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Abstract

With the emergence of Big Data, the scarcity of data scientists
to analyse all the data being produced in different domains
became evident. To train new data scientists and make exper-
iments with data faster, web applications providing good data
science practices without requiring programming skills can be
a great help. However, some available web applications lack
in providing good data mining practices, specially for the as-
sessment and selection of models. Thus, in this dissertation we
describe a system, currently under development, that will allow
the construction of data mining workflows enforcing good data
mining practices. The main technical challenges addressed in
this thesis were the adoption of Netflix Conductor to orches-
trate the microservices; the development of Condu, a Python
utility library to interface with Conductor; and the construc-
tion of the graphical user interface. Usability tests, were
conducted with two groups of users to evaluate the envisioned
concept for the creation of data mining processes. In these tests
we observed a general high level of user satisfaction.
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Resumo

Com o surgimento de Big Data, a escassez de data scientists
para analisar todos os dados produzidos em diferentes domı́nios
tornou-se evidente. Para treinar novos data scientists e para
fazer experiências mais rápidamente, aplicações web que prov-
idenciem boas práticas de data science e que não requeiram
experiência em programação, podem ser uma grande ajuda.
Contudo, algumas aplicações web não aplicam bem as boas
práticas de data mining, especialmente na avaliação e seleção
de modelos. Assim sendo, nesta dissertação iremos descrever
um sistema, atualmente em desenvolvimento, que permitirá
a criação de worflows com especial ênfase nas boas práticas
de data mining. Os desafios tecnológicos principais aborda-
dos nesta tese, foram a adoção do Netflix Conductor para a
orquestração de microservices; desenvolvimento da biblioteca
Condu, que facilita a comunicação com o Conductor escrita
em Python; e a construção de uma interface gráfica para o
utilizador. Testes de usabilidade foram feitos com dois grupos
de utilizadores para avaliar o nosso conceito de criação de pro-
cessos de data mining. Nestes testes foram alcançados altos
ńıveis de satisfação por parte dos utilizadores.
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flows
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Chapter 1

Introduction

This thesis was carried out by the candidate Bruno Lopes, under the project PTDC/EEI-
ESS/1189/2014 — Data Science for Non-Programmers, supported by COMPETE 2020,
Portugal 2020-POCI, UE-FEDER and FCT. It took place in the Department of Informatics
Engineering at the University of Coimbra. In this chapter we present the motivation and
scope for the project, followed by the objectives and approaches specific to this thesis.
The last section presents the report structure.

1.1 Motivation and scope

In a broad view, data science is the process of discovering interesting patterns and knowl-
edge from large amounts of data. The term ’data science’ is commonly used to refer to
several techniques that are used for the extraction of information; such techniques include
data mining and Machine Learning (ML). Those techniques often intersect with each other
and often used interchangeably. ML relates with the system’s ability to ’learn’ from data;
data mining refers to the process from data extraction to its analysis, also including ML
[24].

For the correct application of data mining processes and also for the evolution of the field,
competent data scientists are required. They are a resource in high demand these days [34].
As the consulting company McKinsey estimates, the main reason can be attributed to
the lack of qualified workers to fulfil the roles that are currently open [25]. To fill such
demand, more data scientists need to be trained, which requires time, due to the diversity
of disciplines to learn [11]. By abstracting somehow programming languages from the
data scientists’ path, we might reduce the necessary time to train them. Hence, the
objective of the Data Science for Non-Programmers (DS4NP) project is to explore the
use of visual programming paradigms to enable non-programmers to be part of the data
science workforce. In addition, the project aims to take the computation of the workloads
to the cloud; as opposed, to the computation performed locally on the users’ infrastructure.
More specifically, the objective of this project is to build Cloud Native Applications (CNA)
for data science using microservices.

1
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1.2 Objectives and Approaches

Having the data mining process in mind, we decided to create a system that allows users
to build workflows representing the data mining process. It will be available through a
Grafical User Interface (GUI) with focus in guiding the user in the creation of work-
flows without requiring programming skills. The user will be able to create experiments
based on workflows composed of sequential data mining tasks. These tasks will allow data
insertion, preprocessing, feature selection, model creation and model evaluation. Some
tasks will include parameters that can be used in grid search along with nested cross
validation, enforcing good model assessment and selection practices [31].

In line with the goals of the project, the system will be built as a cloud application where
each set of functionalities will be provided by a single-purposed microservice. The execu-
tion of the workflows will be performed by workers that will execute each task indepen-
dently. The key component for the management of the execution will be the orchestrator,
Netflix Conductor.

To evaluate the envisioned system, we conducted usability tests using a group of users
familiar with data mining, and another group without that experience, though having
a background in statistics, whom can also benefit from our software. We observed an
overall positive user satisfaction with both groups. To assess the impact of the current
microservices architecture in the performance of the system, we deployed it in a public
cloud and performed tests using datasets with different sizes. The results are promising
and an incentive to guide us in new directions.

1.3 Contributions

The development of this project resulted in the following contributions:

• A microservices architecture for data science using orchestration to manage the ex-
ecution of workflows.

• The correct implementation of data mining workflows enforcing good practices.

• A GUI that simplifies the creation of workflows.

• A paper entitled ’DataScience4NP - A Data Science Service for Non-Programmers’
for the INForum 2018 conference [10].

• A paper entitled ’A Data Mining Service for Non-Programmers’ for the KDIR 2018
conference [4].

1.4 Report structure

The remaining document is organised as follows. In chapter 2, we give a detailed account
of the state of the art. It characterises platforms that already provide Data Science as a
Service (DSaaS), and other tools and research projects that are relevant for data science.
After their analysis, we talk about cloud methodologies that will be used in the proposed
system and the orchestration engine Conductor.

2
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Chapter 3 contains the specification of the functional requirements through use cases,
quality attributes using a utility tree, strategies to achieve the quality attributes, and
restrictions imposed on the project.

Chapter 4 characterises the proposed architecture that will be implemented and the tech-
nologies used.

Chapter 5 describes the microservices that compose the DS4NP platform in more detail,
focusing on the motives behind the technologies adopted and how they work.

Chapter 6 details the tests performed in the system. It is divided into three parts. First,
we describe our process for unit testing. Then, the results of the usability tests performed
on 18 participants are presented and analysed. The last part describes a performance
comparison between our system and H2O.

In chapter 7, we introduce the stakeholders of the project, the development methodology
used and the work plan stipulated for the academic year.

Finally, in chapter 8 we draw the main conclusions of this work and point out directions
for the future.

3
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Chapter 2

State of the art

There are currently a few data mining systems similar to the one that is implemented
and described in the context of this thesis. Previous studies have done critical analy-
sis of such kind of systems. For example, in the article ’Overview of Machine Learning
Tools and Libraries’ [39], the authors surveyed traditional Machine Learning (ML) prod-
ucts considering a list of properties. They took into account license models, supported
operating systems, ability to handle big datasets, language support, classes of machine
learning problems supported, usability, among others. In relation to classes of machine
learning problems supported, they identified scikit-learn, Weka, R and RapidMiner as the
most versatile software packages, supporting tens of ML methods. In relation to usability,
Orange and the proprietary solution IBM SPSS Modeler were the ones providing best
results. They also identified Knime, RapidMiner, Salford Systems, or SAS Enterprise
Miner as being able to execute data analysis tasks in distributed environments. The study
concludes by discussing the challenges raised by applying popular ML algorithms to large
amounts of data. The main challenge identified was the lack of support in processing big
data sets, for which new approaches based on parallelization of time-consuming tasks are
needed.

Having in mind such challenges, one of the authors of the previous study, Daniel Pop, in
a subsequent study [38] investigated the impact of the Cloud computing paradigm in the
field of ML. In this later study he identifies the movement towards the Cloud as being
mainly motivated by the increasing size of datasets and the difficulties they impose in
traditional ML systems. The study observes that the cloud computing paradigm and
cloud providers turned out to be valuable alternatives to speed-up ML platforms. Several
new solutions following the cloud computing trend are then presented.

In an attempt to extend and update the previous studies, in the next section we will present
our own research related with current data mining systems. In this analysis our main focus
is to present the systems, but mostly to identify possible issues that are observed in order
to address them in our implementation.

5
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2.1 Related Frameworks

In the following subsections we give a brief overview of data science frameworks that also
provide data science functionalities.

2.1.1 AzureML

AzureML 1, is a Software as a Service (SaaS) solution that enables collaborative construc-
tion of knowledge discovery solutions using a drag and drop interface. It lets users perform
different ML steps from data preparation to model deployment.

The different ML steps can be applied by constructing workflows composed by different
building blocks. In these blocks the user can upload data or connect to data already in the
cloud. He can then continue to use building blocks to perform different ML tasks, using
the previously inserted data. These ML tasks can include preprocessing, feature selec-
tion, model creation and model evaluation, which are employed using several algorithms
provided by Microsoft. Finally, a created model can be published as a web service and
becomes accessible for future use.

In Figure 2.1, an example of a workflow created in AzureML is illustrated, containing
cross-validation to create an Support Vector Machine (SVM) model.

Figure 2.1: AzureML workflow example.

Azure ML does not require any programming skills and provides data science templates
for specific domains, such as maintenance prediction, retail customer churn prediction,
online fraud detection, retail forecasting, and text classification.

Azure ML provides a few well-known filter feature selection methods, including Pearson
correlation and mutual information, among others. Besides these well-known filter meth-
ods it also provides a custom one, which they call Permutation Feature Importance. Fisher
Linear Discriminant Analysis is another feature selection method provided by AzureML,
however this method transforms the features to a new space.

1https://studio.azureml.net/

6
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Azure ML, does not offer any option to perform automated feature selection, using wrapper
methods, though they have high relevance in ML.

AzureML requires the users to build complex workflows, with multiple connections between
blocks, to create models with different features and parameters. Moreover, it is not possible
to apply cross-validation correctly in workflows that involve preprocessing or filter selection
prior to train/test the final model. Basically, in this platform the preprocessing and feature
selection phases must be applied to the entire dataset in use, prior to training/testing the
final model using the cross-validation procedure, which is a wrong practice [12, 22, 31] and
may provide overly-optimistic error estimates for the produced models.

Besides not employing cross-validation correctly for all cases, they also do not support
nested cross-validation and the solution is proprietary.

2.1.2 AmazonML

AmazonML 2 takes a different approach to providing machine learning as a service. Instead
of providing many different tasks to create ML models, it is focused on classification and
regression problems only. In Amazon’s perspective, these problems should not require
the user to specify what ML tasks should be performed to train/test a model. The steps
are very straightforward: the user uploads a dataset in a supported format (usually csv),
selects the attribute that he wants to predict (the class) and Amazon takes care of the
rest.

In Figure 2.1, the steps required to create a model from a dataset and make predictions
are illustrated.

Figure 2.2: Steps to build a model in AmazonML

This solution allows the user to create models and predictions easily and with a low
amount of effort. However this simplified solution brings many downsides, as it does not
allow the user to configure any ML task to be applied to its data. The user needs to trust
that the AmazonML platform will really use the best techniques to provide a final model.
Moreover, this is a proprietary solution.

2https://aws.amazon.com/aml/
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2.1.3 H2O

H2O 3 emerged in 2011 with the goal of democratising data science by making scalable ML
open source and accessible to everyone. It is now in version 3 and offers a fully distributed
in-memory ML open source platform with linear scalability. The platform can be used
from a web UI that gives the possibility to apply ML in a sequence of steps without
requiring users to write any code. It can also be used from programming environments
like R, Python, Java. H2O also developed Sparkling Water that enables H20 to be used in
the Spark platform. H2O provides implementations of many popular algorithms such as
Gradient Boosting Machines, Random Forest, Deep Neural Networks, Word2Vec, Stacked
Ensembles, Naive Bayes and Linear Models. H2O is extensible, enabling developers to
add data transformations and custom algorithms of their choice and access them through
the clients.

To make ML more user-friendly and easy for non-experts, H20 provides AutoML. AutoML
is a feature that automates the ML workflow by automating training and tuning of many
models within a user-specific time-limit or number of models that can be selected. H2O
is a good solution to build ML models using Big Data and to put them into production.

In Figure 2.3, an example of how to create a Naive Bayes model in H2O is presented.

Figure 2.3: Example of the H2O Grafical User Interface (GUI)

On the down side, H2O does not provide High Availability. Whenever a node in the
cluster becomes unavailable, it requires the whole cluster to be rebooted, to include the
node again. According to H2O Frequently Asked Questions (FAQ): “If a node in the cluster
is unavailable, bring the cluster down and create a new healthy cluster” [20]. Thus, adding
more nodes or changing the current functionalities of H2O requires a reboot of the cluster.
According to other FAQ: “New nodes can only be added if H2O has not started any jobs.

3https://www.h2o.ai/products/h2o/
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Once H2O starts a task, it locks the cluster to prevent new nodes from joining. If H2O
has started a job, you must create a new cluster to include additional nodes”. Thus, if
the number of ML workflows to execute in the system increases there is no way to scale
the platform without rebooting the cluster. Platform rebooting is also required when it is
necessary to insert new functionalities in the platform, such as new ML algorithms.

Besides H2O allowing users to train/test models in the Flow UI without requiring pro-
gramming skills, there is no option to perform features selection or data preprocessing
prior to the model creation.

The prototype depicted in this thesis, will both enable users to perform preprocessing and
feature selection tasks prior to model creation and will also enable the insertion/deletion
of services and nodes in runtime, without requiring the whole cluster to be rebooted.

2.1.4 Google Cloud Machine Learning Engine

Google Cloud Machine Learning Engine 4 runs in Google Cloud Platform and lets the
user build machine learning models that work with data of any type and size, using the
TensorFlow framework 5. They offer large scale training of models in managed clusters.
After training a model, they can be used for batch and online predictions also in a managed
cluster. All models become immediately available in their global prediction platform,
which supports thousands of users and TBs of data.

Google Cloud Machine Learning system is in fact a very strong system to run ML works,
however it does not provide a GUI. It requires the users to create a script with all the
steps necessary to train a model using one of the supported frameworks (e.g., Tensorflow).
Then, the users need to send the script for execution in the cloud environment using the
Google Cloud Command Line Interface (CLI). Moreover, this is proprietary solution.

4https://cloud.google.com/ml-engine/
5https://www.tensorflow.org/

9



Chapter 2

2.1.5 Weka

Weka 6 is a very popular software among data scientists, used to apply a great variety of
data mining and ML tasks through a GUI. Alternatively, users can also apply algorithms
by writing programs in Java, using Weka’s extensive library. The provided algorithms
include various implementations for regression, classification, clustering, association, rule
mining and attribute selection. The software also provides many data preprocessing and
visualisation functionalities.

The user can perform ML tasks individually, or in sequence by building workflows with
desired tasks. To build a workflow describing the whole ML process, the user creates a
sequence of tasks in the GUI by dragging available ML blocks to the workspace. Then,
the different blocks can be connected in the desired order.

In Figure 2.4, we can see an example of a workflow to create an SVM model, assessed
using cross-validation.

Figure 2.4: Example of a workflow in Weka

Although the software allows the users to create ML processes without requiring program-
ming skills, the number of tasks that is necessary in the workspace can be very large and
it is not explicit for a novice user what different tasks and connections must be created.
Moreover, this software requires being installed in the user’s computer. Thus, it does not
take advantage of cloud properties and is not primarily intended to be used with Big Data,
though it seems to support it [41].

6https://www.cs.waikato.ac.nz/ml/weka/
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2.1.6 Orange

Orange 7 is a software that allows users to create iterative ML workflows using a visual
programming paradigm, in which users drag blocks representing specific ML tasks to a
working area and connect these blocks to compose a workflow.

This software is characterised by delivering great data visualisations to their users and
providing other functionalities, such as data preprocessing, model creation and model
evaluation.

Overall, its functionalities are similar to the ones provided by Weka and AzureML, though
with a more pleasant and easier to use GUI.

In Figure 2.5, an example of an SVM model trained and tested using the cross-validation
procedure is presented.

Figure 2.5: Example of a workflow in Orange

Although this software is very intuitive and focused in solving a problem similar to ours,
it is a standalone system, requiring users to install it in their machines. Similarly to
AzureMl and Weka, this application also requires the user to insert several building blocks
with multiple connections to conduct the ML experiments. Moreover, this solution does
not offer nested cross-validation to train/test ML models.

7https://orange.biolab.si/
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2.1.7 RapidMiner

Rapidminer 8 follows a concept similar to Weka, Orange or AzureML. It allows users to
create ML processes by dragging different building blocks, representing ML tasks, into a
workspace, where these blocks must be connected in a desired way.

Concerned about wrong ways to assess and select models, seen in other applications, such
as AzureML, RapidMiner offers methods like nested cross-validation for model assessment
and selection.

Similarly to Weka and Orange, to use this tool it is also necessary to install it locally.
In addition, RapidMiner also allows the ML workflows to execute on a cluster, using the
installed GUI. It presents the same challenges as AzureML, Weka or Orange to create
ML workflows, as it uses the concept of dragging blocks to the workspace and making
connections between these blocks.

In Figure 2.6, an example of an SVM model trained and tested using the cross-validation
procedure is presented.

Figure 2.6: Example of a workflow in Rapidminer

RapidMiner can be used for free, though with many limitations. In the free version
it restricts the use of datasets with a maximum number of 10000 instances, and the
computations can only use a single processor. To use RapidMiner without limits requires
payments in the order of tenths of thousands of dollars a year per user.

ClowdFlows

ClowdFlows started as a research project [30] and is currently available online at clowd-
flows.org. It is a system that enables non-programmers to build data mining workflows
using a visual programming paradigm and to share workflows online.

The system can process Big Data in batch or real-time mode through an ML library
provided by the researcher on top of the Disco9 MapReduce framework. Besides providing
the ML library for Big Data, they also integrate major ML libraries like Weka, Orange
and scikit-learn to be used from the GUI. The execution of the workflows is done through
worker nodes that will get tasks to execute using a message queue; this was implemented
using the message broker RabbitMQ [37].

Besides the algorithms that are already present, ClowdFlows also facilitates the introduc-
tion of new algorithms. The users just need to create a web service with an interface that
follows the system specification. Next, using the GUI is possible to point to the URL
of the WSDL that describes the Web Service and it becomes available to be used in a

8https://rapidminer.com/
9http://discoproject.org/
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workflow. This extension can also be done by creating Python packages but requires the
user to have ClowdFlows installed locally.

In Figure 2.7, an example of a workflow created in ClowdFlows is presented.

Figure 2.7: Representation of a workflow in the ClowdFlows platform.

This system presents the same drawbacks seen in other platforms, such as AzureML,
Weka and Orange. To train/test models, it requires the users to build complex workflows
composed by different building blocks and connections, with functionalities that are not
always clear. Similarly to other platforms, the cross-validation process included in this
platform is only applied to train/test the final model. Nested cross-validation is also not
included in this platform.

DAMIS

DAMIS, another research project [33], is a cloud solution for data mining. It provides
access through the web site damis.lt and gives the user the possibility to build graphical
workflows for knowledge discovery using a drag and drop interface, similarly to previous
plaforms, such as AzureML, Orange or ClowdFlows. The ML tasks used in the workflows
built in the GUI are sent to a computational service using Simple Object Access Protocol
(SOAP) messages, which after validating the request pushes it to a job scheduler of a
specific computational infrastructures.

The ML tasks provided in this platform are specially focused in dimensionality reduction.
However, they also employ other algorithms for data preprocessing, classification and clus-
tering, such as data cleaning, feature selection, normalisation, splitting, outliers filtering,
computation of data statistics, multi-layer perceptron, random decision forest, k-means,
and self-organising maps.

Figure 2.8 shows an example of a workflow created in DAMIS. This example was extracted
from the DAMIS paper, as it was not possible to enter in the DAMIS workspace during
this thesis.
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Figure 2.8: Representation of a workflow in the DAMIS platform.

After reading the DAMIS paper, this platform does not seem to employ great ML practices
to train/test ML models, as they never refer how the trained models are tested.

2.1.8 Comparison of Data Mining and Machine Learning solutions

To evaluate the differences between the data mining and ML solutions presented before,
here is included a table with the previous platforms along with ten attributes:

• Open Source: signals if the solution is open source;

• Cloud: signals if the solution is hosted in the Cloud or has some functionalities that
are computed in a Cloud environment;

• GUI: signals if the solution has a GUI;

• Flexibility: while some solutions provide a large number of different ML tasks to
create ML processes, other solutions are more straightforward and do not give much
flexibility to the user. Here, it is used a scale from 1 to 5 to classify the flexibility of
each solution, where number 1 is the minimum flexibility and number 5 the maximum
flexibility;

• Usability: by analysing each GUI we classified, in a scale from 1 to 5, the usability
of each solution according to the following aspects: attractiveness, intuitiveness,
complexity, efficiency.

• Big Data: signals if the solution is capable of processing large amounts of data;

• High Availability: signals if the solution was designed to support High Availability;
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• Extensibility: signals if the solution allows the addition of new ML functionalities.

• Templates: signals if the solution has predefined templates to execute ML pro-
cesses;

• Correct CV: signals if the solution includes good practices to train/test models
using cross-validation and nested cross-validation, when preprocessing tasks (e.g.,
normalisation, feature selection) are also included in the process.

The attributes that have question marks (’?’) mean that we were unable to determine
the attribute in question. The attributes with the N/A value are attributes that are not
applicable to the solution in question.
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Cloud GUI Flexibility Usability Big Data

High
Availability

Extensibility Templates
Correct

CV

AzureML x x 4 3 x x x x

AmazonML x x 1 5 x x N/A ?

H2O x x x 3 3 x x

Google Cloud ML Engine x N/A 1 x x x N/A

Weka x x 4 3 x N/A x x

Orange x x 3 4 ? N/A x x

RapidMiner x x 5 3 x x ? x x

ClowdFlows x x x 4 2 x ? x x ?

DAMIS x x x 2 ? x ? x ?

Table 2.1: Comparison of Data Mining and Machine Learning solutions
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As seen in Table 2.1, and from the analysis that was previously done in the sections
related to each solution, we can observe that, with the exception of Weka, Orange and
RapidMiner, no other solution enables the best practices for cross-validation when using
preprocessing or feature selection tasks prior to the train/test of the final model. From
these solutions, only Weka and RapidMiner provide nested cross-validation. The Google
Cloud ML engine does not apply (N/A) to this attribute because, the ML process needs
to be programmed, making the correct practice of cross-validation a responsibility of the
programmer.

Related to the usability of each solution and their flexibility, we observed an interesting
result. Each solution, in order to provide more flexibility to the user, sacrifices its usability.
AmazonML had the highest usability given the fact that the user specifies a dataset and
the rest of the ML process is done automatically; however, the user can not specify what
algorithms should be used, or if the process should include tasks for preprocessing or
feature selection prior to training the final model.

In contrast, RapidMiner offers high flexibility as it has a big number of ML tasks that can
be inserted in the workflows with multiple configurations, however decreasing the usability,
as these tasks need to be properly connected to create a proper ML experiment.

The above mentioned attributes are the main topics approached in our solution. We will
provide the correct application of cross-validation processes including preprocessing and
feature selection tasks prior to train/test a model. Nested cross-validation will also be ad-
dressed and we will also introduce the possibility of specifying the number of repetitions to
do both cross-validation and nested cross-validation, which is not provided even in Rapid-
Miner. We will address the usability and flexibility aspect by providing the construction
of simple sequential ML workflows, however allowing the user to have much flexibility as
s/he can select very different tasks of the preprocessing, feature selection, learning and
evaluation phases.

In relation to the other attributes, we can observe that each solution has different charac-
teristics. Some solutions are cloud-based, others open-source, few have templates. In the
envisioned prototype we will address all of these attributes.

From our analysis RapidMiner appears to be the best solution in relation to the attributes
presented in the table, thus it is our most direct concurrent. However, as it was also
mentioned before, this solution is expensive.

Weka can also compete with our solution. However it does not run on the cloud and has
lower usability.

Clowdflows addresses much of the previously mentioned attributes. However, the con-
struction of workflows in this tool is extremely complex and does not provide much infor-
mation. We were not even aware if it can correctly train/test models employing correct
cross-validation or nested cross-validation.

Orange is an other solution that can compete with ours, though, similarly to Weka, it does
not run in the cloud. Thus, the properties provided by the cloud, such as the execution
of ML experiments remotely, are not present. Moreover, in this solution it is not possible
to use nested cross-validation.
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2.2 Cloud Computing

This section describes the methods and technologies researched to accomplish our objec-
tives of cloud computation. Starting with the advantages of microservices, followed by
containerisation and finishing with orchestration.

2.2.1 Microservices

With the purpose of providing many different algorithms to the users for their data science
projects, one wouldn’t want to create a monolithic architecture. This approach would
increase the difficulty to maintain the system, reduce the agility of the system to adapt
to newer business needs, such as new algorithms and features, and make it less scalable.
Contrarily to a monolith, microservices are a paradigm in which a monolithic application
is decomposed into small micro applications. This type of architecture is emerging as an
important approach for distributed mission-critical applications. In a microservice-based
architecture, the application is built on a collection of services that can be developed,
tested, deployed, and versioned independently [13].

Advantages of a microservices architecture:

• As the services are small and decoupled, it is easier to write and modify them,
lowering the maintenance cost.

• When failures happen, they are constrained to that microservice and affect only its
functionalities. In some cases, that microservice might get shutdown and a new
fresh one take its place. Keeping the work and failures contained helps insuring
reliability and modularity.

• Scaling is supported by creating more replicas of microservices.

• The deployment of microservices is also easier because of their loose coupling with
the rest of the system. Moreover, due to the lightweight property of microservices,
deployment is also fast and changes in code are less error prone.

• Due to their lightweight properties and fast replacement, the system downtime will
decrease and the platform becomes highly available.

Even tough most of the microservices were developed using the Python language, due to its
simplicity and popular use in data science, a microservices architecture is fundamentally
language agnostic. We mean by this is that since each service communicates using a well-
know interface that is accessible regardless of the programming language, each service
could be implemented using a different languages if it brought more value. In our case,
using the same language for most of the microservices allowed us to share some portions
of the code that was similar in different services.

Most of the microservices that were implemented needed a database to store their re-
sources. One of the challenges we faced was the unstructured nature of the data mining
workflows. They have many tasks with different fields. Each task can have a completely
different structure from each other. For this reason we adopted a database for unstruc-
tured data. After an analysis of the most relevant databases to overcome this challenge
we found MongoDB 10 as the most agile in terms of allowing the schema of the data to

10https://www.mongodb.com/
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change quickly as we develop each microservice. Since the microservices are known to
change quickly we needed a database that could reflect this. Hence, our adoption of this
database for most of the microservices.

2.2.2 Containerisation

In addition to the use of microservices, enterprises are increasingly performing cost savings,
solving deployment problems, improving DevOps and production operations by container-
ising microservices [13]. A container is a lightweight, stand-alone, executable package of a
piece of software that includes everything needed to run it: code, runtime, system tools,
system libraries, settings. Puting the microservices in containers will help achieve their de-
ployability, isolation and guarantee their modularity. In this thesis, the technology adopted
for containerisation is Docker [17]. Its format and container runtime quickly emerged as
the de facto standard following its release as an open source project in 2013 [14], making
the case for its adoption in this project. We studied other alternatives such as CoreOS
rkt and LXC. However, containerisation is much easier in Docker and they have a huge
hub of already containerised applications in contrast with all the other technologies.

For load balancing, replication, scaling, elasticity, availability and the other attributes
related with managing the infrastructure, we identified two promising candidates, Docker
Swarm and Kubernetes. Both can ensure that we satisfy all the attributes. Docker
Swarm is more simple to configure than Kubernetes. However, what it gains in simplicity
it lacks in more functionalities. The last allow us to do a more advanced tuning for each
microservice (container), and therefore we are able to increase performance and waste less
computing resources.

2.2.3 Orchestration

In this section we will explain the need for orchestration and describe the key technologies
that allowed us to orchestrate the microservices in the Data Science for Non-Programmers
(DS4NP) platform.

Orchestration vs Choreography

Each microservice only performs a specific task and we need to coordinate those tasks to
achieve our goal. The specification of the tasks, their behaviour and coordination is called
a workflow.

There are two ways to achieve this: we could introduce logic into the microservices and
make them aware of the whole workflow (choreography) or have a centralised way of
doing this (orchestration).

Choreography means that each microservice would be responsible for calling the next one
after the successful completion of its task. Using choreography increases the complexity
of the microservices by having the workflow embedded in the code, making them not so
micro. It makes harder the task of changing the code of each microservice and there is no
way to systematically answer “How much are we done with workflow X?”.

A better solution would be a centralised way of coordinating the services, hence the adop-
tion of an orchestrator. With this approach, the orchestrator would be responsible with
the execution of the workflows and the microservices would only worry about doing their
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tasks. The orchestrator would provide visibility and traceability into the state of workflows
and allow greater reuse of existing microservices providing an easier path for integrating
new microservices.

Conductor

Netflix provides streaming of media and video-on-demand online with more than 120
millions of subscribers world wide [8]. Given the fact that some of their services also
follow a microservices architecture, the content platform engineering team produced and
open-sourced Conductor to orchestrate their workflows [5]. Conductor is used internally
to serve millions of requests every day, making it battle tested and reliable.

Here is how Conductor works:

Conductor is an orchestration engine that allows us to create complex workflows in which
individual tasks are implemented by a microservice (workers).

Workflows are defined in Conductor using json objects. Every workflow is decomposed
in tasks, where each task is a specific goal that needs to be accomplished to finish the
workflow. The tasks are either control tasks (fork or if statements) or application tasks
(e.g. feature scaling) that are executed by the workers. Worker tasks are implemented
by a microservice that runs in a separate environment from Conductor. The workers talk
to the Conductor server via REST api endpoints to poll for tasks and update their status
after execution. Workers can be written in any language as long as they can poll and
update the task results via HTTP endpoints.

Figure 2.9 details their possible states and transitions.

Figure 2.9: Tasks state graph

Conductor servers are stateless and its scalability and high availability can be achieved by
replicating Conductor and Dynomite.

Dynomite allows the implementation of high availability and cross-datacenter replication
on storage engines that do not inherently provide that functionality. The storage engine
used for Dynomite was the in-memory database Redis. Its purpose in Conductor is to
keep track of the state of all the tasks that are running and the definitions of workflows
(blueprints) and tasks.
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Figure 2.10 provides an overview of the components that make conductor:

Figure 2.10: Conductor Architecture Overview

The Clowdflows platform described in section 2.1.7 also executes its workflows in a simi-
lar manner. Both use an in-memory database and follow the producer / consumer pattern
to execute workflows. The main difference between the two is that Clowdflows developed
their orchestration solution internally and used the message queue broker RabbitMQ
[37] to send the tasks to the workers. Conductor does this transparently. A message
broker such as RabbitMQ could be used instead of Conductor. Howbeit, like Clowdflows,
we would still need to implement the orchestration functionalities ourselves. These func-
tionalities include allowing the creation of workflows, scheduling tasks and implementing
mechanisms to tolerate failures. In the end, to go with this solution, would be basically
implementing the orchestrator ourselves, hence choosing Conductor was a better choice for
the prototype. We were not able to find any other solution that offered similar function-
alities as Conductor. However, since the DS4NP platform is very modular, changing the
orchestration solution for a better one would not need significant architectural changes.

Despite the fact that Conductor works very well in the system, there are some drawbacks
that need to be addressed in the future to allow the DS4NP platform to be production
ready. The next steps to make that happen should be to address the following drawbacks:

• Due to the nature of workflows and its complexity, we are not able to determine
the time it is required for a task to be finished with great accuracy; it depends on
many factors such as the parameters and the size of datasets used. This prevents
us from defining a timeout for the each task that is appropriate and we end up
overestimating every time to accommodate that. The timeout is necessary to have a
way of rescheduling a task when the microservice that is currently working on that
task crashes or is unable to communicate with the orchestrator. To exemplify, if
we define a timeout of 30 minutes and the microservice crashes after 2 minutes, the
orchestrator will reschedule the task after 28 minutes of crashing. We can observe
that this solution wastes time. A solution would be implementing complementary

21



Chapter 2

components that can detect this events and reports them to the orchestrator.

• Every time a workflow is executed, information about its execution such as logs,
number of failures, parameters used and the results of the tasks are stored in the in-
memory database. This creates a Random-Access Memory (RAM) problem, because
the size of the database increases rapidly and RAM is not as cheap as the disk
memory that is commonly used in relational databases. The solution we hypothesise
for this, is to delete information of older workflows that were executed and no longer
needed.
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Requirements

3.1 Requirements Elicitation

After exploring the tasks conducted by data scientists, mainly recurring to the literature
and online forums dedicated to this art, it was observed that most of their works can be
conducted using similar workflows. These workflows can be executed using programming
languages, or alternatively through applications that provide the mechanisms for non-
programmers to build such data science workflows. These applications are essential to
train new data scientists without requiring them to acquire profound computer science
skills. Although these applications reduce the programming effort from data scientists,
they impose limits to the users and might incur data scientists to perform machine learning
in a wrong way. Applications providing the correct application of machine learning tend
to force the users to build complex workflows with multiple connections between the tasks
and do not seem to guide the user during the machine learning process. Having in mind
the necessities of non-programmers data scientists and some problems associated with
current applications, the prototype that is presented in this thesis aims to enable non
programmers to build data science workflows, while guiding them in the process. Being
data science a wide scope, the current prototype is restricted to providing workflows for
the correct application of machine learning, specifically for the creation of classification
models. Generally, the machine learning process is composed by preprocessing, learning
and evaluation steps.

These steps might include several tasks with dependencies between each other, creating
the necessity to be executed in workflows instead of being executed separately. First, data
is provided to the tasks that compose the workflow. Data preprocessing tasks help in
preparing the data to the subsequent learning phase, in which different machine learn-
ing algorithms might be applied using different parameters that produce different models.
These models are then evaluated to verify their performances in order to choose the con-
figuration that provides the best results. The preprocessing phase might include several
tasks to transform the data given to the workflow. These tasks include normalisation,
feature selection and dimensionality reduction. The learning phase employs different ma-
chine learning algorithms using different parameters to create several models that are sent
to evaluation. The evaluation phase might require the construction of the previous steps
using different validation procedures (e.g., cross-validation, hold out, train-validation-test)
to obtain correctly assessed and selected models.

The needs presented by non-programmers in applying machine learning using correct prac-
tices along with the limitations detected in other applications were the main driver while
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eliciting the requirements that will be presented next.

3.2 Functional Requirements

The functional requirements presented in this section were collected continuously during
the prototype development and prioritised according to the MoSCoW method. According
to this technique, the requirements can be prioritised into the following groups [32]:

• M - Must have: requirements that must be satisfied in the final solution. These
requirements are non-negotiable and the project will fail without them.

• S - Should have: represent a high-priority feature that is not critical to launch,
though it is considered to be important and of a high value to users. Such require-
ments occupy the second place in the priority list.

• C - Could have: a requirement that is desirable but not necessary. Could have
requirements will be removed first from scope if the project’s timescales are at risk.

• W - Won’t have: a requirement that will not be implemented in a current release
but may be included in a future stage of development. Such requirements usually
do not affect the project success.

The requirements were represented as casual use cases following the recommendations from
Cockburn [15] and Tenenberg [28]. Casual use cases allow us to have a good understanding
about the requirements for the application without requiring much effort in writing them,
consequently providing more time for other activities such as design and implementation.
Casual use cases are recommended for small projects, with four to six people building a
system whose worst damage is the loss of a bit of comfort, easily remedied with a phone
call [15]. Each use case starts with the words “Use case” and an identifier for the use case.
The identifier is followed by a title that describes the goal of the use case.

The use cases presented here have system scope (black-box), meaning that they discuss
the software that is to be built. The level of the use cases presented here are at sea level,
as they represent user goals. The title ends with a priority according to the MoSCoW
method, that is given inside parenthesis. After the title there is a text describing the
interactions between the user and the system in order to accomplish the goal described
in the title of the use case. The text might also include a final section with things that
might go wrong during the interactions between the user and the system.

Use case 1.1 Insert a dataset in the workflow (M)
An authenticated user wants to insert a dataset on the workflow in order to use it in the
subsequent tasks. The user has previously uploaded the dataset to the system. The user
selects a task to insert the dataset to be used in the workflow. The system provides a task
where the user can specify the dataset to be used. The user specifies the dataset to be
used. The system shows the attributes that are present in the dataset. The user selects
the attributes s/he wants to remove from the dataset and defines the class label of the
dataset. The dataset becomes available to be used in the remaining tasks that compose
the workflow.
The things that could go wrong are:

• The dataset specified by the user is invalid, in which case the system will not show
the attributes present in the dataset.
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Use case 1.1.1 Visualise the dataset inserted in a workflow (M)
An authenticated user wants to visualise the dataset used in an executed workflow. The
workflow includes a task to insert a dataset and it has executed successfully. The user
sends a request to visualise the task outputs. The system outputs the dataset used in the
workflow. The user can visualise the dataset.
The things that could go wrong are:

• The task to insert a dataset did not execute successfully. The user sends a request
to visualise the task outputs. The system outputs a message with the reason for the
task failure.

Use case 1.2 Insert a data preprocessing task on the workflow (M)
An authenticated user wants to insert a data preprocessing task in the workflow in order
to apply preprocessing transformations to the dataset used in the workflow. The workflow
is already initiated. The user sends a request to insert a data preprocessing task on
the workflow. The system provides multiple data preprocessing tasks so that the user
can choose. The user chooses one of the available data preprocessing tasks that is then
inserted in the workflow in the position selected by the user.

Use case 1.2.1 Insert a (data preprocessing) min-max scaling task on the work-
flow (M)
An authenticated user wants to insert a min-max scaling task on the workflow in order to
scale the data used in the workflow. The workflow is already initiated. The user sends a
request to insert a data preprocessing task on the workflow. The system provides multiple
data preprocessing tasks so that the user can choose. The user chooses a min-max scaling
task. The task is inserted in the workflow in the position selected by the user. The user
can input the min and max values to apply the scaling on the dataset.

Use case 1.2.2 Visualise the output of a (data preprocessing) min-max scaling
task (M)
An authenticated user wants to visualise the output from a min-max scaling task after
it has been executed in a workflow. The workflow includes a min-max scaling task and
it has executed successfully. The user sends a request to visualise the task outputs. The
system outputs the datasets where the operation was applied. The user can visualise the
scaled datasets, the scaled attributes and the scaler object.
The things that could go wrong are:

• The min-max scaling task did not execute successfully. The user sends a request to
visualise the task outputs. The system outputs a message with the reason for the
task failure.

Use case 1.2.3 Insert a (data preprocessing) z-score normalisation task on the
workflow (M)
An authenticated user wants to insert a z-score normalisation task on the workflow in
order to normalise the data used in the workflow. The workflow is already initiated. The
user sends a request to insert a data preprocessing task on the workflow. The system
provides multiple data preprocessing tasks so that the user can choose. The user chooses
a z-score normalization task. The task is inserted in the workflow in the position selected
by the user.

Use case 1.2.4 Visualise the output of a (data preprocessing) z-score normali-
sation task (M)
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An authenticated user wants to visualise the output from a z-score normalisation task after
it has been executed in a workflow. The workflow includes a z-score normalisation task
and it has executed successfully. The user sends a request to visualise the task outputs.
The system outputs the datasets where the operation was applied. The user can visualise
the normalised datasets, the normalised attributes and the object to apply normalisation
to new data.
The things that could go wrong are:

• The z-score normalisation task did not execute successfully. The user sends a request
to visualise the task outputs. The system outputs a message with the reason for the
task failure.

Use case 1.2.5 Insert a (data preprocessing) one-hot encoding task on the
workflow (M)
An authenticated user wants to insert a one-hot encoding task on the workflow in order
to convert discrete data to a numerical format to use in the workflow. The workflow is
already initiated. The user sends a request to insert a data preprocessing task on the
workflow. The system provides multiple data preprocessing tasks so that the user can
choose. The user chooses a one-hot encoding task. The task is inserted in the workflow
in the position selected by the user. The user selects the attributes that must be encoded
and the attributes that must be excluded from the encoding operation.

Use case 1.2.6 Visualise the output of a (data preprocessing) one-hot encoding
task (M)
An authenticated user wants to visualise the output from a one-hot encoding task after
it has been executed in a workflow. The workflow includes a one-hot encoding task and
it has executed successfully. The user sends a request to visualise the task outputs. The
system outputs the datasets where the operation was applied. The user can visualise the
encoded datasets and the labels included in the encoded datasets.
The things that could go wrong are:

• The one-hot encoding task did not execute successfully. The user sends a request to
visualise the task outputs. The system outputs a message with the reason for the
task failure.

Use case 1.2.7. Insert a (data preprocessing) discretisation task on the work-
flow (S)
An authenticated user wants to insert a discretisation task on the workflow in order to
have only discrete data to use in the workflow. The workflow is already initiated. The
user sends a request to insert a data preprocessing task on the workflow. The system
provides multiple data preprocessing tasks so that the user can choose. The user chooses
a discretisation task. The task is inserted in the workflow in the position selected by the
user.

Use case 1.2.8 Visualise the output of a (data preprocessing) discretisation
task (S)
An authenticated user wants to visualise the output from a discretisation task after it
has been executed in a workflow. The workflow includes a discretisation task and it has
executed successfully. The user sends a request to visualise the task outputs. The system
outputs the datasets where the operation was applied. The user can visualise the datasets.

Use case 1.3 Insert a feature selection task on the workflow (M)
An authenticated user wants to insert a feature selection task in the workflow in order
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to know what are the best features present in the data and to select the most relevant
features. The workflow is already initiated. The user sends a request to insert a feature
selection task on the workflow. The system provides multiple feature selection tasks for
the user to choose. The user chooses one of the available feature selection tasks that is
then inserted in the workflow in the position selected by the user.

Use case 1.3.1. Insert (feature selection) Relieff algorithm on the workflow
(M)
An authenticated user wants to insert the Relieff algorithm in the workflow in order to
visualise the relevance of the features of a dataset being processed on the workflow and
to select the most relevant features. The workflow is already initiated. The user sends a
request to insert a feature selection task on the workflow. The system provides multiple
feature selection tasks for the user to choose. The user chooses the Relieff task that is
then inserted in the workflow in the position selected by the user. The user inputs values
that are relevant for the application of Relieff algorithm. The user specifies a threshold
that is used by the system to remove features from the dataset with score below the
threshold. The user specifies a number of best features to be selected according to the
ranking produced by the algorithm.

Use case 1.3.2 Visualise the output of a (feature selection) Relieff task (M)
An authenticated user wants to visualise the output from the application of a feature
selection task that uses the Relieff algorithm after it has been executed in a workflow.
The workflow includes (feature selection) Relieff task and it has executed successfully.
The user sends a request to visualise the task outputs. The system outputs the ranking
and scores produced by Relieff, the number of selected features and the threshold used.
The things that could go wrong are:

• The Relieff task did not execute successfully. The user sends a request to visualise
the task outputs. The system outputs a message with the reason for the task failure.

Use case 1.3.3 Insert (feature selection) Info Gain algorithm on the workflow
(M)
An authenticated user wants to insert the Info Gain algorithm in the workflow in order to
visualise the relevance of the features of a dataset being processed on the workflow and
to select the most relevant features. The workflow is already initiated. The user sends a
request to insert a feature selection task on the workflow. The system provides multiple
feature selection tasks for the user to choose. The user chooses the Info Gain task that is
then inserted in the workflow in the position selected by the user. The user inputs values
that are relevant for the application of Info Gain algorithm. The user specifies a threshold
that is used by the system to remove features from the dataset with information gain
below the threshold. The user specifies a number of best features to be selected according
to the ranking produced by the algorithm.

Use case 1.3.4 Visualise the output of a (feature selection) Info Gain task (M)
An authenticated user wants to visualise the output from the application of a feature
selection task that uses the Info Gain algorithm after it has been executed in a workflow.
The workflow includes (feature selection) Info Gain task and it has executed successfully.
The user sends a request to visualise the task outputs. The system outputs the ranking
and the computed information gain, the number of selected features and the threshold
used.
The things that could go wrong are:

• The Info Gain task did not execute successfully. The user sends a request to visualise
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the task outputs. The system outputs a message with the reason for the task failure.

Use case 1.4. Insert a dimensionality reduction task on the workflow (S)
An authenticated user wants to insert a dimensionality reduction task in the workflow in
order to reduce the dimensionality of the dataset used in the workflow. The workflow is
already initiated. The user sends a request to insert a dimensionality reduction task on
the workflow. The system provides multiple dimensionality reduction tasks so that the
user can choose. The user chooses one of the available dimensionality reduction tasks that
is then inserted in the workflow in the position selected by the user.

Use case 1.4.1. Insert (dimensionality reduction) principal component analysis
(PCA) task on the workflow (S)
An authenticated user wants to insert a PCA task in the workflow in order to reduce the
dimensionality of the dataset used in the workflow. The workflow is already initiated.
The user sends a request to insert a dimensionality reduction task on the workflow. The
system provides multiple dimensionality reduction tasks so that the user can choose. The
user chooses the PCA task that is then inserted in the workflow in the position selected
by the user. The user can input values to be used by the PCA algorithm.

Use case 1.5. Insert a model creation task on the workflow (M)
An authenticated user wants to insert a model creation task in the workflow in order to
create a classification model trained with the dataset used in the workflow. The workflow is
already initiated. The user sends a request to insert a model creation task on the workflow.
The system provides multiple tasks to create a classification model using functional, tree,
rule, lazy or bayesian algorithms for the user to choose. The user chooses one of the
available algorithms for the creation of the model that is then inserted in the workflow in
the position selected by the user.

Use case 1.5.1. Insert a task on the workflow to create a classification model
using a functional SVM algorithm (M)
An authenticated user wants to insert a model creation task in the workflow in order to
create a classification model trained with the dataset used in the workflow. The workflow is
already initiated. The user sends a request to insert a model creation task on the workflow.
The system provides multiple tasks to create a classification model using functional, tree,
lazy or bayesian algorithms for the user to choose. The user chooses the functional SVM
algorithm to create the model that is then inserted in the workflow in the position selected
by the user. The user can input the parameter to be used by the SVM algorithm (C, kernel
and the parameters of the kernel).

Use case 1.5.2. Visualise the output of a model creation task where the SVM
algorithm was used (M)
An authenticated user wants to visualise the output of a model creation task where the
SVM algorithm was used after it has been executed in a workflow. The workflow includes
a model creation task where the SVM algorithm was used and it has executed successfully.
The user sends a request to visualise the task outputs. The system outputs the created
model for download, the parameters used to create the model and the predicted and
expected results produced after testing the model.
The things that could go wrong are:

• The SVM task did not execute successfully. The user sends a request to visualise
the task outputs. The system outputs a message with the reason for the task failure.

Use case 1.5.3. Insert a task on the workflow to create a classifier of the type
tree using the CART algorithm (M)

28



Requirements

An authenticated user wants to insert a model creation task in the workflow in order to
create a classification model trained with the dataset used in the workflow. The workflow is
already initiated. The user sends a request to insert a model creation task on the workflow.
The system provides multiple tasks to create a classification model using functional, tree,
lazy or bayesian algorithms for the user to choose. The user chooses the CART algorithm
to create the model that is then inserted in the workflow in the position selected by the
user. The user can input the parameter to be used by the CART algorithm.

Use case 1.5.4 Visualise the output of a model creation task where the CART
algorithm was used (M)
An authenticated user wants to visualise the output of a model creation task where the
CART algorithm was used after it has been executed in a workflow. The workflow includes
a model creation task where the CART algorithm was used and it has executed success-
fully. The user sends a request to visualise the task outputs. The system outputs the
created model for download, a tree with the representation of the model, the parameters
used to create the model and the predicted and expected results produced after testing
the model.

• The CART task did not execute successfully. The user sends a request to visualise
the task outputs. The system outputs a message with the reason for the task failure.

Use case 1.5.5. Insert a task on the workflow to create a classifier of the type
lazy using the K nearest neighbors algorithm (M)
An authenticated user wants to insert a model creation task in the workflow in order to
create a classification model trained with the dataset used in the workflow. The work-
flow is already initiated. The user sends a request to insert a model creation task on
the workflow. The system provides multiple tasks to create a classification model using
functional, tree, lazy or bayesian algorithms for the user to choose. The user chooses the
K nearest neighbors algorithm to create the model that is then inserted in the workflow
in the position selected by the user. The user can input the parameter K to be used by
the K nearest neighbours algorithm.

Use case 1.5.6 Visualise the output of a model creation task where the K
nearest neighbors algorithm was used (M)
An authenticated user wants to visualise the output of a model creation task where the
K nearest neighbors algorithm was used after it has been executed in a workflow. The
workflow includes a model creation task where the K nearest neighbors algorithm was used
and it has executed successfully. The user sends a request to visualise the task outputs.
The system outputs the created model for download, the parameters used to create the
model and the predicted and expected results produced after testing the model.
The things that could go wrong are:

• The k nearest neighbors task did not execute successfully. The user sends a request
to visualise the task outputs. The system outputs a message with the reason for the
task failure.

Use case 1.5.7. Insert a task on the workflow to create a classifier of the type
bayesian using the Gaussian Näıve Bayes algorithm (M)
An authenticated user wants to insert a model creation task in the workflow in order to
create a classification model trained with the dataset used in the workflow. The workflow is
already initiated. The user sends a request to insert a model creation task on the workflow.
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The system provides multiple tasks to create a classification model using functional, tree,
lazy or bayesian algorithms for the user to choose. The user chooses the Gaussian Näıve
Bayes algorithm to create the model that is then inserted in the workflow in the position
selected by the user.

Use case 1.5.8 Visualise the output of a model creation task where the Gaussian
Näıve Bayes algorithm was used (M)
An authenticated user wants to visualise the output of a model creation task where the
Gaussian Näıve Bayes algorithm was used after it has been executed in a workflow. The
workflow includes a model creation task where the Gaussian Näıve Bayes algorithm was
used and it has executed successfully. The user sends a request to visualise the task
outputs. The system outputs the created model for download, the parameters used to
create the model and the predicted and expected results produced after testing the model.
The things that could go wrong are:

• The Gaussian Naive Bayes task did not execute successfully. The user sends a request
to visualise the task outputs. The system outputs a message with the reason for the
task failure.

Use case 1.5.9 Insert a task on the workflow to create a classifier of the type
bayesian using the Multinomial Näıve Bayes algorithm (M)
An authenticated user wants to insert a model creation task in the workflow in order to
create a classification model trained with the dataset used in the workflow. The workflow is
already initiated. The user sends a request to insert a model creation task on the workflow.
The system provides multiple tasks to create a classification model using functional, tree,
lazy or bayesian algorithms for the user to choose. The user chooses the Multinomial
Näıve Bayes algorithm to create the model that is then inserted in the workflow in the
position selected by the user.

Use case 1.5.10 Visualise the output of a model creation task where the Multi-
nomial Näıve Bayes algorithm was used (M)
An authenticated user wants to visualise the output of a model creation task where the
Multinomial Näıve Bayes algorithm was used after it has been executed in a workflow.
The workflow includes a model creation task where the Multinomial Näıve Bayes algo-
rithm was used and it has executed successfully. The user sends a request to visualise
the task outputs. The system outputs the created model for download, the parameters
used to create the model and the predicted and expected results produced after testing
the model.
The things that could go wrong are:

• The Multinomial Naive Bayes task did not execute successfully. The user sends a
request to visualise the task outputs. The system outputs a message with the reason
for the task failure.

Use case 1.6 Insert a task on the workflow to validate the model being con-
structed using different procedures (M)
An authenticated user wants to insert a validation procedure task in the workflow in order
to specify the procedure that must be used while executing the tasks that compose the
workflow. The workflow is already initiated. The user sends a request to insert a valida-
tion procedure task on the workflow. The system provides multiple validation procedure
tasks for the user to choose. The user chooses one of the available validation procedures.
The system inserts that task in the workflow in the position selected by the user.
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Use case 1.6.1. Insert the cross-validation procedure to validate the model
constructed in the workflow (M)
An authenticated user wants to insert a validation procedure task in the workflow in order
to specify the procedure that must be used while executing the tasks that compose the
workflow. The workflow is already initiated. The user sends a request to insert a validation
procedure task on the workflow. The system provides multiple validation procedure tasks
for the user to choose. The user chooses the k-fold cross-validation procedure. The system
inserts the task in the workflow in the position selected by the user. The user inserts the
number of repetitions to perform the cross-validation. The user selects nested or normal
cross-validation. The user selects if the data in the cross-validation folds must be stratified.
The user specifies if the data must be shuffled prior to the creation of the folds. The user
selects an integer number to be used as a seed while shuffling and stratifying the data.

Use case 1.6.2 Visualise the datasets used in a cross-validation procedure (M)
An authenticated user wants to visualise the datasets used in the different folds of an
executed workflow. The workflow includes a cross-validation procedure task and it has
executed successfully. The user sends a request to visualise the task outputs. The system
outputs the training and test datasets per fold used in the workflow. The user can visualise
the datasets.
The things that could go wrong are:

• The cross-validation procedure task did not execute successfully. The user sends a
request to visualise the task outputs. The system outputs a message with the reason
for the task failure.

Use case 1.6.3. Insert the hold out procedure to validate the model constructed
in the workflow (M)
An authenticated user wants to insert a validation procedure task in the workflow in order
to specify the procedure that must be used while executing the tasks that compose the
workflow. The workflow is already initiated. The user sends a request to insert a validation
procedure task on the workflow. The system provides multiple validation procedure tasks
for the user to choose. The user chooses the hold out procedure. The system inserts
the task in the workflow in the position selected by the user. The inserts the proportion
of data to use in the training and test partitions. The user specifies if the data in the
partitions must be stratified. The user specifies if the data must be shuffled prior to the
creation of the partitions. The user selects an integer number to be used as a seed while
shuffling and stratifying the data.

Use case 1.6.4 Visualise the datasets used in a hold out procedure (M)
An authenticated user wants to visualise the datasets used as training and test sets in an
executed workflow. The workflow includes a hold out procedure task and it has executed
successfully. The user sends a request to visualise the task outputs. The system outputs
the training and test datasets used in the workflow. The user can visualise the datasets.
The things that could go wrong are:

• The hold out procedure task did not execute successfully. The user sends a request
to visualise the task outputs. The system outputs a message with the reason for the
task failure.

Use case 1.6.5 Insert the train-validation-test procedure to validate the model
constructed in the workflow (M)
An authenticated user wants to insert a validation procedure task in the workflow in order
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to specify the procedure that must be used while executing the tasks that compose the
workflow. The workflow is already initiated. The user sends a request to insert a validation
procedure task on the workflow. The system provides multiple validation procedure tasks
for the user to choose. The user chooses the hold out procedure. The system inserts the
task in the workflow in the position selected by the user. The user inserts the proportion
of data to use in the training, validation and test partitions. The user specifies if the data
in the partitions must be stratified. The user specifies if the data must be shuffled prior
to the creation of the partitions. The user selects an integer number to be used as a seed
while shuffling and stratifying the data.

Use case 1.6.6 Visualise the datasets used in a train-validation-test procedure
(M)
An authenticated user wants to visualise the datasets used as training, validation and test
sets in an executed workflow. The workflow includes a train-validation-test procedure task
and it has executed successfully. The user sends a request to visualise the task outputs.
The system outputs the training, validation and test datasets used in the workflow. The
user can visualise the datasets.
The things that could go wrong are:

• The train-validation-test procedure task did not execute successfully. The user sends
a request to visualise the task outputs. The system outputs a message with the
reason for the task failure.

Use case 1.6.7 Insert the “use all data” procedure to construct tasks and
validate the model constructed in the workflow using all data (M)
An authenticated user wants to insert a validation procedure task in the workflow in order
to specify the procedure that must be used while executing the tasks that compose the
workflow. The workflow is already initiated. The user sends a request to insert a validation
procedure task on the workflow. The system provides multiple validation procedure tasks
for the user to choose. The user chooses the “use all data” procedure. The system inserts
the task in the workflow in the position selected by the user.

Use case 1.6.8 Select classification performance metrics (e.g., accuracy, preci-
sion, recall, f-measure) (M)
An authenticated user wants to specify a classification performance metric in order to ver-
ify the classification performance of the classifier created in the workflow. The workflow
is already initiated. The user requests a task to select the metrics for evaluation of the
classifier being created in the workflow. The system inserts the required task and presents
at least the metrics accuracy, precision, recall and f-measure for the user to select. The
user select one or more metrics.

Use case 1.6.9 Visualise the classification performance of a produced model
(M)
An authenticated user wants to visualise the classification performance according to certain
metrics after the execution of a workflow. The workflow includes a task where selected
metrics were introduced and it has executed successfully. The user sends a request to
visualise the task outputs. The system outputs the classification performance according
to the metrics previously selected and also a confusion matrix.
The things that could go wrong are:

• The task with selected classification performance metrics did not execute successfully.
The user sends a request to visualise the task outputs. The system outputs a message
with the reason for the task failure.
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Use case 1.6.10 Insert a feature selection task to build models using different
number of features (M)
An authenticated user inserts a feature selection task to build models with different fea-
tures in order to obtain the model with the best features according to a classification
performance metric. The user specifies more than one value as the number of attributes
to select inside the feature selection task. The user specifies the preferred classification
performance metric to be used as the decider for the best model configuration.

Use case 1.6.11 Visualise the configuration of features that produced the best
model (M)
An authenticated user wants to visualise the configuration of features that produced the
best model after the execution of a workflow. The workflow includes a feature selection
task with more than one value as the number of attributes to select. The user sends
a request to visualise the features included in the final model. The system outputs the
ranking of the features and the number of best selected features.
The things that could go wrong are:

• The feature selection task did not execute successfully. The user sends a request to
visualise the task outputs. The system outputs a message with the reason for the
task failure.

Use case 1.6.12 Insert a model creation task to build models using different
parameters (M)
An authenticated user inserts a model creation task to build models with different param-
eters in order to obtain the model with the best parameters according to a classification
performance metric. The user specifies more than one value in the parameters of the
model creation task. The user specifies a preferred classification performance metric to be
used as the decider for the best model configuration.

Use case 1.6.13 Visualise the configuration of parameters that produced the
best model (M)
An authenticated user wants to visualise the configuration parameters that produced the
best model after the execution of a workflow. The workflow includes a model creation
task with multiple optimizable parameters inserted. The user sends a request to visualise
the parameters included in the final model. The systems outputs the parameters that
produced the best model.
The things that could go wrong are:

• The model creation task did not execute successfully. The user sends a request to
visualise the task outputs. The system outputs a message with the reason for the
task failure.

Use case 1.7 Insert a numeric prediction task (regression) (S)
An authenticated user wants to insert a numeric prediction task in the workflow in order
to create a regression model trained with the dataset used in the workflow. The workflow
is already initiated. The user sends a request to insert a numeric prediction task on the
workflow. The system provides multiple tasks to create a regression model using different
regression algorithms. The user chooses one of the available algorithms for the creation of
the model that is then inserted in the workflow in the position selected by the user.

Use case 1.8 Insert a clustering task (S)
An authenticated user wants to insert a clustering task in the workflow in order to create
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a clustering model trained with the dataset used in the workflow. The workflow is already
initiated. The user sends a request to insert a clustering task on the workflow. The system
provides multiple tasks to create the clustering model using different clustering algorithms.
The user chooses one of the available algorithms for the creation of the model that is then
inserted in the workflow in the position selected by the user.

Use case 1.9 Insert an association learning task (S)
An authenticated user wants to insert an association learning task in the workflow in order
to visualize the association between the features in the dataset used in the workflow. The
workflow is already initiated. The user sends a request to insert an association learning
task on the workflow. The system provides multiple tasks to make association learning
using different association learning algorithms. The user chooses one of the available
algorithms for association learning that is then inserted in the workflow in the position
selected by the user.

Use case 1.10 Use a model produced after executing a workflow (S)
An authenticated user wants to use a model previously created in a workflow in order to
make predictions using a new dataset. The user has access to the model. The user sends
a request to use the model with the new dataset. The system predicts the outputs for the
received dataset using the specified model and returns the results to the user. The user
visualises the produced results.

Use case 2.0. Authenticate users (M)
A user wants to be authenticated in order to use the system. The user opens the GUI.
The system displays a form for the user to enter his/her username and password. The user
enters his/her username and password. The user sends a requests to the system to login.
The system validates the entered username and password. The user is now authenticated.
The things that could go wrong are:

• The user entered an invalid username and/or password, the system displays an error
message.

Use case 2.1. Allow registration for unauthenticated users (M)
A user wants to be registered in order to access the system. The user opens the GUI.
The system displays a form for the user to enter his/her username and password. The
user enters his/her username and password. The user sends a requests to the system to
register. The system registers the user. The user is now registered and authenticated.
The things that could go wrong are:

• The user entered an username that was already taken, the system displays an error
message.

Use case 2.2. Create a new workflow (M)
An authenticated user wants to create a new workflow. The user sends a requests to
the system to create a new workflow. The system asks the user to insert a name for the
workflow. The user inserts a name for the workflow. The system creates a new workflow
with that name and displays it so that the user can add tasks to it.

Use case 2.3. Save workflow (M)
An authenticated user wants to save the workflow that he is currently working on. The
user sends a request to the system to save the workflow. The system saves the workflow
and displays a message reporting that the workflow was saved.
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Use case 2.4. Open workflow (M)
An authenticated user wants to open a workflow to visualise, change or execute it. The
system displays a list of his saved workflows. The user sends a request to the system to
open the chosen workflow. The system retrieves and displays the workflow to the user.

Use case 2.5. Execute workflow (M)
An authenticated user wants to execute a workflow to visualise the results. The workflow
tasks are inserted in a correct order. The user sends a requests to the system to execute
the workflow. The system validates the inputs and the order of the tasks; executes the
workflow and displays the execution progress. When the execution concludes, the system
displays the outputs of each task.
The things that could go wrong are:

• The user executed a workflow that is invalid (tasks in an invalid order or invalid
inputs), the system displays an error message.

• An unexpected error occurred during the execution of a task, the system displays
an error message.

Use case 2.6. Stop workflow (M)
An authenticated user wants to stop the workflow during its execution. The workflow that
the user wants to stop is opened. The user sends a requests to the system to stop the
execution of the workflow. The system stops the execution of the workflow and displays a
message reporting that the workflow was stopped.

Use case 2.7. Delete workflow (M)
An authenticated user wants to delete a workflow from his saved workflows. The system
displays a list of his saved workflows. The user sends a request to the system to delete
a given workflow. The system removes all traces of that workflow from the system. The
system displays a message reporting that the workflow was deleted.

Use case 2.8.1 Upload a csv dataset (M)
An authenticated user wants to upload a dataset. The user chooses a dataset with the
csv format to upload and specifies if it has headers or not. The user uploads the dataset
to the system. The system receives the dataset and displays a message reporting that the
dataset has been saved, and gives an identifier of the dataset to the user for future access.
The things that could go wrong are:

• The upload of the dataset failed. The system displays an error message.

• The dataset is in an invalid format or corrupted. The system displays an error
message.

Use case 2.8.2 Upload an arff dataset (S)
An authenticated user wants to upload a dataset. The user chooses a dataset with the
arff format. The user uploads the dataset to the system. The system receives the dataset,
displays a message reporting that the dataset has been saved, and gives an identifier of
the dataset to the user for future access.
The things that could go wrong are:

• The upload of the dataset failed. The system displays an error message.

• The dataset is in an invalid format or corrupted. The system displays an error
message.
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Use case 2.9. Delete a dataset (M)
An authenticated user wants to delete a dataset from his saved datasets. The system
displays a list with his/her uploaded datasets. The user sends a request to the system to
delete a given dataset. The system removes all traces of that dataset. The system displays
a message reporting that the dataset was deleted.

Use case 3.0. Open a workflow template (M)
An authenticated user wants to open a workflow template. The system displays a list of
templates created by the system. The user sends a request to the system to open a given
template. The system retrieves and displays the template.

Use case 3.2. Remove a task from the workflow (M)
An authenticated user wants to remove a task from the workflow. The user sends a request
to the system to remove a task from the workflow. The system removes that task.

Use case 3.3. Enable the definition of ranges in parameters of tasks that allow
more than one value (C)
An authenticated user wants to specify a range of numbers for a task parameter that
allows the definition of lists of numbers. The user selects the parameter and specifies the
start and end values of the range. The system interprets the range as distinct numbers.

3.3 Quality Attributes

A system can not succeed by delivering functionalities in isolation. These functionalities
must be delivered with certain qualities associated. Thus, a system under construction
must be concerned not only with functionalities but also with quality attributes that
must be considered through design, implementation and deployment. In this section we
will provide a utility tree to describe scenarios for each quality attribute, followed by the
strategies that were used to satisfy each one.

3.3.1 Utility Tree

Quality attributes to be addressed by a system must not be vague. Just specifying that
the system must be available, or that it must be secure or maintainable is not enough.
To identify the architectural significant requirements (ASR) we made use of the quality
attribute scenarios. A quality attribute scenario represents a situation that might happen
in the system, in which a specific quality attribute must be verified according to a certain
measure.
It consists of six parts:

• Source of stimulus: This is the entity that generated the stimulus.

• Stimulus: A condition that must be taken to consideration when it is received by
the system.

• Environment: The state of the system or other component that is being stimulated.

• Artefact: The component that is stimulated;

• Response: The activity undertaken after the arrival of the stimulus.

• Response measure: Measure of the response so that the requirement can be tested.
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To specify the main quality attributes to be addressed and their scenarios we present the
following utility tree (Table 3.1).

Utility trees help to concretise and prioritise quality goals [29]. High-level quality at-
tributes (e.g., Availability, security, performance) are presented at the first level, that in
the case of Table 3.1 appear at the first column. These high-level quality attributes are
then refined in greater detail in level two. The final and third level are the quality attribute
scenarios.

The prioritisation of the utility tree is done along two dimensions: by the importance
of each ASR to the success of the system and the degree of perceived risk posed by its
achievement. The prioritisation is done using relative ranking High (H), Mid (M),
Low (L). For example an attribute with ranking (H, M) means that the attribute has
high importance to the success of the system and medium risk to achieve.

Quality attribute Attribute char-
acterization

Attribute scenarios (ASR)

QA-1. Modularity Separation of
each service in
clear and well
defined modules

AS-1: A system developer introduces a
new service to the system, during sys-
tem development. The new service is de-
ployed in the system and will contain ev-
erything necessary to execute its function-
alities. (H, L)

QA-2. Maintainability
Capacity to adapt
to new functional-
ities

AS-2.1: A system developer introduces a
new data science service in the system
during system development. The new ser-
vice is deployed in the system and becomes
available to be used by other system com-
ponents after registration without involv-
ing changes in more than one other ser-
vice. (H, H)

Capacity of mak-
ing changes in a
service without
changing the
remaining system

AS-2.2: A system developer changes the
functionalities of a service during sys-
tem development, maintaining its inter-
face. The changed service is deployed
without requiring any modification in the
remaining system. (M, M)

QA-3. Interoperability
Accessibility from
external services

AS-3.1: An external system makes a re-
quest for the execution of a data sci-
ence workflow, while the system is in nor-
mal operation. The system is accessible
through its well known and documented
interface and executes the requested work-
flow. (L, M)

Capacity of
communication
between different
services

AS-3.2: A system developer creates a
microservice during system development.
The new microservice becomes available
in the system and can communicate with
other services through technology agnostic
communication protocols (e.g., HTTP).
(M, H)

37



Chapter 3

QA-4. Usability

Satisfaction AS-4.1: An authenticated user or external
system requests the execution of a data
science workflow while the system is in
normal operation. The system starts the
execution of the workflow and keeps infor-
mation about the execution of every task
that compose the workflow, so that infor-
mation about the progress of the execu-
tion of a workflow can be returned to the
caller. (H, L)

Efficiency
AS-4.3: An authenticated user inserts a
data science task on a workflow, while the
system is in normal operation. The sys-
tem inserts the task on the workflow with
default values on every parameter. (H, L)
AS-4.4: An authenticated user creates a
workflow to produce models with differ-
ent features and parameters to have access
to the best model configuration, while the
system is in normal operation. The sys-
tem executes the workflow, creating mod-
els with different features and parameters
and returns the best model to the user,
without requiring the user to create mul-
tiple workflows with the different features
and parameters to produce the best model
configuration. (H,M)

Effectiveness AS-4.5: An authenticated user has a spe-
cific goal that is achieved through a data
science task. The user adds a task to the
workflow and executes it, while the system
is in normal operation. The task was con-
figured properly according to the users’ in-
tentions and the system displays the ex-
pected results at least 80% of the times.
(H, L)

Learnability AS-4.2: A user executes an operation in
the system, while the system is in normal
operation. S/he will not have difficulties
learning how to use the interface or finding
the required functionalities. (H, M)

QA-5. Reliability Successful job ex-
ecution

AS-5: A data science service crashes while
executing a task from a data science work-
flow when the system is in normal opera-
tion. The system retries the execution of
the task in another service without any
necessary intervention from the user and
without losing the results of previously
computed tasks. (H, H)
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QA-6. Availability System uptime AS-6: A system service crashes while the
system is in normal operation. The sys-
tem detects the crash and heals the ser-
vice maintaining the functionalities of ev-
ery service available 99.9% of the time.
(M, H)

QA-7. Performance Execution speed
of data science
tasks

AS-7: A data science task arrives to the
system to be processed while the system
is in normal operation. The task is exe-
cuted by the system with a performance
comparable to running the same task on a
computer with 8 GB of RAM and a CPU
with 4 cores at 3GHz. (H, M)

QA-8. Scalability Ability to main-
tain the per-
formance in-
dependently of
the number of
requests

AS-8: A user places two times more re-
quests than what is expected by the sys-
tem during normal operation. The system
processes this load without loss of perfor-
mance. (H, H)

QA-9. Elasticity
Ability to use
resources effi-
ciently

AS-9.1: The system verifies that some
modules/services are consuming memory
or CPU below the average, while the sys-
tem is in normal operation. The system
gradually removes the modules/services
that are consuming memory or CPU be-
low the average. (M, H)
AS-9.2: The system verifies that some
modules/services are consuming memory
or CPU above the average, while the sys-
tem is in normal operation. The system
gradually increases the modules/services
that are consuming memory or CPU
above the average. (M, H)

QA-10 Security Confidentiality
AS-10.1: An authenticated user inserts a
dataset in the system, while the system is
in normal operation. The system receives
the dataset and makes the dataset acces-
sible only by authorized users. (H, M)
AS-10.2: An unauthorised user inserts a
wrong username or password to enter in
the system, while the system is in normal
operation. The system denies the entrance
to the user without exposing any data as-
sociated with the inserted username. (H,
M)

Table 3.1: Quality attributes’ utility tree
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3.3.2 Modularity

Modularity is the practice of encapsulating portions of the application into self-contained
services that can be individually designed, developed, tested, and deployed with little or
no dependency on other components or services [18].
The strategies used to achieve modularity were:

• Creating a system following a service oriented architecture, more precisely a mi-
croservices one, where each component is designed independently and with clearly
defined boundaries.

This strategy and the containerisation of each microservice allowed us to ensure the mod-
ularity of the system.

3.3.3 Maintainability

Maintainability is the aptitude of a system to undergo repair and evolution [6]. By de-
signing a maintainable system we can update it faster and with lower costs. Maintainable
software can be reused, thus alleviating costly update time. Also, any faults found in the
software can be easily diagnosed and corrected, reducing downtime and meeting delivery
schedules. Software maintainability can also improve system availability by reducing the
downtime [35]. Data scientists might require multiple machine learning algorithms to ac-
complish their tasks. Due to the innovation that is associated with the machine learning
field, the system should be specially prepared to support new machine learning function-
alities, and easy reparations in the deployed functionalities.
Inspired in the book “Software Architecture in Practice” by Len Bass, et al. [7], the
strategies used to achieve maintainability were :

• Early planning: anticipating what and how programs might be modified at a later
stage. It was visible from the beginning that the services that would go more under
changes would be the ones responsible for exposing machine learning algorithms.

• Modular design: defining subsets and simplifying functionality. Most of the func-
tionalities in the current architecture are split to different microservices.

• Object-oriented design: encapsulating both methods and data structures to
achieve a higher level of independence than that of modular design. Object-oriented
design was specially explored in the workflows service where there is high complexity
in operations related to the conversion of data science workflows received from user
to their system representations.

• Coding Standards: by following coding standards we improve the readability of
our code. This allows engineers that are not familiar with the code to understand it
more quickly and thoroughly, making the software more easy to maintain.

3.3.4 Interoperability

Interoperability is related with the way that each service is capable of communicating with
each other through completely understood interfaces, regardless of programming languages
used for implementation. This is very important because in a large system, such as this
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one, there will be teams focused in different microservices. One team do not have to
know the inner workings of a service produced by another team, they just need a standard
interface that gives access to the functionalities exposed by the service.
The strategies used to achieve interoperability were:

• Each service has an interface that provides its functionalities by using a uniform
and predefined set of stateless operations available through HTTP requests. The
standard adopted was the REpresentational State Transfer (REST). There are many
standards such as ’Simple Object Access Protocol (SOAP)’ or ’Remote Procedure
Calls (RPC)’. The REST standard was chosen because it scales very well, since the
client and server are very loosely coupled. With REST, the server is free to change
the exposed resources at will. In contrast, with SOAP and in certain RPC schemes,
the client and server must first agree on a detailed protocol that typically needs to
be compiled in both ends. As a result of these factors, REST is a better choice,
especially for services that undertake rapid evolution, as is the case of our system.

3.3.5 Usability

Usability is the degree to which a software can be used by specified consumers to achieve
quantified objectives with effectiveness, efficiency, and satisfaction [1]; it also relates with
how easy is for the user to work on the platform and achieve his goals; a system with a
high learning curve or too complex is not desirable. It was based on the points mentioned
above that the Grafical User Interface (GUI) was developed.
The strategies used to achieve usability were:

• Each task that can be inserted in a data science workflow comes with relevant pa-
rameter values guide the users in the process.

• When the user executes a workflow, the progress of that execution is shown to the
user.

• Colours and icons were chosen according to common uses in other familiar appli-
cations. E.g colour green means success; the close or remove button is represented
with the ’x’ symbol.

• The addition of tasks to a workflow is an easy process that takes no more than 3
clicks.

• To allow the execution of workflows to select the best model according to different
features and parameters, without requiring the user to create different workflows
for each configuration of features and parameters. The system will parallelize the
creation of models with different features and parameters on the background in order
to present the best model to the user.

• As the user builds a workflow, s/he will only be shown the tasks that can be inserted
next according to the machine learning process, guiding the user during the process.
This is done to help the user achieve his goals, increasing effectiveness, efficiency,
understandability and improving the users’ satisfaction.

To further test and validate this attribute we conducted usability tests that can be seen
in section 6.2.
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3.3.6 Reliability

Reliability relates with the trust that the user puts on the system to perform a certain
task and its correct execution.
To create a reliable system, the strategies used were:

• During the execution of a workflow there is a probability that a task in the workflow
might not complete successfully. It can be because the service working on that
task crashed, the network where that service is became inaccessible, or another
unknown reason. With the objective of not failing the whole workflow, the system
will reschedule each task that fails in another service, and the component responsible
for that will be the orchestration service.

3.3.7 Availability

Availability is concerned with system failure and its associated consequences. A system
failure occurs when the system no longer delivers a service consistent with its specification.
If the platform is not available when the user needs it, it means that it is not fulfilling its
functional requirements.
Inspired in the technical report “Realizing and Refining Architectural Tactics: Availabil-
ity” by James Scott, et al. [40], the strategies used to achieve availability were:

• Fault detection: by monitoring the status and timeouts of each task, the or-
chestration service is able reschedule the failed or timedout tasks, increasing the
availability and reliability of the system. Also, in the data science services the use of
the library Condu allowed us to add an additional layer in exception detection
by reporting the exceptions occurred to the orchestration service.

• Fault recovery: we employ redundancy of components, avoiding single points of
failure. We do this by replicating each microservice.

• Fault prevention: if a service is deemed unhealthy by detecting certain unusual
behaviours, we can put it out of service and restart it in order to scrub latent faults
such as memory leaks.

3.3.8 Performance

Performance as a software quality attribute refers to the timeliness aspects of how software
systems behave.
Inspired in the book “Software Architecture in Practice” by Len Bass, et al. [7], the
strategies used to achieve performance were:

• Run multiple requests concurrently: Use multiple instances to process requests
and use load balancers to balance the requests between the available instances.

• Increasing available resources: by using microservices, our system enables an
easy increment of resources according to the functionalities that have higher demand.

• Bound execution time: limiting how much execution time can be used to respond
to an event. In the case of the data science tasks the orchestrator enforces this by
setting timeouts for each task.
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We were successful in employing this strategies and compared the performance of the Data
Science for Non-Programmers (DS4NP) platform with H2O, whose results can be seen in
section 6.3. However, we could not test the ASR scenario specified for this attribute, due
to time constraints.

3.3.9 Scalability

Scalability tells us about how can this architecture cope when its requirements increase in
size, more specifically the ability of the system to maintain its performance when receiving
an increasing number of requests.
The strategies used to achieve scalability were:

• We developed services with well defined boundaries that can be scaled independently
according to their workload.

• The system was designed to be able to scale by adding more machines into the
resource pool (horizontal scaling). Like in many systems, it is also possible to add
more RAM or CPU power to existing machines, but, as the system expands scaling
horizontally is more economically viable.

3.3.10 Elasticity

is the degree to which the system is able to adapt to workload changes by provisioning
and de-provisioning resources in an autonomic manner, such that at each point in time
the available resources match the current demand as closely as possible [26].
The strategies used to achieve elasticity were:

• The use of technologies used for managing containers such as Kubernetes and Docker
to enable automatic elasticity of services according to the CPU and RAM that is
consumed.

3.3.11 Security

The definition of a security attribute depends on the context in which the attribute is
addressed. For this platform the security feature that we identified as fundamental was
the confidentiality of the datasets. Many scientists work with data that is sensitive and
must be protected from unauthorized users. Not satisfying this requirement would make
the use of the system impracticable for many data scientists.
The strategies used to achieve security were:

• Every dataset is identifiable and only accessible having a token that is at least 16
characters. According to the paper “Advances of Password Cracking and Counter-
measures in Computer Security” by Aaron L.-F. Han. et. al [21], brute forcing a
password 16 characters (128 bits) long would take 5.4 ∗ 1018 years with 106 000 de-
cryptions per second. According to these results, we conclude that using tokens for
the datasets with at least 16 characters, will provide more than enough protection.

• Introduce an authentication method for every exposed microservice to validate if the
request originates from an authenticated user/external system.
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3.4 Restrictions

The only restriction identified at the moment is cost. Nowadays, the cost of using data
science services is high. Using Free and Open Source Software (FOSS) would drive the
cost way down and make it affordable for the average user.
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Architecture

The architecture is a reflection of the functional and non-functional requirements pre-
viously identified. It was designed to ensure that all functional requirements can be
implemented and the quality attributes satisfied. The design patterns adopted is what
is commonly referred as a Service Oriented Architecture (SOA), more precisely a
microservices one. Choosing this pattern is a good choice, since its benefits [19] are
inline with the quality attributes that were established for this project. Developing in
this manner reduces many struggles of integrating each module of the system, eliminates
restrictions such as programming languages, and provides us with better fault isolation.

The diagram for the architecture should have a focus on the components present in the
system, how they interact and technology adoptions. After investigating standard ways of
structuring the architecture we adopted the C4 model for its easy and hierarchical way of
representing the architecture. The C4 model was created to help teams communicate how
they are planning to build a software system (up-front design) or how an existing software
system works (retrospective documentation and knowledge sharing). It has 4 levels of
abstraction [9]:

• Level 1 is the system context diagram. It shows how the system being built interacts
with other systems or people.

• Level 2, is a container diagram. It zooms into the software system, and shows the
containers (applications, data stores, microservices, etc...) that make up the software
system. Technology decisions are also a key part of this diagram.

• Level 3, is a component diagram. It zooms into an individual container to show
the components inside it. These components usually depict groupings of code used
in the containers codebase.

• Level 4, the last one, represents the code. It is usually displayed with UML class
diagrams.

Taking into account the requirements for the system and the investigation done of other
data science applications we will now present the proposed architecture.

As seen in Figure 4.1 the system can be used by a data scientist or an external software
system. The user interacts with a graphical interface that will allow him to send HTTP
requests to the system; external systems will use the same HTTP requests to have access
to the same exposed functionalities.
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In the level 2 view of the architecture (Figures 4.2 and 4.3) we will be able to visualise all
the databases and microservices present in the system. The system has many containers
so this view is separated in two figures.

Uses
[HTTPS]

Uses
[HTTPS] DS4NP Platform

[Software System] 

Data science service External System

[Software
System] 

Uses the data
science

functionalities
exposed on the
DS4NP platform

User
[Person]

 
Data

scientist

Figure 4.1: C4 model diagram - Level 1
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Figure 4.2: C4 model diagram - Level 2. Part 1
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Figure 4.3: C4 model diagram - Level 2. Part 2

The API gateway serves as the entry point to the system and is responsible for routing
every request to the appropriate microservice. The gateway decides where to send the
request based on the path, e.g., if the request has ’/index.html’ for a path, the gateway
redirects to the GUI service; the ’/workflows’ path would be redirected to the workflows
service; ’/logs’ path would be redirected to the logs service and so on. . .
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The GUI service delivers the graphical interface for the user; the service will send HTML
and Javascript files that will run on the user’s web browser. Further requests from the
user to the system will originate from the web browser (React application) and will be
sent to the API gateway.

The Logs service receives logs that are sent from the user’s web browser. After processing
a user request to the system (e.g., creating workflows, adding tasks, deleting datasets,
etc...) the React application will send the result of the request (successful/unsuccessful)
and relevant data to the Logs service. Confidential information such as datasets is not
stored by the Logs service. The goal of this service is to provide data about user behaviour
to the developers to help them improve the interface.

The Templates Service stores and provides predefined data science workflows. These
workflows can be searched and accessed by the users to see examples of workflows.

The Users service allows the users or external systems to create accounts, and to au-
thenticate themselves. Authentication is required to use all the other services accessible
from the gateway except for the GUI service.

The Task service provides the description of data science tasks that can be used by users
or external systems to build a data science workflow.

The Datasets service is used to store the datasets and its metadata (e.g., dataset’s
name and feature/class labels). The user account that owns each dataset is stored in the
metadata database along with the metadata. The uploaded datasets are stored in the
Distributed File System.

The Workflows service is responsible for managing the workflows created by users or
external systems. It receives sequential data science workflows and translates them to
a lower level format that enables the orchestration of data science microservices by the
orchestration service. Each logical workflow is associated with its low-level representation,
and is stored in a database so that it can be retrieved later to verify its execution status.

The Orchestration service manages the execution of low-level workflows translated in
the workflows service. When the orchestration service receives a request from the workflows
service to execute a workflow, the tasks that compose the workflow are put in a queue.
Then, data science services will be able to pull scheduled tasks for execution. This service
will hold the execution status of the workflows and the outputs of each processed task on
the workflow. These results are requested from the workflows service on user request to
update the status of sequential data science workflows.

The Data science services are in reality several microservices that execute specific
tasks that compose the workflows present in the orchestration service. They contact the
orchestration service to get specific scheduled tasks for execution. Upon receiving a task,
they proceed to its execution and return the results to the orchestration service.

The Distributed File system is where large files like datasets are stored. It is accessed
both by the datasets service and by the data science services. The datasets service uses
the distributed file system to store user uploaded datasets or to retrieve user’s files. On
the other side, the data science services access the distributed file system not only to read
datasets uploaded by users but also to store data created on the services or to access data
created by other services, such as datasets, models and predictions.

For the purpose of describing the system architecture as a whole, only the level 1 and 2
figures of the C4 model are presented in this section. In the Implementation chapter (5)
each service will be described in more detail and the level 3 view of the services shown.
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Chapter 5

Implementation

This chapter describes the microservices that compose the Data Science for Non-Programmers
(DS4NP) platform in more detail, focusing on the motives behind the technologies adopted
and how they work.

It is important to notice that the services and components described in this chapter were
developed by the candidate Bruno Lopes and the MSc Student, Artur Pedroso.

Artur Pedroso developed the following services:

• Data science services.

• Distributed file system.

The candidate Bruno Lopes developed the following services and the associated databases:

• API gateway

• GUI service

• React Application (Grafical User Interface (GUI))

• Logs service

• Templates ervice

• Users service

• Tasks service

• Orchestration service (Netflix Contuctor) and the Python library Condu to comu-
nicate with the orchestration service.

In a joint effort, the following services were developed:

• In the workflows service, Artur was responsible for the ’translator’ component and
I developed the rest of the functionalities.

• In the datasets service, Artur was responsible for the management of datasets’ and
I was responsible for the metadata.
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5.1 Microservices

As already described in the architecture chapter, the system follows a microservice oriented
architecture that is composed of a collection of loosely coupled services. In the next sub-
sections we will describe the components that compose each service and, for some that
need to be described in more detail, we will show the level 3 view of the c4 model to help
us better understand their inner workings.

5.1.1 API Gateway

In theory, the clients could make requests to each microservice directly. Each microservice
would have a public endpoint (e.g., https://<service name>.api.ds4np.pt). This URL
would map to the microservices’ load balancer, which would distribute the requests across
the available instances.

However, this approach would impose more complications and challenges. The first prob-
lem that is more apparent is the complexity of keeping track and calling each one of the
many services that would be needed for each operation.

Another drawback with this approach is that refactoring the services would be a difficult
task. Over time we might want to change the system structure and the way the function-
alities are partitioned into services (e.g., we might merge two services or split a service
into two or more services). If the clients communicate directly with the services, then
performing this kind of refactoring can be extremely difficult.

Because of these kinds of problems it makes more sense to insert an API gateway in the
system and not having the clients talk directly to the microservices.

The gateway used was Træfik [16]. There are other alternatives available such as Netflix
Zuul, but Træfik has better documentation and is easier to configure, making it a better
choice.

The routes are decided based on the path. There is a configuration file with all paths to
be accepted and its destination. To illustrate, all the requests that have /tasks as path
are sent to the Tasks service; a request with /auth is sent to the Users service, etc...

5.1.2 Graphical User Interface Service

This service job is to send the index.html and the JavaScript files to the users’ web browser.

There are many web servers available that we could use to serve these files but the one
that was adopted was the NGINX [36]. Because of its popularity and reliability it was
the first one tried. After configuring it and seeing it in action, we considered it to be an
adequate choice for the platform.

5.1.3 Logs Service

This service was first implemented because there was a need to analyse the users behaviour
for the usability tests. The analysis allowed us to determine if they were doing the exer-
cises correctly and to calculate the time required to complete each one. Having this goal
achieved, the service is still useful for the system in production. Doing the analysis of the
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users’ behaviour is one of the tools, and a very important one, that the developers have
available to improve the GUI.

Each log is represented with a json object and has the following fields:

• Action: is an unique string that identifies the action performed that produced the
log.

• Success: boolean field (true or false) that tells us if the action was successful or
not.

• Data: In this field we put data deemed relevant to the action, e.g., when an action
such as uploading a dataset fails, we store the error message and when a user creates
a workflow we store the name of the workflow that was created.

• Time: This field stores the date and time when the log object was created on the
users’ web browser before being sent to the logs service.

Figure 5.1 helps us visualise the components present in this service.
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[Container: Mongo,
NoSQL]

Database

Stores the logs

CRUD

[Component: Pymongo]

Creates, reads, updates
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Reads from 
and writes to 
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[Container: Traefik, Golang ]

Routes the requests to the
appropriate microservice

Uses 
[HTTP, JSON]

Logs controller

[Component: Flask, JWT]

Exposes a REST API,
receiving HTTP requests
for the /logs resource.

Uses 

Figure 5.1: Logs service: level 3 view.
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5.1.4 Templates Service

Besides storing the workflows created by the users, it is also important to provide them
with example ones to show functionalities or help the users learn how to perform certain
tasks. Each template has keywords associated with them to allow its search by the users.
Even though this feature was implemented and tested in this service, it was not possible
to add the search functionality on the GUI due to time constraints.

Templates Service 
[Container] 

[Container: Mongo,
NoSQL]

Database

Stores the templates

CRUD

[Component: Pymongo]

Creates, reads, updates
and deletes the template
objects.

Reads from 
and writes to 
[Pymongo] 

API Gateway
[Container: Traefik, Golang ]

Routes the requests to the
appropriate microservice

Uses 
[HTTP, JSON]

Templates controller

[Component: Flask, JWT]

Exposes a REST API,
receiving HTTP requests for
the /templates resource.

Uses 
[HTTP, JSON]

Figure 5.2: Templates service: level 3 view.

5.1.5 Users Service

This service is responsible with the management of accounts and authentication. The
authentication method follows the internet standard reference RFC 7519 [27] named Json
Web Token (JWT).

The authentication is conducted in the following steps: the client sends his username and
password; the service verifies if there is a match in the database; if there is a match, a
token is sent to the client securing its claim to access the system.

The token contains the username and a signature signed with a cryptographic key shared
between the other services called ’secret’. This secret allows other services in the system
to verify the token and know the username of the client that sends each request without
needing to read from the database. Going to the database for every request the system
receives would cause an enormous overload on the users database. Another major advan-
tage of using JWT is that we can introduce a time limit inside the tokens or any other
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information deemed necessary for the authentication. This way, if an attacker catches a
token he only has a brief window of time before that token becomes useless.

Users Service 
[Container] 

[Container: Mongo,
NoSQL]

Database

Stores user info, e.g
username and hashed

password

CRUD

[Component: Pymongo]

Creates, reads, updates
and deletes the users
objects.

Reads from 
and writes to 
[Pymongo] 

API Gateway
[Container: Traefik, Golang ]

Routes the requests to the
appropriate microservice

Uses 
[HTTP, JSON]

Users controller

[Component: Flask, JWT]
Manages the user accounts
and provides the
authentication mechanism
JWT

Uses 

Figure 5.3: Users service: level 3 view.
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5.1.6 Datasets Service

This service is responsible for managing the datasets uploaded by the users and sending
them to the distributed file system. For each dataset the following information is stored:
attributes, type of file (csv or arff), name, owner and an unique identifier; we called this
information metadata. By using the metadata we are able to keep track of the users’
datasets to allow their use in workflows.

[Container: Mongo,
NoSQL]

Database

Stores the metadata from
each dataset

CRUD - Metadata
[Component: Pymongo]

Creates, reads, updates and
deletes the metadata from
each dataset.

Reads from 
and writes to 
[Pymongo] 

Uses 
[HTTP, JSON]

Datasets controller

[Component: Flask, JWT]

Receives and sends the datasets to the distributed file system 
Extracts metadata from the dataset and stores it 

Uses 
[HTTP, JSON]

CRUD - Dataset
[Component: Python]

Accesses the Distributed
file system container API
to manage datasets

Reads from 
 and writes to 

Datasets Service 
[Container] 

API Gateway
[Container: Traefik, Golang ]

Routes the requests to the
appropriate microservice

Distributed File System

[Container: NFS]

Manages data such as
user uploaded datasets
and data produced in the
data science services. 

Uses

Figure 5.4: Datasets service: level 3 view.
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5.1.7 Tasks Service

The main goal of this service is to detail every task that can be inserted in a workflow.
This specification is sent to the users’ web browser and contains: name of the task, unique
identifier, parameters and its type. Each task belongs to a type (pre-processing, feature
selection, model creation, etc...) and each type has a name and description, and also
has the list of the other types of tasks that can be inserted next in a workflow. This
specification allows us to introduce a order for the tasks that guide the user during the
workflow building process.

The six types and the tasks that can be used in the workflows are the following:

• Dataset input: This type of tasks allows the user to set the source for the data
to be used in the workflow. It has only one task associated at the moment. This
task allows the user to define the URI of the dataset to be used in the workflow. It
also allows the user to remove some attributes from the dataset and to specify which
attribute represents the class. The output of this task is the URI to the dataset used
in the workflow. In the future, we plan to add a task of this type that allows the
specification of data sources from external services to be the dataset input.

• Validation procedure: Tasks from this type specify a process to use in the con-
struction of the subsequent tasks that compose the workflow.

– Use entire data: Specifies that the tasks being created in the workflow should
use all data. This task does not present any output to the user.

– Train-test: Specifies that the tasks being created in the workflow will be part
of a hold out procedure. In this task, the user can specify the proportions to be
used in the train and test sets. He can also specify if the data must be stratified
or randomised and what seed should be used as the random number generator
for this operation. This task will output the training and test sets produced in
the workflow.

– Train-validation-test: Specifies that the tasks being created in the workflow
will be part of a train-validation-test procedure. In this task the user can specify
the proportions to be used in the training, validation and test sets. He can also
specify if the data must be stratified or randomised and what seed should be
used as the random number generator for this operation. This task will output
the train, validation and test sets produced in the workflow.

– Cross-validation: Specifies that the tasks being created in the workflow will
be part of a cross-validation or nested cross-validation procedure. In this task
the user can specify the number of folds to be used, the number of repetitions
and if it should be used the nested or the normal method. It is also possible to
specify if the data must be stratified or randomised and what seed should be
used as the random number generator for this operation. This task will output
the train and test sets produced in the workflow for each fold.

• Preprocessing: contains tasks that apply transformations to attribute values present
in the dataset.

– Feature scaling: Allows the users to scale the dataset being processed in the
workflow using the min-max method. The operations are only applied to the
numerical attributes present in the dataset and never to the class. The outputs
of this task are the datasets produced in the workflow during train and test, the
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attributes used in the operation and an object to apply the scaling operation
to new data.

– One hot attribute encoding: Allows the users to convert attribute values
present in the dataset being processed in the workflow to a binary represen-
tation. Each attribute to encode will give rise to a new binary attribute that
will be 1 in the rows where the value was previously present and 0 in the other
rows. Here, the user can specify the attributes to be included or excluded from
the operation. This task will output the names of the attributes included in
the transformed dataset and the transformed datasets used during train and
test of the best model.

– Feature standardization: Allows the user to apply z-score normalisation in
the dataset being processed in the workflow. It applies z-score normalisation to
all numerical attributes, except to the class attribute. The outputs of this task
are the datasets produced in the workflow during train and test, the attributes
used in the operation and an object to apply the normalisation operation to
new data.

• Feature selection: contains tasks to assess the relevance of attributes for selection.

– Relieff : Allows the user to assess which are the most relevant features in the
dataset being processed in the workflow. In this task, the Relieff algorithm is
employed with inputs useful for this algorithm, that are defined by the user.
The user can also specify if he wants a threshold to be applied after running
the algorithm to discard the attributes that score below such threshold. Be-
sides these inputs, it is also possible to specify several numbers of attributes to
select, separated by commas. When this parameter is set with several number
of attributes, the model being built in the workflow will be created with the
different numbers of best features according to Relieff to detect what is the best
combination of features that must be included in the final model. The outputs
for this task is the ranking produced with the algorithm using the training
dataset, and the number of best features selected in the best model. When us-
ing cross-validation, the average and standard deviation of the scores produced
in the different folds used to assess the best model are displayed.

– Info gain: This task has the same job as the previous one. However, instead
of receiving inputs useful for the application of the Relieff algorithm, it receives
inputs useful to calculate the information gain of the features included in the
dataset being processed. This task will display the outputs with the same logic
presented for the previous task, however in this case the scores will be the
information gain calculated for each attribute.

• Model creation: contains tasks for the creation of models using different algo-
rithms.

– Support Vector Machine (SVM): This task produces and tests an SVM
model using the training and test data being processed in the workflow. It
receives inputs necessary during the creation of the model such as the regular-
isation parameter C and the kernel configurations. It enables the user to set
different regularisation parameters and different kernel configurations to pro-
duce different models from the different configurations, from which the best
model is presented to the user in the end. The outputs for this task are an
object with the produced model, the parameters used to build the best model
and the predicted and expected values produced after testing the model using
the test data.
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– Gaussian naive bayes: This task produces and tests a gaussian naive bayes
model using the training and test data being processed in the workflow. It
does not receive any input parameters. The outputs for this task are an object
with the produced model and the predicted and expected values produced after
testing the model using the test data.

– Multinomial naive bayes: This task produces and tests a multinomial naive
bayes model using the training and test data being processed in the workflow. It
does not receive any input parameters. The outputs for this task are an object
with the produced model and the predicted and expected values produced after
testing the model using the test data.

– Nearest neighbors: This task produces and tests a k-nearest-neighbors model
using the training and test data being processed in the workflow. It receives the
parameter k that specifies the number of nearest neighbors to be used to train
the model. The outputs for this task are an object with the produced model,
the parameters used to build the best model and the predicted and expected
values produced after testing the model using the test data.

– Decision tree: This task produces and tests a decision tree model that uses
the CART algorithm and using the training and test data being processed in
the workflow. It does not receive any input parameters. The outputs for this
task are an object with the produced model and the predicted and expected
values produced after testing the model using the test data. This task also
outputs an SVG image with the tree representation.

• Model Evaluation: contains tasks that specify the metrics to use for performance
evaluation.

– Classifier model eval: Allows the user to specify the classification perfor-
mance metrics to be presented according to the best model produced in the
workflow. It also lets the user specify what metric should be used as the
decider of the best model configuration. This task outputs the classification
performance metrics associated with the best produced model and also the
confusion matrix associated with the tests conducted with the model.

An alternative to storing this information and accessing it trough the Tasks service, would
be to hard code the information on the GUI. Its drawback would be that it would prevent
external systems from accessing it and each time a new task was added to the system the
GUI would need to be changed. Instead of doing that, this dynamic solution increases the
systems capability to adapt to new changes and allows us to add new data science tasks
at run time.
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Figure 5.5 represents the main components of this service.

Tasks Service 
[Container] 

[Container: Mongo,
NoSQL]

Database

Stores the specification of
the tasks'

CRUD

[Component: Pymongo]

Creates, reads, updates
and deletes the task and
type objects.

Reads from 
and writes to 
[Pymongo] 

API Gateway
[Container: Traefik, Golang ]

Routes the requests to the
appropriate microservice

Uses 
[HTTP, JSON]

Tasks controller

[Component: Flask, JWT]
Exposes a REST API,
receiving HTTP requests for
the /tasks and
/types resource.

Uses 

Figure 5.5: Tasks service: level 3 view.

5.1.8 Workflows Service

Almost certain to be the most complex microservice that was implemented, the workflows
service is responsible for managing the workflows of the users and interfacing with the or-
chestration service to manage its execution. When the user does not specify that he wants
to execute the workflow, this service basically just updates, deletes or saves the workflow
objects in the database. However, when the user posts a workflow with the parameter
start=true, besides saving the workflow, it will parse the workflow to create a new lower
level and parallelised version of the workflow and then send it to the orchestration service
to execute. During the parsing phase the translator also verifies if the order of the tasks
is valid and catch most invalid values that could be inserted in the tasks’ parameters.

We use sequential workflows to not force the notion of parallelization on the user, but
many tasks gain from it. That is one of the reasons why we need to translate the high
level workflows into lower level ones (system workflows).

The translation to the system workflows accomplishes two goals: The first goal is the
paralellization of certain tasks as depicted in Figure 5.6.
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Figure 5.6: Example of a data mining workflow translation.

In this example we apply feature scaling only to the train portion of the dataset and then,
during the training of the SVM model, we scale the features that will be used later for
testing the model. The rules for the translation of the workflows are a work that will be
continuously improved during the system lifetime and we are sure to be on the right path
to satisfy even the most demanding performance requirements.

The second goal of the translator is to do parameter optimisation, more specifically grid
search. There are certain parameters used for the creation of a model that are used to
tune it; depending on the dataset used it could have different values. To give an example,
when building an SVM model, the C parameter number is used to tune its generalisation
capabilities; a number that does not fit well with a particular dataset will decrease the
performance of a model. Usually, to find a good C value, a data scientist will need to
create many models with different C values and check their performance to find a good
number. What grid search does is precisely this, given a list of parameters it will test all
of them in different combinations to find the ones that produce the best models.

The user could run a workflow with one C value, wait for its completion, check the perfor-
mance and then run again with another value. He could keep doing this until he is satisfied
with a good value. However, this would be a cumbersome task and would take much more
time than it would have if the models were created with the different parameters at the
same time. During the workflow construction process, the user can introduce many values
for each parameter of a model creation task and the system will make sure to test all of
them and show the ones that were used to create the model with the best performance.

Since the workflow is separated in tasks, the execution is also separated in tasks. Each
task has the same pre-defined inputs and outputs regardless of the workflow that it is in.
However, the tasks present in the workflows change constantly depending on the goals
of the user. To execute these ever changing workflows we need to define a new system
workflow each time we try to execute a high-level workflow. This definition is done using
the Python library Condu, developed by the candidate. A brief description of its role for
this service specifically is to facilitate the communication with the orchestration service
and to specify the system workflows that will later be executed. In section 5.2 we will
describe Condu to a greater detail.

Figure 5.7 illustrates the main components present in the workflows service.
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Figure 5.7: Workflows service: level 3 view.

5.1.9 Orchestration Service

In contrast with the other microservices, the orchestration service did not require any kind
of implementation to develop; it is composed entirely by Conductor. This technology
showed to be a great fit for the DS4NP platform. It allows the creation of dynamic
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workflows at run time and their execution by scheduling the tasks in a queue and the
workers (data science services) polling the queue to execute them.

Section 2.2.3 of the state of the art explains the motives behind the adoption of this tech-
nology. The details of how the orchestration is performed are explained in the orchestration
section (5.2).

Figure 5.8 illustrates the main components present in the Orchestration Service.
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Figure 5.8: Orchestration service, level 3 view.
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5.1.10 Data Science Services

This service is what is commonly called a consumer/worker in producer-consumer systems.
In this case the orchestration service produces the tasks by putting them in a queue and
the consumers (data science services) will retrieve the tasks to execute. The process of
polling the orchestration service for tasks, trigger a function to execute when it receives a
task and send the results and errors is performed using the Condu library. The execution
of a task itself, is done recurring to common libraries such as scikit-learn or pandas.
This reduces the amount of code needed to create the services and facilitates our job, since
we do not need to implement the Machine Learning (ML) algorithms ourselves

Even tough we recur to libraries such as scikit-learn to implement the needed function-
alies, these services are still complex due to the parameterization and configuration that
they require.

Figure 5.9 illustrates the main components present in the data science services.
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Figure 5.9: Data science services, level 3 view.
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5.1.11 Distributed File System

While technically not a microservice, the DFS (distributed file system) is responsible for
storing the datasets and allowing their deletion and updates. At the moment it uses the
NFS protocol RFC7530 [23], but this is just a temporary solution for the prototype.
Even tough in our benchmarks and tests we use the NFS, it does not inherently support
big data nor does it tolerate data corruption or allow data replication. We are studying
Apache Hadoop [3] to become part of the solution. We are still investigating a permanent
solution; we speculate that by using Hadoop, the DFS will allow the suport of big data and
tolerate data failures. This change does not bring any significant impact to the architecture
and will allow us to decouple the DFS with the other microservices.

5.2 Orchestration

As previously described in section 5.1.9 the orchestration of the system workflows is per-
formed using Netflix Conductor (Orchestration service). All the interactions with Con-
ductor can be made using HyperText Transfer Protocol (HTTP) connections to its well
defined REST API. The workers can poll it to execute tasks and to update the results of
those tasks. This interface follows the same modularity standards as the other microser-
vices and it is not tightly coupled with any other.

Having that said, we developed the Python library and framework Condu to facilitate the
interaction with the orchestration service. Any microservices that would be added in the
future are not restricted to use Condu. Nevertheless, if that microservice is implemented
in Python the use of Condu will be of great value and decrease the difficulty of implemen-
tation. Since Condu is an tool to utilise the functionalities of the orchestrator, we hope
that by explaining Condu’s functionalities the orchestration will be inherently explained
as well.

Condu has two main roles:

• Task and workflow definitions

• Worker and workflow execution

In the next sub-sections we will explain each role individualy.

5.2.1 Task and Workflow Definitions

Conductor needs to have the tasks and the workflow process defined to enable its exe-
cution. The definition of a task is done to configure which behaviour a task should have
when there is a failure. In other words it allows us to respond to the following questions:

• Should a task be rescheduled when it fails ? How many times?

• How much time should be waited before rescheduling a task ?

• Does the task have a timeout ? How long is the timeout ?

Using the object TaskDef imported from Condu allows us to specify what should happen
in these scenarios.

65



Chapter 5

Figure (5.10) illustrates how this is done.

from condu import Condu, TaskDef

task=TaskDef('task_name')

# String | An unique name used to identify the task.

# This is the only attribute that is required, all

# others are optional.

task.name='unique_name'

# Integer | Number of times the task is rescheduled

# after being marked as failure.

task.retryCount = 0

# Integer | Number of seconds waited to reschedule a task after failing.

task.retryDelaySeconds = 0

# String | Can take the following values:

# 'FIXED' : Reschedules the task after retryDelaySeconds

# 'EXPONENTIAL_BACKOFF' : Reschedules after retryDelaySeconds * attempNumber

task.retryLogic='FIXED'

# Integer | Time in milliseconds, after which the task is marked

# as TIMED_OUT if not completed after transiting to IN_PROGRESS status

task.timeoutSeconds = 0

# String | Task's timeout policy

# 'RETRY' : Reschedules the task

# 'TIME_OUT_WF' : Workflow is marked as TIMED_OUT and terminated

# 'ALERT_ONLY' : Registers a counter (task_timeout)

task.timeoutPolicy=None

# Integer | Number of seconds to reschedule a task if it is

# not updated with a status. Useful when the worker polls for the task

# but fails to complete due to unexpected errors or a network failure

task.responseTimeoutSeconds = None

# Sends the TaskDef object to the Orchestration Service

Condu(orchestration_endpoint).create_task(task)

Figure 5.10: Example of a task definition

After defining the tasks we can now start creating workflows. To create a workflow we
need to use the WorkflowDef object. Its job is to specify the order of the tasks and the
inputs of the workflow. The order is defined in a list of WorkflowTaskDef objects. Each
object references a task and is used to do the wiring of inputs by specifying the sources of
each input, i.e., we connect the outputs of one task to the inputs of another.

Figure 5.11 is a simple example of how to define a workflow.
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from condu import WorkflowDef, WorkflowTaskDef

workflow = WorkflowDef('simple_workflow_name')

workflow.inputParameters = ['foo', 'bar']

# Specify the tasks that will be inserted

task1=WorkflowTaskDef('simple_task1')

task1.intputParameters={'foo':'bar', 'some_number':420}

task2=WorkflowTaskDef('simple_task2')

# If task1 has 'result1' has an ouput, the following line wires

# that output to task2 input.

task2.inputParameters={'input1':task1.get_path('result1')}

sample_workflow.tasks[task1,task2]

Condu(orchestration_endpoint).create_workflow(workflow)

Figure 5.11: Example of a workflow definition

The lines of code required to define workflows increase depending on their complexity
and number off tasks. The workflow provided above is sequential and very simple. There
are two kinds of tasks: tasks that are executed by the workers ; and logic tasks that are
executed by the orchestrator. The tasks executed by the workers are represented by the
WorkflowTaskDef object, the other types are:

• ForkTaskDef : used to schedule tasks to execute in parallel.

• JoinTaskDef : used to wait for the completion of one or more tasks spawned by
fork tasks.

• DecisionTaskDef : is similar to a switch statement used in programming languages
such as C or Java.

• SubWorkflowTaskDef : allows us to execute another workflow as if it was task.

• DynamicTaskDef : used to execute a task that is only known at run time.

• DynamicForkTaskDef : works the same way as ForkTaskDef except that the
list of tasks to be forked is provided at runtime.

The dynamic tasks are particularly useful when the name or the number of tasks to be
executed are not fixed and varies based on input. Aside from defining tasks and workflows,
Condu also allows to delete, update and search for tasks or workflows previously defined.

5.2.2 Worker and Workflow Execution

To manage the workflows Condu has the following methods:

• start workflow: starts the execution of a workflow. Its parameters are name and
the inputs for the workflow.

• get workflow: retrieves an object that represents the current state of the workflow
execution. Its parameter is an id that identifies the execution.
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• get task from workflow: Similiar to get workflow but it just extracts the state
of a specific task. Useful when we want to know if a certain task was finished, and
if so, extract its outputs.

• terminate workflow: Terminates the execution of a workflow. Its parameter is
the execution id.

• pause workflow: Not used in the DS4NP platform but a workflow can be paused
and resumed at a later date. Its parameter is an id that identifies the execution.

• resume workflow: resumes the execution of a workflow. Its parameter is an id
that identifies the execution.

Condu abstracts the hassle of polling for tasks, allowing the developer to focus on im-
plementing the task itself. Figure 5.12 exemplifies a data science service (worker) that
executes the feature scaling task in a dataset used for training.

from condu import Condu

def feature_scaling_train(task):

# Retrieving the task inputs

dataset_uri = task.inputData.get('dataset_uri')

# The scaling is done here

.

.

.

# Inserting the results as the output

task.outputData =

{'dataset_uri': dataset_uri,

'scaled_attributes': scaled_attributes,

'scaler_uri': scaler_uri}

task.status=COMPLETE

condu = Condu(orchestration_endpoint)

# Specifies the name of the task and function to execute

condu.put_task('feature_scaling_train', feature_scaling_train)

# Specifies number of parallel processes that will

# execute the tasks and the polling interval

condu.start_tasks(processes=1, polling_interval = 0.2)

Figure 5.12: Example of a worker using Condu

Every exception (execution errors) that might happen during the execution of a task that
are not handled by the developer, is caught by Condu and reported to the orchestration
service, marking the task as FAILED and storing the logs. This is done transparently and
increases the performance of the platform by marking the task as FAILED early and not
waiting for its timeout.

5.2.3 Retrospective

The use of Condu had a pivotal role in the execution and creation of workflows in the
workflows and data science services. Netflix already had a Python and a Java client
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library hosted on GitHub to communicate with Conductor. After an extensive analysis of
the Python client and reading all its code the main reasons for not adopting it were:

• It was written in Python 2.7. This version of the Python language will stop being
officially maintained at the start of 2020. Making it a temporary solution and not
worth the investment.

• Netflix says this client is still in development but we did not see a code commit in
over 5 months.

• We detected bugs in a few functions. A code commit that fixed these bugs was
issued on GitHub on the 1st of March, 2018, but was only approved on the 10th of
August, 2018. These changes will be included in the next major version release but
it goes to show that the development of the client does not have a lot of focus on
the Netflix side.

• It only supported workflow management (start, terminate, get workflow status etc...)
and the execution of tasks by the workers. In contrast, the definition of tasks and
workflows was not supported.

• The code necessary to use it seemed a lot verbose for a Python library.

The first step to create Condu was to try and find the parts of code on the Netflix’s
client that could benefit the creation of a new Python 3 version. The code was refactored
and translated to Python 3.6. Next, we added the code for the definition of tasks and
workflows, and added functions to facilitate the extraction of results from running/finished
workflows. As the final step, we improved the performance of the execution of tasks by
using processes instead of threads. This change increases the performance when a worker is
executing multiple tasks due to the fact that, in Python, because of the Global Interpreter
Lock (GIL), threads are not truly parallelized, only concurrent.

Condu has 734 lines of code without accounting for the unit tests. 302 lines of that is
code that originates from the code that was refactored from Netflix. Regarding the Java
library it had the same functionalities as the one they provide in Python and was used to
execute the Relieff task.

5.3 Graphical User Interface

The GUI was built using Javascript and HTML with the purpose of running in the user’s
browser in order to allow any personal computer with internet access the use of the DS4NP
platform. The design had the objective of creating a minimalist and simple application
where the user can produce the most value with the lowest amount of effort. ReactJS
was the main framework used to create the interface. It runs entirely on the browser
and communicates using HTTP requests to the system. There are many alternatives to
ReactJS such as AngularJS and VueJs. They are very similar but we chose ReactJS
because we were more familiar with it.

The GUI is divided to two key areas: the sidedar, and the staging area where workflows
are built. As we can observe in Figure 5.13, the darker area on the left is a sidebar; it
allows the creation and deletion of workflows, and uploading, downloading and deleting
datasets. Also, when a workflow is present in the staging area, because the user created
or opened one, it is also possible to save a workflow or start/stop its execution.
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The staging area is seen on the right and allows the user to build workflows by inserting
the tasks described in section 5.1.7.

Figure 5.13: GUI example

Every workflow is clearly divided to separate blocks (tasks). The starting task is allways
of the dataset input type and from then on the user can choose to insert tasks bellow,
delete or change the default parameters of the tasks in the workflow.

Each time the user opens the GUI, it retrieves the description of the tasks and types from
the tasks service. Doing this allowed us to build a dynamic interface where the addition
of new tasks or changes to them does not imply changes to the interface.

When inserting a task, the user is shown the types of tasks that can be added next (Figure
5.14). This means that when the user clicks the ’plus’ button to insert a task, depending
on the current state of the workflow, he can only see the tasks that can follow and is not
cluttered with all tasks at once. By doing this, the tasks are chained together, guiding the
user during the construction process.

Figure 5.14: Inserting a task in a workflow
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We found inspiration in GUIs that use the sidebar as some kind of toolbox such as
AzureML, Clowdflows and Orange. We also made sure that the staging area does not
distract the user from the building process; hence, functionalities that do not pertain the
building process are shown in the sidebar instead.
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Chapter 6

Testing

By formally testing each aspect of the system we can evaluate it and find whether it satisfies
the specified requirements. In this chapter we will describe the tests and strategies used
for this analysis. Starting with unit testing, followed by usability testing, and finishing
with benchmarks to test the performance of the system.

6.1 Unit Testing

To test the functionalities of each component of the system, we employed the testing
strategy know as black-box. By using this strategy, the structure of each component was
not taken into consideration. We analysed the outputs that were generated in response to
selected inputs and compared them to the expected results; if the outputs are the expected
ones, the test is considered a success.

According to the designed architecture, the system is divided to modular and independent
services. This allowed us to test each service separately as independent programs. The
tests were written in Python and the requests library was used to make the HTTP
requests to the services. In order to run all the tests and compare the ouputs to verify if
the tests passed or failed, the framework pytest was used.

Figure 6.1 shows us running the tests written for Condu.

Table 6.1: Unit testing the Condu library

The tests revolve around each service resources. For instance the workflows service has the
’/workflows’ resource that is provided and the tests focused on testing the methods for it
(GET, POST and DELETE). The tests for the other services will follow the same pattern.
They are still not formally tested and are still being developed. At the moment, due to
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being the most critical, the services that were formally tested are the workflows service
and orchestration service. The tests performed are very simplistic and do not test the
services well enough. Further tests with higher complexity and involving many services
at the same time need to be created to allow the system to transition from prototype to
a system that is production ready.

6.2 Usability Testing

In this section we will describe the process and the results of the usability tests. In exper-
imental setup sub-section we describe the structure and the two groups of participants.
Followed by the description of the exercises that they performed. Finishing with the results
from the tests.

6.2.1 Experimental Setup

The usability tests provided a crucial role in evaluating the prototype and validating the
paradigm of visual programming using sequential tasks. The tests consisted in having
the participants execute a few exercises using the interface and getting their feedback.
This feedback was then used to evaluate the participants’ experience, the usability of the
interface, and the value that was provided to them, hence validating this concept of visual
programming applied to data science.

There are two distinct populations of participants:

• Type A: Participants with no experience at all and no knowledge in data mining,
composed of a group of researchers, four with a masters degree in ecology and three
with a doctoral degree in biology (7 participants).

• Type B: Participants that were knowledgeable about data mining but were not
programmers. This group was composed of students who were enrolled in a master’s
degree in biochemistry and were undertaking a course in data mining (11 partici-
pants).

The process was separated in different steps: The first step started with a quick overview of
the platform and its functionalities, which took less than 3 minutes. After this introduction
and answering any questions the participants had, we gave them a paper with a problem
and a list of exercises for them to perform in order to solve that problem. The exercises
fundamentally consisted in using the data science tasks mentioned in section 5.1.7. If the
participants successfully finished the exercises they would have solved the problem. This
challenge was estimated to take about 20 minutes. The last step was a questionnaire that
the participants had to fill about their experience, and their thoughts on the relevance
of this platform. The questions were written in Portuguese but were translated for this
thesis.

6.2.2 The iris flower dataset problem

To keep the tests brief and not overly complicated we decided to introduce one of the
common problems new data scientists learn during their training: the iris flower dataset.
This data was collected by Edgar Anderson to quantify the morphological variation in
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iris flowers of three related species [2]. It contains a total of three species of iris: Iris
Setosa, Iris Versicolour, Iris Virginica; and consists in the dimensions of its petals and
sepals (centimeters). Table 6.2 depicts what the dataset looks like.

Table 6.2: Iris dataset

Based on the measurements, the participants would then create a model that could predict
the species of iris. The test was separated in 5 exercises:

1. The first exercise consisted in scaling the attributes of the dataset between 0 and 1.

2. Exercise two required the participant to split the dataset to training and test sets
(60/40%). The one for training would later be used to train an SVM model and the
one for testing to see the accuracy and f-measure metrics.

3. Exercise three was similar to number two, however including a feature scaling opera-
tion before the model creation. This was conducted to verify whether the participant
was aware that tasks could be created and removed in the middle of a workflow pre-
viously created.

4. In exercise four the participant was asked to add the Relieff algorithm to the workflow
in order to see what attributes would have the most predictive capabilities.

5. Exercise number five used the best two attributes discovered in the previous exercise
and added the validation procedure called K-fold cross validation, hence completing
the assignment and creating a model with high accuracy.

The exercises were simple and intertwined making the participants have a feeling of
progress during their execution.

6.2.3 Results

Questionnaire

The questionnaire allowed us to know how much the participants liked the interface, their
experience using the tool and whether they found it useful. Each statement could be
answered as: totally disagree, disagree, indecisive, agree and totally agree. In order to
analyse the average response and the standard deviation we converted the answers to
numbers, where number 1 translates to “totally disagree” and 5 to “totally agree”.
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1 1,5 2 2,5 3 3,5 4 4,5 5

You understood the exercises that were assigned

Doing the exercises was a pleasant experience

This application is relevant to solve problems like

the Iris one

The application is attractive

The design is easy to understand

It was easy to find the required functionalities

The application met my expectations

Learning how to use this application was easy

You would use this application again to solve

similar problems

Would recommend this application to a colleague

Questionnaire results

TYPE A TYPE B

Figure 6.1: Average and standard deviation of the participants’ responses

As seen in Figure 6.1 the values are all above average. The most satisfactory results where
that they found the interface easy to use, they would recommend it to colleagues and that
they would use it again to solve related problems. The attractiveness of the interface, even
though it was very positive, scored lower than the other metrics; there was no surprise
here since this is a prototype and that part was not a priority.

The overall results acquired from the participants with no experience (type A) are lower
than the ones with experience (type B). This was expected and showed that the partici-
pants with no experience (type A) had an higher difficulty using the interface. Surprisingly,
they found easier to find the required functionalities and the design simpler to understand.

To assess whether the differences in the answers among the two populations were sta-
tistically significant, we performed unpaired statistically significant tests. Before that,
both distributions were tested for Gaussianity using the Kolmogorov-Smirnov test. In
case both distributions were Gaussian, an unpaired T-test was conducted; otherwise, a
Wilcoxon rank sum test was performed.

Hence, for each of the ten questions, only the question “You understood the exercises
that were assigned” showed statistical significant differences among the two populations
(at p < 0.05). We hypothesise that it was easier for the type B subjects to understand
the exercises because they had experience in data mining and knew about the Iris dataset
since it is a very common problem to teach new data scientists.
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Log analysis

With the objective of analysing the participants’ behaviour as mentioned in the Logs
service section (5.1.3), during the usability tests, we collected logs to be later analysed
with the purpose of knowing if have done the exercises correctly and estimate the time
took to complete each one.

0 50 100 150 200 250 300 350 400 450 500

E1

E2

E3

E4

E5

Time (sec.)

Duration of the exercises

TYPE A TYPE B

Figure 6.2: Average and standard deviation of the time taken to complete each exercise

As seen in Figure 6.2 the type A population had a much tougher time in the first exercise
than the type B. Once again this result originates from the fact that they had never built
a model. During the introduction to the experiment, both populations understood the
objectives but the experience of type B participants proved to be a beneficial factor in
reducing the time taken to complete the exercises. This finding is also corroborated with
the fact that the type A population did not understand the exercises as much as type
B. On average the type A population took 14.2 minutes to complete all the exercises
and type B took 9.4 minutes, which was well bellow our maximum expected time of 20
minutes. It is important to notice that the participants often stopped doing the exercises
to ask questions or even give suggestions right away. Even though we tried to not distract
them to not affect the experiments, it was something that we could not prevent.

We were also able to determine the effectiviness of the exercises by measuring the per-
centage of exercises completed successfully using the following formula:

Effectiveness =
Number of exercises completed successfully

Total number of exercises undertaken
∗ 100%
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Figure 6.3: Average of the effectiveness for each exercise

As we keep observing with all the other results, the type A population performed worse
than type B. The average effectiveness of the two groups combined was 91.78%. Specifi-
cally, the type A population averaged 83.30% and type B, 96.40%.

From this analysis we concluded that the effectiveness quality attribute specified in section
3.3.1 was in fact satisfied.

Feedback

Besides answering the questionnaire, the participants also had a place to write suggestions,
critiques and things they liked better in the application. Many of them also wanted to
express their suggestions verbally after doing the tests and to know more about the future
of this system. In this section we will approach the key suggestions and critiques that we
got from the test subjects.

Key suggestions:

• It should be possible to see all the tasks that were added to the workflow
at all times.

This suggestion was done because when the workflow is long enough, the user might
not remember specifically what tasks or parameters were inserted in places that he
can not see at the moment. The user needs to scroll up and down to see and edit
the tasks. This is something that is worth investigating to minimise mistakes such
as inserting the same task twice in different places of the workflow because the user
forgot that it was already inserted somewhere else. This is something that might
not be difficult to correct given the simplistic nature of the workflows.

• In the dataset input, the option of selecting attributes to remove from
the dataset should be replaced with attributes to select.

78



Testing

At the moment the user is shown attributes to ignore/remove from the dataset.
Some participants showed a preference to selecting attributes instead of removing
them. This needs to be further investigated, because depending on the datasets one
might be more beneficial than the other. A solution for this might be to have the
option to use both of them.

Key critiques:

• Sometimes the participants did not know that a task belonged to a certain type,
e.g feature scaling is a task of the preprocessing type but some participants when
asked to use it did not intuitively know that it was of that type. This is a problem
because the users need to first select the type of task they want to choose from, and
then the task itself. This problem can be solved by finding an alternative for the
way users add tasks to the workflow or having a place where the users can search
for all available tasks and read more information about them (good documentation).
At the moment we do not support that many different tasks and the participants
found all tasks within a few seconds. However, if there were more tasks it would be
difficult with the current interface.

• To use a dataset in any workflow the users must copy the dataset’s uri that is shown
in the sidebar and paste it to the dataset input task. Some participants did not find
that intuitive. Another alternative should be taken to consideration.

Things participants liked the most:

• Simplicity, accessibility and design.

• Low learning curve and easiness to use.

• How fast it was to run an experiment and get the results.

• Intuitiveness.

• It does not require any installation and it can be used anywhere with internet access.

• The tasks were chained together guiding the process of constructing the workflow.

• Grid search.

• The outputs are direct and very informative.

This feedback also reinforced what was discovered during the questionnaire analysis and
was very satisfactory. The critiques and suggestions made are things that will be improved
as the development of the system continues. None of the critiques were about the concept
we aim to prove. The things they liked the most were inline with the objectives we aimed to
achieve when building the application, which was something that we believe helps validate
our goals.

6.3 Benchmark

Basic computational performance tests were conducted to assess how the system will
behave with the current architecture. We executed tests using two randomly generated
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numerical datasets with a binary attribute class: Dataset 1 contains 10000 rows and 1001
columns (34.2 MB) and Dataset 2 has 20000 rows and 1001 columns (68.4 MB). Using
each dataset we created a Näıve Bayes model, evaluated its classification performance
using 10-fold cross validation and recorded the execution time. This process was repeated
10 times.

H2O was the platform used to benchmark against DS4NP because it was the only cloud
solution that we could configure to have the same computational resources as our system.
They were both deployed in equal clusters for the experiment and were composed by four
virtual machines with 2 virtual CPUs and 7.5Gb of memory each.

The results of the average execution time can be seen in Figure 6.4.
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Figure 6.4: Tests performed with our system and H2O.

As we anticipated, our system was slower in this experiment. The main contributing factor
for the different in performance might be because we are storing intermediate results in
disk using a Network File System (NFS), while H2O stores them in memory. We will
address this issue in the future. Even though H2O’s solution gains in performance, it
has the drawback that if one machine fails during execution, the whole process must be
restarted. In our system, because of the orchestration solution that was adopted, this does
not happen.
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Project Management

Thoughtful planning is essential to the success of a project. As such, in this chapter we
present the stakeholders of the project, its development strategy and conclude with the
work plan.

7.1 The stakeholders

The group of stakeholders for the Data Science for Non-Programmers (DS4NP) project
is composed by Professors Dr. Filipe Araújo, Dr. Jorge Cardoso and Dr. Rui Pedro
Paiva, which supervised and guided our work through the entire academic year. Besides
the supervisors, a PhD student, Jaime Correia also gave guidance and participated in
the fortnightly meetings of the project. The project development is taken by myself and
another MSc Student, Artur Jorge de Carvalho Pedroso, that was specially focused on the
data science services described in section 5.1.10.

7.2 Development methodology

At the start of this project we did not had a clear view of the path that could be taken.
The first months were spent researching related works and cloud technologies. It was only
closer to the end of the semester that we could start making decisions about goals and
requirements for the DS4NP platform and designing its preliminary architecture. Since
the first semester was spent mostly doing research, we felt that there was no need to adopt
any software development methodology.

Having identified the general requirements for the project and technologies researched,
we thought about a development methodology for the second semester. Considering that
we are a small team of 2 MSc students, developing an experimental kind of software,
for which the requirements and technologies can change very fast, we felt that an Agile
development process would be a good fit. After searching some Agile methodologies,
and finding that most of these methodologies were created for development teams having
more than two elements, we identified the Kanban software development methodology as
a potential candidate for the second semester. During the intermediate presentation for
this thesis, it was suggested by the Juries that the method timeboxing would support
much better the development of this project as opposed to Kanban. As a matter of fact,
we were already doing something similar to timeboxing from the start, we just had not
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read about it before. We had fortnightly meetings to show the progress of our work and to
plan the work to do for the next meeting. After a thoughtful analysis we decided that this
method should be improved with more demanding deliverables in the second semester.

We changed the time periods (time boxes) to a week. Everery week we had a scheduled
meeting where we would present the deliverables that were planned in the former meeting.
In contrast with the first semester, in the second one we started prioritising the require-
ments. The prioritisation was done according to the MoSCoW method described in the
functional requirements (Section 3.2).

Every meeting had an individual presentation where I and Artur would present the work
performed by each one, according with the goals planned. The presentations most of the
times included a Powerpoint or/and had a demonstration of the functionalities that were
added to the software system. After the presentation we would analyse the current state
of the project, then we would plan the deliverables for the next meeting. This was an
iteractive process and was very adequate for this project.

7.3 Work Plan

Even though our work revolved around time frames of a week, we also had long term goals
to achieve.

Figure 7.1: Gantt chart for the 1st semester

Figure 7.1 illustrates our work schedule. It was specified in the beginning of the semester
and was accomplished, for the most part, on schedule. The writing of the intermediate
report suffered a setback and was a little bit rushed at the end.

Before starting the second semester, several goals were scheduled as depicted in Figure 7.2

Figure 7.2: Gantt chart planned for the 2st semester

The first goal was to define a few example workflows and their execution without any
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Grafical User Interface (GUI). This work would serve to prove that the execution could be
done using Condutor. During this phase, Condu was developed as the necessary tool
for the definition and execution of the workflows.

The next goal was to create a GUI that would allow the user to build and execute the
workflows. With the exception of the ’data science services’, every other microservice was
implemented individually as the functionalities that we added to the GUI would require.

We saved May and June to do the usability and benchmark tests, and to write the final
remaining documentation needed for the thesis. However, when May came we were still
finishing the remaining requirements. We also got the opportunity to write two papers for
two different conferences, which was a good opportunity to bring attention to this project.
Because of this, the whole process was setback, causing the delivery of the report to be
moved from July to September.

Figure 7.3 shows the setbacks suffered in relation to our planning.

Figure 7.3: Gantt chart realised in the 2st semester
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Conclusion and future work

In this dissertation we presented a service for non-programmers to build data science
experiments employing good data mining practices. We prototyped a cloud application
that follows a microservices architecture. The use of an architecture that follows this
pattern proved to be of great value to satisfy the quality attributes that were identified.
The orchestration problem was one of the most interesting challenges that we had to
overcome. It had a key role for the execution of the data mining processes and the
distribution of that workload.

The interface built tried to achieve a high degree of usability. To test it, experiments were
made with experienced and non-experienced users to evaluate the prototype and validate
the paradigm of visual programming using sequential tasks.

The results were satisfactory with a positive feedback and without critiques related to what
we aim to achieve. In the future we plan to add predefined data mining workflow templates
that might be searched, changed and shared by the users, as well as make comparative
benchmarks with more platforms and provide support for Big Data algorithms. Regarding
the usability tests we plan to improve the application by making changes to the user
interface according to the feedback received.

Future works will include not only more usability tests with experienced users to im-
prove the user interface in aesthetics and functionality terms, but mainly the investment
in optimising the current architecture, which will include improvements to the orchestra-
tion of microservices and exploring different solutions for the storage of datasets. These
improvements will increase the performance and help minimise storage costs.

We were able to implement all the ’must’ use cases. However, some use cases with lower
priority and related with adding more Machine Learning (ML) algorithms were not possible
to implement at this time and will be implemented in the future. These use cases are 1.4
and 1.7 - 1.10.
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