, p. 299], a necessary and sufficient condition for weak stationarity is

det
(

Ip+q−1 −C̃ (z)+ Ip+q−1

)
̸= 0, for all z such that |z| ≥ 1,

that is, det
(

Ip+q−1 −∑
max(p,q)
k=1 Bkz−k

)
= detP

(1
z

)
has all its roots inside the unit circle.

1Let x(n) be a sequence which is identically zero for negative integers n, i.e., with x(n) = 0 for n < 0. The z-transform
of x(n) is defined as x̃(z) = Z(x(n)) = ∑

∞
j=0 x( j) · z− j , for z ∈ C. See, e.g., [22, Section 6.1].
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From the weak stationarity and since P(1) is an invertible matrix (2), the autoregressive equation
(3.5) reduces to

(
Ip+q−1 −∑

max(p,q)
k=1 Bk

)
Wt = B0 ⇔ Wt = [P(1)]−1B0. So, in what concerns the

values of the autocovariances as, for j = 0, ..., p−1, the order j entry of the vector Wt is E(XtXt− j), we
obtain Cov(Xt ,Xt− j) = E(XtXt− j)−µ2 = e j+1[P(1)]−1B0−µ2. The expression of the autocorrelation
function of λ follows similarly, which completes the proof. �

Remark 3.4 We provide now an alternative proof for the sufficient condition of weak stationarity.
If all the roots of detP(z) are outside the unit circle then P(1) is invertible and we have

Wt = B0 +
max(p,q)

∑
k=1

BkWt−k ⇔

(
Ip+q−1 −

max(p,q)

∑
k=1

BkLk

)
Wt = B0

⇔

(
Ip+q−1 −

max(p,q)

∑
k=1

BkLk

)
Wt =

(
Ip+q−1 −

max(p,q)

∑
k=1

Bk

)
[P(1)]−1B0

⇔ Wt − [P(1)]−1B0 =
max(p,q)

∑
k=1

Bk
(
Wt−k − [P(1)]−1B0

)
,

which means that {Wt − [P(1)]−1B0}t∈Z satisfies an homogeneous linear recurrence equation. The
solution of this equation is asymptotically independent of t since detP(z) has all roots outside the unit
circle, and then from the definition of Wt , the weak stationarity of X and λ follows.

Hereafter we present some examples to illustrate the condition of weak stationarity displayed.

Example 3.1 Let us consider a CP-INGARCH(p, p) model satisfying H2 with α1 = ... = αp−1 =

β1 = ...= βp−1 = 0 and such that αp +βp < 1. To analyze the necessary and sufficient condition for
weak stationarity of X given by Theorem 3.2, we consider the polynomial matrix

P(z) = I2p−1 −B1z− ...−Bpzp =

 1− [(αp +βp)
2 + v1α2

p]z
p 01×(p−1) 01×(p−1)

0(p−1)×1 A B
0(p−1)×1 C D


where A, B, C and D are squared matrices of order p−1 given by

B =


0 0 · · · 0 −βpz
0 0 · · · −βpz2 0
...

...
...

...
...

0 −βpzp−2 · · · 0 0
−βpzp−1 0 · · · 0 0

 ,

C =


0 0 · · · 0 −αpz
0 0 · · · −αpz2 0
...

...
...

...
...

0 −αpzp−2 · · · 0 0
−αpzp−1 0 · · · 0 0

 ,
2Under the hypothesis of weak stationarity, detP(z) has all roots outside the unit circle. So, P(1) is an invertible matrix

since detP(1) = det
(
Ip+q−1 −∑

p
k=1 Bk

)
̸= 0.
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when p is odd

A =


1 0 · · · 0 −αpz
0 1 · · · −αpz2 0
...

...
. . .

...
...

0 −αpzp−2 · · · 1 0
−αpzp−1 0 · · · 0 1

 ,

D =


1 0 · · · 0 −βpz
0 1 · · · −βpz2 0
...

...
. . .

...
...

0 −βpzp−2 · · · 1 0
−βpzp−1 0 · · · 0 1

 ,

and when p is even

A =



1 · · · 0 0 0 · · · −αpz
...

. . .
...

...
...

...
...

0 · · · 1 0 −αpz
[

p−1
2

]
· · · 0

0 · · · 0 1−αpz
[

p−1
2

]
+1 0 · · · 0

0 · · · −αpz
[

p−1
2

]
+2 0 1 · · · 0

...
...

...
...

...
. . .

...
−αpzp−1 · · · 0 0 0 · · · 1


,

D =



1 · · · 0 0 0 · · · −βpz
...

. . .
...

...
...

...
...

0 · · · 1 0 −βpz
[

p−1
2

]
· · · 0

0 · · · 0 1−βpz
[

p−1
2

]
+1 0 · · · 0

0 · · · −βpz
[

p−1
2

]
+2 0 1 · · · 0

...
...

...
...

...
. . .

...
−βpzp−1 · · · 0 0 0 · · · 1


,

where [x] represents the greatest integer less than or equal to x.

In what follows we denote by P11(z) the submatrix of P(z) obtained by deleting the row 1 and the
column 1. Applying Laplace theorem to the first row of the matrix P(z) we deduce

detP(z) = [1− ((αp +βp)
2 + v1α

2
p)z

p] ·detP11(z)

=


(1− ((αp +βp)

2 + v1α2
p)z

p) · (1− (αp +βp)
2zp)

p−1
2 , for p odd,

(1− ((αp +βp)
2 + v1α2

p)z
p)×

(1− (αp +βp)z[
p−1

2 ]+1) · (1− (αp +βp)
2zp]

p−2
2 ), for p even.
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In fact, applying the formula of Schur (3) to the 2 × 2 block matrix P11(z) we deduce that
detP11(z) = det(AD−CB), since AC =CA for every p:

• for p odd

AC =


α2

pzp 0 · · · 0 −αpz
0 α2

pzp · · · −αpz2 0
...

...
. . .

...
...

0 −αpzp−2 · · · α2
pzp 0

−αpzp−1 0 · · · 0 α2
pzp


• when p is even

AC =



α2
pzp · · · 0 0 0 · · · −αpz
...

. . .
...

...
...

...
...

0 · · · α2
pzp 0 −αpz

[
p−1

2

]
· · · 0

0 · · · 0 −αpz
[

p−1
2

]
+1
(

1−αpz
[

p−1
2

]
+1
)

0 · · · 0

0 · · · −αpz
[

p−1
2

]
+2 0 α2

pzp · · · 0
...

...
...

...
...

. . .
...

−αpzp−1 · · · 0 0 0 · · · α2
pzp


.

Let us prove that the determinant of P11(z) is that given above. We have CB = αpβpzp · Ip−1, and
the generic element of AD = (ai j), i, j = 1, ..., p−1, when p is odd, is given by

ai j =


1+αpβpzp, if i = j,
−(αp +βp)zi, if j = p− i,

0, otherwise,

and when p is even is given by

ai j =


1+αpβpzp, if i = j and i ̸=

[
p−1

2

]
+1,

−(αp +βp)zi, if j = p− i and i ̸=
[

p−1
2

]
+1,(

1−αpzi
)(

1−βpzi
)
, if i = j =

[
p−1

2

]
+1,

0, otherwise.

Thus when p is odd, and using the formula of Schur in the matrix AD−CB, we get

det(AD−CB) =

∣∣∣∣∣∣∣∣∣∣∣

1 0 · · · 0 −(αp +βp)z
0 1 · · · −(αp +βp)z2 0
...

...
. . .

...
...

0 −(αp +βp)zp−2 · · · 1 0
−(αp +βp)zp−1 0 · · · 0 1

∣∣∣∣∣∣∣∣∣∣∣
3[29, p. 46]: Let A, B, C, D be squared matrices of order n. If AC =CA, then∣∣∣∣ A B

C D

∣∣∣∣= det(AD−CB).
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= det

I p−1
2
−


(αp +βp)

2zp · · · 0
...

. . .
...

0 · · · (αp +βp)
2zp




=

∣∣∣∣∣∣∣∣
1− (αp +βp)

2zp · · · 0
...

. . .
...

0 · · · 1− (αp +βp)
2zp

∣∣∣∣∣∣∣∣= [1− (αp +βp)
2zp]

p−1
2 .

On the other hand, when p is even, applying the Laplace theorem to the ([ p−1
2 ]+1)-th row of the

matrix AD−CB we obtain that its determinant is given by∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 · · · 0 0 0 · · · −(αp +βp)z
...

. . .
...

...
...

...
...

0 · · · 1 0 −(αp +βp)z[
p−1

2 ] · · · 0

0 · · · 0 1− (αp +βp)z[
p−1

2 ]+1 0 · · · 0

0 · · · −(αp +βp)z[
p−1

2 ]+2 0 1 · · · 0
...

...
...

...
...

. . .
...

−(αp +βp)zp−1 · · · 0 0 0 · · · 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

= [1−(αp+βp)z[
p−1

2 ]+1]

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 · · · 0 0 · · · −(αp +βp)z
...

. . .
...

...
...

...

0 · · · 1 −(αp +βp)z[
p−1

2 ] · · · 0

0 · · · −(αp +βp)z[
p−1

2 ]+2 1 · · · 0
...

...
...

...
. . .

...
−(αp +βp)zp−1 · · · 0 0 · · · 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= [1− (αp +βp)z[

p−1
2 ]+1][1− (αp +βp)

2zp]
p−2

2 ,

where the last equality follows using the same strategy as in the case of the p being odd.
So, the necessary and sufficient condition for weak stationarity of the considered model is given by

(αp +βp)
2 + v1α

2
p < 1,

under αp+βp < 1, and plotted in Figure 3.1 considering different values of v1. We note that, contrary
to what happens in the necessary and sufficient condition of first-order stationarity (Theorem 3.1), in
this case the condition is affected by the nature of the characteristic functions ϕt , via parameter v1.

Let us remember that the case v1 = 0 contains all the deterministic and independent of t characte-
ristic functions ϕt . For instance, the dark to lightest gray region represented in Figure 3.1 corresponds,
in particular, to the weak stationarity region for the INGARCH(1,1), GP-INGARCH(1,1), GEOMP2-
INGARCH(1,1) and NTA-INGARCH(1,1) processes under the condition α1 +β1 < 1. We can also
conclude, for example, that the weak stationarity region of the NTA-INGARCH(1,1) process, for
any value of parameter φ (dark to lightest gray) is larger than the weak stationarity region of the
GEOMP-INGARCH(1,1) process (recall in this case v1 = 2/r) considering r = 0.4 (darkest gray).
These regions get closer when we increase the value of the parameter r.
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Fig. 3.1 Weak stationarity regions of a CP-INGARCH(p, p) model under the condition αp +βp < 1,
with the coefficients α1 = ... = αp−1 = β1 = ... = βp−1 = 0 and considering v1 = 5 (darkest gray),
0.5 (darkest and medium gray) and 0 (dark to lightest gray).

Example 3.2 Let us consider a CP-INGARCH(2,2) model satisfying the hypothesis H2 and such
that ∑

2
j=1 (α j +β j)< 1. To examine the necessary and sufficient condition of weak stationarity we

consider the polynomial matrix P(z) = I3 −B1z−B2z2, with B1 and B2 the 3×3 matrices given by

B1 =

 (α1 +β1)
2 + v1α2

1 2(1+ v1)α2(α1 +β1) 2(1+ v1)β2(α1 +β1)

α1 +
β1

1+v1
α2 β2

α1+β1
1+v1

α2 β2

 ,

B2 =

 (α2 +β2)
2 + v1α2

2 0 0
0 0 0
0 0 0

 .
Thus the determinant of this polynomial is

detP(z) =
(
1− [(α1 +β1)

2 + v1α
2
1 ]z− [(α2 +β2)

2 + v1α
2
2 ]z

2)(1−α2z)(1−β2z)

−2(1+ v1)

(
α1 +

β1

1+ v1

)
α2β2(α1 +β1)z3 −2α2β2(α1 +β1)

2z3

−2(1+ v1)β2(α1 +β1)
2(1−α2z)z2

−2(1+ v1)α2(α1 +β1)(1−β2z)
(

α1 +
β1

1+ v1

)
z2

−α2β2
(
1− [(α1 +β1)

2 + v1α
2
1 ]z− [(α2 +β2)

2 + v1α
2
2 ]z

2)z2

= 1−
[
(α1 +β1)

2 +α2 +β2 + v1α
2
1
]

z

−
[
(α1 +β1)

2(α2 +β2)+(α2 +β2)
2 + v1(α

2
2 −α

2
1 β2 +α

2
1 α2 +2α1α2β1)

]
z2

−
[
−(α2 +β2)

3 − v1α
2
2 (α2 +β2)

]
z3.

Using, for instance, the Matlab software we can exhibit the roots of detP(z) in some particular
cases. For example, if we consider α1 = α2 = β1, β2 = 0 and v1 = 0 we obtain the roots
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z1 =− 1
α1

, z2 =
2α1 −2α2

1

(√
1+α1

α3
1

+1
)

α1
, z3 =

2α1 +2α2
1

(√
1+α1

α3
1

+1
)

α1
,

which are always outside the unit circle under the first-order stationarity condition 3α1 < 1. On the
other hand, when we consider α1 = β1 = 0 we get the roots

z1 =
1

α2 +β2
, z2 =

1√
(α2 +β2)2 + v1α2

2

, z3 =− 1√
(α2 +β2)2 + v1α2

2

,

from where we deduce the condition (α2 +β2)
2 + v1α2

2 < 1 already stated in Example 3.1.
Taking β2 = 0, we plot in Figure 3.2 the weak stationarity regions of a CP-INGARCH(2,1) process

considering different values for v1, namely, v1 = 0, 0.5 and 5 (4).

Fig. 3.2 Weak stationarity regions of a CP-INGARCH(2,1) model with α1+α2+β1 < 1, considering
v1 = 0 (lightest gray), 0.5 (medium gray) and 5 (darkest gray).

Fig. 3.3 The three planes that define the weak stationarity regions of Figure 3.2.

We conclude that, as in Example 3.1, when we increase the value of v1 the weak stationarity region
becomes smaller. To better view, we represent in Figure 3.3 the three planes that define the mentioned
regions where it is now clear that the weak stationarity region with v1 = 5 (darkest gray) is contained
in the weak stationarity region with v1 = 0.5 (darkest and medium gray) and this one is contained in
the weak stationarity region with v1 = 0 (dark to lightest gray). Let us note that the first plot of the
Figure 3.3 corresponds to the CP-INARCH(2) weak stationarity regions.

In Appendix B we establish another necessary condition for weak stationarity which coincides
with the previous one in some particular cases, as we will prove.

4The program in MATLAB code can be found in Appendix D.2.
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3.3 Moments structure

The autocorrelation function for the CP-INGARCH(p,q) model is derived in this section and il-
lustrated when p = q = 1. Moreover, in this particular case, we deduce a necessary and sufficient
condition for the existence of unconditional moments of any order of the process.

3.3.1 The autocovariance function

We recall that in Theorem 3.2 we derive some values for the autocovariance function. Despite its
simplicity, especially when the orders p and q are low, these expressions are quite insufficient to
describe the autocovariance function. In fact, for example, for a CP-INGARCH(1,1) such expressions
allow us only to determine the value of V (Xt). In the next theorem we derive a set of equations from
which the autocovariance function of the general CP-INGARCH(p,q) model can be obtained.

Theorem 3.3 Let X be a weakly stationary CP-INGARCH(p,q) process. The autocovariances of the
processes X and λ , respectively Γ and Γ̃, satisfy the linear equations

Γ(h) =
p

∑
j=1

α j ·Γ(h− j)+
min(h−1,q)

∑
k=1

βk ·Γ(h− k)+
q

∑
k=h

βk · Γ̃(k−h), h ≥ 1,

Γ̃(h) =
min(h,p)

∑
j=1

α j · Γ̃(h− j)+
p

∑
j=h+1

α j ·Γ( j−h)+
q

∑
k=1

βk · Γ̃(h− k), h ≥ 0,

assuming that ∑
q
k=h βk · Γ̃(k−h) = 0 if h > q and ∑

p
j=h+1 α j ·Γ( j−h) = 0 if h ≥ p.

Proof: From expressions (3.3) and (3.4) we have

E (XtXt−h) = α0µ +
p

∑
j=1

α jE (Xt− jXt−h)+
min(h−1,q)

∑
k=1

βkE (Xt−kXt−h)+
q

∑
k=h

βkE (λt−kλt−h), h ≥ 1,

E (λtλt−h) = α0µ +
min(h,p)

∑
j=1

α jE (λt− jλt−h)+
p

∑
j=h+1

α jE (Xt− jXt−h)+
q

∑
k=1

βkE (λt−kλt−h), h ≥ 0.

Thus, for h ≥ 1, we obtain

Γ(h) = E[(Xt −µ)(Xt−h −µ)] = E (XtXt−h)−µ
2

= α0µ +
p

∑
j=1

α j ·Γ(h− j)+
min(h−1,q)

∑
k=1

βk ·Γ(h− k)+
q

∑
k=h

βk · Γ̃(k−h)+µ
2

(
p

∑
j=1

α j +
q

∑
k=1

βk

)
−µ

2

=
p

∑
j=1

α j ·Γ(h− j)+
min(h−1,q)

∑
k=1

βk ·Γ(h− k)+
q

∑
k=h

βk · Γ̃(k−h),

and, for h ≥ 0, proceeding in an analogous way

Γ̃(k) = E[(λt −µ)(λt−h −µ)] = E(λtλt−h)−µ
2



42 Stationarity and Ergodicity in the CP-INGARCH process

=
min(h,p)

∑
j=1

α j · Γ̃(h− j)+
p

∑
j=h+1

α j ·Γ( j−h)+
q

∑
k=1

βk · Γ̃(h− k),

which completes the proof. �

We point out that this general result includes those of Weiß [77], Zhu [81, 82] and Xu et al. [80]
on INGARCH, NB-INGARCH, GP-INGARCH and NB-DINARCH models as special cases.

The autocovariance function of the CP-INGARCH(p,q) process indicates that it can be represented
as an ARMA process. In fact, as a consequence of Theorem 3.3 we have

Γ(h) =
p

∑
j=1

α j ·Γ(h− j)+
min(h−1,q)

∑
k=1

βk ·Γ(h− k)+
q

∑
k=h

βk · Γ̃(k−h), h ≥ 1,

=



p

∑
j=1

α j ·Γ(h− j)+
h−1

∑
k=1

βk ·Γ(h− k)+
q

∑
k=h

βk · Γ̃(k−h), 1 ≤ h ≤ q,

p

∑
j=1

α j ·Γ(h− j)+
q

∑
k=1

βk ·Γ(h− k), h ≥ q+1,

which means that {Xt −µ}t∈Z has an ARMA(max(p,q),q) representation [12, p. 90]. We point out
that this result may be useful in the identification of the model, i.e., in the choice of the orders p and q.

For a CP-INGARCH(1,1) model we are able to present explicitly the autocovariance function.

Corollary 3.2 Let X be a weakly stationary CP-INGARCH(1,1) process.

The autocovariances of X are given by

Γ(h) =
α1(1−β1(α1 +β1))(α1 +β1)

h−1

1− (α1 +β1)2 +α2
1

Γ(0), h ≥ 1.

Proof: From Theorem 3.3, we obtain for h ≥ 2 that

Γ(h) = α1 ·Γ(h−1)+β1 ·Γ(h−1) = (α1 +β1) ·Γ(h−1) = ...

= (α1 +β1)
h−1 ·Γ(1) = (α1 +β1)

h−1[α1 ·Γ(0)+β1 · Γ̃(0)]. (3.12)

To determine an expression for V (λt) = Γ̃(0), we note first that for h ≥ 1,

Γ̃(h) = α1 · Γ̃(h−1)+β1 · Γ̃(h−1) = ... = (α1 +β1)
h · Γ̃(0),

Γ̃(0) = α1 ·Γ(1)+β1 · Γ̃(1)

= α
2
1 ·Γ(0)+α1β1 · Γ̃(0)+β1(α1 +β1) · Γ̃(0)

= α
2
1 ·Γ(0)+ [(α1 +β1)

2 −α
2
1 ] · Γ̃(0)

⇔ Γ̃(0) =
α2

1 ·Γ(0)
1− (α1 +β1)2 +α2

1
.
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Therefore, replacing the previous expression in equation (3.12) we obtain

Γ(h) = (α1 +β1)
h−1 ·

[
α1 ·Γ(0)+

α2
1 β1 ·Γ(0)

1− (α1 +β1)2 +α2
1

]

= (α1 +β1)
h−1
[

α1 −α3
1 −2α2

1 β1 −α1β 2
1 +α3

1 +α2
1 β1

1− (α1 +β1)2 +α2
1

]
Γ(0)

= (α1 +β1)
h−1 α1(1−β1(α1 +β1))

1− (α1 +β1)2 +α2
1

Γ(0), h ≥ 1. �

So in this case the autocorrelations of X and λ , under the weak stationarity, are respectively given
by

ρ(h) =
Γ(h)
Γ(0)

=
α1(1−β1(α1 +β1))

1− (α1 +β1)2 +α2
1
(α1 +β1)

h−1, h ≥ 1,

ρ̃(h) = (α1 +β1)
h, h ≥ 0.

We underline that for any CP-INGARCH(1,1) process the correlation between the values at
different times is independent of its conditional distribution. To illustrate these expressions we plot in
Figure 3.4 the empirical autocorrelation function of the INGARCH(1,1) and NTA-INGARCH(1,1)
models corresponding to the trajectories of the Figures 2.3 and 2.4, respectively (5). We observe that
these processes are weakly stationary since the parameters α1 = 0.4 and β1 = 0.5 belongs to the weak
stationarity region (see Figure 3.1). Some theoretical values according to the above formulas are, for
instance, ρ(1)≃ 0.629, ρ(2)≃ 0.566, ρ(3)≃ 0.509, ρ(6)≃ 0.371, ρ(10)≃ 0.244, ρ(16)≃ 0.129,
from which some closeness with the empirical autocorrelation values is evident.

Fig. 3.4 Autocorrelation function of an INGARCH(1,1) (on the left) and NTA-INGARCH(1,1)
model with φ = 2 (on the right): α0 = 10, α1 = 0.4 and β1 = 0.5.

5These correlograms are obtained with the aid of the software EViews when we generated the trajectories of Section 2.3.
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Remark 3.5 If the hypothesis H2 is satisfied then the variance of Xt is given by

Γ(0) = µ
(v0 + v1µ)[1− (α1 +β1)

2 +α2
1 ]

1− (α1 +β1)2 − v1α2
1

,

where µ = α0/(1−α1 −β1). In fact, the variance of Xt can be obtained from

V (Xt) = E[(v0 + v1λt)λt ]+V (λt) = v0µ + v1E(λ 2
t )+V (λt)

= v0µ +(1+ v1)V (λt)+ v1µ
2

⇔ Γ(0) = v0µ +
(1+ v1)α

2
1 ·Γ(0)

1− (α1 +β1)2 +α2
1
+ v1µ

2

⇔
[
1− (α1 +β1)

2 − v1α
2
1
]

Γ(0) = µ(v0 + v1µ)[1− (α1 +β1)
2 +α

2
1 ]

⇔ Γ(0) = µ
(v0 + v1µ)[1− (α1 +β1)

2 +α2
1 ]

1− (α1 +β1)2 − v1α2
1

.

We observe that the variance Γ(0) can also be obtained by applying the formula stated in Theorem
3.2 since, in this case, we have

P(1) = 1−B1 = 1− (α1 +β1)
2 − v1α

2
1 ,

B0 = v0µ +(1+ v1)[2α0µ −α
2
0 ]− v0µ(2α1β1 +β

2
1 ).

Therefore, if we consider α0 = 10, α1 = 0.4 and β1 = 0.5 then Γ(0) =
35(v0 +100v1)

0.19−0.16v1
.

In particular, for the INGARCH(1,1) process we get
√

Γ(0)≃ 13.572 (v0 = 1 and v1 = 0), for
the NTA-INGARCH(1,1) process with φ = 2 we get

√
Γ(0)≃ 23.508 (v0 = 1+φ and v1 = 0), and

for the GEOMP-INGARCH(1,1) process with r = 2 we get
√

Γ(0)≃ 343.269 (v0 = 1 and v1 = 2/r).
Comparing these theoretical values, respectively, with those presented in the simulated trajectories
of Figures 2.3 (= 13.247), 2.4 (= 24.042) and 2.5 (= 133.902), we notice a discrepancy in the
GEOMP-INGARCH which may be a consequence from its hight variability.

3.3.2 Moments of a CP-INGARCH(1,1)

In this section we give a necessary and sufficient condition for the existence of all moments of a
CP-INGARCH(1,1). The study undertaken allows us to establish this result in a subclass of models
for which the characteristic functions ϕt satisfy

Hypothesis H3 : ϕt is deterministic.

We underline that this particular case still includes a wide class of models, many of them here
introduced, as the GEOMP2-INGARCH or the NTA-INGARCH processes.

We start by presenting the next lemma which proof is in Appendix C.1.
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Lemma 3.1 For k ∈ N0 and m ∈ N, the m-th derivative of the function ϕk
t = ∏

k
j=1 ϕt is given by

(
ϕ

k
t

)(m)
(u) =

m−1

∑
n=max{0,m−k}

k!
(k−m+n)!

ϕ
k−m+n
t (u) ×

∑
k1+...+km=m−n

k1+2k2+...+mkm=m
kr∈N0

(m;k1, ...,km)
[
ϕ
′
t (u)

]k1 ...[ϕ
(m)
t (u)]km , u ∈ R, (3.13)

where (m;k1, ...,km) represents the number of ways of partitioning a set of m = k1 +2k2 + . . .+mkm

different objects into kr subsets containing r objects for r = 1,2, . . . ,m, i.e., (see, e.g., [2, p. 823])

(m;k1, ...,km) =
m!

(1!)k1k1!(2!)k2k2! . . .(m!)kmkm!
.

Theorem 3.4 Let X be a CP-INGARCH(1,1) model such that the hypothesis H3 is satisfied. The
moments of X are all finite if and only if α1 +β1 < 1.

Proof: Let us recall the representation (2.5) stated in Section 2.3. Since the Xt, j, j = 1, ...,Nt , are
i.i.d. random variables with common characteristic function ϕt , the characteristic function of the sum
∑

k
j=1 Xt, j is ∏

k
j=1 ϕt(u) = ϕk

t (u), u ∈R. As Xt |X t−1 is a compound Poisson random variable, we have,
according to Remark 2.3,

E[Xm
t |X t−1] =

m

∑
r=0

(λ ∗
t )

r

r!

{
r

∑
k=0

(
r
k

)
(−1)r−kE

[(
k

∑
j=1

Xt, j

)m

|X t−1

]}

=
m

∑
r=0

1
r!

λ r
t

(ϕ ′
t (0))r

r

∑
k=0

(
r
k

)
(−1)r−k

im−r

(
ϕ

k
t

)(m)
(0), m ≥ 1,

with
(
ϕk

t
)(m) given by expression (3.13). Thus,

E[Xm
t ] =

m

∑
r=0

r

∑
k=0

1
r!

(
r
k

)
(−1)r−k

(
ϕk

t
)(m)

(0)
im−r(ϕ ′

t (0))r E[λ r
t ]. (3.14)

The binomial formula yields

λ
r
t = (α0 +α1Xt−1 +β1λt−1)

r =
r

∑
n=0

(
r
n

)
α

r−n
0

n

∑
l=0

(
n
l

)
α

l
1β

n−l
1 X l

t−1λ
n−l
t−1

= α
r
0 +

r

∑
n=1

(
r
n

)
α

r−n
0

[
β

n
1 λ

n
t−1 +

n

∑
l=1

(
n
l

)
α

l
1β

n−l
1 X l

t−1λ
n−l
t−1

]
.

As λ
n−l
t−1 is X t−2-measurable we obtain

E[X l
t−1λ

n−l
t−1 |X t−2] =

l

∑
v=0

1
v!

λ
v+n−l
t−1

(ϕ ′
t−1(0))v

v

∑
x=0

(
v
x

)
(−1)v−x

il−v

(
ϕ

x
t−1
)(l)

(0), l ≥ 1,
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and consequently,

E[λ r
t |X t−2] = α

r
0 +

r

∑
n=1

(
r
n

)
α

r−n
0

[
β

n
1 λ

n
t−1 +

n

∑
l=1

(
n
l

)
α

l
1β

n−l
1 λ

n−l
t−1 E[X l

t−1|X t−2]

]

= α
r
0 +

r

∑
n=1

(
r
n

)
α

r−n
0 β

n
1 λ

n
t−1 +

r

∑
n=1

(
r
n

)
α

r−n
0

n

∑
l=1

(
n
l

)
×

×
l

∑
v=0

α l
1β

n−l
1

v!(ϕ ′
t−1(0))v

v

∑
x=0

(
v
x

)
(−1)v−x

il−v

(
ϕ

x
t−1
)(l)

(0) λ
v+n−l
t−1 . (3.15)

Let Λt = (λ m
t , ...,λt)

⊤. In the algebraic expression of E[λ r
t |X t−2], for r = 1, ...,m, all the powers

of λt−1 are less or equal to r. Therefore, a constant vector d and an upper triangular matrix D = (di j),
i, j = 1, ...,m, exist such that the following equation is satisfied:

E[Λt |X t−2] = d+DΛt−1

⇔


E[λ m

t |X t−2]
...

E[λ 2
t |X t−2]

E[λt |X t−2]

=


αm

0
...

α2
0

α0

+


(α1 +β1)
m · · · ∗ ∗

...
. . .

...
...

0 · · · (α1 +β1)
2 ∗

0 · · · 0 α1 +β1




λ m
t−1
...

λ 2
t−1

λt−1

 .
Indeed, let us prove that the diagonal entries of the matrix D are those given above.

The k-th diagonal entry of the matrix D corresponds to the case where in equation (3.15), we
consider r = m− k+1. Thus, to obtain the coefficient of λ

m−k+1
t−1 , we look at the terms corresponding

to n = m− k+1 and l = v. Then, we get

dkk = β
m−k+1
1 +

m−k+1

∑
l=1

(
m− k+1

l

)
α l

1β
m−k+1−l
1

l!(ϕ ′
t−1(0))l

l

∑
x=0

(
l
x

)
(−1)l−x (

ϕ
x
t−1
)(l)

(0)

= β
m−k+1
1 +

m−k+1

∑
l=1

(
m− k+1

l

)
α

l
1β

m−k+1−l
1

= (α1 +β1)
m−k+1, k = 1, ...,m,

since it can be proved that

l

∑
x=0

(
l
x

)
(−1)l−x (

ϕ
x
t−1
)(l)

(0) = l! [ϕ ′
t−1(0)]

l. (3.16)

In fact, using the expression (3.13) we obtain

l

∑
x=0

(
l
x

)
(−1)l−x (

ϕ
x
t−1
)(l)

(0) =
l

∑
x=0

(
l
x

)
(−1)l−x

l−1

∑
j=l−x

x!
(x− l + j)!

ϕ
x−l+ j
t−1 (0)

× ∑
k1+...+kl=l− j

k1+2k2+...+lkl=l
kr∈N0

(l;k1, ...,kl)
[
ϕ
′
t−1(0)

]k1 ... [ϕ
(l)
t−1(0)]

kl ,
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and thus, for any arbitrarily fixed k1, ...,kl ∈N0 such that k1+ ...+kl = l− j and k1+2k2+ ...+ lkl = l,
the coefficient of

[
ϕ ′

t−1(0)
]k1 . . . [ϕ

(l)
t−1(0)]

kl is given by[
l

∑
x=0

(
l
x

)
(−1)l−x x!

(x− (k1 + ...+ kl))!

]
(l;k1, ...,kl)

=

[
l

∑
x=k1+...+kl

(−1)l−x

(l − x)!(x− (k1 + ...+ kl))!

]
l!(l;k1, ...,kl)

=
(−1)l−(k1+...+kl)

(l − (k1 + ...+ kl))!

[
l−(k1+...+kl)

∑
m=0

(
l − (k1 + ...+ kl)

m

)
(−1)−m

]
l!(l;k1, ...,kl).

When k1 = l, k2 = . . . = kl = 0, we obtain the coefficient l!(l; l,0, ...,0) = l!. Otherwise, the
coefficient equals zero. Therefore, we finally conclude the equality (3.16).

Since X t−3 ⊂ X t−2, we obtain

E[Λt |X t−3] = E [E(Λt |X t−2)|X t−3] = E[d+DΛt−1|X t−3]

= d+D E[Λt−1|X t−3] = d+D(d+DΛt−2) = d+Dd+D2
Λt−2.

Iterating this recurrence l times gives:

E[Λt |X t−2−l] =
(

Im +D+D2 + . . .+Dl
)

d+Dl+1
Λt−(l+1).

Substituting k = l +2 leads to:

E[Λt |X t−k] =

(
k−2

∑
r=0

Dr

)
d+Dk−1

Λt−(k−1).

If the eigenvalues of D are inside the unit circle, i.e., if for any eigenvalue λ of D we have |λ |< 1
then there is a norm ∥.∥ under Rm such that ∥D∥< 1 [51, Theorem 3.32] and then the matrix Im −D,
where Im represents the identity matrix of order m, is invertible and we can write

k−2

∑
r=0

Dr =
∞

∑
r=0

Dr −
∞

∑
r=0

Dr+k−1 =
∞

∑
r=0

Dr −Dk−1
∞

∑
r=0

Dr = (Im −D)−1(Im −Dk−1),

that is, we get
E[Λt |X t−k] = (Im −D)−1(Im −Dk−1)d+Dk−1

Λt−(k−1).

So, we conclude that the eigenvalues of D (which coincide with its diagonal entries because it is
an upper triangular matrix) are inside the unit circle if and only if α1 +β1 < 1. Consequently, since
Dk−1 → 0 when k → ∞, we have

lim
k→∞

E[Λt |X t−k] = (Im −D)−1d = E[Λt ],

and then from (3.14) all the moments of Xt of order ≤ m are finite. �
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As in the particular case studied by Ferland et al. [25] we assure the existence of all moments of
this process under a very simple condition on the model coefficients. In accordance to these authors,
we point out that it is an unexpected result taking into consideration what is known on the complexity
analysis and on the conditions of moments existence for conditional heteroscedastic models in general.

In the following we illustrate the expressions stated above in some particular cases.

Remark 3.6 Let us consider the

• INGARCH model:
(
ϕk
)(m)

(u) = (ik)meiku and
(
ϕk
)(m)

(0) = (ik)m, u ∈ R, m ≥ 1. Thus

E[Xm
t ] =

m

∑
r=0

r

∑
k=0

1
r!

(
r
k

)
(−1)r−kkm E[λ r

t ] =
m

∑
r=0

S(m,r)E[λ r
t ]. (6)

A complete proof for this particular case can be found in [25].
• NTA-INGARCH model: We have

ϕ
k(u) = exp

(
kφ
(
eiu −1

))
,(

ϕ
k
)(m)

(u) = im
m

∑
j=1

S(m, j)(kφ) j exp
(
kφ
(
eiu −1

)
+ i ju

)
, u ∈ R. (3.17)

In fact, for m = 1, we get (
ϕ

k(u)
)′

= ikφ exp
(
kφ
(
eiu −1

)
+ iu

)
,

and, by induction,

(
ϕ

k
)(m+1)

(u) =
d
du

[
im

m

∑
j=1

S(m, j)(kφ) j exp
(
kφ
(
eiu −1

)
+ i ju

)]

= im
m

∑
j=1

S(m, j)(kφ) j (ikφeiu + i j
)

exp
(
kφ
(
eiu −1

)
+ i ju

)
= im+1

m

∑
j=1

S(m, j)
[
(kφ) j+1 exp

(
kφ
(
eiu −1

)
+ i( j+1)u

)
+ j(kφ) j exp

(
kφ
(
eiu −1

)
+ i ju

)]
= im+1

m

∑
j=2

(kφ) j[S(m, j−1)+ jS(m, j)]exp
(
kφ
(
eiu −1

)
+ i ju

)
+im+1kφ exp

(
kφ
(
eiu −1

)
+ iu

)
+im+1(kφ)m+1 exp

(
kφ
(
eiu −1

)
+ i(m+1)u

)
= im+1

m+1

∑
j=1

S(m+1, j)(kφ) j exp
(
kφ
(
eiu −1

)
+ i ju

)
,

6[1, p. 835]: A closed form for the Stirling numbers of the second kind is

S(m,r) =
1
r!

r

∑
k=0

(−1)r−k
(

r
k

)
km.
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from the recurrence relation of the Stirling numbers of the second kind and so (3.17) is proved.

Taking u = 0, we conclude (
ϕ

k
)(m)

(0) = im
m

∑
j=1

S(m, j)(kφ) j.

Thus,

E[Xm
t ] =

m

∑
r=0

r

∑
k=0

1
r!

(
r
k

)
(−1)r−k

φ r

m

∑
j=1

S(m, j)(kφ) j E[λ r
t ], (recall (3.14))

E[λ r
t |X t−2] = α

r
0 +

r

∑
n=1

(
r
n

)
α

r−n
0 β

n
1 λ

n
t−1 +

r

∑
n=1

(
r
n

)
α

r−n
0

n

∑
l=1

(
n
l

)
×

×
l

∑
v=0

α l
1β

n−l
1

v! φ v

l

∑
k=1

v

∑
j=0

(−1)v− jS(l,k)

(
v
j

)
( jφ)k

λ
v+n−l
t−1 , (recall (3.15))

and the diagonal entries of the matrix D are given by

dii =
m−i+1

∑
l=0

(
m− i+1

l

)
α l

1β
m−i+1−l
1
l!φ l

l

∑
k=1

l

∑
j=0

(−1)l− jS(l,k)

(
l
j

)
( jφ)k

=
m−i+1

∑
l=0

(
m− i+1

l

)
α

l
1β

m−i+1−l
1

l

∑
k=1

S(l,k)S(k, l)φ k−l

= (α1 +β1)
m−i+1, i = 1, ...,m,

because S(k, l) ̸= 0 only when k = l.

3.4 Strict stationarity and Ergodicity

In this section we study the existence of strictly stationary solutions for the class of models previously
introduced. We begin by building, recursively, a first-order stationary process solution of the model
following the theory presented by Ferland et al. [25]. This solution will be, under certain conditions,
strictly stationary and ergodic.

Let us consider the CP-INGARCH model as specified in (2.2) and (2.3) associated to a given
family of characteristic functions (ϕt , t ∈ Z) such that H1 and H3 are satisfied and let {ψ j} j∈N0 be
the sequence of coefficients associated to the CP-INARCH(∞) representation of the model.

Let {Ut}t∈Z be a sequence of independent real random variables distributed according to a discrete
compound Poisson distribution with characteristic function

ΦUt (u) = exp
{

ψ0
i

ϕ ′
t (0)

[ϕt(u)−1]
}
.
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For each t ∈ Z and k ∈ N, let Zt,k = {Zt,k, j} j∈N be a sequence of independent discrete compound
Poisson random variables with characteristic function

ΦZt,k, j(u) = exp
{

ψk
i

ϕ ′
t+k(0)

[ϕt+k(u)−1]
}
.

We note that E(Ut)=ψ0, E(Zt,k, j)=ψk and that Zt,k, j are identically distributed for each (t,k)∈Z×N.
We also assume that all the variables Us, Zt,k, j, (s, t ∈ Z and k, j ∈ N), are mutually independent.

Based on these random variables, we define the sequence X (n)
t as follows:

X (n)
t =


0, n < 0
Ut , n = 0

Ut +
n

∑
k=1

X (n−k)
t−k

∑
j=1

Zt−k,k, j, n > 0

(3.18)

where it is assumed that ∑
0
j=1 Zt−k,k, j = 0. Using the notion of thinning operation (7), X (n)

t admits, for
n > 0, the representation

X (n)
t =Ut +

n

∑
k=1

ψ
(t−k)
k ◦X (n−k)

t−k , (3.19)

where the notation (ψ
(τ)
k ◦) means that the sequence of random variables of mean ψk involved in the

thinning operation corresponds to time τ , i.e., the sequence Zτ,k = {Zτ,k, j} j∈N. Note that we can
really use the thinning operation since Zt−k,k is a sequence of i.i.d. random variables and X (n−k)

t−k and
Zt−k,k, j are independent, for each k ∈ {1, ...,n}. Indeed, for a fixed k, we have

X (n−k)
t−k =Ut−k +

n−k

∑
r=1

X (n−k−r)
t−k−r

∑
j=1

Zt−k−r,r, j

= fn

(
Ut−k, X (n−k−1)

t−k−1 , X (n−k−2)
t−k−2 , . . . , X (1)

t−n+1, Ut−n, Zt−k−1,1, j, . . . , Zt−n+1,n−k−1, j, Zt−n,n−k, j, j ∈ N
)

= fn

(
Ut−k, Ut−k−1, X (n−k−2)

t−k−2 , . . . , X (1)
t−n+1, Ut−n, Zt−k−1,1, j, Zt−k−2,2, j, . . . , Zt−n+1,n−k−1, j,

Zt−n,n−k, j, Zt−k−2,1, j, Zt−k−3,2, j, . . . , Zt−n+1,n−k−2, j, Zt−n,n−k−1, j, j ∈ N
)

= . . . = fn
(
Ut−k, . . . , Ut−n, Zt−k−r,s, j, r = 1, ...,n− k, s = 1, ...,r, j ∈ N

)
,

and the required independence holds from the construction of the variables.

The representation (3.19) shows that X (n)
t is obtained through a cascade of thinning operations

along the sequence {Ut}t∈Z. Indeed, using recursively the thinning operator, we have

7[30]: Let X be a nonnegative integer-valued random variable. For any α ≥ 0 the thinning operation is defined by

α ◦X =

{
∑

X
j=1 Y j, if X > 0,

0, otherwise,

where ’◦’ denotes the thinning operator, {Y j} is a sequence of i.i.d. nonnegative integer-valued random variables, independent
of X , and such that E(Y j) = α . The sequence {Y j} is known as counting series. In the binomial thinning operation the
counting series is considered to be a sequence of i.i.d. Bernoulli random variables with parameter α .
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X (1)
t = Ut +ψ

(t−1)
1 ◦X (0)

t−1 =Ut +ψ
(t−1)
1 ◦Ut−1,

X (2)
t = Ut +ψ

(t−1)
1 ◦X (1)

t−1 +ψ
(t−2)
2 ◦X (0)

t−2

= Ut +ψ
(t−1)
1 ◦

(
Ut−1 +ψ

(t−2)
1 ◦Ut−2

)
+ψ

(t−2)
2 ◦Ut−2,

X (3)
t = Ut +ψ

(t−1)
1 ◦

[
Ut−1 +ψ

(t−3)
2 ◦Ut−3 +ψ

(t−2)
1 ◦

(
Ut−2 +ψ

(t−3)
1 ◦Ut−3

)]
+ψ

(t−2)
2 ◦

(
Ut−2 +ψ

(t−3)
1 ◦Ut−3

)
+ψ

(t−3)
3 ◦Ut−3,

and so on. For any value n, X (n)
t can be expanded in that way, which is useful on the study of its strict

stationarity and ergodicity.
In what follows we present some properties of the sequence {X (n)

t }n∈N, useful on the analysis
of its probabilistic behavior. In fact, we will prove that {(X (n)

t , t ∈ Z), n ∈ Z} is a non-decreasing
sequence of first-order stationary processes that converges almost surely, in L1 and in L2.

Theorem 3.5 If ∑
p
j=1 α j +∑

q
k=1 βk < 1 then {(X (n)

t , t ∈ Z), n ∈ Z} is a sequence of first-order

stationary processes such that µn = E(X (n)
t )−→ µ , as n → ∞.

Proof: We start by noting that the expectation of X (n)
t is well defined because X (n)

t is a finite sum
of independent compound Poisson random variables. We will denote this expectation by µn and we
prove in the following by induction, with respect to n ∈ Z, that it does not depend on t.

For n = 0 we obtain E(X (0)
t ) = E(Ut) = ψ0, which is independent of t (for n < 0 the result is

trivial). Now let us consider as induction hypothesis, that for n > 0 and for any fixed value of t,
E(X (n)

t ) is independent of t. Thus, from the mean of the thinning random variable (8.), we obtain

E
(

X (n+1)
t

)
= E

(
Ut +

n+1

∑
k=1

ψ
(t−k)
k ◦X (n+1−k)

t−k

)
= ψ0 +

n+1

∑
k=1

ψkE
(

X (n+1−k)
t−k

)

= g
(

E
(

X (0)
t−n−1

)
, ...,E

(
X (n)

t−1

))
,

which is, by the induction hypothesis, a function independent of t. So

µn = E
(

X (n)
t

)
=


0, n < 0
ψ0, n = 0

ψ0 +
n

∑
k=1

ψkµn−k, n > 0
,

and using the fact that µn−k = 0 if k > n, we can write

µn =
∞

∑
k=1

ψkµn−k +ψ0 = B−1(L) [A(L)µn +α0] ⇔ B(L)µn = A(L)µn +α0

⇔ K(L)µn = α0,

8[30, p. 52]: E [α ◦X ] = αE [X ].
More properties of the thinning operation can be found in [30] and [71]
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where K(L) = B(L)−A(L) with A(L) and B(L) the polynomials introduced in Section 2.2.
The last equation indicates that the sequence {µn}n∈Z satisfies a finite difference equation of degree

max(p,q) with constant coefficients, namely the equation µn −∑
p
j=1 α jµn− j −∑

q
k=1 βkµn−k = α0.

The characteristic polynomial of this equation, K(z), has all its roots outside the unit circle since
∑

p
j=1 α j +∑

q
k=1 βk < 1 and so, {(X (n)

t , t ∈ Z), n ∈ Z} is a sequence of first-order stationary processes.
From this stationarity, we deduce that µn = ψ0 +∑

n
k=1 ψkµn, n > 0, and then

lim
n→∞

µn =
ψ0

1−∑
∞
k=1 ψk

=
α0B−1(1)

1−A(1)B−1(1)
=

α0

K(1)
=

α0

1−∑
p
j=1 α j −∑

q
k=1 βk

= µ. �

Theorem 3.6 For a fixed value of t, the sequence {(X (n)
t , t ∈Z), n∈Z} is a non-decreasing sequence

of nonnegative integer-valued random variables.

Proof: This result is stated by induction with respect to n, for any fixed value of t. In fact, we have

X (1)
t −X (0)

t =Ut +

X (0)
t−1

∑
j=1

Zt−1,1, j −Ut =
Ut−1

∑
j=1

Zt−1,1, j,

which is nonnegative because this is a random sum of nonnegative integer-valued random variables.
Let us suppose now that, for n > 0, X (n+1)

t −X (n)
t ≥ 0. So,

X (n+2)
t −X (n+1)

t =Ut +
n+2

∑
k=1

X (n+2−k)
t−k

∑
j=1

Zt−k,k, j −Ut −
n+1

∑
k=1

X (n+1−k)
t−k

∑
j=1

Zt−k,k, j

=

X (n+1)
t−1

∑
j=1

Zt−1,1, j +

X (n)
t−2

∑
j=1

Zt−2,2, j + . . . +

X (1)
t−n−1

∑
j=1

Zt−n−1,n+1, j +
Ut−n−2

∑
j=1

Zt−n−2,n+2, j

−
X (n)

t−1

∑
j=1

Zt−1,1, j −
X (n−1)

t−2

∑
j=1

Zt−2,2, j − . . . −
X (0)

t−n−1

∑
j=1

Zt−n−1,n+1, j.

By the induction hypothesis it follows that X (n+1)
t−1 ≥ X (n)

t−1, X (n)
t−2 ≥ X (n−1)

t−2 , ..., X (1)
t−n−1 ≥ X (0)

t−n−1.
Using that, we can rewrite the above equality in the form

X (n+2)
t −X (n+1)

t =

X (n+1)
t−1

∑
j=X (n)

t−1+1

Zt−1,1, j + . . . +

X (1)
t−n−1

∑
j=X (0)

t−n−1+1

Zt−n−1,n+1, j +
Ut−n−2

∑
j=1

Zt−n−2,n+2, j

=
n+1

∑
k=1

X (n+2−k)
t−k

∑
j=X (n+1−k)

t−k +1

Zt−k,k, j +
Ut−n−2

∑
j=1

Zt−n−2,n+2, j,

which is once again a nonnegative integer-valued random variable.
Then, {(X (n)

t , t ∈ Z),n ∈ Z} is, for each t, a non-decreasing sequence. �
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Theorem 3.7 If ∑
p
j=1 α j +∑

q
k=1 βk < 1 then the sequence {(X (n)

t , t ∈ Z), n ∈ Z} converges almost
surely and in L1 (or in mean) to a process X∗ = (X∗

t , t ∈ Z).

Proof: Let (Ω,A ,P) be the common probability space on which the relevant random variables are
defined. Since X (n)

t is a non-decreasing sequence of nonnegative integers we have

∀ ω ∈ Ω, lim
n→∞

X (n)
t (ω) = X∗

t (ω),

where the limit X∗
t (ω) is not necessarily finite. To prove the almost sure convergence of this sequence

we will use the Borel-Cantelli Lemma (9). In fact, we need to prove that X∗
t (ω) is finite with

probability one which is equivalent to say that the set A∞ = {ω : X∗
t (ω) = ∞} is of probability zero,

i.e., P(A∞) = 0. But it is equivalent to prove that the events

An =
{

ω : X (n)
t (ω)−X (n−1)

t (ω)> 0
}

occur infinitely often with probability zero, i.e., P(limsupn An) = 0.
In fact, we have

E
[
X (n)

t −X (n−1)
t

]
=

+∞

∑
k=1

kP
({

ω : X (n)
t (ω)−X (n−1)

t (ω) = k
})

≥
+∞

∑
k=1

P
({

ω : X (n)
t (ω)−X (n−1)

t (ω) = k
})

= P(An). (3.20)

On the other hand

E
[
X (n)

t −X (n−1)
t

]
= µn −µn−1 = ψ0 +

n

∑
k=1

ψkµn−k −ψ0 −
n−1

∑
k=1

ψkµn−1−k = νn

⇔ ψnµ0 +
n−1

∑
k=1

ψk (µn−k −µn−k−1) = νn ⇔ νn =
n

∑
k=1

ψkνn−k.

Since νn−k = 0 if k > n, we conclude

νn =
∞

∑
k=1

ψkνn−k ⇔ νn = B−1(L)A(L)νn ⇔ K(L)νn = 0, (3.21)

where, as in the proof of Theorem 3.5, K(L) = B(L)−A(L). So, the sequence {νn}n∈N satisfies a
homogeneous finite difference equation with characteristic polynomial K(z) that has all roots outside
the unit circle because ∑

p
j=1 α j +∑

q
k=1 βk < 1. From Section 3.6 of [12], we know that the general

solution of the equation (3.21) has the form

νn =
k

∑
j=1

r j−1

∑
s=0

c jsns
ξ
−n
j ,

where ξ j, j = 1, ...,k are the distinct roots of K(z), r j is the multiplicity of the root ξ j and {c js} a set
of coefficients determined by the initial conditions. Thus, the sequence {νn}n∈N tends towards zero

9[65, p. 102]: Let {An} be any events. If ∑n P(An)< ∞ then P(limsupn→∞ An) = 0.
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with a geometric rate as n → ∞. In other words, there exist constants M ≥ 0 and 0 < c < 1 such that
νn ≤ Mcn. Using (3.20) and (3.21) we get P(An)≤ νn and then

∞

∑
n=1

P(An)≤ M
∞

∑
n=1

cn < ∞.

Finally, from the Borel-Cantelli lemma, we obtain P(limsupn An) = 0, which allow us to conclude
the almost sure convergence of the sequence {(X (n)

t , t ∈ Z),n ∈ Z} to a process {X∗
t }t∈Z.

For the L1 convergence, recall that we have nonnegative integer-valued random variables. Applying
Beppo Lévi’s Theorem and then Theorem 3.5 we conclude that the first moment of {X∗

t }t∈Z is finite,
namely E(X∗

t ) = limn→∞ E(X (n)
t ) = limn→∞ µn = µ . Consequently limn→∞ E(|X (n)

t −X∗
t |) = 0. �

Theorem 3.8 If ∑
p
j=1 α j +∑

q
k=1 βk < 1 and (ϕt , t ∈ Z) is derivable at zero up to order 2 then the

sequence {(X (n)
t , t ∈ Z), n ∈ Z} converges in L2 (or in quadratic mean) to the process {X∗

t }t∈Z.

Proof: To prove the convergence in L2 we start by showing that the second moment of X∗
t is finite.

In fact, for n > 0, we obtain

E
[(

X (n)
t

)2
]
= E


Ut +

n

∑
k=1

X (n−k)
t−k

∑
j=1

Zt−k,k, j

2

= E[U2
t ]+2E

Ut

n

∑
k=1

X (n−k)
t−k

∑
j=1

Zt−k,k, j

+E


 n

∑
k=1

X (n−k)
t−k

∑
j=1

Zt−k,k, j

2 (3.22)

By construction, Us and Zt,k, j (s, t ∈ Z and k, j ∈ N) are mutually independent and so

E

Ut

n

∑
k=1

X (n−k)
t−k

∑
j=1

Zt−k,k, j

= E (Ut)E

 n

∑
k=1

X (n−k)
t−k

∑
j=1

Zt−k,k, j

= ψ0

n

∑
k=1

ψkE
(

X (n−k)
t

)
≤ ψ0E (X∗

t )
n

∑
k=1

ψk,

using the first-order stationarity of the process X (n)
t and the fact that E(X (n)

t )≤ E(X∗
t ) since X (n)

t is a
non-decreasing sequence in n that converges almost surely to X∗

t . We have also

E


 n

∑
k=1

X (n−k)
t−k

∑
j=1

Zt−k,k, j

2=
∞

∑
x=0

E


 n

∑
k=1

X (n−k)
t−k

∑
j=1

Zt−k,k, j

2

| X (n−k)
t−k = x

P
(

X (n−k)
t−k = x

)

=
∞

∑
x=0

V

(
n

∑
k=1

x

∑
j=1

Zt−k,k, j

)
+

(
E

[
n

∑
k=1

x

∑
j=1

Zt−k,k, j

])2
P
(

X (n−k)
t−k = x

)

= E
(

X (n−k)
t−k

) n

∑
k=1

V
(
Zt−k,k, j

)
+E

[(
X (n−k)

t−k

)2
]( n

∑
k=1

ψk

)2

(3.23)
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≤ E
(

X (n)
t

) n

∑
k=1

V
(
Zt−k,k, j

)
+E

[(
X (n)

t

)2
]( n

∑
k=1

ψk

)2

,

where to obtain the equality (3.23) we use the independence of the random variables Zt,k, j (t ∈ Z and
k, j ∈ N) and the fact that E[∑n

k=1 ∑
x
j=1 Zt−k,k, j] = ∑

n
k=1 ∑

x
j=1 E[Zt−k,k, j] = x∑

n
k=1 ψk.

Using the hypothesis H3 and the relation between the characteristic function of Zt−k,k, j and its
moments we get

V
(
Zt−k,k, j

)
=−Φ

′′
Zt−k,k, j

(0)−ψ
2
k =−i

ϕ ′′
t (0)

ϕ ′
t (0)

ψk = Rt(ψk)< ∞,

since

Φ
′
Zt−k,k, j

(u) = iψk
ϕ ′

t (u)
ϕ ′

t (0)
exp
{

ψk
i

ϕ ′
t (0)

[ϕt(u)−1]
}
,

Φ
′′
Zt−k,k, j

(u) =

[
iψk

ϕ ′′
t (u)

ϕ ′
t (0)

+

(
iψk

ϕ ′
t (u)

ϕ ′
t (0)

)2
]

exp
{

ψk
i

ϕ ′
t (0)

[ϕt(u)−1]
}
.

So, we obtain

E


 n

∑
k=1

X (n−k)
t−k

∑
j=1

Zt−k,k, j

2≤
n

∑
k=1

Rt(ψk)E
(

X (n)
t

)
+

(
n

∑
k=1

ψk

)2

E
[(

X (n)
t

)2
]

≤
n

∑
k=1

Rt(ψk)E (X∗
t )+

(
n

∑
k=1

ψk

)2

E
[(

X (n)
t

)2
]
,

and finally replacing in (3.22) we obtain

E
[(

X (n)
t

)2
]
≤ E(U2

t )+2ψ0E (X∗
t )

n

∑
k=1

ψk +
n

∑
k=1

Rt(ψk)E (X∗
t )+

(
n

∑
k=1

ψk

)2

E
[(

X (n)
t

)2
]
.

Hence,

E
[(

X (n)
t

)2
]
≤ E(X∗

t )(∑
n
k=1 Rt(ψk)+2ψ0 ∑

n
k=1 ψk)+E(U2

t )

1− (∑n
k=1 ψk)

2

≤ E(X∗
t )(∑

∞
k=1 Rt(ψk)+2ψ0 ∑

∞
k=1 ψk)+E(U2

t )

1− (∑∞
k=1 ψk)

2 =Ct ,

with Ct a constant dependent of t. By Lebesgue’s dominated convergence theorem (10), we conclude
that E[(X∗

t )
2] is finite. Since the first two moments of {X (n)

t }n∈N are finite consequently the random
variables X (n)

t are in L2(Ω,A ,P). Let us define V (n)
t = (X (n)

t −X∗
t )

2. The sequence {V (n)
t }n∈N is

decreasing, bounded below by 0 and it satisfies E(V (0)
t ) = E[(Ut −X∗

t )
2]< ∞. Consequently,

lim
n→∞

E[(X (n)
t −X∗

t )
2] = lim

n→∞
E
[
V (n)

t

]
= E

[
lim
n→∞

(a.s.)V (n)
t

]
= 0,

10[65, p. 133]: Let {Xn}n∈N be a sequence of random variables which converges a.s. or in probability to a random
variable X . If there exists a random variable Y ∈ L1 such that |Xn| ≤ Y , then limn→∞ E(Xn) = E(X).
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by Lebesgue’s dominated convergence theorem because {X (n)
t }n∈N converges almost surely to X∗

t .
Hence, we deduce that {X (n)

t }n∈N also converges to X∗
t in L2(Ω,A ,P). �

We have defined a sequence that has an almost sure and a mean-squared limit, but we still have to
verify that this is a solution of the CP-INGARCH model. This is the goal of the next theorem.

Theorem 3.9 Under the hypothesis H3, if ∑
p
j=1 α j +∑

q
k=1 βk < 1 the process X∗ is a first-order

stationary solution of the CP-INGARCH(p,q) model.

Proof: We shall prove the theorem in two steps. First we prove that, for all t ∈ Z, the characte-
ristic function of X∗

t conditioned on X∗
t−1, denoted by ΦX∗

t |X∗
t−1

, is equal to limn→+∞ Φn with Φn the

characteristic function of the sequence {r(n)t |X∗
t−1}n∈N, where

r(n)t =Ut +
n

∑
k=1

X∗
t−k

∑
j=1

Zt−k,k, j.

This equality follows from the Lévy Continuity Theorem since, for a fixed t, {r(n)t |X∗
t−1}n∈N

converges in law to X∗
t |X∗

t−1. Indeed, let us denote by Y (n)
t the sequence r(n)t −X (n)

t . Then

Y (n)
t =Ut +

n

∑
k=1

X∗
t−k

∑
j=1

Zt−k,k, j −Ut −
n

∑
k=1

X (n−k)
t−k

∑
j=1

Zt−k,k, j =
n

∑
k=1

X∗
t−k

∑
j=X (n−k)

t−k +1

Zt−k,k, j ≥ 0,

because {X (n−k)
t−k }n∈N is a non-decreasing sequence that converges almost surely to X∗

t−k. Additionally,

E
[
Y (n)

t

]
= E

 n

∑
k=1

X∗
t−k

∑
j=X (n−k)

t−k +1

Zt−k,k, j

=
n

∑
k=1

E

 X∗
t−k

∑
j=X (n−k)

t−k +1

Zt−k,k, j



=
n

∑
k=1

[
∞

∑
x=0

x E
(
Zt−k,k, j

)
P
(

X∗
t−k −X (n−k)

t−k = x
)]

=
n

∑
k=1

ψk E
[
X∗

t−k −X (n−k)
t−k

]
= µ

n

∑
k=1

ψk −
n

∑
k=1

ψk µn−k,

which allows us to conclude

lim
n→∞

E
[
Y (n)

t

]
= lim

n→∞

(
µ

n

∑
k=1

ψk −
n

∑
k=1

ψk µn−k

)
= µ H(1)− lim

n→∞

n

∑
k=1

ψk µn−k

=
α0 A(1)

B(1) [B(1)−A(1)]
− lim

n→∞

(
µn +

α0

B(1)

)
, from Theorem 3.5,

=
α0A(1)

B(1) [B(1)−A(1)]
− α0

B(1)−A(1)
+

α0

B(1)
= 0.

This means that, when n → ∞, the sequence {Y (n)
t }n∈N converges to zero in L1 because Y (n)

t is
nonnegative. So, from the relation between the different types of convergence, {Y (n)

t }n∈N also
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converges in probability to zero and the same happens to X∗
t −X (n)

t . Therefore,

X∗
t − r(n)t = (X∗

t −X (n)
t )+(X (n)

t − r(n)t ) = (X∗
t −X (n)

t )−Y (n)
t ,

allows us to conclude that {r(n)t }n∈N converges in probability to X∗
t and then {r(n)t |X∗

t−1}n∈N converges
in law to X∗

t |X∗
t−1. From that, we deduce finally ΦX∗

t |X∗
t−1
(u) = limn→+∞ Φn(u), u ∈ R.

The second step reduces to the calculation of Φn and then realize that Φn(u), u ∈ R, equals
exp{i λt

ϕ ′(0) [ϕ(u)−1]}, when n → ∞. So, let us obtain Φn. Conditionally to X∗
t−1, we have

Φ
∑

X∗
t−k

j=1 Zt−k,k, j
(u) =

X∗
t−k

∏
j=1

ΦZt−k,k, j(u) = exp

{
X∗

t−k

∑
j=1

ψk
i

ϕ ′
t (0)

[ϕt(u)−1]

}

= exp
{

ψk X∗
t−k

i
ϕ ′

t (0)
[ϕt(u)−1]

}
, u ∈ R.

From the independence of the variables involved in the definition of r(n)t , we get

Φn(u) = exp

(
ψ0

i
ϕ ′

t (0)
[ϕt(u)−1]+

n

∑
k=1

ψk X∗
t−k

i
ϕ ′

t (0)
[ϕt(u)−1]

)

= exp

{(
ψ0 +

n

∑
k=1

ψk X∗
t−k

)
i

ϕ ′
t (0)

[ϕt(u)−1]

}
, u ∈ R,

and thus, we have

lim
n→+∞

Φn(u) = exp
{

i
λt

ϕ ′
t (0)

[ϕt(u)−1]
}
, u ∈ R.

These two steps together enable us to conclude that the almost sure limit of the sequence {X (n)
t }n∈N

is a solution of the model. The first-order stationarity of this solution is a consequence of Theorem
3.1. We observe that from the unicity of the limit follows that this solution is uniquely defined. �

Remark 3.7 From Theorems 3.7 and 3.8, we conclude that the condition ∑
p
j=1 α j +∑

q
k=1 βk < 1

guarantees the existence of a second-order solution of a CP-INGARCH(p,q) process.

Now let us consider, additionally to the hypothesis H3, that ϕt is independent of t, i.e.,

Hypothesis H4 : ϕt = ϕ and ϕ deterministic.

In this subclass, which still includes, among others, the INGARCH, the NB-DINARCH, the
NTA-INGARCH and the GEOMP2-INGARCH models, it is possible to set the strict stationarity and
the ergodicity of {X (n)

t }n∈N and the same for the process {X∗
t }t∈Z.

Theorem 3.10 Under the hypothesis H4, {(X (n)
t , t ∈ Z), n ∈ Z} is a sequence of strictly stationary

and ergodic processes.
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Proof: Let us start by proving the strict stationarity. To simplify the notation we will prove the
statement only for a two-dimensional random vector, i.e., for any positive integer h we show that

X(n)
12 = (X (n)

1 ,X (n)
2 )⊤ and X(n)

1+h,2+h = (X (n)
1+h,X

(n)
2+h)

⊤

have the same joint distribution when n > 0. As the probability generating function characterizes the
distribution, let us prove that the probability generating functions of these random vectors (11) are the
same. Since X (n)

1 = f (U1−n, ...,U1) and X (n)
2 = f ∗ (U2−n, ...,U2),

gX(n)
12
(s) = E

[
sX (n)

1
1 sX (n)

2
2

]
= E

(
E
[

sX (n)
1

1 sX (n)
2

2 |U1−n...2

])

= ∑
x∈N2+n

E
[

sX (n)
1

1 sX (n)
2

2 |U1−n...2 = x
]

P(U1−n...2 = x),

where U1−n...2 represents the vector (U1−n, ...,U2)
⊤. For a given value ut−n...t+1 = (ut−n, ...,ut+1)

⊤ of
the random vector Ut−n...t+1, the components of the vector (X (n)

t ,X (n)
t+1)

⊤ are computed using a set of
well-determined variables coming from the sequences Zτ,η , τ = t −n, ..., t and η = 1, ...,n. It follows
that if U1−n...2 and U1−n+h...2+h are fixed to the same value x, the conditional distributions of X(n)

12 and
X(n)

1+h,2+h given U1−n...2 and U1−n+h...2+h, respectively, are the same and hence

E
[

s
X (n)

1+h
1 s

X (n)
2+h

2 |U1−n+h...2+h = x
]
= E

[
sX (n)

1
1 sX (n)

2
2 |U1−n...2 = x

]
.

As under the hypothesis H4 the vectors U1−n...2 and U1−n+h...2+h are of components identically
distributed we have P(U1−n+h...2+h = x) = P(U1−n...2 = x), and so

gX(n)
12
(s) = ∑

x∈N2+n

E
[

s
X (n)

1+h
1 s

X (n)
2+h

k |U1−n+h...2+h = x
]

P(U1−n+h...2+h = x) = gX(n)
1+h,2+h

(s),

which allows to conclude that X(n)
12 and X(n)

1+h,2+h have the same joint distribution for any h ∈ Z.

Analogously, it can be proved that for any k,h ∈ Z the random vectors X(n)
1...k and X(n)

1+h...k+h, have the

same joint distribution and then the strict stationarity of the process {X (n)
t }t∈Z, for each n, is deduced.

Regarding the ergodicity, under H4, the sequences (Ut , t ∈ Z) and (Zt,k, t ∈ Z,k ∈ N) previously
introduced are of i.i.d. random variables. Then, {(X (n)

t , t ∈ Z), n ∈ Z} is a sequence of ergodic pro-
cesses, because it is a measurable function of the sequence of i.i.d. random variables {(Ut ,Zt, j), t ∈Z,
j ∈ N}, say X (n)

t = Tn (Ut , . . . ,Ut−n,Zt−r,s,k, r = 1, . . . ,n, s = 1, . . . ,r, k ∈ N) (12). �

11Let W be a random vector with nonnegative integer-valued entries and let p(W) denotes P(W = (w1, . . . ,wk)
⊤). The

probability generating function of W, for s = (s1, . . . ,sk)
⊤ ∈ [−1,1]k, is given by

gW(s) = E[sW1
1 . . .sWk

k ] = ∑
w∈Nk

p(W)
k

∏
j=1

sw j
j .

12[7, p. 32]: A sequence X of i.i.d. random variables is an ergodic process.
[68, p. 33]: Let g : RZ → R be a measurable function and X be an ergodic process. Then the process Y = (Yt , t ∈ Z) with

Yt = g(...,Xt−1,Xt ,Xt+1, ...) is also ergodic.
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Theorem 3.11 Let us consider the model CP-INGARCH(p,q) such that H4 is satisfied.
There is a strictly stationary and ergodic process that satisfies the model if ∑

p
j=1 α j +∑

q
k=1 βk < 1.

Moreover, the first two moments of this process are finite.

Proof: In Theorem 3.9 we proved that {X∗
t }t∈Z is a solution of the CP-INGARCH model. So, it is

enough to prove that under the hypothesis H4, the process {X∗
t }t∈Z is strictly stationary and ergodic.

Let us start with the strict stationarity. From Theorem 3.10, {X (n)
t }n∈N is a sequence of strictly

stationary processes. Otherwise, {X (n)
t }n∈N converges almost surely to X∗

t when ∑
p
j=1 α j+∑

q
k=1 βk < 1.

So, considering without loss of generality, the indexes {1, ...,k}, we have, for any h ∈ Z, the following
almost sure convergence

(X (n)
1 , ...,X (n)

k )
a.s.−→n→+∞ (X∗

1 , ...,X
∗
k ),

(X (n)
1+h, ...,X

(n)
k+h)

a.s.−→n→+∞ (X∗
1+h, ...,X

∗
k+h),

and consequently, also the convergence in law. Considering the strict stationarity of {X (n)
t }n∈N and

the unicity of the limit, we conclude that {X∗
t }t∈Z is a strictly stationary process.

To prove the ergodicity, we note that {X∗
t }t∈Z may be written as X∗

t = T ({(Ut ,Zt, j), t ∈ Z, j ∈ N})
where T is the almost sure limit of the sequence of the measurable functions Tn. T is then a measurable
function, and so the process {X∗

t }t∈Z is ergodic as it is a measurable function of an ergodic process.
The existence of the two first moments of {X∗

t }t∈Z is ensured by Theorems 3.7 and 3.8. �

Remark 3.8 (a) Under the conditions of the previous theorem it follows that {X∗
t }t∈Z is also a

weakly stationary solution of the model because it is a strictly stationary second-order process.

(b) In the set of the L1 processes, the condition of the previous theorem is necessary and sufficient for
the existence of a strictly stationary and ergodic process solution of the CP-INGARCH(p,q).

We finish the section by stating that, to the best of our knowledge, the general technique here
proposed to show the ergodicity is different from those existing in the literature for the integer-valued
models [13, 16, 52, 56] since we established the ergodicity of the strict stationarity solution displayed.





Chapter 4

CP-INARCH(1) process: Moments and
Estimation Procedure

The CP-INARCH(1) process has a simple structure and a great potential for applications in practice.
This simple model with its AR(1)-like serial dependence structure has already proved to be of great
practical relevance, with particular applications namely in monthly claims counts of workers in the
heavy manufacturing industry ([77]), daily download counts of the program CW β TeXpert ([85]),
monthly strike data published by the U.S. Bureau of Labor Statistics ([79]), weakly number of dengue
cases in Singapore ([80]), or monthly counts of poliomyelitis cases in the U.S. ([81]).

Regarding the importance of developing a statistical analysis of such general model, a contribution
to the model estimation independent of the specific conditional law is analysed in this chapter.

Let us consider, in what follows, the CP-INARCH(1) model defined as

ΦXt |X t−1
(u) = exp

{
i

λt

ϕ ′
t (0)

[ϕt(u)−1]
}
, u ∈ R, λt = α0 +α1Xt−1, (4.1)

with α0 > 0, 0 < α1 < 1 and where (ϕt , t ∈ Z) is a family of deterministic characteristic functions on
R, X t−1-measurables, associated to a family of discrete laws with support in N0 and finite mean.

This chapter consists of two sections. The section 4.1 is dedicated to present closed-form
expressions for joint (central) moments and cumulants of the CP-INARCH(1) model up to order
4. These results are applied in Section 4.2 to determine an explicit expression for the asymptotic
distribution of the conditional least square (CLS) estimator of the model. In fact, in the final section
of the chapter we discuss the CLS approach for the estimation of the parameters α0 and α1 of the
model and, for the additional parameters associated to its conditional distribution, an approach based
on the moment estimation method is developed. In the sequel, we present results from a simulation
study, where we investigate the finite-sample performance of the confidence region based on the CLS
estimators.
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4.1 Moments and Cumulants

We have seen that, under quite simple conditions, a CP-INGARCH(p,q) model admits a strictly
stationary and ergodic solution X . However, the marginal distribution of the process X is not known
explicitly. The aim of this section is to highlight some properties of this distribution through some of
its moments. We start by computing the first four cumulants of the process and then, as a consequence,
the corresponding skewness and kurtosis are deduced (1).

Let us consider the CP-INARCH(1) process defined in (4.1), which is first-order stationary
(Theorem 3.1) and admits moments of all orders (Theorem 3.4). In addition, let us assume ϕt

derivable as many times as necessary. From the conditional characteristic function we have

ΦXt (z) = E
(
eizXt

)
= E

[
E
(
eizXt |X t−1

)]
= E

[
exp
(

i
λt

ϕ ′
t (0)

[ϕt(z)−1]
)]

= E
[

exp
(

iα0

ϕ ′
t (0)

[ϕt(z)−1]
)
· exp

(
iα1Xt−1

ϕ ′
t (0)

[ϕt(z)−1]
)]

= exp
(

iα0

ϕ ′
t (0)

[ϕt(z)−1]
)
·ΦXt−1

(
α1

ϕ ′
t (0)

[ϕt(z)−1]
)
, z ∈ R,

and hence, the cumulant generating function is given by

κXt (z) = ln(ΦXt (z)) =
iα0

ϕ ′
t (0)

[ϕt(z)−1]+κXt−1

(
α1

ϕ ′
t (0)

[ϕt(z)−1]
)
.

Taking derivatives on both sides of the previous equality, it follows that

κ
′
Xt
(z) =

iα0ϕ ′
t (z)

ϕ ′
t (0)

+
α1

ϕ ′
t (0)

ϕ
′
t (z) ·κ ′

Xt−1

(
α1

ϕ ′
t (0)

[ϕt(z)−1]
)
, (4.2)

κ
(n)
Xt

(z) =
iα0ϕ

(n)
t (z)

ϕ ′
t (0)

+
n−1

∑
j=1

an−1, j(z) ·κ( j)
Xt−1

(
α1

ϕ ′
t (0)

[ϕt(z)−1]
)

+

[
α1ϕ ′

t (z)
ϕ ′

t (0)

]n

·κ(n)
Xt−1

(
α1

ϕ ′
t (0)

[ϕt(z)−1]
)
, n ∈ N, (4.3)

where the coefficients an−1, j are given by

an−1, j(z) =

[
α1

ϕ ′
t (0)

] j

∑
k1+...+kn= j

k1+2k2+...+nkn=n
kr∈N0

(n;k1, ...,kn)
[
ϕ
′
t (z)
]k1 ...[ϕ

(n)
t (z)]kn , j ≥ 1,

1The cumulants are defined via the cumulant generating function which is simply the natural logarithm of the characte-
ristic function. In fact, if ΦX denotes the characteristic function of X , its cumulant generating function is given by

κX (z) = ln(ΦX (z)) =
∞

∑
j=1

κ j(X) · (iz) j/ j!, z ∈ R,

where the coefficient of the series expansion, κ j(X), is the j-th cumulant [15, p. 185].
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with (n;k1, ...,kn) denoting n!/[(1!)k1k1!(2!)k2k2! . . .(n!)knkn!] as before. The proof of formula (4.3)
is made by induction and it is provided in Appendix C.2. In particular, we get

an−1,1(z) =
α1ϕ

(n)
t (z)

ϕ ′
t (0)

,

an−1,n−2(z) =
n(n−1)(n−2)

24

(
α1

ϕ ′
t (0)

)n−2 [
4(ϕ ′

t (z))
n−3

ϕ
′′′
t (z)+3(n−3)(ϕ ′

t (z))
n−4(ϕ ′′

t (z))
2] ,

an−1,n−1(z) =
n(n−1)

2

(
α1

ϕ ′
t (0)

)n−1

(ϕ ′
t (z))

n−2
ϕ
′′
t (z).

We note that in order to obtain an−1,1 we take k1 = ...= kn−1 = 0 and kn = 1 since it is the only
way to get k1 + ...+ kn = 1 with k1 +2k2 + ...+nkn = n. To obtain an−1,n−1 we take into account that
k1+ ...+kn = n−1 with k1+2k2+ ...+nkn = n if and only if k1 = n−2, k2 = 1 and k3 = ...= kn = 0.
For an−1,n−2 we get k1+ ...+kn = n−2 with k1+2k2+ ...+nkn = n if and only if we take k1 = n−3,
k3 = 1 and k2 = k4 = ...= kn = 0 or, if we take k1 = n−4, k2 = 2 and k3 = ...= kn = 0.

Inserting z = 0 into the equations (4.2) and (4.3) we obtain

κ
′
Xt
(0) = iα0 +α1 ·κ ′

Xt−1
(0) , (4.4)

κ
(n)
Xt

(0) =
iα0ϕ

(n)
t (0)

ϕ ′
t (0)

+
n−1

∑
j=1

an−1, j(0) ·κ( j)
Xt−1

(0)+α
n
1 ·κ

(n)
Xt−1

(0) , n = 2,3,4. (4.5)

Let us fix now some notation:

v0,t =−i
ϕ ′′

t (0)
ϕ ′

t (0)
=

E(X2
t,1)

E(Xt,1)
, d0,t =−ϕ ′′′

t (0)
ϕ ′

t (0)
=

E(X3
t,1)

E(Xt,1)
,

c0,t = i
ϕ
(iv)
t (0)
ϕ ′

t (0)
=

E(X4
t,1)

E(Xt,1)
, fk =

α0

∏
k
j=1 (1−α

j
1)
, k ∈ N. (4.6)

Theorem 4.1 (Marginal Cumulants of CP-INARCH(1) process) Let X be a first-order stationary
CP-INARCH(1) process such that the hypothesis H3 is satisfied with ϕt derivable up to order 4. Then,
the first four cumulants of Xt are given, respectively, by

κ1(Xt) = µ, κ2(Xt) = v0,t f2, κ3(Xt) = f3[d0,t(1−α
2
1 )+3v2

0,tα
2
1 ],

κ4(Xt) = f4[c0,t(1−α
2
1 )(1−α

3
1 )+ v3

0,t(3α
2
1 +15α

5
1 )+ v0,td0,t(4α

2
1 +6α

3
1 −10α

5
1 )].

Proof: Since the j-th cumulant of Xt can be obtained as κ j(Xt) = (−i) jκ
( j)
Xt

(0) ([15]), then from
expressions (4.4) and (4.5) we get, using the hypothesis of first-order stationarity,

κ1(Xt) = α0 +α1 ·κ1(Xt−1) ⇒ κ1(Xt) =
α0

1−α1
= µ,



64 CP-INARCH(1) process: Moments and Estimation Procedure

κn(Xt) =
n−1

∑
j=1

bn−1, j ·κ j(Xt−1)+α
n
1 ·κn(Xt−1), n = 2,3,4,

where the coefficients bn−1, j are given by

bn−1,1 = (−i)n−1 ϕ
(n)
t (0)
ϕ ′

t (0)
,

bn−1,n−2 = − n(n−1)(n−2)
24

[
4

ϕ ′′′
t (0)

ϕ ′
t (0)

+3(n−3)
(

ϕ ′′
t (0)

ϕ ′
t (0)

)2
]

α
n−2
1

=
n(n−1)(n−2)

24
[
4d0,t +3(n−3)v2

0,t
]

α
n−2
1 ,

bn−1,n−1 = − i
n(n−1)

2
ϕ ′′

t (0)
ϕ ′

t (0)
α

n−1
1 =

n(n−1)
2

v0,tα
n−1
1 ,

bn−1, j = (−i)n− j
[

α1

ϕ ′
t (0)

] j

∑
k1+...+kn= j

k1+2k2+...+nkn=n
kr∈N0

(n;k1, ...,kn)
[
ϕ
′
t (0)

]k1 ...[ϕ
(n)
t (0)]kn , 2 ≤ j ≤ n−3.

So, we deduce that the second, third and fourth cumulant of Xt are given by

κ2(Xt) = b1,1 ·κ1(Xt−1)+α
2
1 ·κ2(Xt−1)

= v0,t ·κ1(Xt−1)+α
2
1 ·κ2(Xt−1)

⇒ κ2(Xt) = v0,t f2, (as stated in Remark 3.5 under the hypothesis H2)

κ3(Xt) = b2,1 ·κ1(Xt−1)+b2,2 ·κ2(Xt−1)+α
3
1 ·κ3(Xt−1)

= d0,t ·κ1(Xt−1)+3v0,tα
2
1 ·κ2(Xt−1)+α

3
1 ·κ3(Xt−1)

⇒ κ3(Xt) = f3[d0,t(1−α
2
1 )+3v2

0,tα
2
1 ],

κ4(Xt) = b3,1 ·κ1(Xt−1)+b3,2 ·κ2(Xt−1)+b3,3 ·κ3(Xt−1)+α
4
1 ·κ4(Xt−1)

= c0,t ·κ1(Xt−1)+
[
4d0,t +3v2

0,t
]

α
2
1 ·κ2(Xt−1)

+6v0,tα
3
1 ·κ3(Xt−1)+α

4
1 ·κ4(Xt−1)

⇒ κ4(Xt) = f4[c0,t(1−α
2
1 )(1−α

3
1 )+ v3

0,t(3α
2
1 +15α

5
1 )

+v0,td0,t(4α
2
1 +6α

3
1 −10α

5
1 )]. �

Skewness and kurtosis are moment parameters that give relevant information on the symmetry
and shape of the related distribution. As a consequence of Theorem 4.1 and adding the hypothesis H2,
X is an asymmetric process around the mean and it is leptokurtic.

Corollary 4.1 The skewness and kurtosis of Xt , respectively SXt and KXt , are given by

SXt =
κ3(Xt)

κ
3/2
2 (Xt)

=
d0,t(1−α2

1 )+3α2
1 v2

0,t

v0,t(1+α1 +α2
1 )

√
1+α1

v0,tα0
,
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KXt = 3+
κ4(Xt)

κ2
2 (Xt)

= 3+
c0,t(1−α2

1 )(1−α3
1 )+ v3

0,t(3α2
1 +15α5

1 )+ v0,td0,t(4α2
1 +6α3

1 −10α5
1 )

α0(1+α1 +α2
1 )(1+α2

1 )v
2
0,t

.

In the following we illustrate the expressions displayed above for the cumulants, skewness and
kurtosis of a CP-INARCH(1) process considering some particular compound Poisson distributions.
In Example 4.5 the dependence of the time t in these expressions is evident.

Example 4.1 (INARCH(1) process) We have ϕ(u) = eiu and ϕ(n)(0) = in. So v0,t = d0,t = c0,t = 1,
which are independent of t. Then the first four cumulants of Xt are equal to

κ1(Xt) =
α0

1−α1
, κ2(Xt) =

α0

(1−α1)(1−α2
1 )
,

κ3(Xt) =
α0(1+2α2

1 )

(1−α1)(1−α2
1 )(1−α3

1 )
, κ4(Xt) =

α0(1+6α2
1 +5α3

1 +6α5
1 )

(1−α1)(1−α2
1 )(1−α3

1 )(1−α4
1 )
,

and the skewness and the kurtosis are given by

SXt =
1+2α2

1

1+α1 +α2
1

√
1+α1

α0
, KXt = 3+

1+6α2
1 +5α3

1 +6α5
1

α0(1+α1 +α2
1 )(1+α2

1 )
.

In this case the cumulants of Xt can be determined recursively from

κ1(Xt) =
α0

1−α1
, κn(Xt) = (1−α

n
1 )

−1 ·
n−1

∑
j=1

bn−1, j ·κ j(Xt), n ≥ 2,

where the coefficients bn−1, j are given by

bn−1,1 = 1, bn−1,n−1 =
n(n−1)

2
α

n−1
1 ,

bn−1, j = α
j

1 · ∑
k1+...+kn= j

k1+2k2+...+nkn=n

(n;k1, ...,kn) = α
j

1 ·S(n, j), 2 ≤ j ≤ n−2,

from the relation between (n;k1, ...,kn) and Stirling numbers of the second kind stated in [2, p. 823].

Example 4.2 (GP-INARCH(1) process) In this case, ϕ is the characteristic function of the i.i.d.
random variables Xt, j, j = 1, ...,Nt , having the Borel distribution with parameter κ .

All the moments exist for 0 < κ < 1; in particular, we have (2)

E(Xt,1) =
1

1−κ
, E(X2

t,1) =
1

(1−κ)3 , E(X3
t,1) =

2κ +1
(1−κ)5 , E(X4

t,1) =
6κ2 +8κ +1
(1−κ)7 ,

v0,t =
1

(1−κ)2 , d0,t =
2κ +1
(1−κ)4 , c0,t =

6κ2 +8κ +1
(1−κ)6 .

2Using the recurrence relation [14, p. 159]:

E(X) =
1

1−κ
, E(X r+1) =

1
1−κ

[
κ

dE(X r)

dκ
+E(X r)

]
, r = 1,2, . . .
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Thus, we obtain the cumulants

κ2(Xt) =
α0

(1−κ)2(1−α1)(1−α2
1 )
, κ3(Xt) =

α0(1−α2
1 )(2κ +1)+3α0α2

1

(1−κ)4(1−α1)(1−α2
1 )(1−α3

1 )
,

κ4(Xt) = α0
6κ2 +8κ +1−6α2

1 (κ
2 +1)−α3

1 (6κ2 −4κ −5)+6α5
1 (κ

2 −2κ +1)
(1−κ)6(1−α1)(1−α2

1 )(1−α3
1 )(1−α4

1 )
,

and the skewness and the kurtosis

SXt =
(1−α2

1 )(2κ +1)+3α2
1

(1−κ)(1+α1 +α2
1 )

√
1+α1

α0
,

KXt = 3+
6κ2 +8κ +1−6α2

1 (κ
2 +1)−α3

1 (6κ2 −4κ −5)+6α5
1 (κ

2 −2κ +1)
α0(1−κ)2(1+α1 +α2

1 )(1+α2
1 )

.

Let us take into account Figure 2.8 where we present the trajectory of a GP-INARCH(1) process
with α0 = 10, α1 = 0.4, κ = 0.5. We notice evident closeness between the theoretical values, namely
SXt ≃ 1.0362 and KXt = 4.2527 and the empirical ones, respectively, 1.004 and 4.111.

We stress that taking into consideration the fact that the generalized Poisson distribution is
compound Poisson allowed us to generalize the results of Zhu [82] and also to present a much more
prompt deduction of the first four cumulants.

Example 4.3 (GEOMP2-INARCH(1) process) For the geometric law present in the GEOMP2-
INARCH(1) model we have

ϕ
′(0) = i

1− p∗

p∗
, ϕ

′′(0) =
(1− p∗)(p∗−2)

(p∗)2 , ϕ
′′′(0) =−i

(1− p∗)[6−6p∗+(p∗)2]

(p∗)3 ,

ϕ
(iv)(0) =

(1− p∗)(2− p∗)[12−12p∗+(p∗)2]

(p∗)4 ,

v0,t =
2− p∗

p∗
, d0,t =

6−6p∗+(p∗)2

(p∗)2 , c0,t =
(2− p∗)[12−12p∗+(p∗)2]

(p∗)3 ,

from where we deduce the skewness and the kurtosis of Xt , respectively,

SXt =
6−6p∗+6(p∗)2 +2(p∗)2α2

1

(2p∗− (p∗)2)(1+α1 +α2
1 )

√
p∗(1+α1)

α0(2− p∗)
,

KXt = 3+
(1−α2

1 )(1−α1)(2− p∗)[12−12p∗+(p∗)2]

α0 p∗(2− p∗)2(1+α2
1 )

+
α2

1 (3+15α3
1 )(2− p∗)

α0 p∗(1+α1 +α2
1 )(1+α2

1 )

−2α2
1 (1−α1)(5α2

1 +5α1 +2)[6−6p∗+(p∗)2]

α0 p∗(2− p∗)(1+α1 +α2
1 )(1+α2

1 )
.

Let us remember Figure 2.7 where we present the trajectory of a GEOMP-INARCH(1) process with
α0 = 10, α1 = 0.4, p∗ = 0.3. Also here the theoretical values, namely SXt ≃ 0.942 and KXt = 3.493
and the empirical ones, respectively, 0.892 and 3.670 are quite similar.



4.1 Moments and Cumulants 67

Example 4.4 (NTA-INARCH(1) process) In this process the skewness and kurtosis are given by

SXt =
φ(1−α2

1 )+(1+φ)2(1+2α2
1 )

(1+φ)(1+α1 +α2
1 )

√
1+α1

α0(1+φ)
,

KXt = 3+
(1−α1)(1−α2

1 )
(
(1+φ)3 +3φ 2 +4φ

)
α0(1+α2

1 )(1+φ)2 +
(7α2

1 +6α3
1 +5α5

1 )(1+φ)

α0(1+α1 +α2
1 )(1+α2

1 )

+
φ(4α2

1 +6α3
1 −10α5

1 )

α0(1+α1 +α2
1 )(1+α2

1 )(1+φ)
,

since v0,t = 1+φ , d0,t = 1+3φ +φ 2 and c0,t = 1+7φ +6φ 2 +φ 3.

Example 4.5 Let us recall the model 7(b) defined in Section 2.3 where the conditional distribution is
the binomial Poisson law with parameters (r, 1

t2+1), r ∈N, t ∈ Z, which is deterministic and dependent

of t. In this case we have ϕt(u) =
(

t2+eiu

t2+1

)r
, u ∈ R, and we can prove

ϕ
(n)
t (u) = in

n

∑
k=1

S(n,k)
r!

(r− k)!

(
t2 + eiu

t2 +1

)r−k( eiu

t2 +1

)k

, n ∈ N, u ∈ R.

In fact, by induction with respect to n, we have

ϕ
(n+1)
t (u) =

d
du

(
in

n

∑
k=1

S(n,k)
r!

(r− k)!

(
t2 + eiu

t2 +1

)r−k( eiu

t2 +1

)k
)

= in+1
n

∑
k=1

S(n,k)
r!

(r− k−1)!

(
t2 + eiu

t2 +1

)r−k−1( eiu

t2 +1

)k+1

+in+1
n

∑
k=1

kS(n,k)
r!

(r− k)!

(
t2 + eiu

t2 +1

)r−k( eiu

t2 +1

)k

= in+1
n+1

∑
j=2

[S(n, j−1)+ jS(n, j)]
r!

(r− j)!

(
t2 + eiu

t2 +1

)r− j( eiu

t2 +1

) j

+S(n,1)
r!

(r−1)!

(
t2 + eiu

t2 +1

)r−1 eiu

t2 +1

= in+1
n+1

∑
k=1

S(n+1,k)
r!

(r− k)!

(
t2 + eiu

t2 +1

)r−k( eiu

t2 +1

)k

, u ∈ R,

from the recurrence relation of the Stirling numbers of the second kind and since S(n,1) = S(n+1,1)
(3). Then we deduce

ϕ
(n)
t (0) = in

n

∑
k=1

S(n,k)
r!

(r− k)!(t2 +1)k ,

ϕ
′
t (0) = i

r
t2 +1

, ϕ
′′
t (0) =− r(t2 + r)

(t2 +1)2 , ϕ
′′′
t (0) =−i

r[(t2 +3r−1)t2 + r2]

(t2 +1)3 ,

3We note that here we use this relation only for the first three moments of the binomial distribution. However, we stated
a general expression from which we can obtain the moment of any order.
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v0,t =
t2 + r
t2 +1

, d0,t =
(t2 +3r−1)t2 + r2

(t2 +1)2 ,

and finally we obtain the first three cumulants

κ1(Xt) =
α0

1−α1
, κ2(Xt) =

α0(t2 + r)
(t2 +1)(1−α1)(1−α2

1 )
,

κ3(Xt) =
α0(1−α2

1 )([t
2 +3r−1]t2 + r2)+3α0α2

1 (t
2 + r)2

(t2 +1)2(1−α1)(1−α2
1 )(1−α3

1 )
,

and the skewness

SXt =
(1−α2

1 )([t
2 +3r−1]t2 + r2)(t2 +1)3/2 +3α2

1 (t
2 + r)2

(t2 + r)3(1+α1 +α2
1 )

√
1+α1

α0(t2 +1)(t2 + r)
.

In the following theorem we provide closed-form expressions for the joint (central) moments and
cumulants of the CP-INARCH(1) model up to order 4 when the family of the characteristic functions
(ϕt , t ∈ Z) is deterministic and independent of t. For this purpose, we simply denote the previous v0,t ,
c0,t and d0,t respectively as v0, c0 and d0, and we introduce the following notations:

µ(s1, ...,sr−1) = E
(
XtXt+s1 ...Xt+sr−1

)
,

µ̃(s1, ...,sr−1) = E
(
(Xt −µ)(Xt+s1 −µ)...(Xt+sr−1 −µ)

)
, (4.7)

κ(s1, ...,sr−1) = Cum
[
Xt ,Xt+s1 , ...,Xt+sr−1

]
,

with r = 2,3,4 and 0 ≤ s1 ≤ ...≤ sr−1.

Theorem 4.2 (Moments of a CP-INARCH(1) process) Let X be a first-order stationary process
following a CP-INARCH(1) model such that H4 is satisfied.

(a) For any k ≥ 0, we have

µ(k) = f2(v0α
k
1 +α0(1+α1)).

(b) For any l ≥ k ≥ 0, we have

µ(k, l) = [d0(1−α
2
1 )− v2

0(1+α1 −2α
2
1 )] f3α

l+k
1

+
v0(α0 + v0)

1−α1
f2α

l
1 + v0 f1 f2α

l−k
1 + f1µ(k).

(c) For any m ≥ l ≥ k ≥ 0, we have

µ(k, l,m) = α
m−l
1

[{
(c0 −4v0d0 +3v3

0)+3v0(v2
0 −d0)α1 +(3v0d0 − c0)α

2
1

+(7v0d0 −6v3
0 − c0)α

3
1 +3v0(d0 −2v2

0)α
4
1 +(6v3

0 −6v0d0 + c0)α
5
1
}

f4α
2l+k
1

+
2v0 +α0

1−α1
f3
[
d0(1−α

2
1 )− v2

0(1+α1 −2α
2
1 )
]

α
2l
1
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+
v0

(1−α1)(1−α2
1 )

f2
[
2v0α0 +d0(1−α1)+ v2

0(2α1 −1)
]

α
2l−k
1

+
α0 f3

1−α1

{
d0(1−α

2
1 )− v2

0(1+α1 −2α
2
1 )
}

α
2(l−k)
1 +

v0 +α0

1−α1
µ(k, l)

− f2µ(k)[α0 +(v0 +α0)α1]]+ f1µ(k, l).

The proof of Theorem 4.2 is provided in Appendix C.3. These expressions are particularly
important to deduce an explicit expression for the asymptotic distribution of the conditional least
squares estimators of the parameters α0 and α1 in Section 4.2.

From Theorem 4.2 we derive analogous expressions for the joint central moments and cumulants
of a CP-INARCH(1) process. Bakouch [8, p. 5] stated the following general relations between joint
moments and joint cumulants of stationary processes:

κ(s) = µ(s)−µ
2, (4.8)

κ(s, l) = µ(s, l)−µµ(s)−µ
[
µ(l − s)+µ(l)−2µ

2] , (4.9)

κ(s, l,m) = µ(s, l,m)−µµ(s, l)

−µ[µ(l − s,m− s)−µµ(l − s)−µ(l,m)−µµ(l)+µ(s,m)−µµ(s)]

−(µ(s)−µ
2)(µ(m− l)−µ

2)− (µ(l)−µ
2)(µ(m− s)−µ

2)

−(µ(l − s)−µ
2)(µ(m)−µ

2)

+µ
2(µ(m)+µ(m− s)+µ(m− l)−3µ

2), (4.10)

where m ≥ l ≥ s ≥ 0. Furthermore, it follows that the joint central moments are given by

µ̃(s) = E ((Xt −µ)(Xt+s −µ)) = E(XtXt+s)−µ
2 = κ(s), (4.11)

µ̃(s, l) = E[(Xt −µ)(Xt+s −µ)(Xt+l −µ)]

= E[(XtXt+s −µXt −µXt+s +µ
2)Xt+l]−µµ̃(s)

= µ(s, l)−µµ(l)−µµ(s)+µ
3 −µµ(s)+µ

3 = κ(s, l), (4.12)

µ̃(s, l,m) = E[(Xt −µ)(Xt+s −µ)(Xt+l −µ)(Xt+m −µ)]

= E[(XtXt+sXt+l −µXtXt+l −µXt+sXt+l +µ
2Xt+l)Xt+m]

−E[(µXtXt+s −µ
2Xt −µ

2Xt+s +µ
3)Xt+m]−µµ̃(s, l)

= µ(s, l,m)+µ
2[µ(l − s)+µ(m− s)+µ(m− l)+µ(s)+µ(l)+µ(m)]

−µ[µ(l − s,m− s)+µ(l,m)+µ(s, l)+µ(s,m)]−3µ
4

= κ(s, l,m)+(µ(s)−µ
2)(µ(m− l)−µ

2)+(µ(l)−µ
2)(µ(m− s)−µ

2)

+(µ(l − s)−µ
2)(µ(m)−µ

2), (4.13)

where m ≥ l ≥ s ≥ 0.

The following corollary may now be enounced.

Corollary 4.2 (Central Moments and Cumulants of a CP-INARCH(1) process) Let X be a first-
order stationary process following a CP-INARCH(1) model such that H4 is satisfied.
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(a) For any s ≥ 0, we have

µ̃(s) = κ(s) = v0α
s
1 f2.

(b) For any l ≥ s ≥ 0, we have

µ̃(s, l) = κ(s, l)

= f3α
l
1[v

2
0(1+α1 +α

2
1 )−{v2

0(1+α1 −2α
2
1 )−d0(1−α

2
1 )}α

s
1].

(c) For any m ≥ l ≥ s ≥ 0, we have

κ(s, l,m) = α
m
1 f4

[{
c0 +3v3

0 −4v0d0 +3v0(v2
0 −d0)α1 +(3α0d0 − c0)α

2
1

+(7v0d0 −6v3
0 − c0)α

3
1 +3v0(d0 −2v2

0)α
4
1 +(6v3

0 −6v0d0 + c0)α
5
1
}

α
l+s
1

+v0(1+α1 +α
2
1 +α

3
1 )[d0(1−α

2
1 )− v2

0(1+α1 −2α
2
1 )](2α

l
1 +α

s
1)

+v0(1+α1 +α
2
1 )(1+α

2
1 )[(1+α1)v2

0 +(d0(1−α1)+ v2
0(2α1 −1))α l−s

1 ]
]
,

µ̃(s, l,m) = κ(s, l,m)+ v2
0 f 2

2 α
m−l+s
1 +2v2

0 f 2
2 α

m+l−s
1 .

The proof of Corollary 4.2 is presented in Appendix C.4. Considering v0, c0 and d0 computed
in Examples 4.1–4.4 we obtain the particular expressions of the central moments and cumulants
for the INARCH(1) (already stated by Weiß [78]), GP-INARCH(1), GEOMP2-INARCH(1) and
NTA-INARCH(1) processes.

4.2 Two-step estimation method based on Conditional Least Squares
Approach

This section is intended to derive estimates for the parameters of the CP-INARCH(1) process defined
in (4.1) when the family of the characteristic functions (ϕt , t ∈ Z) is independent of t, with special
attention to the recent NTA-INARCH(1) and GEOMP2-INARCH(1) models.

Let X be the referred CP-INARCH(1) process whose distribution depends on a vector θ = (α⊤,b)
of unknown parameters, with α⊤ = (α0,α1). Let us observe that, for example, b = φ in the NTA-
INARCH(1) model and b = p∗ in the GEOMP2-INARCH(1) model.

Since the conditional law is not specified by its density probability function, we apply a two-step
estimation procedure using the Conditional Least Squares (CLS) and the moments estimation methods:
we start by estimating α from the CLS estimator assuming that b is known and then holding that
estimate fixed, we estimate b from the expression of the empirical variance. We shall see that the CLS
estimator is computed easily and have an explicit, data-independent expression for the asymptotic law.

Given a set of observations xt , t = 1, ...,n, from a CP-INARCH(1) process according to the above
conditions, the CLS estimator of α is obtained by minimizing the conditional sum of squares

Qn(α) =
n

∑
t=2

[xt −E (Xt |Xt−1 = xt−1)]
2 =

n

∑
t=2

[xt −α0 −α1xt−1]
2,
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with respect to α . Solving the least squares equations

∂Qn(α)

∂α0
=−2

n

∑
t=2

(xt −α0 −α1xt−1) = 0

∂Qn(α)

∂α1
=−2

n

∑
t=2

xt−1 (xt −α0 −α1xt−1) = 0,

yields the following explicit expressions for the CLS estimator α̂n = (α̂0,n, α̂1,n):

α̂1,n =
∑

n
t=2 XtXt−1 − 1

n−1 ·∑
n
t=2 Xt ·∑n

s=2 Xs−1

∑
n
t=2 X2

t−1 −
1

n−1 (∑
n
t=2 Xt−1)

2 , α̂0,n =
∑

n
t=2 Xt − α̂1,n ∑

n
t=2 Xt−1

n−1
. (4.14)

The consistency and the asymptotic distribution of the CLS estimator α̂n can be stated by applying
the results of Klimko and Nelson [50, Section 3]. We summarize the main ideas in the next lemma.

Lemma 4.1 Let X be a stationary and ergodic Markov sequence with finite third order moments. Let
us assume that the function g = g(α;Xt−1) = E (Xt |X t−1) satisfies the following regularity conditions:

(i) for i, j,k ∈ {0,1},
∂g
∂αi

,
∂ 2g

∂αi∂α j
and

∂ 3g
∂αi∂α j∂αk

exist and are continuous for all α;

(ii) for i, j ∈ {0,1}, E
∣∣∣(Xt −g) ∂g

∂αi

∣∣∣< ∞, E
∣∣∣(Xt −g) ∂ 2g

∂αi∂α j

∣∣∣< ∞ and E
∣∣∣ ∂g

∂αi
· ∂g

∂α j

∣∣∣< ∞, where g and
its partial derivatives are evaluated at true value of parameter α and Xt−1;

(iii) for i, j,k ∈ {0,1}, there exist functions

H(0) ≡ H(0)(Xt−1, ...), H(1)
i ≡ H(1)

i (Xt−1, ...),

H(2)
i j ≡ H(2)

i j (Xt−1, ...), H(3)
i jk ≡ H(3)

i jk (Xt−1, ...),

such that, for all α ,

|g| ≤ H(0),

∣∣∣∣ ∂g
∂αi

∣∣∣∣≤ H(1)
i ,

∣∣∣∣ ∂ 2g
∂αi∂α j

∣∣∣∣≤ H(2)
i j ,

∣∣∣∣ ∂ 3g
∂αi∂α j∂αk

∣∣∣∣≤ H(3)
i jk ,

E|Xt ·H(3)
i jk |< ∞, E

(
H(0) ·H(3)

i jk

)
< ∞, E

(
H(1)

i ·H(2)
jk

)
< ∞.

Let V be the 2×2 matrix whose (i, j)-th elements are respectively given by

Vi j = E
(

∂g(α;Xt−1)

∂αi

∂g(α;Xt−1)

∂α j

)
, i, j = 1,2.

Then, the CLS estimator α̂n of α is consistent and asymptotically normal, i.e., as n → ∞

√
n(α̂n −α)

d−→ N(02×1,V−1WV−1),

whenever V is invertible, where " d−→" means convergence in distribution, N(02×1,V−1WV−1) denotes
a bivariate normal law with mean vector 02×1 and covariance matrix V−1WV−1 with W being the
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2×2 matrix whose (i, j)-th elements are respectively given by

Wi j = E
(

u2
t (α)

∂g(α;Xt−1)

∂αi

∂g(α;Xt−1)

∂α j

)
, i, j = 1,2,

and ut(α) = Xt −g(α;Xt−1).

The CP-INGARCH(1) process considered is an ergodic and stationary (Theorem 3.11) Markov
chain, since it depends upon its past history only through Xt−1, with all moments finite (Theorem 3.4)
and the regularity conditions (i)-(iii) are satisfied. In fact, as g(α;Xt−1) = α0 +α1Xt−1 one obtains

∂g(α;Xt−1)

∂α0
= 1,

∂g(α;Xt−1)

∂α1
= Xt−1,

∂ 2g(α;Xt−1)

∂αi∂α j
=

∂ 3g(α;Xt−1)

∂αi∂α j∂αk
= 0, i, j,k = 0,1,

which are continuous for all α , and from where we see that the regularity conditions (i)-(iii) are
satisfied. Thus, from Lemma 4.1, the CLS estimators (4.14) are consistent and asymptotically normal.

Let us obtain the covariance matrix of the asymptotic distribution. We have

V =

 E
(

∂g
∂α0

∂g
∂α0

)
E
(

∂g
∂α0

∂g
∂α1

)
E
(

∂g
∂α1

∂g
∂α0

)
E
(

∂g
∂α1

∂g
∂α1

) =

[
E (1) E (Xt−1)

E (Xt−1) E
(
X2

t−1
) ]= [ 1 α0

1−α1
α0

1−α1

α0(v0+α0(1+α1))

(1−α1)(1−α2
1 )

]
,

taking into account the expressions stated in Theorem 4.2. V is invertible and its inverse is equal to

V−1 =
(1−α1)(1−α2

1 )

v0α0

[
α0(v0+α0(1+α1))

(1−α1)(1−α2
1 )

− α0
1−α1

− α0
1−α1

1

]
=

[
1+ α0

v0
(1+α1) − 1

v0
(1−α2

1 )

− 1
v0
(1−α2

1 )
(1−α1)(1−α2

1 )
v0α0

]
.

Furthermore,

E
[

f (Xt−1) ·u2
t (α)

]
= E

[
f (Xt−1) ·E

[
(Xt −α0 −α1Xt−1)

2|Xt−1
]]

= E [ f (Xt−1) ·V [Xt −α0 −α1Xt−1|Xt−1]+0]

= E [ f (Xt−1) ·V [Xt |Xt−1]] = E [ f (Xt−1) · v0(α0 +α1Xt−1)] ,

because of the conditional compound Poisson distribution, and then

W =

 E
(

u2
t

∂g
∂α0

∂g
∂α0

)
E
(

u2
t

∂g
∂α0

∂g
∂α1

)
E
(

u2
t

∂g
∂α1

∂g
∂α0

)
E
(

u2
t

∂g
∂α1

∂g
∂α1

) 

=

[
E[1 · v0 (α0 +α1Xt−1)] E[Xt−1 · v0 (α0 +α1Xt−1)]

E[Xt−1 · v0 (α0 +α1Xt−1)] E[X2
t−1 · v0 (α0 +α1Xt−1)]

]

=
v0α0

1−α1

 1 v0α1+α0(1+α1)

1−α2
1

v0α1+α0(1+α1)

1−α2
1

v0α0(1+2α1)

(1−α1)(1−α2
1 )
+

α2
0

(1−α1)2 +
α1(d0+(3v2

0−d0)α
2
1 )

(1−α2
1 )(1−α3

1 )

 ,
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since

E[v0 (α0 +α1Xt−1)] = v0

[
α0 +α1

α0

1−α1

]
=

v0α0

1−α1
,

E[Xt−1 · v0 (α0 +α1Xt−1)] = v0

[
α2

0
1−α1

+
α1α0(v0 +α0(1+α1))

(1−α1)(1−α2
1 )

]
=

v0α0

1−α1
· v0α1 +α0(1+α1)

1−α2
1

,

E[X2
t−1 · v0 (α0 +α1Xt−1)] = v0

[
α2

0 (v0 +α0(1+α1))

(1−α1)(1−α2
1 )

+
α1α0

(1−α1)3

(
d0 +(3v2

0 −d0)α
2
1

(1+α1)(1+α1 +α2
1 )

+
3v0α0

1+α1
+α

2
0

)]

=
v0α0

1−α1

[
v0α0(1−α1)+3v0α0α1

(1−α1)2(1+α1)
+

α2
0 (1−α1)+α2

0 α1

(1−α1)2 +
α1(d0 +(3v2

0 −d0)α
2
1 )

(1−α2
1 )(1−α3

1 )

]

=
v0α0

1−α1

[
v0α0(1+2α1)

(1−α1)(1−α2
1 )

+
α2

0
(1−α1)2 +

α1(d0 +(3v2
0 −d0)α

2
1 )

(1−α2
1 )(1−α3

1 )

]
,

using again the expressions stated in Theorem 4.2.

Now, we provide some calculations to obtain the entries of the matrix V−1WV−1:

The product of V−1W is given by[
1+ α0

v0
(1+α1) − 1

v0
(1−α2

1 )

− 1
v0
(1−α2

1 )
(1−α1)(1−α2

1 )
v0α0

] 1 v0α1+α0(1+α1)

1−α2
1

v0α1+α0(1+α1)

1−α2
1

v0α0(1+2α1)

(1−α1)(1−α2
1 )
+

α2
0

(1−α1)2 +
α1(d0+(3v2

0−d0)α
2
1 )

(1−α2
1 )(1−α3

1 )



=

[
a11 a12

a21 a22

]
=

 1−α1
v0α1
1−α2

1
− α0α1

1−α1
− α1(d0+(3v2

0−d0)α
2
1)

v0(1−α3
1 )

α1(1−α1)
α0

1+α1 +
α1(d0+(3v2

0−d0)α
2
1 )

v0α0(1+α1+α2
1 )

 ,
since

a11 = 1+
α0(1+α1)

v0
− 1−α2

1
v0

v0α1 +α0(1+α1)

1−α2
1

= 1−α1,

a12 =

(
1+

α0

v0
(1+α1)

)
v0α1 +α0(1+α1)

1−α2
1

−1−α2
1

v0

[
v0α0(1+2α1)

(1−α1)(1−α2
1 )

+
α2

0
(1−α1)2 +

α1(d0 +(3v2
0 −d0)α

2
1 )

(1−α2
1 )(1−α3

1 )

]
=

v0α1

1−α2
1
+

α0

1−α1
+

α0α1

1−α1
+

α2
0 (1+α1)

v0(1−α1)
− α0(1+2α1)

1−α1

−
α2

0 (1+α1)

v0(1−α1)
−

α1(d0 +(3v2
0 −d0)α

2
1 )

v0(1−α3
1 )

=
v0α1

1−α2
1
− α0α1

1−α1
−

α1
(
d0 +(3v2

0 −d0)α
2
1
)

v0(1−α3
1 )

,

a21 = −(1−α2
1 )

v0
+

(1−α1)(1−α2
1 )(v0α1 +α0(1+α1))

v0α0(1−α2
1 )

= −(1−α2
1 )

v0
+

α1(1−α1)

α0
+

(1−α2
1 )

v0
=

α1(1−α1)

α0
,
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a22 = −(1−α2
1 )(v0α1 +α0(1+α1))

v0(1−α2
1 )

+
(1−α1)(1−α2

1 )

v0α0

[
v0α0(1+2α1)

(1−α1)(1−α2
1 )

+
α2

0
(1−α1)2 +

α1(d0 +(3v2
0 −d0)α

2
1 )

(1−α2
1 )(1−α3

1 )

]
= −α1 −

α0(1+α1)

v0
+1+2α1 +

α0(1+α1)

v0
+

α1(d0 +(3v2
0 −d0)α

2
1 )

v0α0(1+α1 +α2
1 )

= 1+α1 +
α1(d0 +(3v2

0 −d0)α
2
1 )

v0α0(1+α1 +α2
1 )

.

So, the asymptotic covariance matrix is given by

V−1WV−1 =

[
b11 b12

b21 b22

]

=
v0α0

1−α1

 1−α1
v0α1
1−α2

1
− α0α1

1−α1
− α1(d0+(3v2

0−d0)α
2
1)

v0(1−α3
1 )

α1(1−α1)
α0

1+α1 +
α1(d0+(3v2

0−d0)α
2
1 )

v0α0(1+α1+α2
1 )

[ 1+ α0
v0
(1+α1) − 1

v0
(1−α2

1 )

− 1
v0
(1−α2

1 )
(1−α1)(1−α2

1 )
v0α0

]

where

b11 =
α0

1−α1

(
α0(1+α1)+

v2
0 +(d0 − v2

0)α1(1+α1 −α2
1 )+(3v2

0 −d0)α
4
1

v0(1+α1 +α2
1 )

)
,

b12 = b21 = v0α1 −α0(1+α1)−
α1(1+α1)(d0 +(3v2

0 −d0)α
2
1 )

v0(1+α1 +α2
1 )

,

b22 = (1−α
2
1 )

(
1+

α1(d0 +(3v2
0 −d0)α

2
1 )

v0α0(1+α1 +α2
1 )

)
.

In fact, we have

b11 =
v0α0

1−α1

[
(1−α1)

(
1+

α0

v0
(1+α1)

)
− 1

v0
(1−α

2
1 )

(
v0α1

1−α2
1
− α0α1

1−α1
−

α1
(
d0 +(3v2

0 −d0)α
2
1
)

v0(1−α3
1 )

)]
=

α0

1−α1

[
v0(1−α1)+α0(1−α

2
1 )− v0α1 +α0α1(1+α1)

+
α1
(
d0 +(3v2

0 −d0)α
2
1
)
(1+α1)

v0(1+α1 +α2
1 )

]

=
α0

1−α1

[
α0(1+α1)+

v2
0(1−2α1)(1+α1 +α2

1 )+α1
(
d0 +(3v2

0 −d0)α
2
1
)
(1+α1)

v0(1+α1 +α2
1 )

]

=
α0

1−α1

(
α0(1+α1)+

v2
0 +(d0 − v2

0)α1(1+α1 −α2
1 )+(3v2

0 −d0)α
4
1

v0(1+α1 +α2
1 )

)
,

b12 =
v0α0

1−α1

[
−(1−α1)(1−α2

1 )

v0

+
(1−α1)(1−α2

1 )

v0α0

(
v0α1

1−α2
1
− α0α1

1−α1
−

α1
(
d0 +(3v2

0 −d0)α
2
1
)

v0(1−α3
1 )

)]
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= −α0(1−α
2
1 )+ v0α1 −α0α1(1+α1)−

α1(1+α1)
(
d0 +(3v2

0 −d0)α
2
1
)

v0(1+α1 +α2
1 )

= v0α1 −α0(1+α1)−
α1(1+α1)(d0 +(3v2

0 −d0)α
2
1 )

v0(1+α1 +α2
1 )

,

b21 =
v0α0

1−α1

[
α1(1−α1)

α0

(
1+

α0(1+α1)

v0

)
− 1−α2

1
v0

(
1+α1 +

α1(d0 +(3v2
0 −d0)α

2
1 )

v0α0(1+α1 +α2
1 )

)]
= v0α1 +α0α1(1+α1)−α0(1+α1)−α0α1(1+α1)−

α1(1+α1)(d0 +(3v2
0 −d0)α

2
1 )

v0(1+α1 +α2
1 )

= v0α1 −α0(1+α1)−
α1(1+α1)(d0 +(3v2

0 −d0)α
2
1 )

v0(1+α1 +α2
1 )

,

b22 =
v0α0

1−α1

[
−α1(1−α1)(1−α2

1 )

v0α0
+

(1−α1)(1−α2
1 )

v0α0

(
1+α1 +

α1(d0 +(3v2
0 −d0)α

2
1 )

v0α0(1+α1 +α2
1 )

)]
= −α1(1−α

2
1 )+α1(1−α

2
1 )+(1−α

2
1 )

(
1+

α1(d0 +(3v2
0 −d0)α

2
1 )

v0α0(1+α1 +α2
1 )

)
= (1−α

2
1 )

(
1+

α1(d0 +(3v2
0 −d0)α

2
1 )

v0α0(1+α1 +α2
1 )

)
.

We have proved the following theorem.

Theorem 4.3 Let α̂n be the CLS estimate of α given in (4.14). We have

√
n(α̂n −α)

d−→ N(02×1,V−1WV−1),

as n → ∞, where the entries of the matrix V−1WV−1 = (bi j), i, j = 1,2, are those given above.

We carried out simulation studies to illustrate the CLS method for computing the estimates given in
(4.14) and also to examine their performance. Table 4.1 presents the computation of the sample mean
values, and the associated standard errors, for the CLS estimates of α0 and α1 for the INARCH(1)
model. These estimates are obtained considering different sample sizes n, namely n = 100, 500,
1000, and different combinations of parameters α0 = 0.5, 1, 2 and α1 = 0.2, 0.6, 0.9. We generated
a sample of size n for a specified value of the parameters α0 and α1. Then, for this sample size we
obtain its CLS estimates. We repeated this procedure 1000 times for these fixed n, α0 and α1, and the
mean values, along with standard errors in parenthesis, are presented in Table 4.1 (4).

These simulations show that, as expected, the estimates of (α0,α1) perform well as the sample
size increases. For instance, if α0 = 2 and α1 = 0.2, the average of α̂0 is 2.0434 and the average of
α̂1 is 0.1815, for n = 100. When the sample size is increased to 1000, the average of the estimates of
α̂0 and α̂1 are respectively 2.0012 and 0.1989. Further, the standard errors of the estimates decrease
when the sample size increases. For the other parameter combinations of α0 and α1 we have a similar
behavior. It is also observed from the Table 4.1 that as α1 decreases, the standard error of the α̂1

increases and that of α̂0 decreases. For example, for α0 = 2, we have standard error of α̂1 equal to
0.0741, 0.0949 and 0.1053 (increases) for α1 = 0.9, 0.6, 0.2, respectively. The standard errors of α̂0,

4The detailed algorithm (in MATLAB code) is given in Appendix D.3.
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when α0 = 2, are equal to 1.3762, 0.4676 and 0.2944 (decreases) for α1 = 0.9, 0.6, 0.2, respectively.
The standard errors of α̂0 and α̂1 behave in a analogous way when α0 decreases.

Table 4.1 CLS estimators performance for the INARCH(1) model-tentativa2.

Parameters n = 100 n = 500 n = 1000
α0 α1 Eest(α̂0) Eest(α̂1) Eest(α̂0) Eest(α̂1) Eest(α̂0) Eest(α̂1)

0.2 0.5071 0.1871 0.5033 0.1951 0.5034 0.1954
(0.0902) (0.1089) (0.0418) (0.0504) (0.0295) (0.0366)

0.5 0.6 0.5442 0.5527 0.5107 0.5892 0.5071 0.5946
(0.1307) (0.1157) (0.0594) (0.0497) (0.0432) (0.0365)

0.9 0.7309 0.8352 0.5611 0.8832 0.5301 0.8921
(0.3838) (0.0979) (0.1373) (0.0362) (0.0904) (0.0228)

0.2 1.0134 0.1840 1.0035 0.1967 1.0008 0.1987
(0.1582) (0.1072) (0.0711) (0.0477) (0.0496) (0.0333)

1 0.6 1.0809 0.5634 1.0151 0.5926 1.0091 0.5966
(0.2465) (0.1027) (0.1099) (0.0447) (0.0757) (0.0308)

0.9 1.4260 0.8524 1.1033 0.8876 1.0483 0.8940
(0.7271) (0.0792) (0.2412) (0.0278) (0.1648) (0.0189)

0.2 2.0434 0.1815 2.0068 0.1954 2.0012 0.1989
(0.2944) (0.1053) (0.1250) (0.0456) (0.0899) (0.0316)

2 0.6 2.1559 0.5662 2.0177 0.5952 2.0088 0.5982
(0.4676) (0.0949) (0.1975) (0.0403) (0.1377) (0.0282)

0.9 2.8086 0.8553 2.1746 0.8903 2.0885 0.8949
(1.3762) (0.0741) (0.4791) (0.0259) (0.3153) (0.0177)

Now, we focus on the INARCH(1) model with true parameters α0 = 2 and α1 = 0.2 and, for
different sample sizes n = 100, 250, 500, 750, 1000, we present in Table 4.2 the means, variances and
covariance of α̂0 and α̂1. In the last column of this table we represent the entries of the asymptotic
matrix V−1WV−1, respectively b11, b22 and b12. It is clear from Table 4.2 (and Table 4.1) that α̂1 is
biased down and α̂0 is biased up. The negative covariance between α̂0 and α̂1 is a consequence of this
inverse relationship. The asymptotic and the sample values are quite similar for larger values of n.

Table 4.2 Expected values, variances and covariances for the CLS estimates of the INARCH(1) model
for different sample sizes n and with coefficients α0 = 2 and α1 = 0.2.

n = 100 250 500 750 1000
Eest(α̂0) 2.0434 2.0117 2.0068 2.0037 2.0012
Eest(α̂1) 0.1815 0.1941 0.1954 0.1975 0.1989
n ·Vest(α̂0) 8.3919 8.0550 7.7741 8.0491 8.0647 8.0226
n ·Vest(α̂1) 1.0638 1.0581 1.0267 1.0349 0.9974 1.0436
n ·Covest(α̂0, α̂1) −2.4616 −2.4310 −2.3139 −2.4114 −2.3783 −2.4090

Until now we have shown how to obtain the CLS estimator for α . To estimate the parameter b we
use a two-step estimation inspired in the moments estimation method. Taking into consideration the
expression of the variance of the CP-INARCH(1) model stated in Remark 3.5, namely

V (Xt) =
α0v0

(1−α1)(1−α2
1 )
,
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we estimate v0 from the estimated equality

α̂0v0

(1− α̂1)(1− α̂2
1 )

=
1
n

n

∑
t=1

(
Xt −Xn

)2
,

where Xn =
1
n ∑

n
t=1 Xt denotes the empirical mean of (X1, ...,Xn).

Thus, we deduce the following estimator for the additional parameter present in the

• NTA-INARCH(1) model (since v0 = 1+φ ):

φ̂ =−1+
(1− α̂1)(1− α̂2

1 )

nα̂0

n

∑
t=1

(
Xt −Xn

)2
.

• GEOMP2-INARCH(1) model (since v0 =
2−p∗

p∗ ):

p̂∗ = 2

[
1+

(1− α̂1)(1− α̂2
1 )

nα̂0

n

∑
t=1

(
Xt −Xn

)2

]−1

.

The strong consistence of these estimators is a consequence from the strict stationarity and
ergodicity of process X . In fact, from the Ergodic Theorem, the empirical variance is a strongly
consistent estimator for the variance of X which together with the compatibility of the almost sure
convergence with the algebraic operations confirms the statement.

Table 4.3 Expected values, variances and covariances for the CLS estimates of the NTA-INARCH(1)
model for different sample sizes n and with coefficients α0 = 2, α1 = 0.2 and φ = 2.

n = 100 250 500 750 1000
Eest(α̂0) 2.0502 2.0078 2.0114 2.0086 2.0058 2
Eest(α̂1) 0.1816 0.1931 0.1939 0.1958 0.1969 0.2
Eest(φ̂) 1.9017 1.9864 1.9861 1.9947 2.0004 2
n ·Vest(α̂0) 12.1944 12.7152 12.4894 12.3982 12.3714 12.3774
n ·Vest(α̂1) 1.2926 1.2501 1.3499 1.2655 1.2836 1.2604
n ·Vest(φ̂) 18.6919 21.9114 23.3308 22.5843 21.3290
n ·Covest(α̂0, α̂1) −2.4064 −2.5024 −2.7620 −2.5567 −2.4962 −2.5510

Table 4.4 Expected values, variances and covariances for the CLS estimates of the GEOMP2-
INARCH(1) model for different sample sizes n and with coefficients α0 = 2, α1 = 0.4 and p∗ = 0.1.

n = 100 250 500 750 1000
Eest(α̂0) 2.0527 2.0758 2.0400 2.0177 2.0182 2
Eest(α̂1) 0.3367 0.3637 0.3817 0.3890 0.3892 0.4
Eest(p̂∗) 0.1170 0.1071 0.1040 0.1026 0.1012 0.1
n ·Vest(α̂0) 50.6433 53.6845 61.9295 56.6796 59.6529 61.5325
n ·Vest(α̂1) 2.9292 3.3704 3.5536 4.2723 3.8424 4.3979
n ·Vest(p̂∗) 0.0961 0.0881 0.0841 0.0856 0.0800
n ·Covest(α̂0, α̂1) −1.5730 −3.2463 −5.9278 −5.5029 −5.7433 −7.0598
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In Table 4.3 and Table 4.4, we present the means, variances and covariance of α̂0, α̂1 and b̂ for the
CP-INARCH(1) model considering different sample sizes n and with Neyman type-A and geometric
Poisson conditional distributions, respectively. In the last column of these tables we represent the true
values of α0, α1 and b as well as the entries b11, b22 and b12 of the asymptotic matrix V−1WV−1. As
before, we verify that the asymptotic and the sample values are quite similar for larger values of n.

Table 4.5 Empirical correlations for the CLS estimates of the NTA-INARCH(1) model for different
sample sizes n and with coefficients α0 = 2, α1 = 0.2 and φ = 2.

n = 250 750 1000 5000 10000
ρest(α̂0, α̂1) −0.6277 −0.6455 −0.6264 −0.6379 −0.6273
ρest(α̂0, φ̂) 0.1242 0.1163 0.0828 0.0683 0.0636
ρest(α̂1, φ̂) 0.0061 0.0265 0.0043 0.0703 0.0462

From the empirical results presented in the two last lines of Table 4.5, we can presume that the
estimators of α and b are possibly asymptotically uncorrelated. In fact, for the NTA-INARCH(1)
model in study, the empirical correlations ρest(α̂0, φ̂) and ρest(α̂1, φ̂) are significantly low. So, under
our conjecture, we estimate α and b separately without lost of efficiency. To support this statement
we use the Monte Carlo method to determine confidence intervals for the mean of ρest(α̂0, φ̂) and
for the mean of ρest(α̂1, φ̂) which we denote by m0 and m1, respectively. The confidence intervals
are obtained considering ñ = 35 and ñ = 50 replications of n-dimensional samples (n = 500 and
n = 1000) of a Neyman type-A INARCH(1) model. Such intervals with confidence level 0.99 are
presented in Table 4.6 (5), where we stress the lower values when n or ñ increase.

Table 4.6 Confidence intervals for the mean of ρest(α̂0, φ̂) and for the mean of ρest(α̂1, φ̂), with
confidence level γ = 0.99 and for different sample sizes n and ñ.

ñ = 35 ñ = 50
n = 500 n = 1000 n = 500 n = 1000

m0 [0.0917,0.1180] [0.0883,0.1162] [0.0940,0.1160] [0.0814,0.1064]
m1 [0.0113,0.0412] [0.0165,0.0412] [0.0137,0.0354] [0.0132,0.0397]

As the standard error is an estimative of the variability in a parameter estimate, we would generally
like standard errors to be small because that indicates better precision in our coefficient estimates.
In what follows, we measure the performance of the CLS standard errors through the evaluation of
a confidence interval and its coverage probabilities ([79]). A coverage probability is the proportion
of simulated samples for which the estimated confidence interval includes the true parameter. This
way, computing a coverage probability is similar to assessing if the method for computing confidence
intervals (and, thus, standard errors) is living up to its definition, that is, if the same formula is used
to compute a γ ×100% confidence interval in repeated simulated samples, the confidence interval
should enclose the true parameter in γ ×100% of the samples, on average.

Let us consider the asymptotically exact simultaneous confidence region for α on level γ given by:

Iγ =

{
α : (α̂0,n −α0, α̂1,n −α1)VW−1V (α̂0,n −α0, α̂1,n −α1)

⊤ <
z

n−1

}
,

5The method (in MATLAB code) is given in Appendix D.3.
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Fig. 4.1 Simultaneous confidence region based on CLS estimates for the INARCH(1) (on the left) and
the NTA-INARCH(1) (on the right, with φ = 2) models with α0 = 2 and α1 = 0.2. Confidence level
γ = 0.9 (lightest gray), 0.95 (lightest and medium gray) and 0.99 (dark to lightest gray).

where z denotes the γ-quantile of the χ2
2 distribution (6).

Examples of the (non-rectangular) shape of this confidence region for different confidence levels
γ = 0.9, 0.95 and 0.99 are represented in Figure 4.1 with the same true values α0 = 2 and α1 = 0.2.

To estimate the true coverage probability of the confidence region Iγ a simulation study was done.
For each combination of true parameters (α0,α1), for each confidence level γ and sample sizes n,
10 000 time series were generated. From each time series, the respective estimates and confidence
region were computed. Then it was checked if this region contained the true parameter tuple. The
number of "successes" divided by 10 000 is an estimate of the true coverage probability (7). The
results are presented in Tables 4.7 to 4.9.

Table 4.7 Estimated coverage probabilities of the confidence region CLS I0.90

γ = 0.90,
α0 α1 n = 100 250 500 750 1000 5000
2 0.2 0.8965 0.8945 0.9007 0.8970 0.9021 0.8977

0.4 0.8816 0.8978 0.8931 0.9021 0.9027 0.9023
0.6 0.8632 0.8837 0.8880 0.8963 0.8918 0.9005
0.8 0.8133 0.8609 0.8841 0.8822 0.8889 0.8979

4 0.2 0.8975 0.8997 0.8980 0.8995 0.8961 0.9041
0.4 0.8859 0.8944 0.8958 0.8983 0.8989 0.8934
0.6 0.8600 0.8824 0.8917 0.8924 0.8990 0.8942
0.8 0.8025 0.8543 0.8777 0.8865 0.8881 0.8952

6 0.2 0.8964 0.8971 0.8945 0.8940 0.8981 0.9055
0.4 0.8860 0.8910 0.8957 0.8939 0.8956 0.8954
0.6 0.8611 0.8785 0.8913 0.9004 0.8961 0.8966
0.8 0.8124 0.8631 0.8734 0.8870 0.8882 0.8968

6Let us observe that this confidence region is based on the fact that (Y − µ)⊤Σ−1(Y − µ) is χ2
p distributed for a

p-dimensional normal vector Y ∼ N(µ,Σ).
7The detailed algorithm (in MATLAB code) is given in Appendix D.3.
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Table 4.8 Estimated coverage probabilities of the confidence region CLS I0.95

γ = 0.95,
α0 α1 n = 100 250 500 750 1000 5000
2 0.2 0.9427 0.9451 0.9485 0.9473 0.9522 0.9484

0.4 0.9295 0.9473 0.9486 0.9513 0.9475 0.9528
0.6 0.9131 0.9376 0.9401 0.9436 0.9446 0.9496
0.8 0.8648 0.9127 0.9305 0.9316 0.9383 0.9479

4 0.2 0.9462 0.9479 0.9487 0.9486 0.9462 0.9501
0.4 0.9374 0.9446 0.9477 0.9481 0.9494 0.9446
0.6 0.9117 0.9361 0.9462 0.9450 0.9469 0.9434
0.8 0.8573 0.9046 0.9290 0.9350 0.9360 0.9491

6 0.2 0.9434 0.9466 0.9480 0.9465 0.9506 0.9514
0.4 0.9364 0.9387 0.9493 0.9422 0.9484 0.9492
0.6 0.9120 0.9314 0.9436 0.9455 0.9479 0.9477
0.8 0.8648 0.9133 0.9273 0.9381 0.9417 0.9481

Table 4.9 Estimated coverage probabilities of the confidence region CLS I0.99

γ = 0.99,
α0 α1 n = 100 250 500 750 1000 5000
2 0.2 0.9841 0.9880 0.9892 0.9899 0.9901 0.9895

0.4 0.9779 0.9851 0.9893 0.9872 0.9871 0.9902
0.6 0.9677 0.9826 0.9859 0.9884 0.9851 0.9883
0.8 0.9350 0.9658 0.9783 0.9797 0.9828 0.9880

4 0.2 0.9863 0.9873 0.9888 0.9894 0.9904 0.9899
0.4 0.9797 0.9836 0.9890 0.9882 0.9881 0.9897
0.6 0.9676 0.9806 0.9871 0.9857 0.9886 0.9896
0.8 0.9285 0.9616 0.9772 0.9804 0.9830 0.9886

6 0.2 0.9850 0.9888 0.9888 0.9889 0.9911 0.9906
0.4 0.9779 0.9835 0.9889 0.9881 0.9890 0.9894
0.6 0.9651 0.9793 0.9844 0.9858 0.9880 0.9902
0.8 0.9331 0.9674 0.9765 0.9801 0.9848 0.9899

The results of these tables show that the performance of the asymptotically exact CLS region
depends heavily on the length n of the available time series and on the parameter α1. In general, the
difference between γ and the estimated coverage probability, which is mainly less than γ , decreases for
increasing n. For example, when γ = 0.9, α0 = 2 and α1 = 0.8 we have the differences 0.0867, 0.0391,
0.0159, 0.0178, 0.0111 and 0.0021 for n = 100, 250, 500, 750, 1000 and 5000, respectively. It is
also observed from the Tables 4.7-4.9 that when we increase α1 the difference between the estimated
coverage probabilities and γ also increases. For instance, when n = 100, α0 = 6 and γ = 0.95 we have
the estimated coverage probabilities 0.9434, 0.9364, 0.9120, 0.8648 (decreases, so the difference
increases) for α1 = 0.2, 0.4, 0.6 and 0.8, respectively.

It seams correct to say that we can trust in the region Iγ for a small value of the parameter α1, say
α1 ≤ 0.2, or if the sample size satisfies n ≥ 500 (0.4 ≤ α1 ≤ 0.6) or even n ≥ 1000 (α1 ≈ 0.8).



Chapter 5

The zero-inflated CP-INGARCH model

In recent years there has been considerable and growing interest in modeling zero-inflated count
data since there is a lot of phenomenon where such data may occur and zero counts frequently have
special status. With the aim of responding to this kind of data within conditionally heteroscedastic
integer-valued time series we propose a generalization of the CP-INGARCH(p,q) model that may
capture, in addition to the conditional volatility, overdispersion and zero inflation.

The chapter is organized as follows. In Section 5.1 we recall the definition of zero-inflated
distributions and some of their properties. Using this class of distributions we present in Section 5.2
the zero-inflated CP-INGARCH model and we specify some particular cases. In parallel to what
was done in Chapter 3 for the CP-INGARCH model, we analyse first and second-order stationarity
conditions in Section 5.3. Moreover, we show how to construct a strictly stationary solution for the
model proposed. We conclude presenting additional probabilistic developments of these processes,
particularly, its autocorrelation function and expressions for cumulants.

5.1 Zero-inflated distributions

In some applications the count distribution considered might be inappropriate due to the excess of
zeros in the data compared with what is expected from the distribution. This phenomenon can be a
consequence of the existence of the so called structural zeros. For example, in the counting of the
number of cigarettes smoked in a day, if the sample includes both smokers and non-smokers, there will
be some of them non-smokers who report 0 cigarettes smoked in a day (meaning they are structural
zeros) and others that did not smoke that day (meaning they are expected or sampling zeros instead).
Count data collected from biology is another typical example that contains a lot of zeros. For instance,
in counting disease lesions on plants, a plant may have no lesions either because it is resistant to the
disease (structural zeros), or simply because no disease spores have landed on it [67].

Ignoring the excess of zeros, often referred to as zero inflation, we can have at least two conse-
quences: first, the estimated parameters and standard errors may be biased, and second, the excessive
number of zeros can cause overdispersion [87]. To overcome this issue, zero-inflated distributions
should be specified. These distributions are a two-component mixture where one of the components
is a point mass at zero and the other component is a count distribution. This way, such distributions

81
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distinguish between structural zeros, for units where zero is the only observable value, and sample
zeros, for units on which we observe a zero, but other values might also have been recorded.

Definition 5.1 (Zero-inflated distribution) The probability mass function of a zero-inflated (ZI for
brevity) random variable X can be expressed as

P(X = x) =

{
ω +(1−ω)P(Y = 0), for x = 0,
(1−ω)P(Y = x), for x = 1,2, . . .

(5.1)

where the random variable Y follows a standard count distribution and 0 < ω < 1.

So, the distribution of Y is modified by an additional excess zero function and ω is the proportion
of zeros added. Let us observe that these distributions are also referred as zero-modified or with
added zeros [46, p. 351]. It is also possible to take ω less than zero, which corresponds to zero
deflation, provided that ω +(1−ω)P(Y = 0)≥ 0. In the limiting case, that is ω → 0, the zero-inflated
distribution corresponds to the distribution of the random variable Y .

The characteristic function and moments of a zero-inflated distribution can be derived from those
of the distribution of Y . In fact, if ϕY represents the characteristic function of Y , then

ϕX(u) = E
[
eiuX]= P(X = 0)+

∞

∑
x=1

eiuxP(X = x)

= ω +(1−ω)P(Y = 0)+
∞

∑
x=1

eiux(1−ω)P(Y = x) = ω +(1−ω)ϕY (u), u ∈ R,

which imply E(X r) = (1−ω)E(Y r), r ∈ N. Thus, the mean and the variance of the zero-inflated
distribution, if they exist, are given respectively by

E(X) = (1−ω)E(Y ) and V (X) = (1−ω)[V (Y )+ω(E(Y ))2].

In the same way, the probability generating function of X is given by gX(z) = ω +(1−ω)gY (z) and
its r-th descending factorial moment (1), which can be obtained from g(r)X (1), equals (1−ω)g(r)Y (1).

In addition to being viewed as a mixture, a zero-inflated distribution belongs to the family of
the compound laws with Bernoulli counting distribution. This means that X can be written as
X d
= Y1 + ...+YN where N is a Bernoulli random variable with parameter 1−ω (0 < ω < 1) and Yj,

j = 1,2, ..., are i.i.d. random variables which are also independent of N and following the same law as
Y . In fact, from the proof of Theorem 2.4 the statement holds, i.e., ϕX(u) = ω +(1−ω)ϕY (u), u ∈R.

Regarding its importance within this study, we define in the following the zero-inflated Poisson
(ZIP for brevity), the zero-inflated negative binomial (ZINB) and the zero-inflated generalized Poisson
(ZIGP) laws. Some other examples of zero-inflated distributions can be found in [46, Section 8.2.4].

Example 5.1 (Zero-inflated Poisson distribution) The random variable X follows a ZIP distribu-
tion with parameters (λ ,ω), λ > 0 and 0 < ω < 1, if its probability mass function is given by

1Recall Remark 2.3.
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P(X = x) =

 ω +(1−ω)e−λ for x = 0,

(1−ω)
e−λ λ x

x!
, for x = 1,2, . . .

Since E(Y ) =V (Y ) = λ , the mean and variance of X are given, respectively, by E(X) = (1−ω)λ

and V (X) = (1−ω)λ (1+ωλ ). In Figure 5.1, we represent the probability mass function of the ZIP
distribution considering different values for the parameters (λ ,ω) from which the effect of increasing
the parameter ω becomes clear.

Fig. 5.1 Probability mass function of X ∼ ZIP(λ ,ω). From the top to the bottom in abscissa x = 4,
(λ ,ω) = (4,0) (simple Poisson case with parameter 4), (4,0.3), (4,0.7), (1,0.3).

Example 5.2 (Zero-inflated negative binomial distribution) The random variable X follows a ZINB
distribution with parameters (r, p,ω), r ∈ N, p ∈]0,1[ and 0 < ω < 1, if its probability mass function
can be written in the form

P(X = x) = ωδx,0 +(1−ω)

(
x+ r−1

r−1

)
pr (1− p)x , x = 0,1,2, . . . ,

where δx,0 is the Kronecker delta, i.e., δx,0 is 1 when x = 0 and is zero when x ̸= 0. Since the
mean of the negative binomial distribution is r(1− p)/p and the variance is r(1− p)/p2, we have
E(X) = (1−ω)λ and V (X) = (1−ω)r(1− p)[1+ωr(1− p)]/p2.

Example 5.3 (Zero-inflated generalized Poisson distribution) The random variable X follows a
ZIGP distribution with parameters (λ ,κ,ω) if its probability mass function can be written in the form

P(X = x) =


ω +(1−ω)e−λ , for x = 0,
(1−ω)λ (λ+κx)x−1e−(λ+κx)

x! , for x = 1,2, ...
0, for x > m if κ < 0,
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where λ > 0, 0 < ω < 1, max(−1,−λ/m) < κ < 1 and m(≥ 4) is the largest positive integer for
which λ +κm > 0. Since the mean of the GP law is λ/(1−κ) and the variance is λ/(1−κ)3, we get

E(X) =
1−ω

1−κ
λ and V (X) = (1−ω)

{
ωλ 2

(1−κ)2 +
λ

(1−κ)3

}
.

5.2 The definition of the ZICP-INGARCH model

Since its introduction [25] the INGARCH model has been generalized and extended in various
directions in order to increase its flexibility. In Chapter 2 we presented the CP-INGARCH model
as a solution to capture different kind of overdispersion in count data. As reported in literature with
examples from manufacturing defects, road safety, medical consultations or species abundance [67],
many count time series also display the zero-inflation characteristic. So, in this Section we will define
the zero-inflated CP-INGARCH model and present some particular cases; a general procedure to
generate this kind of processes will conclude the Section.

Definition 5.2 (ZICP-INGARCH(p, q) model) The process X is said to follow a zero-inflated com-
pound Poisson integer-valued GARCH model with orders p and q, (where p,q ∈ N), briefly a ZICP-
INGARCH(p,q), if, ∀t ∈ Z, the characteristic function of Xt conditioned on X t−1 is given by

ΦXt |X t−1
(u) = ω +(1−ω)exp

{
i

λt

ϕ ′
t (0)

[ϕt(u)−1]
}
, u ∈ R, (5.2)

with
E(Xt |X t−1)

1−ω
= λt = α0 +

p

∑
j=1

α jXt− j +
q

∑
k=1

βkλt−k, (5.3)

for 0 ≤ ω < 1, α0 > 0, α j ≥ 0 ( j = 1, ..., p), βk ≥ 0 (k = 1, ...,q), and where (ϕt , t ∈ Z) is a family of
characteristic functions on R, X t−1-measurables, associated to a family of discrete laws with support
in N0 and finite mean. If q = 1 and β1 = 0, the model is simply denoted by ZICP-INARCH(p).

As a consequence of this definition and assuring the existence of variance by considering that
the characteristic functions (ϕt , t ∈ Z) are twice differentiable at zero, the conditional mean and the
conditional variance of Xt are, respectively, given by E(Xt |X t−1) = (1−ω)λt and

V (Xt |X t−1) =−Φ
′′
Xt |X t−1

(0)− (1−ω)2
λ

2
t = (1−ω)λt

(
−i

ϕ ′′
t (0)

ϕ ′
t (0)

+ωλt

)
. (2)

Clearly, the CP-INGARCH model is recovered when ω = 0. Besides this, a wide class of processes
is included in the family of ZICP-INGARCH models. To show that, we use the fact that the conditional
distribution of Xt belongs to the class of the compound laws. In fact, let Mt be a Bernoulli random
variable with parameter 1−ω , with 0 ≤ ω < 1, and let us define the process X = (Xt , t ∈ Z) as

2Recall the expressions stated in page 18.
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Xt
d
=


0, Mt = 0,

Nt

∑
j=1

Xt, j, Mt = 1,
(5.4)

where, conditionally on X t−1, Nt is a random variable following a Poisson distribution with parameter
λ ∗

t = λt/E(Xt, j) and Xt,1, Xt,2,... are discrete random variables with support in N0 and common
characteristic function ϕt with finite mean. In addition, all the random variables involved in the
equality (5.4) are, for each t, independent. Then the process X satisfies the ZICP-INGARCH model
since its characteristic function conditioned on X t−1 is given by

ΦXt |X t−1
(u) = ω +(1−ω)

∞

∑
n=0

E
[
eiu(Xt,1+...+Xt,Nt ) | Nt = n

]
·P(Nt = n)

= ω +(1−ω)e−λ ∗
t

∞

∑
n=0

ϕ
n
t (u)

(λ ∗
t )

n

n!
= ω +(1−ω)exp{λ

∗
t [ϕt(u)−1]} , u ∈ R.

It should be noted that the ZICP-INGARCH model can also be obtained using another different
representation. Indeed, let us define the process X as

Xt
d
= Xt,1 + . . .+Xt,Ut , (5.5)

where Ut is a random variable that, conditionally on X t−1, follows a zero-inflated Poisson law and Xt,1,
Xt,2, ... are discrete random variables with support in N0 that, conditionally on X t−1, are independent,
independent of Ut and with characteristic function ϕt with finite mean. If the parameters of the
probability mass function of Ut are (λ ∗

t ,ω), with λ ∗
t = λt/E(Xt, j) and 0 ≤ ω < 1, then the process X

still satisfies the ZICP-INGARCH model as we have

ΦXt |X t−1
(u) =

∞

∑
n=0

E[exp{iu(Xt,1 + ...+Xt,Ut )}|Ut = n] ·P(Ut = n)

= ω

∞

∑
n=0

ϕ
n
t (u)δn,0 +(1−ω)e−λ ∗

t

∞

∑
n=0

ϕ
n
t (u)

(λ ∗
t )

n

n!

= ω +(1−ω)exp{λ
∗
t [ϕt(u)−1]} , u ∈ R.

This representation shows that the conditional distribution of the ZICP-INGARCH process can be
represented as a compound distribution with a zero-inflated Poisson law as counting distribution.

We can use any of these representations in law of the model. We remark that representation (5.4)
is particularly important in the construction of a strictly stationary solution whereas (5.5) will be
useful to state a condition for the existence of all moments of a ZICP-INGARCH(1,1) model.

Many particular models can be deduced as we illustrate next:

1. To model overdispersion and zero inflation in the same framework, Zhu [84] proposed the
zero-inflated Poisson INGARCH(p,q) model (ZIP-INGARCH for brevity) defined as
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Xt | X t−1 ∼ ZIP(λt ,ω) , λt = α0 +
p

∑
j=1

α jXt− j +
q

∑
k=1

βkλt−k,

where 0 < ω < 1, α0 > 0, α j ≥ 0, βk ≥ 0, j = 1, ..., p, k = 1, ...,q.

We observe that E(Xt |X t−1) = (1−ω)λt and V (Xt |X t−1) = (1−ω)λt(1+ωλt) (recall Example
5.1). This corresponds to a ZICP-INGARCH(p,q) model considering in representation (5.4)
λ ∗

t = λt and the characteristic function ϕt(u) = eiu, u ∈ R.

2. In the same paper, Zhu [84] proposed also the zero-inflated negative binomial INGARCH(p,q)
process (ZINB-INGARCH for brevity), defined as

Xt | X t−1 ∼ ZINB
(

λ
1−c
t

a
,

1
1+aλ c

t
,ω

)
, λt = α0 +

p

∑
j=1

α jXt− j +
q

∑
k=1

βkλt−k,

where 0 < ω < 1, a > 0, c ∈ {0,1}, α0 > 0, α j ≥ 0, βk ≥ 0, j = 1, ..., p, k = 1, ...,q. We
note that V (Xt |X t−1) = (1−ω)λt(1+ωλt + aλ c

t ) (recall Example 5.2). Considering in the
representation (5.4), the random variables Xt, j, j = 1,2, ..., having a logarithmic distribution

with parameter aλ c
t

1+aλ c
t

and λ ∗
t = λ

1−c
t
a ln(1+aλ c

t ) we recover the ZINB-INGARCH(p,q) model.

3. Recently, Lee et al. [52] proposed a zero-inflated generalized Poisson autoregressive model
(ZIGP AR) by considering

Xt | X t−1 ∼ ZIGP((1−κ)λt ,κ,ω) , λt = f (λt−1,Xt−1),

where 0 ≤ ω < 1, max{−1,−(1−κ)λt/m}< κ < 1 and f is a positive function on [0,∞[×N0

irrespective of ω and κ . We have V (Xt |X t−1) = (1−ω)λt(1/(1−κ)2 +ωλt) (recall Example
5.3) and E(Xt |X t−1) = (1−ω)λt . For 0 < κ < 1 and f (λt−1,Xt−1) = α0 +α1Xt−1 +β1λt−1,
we recover a particular case of the ZIGP AR model, which we will called ZIGP-INGARCH,
considering that in the representation (5.4) the common distribution of the random variables
Xt, j, j = 1,2, ..., is the Borel law with parameter κ and λ ∗

t = (1−κ)λt .

4. Let us consider independent random variables Xt, j, j = 1,2, ..., following a Poisson distribution
with parameter φ > 0 and let Nt follow a Poisson distribution with parameter λ ∗

t = λt
φ

, inde-
pendent of Xt, j. So, the process X defined as in (5.4) satisfies a ZICP-INGARCH model with
V (Xt |X t−1)= (1−ω)λt(1+φ +ωλt) (recall Example 2.4). It is denoted by ZINTA-INGARCH,
since the associated conditional law is a zero-inflated Neyman type-A law, i.e.,

Xt | X t−1 ∼ ZINTA
(

λt

φ
,φ ,ω

)
, λt = α0 +

p

∑
j=1

α jXt− j +
q

∑
k=1

βkλt−k,

with φ > 0, 0 ≤ ω < 1, α0 > 0, α j ≥ 0, βk ≥ 0, j = 1, ..., p, k = 1, ...,q.

Following the same idea, all the processes defined in Section 2.3 can be extended in order to
obtain the ZIGEOMP-INGARCH model, the ZIGEOMP2-INGARCH model, and so on.

Figure 5.2 presents trajectories and the basic descriptives of the ZIP-INGARCH(1,1) model
with α0 = 10, α1 = 0.4, β1 = 0.5, considering two different values for ω , namely ω = 0.2 and 0.6,
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illustrating clearly the zero-inflated characteristic of these models (compare with Figure 2.3, where
ω = 0). The descriptive resumes presented in Figure 5.2 and Figure 5.3, suggest overdispersion in the
class of the ZICP-INGARCH processes. In fact, for the model specified by (5.2) and (5.3) we have

V (Xt |X t−1)

E(Xt |X t−1)
= −i

ϕ ′′
t (0)

ϕ ′
t (0)

+ωλt =
E(X2

t,1)

E(Xt,1)
+ωλt

= 1+
E(Xt,1(Xt,1 −1))

E(Xt,1)
+ωλt ≥ 1+ωλt > 1,

whenever ω > 0, and so
V (Xt)

E(Xt)
> 1,

that is, the ZICP-INGARCH process is always overdispersed.

Fig. 5.2 Trajectories and descriptives of ZIP-INGARCH(1,1) models with α0 = 10, α1 = 0.4 and
β1 = 0.5: ω = 0.2 (on top) and ω = 0.6 (below).

Fig. 5.3 Trajectory and descriptives of a ZINTA-INGARCH(1,1) model with α0 = 10, α1 = 0.4,
β1 = 0.5, φ = 2 and ω = 0.6.
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5.3 Weak and strict stationarity

The study of first-order and weak stationarity of these processes follows the approach developed for the
CP-INGARCH processes in Sections 3.1 and 3.2. In the following we resume the main conclusions
of this study for the ZICP-INGARCH process, which naturally, are affected by the parameter ω .

In what concerns first-order stationarity considering µt = E(Xt), we deduce from the difference
equation µt = (1−ω)α0 +∑

p
j=1 (1−ω)α jµt− j +∑

q
k=1 βkµt−k, that X is first-order stationary if and

only if (1−ω)∑
p
j=1 α j +∑

q
k=1 βk < 1. Moreover, under this condition, the processes (Xt) and (λt)

are both first-order stationary and we have

µ = E(Xt) = (1−ω)E(λt) =
(1−ω)α0

1− (1−ω)∑
p
j=1 α j −∑

q
k=1 βk

.

In Figure 5.4 we plot first-order stationarity regions of a ZICP-INGARCH(2,1) model considering
different values for ω , namely, ω = 0, 0.4 and 0.6. We conclude that when the value of ω decrease
the first-order stationarity region becomes smaller. To better view, we present in Figure 5.5 the three
planes that define the mentioned regions where it is now clear that the first-order stationarity region
with ω = 0 (lightest gray) is contained in the region with ω = 0.4 (light to medium gray) and this one
is contained in the region with ω = 0.6 (light to darkest gray).

Fig. 5.4 First-order stationarity regions of a ZICP-INGARCH(2,1) model considering ω = 0.6
(darkest gray), 0.4 (medium gray) and 0 (lightest gray).

Fig. 5.5 The three planes that define the first-order stationarity regions of Figure 5.4.

The weak stationarity is developed for processes X satisfying the hypothesis H2. This hypothesis
in the context of the ZICP-INGARCH model can be interpreted in the following way:
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−i
ϕ ′′

t (0)
ϕ ′

t (0)
=

V (Xt |X t−1)

E(Xt |X t−1)
−ωλt .

We stress that, in addition to the examples presented in Section 3.2, the ZIP-INGARCH, the ZINB-
INGARCH, the ZIGP-INGARCH and the ZINTA-INGARCH processes also satisfy H2. Namely,

• ZIP-INGARCH(p,q) with v0 = 1;

• ZIGP-INGARCH(p,q) with v0 =
1

(1−κ)2 ;

• ZINTA-INGARCH(p,q) with v0 = 1+φ ;

all of them with v1 = 0, and also the

• ZINB-INGARCH(p,q) with

{
v0 = 1+a and v1 = 0, when c = 0,
v0 = 1 and v1 = a, when c = 1.

A necessary and sufficient condition of weak stationarity of X is easily deduced from the vectorial
state space representation presented below. To establish it, let us take into account the following facts:

E(Xt− jλt−k) = E
[
E(Xt− j|X t− j−1)λt−k

]
= (1−ω)E(λt− jλt−k), if k ≥ j, (5.6)

E(Xt− jλt−k) =
1

1−ω
E [Xt− jE(Xt−k|X t−k−1)] =

E(Xt− jXt−k)

1−ω
, if k < j, (5.7)

from where we can deduce the expressions

E(XtXt−h) = E [E(Xt |X t−1)Xt−h] = (1−ω)E(λtXt−h)

= (1−ω)E

([
α0 +

p

∑
j=1

α jXt− j +
q

∑
k=1

βkλt−k

]
Xt−h

)

= (1−ω)

{
α0E (Xt−h)+

p

∑
j=1

α jE (Xt− jXt−h)+
q

∑
k=1

βkE (λt−kXt−h)

}

= (1−ω)

{
α0E (Xt−h)+

p

∑
j=1

α jE (Xt− jXt−h)

+
h−1

∑
k=1

βk

1−ω
E(Xt−kXt−h)+

q

∑
k=h

(1−ω)βkE(λt−kλt−h)

}
, h ≥ 1, (5.8)

and in a similar way

E(λtλt−h) = E

([
α0 +

p

∑
j=1

α jXt− j +
q

∑
k=1

βkλt−k

]
λt−h

)

= α0E (λt−h)+
h

∑
j=1

(1−ω)α jE (λt− jλt−h)

+
p

∑
j=h+1

α j

1−ω
E(Xt− jXt−h)+

q

∑
k=1

βkE (λt−kλt−h), h ≥ 0. (5.9)
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Proposition 5.1 Suppose that the process X following the ZICP-INGARCH(p,q) model is first-order
stationary and satisfies the hypothesis H2. The vector Wt , t ∈ Z, of dimension p+q−1 given by

Wt =



E(X2
t )

E(XtXt−1)

· · ·
E(XtXt−(p−1))

E(λtλt−1)

· · ·
E(λtλt−(q−1))


satisfies an autoregressive equation of order max(p,q):

Wt = A0 +
max(p,q)

∑
k=1

AkWt−k, (5.10)

where A0 is a real vector of dimension p+ q− 1 and Ak (k = 1, ...,max(p,q)) are real squared
matrices of order p+q−1.

Proof: The proof is similar to that of Proposition 3.1. Once again, let us focus on the case p = q.
From the hypothesis of first-order stationarity, the expressions (5.6) and (5.7), and since

E(X2
t ) = (1−ω){v0E(λt)+(1+ v1)E(λ 2

t )} ⇔ E(λ 2
t ) =

E(X2
t )− v0µ

(1−ω)(1+ v1)
,

we deduce the following expressions:

E(X2
t ) = D+(1+ v1)

[
p

∑
j=1

(
(1−ω)α2

j +
2(1−ω)α jβ j +β 2

j

1+ v1

)
E(X2

t− j)

+2
p−1

∑
j=1

p

∑
k= j+1

αk((1−ω)α j +β j)E(Xt− jXt−k)

+2(1−ω)
p−1

∑
j=1

p

∑
k= j+1

βk((1−ω)α j +β j)E(λt− jλt−k)

]
,

E(XtXt−h) =

[
α0 −

v0βh

1+ v1

]
(1−ω)µ +(1−ω)

[
αh +

βh

1+ v1

]
E(X2

t−h)

+
p

∑
j=h+1

(1−ω)2
β jE(λt− jλt−h)+

p

∑
j=h+1

(1−ω)α jE(Xt− jXt−h)

+
h−1

∑
j=1

((1−ω)α j +β j)E(Xt− jXt−h), h ≥ 1,

E(λtλt−h) =

[
α0 −

v0(αh +βh)

1+ v1

]
µ

1−ω
+

αh +βh

(1−ω)(1+ v1)
E(X2

t−h)

+
p

∑
j=h+1

β jE(λt− jλt−h)+
p

∑
j=h+1

α j

1−ω
E(Xt− jXt−h)
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+
h−1

∑
j=1

((1−ω)α j +β j)E(λt− jλt−h), h ≥ 1,

where D = v0µ[1−∑
p
j=1 (2(1−ω)α jβ j +β 2

j )]+ (1+ v1)
[
2α0µ −α2

0
]

is a positive constant inde-
pendent of t. Using these expressions it is clear now that the vector Wt satisfies the autoregressive
equation of order p, Wt = A0 +∑

p
k=1 AkWt−k, with A0 = (a j) the vector such that

a j =


D, j = 1,

(1−ω)µ

[
α0 −

v0β j−1

1+ v1

]
, j = 2, ..., p,

µ

1−ω

[
α0 −

v0(α j−p +β j−p)

1+ v1

]
, j = p+1, ...,2p−1,

and Ak (k = 1, ..., p) the squared matrices having generic element a(k)i j given by

• row i = 1:

a(k)1 j =


(1−ω)(1+ v1)α

2
k +2(1−ω)αkβk +β 2

k , j = 1,
2(1+ v1)[(1−ω)αk +βk]α j+k−1, j = 2, ..., p,
2(1−ω)(1+ v1)((1−ω)αk +βk)β j+k−p, j = p+1, ...,2p−1,

• row i = k+1, (k ̸= p):

a(k)k+1, j =


(1−ω)

[
αk +

βk

1+ v1

]
, j = 1,

(1−ω)α j+k−1, j = 2, ..., p,
(1−ω)2β j+k−p, j = p+1, ...,2p−1,

• row i = k+ p:

a(k)k+p, j =



αk +βk

(1−ω)(1+ v1)
, j = 1,

α j+k−1

1−ω
, j = 2, ..., p,

β j+k−p, j = p+1, ...,2p−1,

• row i = k+ j:

a(k)k+ j, j =

{
(1−ω)αk +βk, j = 2, ..., p− k, p+1, ...,2p−1− k,
0 j = p− k+1, ..., p,

and for any other case a(k)i j = 0, where we consider α j = β j = 0, for j > p. The general form of these
matrices Ak can be found in Appendix A.2. �

In the following theorem we present the referred necessary and sufficient condition for weak
stationarity of the ZICP-INGARCH process. The proof is analogous of that of Theorem 3.2.
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Theorem 5.1 Let X be a first-order stationary process following a ZICP-INGARCH(p,q) model such
that H2 is satisfied. This process is weakly stationary if and only if

Q(L) = Ip+q−1 −
max(p,q)

∑
k=1

AkLk

is a polynomial matrix such that detQ(z) has all its roots outside the unit circle, with Ak

(k = 1,...,max(p,q)) the squared matrices of the autoregressive equation (5.10). Moreover, we have
under the weak stationarity of X, the covariance function of X and λ , respectively Γ and Γ̃, given by

Γ( j) = e j+1[Q(1)]−1A0 −µ
2, j = 0, ..., p−1,

Γ̃( j) = ep+ j[Q(1)]−1A0 −
µ2

(1−ω)2 , j = 1, ...,q−1,

with e j denoting the j-th row of the identity matrix.

For a first-order stationary ZICP-INGARCH(p, p) process where only the order p coefficients
are nonzero we can deduce, following the same steps than in Example 3.1, the weak stationarity
characterization presented below.

Corollary 5.1 Let X be a first-order stationary process following a ZICP-INGARCH(p, p) model
such that α1 = ... = αp−1 = β1 = ... = βp−1 = 0 and hypothesis H2 is satisfied. A necessary and
sufficient condition for weak stationarity is (1−ω)(1+ v1)α

2
p +2(1−ω)αpβp +β 2

p < 1.

Fig. 5.6 Weak stationarity regions of a ZICP-INGARCH(p, p) model under (1−ω)αp + βp < 1,
considering α1 = ... = αp−1 = β1 = ... = βp−1 = 0 and ω = 0 (lightest gray), 0.4 (lightest and
medium gray) and 0.9 (light to darkest gray). We have v1 = 0 (on the left) and v1 = 5 (on the right).

In Figure 5.6, on the left, we present weak stationarity regions of a ZICP-INGARCH(p, p) model,
in the conditions of Corollary 5.1, with ϕt deterministic and independent of t characteristic function
(recall in this case v1 = 0) and considering different values of ω , namely ω = 0, 0.4 and 0.9. We see
that when we increase the parameter ω the weak stationarity region also increases. The same happens
when we change the parameter v1 to be equal to 5 (see Figure 5.6, on the right) corresponding to
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random characteristics functions ϕt in the ZICP-INGARCH(p, p) model. For instance, these regions
corresponds to a ZINB-INGARCH(1,1) model where a = 5 and c = 1.

In order to derive the autocovariance function of the ZICP-INGARCH(p,q) model, we extend
Theorem 3.3 omitting its proof since it is obtained using the same arguments. This general result
includes those of Zhu [84] on ZIP-INGARCH and ZINB-INGARCH models.

Theorem 5.2 Let X be a weakly stationary ZICP-INGARCH(p,q) process. The autocovariances of
the processes X and λ satisfy the linear equations

Γ(h) = (1−ω)
p

∑
j=1

α j ·Γ(h− j)+
min(h−1,q)

∑
k=1

βk ·Γ(h− k)+(1−ω)2
q

∑
k=h

βk · Γ̃(k−h), h ≥ 1,

Γ̃(h) = (1−ω)
min(h,p)

∑
j=1

α j · Γ̃(h− j)+
1

1−ω

p

∑
j=h+1

α j ·Γ( j−h)+
q

∑
k=1

βk · Γ̃(h− k), h ≥ 0,

assuming that ∑
q
k=h βk · Γ̃(k−h) = 0 if h > q and ∑

p
j=h+1 α j ·Γ( j−h) = 0 if h+1 > p.

The following example illustrate the expression stated for p = q = 1.

Example 5.4 Let X be a ZICP-INGARCH(1,1) model. From Theorem 5.2 we have, for h ≥ 2,

Γ(h) = (1−ω)α1 ·Γ(h−1)+β1 ·Γ(h−1) = ...

= (1−ω)α1 +β1]
h−1[(1−ω)α1 ·Γ(0)+(1−ω)2

β1 · Γ̃(0)].

To determine an expression for V (λt) = Γ̃(0), we note first that

Γ̃(h) = (1−ω)α1 · Γ̃(h−1)+β1 · Γ̃(h−1) = ...

= [(1−ω)α1 +β1]
h · Γ̃(0), h ≥ 1,

Γ̃(0) =
α1

1−ω
·Γ(1)+β1 · Γ̃(1)

= α
2
1 ·Γ(0)+(1−ω)α1β1 · Γ̃(0)+β1[(1−ω)α1 +β1] · Γ̃(0)

= α
2
1 ·Γ(0)+ [2(1−ω)α1β1 +β

2
1 ] · Γ̃(0)

⇔ Γ̃(0) =
α2

1 ·Γ(0)
1−2(1−ω)α1β1 +β 2

1
.

Replacing this in the expression of Γ(h) above, we obtain

Γ(h) = [(1−ω)α1 +β1]
h−1 ·

[
(1−ω)α1 ·Γ(0)+

(1−ω)2α2
1 β1 ·Γ(0)

1−2(1−ω)α1β1 +β 2
1

]
= [(1−ω)α1+β1]

h−1 (1−ω)α1[1− (1−ω)α1β1 −β 2
1 ]

1−2(1−ω)α1β1 −β 2
1

·Γ(0),
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and so the autocorrelations of X and λ are given by

ρ(h) =
Γ(h)
Γ(0)

= [(1−ω)α1 +β1]
h−1 (1−ω)α1[1− (1−ω)α1β1 −β 2

1 ]

1−2(1−ω)α1β1 −β 2
1

, h ≥ 1,

ρ̃(h) = [(1−ω)α1 +β1]
h, h ≥ 0.

Under the hypothesis H2, the value of Γ(0) can be deduced, for instance, using the expression
derived in Theorem 5.1. Indeed, Γ(0) =V (Xt) = [Q(1)]−1A0 −µ2, where

Q(1) = 1−A1 = 1− (1−ω)(1+ v1)α
2
1 −2(1−ω)α1β1 −β

2
1 ,

A0 = v0µ +(1+ v1)[2α0µ − (1−ω)α2
0 ]− v0µ[2(1−ω)α1β1 +β

2
1 ],

µ =
(1−ω)α0

1− (1−ω)α1 −β1
.

Thus, we obtain

Γ(0) =
1−2(1−ω)α1β1 −β 2

1

1− (1−ω)(1+ v1)α2
1 −2(1−ω)α1β1 −β 2

1

(
v0µ +

(v1 +ω)µ2

1−ω

)
.

Using this result when ω = 0 we recover the expression stated in Remark 3.5. When ω ̸= 0, for
example, the variance of the ZINB-INGARCH(1,1) process is given by

Γ(0) =


1−2(1−ω)α1β1−β 2

1
1−(1−ω)α2

1−2(1−ω)α1β1−β 2
1

(
(1+a)µ + ωµ2

1−ω

)
, c = 0,

1−2(1−ω)α1β1−β 2
1

1−(1−ω)(1+a)α2
1−2(1−ω)α1β1−β 2

1

(
µ + (a+ω)µ2

1−ω

)
, c = 1.

Going back to the study of the stationarity properties, we now present the construction of a strictly
stationary solution of the ZICP-INGARCH(p,q) model. The study developed in Section 3.4 will be
of extreme importance here as well as the representation (5.4) of this process stated in Section 5.2.

With this aim, let us consider a sequence M = (Mt , t ∈ Z) of i.i.d. Bernoulli random variables
with parameter 1−ω , 0 < ω < 1, and let us define a process X∗ = (X∗

t , t ∈ Z) such that

X∗
t =

{
0, Mt = 0,
Yt , Mt = 1,

(5.11)

where Y = (Yt , t ∈ Z) is a CP-INGARCH(p,q) process, independent of M, for which the conditional
distribution of Yt given Y t−1 satisfies

ΦYt |Y t−1
(u) = exp

{
i

λt

ϕ ′
t (0)

[ϕt (u)−1]
}
, u ∈ R,

E (Yt |Y t−1) = λt = α0 +
p

∑
j=1

α jYt− j +
q

∑
k=1

βkλt−k.
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We remember that in order to have this process it is sufficient to consider Yt = ∑
Nt
j=1Yt, j where,

conditionally to the past, Nt follows a Poisson law with parameter λt/E(Yt, j) and Yt,1, Yt,2,... are
discrete independent random variables, independent of Nt and with characteristic function ϕt .

If X = (Xt , t ∈ Z) is the process following the model ZICP-INGARCH specified by (5.2) and
(5.3), we show in the following that ΦX∗

t |(Y t−1,Mt−1)
(u) = ΦXt |X t−1

(u), u ∈ R. In fact, we have

ΦX∗
t |(Y t−1,Mt−1)

(u) = E
(
exp
(
iuI{Mt=1}Yt

)
|(Y t−1,Mt−1)

)
= E

(
I{Mt=0}+ exp(iuYt)I{Mt=1}|(Y t−1,Mt−1)

)
= ω +E

(
exp(iuYt)I{Mt=1}|(Y t−1,Mt−1)

)
= ω +(1−ω)E (exp(iuYt) |(Y t−1,Mt−1)) , u ∈ R,

since {Yt} is independent of {Mt} and {Mt} are independent variables. So, from the independence
between the processes Y and M, we obtain

ΦX∗
t |(Y t−1,Mt−1)

(u) = ω +(1−ω)E (exp(iuYt) |Y t−1)

= ω +(1−ω)exp
{

i
λt

ϕ
′
t (0)

[ϕt (u)−1]
}

= ΦXt |X t−1
(u) , u ∈ R.

So, a solution of our ZICP-INGARCH model given by (5.2) and (5.3) may be obtained by (5.11).
We are now in conditions to state the strict stationarity of this solution of the model, when ϕt is a

characteristic function deterministic and independent of t.

Theorem 5.3 Let us consider the ZICP-INGARCH(p,q) model as specified in (5.2) and (5.3) and
such that hypothesis H4 is satisfied. There is a strictly stationary process in L1 that is a solution of
this model if and only if ∑

p
j=1 α j +∑

q
k=1 βk < 1. Moreover, this process is also weakly stationary.

Proof: Let us consider the ZICP-INGARCH(p,q) model associated to a deterministic and indepen-
dent of t characteristic function ϕ . From Remark 3.8 (b), there is a strictly stationary solution in L1

of a CP-INGARCH(p,q) model associated to the referred characteristic function ϕ if and only if
∑

p
j=1 α j +∑

q
k=1 βk < 1. Let us denote this solution by Y ∗ = (Y ∗

t , t ∈ Z).
Then the process X∗ = (X∗

t , t ∈ Z) defined as

X∗
t = Y ∗

t I{Mt=1}

with M = (Mt , t ∈ Z) a sequence of i.i.d. Bernoulli random variables with parameter 1−ω , 0 < ω < 1,
and independent of Y , is a solution of the ZICP-INGARCH(p,q) model since

ΦX∗
t |(Y ∗

t−1,Mt−1)
(u) = ω +(1−ω)exp

{
i

λt

ϕ ′(0)
[ϕ(u)−1]

}
, u ∈ R.

The process X∗ is a strictly stationary process as it is a measurable function of the process
{(Y ∗

t ,Mt) , t ∈ Z} which is strictly stationary as Y ∗ and M are independent and strictly stationary
processes. As Y ∗ is a first and a second-order process (Theorem 3.7 and 3.8), the same happens to X∗,
and so X∗ is also a weakly stationary process in L1 if ∑

p
j=1 α j +∑

q
k=1 βk < 1. �
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We study now the moments and the cumulants of the ZICP-INGARCH(1,1) process. To this end,
let us assume in the following that the characteristic functions ϕt are differentiable as many times as
necessary. We start by enunciating a necessary and sufficient condition for the existence of all its
moments, a result where the representation (5.5) stated in Section 5.2 will be useful.

Theorem 5.4 The moments of a ZICP-INGARCH(1,1) model satisfying the hypothesis H3 are all
finite if and only if (1−ω)α1 +β1 < 1.

Proof: To prove the statement, let us recall that the conditional distribution of Xt can be viewed as a
compound law with a zero-inflated Poisson counting distribution with parameters (λ ∗

t ,ω) provided
by the representation (5.5). Since the expression (2.1) presented in Remark 2.3 is valid for any
compound law, and the r-th descending factorial moment of Ut is (1−ω)(λ ∗

t )
r, r ≥ 1, we deduce

E[Xm
t |X t−1] = (1−ω)

m

∑
r=0

1
r!

λ r
t

(ϕ ′
t (0))r

r

∑
k=0

(
r
k

)
(−1)r−k

im−r

(
ϕ

k
t

)(m)
(0),

E[Xm
t ] = (1−ω)

m

∑
r=0

r

∑
j=0

1
r!

(
r
j

)
(−1)r− j

(
ϕ

j
t

)(m)
(0)

im−r(ϕ ′
t (0))r E[λ r

t ], m ≥ 1,

E[λ r
t |X t−2] = α

r
0 +

r

∑
n=1

(
r
n

)
α

r−n
0 β

n
1 λ

n
t−1 +(1−ω)

r

∑
n=1

(
r
n

)
α

r−n
0

n

∑
l=1

(
n
l

)
×

×
l

∑
v=0

α l
1β

n−l
1

v!(ϕ ′
t−1(0))v

v

∑
x=0

(
v
x

)
(−1)v−x

il−v

(
ϕ

x
t−1
)(l)

(0)λ v+n−l
t−1 ,

with
(
ϕk

t
)(m) given in Lemma 3.1 and following the same steps as in Theorem 3.4. Then we obtain

the equation E[Λt |X t−2] = d+DΛt−1, with the constant vector d = (αm
0 , · · · ,α2

0 ,α0)
T and D = (di j),

i, j = 1, ...,m, the upper triangular matrix given by

D =


(1−ω)(α1 +β1)

m +ωβ m
1 · · · d1,m−1 d1m

...
. . .

...
...

0 · · · (1−ω)(α1 +β1)
2 +ωβ 2

1 dm−1,m

0 · · · 0 (1−ω)α1 +β1

 ,

from here the required condition holds. �

We conclude this section presenting expressions for the first three cumulants and moments up to
order 3 of the ZICP-INARCH(1) model. As in Chapter 4, this study can have interest in statistical
developments of these models. Let us consider a first-order stationary ZICP-INARCH(1) model
satisfying the hypothesis H4. In the following we illustrate the derivation of its first three cumulants.

Using the characteristic function of the conditional distribution and λt = α0 +α1Xt−1 we obtain

ΦXt (z) = E
(
eizXt

)
= E

[
E
(
eizXt |X t−1

)]
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= E
[

ω +(1−ω)exp
{

i
λt

ϕ ′(0)
[ϕ(z)−1]

}]
= ω +(1−ω)exp

{
iα0

ϕ ′(0)
[ϕ(z)−1]

}
·ΦXt−1

(
α1

ϕ ′(0)
[ϕ(z)−1]

)
= ω +(1−ω) ·A(z), z ∈ R,

hence, the cumulant generating function of Xt is given by

κXt (z) = ln(ΦXt (z)) = ln(ω +(1−ω) ·A(z)), z ∈ R.

Taking derivatives on both sides, it follows that

κ
′
Xt
(z) =

Φ′
Xt
(z)

ΦXt (z)
=

(1−ω)A′(z)
ω +(1−ω)A(z)

=
(1−ω)A′(z)

A(z)

(1−ω)+ ω

A(z)
,

κ
′′
Xt
(z) =

Φ′′
Xt
(z)

ΦXt (z)
−
[

Φ′
Xt
(z)

ΦXt (z)

]2

=
(1−ω)A′′(z)

A(z)

(1−ω)+ ω

A(z)
−
(
κ
′
Xt
(z)
)2
,

κ
′′′
Xt
(z) =

Φ′′′
Xt
(z)

ΦXt (z)
−3

Φ′
Xt
(z)Φ′′

Xt
(z)

(ΦXt (z))
2 +2

[
Φ′

Xt
(z)

ΦXt (z)

]3

=
(1−ω)A′′′(z)

A(z)

(1−ω)+ ω

A(z)
−3κ

′
Xt
(z)κ ′′

Xt
(z)−

(
κ
′
Xt
(z)
)3
,

where, taking as h(z) = ϕ(z)−1
ϕ ′(0) ,

A′(z) =
iα0ϕ ′(z)

ϕ ′(0)
· exp{iα0 ·h(z)} ·ΦXt−1 (α1 ·h(z))

+
α1ϕ ′(z)
ϕ ′(0)

· exp{iα0 ·h(z)} ·Φ′
Xt−1

(α1 ·h(z)) ,

A′′(z) =

[
iα0ϕ ′′(z)

ϕ ′(0)
+

(
iα0ϕ ′(z)

ϕ ′(0)

)2
]
· exp{iα0 ·h(z)} ·ΦXt−1 (α1 ·h(z))

+

[
α1ϕ ′′(z)

ϕ ′(0)
+2iα0α1

(
ϕ ′(z)
ϕ ′(0)

)2
]
· exp{iα0 ·h(z)} ·Φ′

Xt−1
(α1 ·h(z))

+

(
α1ϕ ′(z)
ϕ ′(0)

)2

· exp{iα0 ·h(z)} ·Φ′′
Xt−1

(α1 ·h(z)) ,

and

A′′′(z) =

[
iα0ϕ ′′′(z)

ϕ ′(0)
−3α

2
0

ϕ ′(z)ϕ ′′(z)
(ϕ ′(0))2 − iα3

0

(
ϕ ′(z)
ϕ ′(0)

)3
]
· exp{iα0 ·h(z)} ·ΦXt−1 (α1 ·h(z))

+

[
6iα0α1

ϕ ′(z)ϕ ′′(z)
(ϕ ′(0))2 −3α

2
0 α1

(
ϕ ′(z)
ϕ ′(0)

)3

+α1
ϕ ′′′(z)
ϕ ′(0)

]
· exp{iα0 ·h(z)} ·Φ′

Xt−1
(α1 ·h(z))
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+

[
3α

2
1

ϕ ′(z)ϕ ′′(z)
(ϕ ′(0))2 +3iα0α

2
1

(
ϕ ′(z)
ϕ ′(0)

)3
]
· exp{iα0 ·h(z)} ·Φ′′

Xt−1
(α1 ·h(z))

+

(
α1ϕ ′(z)
ϕ ′(0)

)3

· exp{iα0 ·h(z)} ·Φ′′′
Xt−1

(α1 ·h(z)) .

So, we have

A′(z)
A(z)

=
iα0ϕ ′(z)

ϕ ′(0)
+

α1ϕ ′(z)
ϕ ′(0)

·κ ′
Xt−1

(α1 ·h(z)) ,

A′′(z)
A(z)

=
iα0ϕ ′′(z)

ϕ ′(0)
+

(
iα0ϕ ′(z)

ϕ ′(0)

)2

+

[
α1ϕ ′′(z)

ϕ ′(0)
+2iα0α1

(
ϕ ′(z)
ϕ ′(0)

)2
]
·κ ′

Xt−1
(α1 ·h(z))

+

(
α1ϕ ′(z)
ϕ ′(0)

)2

·
(

κ
′′
Xt−1

(α1 ·h(z))+
(
κ
′
Xt−1

(α1 ·h(z))
)2
)
,

A′′′(z)
A(z)

=
iα0ϕ ′′′(z)

ϕ ′(0)
−

3α2
0 ϕ ′(z)ϕ ′′(z)
(ϕ ′(0))2 − iα3

0

(
ϕ ′(z)
ϕ ′(0)

)3

+

[
6iα0α1

ϕ ′(z)ϕ ′′(z)
(ϕ ′(0))2 −3α

2
0 α1

(
ϕ ′(z)
ϕ ′(0)

)3

+α1
ϕ ′′′(z)
ϕ ′(0)

]
·κ ′

Xt−1
(α1 ·h(z))

+

[
3α

2
1

ϕ ′(z)ϕ ′′(z)
(ϕ ′(0))2 +3iα0α

2
1

(
ϕ ′(z)
ϕ ′(0)

)3
]
·
(

κ
′′
Xt−1

(α1 ·h(z))+
(
κ
′
Xt−1

(α1 ·h(z))
)2
)

+

(
α1ϕ ′(z)
ϕ ′(0)

)3

·
[
κ
′′′
Xt−1

(α1 ·h(z))+3κ
′
Xt−1

(α1 ·h(z))κ
′′
Xt−1

(α1 ·h(z))+
(
κ
′
Xt−1

(α1 ·h(z))
)3
]
.

Let us recall the notations stated in (4.6) and the hypothesis of first-order stationarity. Inserting
z = 0 into the previous equations and noting that A(0) = 1 and h(0) = 0, we obtain

κ
′
Xt
(0) = (1−ω)

[
iα0 +α1 ·κ ′

Xt−1
(0)
]

⇒ κ1(Xt) = µ =
(1−ω)α0

1− (1−ω)α1
,

κ
′′
Xt
(0) = (1−ω)

{
iα0ϕ ′′(0)

ϕ ′(0)
−α

2
0 +

[
α1ϕ ′′(0)

ϕ ′(0)
+2iα0α1

]
·κ ′

Xt−1
(0)
}

+(1−ω)α2
1 ·
[
κ
′′
Xt−1

(0)+
(
κ
′
Xt−1

(0)
)2
]
− (κ ′

Xt
(0))2

−(1−ω)α2
0 + iv0(1−ω)[iα0 +α1 ·κ ′

Xt−1
(0)]+2i(1−ω)α0α1 ·κ ′

Xt−1
(0)

+(1−ω)α2
1 ·
[
κ
′′
Xt−1

(0)+
(
κ
′
Xt−1

(0)
)2
]
+µ

2

= −(1−ω)α2
0 + iv0 ·κ ′

Xt
(0)+2i(1−ω)α0α1 ·κ ′

Xt
(0)

+(1−ω)α2
1 ·κ ′′

Xt−1
(0)+(1−ω)α2

1 ·
(
κ
′
Xt
(0)
)2

+µ
2
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= (1−ω)α2
1 ·κ ′′

Xt−1
(0)− v0µ

−[(1−ω)α2
0 +2(1−ω)α0α1µ +(1−ω)α2

1 µ
2 −µ

2]

= (1−ω)α2
1 ·κ ′′

Xt−1
(0)− v0µ − ωµ2

1−ω
,

since (1−ω)α0 = µ(1− (1−ω)α1), and then, as in Example 5.4,

κ2(Xt) = Γ(0) =
v0µ + ωµ2

1−ω

1− (1−ω)α2
1
.

Moreover,

κ
′′′
Xt
(0) = (1−ω)

{
iα0ϕ ′′′(0)

ϕ ′(0)
−

3α2
0 ϕ ′′(0)
ϕ ′(0)

− iα3
0

+

[
6iα0α1

ϕ ′′(0)
ϕ ′(0)

−3α
2
0 α1 +α1

ϕ ′′′(0)
ϕ ′(0)

]
·κ ′

Xt−1
(0)

+

[
3α

2
1

ϕ ′′(0)
ϕ ′(0)

+3iα0α
2
1

][
κ
′′
Xt−1

(0)+
[
κ
′
Xt−1

(0)
]2]

+α
3
1 ·
[
κ
′′′
Xt−1

(0)+3κ
′
Xt−1

(0)κ
′′
Xt−1

(0)+
[
κ
′
Xt−1

(0)
]3]}

−3κ
′
Xt
(0)κ ′′

Xt
(0)−

[
κ
′
Xt
(0)
]3

= −d0(1−ω)[iα0 +α1 ·κ ′
Xt−1

(0)]− i(1−ω)α0[3α0v0 +α
2
0 ]

−(1−ω)α1[6α0v0 +3α
2
0 ] ·κ ′

Xt
(0)

+3i(1−ω)α2
1 (v0 +α0) · [κ ′′

Xt
(0)+(κ ′

Xt
(0))2]

+(1−ω)α3
1 ·κ ′′′

Xt−1
(0)+3(1−ω)α3

1 ·κ ′
Xt
(0) ·κ ′′

Xt
(0)

+(1−ω)α3
1 · (κ ′

Xt
(0))3 +3iµΓ(0)+ iµ3

= (1−ω)α3
1 ·κ ′′′

Xt−1
(0)− id0µ − i(1−ω)α0[3α0v0 +α

2
0 ]

−(1−ω)iα1[6α0v0 +3α
2
0 ]µ −3i(1−ω)α2

1 (v0 +α0)[Γ(0)+µ
2]

−3(1−ω)iα3
1 µΓ(0)− (1−ω)iα3

1 µ
3 +3iµΓ(0)+ iµ3.

Using the equalities

(1−ω)α1µ = µ − (1−ω)α0,

(1−ω)α2
1 µ

2 = (1−ω)

(
µ

1−ω
−α0

)2

=
µ2

1−ω
−2α0µ +(1−ω)α2

0 ,

we deduce

κ
′′′
Xt
(0) = (1−ω)α3

1 ·κ ′′′
Xt−1

(0)− id0µ − i(1−ω)α0[3α0v0 +α
2
0 ]

−i[6α0v0 +3α
2
0 ]µ + i(1−ω)α0[6α0v0 +3α

2
0 ]

−3i(1−ω)α2
1 (v0 +α0)Γ(0)

+

{
− 3iµ2

1−ω
+6iα0µ −3i(1−ω)α2

0

}
(v0 +α0)−3iα2

1 Γ(0)µ



100 The zero-inflated CP-INGARCH model

+3i(1−ω)α0α
2
1 Γ(0)− iα1µ3

1−ω
+2iα0α1µ

2

−iα2
0 µ + i(1−ω)α3

0 +3iµΓ(0)+ iµ3

= (1−ω)α3
1 ·κ ′′′

Xt−1
(0)− id0µ −3iv0(1−ω)α2

1 Γ(0)− 3iµ2

1−ω
(v0 +α0)

+2iα2
0 µ −3iα2

1 µΓ(0)− iα1µ3

1−ω
+2iα0α1µ

2 +3iµΓ(0)+ iµ3

= (1−ω)α3
1 ·κ ′′′

Xt−1
(0)− id0µ +−3i(1−ω)α2

1 v0Γ(0)

− iωµ2

1−ω
[α0 +µ(1+α1)]−3iµ

[
v0µ

1−ω
−Γ(0)(1−α

2
1 )

]
= (1−ω)α3

1 ·κ ′′′
Xt−1

(0)− id0µ −3iv0(1−ω)α2
1 Γ(0)

− iωµ2

1−ω
[α0 +µ(1+α1)]−3iωµ

[
µ

1−ω
(v0 −µ)+α

2
1 Γ(0)

]
= (1−ω)α3

1 ·κ ′′′
Xt−1

(0)− id0µ −3iα2
1 Γ(0)[(1−ω)v0 +ωµ]

− iωµ2

1−ω
[3v0 +α0 +µ(α1 −2)]

and from that we get

κ3(Xt) =
d0µ +3α2

1 Γ(0)[(1−ω)v0 −ωµ],+ ωµ2

1−ω
[3v0 +α0 +µ(α1 −2)]

1− (1−ω)α3
1

.

Now we derive an explicit expression for µ(k, l), with 0 ≤ k ≤ l. In order to do this, we remember
the following conditional moments:

E(Xt |X t−1) = (1−ω)λt = (1−ω)[α0 +α1Xt−1],

E(X2
t |X t−1) = (1−ω)

[
v0λt +λ

2
t
]

= (1−ω)
[
v0(α0 +α1Xt−1)+(α0 +α1Xt−1)

2]
= (1−ω)

[
α

2
1 X2

t−1 +α1(v0 +2α0)Xt−1 +α0(v0 +α0)
]
,

and we distinguish the following three cases:

Case 1: l > k.

µ(k, l) = E(XtXt+kXt+l) = E[XtXt+kE(Xt+l|X t+l−1)]

= (1−ω) [α0E(XtXt+k)+α1E(XtXt+kXt+l−1)]

= (1−ω)α0µ(k)+(1−ω)α1µ(k, l −1)

= (1−ω)α0µ(k)+(1−ω)2
α1[α0µ(k)+α1µ(k, l −2)]

= (1−ω)α0µ(k)(1+(1−ω)α1)+(1−ω)2
α

2
1 µ(k, l −2)

= . . .= (1−ω)α0µ(k)
l−k−1

∑
j=0

(1−ω) j
α

j
1 +(1−ω)l−k

α
l−k
1 µ(k,k)

= µ ·µ(k)(1− (1−ω)l−k
α

l−k
1 )+(1−ω)l−k

α
l−k
1 µ(k,k)
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= (1−ω)l−k
α

l−k
1 [µ(k,k)−µ ·µ(k)]+µ ·µ(k).

Case 2: l = k > 0.

µ(k,k) = E[XtE(X2
t+k|X t+k−1)]

= (1−ω)
[
α

2
1 E(XtX2

t+k−1)+α1(v0 +2α0)E(XtXt+k−1)+α0(v0 +α0)E(Xt)
]

= (1−ω)
[
α

2
1 µ(k−1,k−1)+α1(v0 +2α0)µ(k−1)+α0(v0 +α0)µ

]
= (1−ω)α2

1 µ(k−1,k−1)+(1−ω)k
α

k
1(v0 +2α0)Γ(0)

+(1−ω)α1(v0 +2α0)µ
2 +(1− (1−ω)α1)(v0 +α0)µ

2

= (1−ω)α2
1 µ(k−1,k−1)+(1−ω)k

α
k
1(v0 +2α0)Γ(0)

+[α0[1+(1−ω)α1]+ v0]µ
2

= (1−ω)α2
1 µ(k−1,k−1)+(1−ω)k

α
k
1(v0 +2α0)Γ(0)

+
[
1− (1−ω)α2

1
]

µ ·µ(0)

= . . .= (1−ω)k
α

2k
1 µ(0,0)+(1−ω)k(v0 +2α0)Γ(0)

k−1

∑
j=0

α
k+ j
1

+
[
1− (1−ω)α2

1
]

µ ·µ(0)
k−1

∑
j=0

α
2 j
1

= α
2k
1

[
(1−ω)k

µ(0,0)− v0 +2α0

1−α1
(1−ω)k

Γ(0)− (1−ω)µ ·µ(0)
]

+
v0 +2α0

1−α1
(1−ω)k

Γ(0)αk
1 +

[
1+ω

k−1

∑
j=0

α
2 j
1

]
µ ·µ(0).

Case 3: l = k = 0.

µ(0,0) = E(X3
t ) = κ3 +3κ2µ +µ

3

=
d0µ +3α2

1 κ2[(1−ω)v0 −ωµ]+ ωµ2

1−ω
[3v0 +α0 +µ(α1 −2)]

1− (1−ω)α3
1

+3κ2µ +µ
3

=
d0µ +κ2[3(1−ω)v0α2

1 −3ωµα2
1 +2µ −2(1−ω)µα3

1 ]

1− (1−ω)α3
1

+
ωµ2[3v0 +α0 +µ(α1 −2)]
(1−ω)(1− (1−ω)α3

1 )
+µ ·µ(0).





Chapter 6

Conclusions and future developments

"Science never solves a problem without creating ten more." - George Bernard Shaw

This thesis focuses on establishing theoretical results in order to develop applications in which
the responses are nonnegative integer-valued values, developing a unified study in the class of the
nonnegative integer-valued conditional heteroscedastic models. In the last years diverse models have
been proposed contributing to the existence of a vast literature for analysing count time series. In our
opinion, the work developed under this thesis strongly improves the existing results on this area.

A new class of models which includes the main INGARCH processes present in literature is
proposed and developed enlarging and unifying the analysis of those processes, and accomplishing
the practical goal of modeling simultaneously different stylized facts that have been recorded in real
count data: different kinds of conditional heteroscedasticity, overdispersion and zero inflation.

We first proposed a broad class of nonnegative integer-valued conditional heteroscedastic models
that is based upon the family of discrete infinitely divisible distributions which incorporates various
well-known and important distributions. The establishment of the strict stationarity and ergodicity of
these processes is addressed by presenting the construction of a solution. A necessary and sufficient
condition on the model coefficients for weak stationarity is also stated with some particular cases
displayed. This general class of processes allows the easy and straightforward introduction of new
models as well as the inclusion of recent contributions. In fact, a general procedure to obtain this
kind of models is developed showing the main nature of the processes that are solution of the model
equations, namely the fact that they may be expressed, conditioned by the past, as a random sum of
random variables. This study resulted in the publication of the paper "Infinitely divisible distributions
in integer-valued GARCH models" [34]. Moreover, an overall estimation procedure based on the
conditional least squares and on the moments estimation method is analysed in this thesis.

Among the new models that can be presented and because of its practical potential, we underline
in the paper "A new approach to integer-valued times series modeling: The Neyman Type-A INGARCH
model" [33] the study of the particular Neyman Type-A INGARCH model.

Thereafter, it seemed to be natural to consider zero-inflated conditional distributions in the previous
model in order to take also into account in the same framework the characteristic of zero inflation. This
generalization of the CP-INGARCH model was analysed recently in "Zero-inflated compound Poisson
distributions in integer-valued GARCH models" [35]. The previous study plays an important role
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mainly to state strict stationarity. In addition, the autocorrelation function, expressions for moments
and cumulants and a condition ensuring the finiteness of the moments of the process are treated.

Although some of the particular models of the ZICP-INGARCH process have already probabilistic
developments, our study, in many cases, enlarges or completes them. For instance, in Example 4.2 we
computed the first four cumulants, the skewness and the kurtosis of the GP-INARCH(1) model. As
we mentioned, Zhu [82] only presented the mean and the variance claiming the difficulty for deriving
higher-order cumulants with the techniques adopted. For the ZIP-INGARCH model defined by Zhu
[84] we provide an important contribution on the stationarity. In fact, from Theorem 5.3 the strict
stationarity is analysed displaying a solution whereas in the literature, to the best of our knowledge,
only first and second-order stationarity conditions were established ([84]) and the strict stationarity for
p = q = 1 ([52]), by using different techniques than ours. Another example is the NB-DINARCH(p)
model. Xu et al. [80] presented a sufficient condition for the strictly stationarity and ergodicity of the
process but a solution was not shown. We answered it in Theorem 3.11. New results for this model,
for p = 1, are presented as the existence of all moments (Theorem 3.4) and expressions for moments
and cumulants (Theorem 4.2 and Corollary 4.2). For the NB-INGARCH model, Zhu [81] proposed a
necessary and sufficient condition for the weak stationarity analogous to the necessary condition for
the weak stationarity of our model presented in Appendix B. Nevertheless, we stress that the study
developed to discuss the weak stationarity of our general model follows a new vectorial approach.

Other probabilistic studies may be considered in future as, for instance, those related to the Taylor
property ([32]), the behavior of the tails or the analysis of the strict stationarity of this model when ϕt

is a random function which is still an open question that deserves further development. The estimation
of the distribution of a ZICP-INGARCH process is also a subject of future interest. To evaluate
it by bounding as for real heteroscedastic processes, ([61]), could be a first approach. In Section
4.2, we presented a preliminary study on the estimation of the model parameters. In the simulation
study presented, the empirical results lead us to think that the proposed estimators of α and b are
asymptotically uncorrelated, an assertion which requires theoretical developments as well as the
properties of the estimator b. It seems also interesting to develop alternative parameters estimate
methods, for example, using a Poisson quasi-maximum likelihood estimator ([3]).

This work can be viewed as a starting point for new extensions of the INGARCH model. One
of them will be to consider instead of a conditional compound Poisson distribution other particular
compound distributions such as the compound negative binomial or the compound binomial. Using
the same methodology and slightly heavier calculations, the study presented can also be made when a
discrete set of points present probability inflation. Different specifications for the conditional mean
can also be considered. More specifically we can assume, for example, a two-regime structure of the
conditional mean process according to the magnitude of the lagged observations (similar to Wang
et al. [75] who proposed the self-excited threshold integer-valued Poisson autoregressive model); the
coefficients α’s and β ’s of the evolution of the conditional mean being periodic in t, with a certain
period S (similar to Bentarzi and Bentarzi [9] who investigated the periodic INGARCH model); or
the conditional mean of the form λt = f (λt−1,Xt−1), with the function f defined on [0,∞[×N0 (as in
[52]).
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Appendix A

A.1 Matrices Bk of the autoregressive equation (3.5)

Let us consider v = 1+ v1. The general form of these matrices is, for k = 1, . . . , p,

Bk =

[
B(k)

1,1 B(k)
1,2

B(k)
2,1 B(k)

2,2

]
,

where B(k)
1,1 is the squared matrix of order p,

B(1)
1,1 =


vα2

1 +2α1β1 +β 2
1 2vα2(α1 +β1) · · · 2vαp−1(α1 +β1) 2vαp(α1 +β1)

α1 +
β1
v α2 · · · αp−1 αp

0 α1 +β1 · · · 0 0
...

...
. . .

...
...

0 0 · · · α1 +β1 0

 ,

B(2)
1,1 =



vα2
2 +2α2β2 +β 2

2 2vα3(α2 +β2) · · · 2vαp−1(α2 +β2) 2vαp(α2 +β2) 0
0 0 · · · 0 0 0

α2 +
β2
v α3 · · · αp−1 αp 0

0 α2 +β2 · · · 0 0 0
...

...
. . .

...
...

...
0 0 · · · α2 +β2 0 0


,

...

B(p)
1,1 =


vα2

p +2αpβp +β 2
p 0 · · · 0

0 0 · · · 0
...

...
. . .

...
0 0 · · · 0

 ,

B(k)
1,2 is the p× (p−1) matrix,

B(1)
1,2 =


2vβ2(α1 +β1) · · · 2vβp−1(α1 +β1) 2vβp(α1 +β1)

β2 · · · βp−1 βp

0 · · · 0 0
...

. . .
...

...
0 · · · 0 0

 ,
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B(2)
1,2 =



2vβ3(α2 +β2) · · · 2vβp−1(α2 +β2) 2vβp(α2 +β2) 0
0 · · · 0 0 0
β3 · · · βp−1 βp 0
0 · · · 0 0 0
...

. . .
...

...
...

0 · · · 0 0 0


, · · · , B(p)

1,2 = 0,

B(k)
2,1 is the (p−1)× p matrix,

B(1)
2,1 =


α1+β1

v α2 · · · αp−1 αp

0 0 · · · 0 0
...

...
. . .

...
...

0 0 · · · 0 0

 , B(2)
2,1 =


0 0 · · · 0 0 0

α2+β2
v α3 · · · αp−1 αp 0
0 0 · · · 0 0 0
...

...
. . .

...
...

...
0 0 · · · 0 0 0

 , · · · , B(p)
2,1 = 0,

and B(k)
2,2 is the squared matrix of order p−1,

B(1)
2,2 =


β2 · · · βp−1 βp

α1 +β1 · · · 0 0
...

. . .
...

...
0 · · · α1 +β1 0

 , B(2)
2,2 =


0 · · · 0 0 0
β3 · · · βp−1 βp 0

α2 +β2 · · · 0 0 0
...

. . .
...

...
...

0 · · · α2 +β2 0 0

 , · · · , B(p)
2,2 = 0.

A.2 Matrices Ak of the autoregressive equation (5.10)

Let us consider v = 1+ v1 and ω̃ = 1−ω . The general form of these matrices is, for k = 1, . . . , p,

Ak =

[
,A(k)

1,1 A(k)
1,2

A(k)
2,1 A(k)

2,2

]
,

where A(k)
1,1 is the squared matrix of order p,

A(1)
1,1 =



ω̃vα2
1 +2ω̃α1β1 +β 2

1 2vα2(ω̃α1 +β1) · · · 2vαp−1(ω̃α1 +β1) 2vαp(ω̃α1 +β1)

ω̃

(
α1 +

β1
v

)
ω̃α2 · · · ω̃αp−1 ω̃αp

0 ω̃α1 +β1 · · · 0 0
...

...
. . .

...
...

0 0 · · · ω̃α1 +β1 0


,

A(2)
1,1 =



ω̃vα2
2 +2ω̃α2β2 +β 2

2 2vα3(ω̃α2 +β2) · · · 2vαp−1(ω̃α2 +β2) 2vαp(ω̃α2 +β2) 0
0 0 · · · 0 0 0

ω̃

(
α2 +

β2
v

)
ω̃α3 · · · ω̃αp−1 ω̃αp 0

0 ω̃α2 +β2 · · · 0 0 0
...

...
. . .

...
...

...
0 0 · · · ω̃α2 +β2 0 0


,
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...

A(p)
1,1 =


ω̃vα2

p +2ω̃αpβp +β 2
p 0 · · · 0

0 0 · · · 0
...

...
. . .

...
0 0 · · · 0

 ,

A(k)
1,2 is the p× (p−1) matrix,

A(1)
1,2 =


2ω̃vβ2(ω̃α1 +β1) · · · 2ω̃vβp−1(ω̃α1 +β1) 2ω̃vβp(ω̃α1 +β1)

ω̃2β2 · · · ω̃2βp−1 ω̃2βp

0 · · · 0 0
...

. . .
...

...
0 · · · 0 0

 ,

A(2)
1,2 =



2ω̃vβ3(ω̃α2 +β2) · · · 2ω̃vβp−1(ω̃α2 +β2) 2ω̃vβp(ω̃α2 +β2) 0
0 · · · 0 0 0

ω̃2β3 · · · ω̃2βp−1 ω̃2βp 0
0 · · · 0 0 0
...

. . .
...

...
...

0 · · · 0 0 0


, · · · , A(p)

1,2 = 0,

A(k)
2,1 is the (p−1)× p matrix,

A(1)
2,1 =


α1 +β1

ω̃v
α2

ω̃
· · ·

αp−1

ω̃

αp

ω̃

0 0 · · · 0 0
...

...
. . .

...
...

0 0 · · · 0 0

 , A(2)
2,1 =



0 0 · · · 0 0 0
α2 +β2

ω̃v
α3

ω̃
· · ·

αp−1

ω̃

αp

ω̃
0

0 0 · · · 0 0 0
...

...
. . .

...
...

...
0 0 · · · 0 0 0


,

· · · , A(p)
2,1 = 0,

and A(k)
2,2 is the squared matrix of order p−1,

A(1)
2,2 =


β2 · · · βp−1 βp

ω̃α1 +β1 · · · 0 0
...

. . .
...

...
0 · · · ω̃α1 +β1 0

 , A(2)
2,2 =


0 · · · 0 0 0
β3 · · · βp−1 βp 0

ω̃α2 +β2 · · · 0 0 0
...

. . .
...

...
...

0 · · · ω̃α2 +β2 0 0

 ,

· · · , A(p)
2,2 = 0.





Appendix B

Another necessary condition for weak
stationarity of CP-INGARCH processes

B.1 Some matrix results

We now turn our attention to the class of strictly diagonally dominant by rows matrices that will help
us to obtain a second-order stationarity necessary condition of a CP-INGARCH(p,q) process. For
more details concerning the results presented in this section see, e.g., [41] and [64].

Definition B.1 (Strictly diagonally dominant by rows matrix) The real n× n matrix A = (ai j) is
said to be strictly diagonally dominant by rows when

|aii|>
n

∑
j=1, j ̸=i

∣∣ai j
∣∣, holds for every row index i = 1, ...,n.

The relevance of diagonal dominance in our study is related to the problem of verifying the
nonsingularity of a such matrix which is a consequence of the Levy-Desplanques Theorem.

Theorem B.1 (Levy-Desplanques) A strictly diagonally dominant by rows matrix A is nonsingular.

Proof: Suppose det(A) = 0. Then the system Ax = 0 has a nontrivial solution, say x = (x1, ...,xn).
Let r be the integer for which |xr| ≥ |xi|, i = 1, ...,n. Then

|arr||xr|=

∣∣∣∣∣− n

∑
j=1, j ̸=r

ar jx j

∣∣∣∣∣≤ n

∑
j=1, j ̸=r

|ar j||x j| ≤ |xr|
n

∑
j=1, j ̸=i

∣∣ai j
∣∣,

which contradicts the hypothesis of strictly diagonally dominance by rows. �

Another fundamental question to establish the required necessary condition is to prove the
positivity of a certain constant. To that end we need the following notion of M-matrix.

Definition B.2 (M-matrix) A nonsingular real n×n matrix A = (ai j) is said to be an M-matrix if
ai j ≤ 0 for i ̸= j and if all the entries of its inverse are nonnegative.
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M-matrices are related to strictly diagonally dominant matrices by the following result.

Theorem B.2 A n×n matrix A = (ai j) that is strictly diagonally dominant by rows and whose entries
satisfy the relations ai j ≤ 0 for i ̸= j and aii > 0, is an M-matrix.

Proof: We only need to prove that all the entries of A−1 are nonnegative.

Let B = (bi j) be defined by B = In −D−1A where D = diag(a11, ...,ann) and In is the identity
matrix of order n. Note that bii = 0 for each i = 1, ...,n, and bi j =−ai j/aii ≥ 0 for i ̸= j. Also, the
fact that A is strictly diagonally dominant by rows implies that

|aii|>
n

∑
j=1, j ̸=i

∣∣ai j
∣∣ ⇔ 1 >

n

∑
j=1

|bi j|, i = 1, ...,n.

It follows immediately from the Gershgorin Theorem ([64, p. 184]) that all the eigenvalues of B are
less than 1. So, it implies that In −B is nonsingular and (In −B)−1 = ∑

∞
k=0 Bk. Since all the entries of

B are nonnegative it is clear that the same holds for (In −B)−1. As the elements of In −B of the main
diagonal are nonpositive then In −B = D−1A is an M-matrix. Consequently, A is also an M-matrix. �

B.2 The necessary condition

The necessary condition presented in this section has resulted from an initial study on the weak
stationarity of the CP-INGARCH processes. In fact, this condition intended to generalize an existing
result in the literature established by Zhu [81] for a NB-INARCH(p) model. We note that this result is
not only an extension for the class of conditional distributions, but it is also a generalization in terms
of orders since Zhu stated the condition only for q = 1, β1 = 0 and any p ∈ N.

Let us now develop a necessary condition of weak stationarity for a general CP-INGARCH(p,q)
model, using arguments similar to that of Zhu [81]. In that sense, we consider B = (bi j) the squared
matrix of order p+q−2 whose terms are, for i = 1, ..., p−1, given by

bi j =



∑
|k−i|= j

αk +βi− j, 1 ≤ j ≤ i−1

α2i −1, j = i

∑
|k−i|= j

αk, i+1 ≤ j ≤ p−1

βi+ j, p ≤ j ≤ p+q− i−1

0, otherwise,

and for i = p, ..., p+q−2, given by
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bi j =



α j+i−p+1, 1 ≤ j ≤ p−1

∑
|k−i|= j

βk +αi− j, p ≤ j ≤ i−1

β2(i−p+1)−1, j = i

∑
|k−i|= j

βk, i+1 ≤ j ≤ p+q−2

0, otherwise,

where αi = 0 for i > p and β j = 0 for j > q. If B has an inverse, B−1, we denote its elements by di j.
Consider also the vector b = (bi0) with components

bi0 =


αi +

βi

1+ v1
, i = 1, ..., p−1,

αi−p+1 +βi−p+1

1+ v1
, i = p, ..., p+q−2.

Theorem B.3 Let X be a process following a CP-INGARCH(p,q) model satisfying H2 and such that
α0(1+ v1) > v0. If the process is weakly stationary then C1 + ...+Cr < 1, with r = max(p,q) and
where for v = 1, ...,r−1, the coefficients are given by

Cv = (1+ v1)

α
2
v +

2αvβv +β 2
v

1+ v1
−2 ∑

(i, j)∈{1,...,p}×{1,...,q}:
j−i=v

(αi +βi)
p+q−2

∑
u=1

(α jdvu +β jdv+r−1,u)bu0

 ,
Cr = (1+ v1)α

2
r +2αrβr +β

2
r .

Proof: Let us start by recalling the existence of the CP-INARCH(∞) representation which results
from the assumption of first-order stationarity. From this representation and using the hypothesis that
X is a second-order stationary process we conclude the second-order stationarity of λ .

In what follows we use the notation γk = E(XtXt−k) and γ̃k = E(λtλt−k), with k ∈ Z, and once
again we restrict ourselves to the case p = q since the other cases can be obtained from this one
setting additional parameters to 0. Let us take into account the expressions obtained for γ0, γk and γ̃k

in Proposition 3.1. From (3.8) we have

γ0 = C+(1+ v1)

[
p

∑
j=1

(
α

2
j +

2α jβ j +β 2
j

1+ v1

)
γ0 +2

p−1

∑
j=1

p

∑
k= j+1

αk(α j +β j)γk− j

+2
p−1

∑
j=1

p

∑
k= j+1

βk(α j +β j)γ̃k− j

]
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= C+(1+ v1)

[
p

∑
j=1

(
α

2
j +

2α jβ j +β 2
j

1+ v1

)
γ0 +2

p−1

∑
v=1

∑
k− j=v

(α j +β j)(αkγv +βkγ̃v)

]
(B.1)

with C = v0µ

[
1−∑

p
j=1 (2α jβ j +β 2

j )
]
+(1+ v1)

[
2α0µ −α2

0
]
> 0 and independent of t.

From (3.9) it follows that, for k = 1, ..., p−1,

γk =

(
α0 −

v0βk

1+ v1

)
µ +

(
αk +

βk

1+ v1

)
γ0 +

p

∑
j=k+1

β j γ̃ j−k +
k−1

∑
j=1

(α j +β j)γk− j +
p

∑
j=k+1

α jγ j−k

⇔ γk − ∑
| j−k|=1

α jγ1− ...− ∑
| j−k|=k

α jγk − ...− ∑
| j−k|=p−1

α jγp−1− ∑
k− j=1

β jγ1− ...− ∑
k− j=k−1

β jγk−1

− ∑
j−k=1

β j γ̃1 − ...− ∑
j−k=p−k

β j γ̃p−k =

(
α0 −

v0βk

1+ v1

)
µ +

(
αk +

βk

1+ v1

)
γ0,

or equivalently,

p−1

∑
u=1

bkuγu +
p−k

∑
u=1

bk,u+p−1γ̃u =−
[(

α0 −
v0βk

1+ v1

)
µ +

(
αk +

βk

1+ v1

)
γ0

]
(B.2)

with

bku =



∑
| j−k|=u

α j +βk−u, 1 ≤ u ≤ k−1

α2k −1, u = k

∑
| j−k|=u

α j, k+1 ≤ u ≤ p−1,

and bk,u+p−1 = βu+k, for u = 1, ..., p− k, where we consider α j = β j = 0, j > p.

Similarly we get from (3.10), for k = 1, ..., p−1,

γ̃k =

(
α0 −

v0(αk +βk)

1+ v1

)
µ +

αk +βk

1+ v1
γ0 +

p

∑
j=k+1

α jγ j−k +
k−1

∑
j=1

(α j +β j)γ̃k− j +
p

∑
j=k+1

β j γ̃ j−k

⇔ (1−β2k)γ̃k − ∑
| j−k|=1

β j γ̃1 − ...− ∑
| j−k|=p−1

β j γ̃p−1 − ∑
k− j=1

α j γ̃1 − ...− ∑
k− j=k−1

α j γ̃k−1

− ∑
j−k=1

α jγ1 − ...− ∑
j−k=p−k

α jγp−k =

(
α0 −

v0(αk +βk)

1+ v1

)
µ +

αk +βk

1+ v1
γ0,

or equivalently,

p−k

∑
u=1

bk+p−1,uγu +
p−1

∑
u=1

bk+p−1,u+p−1γ̃u =−
[(

α0 −
v0(αk +βk)

1+ v1

)
µ +

αk +βk

1+ v1
γ0

]
(B.3)
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with

bk+p−1,u+p−1 =



∑
| j−k|=u

β j +αk−u, 1 ≤ u ≤ k−1

β2k −1, u = k

∑
| j−k|=u

β j, k+1 ≤ u ≤ p−1,

and bk+p−1,u = αu+k, for u = 1, ..., p− k.

Let B = (bi j)
2p−2
i, j=1 and B−1 = (di j)

2p−2
i, j=1 its inverse, whose existence is assured by the second-order

stationarity. Indeed, as X is second-order stationary it is also first-order stationary and then, from
Theorem 3.1, we have

p

∑
l=1

(αl +βl)< 1 ⇔ α2i +β2i + ∑
|l−i|̸=i

(αl +βl)< 1

⇒


|α2i −1|> β2i + ∑

|l−i|̸=i
(αl +βl)− (αi +βi), if i = 1, ..., p−1

|β2i −1|> α2i + ∑
|l−i|̸=i

(αl +βl)− (αi +βi), if i = p, ...,2p−2

which proves that B is a strictly diagonally dominant by rows matrix and therefore invertible. Thus,
from expressions (B.2) and (B.3) and using the invertibility of B we obtain

γ̂ =



γ1
...

γp−1

γ̃1
...

γ̃p−1


=−B−1





α0µ

...
α0µ

α0µ

...
α0µ


+ v0µ



α1 −b10
...

αp−1 −bp−1,0

−bp,0
...

−b2p−2,0


+ γ0b


,

where b is the vector previously introduced. So, for l = 1, ...,2p−2,

γ̂l =−α0µ

2p−2

∑
u=1

dlu + v0µ

[
p−1

∑
u=1

(bu0 −αu)dlu +
2p−2

∑
u=p

bu0dlu

]
−

2p−2

∑
u=1

dlubu0γ0.

Taking the last part of (B.1) and using the previous expression, we get

2
p−1

∑
v=1

∑
j−i=v

(αi +βi)(α jγv +β j γ̃v) = Ĉ−2
p−1

∑
v=1

∑
j−i=v

(αi +βi)

[
α j

2p−2

∑
u=1

dvubu0

+β j

2p−2

∑
u=1

dv+p−1,ubu0

]
γ0,
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where the constant Ĉ given by

Ĉ = −2α0µ

p−1

∑
v=1

∑
j−i=v

(αi +βi)

[
α j

2p−2

∑
u=1

dvu +β j

2p−2

∑
u=1

dv+p−1,u

]

+2
v0µ

1+ v1

p−1

∑
v=1

∑
j−i=v

(αi +βi)

[
α j

p−1

∑
u=1

βudvu +α j

2p−2

∑
u=p

(αu−p+1 +βu−p+1)dvu

+β j

p−1

∑
u=1

βudv+p−1,u +β j

2p−2

∑
u=p

(αu−p+1 +βu−p+1)dv+p−1,u

]

is positive and independent of t. We notice that the positivity of Ĉ follows from the assumption that
α0(1+v1)> v0, and once again, from the strictly diagonally dominance by rows of B. In fact, since B
is strictly diagonally dominant by rows the same happens to −B. As −blu ≤ 0, for u ̸= l, and −bll > 0
we conclude that −B is an M-matrix so, all the entries of (−B)−1 are nonnegative and thus di j ≤ 0.

Then replacing this expression in (B.1), we finally get

γ0 = C0 +(1+ v1)

[
p

∑
i=1

(
α

2
i +

2αiβi +β 2
i

1+a1

)
γ0

−2
p−1

∑
v=1

∑
j−i=v

(αi +βi)

(
α j

2p−2

∑
u=1

dvubu0 +β j

2p−2

∑
u=1

dv+p−1,ubu0

)
γ0

]

= C0 +(1+ v1)

[(
α

2
p +

2αpβp +β 2
p

1+ v1

)
γ0 +

p−1

∑
v=1

{(
α

2
v +

2αvβv +β 2
v

1+ v1

)

−2 ∑
j−i=v

(αi +βi)
2p−2

∑
u=1

(α jdvu +β jdv+p−1,u)bu0

}
γ0

]
,

or equivalently

γ0 =C0 +
p

∑
v=1

Cvγ0 ⇔

(
1−

p

∑
v=1

Cv

)
γ0 =C0, (B.4)

where C0 =C+(1+ v1)Ĉ > 0 and Cv are the coefficients defined in the statement of the theorem.
Hence, the equality (B.4) implies 1−∑

p
v=1Cv > 0. �

Let us point out that when X follows a CP-INARCH(p) model, we easily obtain, in the proof of
Theorem B.3, the constant Ĉ =−2α0µ ∑

p−1
v=1 ∑ j−i=v αiα j ∑

p−1
u=1 dvu. Therefore, in this case, we do not

need to ensure that α0(1+ v1)> v0 to assure the positivity of this constant since the fact that di j ≤ 0
is sufficient. Accordingly, the previous theorem assumes the following form:

Corollary B.1 Let X be a first-order stationary process following a CP-INARCH(p) model that
satisfies H2. If the process is weakly stationary, then C1 + ...+Cp < 1, where for u, l = 1, ..., p−1,

Cu = (1+ v1)

[
α

2
u −

p−1

∑
v=1

∑
|i− j|=v

αiα jdvubu0

]
, Cp = (1+ v1)α

2
p,

bl0 = αl, bll = ∑
|i−l|=l

αi −1 and for u ̸= l, blu = ∑
|i−l|=u

αi,
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with B = (bi j) and B−1 = (di j) squared matrices of order p−1.

Remark B.1 We note that since all the entries of the matrix B−1 are nonpositive, from the previous
proof, then the coefficients Cv > 0 for all v = 1, ...,r, and the necessary condition is equivalent to say
that the roots of the equation 1−C1z− ...−Crzr = 0 are outside the unit circle.

The following examples illustrate the necessary condition stated in Theorem B.3.

Example B.1 Let us consider a CP-INGARCH(2,2) model satisfying the hypothesis H2 and such
that α1 +α2 +β1 +β2 < 1. In order to obtain the necessary condition of Theorem B.3, let us consider
α0(1+ v1)> v0 and the coefficients

C1 = (α1 +β1)
2 + v1α

2
1 −2(1+ v1)

[
(α1 +β1)

2

∑
u=1

(α2d1u +β2d2u)bu0

]

= (α1 +β1)
2 + v1α

2
1 +2(1+ v1)(α1 +β1)

α2b10 +β2b20

1−α2 −β2

= (α1 +β1)
2
[

1+α2 +β2

1−α2 −β2

]
+ v1α1

[
α1(1+α2 −β2)+2α2β1

1−α2 −β2

]
,

C2 = (α2 +β2)
2 + v1α

2
2 ,

since the matrices B and B−1 and the vector b are respectively given by

B =

[
α2 −1 β2

α2 β2 −1

]
, B−1 =

[
β2−1

1−α2−β2

−β2
1−α2−β2

−α2
1−α2−β2

α2−1
1−α2−β2

]
, b =

[
α1 +

β1
1+v1

α1+β1
1+v1

]
.

Hence, the necessary condition of weak stationarity is

C1 +C2 < 1 ⇔ (α1 +β1)
2(1+α2 +β2)+(α2 +β2)

[
1+α2 +β2 − (α2 +β2)

2]
+v1

(
α

2
1 [1+α2 −β2]+α

2
2 [1−α2 −β2]+2α1α2β1

)
< 1. (B.5)

Taking α2 = β2 = 0, the condition (B.5) reduces to (α1 +α2)
2 + v1α2

1 < 1. So, this necessary
condition of weak stationarity of the CP-INGARCH(1,1) model equals the condition stated in Example
3.1. The same happens in the CP-INGARCH(2,2) where α1 = β1 = 0. In fact, from (B.5) we get

(α2 +β2)
[
1+α2 +β2 − (α2 +β2)

2]+ v1α
2
2 (1−α2 −β2)< 1 ⇔ (α2 +β2)

2 + v1α
2
2 < 1.

Example B.2 Let us now consider a CP-INARCH(3) model satisfying the hypothesis H2 and such
that α1 +α2 +α3 < 1. To obtain the necessary condition we analyze the coefficients

C1 = (1+ v1)

[
α

2
1 − ∑

|i− j|=1
αiα jd11b10 − ∑

|i− j|=2
αiα jd21b10

]
= (1+ v1)[α

2
1 −2(α1α2d11 +α2α3d11 +α1α3d21)b10]

= (1+ v1)

[
α

2
1 +2

α2
1 α2 +α1α2α3 +α2

1 α2
3 +α3

1 α3

1−α2 −α1α3 −α2
3

]
,
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C2 = (1+ v1)

[
α

2
2 − ∑

|i− j|=1
αiα jd12b20 − ∑

|i− j|=2
αiα jd22b20

]
= (1+ v1)[α

2
2 −2(α1α2d12 +α2α3d12 +α1α3d22)b20]

= (1+ v1)

[
α

2
2 +2

α2
2 α2

3 +α1α2α3

1−α2 −α1α3 −α2
3

]
,

C3 = (1+ v1)α
2
3 ,

as the matrices B and B−1 and the vector b are respectively given by

B =

[
α2 −1 α3

α1 +α3 −1

]
, B−1 =

 −1
1−α2−α1α3−α2

3

−α3
1−α2−α1α3−α2

3
−(α1+α3)

1−α2−α1α3−α2
3

α2−1
1−α2−α1α3−α2

3

 , b =

[
α1

α2

]
.

Finally, the necessary condition of weak stationarity is

C1 +C2 +C3 < 1 ⇔ (1+ v1)
[
(α2

1 +α
2
2 +α

2
3 )(1−α2 −α1α3 −α

2
3 )+2α

2
1 α2 +2α1α2α3

+2α
2
1 α

2
3 +2α

3
1 α3 +2α

2
2 α

2
3 +2α1α2α3

]
< 1−α2 −α1α3 −α

2
3 ,

We finish this Appendix saying that we are strongly convinced that the necessary condition of
weakly stationarity stated in Theorem B.3 is also a sufficient one and consequently it is equivalent to
the condition of Theorem 3.2, as we observe in the cases developed in example B.1.



Appendix C

Auxiliary Results

C.1 Lemma 3.1

In Lemma 3.1 we state that for k ∈ N0 and m ∈ N, the m-th derivative of the function ϕk
t = ∏

k
j=1 ϕt is

given by (
ϕ

k
t

)(m)
(u) =

m−1

∑
n=max{0,m−k}

k!
(k−m+n)!

ϕ
k−m+n
t (u) ×

∑
k1+...+km=m−n

k1+2k2+...+mkm=m
kr∈N0

(m;k1, ...,km)
[
ϕ
′
t (u)

]k1 ...[ϕ
(m)
t (u)]km , u ∈ R,

where
(m;k1, ...,km) =

m!
(1!)k1k1!(2!)k2k2! . . .(m!)kmkm!

.

Let us prove this result by induction with respect to m. Without loss of generality, let us consider
m ≥ j. For m = 1 the result is valid since

(
ϕk

t
)′
(u) = kϕ

k−1
t (u)ϕ ′

t (u), u ∈ R. Now, let us assume that
the formula is also valid for an arbitrarily fixed value of m and let us prove that it holds for m+1.

We have

(
ϕ

k
t

)(m+1)
(u) =

d
du

 m−1

∑
n=m−k

k! ϕ
k−m+n
t (u)

(k−m+n)! ∑
k1+...+km=m−n
k1+...+mkm=m

(m;k1, ...,km)
[
ϕ
′
t (u)

]k1 ...[ϕ
(m)
t (u)]km


=

m−1

∑
n=m−k+1

k!( j−m+n)
(k−m+n)!

ϕ
k−m+n−1
t (u) ∑

k1+...+km=m−n
k1+...+mkm=m

(m;k1, ...,km)
[
ϕ
′
t (u)

]k1+1 [
ϕ
′′
t (u)

]k2 ...[ϕ
(m)
t (u)]km

+
m−1

∑
n=m−k

k! ϕ
k−m+n
t (u)

(k−m+n)!

 ∑
k1+...+km=m−n
k1+...+mkm=m

k1(m;k1, ...,km)
[
ϕ
′
t (u)

]k1−1 [
ϕ
′′
t (u)

]k2+1
. . . [ϕ

(m)
t (u)]km

+ ∑
k1+...+km=m−n
k1+...+mkm=m

k2(m;k1, ...,km)
[
ϕ
′
t (u)

]k1
[
ϕ
′′
t (u)

]k2−1 [
ϕ
′′′
t (u)

]k3+1
[ϕ

(iv)
t (u)]k4 . . . [ϕ

(m)
t (u)]km
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+ . . . + ∑
k1+...+km=m−n
k1+...+mkm=m

km(m;k1, ...,km)
[
ϕ
′
t (u)

]k1 . . . [ϕ
(m)
t (u)]km−1

ϕ
(m+1)
t (u)



=
m−1

∑
n=m−k+1

k! ϕ
k−m+n−1
t (u)

(k−m+n−1)!

 ∑
k1+...+km=m−n
k1+...+mkm=m

(m;k1, ...,km)
[
ϕ
′
t (u)

]k1+1 [
ϕ
′′
t (u)

]k2 . . . [ϕ
(m)
t (u)]km

+ ∑
k1+...+km=m−n+1

k1+...+mkm=m

k1(m;k1, ...,km)
[
ϕ
′
t (u)

]k1−1 [
ϕ
′′
t (u)

]k2+1 [
ϕ
′′′
t (u)

]k3 . . . [ϕ
(m)
t (u)]km

+ ∑
k1+...+km=m−n+1

k1+...+lkm=m

k2(m;k1, ...,km)
[
ϕ
′
t (u)

]k1
[
ϕ
′′
t (u)

]k2−1 [
ϕ
′′′
t (u)

]k3+1
[ϕ

(iv)
t (u)]k4 . . . [ϕ

(m)
t (u)]km

+ . . . + ∑
k1+...+km=m−n+1

k1+...+mkm=m

km(m;k1, ...,km)
[
ϕ
′
t (u)

]k1 . . . [ϕ
(m)
t (u)]km−1

ϕ
(m+1)
t (u)


+k ϕ

k−1
t (u)ϕ(m+1)

t (u),

where this last term results from taking n = m−1 in the summation ∑
m−1
n=m−k, since in this case we have

k1 + ...+ km = 1 and k1 +2k2 + ...+mkm = m which just occurs if k1 = ...= km−1 = 0 and km = 1.

Therefore,

(
ϕ

k
t

)(m+1)
(u)=

m−1

∑
n=m−k+1

k! ϕ
k−m+n−1
t (u)

(k−m+n−1)!

 ∑
c1+...+cm=m+1−n
c1+...+mcm=m+1

(m;c1 −1,c2, ...,cm)
[
ϕ
′
t (u)

]c1 . . . [ϕ
(m)
t (u)]cm

+ ∑
c1+...+cm=m+1−n
c1+...+mcm=m+1

(c1 +1) (m;c1 +1,c2 −1,c3, ...,cm)
[
ϕ
′
t (u)

]c1 . . . [ϕ
(m)
t (u)]cm

+ ∑
c1+...+cm=m+1−n
c1+...+mcm=m+1

(c2 +1) (m;c1,c2 +1,c3 −1,c4, ...,cm)
[
ϕ
′
t (u)

]c1 . . . [ϕ
(m)
t (u)]cm

+ . . . + ∑
c1+...+cm+1=m+1−n

c1+...+(m+1)cm+1=m+1

(cm +1) (m;c1, ...,cm−1,cm +1)
[
ϕ
′
t (u)

]c1 . . . [ϕ
(m)
t (u)]cmϕ

(m+1)
t (u)


+ k ϕ

k−1
t (u)ϕ(m+1)

t (u)

=
m−1

∑
n=m−k+1

k! ϕ
k−m+n−1
t (u)

(k−m+n−1)!

 ∑
c1+...+cm=m+1−n
c1+...+mcm=m+1

(m+1;c1, ...,cm,0)
[
ϕ
′
t (u)

]c1 . . . [ϕ
(m)
t (u)]cm

+ ∑
c1+...+cm=m+1−n
c1+...+mcm=m+1

(m+1;c1, ...,cm,1)
[
ϕ
′
t (u)

]c1 . . . [ϕ
(m)
t (u)]cmϕ

(m+1)
t (u)
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+ k ϕ
k−1
t (u) (m+1;0, ...,0,1)ϕ(m+1)

t (u)

=
m

∑
n=m−k+1

k! ϕ
k−m+n−1
t (u)

(k−m+n−1)! ∑
c1+...+cm+1=m+1−n

c1+...+(m+1)cm+1=m+1

(m+1;c1, ...,cm+1)
[
ϕ
′
t (u)

]c1 . . . [ϕ
(m+1)
t (u)]cm+1 ,

where we used the following equalities:

(m;c1 −1,c2, ...,cm) =
c1

m+1
(m+1;c1,c2, ...,cm,0), (C.1)

(c j +1) (m;c1, ...,c j−1,c j +1,c j+1 −1, ...,cm)

=
( j+1)c j+1

m+1
(m+1;c1, ...,cm,0), for j = 1, ...,m−1, (C.2)

(cm +1) (m;c1, ...,cm−1,cm +1) = (m+1;c1, ...,cm−1,cm,1), (C.3)

and

(m;c1 −1,c2, ...,cm)+
m−1

∑
j=1

(c j +1) (m;c1, ...,c j−1,c j +1,c j+1 −1, ...,cm)

= (m+1;c1, ...,cm,0)
[

c1 +2c2 + ...+mcm

m+1

]
= (m+1;c1, ...,cm,0). � (C.4)

C.2 Proof of formula (4.3)

Let us suppose ϕt derivable as many times as necessary and that X admits moments of all orders.

Let us prove by induction that we have (4.3):

κ
(n)
Xt

(z) =
iα0ϕ

(n)
t (z)

ϕ ′
t (0)

+
n−1

∑
j=1

an−1, j(z) ·κ( j)
Xt−1

(
α1

ϕ ′
t (0)

[ϕt(z)−1]
)

+

[
α1ϕ ′

t (z)
ϕ ′

t (0)

]n

·κ(n)
Xt−1

(
α1

ϕ ′
t (0)

[ϕt(z)−1]
)
, n ≥ 2,

where the coefficients an−1, j are given by

an−1, j(z) =
[

α1

ϕ ′
t (0)

] j

∑
k1+...+kn= j

k1+2k2+...+nkn=n
kr∈N0

(n;k1, ...,kn)
[
ϕ
′
t (z)
]k1 ...[ϕ

(n)
t (z)]kn , j ≥ 1.

Taking derivatives on both sides of the expression (4.2), one obtains

κ
′′
Xt
(z) =

iα0ϕ ′′
t (z)

ϕ ′
t (0)

+
α1ϕ ′′

t (z)
ϕ ′

t (0)
·κ ′

Xt−1

(
α1

ϕ ′
t (0)

[ϕt(z)−1]
)
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+

[
α1ϕ ′

t (z)
ϕ ′

t (0)

]2

·κ ′′
Xt−1

(
α1

ϕ ′
t (0)

[ϕt(z)−1]
)
,

so, (4.3) is valid for n = 2 since a11(z) =
α1ϕ ′′

t (z)
ϕ ′

t (0)
. Now, we assume that formula (4.3) is true for an

arbitrarily fixed integer n, n ≥ 2. Considering that an−1,0(z) = 0, it then follows that

κ
(n+1)
Xt

(z) =
d
dz

(
iα0ϕ

(n)
t (z)

ϕ ′
t (0)

+
n−1

∑
j=1

an−1, j(z) ·κ( j)
Xt−1

(
α1

ϕ ′
t (0)

[ϕt(z)−1]
)

+

[
α1ϕ ′

t (z)
ϕ ′

t (0)

]n

·κ(n)
Xt−1

(
α1

ϕ ′
t (0)

[ϕt(z)−1]
))

=
iα0ϕ

(n+1)
t (z)

ϕ ′
t (0)

+
n

∑
j=1

an−1, j−1(z)
α1ϕ ′

t (z)
ϕ ′

t (0)
·κ( j)

Xt−1

(
α1

ϕ ′
t (0)

[ϕt(z)−1]
)

+
n−1

∑
j=1

(
α1

ϕ ′
t (0)

) j

 ∑
k1+...+kn= j

k1+...+nkn=n

k1(n;k1, ...,kn)
[
ϕ
′
t (z)
]k1−1 [

ϕ
′′
t (z)

]k2+1
. . . [ϕ

(n)
t (z)]kn

+ ∑
k1+...+kn= j

k1+...+nkn=n

k2(n;k1, ...,kn)
[
ϕ
′
t (z)
]k1
[
ϕ
′′
t (z)

]k2−1 [
ϕ
′′′
t (z)

]k3+1
. . . [ϕ

(n)
t (z)]kn + . . .

+ ∑
k1+...+kn= j

k1+...+nkn=n

kn(n;k1, ...,kn)
[
ϕ
′
t (z)
]k1 . . . [ϕ

(n)
t (z)]kn−1

ϕ
(n+1)
t (z)

 ·κ( j)
Xt−1

(
α1

ϕ ′
t (0)

[ϕt(z)−1]
)

+ n
(

α1

ϕ ′
t (0)

)n [
ϕ
′
t (z)
]n−1

ϕ
′′
t (z) ·κ

(n)
Xt−1

(
α1

ϕ ′
t (0)

[ϕt(z)−1]
)

+

[
α1ϕ ′

t (z)
ϕ ′

t (0)

]n+1

·κ(n+1)
Xt−1

(
α1

ϕ ′
t (0)

[ϕt(z)−1]
)

=
iα0ϕ

(n+1)
t (z)

ϕ ′
t (0)

+
n−1

∑
j=1

(
α1

ϕ ′
t (0)

) j

 ∑
c1+...+cn= j

c1+...+ncn=n+1

c1

n+1
(n+1;c1, ...,cn,0)

[
ϕ
′
t (z)
]c1 . . . [ϕ

(n)
t (z)]cn

+ ∑
c1+...+cn= j

c1+...+ncn=n+1

2c2

n+1
(n+1;c1, ...,cn,0)

[
ϕ
′
t (z)
]c1 . . . [ϕ

(n)
t (z)]cn + . . .

+ ∑
c1+...+cn= j

c1+...+ncn=n+1

ncn

n+1
(n+1;c1, ...,cn,0)

[
ϕ
′
t (z)
]c1 . . . [ϕ

(n)
t (z)]cn

+ ∑
c1+...+cn+1= j
c1+...+ncn=n

(n+1;c1, ...,cn,1)
[
ϕ
′
t (z)
]c1 . . . [ϕ

(n)
t (z)]cnϕ

(n+1)
t (z)

 ·κ( j)
Xt−1

(
α1

ϕ ′
t (0)

[ϕt(z)−1]
)

+

(
α1

ϕ ′
t (0)

)n

(n+1;n−1,1,0, ...,0)
[
ϕ
′
t (z)
]n−1

ϕ
′′
t (z) ·κ

(n)
Xt−1

(
α1

ϕ ′
t (0)

[ϕt(z)−1]
)

+

[
α1ϕ ′

t (z)
ϕ ′

t (0)

]n+1

·κ(n+1)
Xt−1

(
α1

ϕ ′
t (0)

[ϕt(z)−1]
)
, (C.5)
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since we have

an−1, j−1
α1ϕ ′

t (z)
ϕ ′

t (0)
=

(
α1

ϕ ′
t (0)

) j

∑
k1+...+kn= j−1
k1+...+nkn=n

(n;k1, ...,kn)
[
ϕ
′
t (z)
]k1+1

...[ϕ
(n)
t (z)]kn

=

(
α1

ϕ ′
t (0)

) j

∑
c1+...+cn= j

c1+...+ncn=n+1

(n;c1 −1,c2, ...,cn)
[
ϕ
′
t (z)
]c1 ...[ϕ

(n)
t (z)]cn

=

(
α1

ϕ ′
t (0)

) j

∑
c1+...+cn= j

c1+...+ncn=n+1

c1

n+1
(n+1;c1, ...,cn,0)

[
ϕ
′
t (z)
]c1 ...[ϕ

(n)
t (z)]cn , from (C.1),

an−1,n−1
α1ϕ ′

t (z)
ϕ ′

t (0)
+n
(

α1

ϕ ′
t (0)

)n

[ϕ ′
t (z)]

n−1
ϕ
′′
t (z) =

[
n(n−1)

2
+n
]
[ϕ ′

t (z)]
n−1

ϕ
′′
t (z)

= (n+1;n−1,1,0, . . . ,0),

∑
k1+...+kn= j

k1+...+nkn=n

k1(n;k1, ...,kn)
[
ϕ
′
t (z)
]k1−1 [

ϕ
′′
t (z)

]k2+1
. . . [ϕ

(n)
t (z)]kn

= ∑
c1+...+cn= j

c1+...+ncn=n+1

(c1 +1)(n;c1 +1,c2 −1,c3, ...,cn)
[
ϕ
′
t (z)
]c1
[
ϕ
′′
t (z)

]c2 . . . [ϕ
(n)
t (z)]cn

= ∑
c1+...+cn= j

c1+...+ncn=n+1

2c2

n+1
(n+1;c1, ...,cn,0)

[
ϕ
′
t (z)
]c1
[
ϕ
′′
t (z)

]c2 . . . [ϕ
(n)
t (z)]cn , from (C.2),

and

∑
k1+...+kn= j

k1+...+nkn=n

kn(n;k1, ...,kn)
[
ϕ
′
t (z)
]k1 . . . [ϕ

(n)
t (z)]kn−1

ϕ
(n+1)
t (z)

= ∑
c1+...+cn+1= j

c1+...+ncn+(n+1)=n+1

(cn +1)(n;c1, ...,cn−1,cn +1)
[
ϕ
′
t (z)
]c1 . . . [ϕ

(n)
t (z)]cnϕ

(n+1)
t (z)

= ∑
c1+...+cn+1= j

c1+...+ncn+(n+1)=n+1

(n+1;c1, ...,cn,1)
[
ϕ
′
t (z)
]c1 . . . [ϕ

(n)
t (z)]cnϕ

(n+1)
t (z), from (C.3).

Thus, from (C.4), we can finally conclude that equality (C.5) is equivalent to

κ
(n+1)
Xt

(z) =
iα0ϕ

(n+1)
t (z)

ϕ ′
t (0)

+

[
α1ϕ ′

t (z)
ϕ ′

t (0)

]n+1

·κ(n+1)
Xt−1

(
α1

ϕ ′
t (0)

[ϕt(z)−1]
)
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+
n

∑
j=1

(
α1

ϕ ′
t (0)

) j

∑
c1+...+cn+1= j

c1+...+(n+1)cn+1=n+1

(n+1;c1, ...,cn+1)
[
ϕ
′
t (z)
]c1 . . . [ϕ

(n+1)
t (z)]cn+1

× κ
( j)
Xt−1

(
α1

ϕ ′
t (0)

[ϕt(z)−1]
)
. �

C.3 Proof of Theorem 4.2

Let us recall that we have to show that if X is a first-order stationary process following a CP-
INARCH(1) model such that H4 is satisfied, then

(a) For any k ≥ 0, we have

µ(k) = f2(v0α
k
1 +α0(1+α1)).

(b) For any l ≥ k ≥ 0, we have

µ(k, l) = [d0(1−α
2
1 )− v2

0(1+α1 −2α
2
1 )] f3α

l+k
1

+
v0(α0 + v0)

1−α1
f2α

l
1 + v0 f1 f2α

l−k
1 + f1µ(k).

(c) For any m ≥ l ≥ k ≥ 0, we have

µ(k, l,m) = α
m−l
1

[{
(c0 −4v0d0 +3v3

0)+3v0(v2
0 −d0)α1 +(3v0d0 − c0)α

2
1

+(7v0d0 −6v3
0 − c0)α

3
1 +3v0(d0 −2v2

0)α
4
1 +(6v3

0 −6v0d0 + c0)α
5
1
}

f4α
2l+k
1

+
2v0 +α0

1−α1
f3
[
d0(1−α

2
1 )− v2

0(1+α1 −2α
2
1 )
]

α
2l
1

+
v0

(1−α1)(1−α2
1 )

f2
[
2v0α0 +d0(1−α1)+ v2

0(2α1 −1)
]

α
2l−k
1

+
α0 f3

1−α1

{
d0(1−α

2
1 )− v2

0(1+α1 −2α
2
1 )
}

α
2(l−k)
1 +

v0 +α0

1−α1
µ(k, l)

− f2µ(k)[α0 +(v0 +α0)α1]]+ f1µ(k, l).

Proof: Let us recall the notations presented in formula (4.6) and (4.7) and take into account the
following conditional moments:

E(Xt |X t−1) = λt = α0 +α1Xt−1,

E(X2
t |X t−1) = v0λt +λ

2
t = v0(α0 +α1Xt−1)+(α0 +α1Xt−1)

2

= α
2
1 X2

t−1 +α1(2α0 + v0)Xt−1 +α0(α0 + v0), (C.6)
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E(X3
t |X t−1) = i Φ

′′′
Xt |X t−1

(0) = d0λt +3v0λ
2
t +λ

3
t (1)

= d0(α0 +α1Xt−1)+3v0(α
2
0 +2α0α1Xt−1 +α

2
1 X2

t−1)+α
3
0

+3α
2
0 α1Xt−1 +3α0α

2
1 X2

t−1 +α
3
1 X3

t−1

= α
3
1 X3

t−1 +3α
2
1 (v0 +α0)X2

t−1 +α1(3α
2
0 +6v0α0 +d0)Xt−1

+α0(d0 +3v0α0 +α
2
0 ). (C.7)

(a) Using the fact that V (Xt) = f2 and that the autocovariance function, according to Corollary 3.2,
equals Γ(k) = αk

1 f2 we get

µ(k) = E(XtXt+k) =Cov(Xt ,Xt+k)+E(Xt)
2 = v0α

k
1 f2 +µ

2

= f2(v0α
k
1 +α0(1+α1)). (C.8)

(b) To derive an explicit expression for µ(k, l), 0 ≤ k ≤ l, we distinguish the following three cases:

Case 1: l > k. We have

µ(k, l) = E(XtXt+kXt+l) = E[XtXt+kE(Xt+l|X t+l−1)]

= α0E(XtXt+k)+α1E(XtXt+kXt+l−1)

= α0µ(k)+α1µ(k, l −1)

= α0µ(k)+α1[α0µ(k)+α1µ(k, l −2)]

= α0µ(k)(1+α1)+α
2
1 µ(k, l −2)

= . . . = α0µ(k)
l−k−1

∑
j=0

α
j

1 +α
l−k
1 µ(k,k)

= α0µ(k)
1−α

l−k
1

1−α1
+α

l−k
1 µ(k,k)

= α
l−k
1 [µ(k,k)− f1µ(k)]+ f1µ(k).

Case 2: l = k > 0. We have

µ(k,k) = E[XtE(X2
t+k|X t+k−1)]

= α
2
1 E(XtX2

t+k−1)+α1(2α0 + v0)E(XtXt+k−1)+α0(α0 + v0)E(Xt)

= α
2
1 µ(k−1,k−1)+α1(2α0 + v0)µ(k−1)+α0(α0 + v0) f1

= α
2
1 µ(k−1,k−1)+ v0(2α0 + v0) f2α

k
1 + f1[α1(2α0 + v0) f1 +α0(α0 + v0)]

= α
2
1 µ(k−1,k−1)+ v0(2α0 + v0) f2α

k
1

+ f1[α1(2α0 + v0) f1 + f1(1−α1)(α0 + v0)]

= α
2
1 µ(k−1,k−1)+ v0(2α0 + v0) f2α

k
1 + f1µ(0)(1−α

2
1 )

1We note that

Φ
′′′
Xt |X t−1

(u) =

[
i
ϕ ′′′

t (u)λt

ϕ ′
t (0)

−3
(

λt

ϕ ′
t (0)

)2
ϕ
′
t (u)ϕ

′′
t (u)− i

(
ϕ ′

t (u)λt

ϕ ′
t (0)

)3
]

exp
{

i
λt

ϕ ′
t (0)

[ϕt(u)−1]
}
, u ∈ R.
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= . . . = α
2k
1 µ(0,0)+ v0(2α0 + v0) f2

k−1

∑
j=0

α
k+ j
1 + f1µ(0)(1−α

2
1 )

k−1

∑
j=0

α
2 j
1

= α
2k
1 µ(0,0)+ v0(2α0 + v0) f2α

k
1

1−αk
1

1−α1
+ f1µ(0)

= α
2k
1

[
µ(0,0)− v0(2α0 + v0)

1−α1
f2 − f1µ(0)

]
+

v0(2α0 + v0)

1−α1
f2α

k
1 + f1µ(0).

Case 3: l = k = 0. According to the relations between the moments and the cumulants (e.g.,
formula (15.10.4) in [15, p. 186]) and Theorem 4.1, we have

µ(0,0) = E(X3
t ) = κ3 +3κ2µ +µ

3 = f3[d0(1−α
2
1 )+3v2

0α
2
1 ]+3v0 f2 f1 + f 3

1

= [d0(1−α
2
1 )+3v2

0α
2
1 ] f3 +

3α0v0

1−α1
f2 +α

2
0

1+α1

1−α1
f2

= [d0(1−α
2
1 )+3v2

0α
2
1 ] f3 +

2α0v0

1−α1
f2 +

α0(v0 +α0(1+α1))

1−α1
f2

= [d0(1−α
2
1 )+3v2

0α
2
1 ] f3 +

2α0v0

1−α1
f2 + f1µ(0),

since f1 = (1−α2
1 ) f2.

So the above formula for µ(k,k) simplifies to

µ(k,k) = α
2k
1

[
[d0(1−α

2
1 )+3v2

0α
2
1 ] f3 −

v2
0

1−α1
f2

]
+

v0(2α0 + v0)

1−α1
f2α

k
1 + f1µ(0)

= α
2k
1

[
[d0(1−α

2
1 )+3v2

0α
2
1 ] f3 −

v2
0

1−α1
f3(1−α

3
1 )

]
+

v0(2α0 + v0)

1−α1
f2α

k
1 + f1µ(0)

= α
2k
1 f3

[
d0(1−α

2
1 )− v2

0(1+α1 −2α
2
1 )
]
+

v0(2α0 + v0)

1−α1
f2α

k
1 + f1µ(0),

which also holds for k = 0. Replacing this expression in µ(k, l) above, it follows that

µ(k, l) = α
l−k
1 [µ(k,k)− f1µ(k)]+ f1µ(k)

= α
l−k
1

[
[d0(1−α

2
1 )− v2

0(1+α1 −2α
2
1 )] f3α

2k
1 +

v0(2α0 + v0)

1−α1
f2α

k
1

+ f1µ(0)− f1µ(k)]+ f1µ(k).

As

f1µ(0)− f1µ(k) = f1 f2(v0 +α0(1+α1))− f1[v0α
k
1 +α0(1+α1)] f2

= v0 f1 f2 −
v0α0

1−α1
f2α

k
1 ,

we finally obtain, for any 0 ≤ k ≤ l,

µ(k, l) = α
l−k
1

[
[d0(1−α

2
1 )− v2

0(1+α1 −2α
2
1 )] f3α

2k
1 +

v0(α0 + v0)

1−α1
f2α

k
1 + v0 f1 f2

]
+ f1µ(k)

= [d0(1−α
2
1 )− v2

0(1+α1 −2α
2
1 )] f3α

l+k
1 +

v0(α0 + v0)

1−α1
f2α

l
1 + v0 f1 f2α

l−k
1 + f1µ(k).
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(c) In what concerns the fourth-order moments µ(k, l,m) with 0 ≤ k ≤ l ≤ m, we proceed in a similar
way as above and distinguish the following four cases:

Case 1: m > l. As above we have

µ(k, l,m) = E(XtXt+kXt+lXt+m) = E[XtXt+kXt+lE(Xt+m|X t+m−1)]

= α0E(XtXt+kXt+l)+α1E(XtXt+kXt+lXt+m−1)

= α0µ(k, l)+α1µ(k, l,m−1)

= . . . = α
m−l
1 [µ(k, l, l)− f1µ(k, l)]+ f1µ(k, l).

Case 2: m = l > k. For this case, using formula (C.6), we obtain

µ(k, l, l) = E[XtXt+kE(X2
t+l|X t+l−1)]

= α
2
1 µ(k, l −1, l −1)+α1(v0 +2α0)µ(k, l −1)+α0(v0 +α0)µ(k)

= α
2
1 µ(k, l −1, l −1)+α0(v0 +α0)µ(k)

+α1(v0 +2α0)
{
[d0(1−α

2
1 )− v2

0(1+α1 −2α
2
1 )] f3α

l−1+k
1

+
v0(α0 + v0)

1−α1
f2α

l−1
1 + v0 f1 f2α

l−1−k
1 + f1µ(k)

}
,

by replacing µ(k, l −1). So,

µ(k, l, l) = α
2
1 µ(k, l −1, l −1)+ f1µ(k) [α1(v0 +2α0)+(1−α1)(v0 +α0)]

+α
l
1(v0 +2α0)

{
[d0(1−α

2
1 )− v2

0(1+α1 −2α
2
1 )] f3α

k
1

+
v0(α0 + v0)

1−α1
f2 + v0 f1 f2α

−k
1

}
= . . . = α

2(l−k)
1 µ(k,k,k)+ f1µ(k)(v0 +α0(1+α1))

l−k−1

∑
j=0

α
2 j
1

+(v0 +2α0)
{
[d0(1−α

2
1 )− v2

0(1+α1 −2α
2
1 )] f3α

k
1

+
v0(α0 + v0)

1−α1
f2 + v0 f1 f2α

−k
1

} l−k−1

∑
j=0

α
l+ j
1

= α
2(l−k)
1 µ(k,k,k)+µ(k)(v0 +α0(1+α1)) f2(1−α

2(l−k)
1 )

+
v0 +2α0

1−α1

{
[d0(1−α

2
1 )− v2

0(1+α1 −2α
2
1 )] f3α

k
1

+
v0(α0 + v0)

1−α1
f2 + v0 f1 f2α

−k
1

}
(α l

1 −α
2l−k
1 ).

Since µ(0) = (v0 +α0(1+α1)) f2 and replacing µ(k), we get

µ(k, l, l) = α
2(l−k)
1 µ(k,k,k)+µ(k)µ(0)− f2(v0α

k
1 +α0(1+α1))µ(0)α

2(l−k)
1

+
v0 +2α0

1−α1

{
[d0(1−α

2
1 )− v2

0(1+α1 −2α
2
1 )] f3α

l+k
1

+
v0(α0 + v0)

1−α1
f2α

l
1 + v0 f1 f2α

l−k
1

}
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−v0 +2α0

1−α1

[
d0(1−α

2
1 )− v2

0(1+α1 −2α
2
1 )
]

f3α
2l
1

−(v0 +2α0)v0(v0 +α0)

(1−α1)2 f2α
2l−k
1 − v0(v0 +2α0)

1−α1
f1 f2α

2(l−k)
1

= α
2(l−k)
1 µ(k,k,k)+µ(k)µ(0)

− f2v0

[
f2(v0 +α0(1+α1))+

(v0 +2α0)(v0 +α0)

(1−α1)2

]
α

2l−k
1

− f1

[
f1µ(0)+

v0(v0 +2α0)

1−α1
f2

]
α

2(l−k)
1 +

v0 +2α0

1−α1
[µ(k, l)− f1µ(k)]

−v0 +2α0

1−α1

[
d0(1−α

2
1 )− v2

0(1+α1 −2α
2
1 )
]

f3α
2l
1 .

So, replacing µ(0), recalling µ(0,0) and taking into account that f1
1−α1

= (1+α1) f2, we get

µ(k, l, l) = α
2(l−k)
1 µ(k,k,k)+µ(k) f2[v0 +α0(1+α1)]

− f2v0

(1−α1)(1−α2
1 )

[
v2

0(1+α1)+ v0α0(4+3α1)+3α
2
0 (1+α1)

]
α

2l−k
1

− f1

{
µ(0,0)− [d0(1−α

2
1 )+3v2

0α
2
1 ] f3 +

v2
0 f2

1−α1

}
α

2(l−k)
1

+
v0 +2α0

1−α1
µ(k, l)− (v0 +2α0)(1+α1) f2µ(k)

−v0 +2α0

1−α1

[
d0(1−α

2
1 )− v2

0(1+α1 −2α
2
1 )
]

f3α
2l
1

= α
2(l−k)
1 µ(k,k,k)−µ(k) f2[α0 +(v0 +α0)α1]

− f2v0

(1−α1)(1−α2
1 )

[
v2

0(1+α1)+ v0α0(4+3α1)+3α
2
0 (1+α1)

]
α

2l−k
1

− f1

{
µ(0,0)− [d0(1−α

2
1 )+3v2

0α
2
1 ] f3 +

v2
0 f2

1−α1

}
α

2(l−k)
1

+
v0 +2α0

1−α1
µ(k, l)− v0 +2α0

1−α1

[
d0(1−α

2
1 )− v2

0(1+α1 −2α
2
1 )
]

f3α
2l
1 . (C.9)

Case 3: m = l = k > 0. From formula (C.7) we have

µ(k,k,k) = E[XtE(X3
t+k|X t+k−1)]

= α
3
1 µ(k−1,k−1,k−1)+3α

2
1 (v0 +α0)µ(k−1,k−1)

+α1(d0 +6v0α0 +3α
2
0 )µ(k−1)+α0(d0 +3v0α0 +α

2
0 )µ.

Replacing µ(k−1,k−1) and thereafter µ(k−1), we deduce

µ(k,k,k) = α
3
1 µ(k−1,k−1,k−1)

+3α
2
1 (v0 +α0)

{
[d0(1−α

2
1 )− v2

0(1+α1 −2α
2
1 )] f3α

2k−2
1

+
v0(α0 + v0)

1−α1
f2α

k−1
1 + v0 f1 f2 + f1µ(k−1)

}
+α1(d0 +6v0α0 +3α

2
0 )µ(k−1)+α0(d0 +3v0α0 +α

2
0 )µ

= α
3
1 µ(k−1,k−1,k−1)
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+3(v0 +α0)
[
d0(1−α

2
1 )− v2

0(1+α1 −2α
2
1 )
]

f3α
2k
1 +3α1

v0(v0 +α0)
2

1−α1
f2α

k
1

+3α
2
1 (v0 +α0)

{
v0 f1 f2 + f1 f2(v0α

k−1
1 +α0(1+α1))

}
+(d0 +6v0α0 +3α

2
0 ) f2

[
v0α

k
1 +α0α1(1+α1)

]
+α0(d0 +3v0α0 +α

2
0 ) f1

= α
3
1 µ(k−1,k−1,k−1)

+3(v0 +α0)
[
d0(1−α

2
1 )− v2

0(1+α1 −2α
2
1 )
]

f3α
2k
1

+
v0 f2

1−α1

[
3α1(v0 +α0)

2 +3α1(v0 +α0)α0 +(d0 +6v0α0 +3α
2
0 )(1−α1)

]
α

k
1

+ f1 f2
{

3α
2
1 (v0 +α0)(v0 +α0(1+α1))+(d0 +6v0α0 +3α

2
0 )α1(1−α1)(1+α1)

+(d0 +3v0α0 +α
2
0 )(1−α1)(1−α

2
1 )
}
.

Making some calculations and then recalling the expression of µ(0,0), we obtain

µ(k,k,k) = α
3
1 µ(k−1,k−1,k−1)

+3(v0 +α0)
[
d0(1−α

2
1 )− v2

0(1+α1 −2α
2
1 )
]

f3α
2k
1

+
v0 f2

1−α1

[
3α

2
0 (1+α1)+3v0α0(2+α1)+d0(1−α1)+3v2

0α1
]

α
k
1

+ f1 f2

{
d0(1−α

2
1 )+3v2

0α
2
1 +

3v0α0

1−α1
(1−α

3
1 )+

α2
0 (1+α1)

1−α1
(1−α

3
1 )

}
= α

3
1 µ(k−1,k−1,k−1)

+3(v0 +α0)
[
d0(1−α

2
1 )− v2

0(1+α1 −2α
2
1 )
]

f3α
2k
1

+
v0 f2

1−α1

[
3α

2
0 (1+α1)+3v0α0(2+α1)+d0(1−α1)+3v2

0α1
]

α
k
1

+ f1(1−α
3
1 )µ(0,0).

Replacing successively the expression of µ(k− j,k− j,k− j), j = 1, ...,k−1, it remains

µ(k,k,k) = α
3k
1 µ(0,0,0)+3(v0 +α0)

[
d0(1−α

2
1 )− v2

0(1+α1 −2α
2
1 )
]

f3

k−1

∑
j=0

α
2k+ j
1

+
v0 f2

1−α1

[
3α

2
0 (1+α1)+3v0α0(2+α1)+d0(1−α1)+3v2

0α1
] k−1

∑
j=0

α
k+2 j
1

+ f1(1−α
3
1 )µ(0,0)

k−1

∑
j=0

α
3 j
1

= α
3k
1

{
µ(0,0,0)−3(v0 +α0)

[
d0(1−α

2
1 )− v2

0(1+α1 −2α
2
1 )
] f3

1−α1

− v0 f2

(1−α1)(1−α2
1 )

[
3α

2
0 (1+α1)+3v0α0(2+α1)+d0(1−α1)+3v2

0α1
]

− f1µ(0,0)}+
3(v0 +α0) f3α2k

1
1−α1

[
d0(1−α

2
1 )− v2

0(1+α1 −2α
2
1 )
]

+
v0 f2αk

1

(1−α1)(1−α2
1 )

[
3α

2
0 (1+α1)+3v0α0(2+α1)+d0(1−α1)+3v2

0α1
]

+ f1µ(0,0). (C.10)
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Let us now take into account that replacing µ(0,0), we obtain

3(v0 +α0)
f3

1−α1

[
d0(1−α

2
1 )− v2

0(1+α1 −2α
2
1 )
]

+
v0 f2

(1−α1)(1−α2
1 )

[
3α

2
0 (1+α1)+3v0α0(2+α1)+d0(1−α1)+3v2

0α1
]

+ f1µ(0,0)

= 3(v0 +α0)
f3

1−α1

[
d0(1−α

2
1 )− v2

0(1+α1 −2α
2
1 )
]

+
v0 f2

(1−α1)(1−α2
1 )

[
3α

2
0 (1+α1)+3v0α0(2+α1)+d0(1−α1)+3v2

0α1
]

+ f1 f3[d0(1−α
2
1 )+3v2

0α
2
1 ]+ f1 f2

2v0α0

1−α1
+ f 2

1 f2(v0 +α0(1+α1))

which, highlighting f3
1−α2

1
and noting that f2 = (1−α3

1 ) f3, equals

f3

1−α2
1

{
3(v0 +α0)(1+α1)[d0(1−α

2
1 )− v2

0(1+α1 −2α
2
1 )]

+
1−α3

1
1−α1

[3v0α
2
0 (1+α1)+3v2

0α0(2+α1)+ v0d0(1−α1)+3v3
0α1]

+α0(1+α1)[d0(1−α
2
1 )+3v2

0α
2
1 ]+ (1+α1)

1−α3
1

1−α1
[2v0α

2
0 + v0α

2
0 +α

3
0 (1+α1)]

}
=

f3

1−α2
1

{
4v0d0 −3v3

0 +3v0(d0 − v2
0)α1 +3v0(2v2

0 −d0)α
2
1 + v0(9v2

0 −4d0)α
3
1

+
(
3v2

0 +4d0 +(3v2
0 +4d0)α1 +(15v2

0 −4d0)α
2
1 +(12v2

0 −4d0)α
3
1
)

α0

+6v0α
2
0 (1+α1)(1+α1 +α

2
1 )+α

3
0 (1+α1)

2(1+α1 +α
2
1 )
}

= f4
{

4v0d0 −3v3
0 +3v0(d0 − v2

0)α1 +3v0(v2
0 +d0)α

2
1

+v0(6v2
0 −d0)α

3
1 +3v0(2v2

0 −d0)α
4
1 + v0(9v2

0 −4d0)α
5
1

+(1+α
2
1 )
(
3v2

0 +4d0 +(3v2
0 +4d0)α1 +(15v2

0 −4d0)α
2
1 +(12v2

0 −4d0)α
3
1
)

α0

+6v0α
2
0 (1+α

2
1 )(1+α1)(1+α1 +α

2
1 )+α

3
0 (1+α

2
1 )(1+α1)

2(1+α1 +α
2
1 )
}
,

since f3
1−α2

1
= f4(1+α2

1 ) and developing the calculations.

So, replacing the expression above in the coefficient of α3k
1 in formula (C.10), we finally get

µ(k,k,k) =
{

µ(0,0,0)− f4
[
4v0d0 −3v3

0 +3v0(d0 − v2
0)α1 + v0(3v2

0 +d0)α
2
1

+v0(6v2
0 −d0)α

3
1 +3v0(2v2

0 −d0)α
4
1 + v0(9v2

0 −4d0)α
5
1

+α0(1+α
2
1 )
[
3v2

0 +4d0 +(3v2
0 +4d0)α1 +(15v2

0 −4d0)α
2
1 +(12v2

0 −4d0)α
3
1
]

+6v0α
2
0 (1+α

2
1 )(1+α1)(1+α1 +α

2
1 )

+α
3
0 (1+α

2
1 )(1+α1)

2(1+α1 +α
2
1 )
]}

α
3k
1

+3
v0 +α0

1−α1
f3
[
d0(1−α

2
1 )− v2

0(1+α1 −2α
2
1 )
]

α
2k
1 + f1µ(0,0)

+
v0

(1−α1)(1−α2
1 )

f2
[
3α

2
0 (1+α1)+3v0α0(2+α1)

+d0(1−α1)+3v2
0α1
]

α
k
1 . (C.11)
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Case 4: m = l = k = 0. Once again, according to the relations between the moments and the
cumulants (e.g., formula (15.10.4) in [15, p. 186]) and Theorem 4.1, we obtain

µ(0,0,0) = E(X4
t ) = κ4 +3κ

2
2 +6κ2µ

2 +4κ3µ +µ
4

= f4
{

c0(1−α
2
1 )(1−α

3
1 )+ v3

0(3α
2
1 +15α

5
1 )+ v0d0(4α

2
1 +6α

3
1 −10α

5
1 )
}

+3v2
0 f 2

2 +6v0 f2 f 2
1 +4 f3[d0(1−α

2
1 )+3v2

0α
2
1 ] f1 + f 4

1

= f4
{

c0(1−α
2
1 )(1−α

3
1 )+ v3

0(3α
2
1 +15α

5
1 )+ v0d0(4α

2
1 +6α

3
1 −10α

5
1 )

+3v2
0α0

(1−α4
1 )(1−α3

1 )

(1−α1)(1−α2
1 )

+6v0α
2
0
(1−α4

1 )(1−α3
1 )

(1−α1)2

+4α0
(1−α4

1 )

1−α1
[d0(1−α

2
1 )+3v2

0α
2
1 ]+α

3
0
(1−α4

1 )(1−α3
1 )(1−α2

1 )

(1−α1)3

}
= f4

{
c0(1−α

2
1 )(1−α

3
1 )+ v3

0(3α
2
1 +15α

5
1 )+ v0d0(4α

2
1 +6α

3
1 −10α

5
1 )

+3v2
0α0(1+α

2
1 )(1+α1 +α

2
1 )+6v0α

2
0 (1+α1)(1+α

2
1 )(1+α1 +α

2
1 )

+4α0(1+α1)(1+α
2
1 )[d0(1−α

2
1 )+3v2

0α
2
1 ]+α

3
0 (1+α1)

2(1+α
2
1 )(1+α1 +α

2
1 )
}

= f4
{

c0 +(3v3
0 +4v0d0 − c0)α

2
1 +(6v0d0 − c0)α

3
1 +(15v3

0 −10v0d0 + c0)α
5
1

+α0(1+α
2
1 )
[
3v2

0 +4d0 +(3v2
0 +4d0)α1 +(15v2

0 −4d0)α
2
1 +(12v2

0 −4d0)α
3
1
]

+6v0α
2
0 (1+α1)(1+α

2
1 )(1+α1 +α

2
1 )+α

3
0 (1+α1)

2(1+α
2
1 )(1+α1 +α

2
1 )
}
.

So the formula (C.11) for µ(k,k,k) studied in case 3 simplifies to

µ(k,k,k) = f4
{

c0 −4v0d0 +3v3
0 +3v0(v2

0 −d0)α1 +(3v0d0 − c0)α
2
1

+(7v0d0 −6v3
0 − c0)α

3
1 +3v0(d0 −2v2

0)α
4
1 +(6v3

0 −6v0d0 + c0)α
5
1
}

α
3k
1

+3
v0 +α0

1−α1
f3
[
d0(1−α

2
1 )− v2

0(1+α1 −2α
2
1 )
]

α
2k
1 + f1µ(0,0)

+
v0

(1−α1)(1−α2
1 )

f2
[
3α

2
0 (1+α1)+3v0α0(2+α1)+d0(1−α1)+3v2

0α1
]

α
k
1 .

Inserting into the formula (C.9) for µ(k, l, l) stated in case 2, we obtain

µ(k, l, l) = f4
{

c0 −4v0d0 +3v3
0 +3v0(v2

0 −d0)α1 +(3v0d0 − c0)α
2
1

+(7v0d0 −6v3
0 − c0)α

3
1 +3v0(d0 −2v2

0)α
4
1 +(6v3

0 −6v0d0 + c0)α
5
1
}

α
2l+k
1

+
3v0 +3α0 − v0 −2α0

1−α1
f3
[
d0(1−α

2
1 )− v2

0(1+α1 −2α
2
1 )
]

α
2l
1

+ f1

{
µ(0,0)−µ(0,0)−

v2
0 f2

1−α1
+[d0(1−α

2
1 )+3v2

0α
2
1 ] f3

}
α

2(l−k)
1

+
v0

(1−α1)(1−α2
1 )

f2
[
3α

2
0 (1+α1)+3v0α0(2+α1)+d0(1−α1)+3v2

0α1

−v2
0(1+α1)− v0α0(4+3α1)−3α

2
0 (1+α1)

]
α

2l−k
1

+
v0 +2α0

1−α1
µ(k, l)− f2µ(k)[α0 +(v0 +α0)α1]

= f4
{

c0 −4v0d0 +3v3
0 +3v0(v2

0 −d0)α1 +(3v0d0 − c0)α
2
1

+(7v0d0 −6v3
0 − c0)α

3
1 +3v0(d0 −2v2

0)α
4
1 +(6v3

0 −6v0d0 + c0)α
5
1
}

α
2l+k
1



136 Auxiliary Results

+
2v0 +α0

1−α1
f3
[
d0(1−α

2
1 )− v2

0(1+α1 −2α
2
1 )
]

α
2l
1

+

{
α0 f3

1−α1
[d0(1−α

2
1 )− v2

0(1+α1 −2α
2
1 )]

}
α

2(l−k)
1

+
v0

(1−α1)(1−α2
1 )

f2
[
2v0α0 +d0(1−α1)+ v2

0(2α1 −1)
]

α
2l−k
1

+
v0 +2α0

1−α1
µ(k, l)− f2µ(k)[α0 +(v0 +α0)α1].

So it follows that we have

µ(k, l,m) = α
m−l
1 [µ(k, l, l)− f1µ(k, l)]+ f1µ(k, l)

= α
m−l
1

[
f4
{

c0 −4v0d0 +3v3
0 +3v0(v2

0 −d0)α1 +(3v0d0 − c0)α
2
1

+(7v0d0 −6v3
0 − c0)α

3
1 +3v0(d0 −2v2

0)α
4
1 +(6v3

0 −6v0d0 + c0)α
5
1
}

α
2l+k
1

+
2v0 +α0

1−α1
f3
[
d0(1−α

2
1 )− v2

0(1+α1 −2α
2
1 )
]

α
2l
1

+

{
α0 f3

1−α1
[d0(1−α

2
1 )− v2

0(1+α1 −2α
2
1 )]

}
α

2(l−k)
1

+
v0

(1−α1)(1−α2
1 )

f2
[
2v0α0 +d0(1−α1)+ v2

0(2α1 −1)
]

α
2l−k
1

+
v0 +α0

1−α1
µ(k, l)− f2µ(k)[α0 +(v0 +α0)α1]

]
+ f1µ(k, l),

which holds for all 0 ≤ k ≤ l ≤ m. �

C.4 Proof of Corollary 4.2

We recall that we have to prove that if X is a first-order stationary process following a CP-INARCH(1)
model such that H4 is satisfied, then

(a) For any s ≥ 0, we have

µ̃(s) = κ(s) = v0α
s
1 f2.

(b) For any l ≥ s ≥ 0, we have

µ̃(s, l) = κ(s, l)

= f3α
l
1[v

2
0(1+α1 +α

2
1 )−{v2

0(1+α1 −2α
2
1 )−d0(1−α

2
1 )}α

s
1].

(c) For any m ≥ l ≥ s ≥ 0, we have

κ(s, l,m) = α
m
1 f4

[{
c0 +3v3

0 −4v0d0 +3v0(v2
0 −d0)α1 +(3α0d0 − c0)α

2
1

+(7v0d0 −6v3
0 − c0)α

3
1 +3v0(d0 −2v2

0)α
4
1 +(6v3

0 −6v0d0 + c0)α
5
1
}

α
l+s
1

+v0(1+α1 +α
2
1 +α

3
1 )[d0(1−α

2
1 )− v2

0(1+α1 −2α
2
1 )](2α

l
1 +α

s
1)
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+v0(1+α1 +α
2
1 )(1+α

2
1 )[(1+α1)v2

0 +(d0(1−α1)+ v2
0(2α1 −1))α l−s

1 ]
]
,

µ̃(s, l,m) = κ(s, l,m)+ v2
0 f 2

2 α
m−l+s
1 +2v2

0 f 2
2 α

m+l−s
1 .

Proof:

(a) From (4.11) and (4.8) we have, for any s ≥ 0,

µ̃(s) = κ(s) = Cov(Xt ,Xt+s) = v0α
s
1 f2.

(b) From (4.12), (4.9) and using the expressions stated in Theorem 4.2, the third-order central
moment and cumulant of X are given by

µ̃(s, l) = κ(s, l)

= [d0(1−α
2
1 )− v2

0(1+α1 −2α
2
1 )] f3α

l+s
1 +

v0(α0 + v0)

1−α1
f2α

l
1

+v0 f1 f2α
l−s
1 + f1µ(s)− f1µ(s)

− f1[ f2(v0α
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1 +α0(1+α1))+ f2(v0α

l
1 +α0(1+α1))−2 f 2

1 ]

= [d0(1−α
2
1 )− v2

0(1+α1 −2α
2
1 )] f3α
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1 +

v0(α0 + v0)

1−α1
f2α

l
1

+v0 f1 f2α
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1 − f1 f2v0(α
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1 +α

l
1)

= [d0(1−α
2
1 )− v2

0(1+α1 −2α
2
1 )] f3α

l+s
1 +

v2
0 f2

1−α1
α

l
1

= f3α
l
1[v

2
0(1+α1 +α

2
1 )−{v2

0(1+α1 −2α
2
1 )−d0(1−α

2
1 )}α

s
1],

for l ≥ s ≥ 0.

(c) In what concerns the fourth-order cumulant we have from (4.10) and the expressions stated in
Theorem 4.2, for m ≥ l ≥ s ≥ 0,

κ(s, l,m) = α
m−l
1α
m−l
1α
m−l
1

[
α

2l+s
1 f4

{
c0 −4v0d0 +3v3

0 +3v0(v2
0 −d0)α1 +(3v0d0 − c0)α

2
1

+(7v0d0 −6v3
0 − c0)α

3
1 +3v0(d0 −2v2

0)α
4
1 +(6v3
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5
1
}

+
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f3
[
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2
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0(1+α1 −2α
2
1 )
]

α
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+

{
α0 f3
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2
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2
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}
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{
α0 f3

1−α1
[d0(1−α

2
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2
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1+

{
α0 f3

1−α1
[d0(1−α

2
1 )− v2

0(1+α1 −2α
2
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}
α
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1

+
v0

(1−α1)(1−α2
1 )

f2
[
2v0α0 +d0(1−α1)+ v2

0(2α1 −1)
]

α
2l−s
1

+
v0 +α0

1−α1
µ(s, l)− f2µ(s)[α0 +(v0 +α0)α1]

]
+ f1µ(s, l)− f1µ(s, l)+ f1µ(s, l)− f1µ(s, l)+ f1µ(s, l)− f1µ(s, l)

− f1− f1− f1

(
[d0(1−α

2
1 )− v2

0(1+α1 −2α
2
1 )] f3α

m+l−2s
1[d0(1−α

2
1 )− v2

0(1+α1 −2α
2
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+v0 f1 f2α
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,

where we highlight, using bold, expressions whose sum equals zero.

So, taking into account that
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+ f 2
1 f2(v0α
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we obtain
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As the sum of the expressions in bold equals 0 and replacing µ(s, l), we obtain
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The sum of the expressions in bold equals 0 and then we conclude
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for any m ≥ l ≥ s ≥ 0.

Finally, the fourth-order central moment of X , using the expression (4.13), is given by
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1 . �



Appendix D

Programs

In this appendix we summarize the EViews and the MATLAB programs developed to obtain the
trajectories of the particular ZICP-INGARCH(p,q) models of the Sections 2.3 and 5.2, the stationarity
regions of the Chapters 2 and 5, and the tables and confidence regions of the Section 4.2.

D.1 Trajectories of Sections 2.3 and 5.2

The programs of this section are developed in EViews code. Let us note that after generating each
trajectory with 1100 elements, the first 100 observations were discarded to eliminate the effect of
choosing the values of the initial observations.

To simulate a particular realization from the CP-INGARCH model we use the representation (2.5)
stated in Section 2.3. Thus, the main idea of these programs is, firstly, to generate a scalar N that
follows a Poisson law and then generate N scalars following the conditional compounding distribution.

To generate the INGARCH(1,1) model of Figure 2.3:

smpl @first @last
series x=100.0
smpl @first @last
series lambda=100.0
for !i = 2 to 1100

lambda(!i)=10.0+0.4*x(!i-1)+0.5*lambda(!i-1)
x(!i)=@rpoisson(lambda(!i))

next

To generate the NTA-INGARCH(1,1) model of Figure 2.4:

scalar y
scalar parametro
scalar N
smpl @first @last
series x=100.0
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smpl @first @last
series lambda=100.0
scalar phi=2
for !i = 2 to 1100

lambda(!i)=10.0+0.4*x(!i-1)+0.5*lambda(!i-1)
parametro=lambda(!i)/phi
N=@rpoisson(parametro)
y=0.0
for !j = 1 to N

y=y+@rpoisson(phi)
next
x(!i)=y

next

To generate the GEOMP-INGARCH(1,1) model of Figure 2.5:

scalar y
scalar conta
scalar fcum
scalar v
scalar u
scalar p
scalar N
smpl @first @last
series x=100.0
smpl @first @last
series lambda=100.0
scalar r=2
for !i = 2 to 1100

lambda(!i)=10.0+0.4*x(!i-1)+0.5*lambda(!i-1)
p=r/(r+lambda(!i))
N=@rpoisson(r)
y=0.0
for !j=1 to N

u=@runif(0,1)
conta=0
v=p
fcum=v
while u >= fcum
v=v*(1-p)
fcum=fcum+v
conta=conta+1
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wend
y=y+conta

next
x(!i)=y

next

To generate the CP-INGARCH(1,1) model of Figure 2.6:

scalar q
scalar s
series y
series lambda
series p
series n
scalar x
y=0.0
lambda=10.0
scalar r=5000
for !t=2 to 1100

lambda(!t)=10.0+0.4*y(!t-1)+0.5*lambda(!t-1)
q=1/((!t)∧2+1)
p(!t)=lambda(!t)/(r*q)
n(!t)=@rpoisson(p(!t))
s=0
for !j=1 to n(!t)

x=@rbinom(r,q)
s=s+x

next
y(!t)=s

next

To generate the GEOMP2-INARCH(1) model of Figure 2.7:

scalar parametro
scalar u
scalar fcum
scalar conta
scalar y
scalar N
smpl @first @last
series x=100.0
smpl @first @last
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series lambda=100.0
scalar p=0.3
for !i = 2 to 1100

lambda(!i)=10.0+0.4*x(!i-1)
parametro=(p*lambda(!i))/(1-p)
N=@rpoisson(parametro)
y=0.0
for !j = 1 to N

u=@runif(0,1)
fcum=p
conta=0
while u>= fcum
conta=conta +1
fcum=fcum +p*(1-p)∧(conta)
wend
y=y+conta

next
x(!i)=y

next

To generate the GP-INARCH(1) model of Figure 2.8:

scalar parametro
scalar y
scalar u
scalar fcum
scalar conta
scalar N
smpl @first @last
series x=100.0
smpl @first @last
series lambda=100.0
scalar kappa=0.5
for !i = 2 to 1100

lambda(!i)=10.0+0.4*x(!i-1)
parametro=(1-kappa)*lambda(!i)
N=@rpoisson(parametro)
y=0.0
for !j=1 to N

u=@runif(0,1)
fcum=@exp(-kappa)
conta=1



D.1 Trajectories of Sections 2.3 and 5.2 145

while u>= fcum
conta=conta +1
fcum=fcum +((conta*kappa)∧(conta-1)*@exp(-kappa*conta))/@fact(conta)
wend
y=y+conta

next
x(!i)=y

next

To simulate a particular realization from the ZICP-INGARCH model we use the representation
(5.4) stated in Section 5.2. The main idea of the next programs is, firstly, to generate a scalar M that
follows a Bernoulli law with parameter 1−ω and then, if M̸= 0, we generate M scalars following the
conditional compound Poisson law which have the additional proportion of zeros.

To generate the ZIP-INGARCH(1,1) model of Figure 5.2:

scalar M
scalar N
smpl @first @last
series x=44.0
smpl @first @last
series lambda=44.0
scalar omega=0.2
for !i = 2 to 1100

lambda(!i)=10.0+0.4*x(!i-1)+0.5*lambda(!i-1)
M=@rbinom(1,1-omega)
if M=0 then
x(!i)=0
else
x(!i)=@rpoisson(lambda(!i))
endif

next

To generate the ZINTA-INGARCH(1,1) model of Figure 5.3:

scalar M
scalar N
scalar parametro
series x=12.0
series lambda=12.0
scalar phi=2
scalar omega=0.6
for !i = 2 to 1100
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lambda(!i)=10.0+0.4*x(!i-1)+0.5*lambda(!i-1)
M=@rbinom(1,1-omega)
if M=0 then
x(!i)=0
else
parametro=lambda(!i)/phi
N=@rpoisson(parametro)
scalar y=0.0
for !j = 1 to N

y=y+@rpoisson(phi)
next
x(!i)=y
endif

next

D.2 Stationarity regions of Sections 3.2 and 5.3

The programs of this section were developed in MATLAB code.
To get the weak stationarity regions {(αp,βp) ∈ (R+

0 )
2 : (1−ω)(1+ v1)α

2
p + 2(1−ω)αpβp +

β 2
p < 1} of a ZICP-INGARCH(p, p) model with the coefficients α1 = ...=αp−1 = β1 = ...= βp−1 = 0,

under the condition (1−ω)αp +βp < 1 and considering different values for v1, we run the program:

a) function [] = regioes_est_fraca_ZICP_INGARCH_p_p_graf()

grey1 = [0.75,0.75,0.75];
grey2 = [0.55,0.55,0.55];
grey3 = [0.4,0.4,0.4];
alphap = [0.001:0.001:1];
betap = [0.001:0.001:1];

B = regiao_est_fraca_zero_iflated_p_p(alphap, betap, 5, 0);
C = regiao_est_fraca_zero_iflated_p_p(alphap, betap, 0.5, 0);
D = regiao_est_fraca_zero_iflated_p_p(alphap, betap, 0, 0);

t1 = size(B); t2 = size(C); t3 = size(D);
i = 1:1:t1(1); j = 1:1:t2(1); k = 1:1:t3(1);
f1(i) = B(i,1); g1(i) = B(i,2);
f2(j) = C(j,1); g2(j) = C(j,2);
f3(k) = D(k,1); g3(k) = D(k,2);

plot(f3(k),g3(k), ’Color’, grey1)
hold on
plot(f2(j),g2(j), ’Color’, grey2)
hold on
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plot(f1(i),g1(i), ’Color’, grey3)
xlabel(’alpha_p’)
ylabel(’beta_p’)

where

b) function B = regiao_est_fraca_zero_iflated_p_p(alphap, betap, v1, omega)

b1 = size(alphap,2);
b2 = size(betap,2);
b = b1*b2;
A = zeros(b,2);
conta = 0;

for i=1:size(alphap,2)
for j=1:size(betap,2)

if ((1-omega)*alphap(i) + betap(j))<1
aux1 = (1-omega)*(1+v1)*alphap(i)∧2;
aux2 = 2*(1-omega)*alphap(i)*betap(j)+betap(j)∧2;
if (aux1 + aux2)<1

conta = conta + 1;
A(conta,1) = alphap(i);
A(conta,2) = betap(j);

end
end

end
end

B = zeros(conta,2);
for i=1:conta

B(i,:)=A(i,:);
end

Let us observe that when we run the program regioes_est_fraca_ZICP_INGARCH_p_p_graf we
obtain the regions presented in Figure 3.1. To get the regions on the left in Figure 5.6 we consider

B = regiao_est_fraca_zero_iflated_p_p(alphap, betap, 0, 0);
C = regiao_est_fraca_zero_iflated_p_p(alphap, betap, 0, 0.4);
D = regiao_est_fraca_zero_iflated_p_p(alphap, betap, 0, 0.9);

and for the regions on the right in Figure 5.6 we need to consider

B = regiao_est_fraca_zero_iflated_p_p(alphap, betap, 5, 0);
C = regiao_est_fraca_zero_iflated_p_p(alphap, betap, 5, 0.4);
D = regiao_est_fraca_zero_iflated_p_p(alphap, betap, 5, 0.9);

instead of the lines 7, 8 and 9 of the program.
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To represent the weak stationarity regions of a CP-INGARCH(2,1) process considering different
values for the parameter v1 (namely, v1 = 0,0.5,5) and under the condition α1 +α2 +β1 < 1, which
we presented in figures 3.2 and 3.3 we used the following program:

c) function [] = regiao_est_fraca_CP_INGARCH_2_1()

grey1 = [0.75,0.75,0.75];
grey2 = [0.55,0.55,0.55];
grey3 = [0.4,0.4,0.4];

B = regiao(0);
C = regiao(0.5);
D = regiao(5);

t = size(B); t1 = size(C); t2 = size(D);
i = 1:1:t(1); j = 1:1:t1(1); k = 1:1:t2(1);
f(i) = B(i,1); f1(j) = C(j,1); f2(k) = D(k,1);
g(i) = B(i,2); g1(j) = C(j,2); g2(k) = D(k,2);
h(i) = B(i,3); h1(j) = C(j,3); h2(k) = D(k,3);

subplot(2,3,1)
plot3(f(i),g(i),h(i), ’Color’, grey1)
grid on
xlabel(’alpha_1’)
ylabel(’alpha_2’)
zlabel(’beta_1’)

subplot(2,3,2)
plot3(f1(j),g1(j),h1(j), ’Color’, grey2)
grid on
xlabel(’alpha_1’)
ylabel(’alpha_2’)
zlabel(’beta_1’)

subplot(2,3,3)
plot3(f2(k),g2(k),h2(k), ’Color’, grey3)
grid on
xlabel(’alpha_1’)
ylabel(’alpha_2’)
zlabel(’beta_1’)

subplot(2,3,4)
plot(f(i),g(i), ’Color’, grey1)
hold on
plot(f1(j),g1(j), ’Color’, grey2)
hold on
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plot(f2(k),g2(k), ’Color’, grey3)
grid
xlabel(’alpha_1’)
ylabel(’alpha_2’)
title(’View just the X,Y plane’)

subplot(2,3,5)
plot(f(i),h(i), ’Color’, grey1)
hold on
plot(f1(j),h1(j), ’Color’, grey2)
hold on
plot(f2(k),h2(k), ’Color’, grey3)
grid
xlabel(’alpha_1’)
ylabel(’beta_1’)
title(’View just the X,Z plane’)

subplot(2,3,6)
plot(g(i),h(i), ’Color’, grey1)
hold on
plot(g1(j),h1(j), ’Color’, grey2)
hold on
plot(g2(k),h2(k), ’Color’, grey3)
grid
xlabel(’alpha_2’)
ylabel(’beta_1’)
title(’View just the Y,Z plane’)

where we have

d) function B = regiao(v1)

% INPUT:
% parameter v1

% OUTPUT:
% matrix B containing the points (α1,α2,β1) that belong to the weak
% stationarity region for this particular v1

syms alpha1 alpha2 beta1
g = obter_zeros(v1);
syms f1(alpha1,alpha2,beta1,v1)
syms f2(alpha1,alpha2,beta1,v1)
syms f3(alpha1,alpha2,beta1,v1)
f1(alpha1,alpha2,beta1,v1) = g(1);
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f2(alpha1,alpha2,beta1,v1) = g(2);
f3(alpha1,alpha2,beta1,v1) = g(3);
x = [0.001:0.02:1];
y = [0.001:0.02:1];
z = [0.001:0.02:1];
b1 = size(x,2); b2 = size(y,2); b3 = size(z,2);
b = b1*b2*b3;
A = zeros(b,3);
conta = 0;

for i=1:size(x,2)
for j=1:size(y,2)

for k=1:size(z,2)
if (x(i) + y(j) + z(k))<1

aux1 = double(f1(x(i),y(j),z(k),v1));
aux2 = double(f2(x(i),y(j),z(k),v1));
aux3 = double(f3(x(i),y(j),z(k),v1));
if (abs(aux1) > 1) && (abs(aux2) > 1) && (abs(aux3) > 1)

conta = conta + 1;
A(conta,1) = x(i);
A(conta,2) = y(j);
A(conta,3) = z(k);

end
end

end
end

end

B = zeros(conta,3);
for i=1:conta

B(i,:)=A(i,:);
end

and also

e) function g = obter_zeros(v1)

% INPUT:
% parameter v1

% OUTPUT:
% the roots of the equation detP(z) = 0 for this particular v1

syms alpha1 alpha2 beta1
aux1 = (alpha1+beta1)∧2*alpha2+alpha2∧2;
aux2 = v1*(alpha2∧2+alpha1∧2*alpha2+2*alpha1*alpha2*beta1);
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p1 = alpha2∧3+v1*alpha2∧3;
p2 = aux1+aux2;
p3 = (alpha1+beta1)∧2+alpha2+v1*alpha1∧2;
p = [p1 -p2 -p3 1];
g = roots(p);

D.3 Simulation Study - Section 4.2

The following programs are developed to use in MATLAB.
In what concerns the Table 4.1 and Table 4.2 we developed the following algorithm:

a) function [g] = valores(alpha0, alpha1, n)

% INPUT:
% real parameters (α0, α1) of the INARCH(1) model
% length n of the trajectory
% OUTPUT:
% means, variances and covariances of the estimates

A = zeros(1000,2);
b1 = ones(1000,1);
b2 = ones(1000,1);
u1 = ones(1000,1);
u2 = ones(1000,1);
d = zeros(1000,1);

for i=1:1000
x = valores_trajectoria_Poisson(alpha0, alpha1, n);
est = estimativaCLS_Poisson(x);
A(i,1) = est(1);
A(i,2) = est(2);

end

% A is the matrix that in the column j has the estimates for the parameter α j,
% j = 0,1, that we obtain from the 1000 trajectories that were generated

S = sum(A);
% S is the 1x2 matrix that in the column j has the sum of the estimates of α j, j = 0,1

media(1) = S(1)/1000;
media(2) = S(2)/1000;
b1 = media(1)*b1;
b2 = media(2)*b2;
B = [b1 b2];
% B is the 1000x2 matrix that in the column j has the mean of the 1000
% estimates of α j, j = 0,1



152 Programs

D = A - B;
C = D.∧2;
V = sum(C);
variancia(1) = n*(V(1)/1000);
variancia(2) = n*(V(2)/1000);
u1 = alpha0*u1;
u2 = alpha1*u2;
U = [u1 u2];
R = (U - A).∧2;
Q = sum(R);
standarderror(1) = sqrt(Q(1)/1000);
standarderror(2) = sqrt(Q(2)/1000);

for j=1:1000
d(j) = D(j,1)*D(j,2);

end

covariancia = n*(sum(d)/1000);
g = [media(1) media(2) variancia(1) standarderror(1) variancia(2) standarderror(2)

covariancia];

where we have

b) function [y] = valores_trajectoria_Poisson(alpha0, alpha1, n)

% INPUT:
% parameters α0, α1

% length n of the trajectory
% OUTPUT:
% one trajectory with n elements of an INARCH(1) process with parameters α0 and α1

x = zeros(1,n+100);
y = zeros(1,n);
lambda = zeros(1,n+100);
lambda(1) = alpha0/(1-alpha1);

for i=2:n+100
lambda(i)= alpha0 + alpha1*x(i-1);
x(i) = poissrnd(lambda(i));

end

for k=1:n
y(k)=x(k+100);

end

and to calculate the CLS estimates we use
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c) function [estimativas] = estimativaCLS_Poisson(y)

% INPUT:
% trajectory y
% OUTPUT:
% CLS estimates of the parameters (α0,α1) of the process INARCH(1) from trajectory y

n=length(y);
soma = 0;
soma0 = 0;

for i=2:n
soma = soma + y(i)*y(i-1);
soma0 = soma0 + y(i-1)*y(i-1);

end

somar=0;
mediaemp=sum(y)/n;

for i=1:n
somar= somar + (y(i)- mediaemp)∧2;

end

soma1=sum(y)-y(1);
soma2=sum(y)-y(n);
soma3=1/(n-1)*soma1*soma2;
soma4=1/(n-1)*soma2*soma2;

alpha1=(soma -soma3)/(soma0-soma4);
alpha0=(soma1-alpha1*soma2)/(n-1);
estimativas(1)=alpha0;
estimativas(2)=alpha1;

Concerning the tables 4.3 and 4.5 we used the following algorithm:

d) function [g] = valores_tabelas(alpha0, alpha1, b, n)

% INPUT:
% real parameters (α0, α1, φ ) of the NTA-INARCH(1) model
% (b corresponds to parameter φ )
% OUTPUT:
% means, variances and covariances of the estimates

A = zeros(1000,3);
b1 = ones(1000,1);
b2 = ones(1000,1);
b3 = ones(1000,1);
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d = zeros(1000,1);
e = zeros(1000,1);
f = zeros(1000,1);

for i=1:1000
x = valores_trajectoria_NTA(alpha0, alpha1, b, n);
est = estimativaCLS_NTA(x);
A(i,1) = est(1);
A(i,2) = est(2);
A(i,3) = est(3);

end

S = sum(A);
media(1) = S(1)/1000;
media(2) = S(2)/1000;
media(3) = S(3)/1000;
b1 = media(1)*b1;
b2 = media(2)*b2;
b3 = media(3)*b3;
B = [b1 b2 b3];
D = A - B;
C = D.∧2;
V = sum(C);
variancia(1) = n*(V(1)/1000);
variancia(2) = n*(V(2)/1000);
variancia(3) = V(3)/1000;
varb = n*variancia(3);

for j=1:1000
d(j) = D(j,1)*D(j,2);
e(j) = D(j,1)*D(j,3);
f(j) = D(j,2)*D(j,3);

end

covariancia(1) = n*(sum(d)/1000);
covariancia(2) = sum(e)/1000;
covariancia(3) = sum(f)/1000;

corr(1) = covariancia(1)/(sqrt(variancia(1))*sqrt(variancia(2)));
corr(2) = covariancia(2)/(sqrt(variancia(1)/n)*sqrt(variancia(3)));
corr(3) = covariancia(3)/(sqrt(variancia(2)/n)*sqrt(variancia(3)));

g = [media(1) media(2) media(3) variancia(1) variancia(2) varb covariancia(1) corr(1)
corr(2) corr(3)];

where to generate the trajectory of the NTA-INARCH(1) process we use the program:
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e) function [y] = valores_trajectoria_NTA(alpha0, alpha1, phi, n)

% INPUT:
% parameters α0, α1 and φ

% length n of the trajectory
% OUTPUT:
% trajectory with n elements of an NTA-INARCH(1) process with parameters α0, α1, φ

x = zeros(1,n+100);
y = zeros(1,n);
lambda = zeros(1,n+100);
lambda(1) = alpha0/(1-alpha1);

for i=2:n+100
lambda(i)= alpha0 + alpha1*x(i-1);
parametro=lambda(i)/phi;
N=poissrnd(parametro);
z=0;
for j=1:N

z=z+poissrnd(phi);
end
x(i)=z;

end

for k=1:n
y(k)=x(k+100);

end

and to calculate the estimates of the three parameters we use

f) function [estimativas] = estimativaCLS_NTA(y)

% INPUT:
% trajectory y
% OUTPUT:
% CLS estimates of the parameters (α0,α1) and estimate the parameter φ based on
% the moments estimation method of the process NTA-INARCH(1) from trajectory y

n=length(y);
soma = 0;
soma0 = 0;

for i=2:n
soma = soma + y(i)*y(i-1);
soma0 = soma0 + y(i-1)*y(i-1);

end
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somar=0;
mediaemp=sum(y)/n;
for i=1:n

somar= somar + (y(i)- mediaemp)∧2;
end

VarEmp=somar/n;
soma1=sum(y)-y(1);
soma2=sum(y)-y(n);
soma3=1/(n-1)*soma1*soma2;
soma4=1/(n-1)*soma2*soma2;

alpha1=(soma -soma3)/(soma0-soma4);
alpha0=(soma1-alpha1*soma2)/(n-1);
phi= -1 + ((1-alpha1)*(1-alpha1∧2)*VarEmp)/alpha0;
estimativas(1)=alpha0;
estimativas(2)=alpha1;
estimativas(3)=phi;

The program to get the values presented in Table 4.4 is quite similar to the above. In fact, in the
program valores_tabelas(alpha0, alpha1, b, n) we only need to change

"x = valores_trajectoria_NTA(alpha0, alpha1, b, n);" to
"x = valores_trajectoria_GEOMP2(alpha0, alpha1, b, n);"

and
"est = estimativaCLS_NTA(x);" to
"est = estimativaCLS_GEOMP2(x);"

where now b corresponds to the parameter p∗, and then consider

g) function [y] = valores_trajectoria_GEOMP2(alpha0, alpha1, p, n)

% INPUT:
% parameters α0, α1 and p
% length n of the trajectory
% OUTPUT:
% trajectory with n elements of a GEOMP2-INARCH(1) process
% with parameters α0, α1, p
x = zeros(1,n+100);
y = zeros(1,n);
lambda = zeros(1,n+100);
lambda(1) = alpha0/(1-alpha1);

for i=2:n+100
lambda(i)= alpha0 + alpha1*x(i-1);
parametro=(p*lambda(i))/(1-p);
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N=poissrnd(parametro);
z=0;
for j=1:N

z=z+ geornd(p);
end
x(i)=z;

end

for k=1:n
y(k)=x(k+100);

end

and

h) function [estimativas] = estimativaCLS_GEOMP2(y)

% INPUT:
% trajectory y
% OUTPUT:
% CLS estimates of the parameters (α0,α1) and estimate the parameter p based on the
% moments estimation method of the process GEOMP2-INARCH(1) from trajectory y

n=length(y);
soma=0;
soma0=0;

for i=2:n
soma = soma + y(i)*y(i-1);
soma0 = soma0 + y(i-1)*y(i-1);

end

somar=0;
mediaemp=sum(y)/n;

for i=1:n
somar=somar + (y(i)- mediaemp)∧2;

end

VarEmp=somar/n;
soma1=sum(y)-y(1);
soma2=sum(y)-y(n);
soma3=1/(n-1)*soma1*soma2;
soma4=1/(n-1)*soma2*soma2;

alpha1=(soma -soma3)/(soma0-soma4);
alpha0=(soma1-alpha1*soma2)/(n-1);
outro= (1-alpha1)/alpha0;
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p= 2/(1+VarEmp*(1-alpha1∧2)*outro);
estimativas(1)=alpha0;
estimativas(2)=alpha1;
estimativas(3)=p;

To get the confidence intervals presented in Table 4.6 we developed the following program:

i) function [CI] = intervalo_confianca(alpha0, alpha1, phi, gamma, n)

% INPUT:
% true parameters α0, α1, φ of the NTA-INARCH(1) model
% the confidence level γ

% length n of the trajectory
% OUTPUT:
% Confidence interval for m0 and m1

ntil = 35;
a = zeros(ntil,1); b = zeros(ntil,1);
alpha = 1-gamma;
aux = alpha/2;
z = norminv([aux 1-aux],0,1);

for j=1:ntil
g = valores_tabelas(alpha0, alpha1, phi, n);
a(j) = g(9);
b(j) = g(10);

end

media1 = sum(a)/ntil;
media2 = sum(b)/ntil;
c = (a-media1).∧2;
d = (b-media2).∧2;
e = sum(c)/(ntil-1);
f = sum(d)/(ntil-1);

limiteInf1 = media1+z(1)*sqrt(e/ntil);
limiteSup1 = media1+z(2)*sqrt(e/ntil);
limiteInf2 = media2+z(1)*sqrt(f/ntil);
limiteSup2 = media2+z(2)*sqrt(f/ntil);
CI =[limiteInf1 limiteSup1; limiteInf2 limiteSup2];

where the function valores_tabelas(alpha0, alpha1, phi, n) is given above in page 153.
To obtain the values presented in tables 4.7, 4.8 and 4.9 we use the following program:

j) function [probCobertura] = Prob_Cobertura_varias(alpha0, alpha1, n)
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% INPUT:
% true parameters α0, α1 of the INARCH(1) model
% length n of the trajectory
% OUTPUT:
% Estimated coverage probabilities of the confidence region for three different
% confidence levels: 0.9, 0.95 and 0.99

v0=1; d0=1;
B = matriz(alpha0, alpha1, v0, d0);
% gamma is the confidence level
gamma = [0.9, 0.95, 0.99];
conta1 = 0; conta2 = 0; conta3 = 0;
% determine the gamma-quantile of the chi-squared distribution
z1 = chi2inv(gamma(1),2)/(n-1);
z2 = chi2inv(gamma(2),2)/(n-1);
z3 = chi2inv(gamma(3),2)/(n-1);

for i=1:10000
x = valores_trajectoria_Poisson(alpha0, alpha1, n);
est = estimativaCLS_Poisson(x);
y = [est(1)-alpha0; est(2)-alpha1];
CR = y’*B*y;
if (CR < z1)

conta1 = conta1 + 1;
end
if (CR < z2)

conta2 = conta2 + 1;
end
if (CR < z3)

conta3 = conta3 + 1;
end

end

probCobertura(1) = conta1/10000;
probCobertura(2) = conta2/10000;
probCobertura(3) = conta3/10000;

where

k) function [B] = matriz(alpha0, alpha1, v0, d0)

% OUTPUT:
% asymptotic matrix V−1WV−1

A = zeros(2,2);
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num1 = v0∧2+(d0-v0∧2)*alpha1*(1+alpha1-alpha1∧2)+(3*v0∧2-d0)*alpha1∧4;
num2 = alpha1*(d0+(3*v0∧2-d0)*alpha1∧2);
num3 = (1+alpha1)*num2;
den1 = v0*(1+alpha1+alpha1∧2);
den2 = den1*alpha0;
A(1,1) = (alpha0/(1-alpha1))*(alpha0*(1+alpha1)+num1/den1);
A(2,2) = (1-alpha1∧2)*(1+num2/den2);
A(1,2) = v0*alpha1-alpha0*(1+alpha1)-num3/den1;
A(2,1) = A(1,2);
B = inv(A);

Let us note that when we consider the parameters α0 = 2, α1 = 0.2 and n = 100, we obtain the
first element of tables 4.7, 4.8 and 4.9. Then we need to run again the program to get the other values.
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