
Mestrado em Engenharia Informática 2017/2018

Estágio

Relatório Final

Android App for Enterprise Bots

Leonardo Filipe da Fonseca e Silva

lfdfes@student.dei.uc.pt

Orientador DEI:

Vasco Pereira
vasco@dei.uc.pt

Orientador WIT:

Paulo Sousa

paulo.sousa@wit-software.com

Data: 02 de Julho de 2018

Android App for Enterprise Bots

Android App for Enterprise Bots

Departamento de Engenharia Informática
Faculdade de Ciências e Tecnologias
Universidade de Coimbra
Pólo II, Pinhal de Marrocos, 3030-290 Coimbra
Tel: +351239790000 | Fax: +351239701266 |
info@dei.uc.pt

WIT Software, S.A.
Centro de Empresas de Taveiro
Estrada de Condeixa, 3045-508 Taveiro, Coimbra
Tel: +351239801030 | Fax: +351239801039 |
info@wit-software.com

Estagiário:

Leonardo Filipe da Fonseca e Silva
lfdfes@student.dei.uc.pt

Orientador do DEI:

Vasco Pereira
vasco@dei.uc.pt

Orientador da WIT:

Paulo Sousa
paulo.sousa@wit-software.com

Júri Arguente:

Jorge Cardoso
jorgecardoso@dei.uc.pt

Júri Vogal:

António Correia
dourado@dei.uc.pt

Android App for Enterprise Bots

Android App for Enterprise Bots

Abstract

In a world that every day is more technologic, lots of time is still lost, in companies, in small

tasks that are not automated.

Enterprise apps have the goal of raising a company’s productivity, either by facilitating

communication or simplifying the way that some tasks are performed.

This project has the goal of developing features that are valuable on an enterprise app. The

developed features are related to conference calls and make use of virtual assistants (chatbots).

Chatbots can be useful when it comes to planning tasks, because they allow the user to interact

in a more natural way to him.

The developed features are based on a combination of chatbot interaction and visual elements

that speed up the tasks. The scope goes from the conference’s schedule to the management

of ongoing conferences and it is integrated with a communications app that already existed in

the company where the internship took place.

Keywords: Conference calls, Chatbot, Android, Enterprise Apps, RCS, Calendar

Android App for Enterprise Bots

Android App for Enterprise Bots

Resumo

Num mundo cada vez mais tecnológico, ainda se perde muito tempo nas empresas em

pequenas tarefas que não estão automatizadas.

As aplicações de contexto empresarial têm como objetivo aumentar a produtividade dos

funcionários de uma empresa, quer seja facilitando a comunicação ou tornando mais simples

a forma como algumas tarefas são realizadas.

Este projecto tem como objectivo desenvolver funcionalidades que tenham valor em

aplicações de contexto empresarial. As funcionalidades desenvolvidas estão relacionadas com

chamadas em conferência e tiram partido das capacidades de assistentes virtuais (chatbots). Os

chatbots podem ser bastante uteis em tarefas de planeamento devido ao facto de permitirem

uma interação por parte do utilizador mais natural para este.

As funcionalidades desenvolvidas baseiam-se numa combinação de interação com chatbots e

elementos visuais que agilizam as tarefas. O trabalho desenvolvido contém funcionalidades

que vão desde a marcação de conferências até à gestão de chamadas a decorrer, e está integrado

com uma app de counicações que já existia na empresa onde o estágio se realizou.

Palavras-Chave: Chamadas em conferência, Chatbot, Android, Aplicações de contexto

empresarial, RCS, Calendário

Android App for Enterprise Bots

Android App for Enterprise Bots

Acknowledgements

The biggest professional challenge that I have ever had, and the best one too.

To my mom and dad, for all the support, for the values that you have though me, for all the

sacrifice you have made in benefit of my education. You are responsible for the person I am

today and I hope that makes you both proud.

To my brother and PP for being such nice guys, for the friendship, good advices and for all

the weekend nights of companionship.

To all my family and friends for the good times, advices and support.

To professor Vasco Pereira for being so dedicated, for being always available and for all the

help in this document.

To Paulo Sousa for giving me the opportunity to take this internship at WIT, for the guidance

and the advices during the various phases of the project.

To Jorge Sousa for being always available to help me and for the assistance in keeping my

progress on schedule.

To all the DEI teachers for all the knowledge shared and for always being available to help

and teach me.

To all the people at WIT that helped me and that always did it with a smile on the face.

Finally, to the most wonderful person I have ever met, Inês. For all the support, for all the

advices, for believing in me and for making me a better person every day.

Thank you!

Android App for Enterprise Bots

Android App for Enterprise Bots

Contents

Chapter 1 Introduction ... 1

1.1 WIT-Software ..1

1.2 Motivation ..1

1.3 Goals ...3

1.4 RCS ..3

1.5 Structure ...4

Chapter 2 State of the art .. 5

2.1 Competitors ...5

2.2 WIT RCS Suite ... 12

2.3 Features to be developed .. 13

2.4 Technologies ... 14

Chapter 3 Methodology and Work Plan .. 17

3.1 Methodology ... 17

3.2 Work plan .. 19

3.3 Threshold of Success ... 19

3.4 Risk Management ... 20

Chapter 4 Requirements ... 25

4.1 User Stories ... 25

4.2 Functional Requirements .. 27

4.3 Nonfunctional requirements .. 29

Chapter 5 Architecture .. 31

5.1 Overall System .. 31

5.2 RCS+ .. 33

5.3 WIT Bot Platform .. 38

Chapter 6 Implementation ... 47

6.1 RCS+ App ... 48

6.2 Bot .. 61

Chapter 7 Validation & Verification ... 67

7.1 Functional Tests ... 67

7.2 Calendar View Tests .. 69

Android App for Enterprise Bots

7.3 Usability Tests ... 70

Chapter 8 Conclusion .. 73

8.1 Overview ... 73

8.2 Success Evaluation ... 74

8.3 Future Work .. 74

8.4 Final Considerations .. 75

References ... 77

Appendix A – Work Plan ... 81

Appendix B – Requests to Designers ... 85

Appendix C – BPMN Flows .. 95

Appendix D – Functional Tests .. 99

Android App for Enterprise Bots

List of Figures

Figure 2-1: Workplace by Facebook logo[10] Workplace by Facebook 5

Figure 2-2: Skype for Business logo[12] Skype for Business .. 6

Figure 2-3: Cisco WebEx Teams logo[14] ... 6

Figure 2-4: Zoom Cloud Meetings logo[16] .. 6

Figure 2-5: Amazon’s logo[18] ... 9

Figure 2-6: Microsoft's logo[20] ... 9

Figure 2-7: X.AI's logo[22] ... 9

Figure 2-8: Apple's logo[23] Apple’s Siri ... 10

Figure 3-1: SCRUM Framework .. 18

Figure 3-2: Risk Matrix.. 23

Figure 5-1: System's overall architecture .. 32

Figure 5-2: RCS+ modules ... 34

Figure 5-3: RCS+ created and modified elements .. 36

Figure 5-4: RCS+ and COMLib interaction .. 37

Figure 5-5: WIT Bot Platform ... 38

Figure 5-6: Witty Bot modules ... 40

Figure 5-7: Schedule a conference call flow ... 41

Figure 5-8: Calendar message flow .. 43

Figure 5-9: LDAP integration flow ... 44

Figure 5-10: Ongoing call events flow .. 45

Figure 6-1: Calendar view ... 50

Figure 6-2: Calendar view with add event icon ... 50

Figure 6-3: Schedule call screen mockup ... 51

Figure 6-4: Create conference call screen ... 52

Figure 6-5: Edit conference call screen .. 53

Figure 6-6: Participants Selection 1 ... 54

Figure 6-7: Participants Selection 2 ... 54

Figure 6-8: Participants removal (mockup) .. 55

Figure 6-9: Participants removal .. 55

Android App for Enterprise Bots

Figure 6-10: Ongoing conference call component collapsed (mockup) 56

Figure 6-11: Ongoing conference call component collapsed .. 56

Figure 6-12: Ongoing conference call component expanded (owner view mockup) 57

Figure 6-13: Ongoing conference call component expanded (owner view) 57

Figure 6-14: Ongoing conference call component expanded (normal view mockup) 58

Figure 6-15: Ongoing conference call component expanded (normal view) 58

Figure 6-16: Ongoing call component - Participant left conference .. 59

Figure 6-17: Conference Call’s tab .. 60

Figure 6-18: Update calendar tab's events - BPMN diagram .. 62

Figure 7-1: Schedule a conference - Usability test results .. 71

Figure 7-2: Join call and mute participant - Usability test results ... 72

Android App for Enterprise Bots

List of Tables

Table 2-1: Workplace by Facebook app details[11] .. 5

Table 2-2: Skype for Business app details[13].. 6

Table 2-3: Cisco WebEx Teams app details[15] .. 6

Table 2-4: Zoom Cloud Meetings app details[17] ... 6

Table 2-5: Ongoing conference functionalities to be developed .. 7

Table 2-6: Amazon's Alexa[19] .. 9

Table 2-7: Microsoft's Cortana[21] .. 9

Table 2-8: x.ai's Amy/Andrew[22] .. 9

Table 2-9: Apple's Siri[24] ... 10

Table 2-10: Conference schedule features to be developed .. 11

Table 2-11: BPMN events .. 15

Table 3-1: Work Plan .. 19

Table 3-2: Risk 1 - Android learning ... 21

Table 3-3: Risk 2 - Adaptation to RCS+ .. 21

Table 3-4: Risk 3 - Effort estimations... 22

Table 3-5: Risk 4 - Android devices and versions ... 22

Table 4-1: User Stories .. 26

Table 4-2: Functional Requirements ... 28

Table 4-3: Nonfunctional Requirements .. 29

Table 7-1: Functional test 39 - Cancel a conference call .. 68

Table 7-2: Functional Tests results ... 68

Table 7-3: Calendar view tests ... 70

Android App for Enterprise Bots

Android App for Enterprise Bots

Acronyms

Acronym Description

AIML Artificial Intelligence Markup Language

API Application Programming Interface

APK Android Package

BPMN Business Process Model and Notation

GSMA Groupe Spécial Mobile Association

HTTP Hypertext Transfer Protocol

IP Internet Protocol

JSON JavaScript Object Notation

LDAP Lightweight Directory Access Protocol

MTBF Mean Time Between Failures

NLP Natural Language Processing

NoSQL Non Structured Query Language

OTT Over the Top

RCS Rich Communication Services

SDK Software Development Kit

SMS Short Message Service

ToS Threshold of Success

UI User Interface

VoIP Voice over Internet Protocol

XML Extensible Markup Language

Android App for Enterprise Bots

Android App for Enterprise Bots

 1

Chapter 1
Introduction

This document describes the planning and work developed during the curricular internship of

the Masters in Informatics Engineering. The internship took place at WIT Software, S.A.

during the 2017/2018 academic year. It was supervised by Paulo Sousa, Head of Software

Development at WIT Software, S.A. and Vasco Pereira, PhD Professor at Department of

Informatics Engineering of the University of Coimbra.

1.1 WIT-Software

WIT Software, S.A.[1] is a company, founded in 2001 as a spin-off of the University of

Coimbra, that creates solutions and products for the mobile telecommunications industry.

Throughout the years, the company has developed several products focused on various areas.

One of the fields where the company stands out is the Rich Communication Services (RCS),

where it is one of the world’s top players. The company has developed an app called RCS+,

which will serve as a base for the software product that will be developed during the

internship.

1.2 Motivation

Every company wants to see its productivity growing. For that, employees can’t spend their

work time with planning tasks, filling forms or scheduling reunions. It is in any company’s

best interests that employees make the most of the work hours they have.

Enterprise apps are developed to help companies improve their methods. And every day new

enterprise apps are launched that help companies to raise their productivity.

In the year 2016, Portugal had a productivity of 68.9, considering a scale where 100 is the

average productivity per work hour of the 28 countries of the European Union[2]. This list is

led by Luxembourg with a productivity of 182 and Bulgaria comes on the last place with a

productivity of 44.7. Portugal comes on the 18th place.

This becomes worse if we see that on average, a Portuguese employee works more hours per

week than an employee in any of the top countries in productivity[3].

Android App for Enterprise Bots

 2

So, if Portuguese employees work more hours and produce less, it urges to raise productivity

in Portuguese companies.

Since so much time is lost to planning tasks, reducing the time of those tasks would improve

the quality of the working time. More efficient than filling forms or use computer programs

to perform those tasks would be to tell “someone” using natural language to do it. That is

where a new agent acting as a virtual assistant could be helpful. An assistant may be used to

help in the accomplishment of the tasks. This allows the user to perform the task in a much

more natural way to him. For example, when a user wants to book a room, usually it is

necessary to fill out some form, with this new agent, a user just needs to tell it something like

“I want to book a room for tomorrow at 2 pm” or “What is the availability of the rooms for

tomorrow?” and most parts of the tasks are performed by the agent and not by the user,

therefore, saving time and allowing the user to focus his work time on actual work.

One of the tasks in which the productivity can be improved is the management of conference

calls. From the scheduling to the call itself.

To schedule a conference call, one has to check his availability to know when to schedule the

call, send invitations to all the participants and make the actual call. That is much more time

consuming than it should be. During the conference call, most of the time we don’t know

who is already participating or who have already left the call. People talk at the same time,

people talk and then realize that no one heard because they were on mute… Conference calls

can be complicated.

But this is one of the cases where a virtual assistant could be helpful. The assistant could show

us our agenda so we know our availability. Then it could send the invitations to the guests.

And during the call it could show who is participating in a given moment, show who is muted

or allow the conference manager to perform simple actions like mute or remove participants.

That is what has been developed during the internship. The use of an agent to manage

conference calls.

WIT already had a conference call system. But it was not widely used in the company. The

lack of its success was due to the complexity on scheduling the conferences and to the fact

that the conferences were reduced to “simple phone-calls”. That led the users to opt-in to use

other services to make the conference calls.

Android App for Enterprise Bots

 3

1.3 Goals

1.3.1 Personal goals

For this internship, two main personal goals were established.

The first one was to consolidate all the knowledge acquired during the last years, first in the

bachelor’s in informatics engineering and then in the masters.

The other goal was to grab the opportunity given by WIT Software and the University of

Coimbra and develop a project that was valuable for the company and that allowed me to

finish my master’s with success.

1.3.2 Project goals

The main goal of this project was to use chatbots in order to simplify conference calls’ related

tasks that are performed in companies and that are much more time consuming than they

should be. The internship was focused on simplifying conference calls, from its scheduling to

the calls’ management.

For that, a communications app produced by the company was used. That app allows the user

to perform phone calls and trade messages using the network instead of the traditional services

provided by telecommunication companies. The goal is to create a conference calls’ module

using chatbots to facilitate its scheduling features and operation. The conference calls’ related

features are relevant for a future enterprise version of the app.

The goals were fully achieved during the internship. Using the app, it is now possible to use a

bot in order to easily schedule, modify or cancel conference calls and, it is possible to manage

ongoing calls in which the user is participating.

1.4 RCS

Smartphones are extremely common nowadays. This kind of mobile phones brought new

possibilities to communicate through IP. Over the Top (OTT) apps like Skype[7] or Facebook

Messenger[8] use the operators’ infrastructures to provide quick, and most of the times free,

access to this kind of communication.

Android App for Enterprise Bots

 4

Telecommunication operators see OTT platforms as a threat to their income because users

opt to communicate using the OTT apps instead of the traditional communication services

provided by the operators.

In order to fight this competition, a group that represents the interest of operators called

Groupe Spéciale Mobile Association (GSMA)[9] created the RCS program, which would allow the

operators to provide enriched services (VoIP calls, group messages, file share…).

The app that served as a base for this project (RCS+) follows the RCS specifications.

1.5 Structure

 This document is structured as follows:

 Chapter 1 Introduction – This section introduces the project, the motivations for its

development and its goals.

 Chapter 2 State of the Art – This section contains an analysis of the competitors for

the project and a presentation of the used technologies.

 Chapter 3 Methodology and Work Plan – This section presents the methodology

of work adopted, as well as the work planning, the definition of the expected outcome

of this project and an analysis of the factors that might become a risk for the project’s

success.

 Chapter 4 Requirements – This section presents the requirements elicitation of the

project.

 Chapter 5 Architecture – This section explains the architecture of the project.

 Chapter 6 Implementation – This section describes the work done for the

development of the defined features.

 Chapter 7 Verification & Validation – This section describes the work done for the

verification and validation of the developed features

 Chapter 8 Conclusion – This section has an overview of the entire internship and

the progress that has been made.

Android App for Enterprise Bots

 5

Chapter 2
State of the art

In this chapter, the state of the art in enterprise apps that support conference calls’

management and in bots that allow event’s schedule is analyzed. The analysis of the products

that compete with the features to be developed allows to look into each functionality and see

if it brings value to the project or if there are better alternatives.

2.1 Competitors

There are two types of competitors for this project. The first type, are the services that allow

the user to perform conference calls. The second one, are the chatbots and virtual assistants

that support actions related to the schedule of events.

2.1.1 Apps supporting conference calls

The first type of competitors comprises mobile apps that can provide solutions for conference

calls’ management.

For each of the apps, the main features related to conference calls were analyzed:

Figure 2-1: Workplace by Facebook

logo[10]

Workplace by Facebook

 Who is on the conference call

 Participants detailed information

Table 2-1: Workplace by Facebook app details[11]

Workplace by Facebook is an enterprise version of the Facebook app, which allows the

employees of a company to communicate, share contents and make calls, both audio and

video.

Android App for Enterprise Bots

 6

Figure 2-2: Skype for Business logo[12]

Skype for Business

 Who is speaking

 Who is muted

 Who is on the call

Table 2-2: Skype for Business app details[13]

Skype for Business is an app focused on video and audio calls, but also allows message and

files sharing.

Figure 2-3: Cisco WebEx Teams

logo[14]

Cisco WebEx Teams

 Who is muted

 Who is speaking

 Who is on the conference call

Table 2-3: Cisco WebEx Teams app details[15]

Cisco WebEx Teams allows the users to schedule and make conference calls, with support for

both audio and video.

Figure 2-4: Zoom Cloud Meetings

logo[16]

Zoom Cloud Meetings

 Who is muted

 Who is on the call

Table 2-4: Zoom Cloud Meetings app details[17]

Zoom Cloud Meetings it’s an app developed by Zoom, focused on enterprise

communications.

Android App for Enterprise Bots

 7

The following were considered the main features regarding conference calls on mobile apps:

 Who is speaking – Know which participants are speaking at a given moment during

a call

 Who is muted – Know which participants are muted on a given moment during a

call

 Who is on the call – Know which participants are on a call on a given moment

 Participants information – Provide access to detailed information about the

participants

 Remove participants – The ability to remove a participant from a conference call

Although the last one is not present in the analyzed apps, it was considered to be relevant to

the context of the project.

Table 2-5 indicates the functionalities that will be included on this project.

Who is

speaking

Who is

muted

Who is on the

call

Participants

detailed

information

Remove

participants

Table 2-5: Ongoing conference functionalities to be developed

All the functionalities considered relevant for an ongoing conference call will be implemented

on this project, with the exception of the “Who is speaking”. Although it is a nice feature to

have, in the context of this project it would not have the desired behavior. Since the warnings

of the conference’s events will arrive on the app through chatbot messages, their delivery time

may vary. With that constraint, the functionality would not work in the correct way. The

remaining functionalities are not affected by this constraint and will be included on the project.

2.1.2 Chatbots

The other kind of competitors for this project are chatbots or virtual assistants that allow

actions related to the schedule of events.

Android App for Enterprise Bots

 8

A chatbot is a computer program that uses natural language in order to interact with users.

Most of the times, the main goal of chatbots is to simulate human behavior, thereby, trying to

pass the Turing test[4].

Turing test consists of a human evaluator, having a textual conversation with another human

and with a machine. The machine passes the test if the first human cannot reliably tell which

one is the machine[4].

Eliza was the first known chatbot. It was developed during the 1960’s[5] and its main purpose

was to simulate the responses that a therapist might have during an intimate conversation.

Although it’s conversational capacities were not great, it still lead some people to think that

they were actually talking with a human, during the first minutes of dialog.

Chatbots are much more evolved these days and can be found in lots of different “places”

and with lots of different purposes. Most instant messaging platforms support chatbots

nowadays, from the simpler ones to the more complex ones. Lots of services use chatbots in

customer support. And there are also virtual assistants like Apple’s Siri, Amazon’s Alexa and

Microsoft’s Cortana. Some of these chatbots use sophisticated natural language processing

(NLP) techniques and other use simpler methods like matching patterns.

Taking into account that the app that served as a base for the project supports chat interaction

with chatbots, it was considered that the capabilities provided by this app fit perfectly on the

definition of “agent” that was needed for the project.

In the field of chatbots, lots of progress has been made in the last few years. The number of

agents that are capable of human interaction using natural language keeps increasing, and

nowadays, almost every device comes with a personal virtual assistant.

The following were considered the most relevant players acting on this field. For each one of

them, the major positive and negative aspects related to the schedule of events were analyzed.

Android App for Enterprise Bots

 9

Figure 2-5: Amazon’s logo[18]

Amazon’s Alexa

 Voice control support

 NLP support for the schedule of meetings

 Only supports 1 on 1 meetings

 Verification of both calendars (if integrated)

 Easy events modification

Table 2-6: Amazon's Alexa[19]

Figure 2-6: Microsoft's logo[20]

Microsoft’s Cortana

 NLP support for the schedule of meetings

 Verification of all participant’s calendars (if

integrated)

 Easy events modification

Table 2-7: Microsoft's Cortana[21]

Figure 2-7: X.AI's logo[22]

X.AI’s Amy/Andrew

 NLP support for the schedule of meetings

 Possibility to add participants to the events

 Verification of all participants’ calendars (if

integrated)

 Integration with Slack, Zoom, Outlook…

Table 2-8: x.ai's Amy/Andrew[22]

Android App for Enterprise Bots

 10

Figure 2-8: Apple's logo[23]

Apple’s Siri

 Voice control support

 NLP support for the schedule of calendar events

 Easy events modification

 Strong error proof details

Table 2-9: Apple's Siri[24]

The analysis of these competitors helped in the perception of what aspects are really important

when it comes to the schedule of events.

Since the project to be developed is focused on conference calls, it is important to support

the addition of more than one invitee per event.

One of the strong aspects of some of the solutions analyzed is the voice control action. This

feature allows the schedule to be simple and fast. Since voice control will not be supported on

this project, it is necessary to find a way that allows the schedule to be equally simple and fast.

Textual interaction will be part of the solution adopted, but if all the interaction is done in a

textual way, the schedule will be slower than desired. To complement the textual

communication, graphical components will be used. This will allow users to interact in a more

spontaneous way.

Calendar verification is another important aspect when it comes to schedule events. The

solution developed will comprise calendar verification of the user who is scheduling the

conference. The verification will be done on the user’s Google Calendar[25], once access is

granted to the bot. Verification of all participants’ calendars in order to seek for a time slot

available for all, is a relevant functionality, but, it will not be supported in this project. This

choice was made because not everyone uses the same calendar service. In a near future, WIT

will develop its own calendar service, and then, this functionality may be developed and

integrated.

Another important aspect revealed during this analysis is the importance of having a simple

way to edit the created events. Users regularly have to postpone, anticipate or simply cancel

conference calls, and this should be as simple as it possibly can. In order to have a simple

Android App for Enterprise Bots

 11

event modification system, the same approach used for the schedule will be adopted (the use

of graphical components).

One detail that was also considered relevant was the techniques used by Apple’s Siri to avoid

mistakes. For example, if a user is asking to schedule an event for “tomorrow” and it’s close

to midnight, Siri will ask the user to confirm the date. This and other details will be adopted

on this project’s solution.

The following were considered the main features regarding the schedule of events on a

chatbot:

 Calendar verification – Check if the user doesn’t have anything else scheduled for

the pretended time period

 Voice control – Interact with the chatbot using voice

 NLP support – Use NLP on the bot in order to interact with the user

 Simple event modification – Provide an efficient way to modify or cancel

conference calls

 Mistakes avoidance – Have procedures that allow the avoidance of mistakes

triggered by misinterpretation of user’s inputs

Table 2-10 indicates the functionalities that will be included on this project.

Calendar

verification

Voice

control

NLP

support

Simple event

modification

Mistakes

avoidance

Table 2-10: Conference schedule features to be developed

Android App for Enterprise Bots

 12

2.2 WIT RCS Suite

The RCS+ app, on which the developed software will be integrated, is part of the WIT RCS

Suite (Figure 2-).

Figure 2-1: WIT RCS Suite

This Suite also includes components like WIT PC Communicator, which uses the WebRTC

protocol and WIT Communications Application Server, which implements the RCS

specifications, among others.

The RCS+ is an app that follows the RCS specifications. Among other things, this app allows

the user to make Voice over Internet Protocol (VoIP) calls, send and receive messages or

interact with chatbots. All of this using the network instead of the traditional communication

services provided by telecommunication companies.

The RCS+ app has the following main features (among others):

 VoIP calls

o Voice calls

o Video calls

o Audio and video messages

o Content Share in calls

Android App for Enterprise Bots

 13

 Messages

o Single chat

o Group chat

o Content share

o Chatbots

This app is one of the biggest projects at WIT, and it has been developed for many years now.

The app keeps evolving and new versions are released. The work developed during this

internship was based on the most recent version at the time of its start, version 4.4.

RCS+ is the main focus of the project. New features were added to it, some of them

completely new, and others taking advantage of functionalities that the app already had.

2.3 Features to be developed

Having analyzed the competitors for this project, it was necessary to define what would be

developed and integrated in the existing app. The app supports chat messages and the use of

chatbots, which will be used for the call scheduling and management.

Table 2-11 contains a generic description of the major elements that were defined.

Feature Description

Call

Scheduling

This module allows the user to schedule and modify conference

calls, based on the user’s calendar availability and allowing the

user to invite his colleagues for the calls.

During Call

Management

During a call, the user will be able to view all the call’s events

and also to see detailed information about a participant

Calendar Tab The user will be able to see his calendar and use it to view

scheduled conference calls or schedule new ones.

LDAP Integration The app will synchronize the WIT workers’ contacts so the user

can add them to conference calls.

Table 2-11: Features to be developed

Android App for Enterprise Bots

 14

By the end of the project, a user should be able to ask the bot to schedule a call. Should be

also possible for a user to ask the bot to show his calendar with his events. On the calendar

view (with the user’s current calendar events) the user must be able to select a slot to schedule

a conference call and then, choose, from a list of contacts, the participants. On the calendar

view, the user should also have the possibility to edit a conference call’s details.

When an operation is done, the user should receive feedback from the bot, telling if the

operation was successful or not.

While on a conference call, the user should have access to the call’s basic information (duration

and number of participants). This information should be on an expandable component. When

expanded, the component should contain information about the call’s participants, alongside

with information about who is muted/unmuted. When the user selects a participant,

information about that person should be displayed.

A tab containing the user’s calendar should be present on the main menu of the RCS+ app.

On this calendar, the user should be able to see his upcoming events and have the possibility

to schedule conference calls and edit them.

2.4 Technologies

Android Studio[26] was the chosen platform for the Android development. This choice was

based on the fact that this was the platform used by the more experienced colleagues at WIT,

and therefore, was the platform where the RCS+ app was developed, making it simpler to

integrate the developed software with the remaining app. Also, as it was used by the colleagues,

it was the platform on which was easier to obtain help when needed.

For the bot, the technologies used were Business Process Model and Notation (BPMN)[27],

for the flows that the conversations should follow, and Artificial Intelligence Markup

Language (AIML)[28] for dialogs that follow stimulus-response interactions. These

technologies were adopted because they were the ones used by the company in the bots’ area.

Dialogflow platform was used as an Natural Language Processing (NLP) interpretation tool.

This tool was already used on other WIT’s bots, hence its choice.

Android App for Enterprise Bots

 15

2.4.1 BPMN

BPMN is a graphical representation for specifying business processes in business process

models. This language allows the creation of paths that can be followed during the execution

of a program. This language is composed of several types of elements. The elements used in

this project are described in further detail below.

Start Events

Starts a flow. It is triggered by the arrival of a message. Once

a pattern matching the start event arrives, the flow is started

and the path will be followed until an "end event" is found.

Starts a flow. It is triggered with a time loop. Can be

triggered for example every 5 minutes. Once a pattern

matching the start event arrives, the flow is started and the

path will be followed until an "end event" is found.

Tasks

A task that represents that some "backend" work has to be

done before proceeding to the next step on the flow.

This task requires an input by the user. The flow will stop

and wait for this input.

Some output is sent to the user.

Gateways

It’s used to fork and merge paths. It can have several types,

but for this project, only exclusive gateways were used. An

exclusive gateway executes only one of the paths that it is

merging or forking.

End Events

Represents the end of a flow.

Table 2-11: BPMN events

2.4.2 AIML

AIML is an XML based markup language used for the creation of natural language software

agents.

Android App for Enterprise Bots

 16

In AIML there are two fundamental "tags".

 Pattern – The pattern that may be equal to the user input

 Template – The response associated with a pattern.

In this work, AIML and BPMN were used together. If a user's input matches an AIML pattern,

the BPMN start event associated with this pattern will be triggered, starting a BPMN flow.

BPMN's “send tasks” can also trigger AIML patterns. When that happens, the template or

one of the templates associated with that pattern will be sent to the user.

2.4.3 Natural Language Processing

NLP is a field of computer science that studies how it is possible for a machine to understand

and handle natural language in order to have a “more natural” interaction with a human user.

Languages like English or Portuguese are easier to be understood by humans, but they cannot

be understood by machines. On the other hand, languages like Java were developed to be

interpreted by machines, but they are not usable for humans as a communication tool.

Since humans communicate with each other through natural language, the easiest way for a

human to communicate with a machine is also the use of natural language. In order to perform

this interaction, tools were developed that allow the interpretation of the intents behind each

user’s input.

Since the main focus of this internship was not NLP, DialogFlow[6] platform was used in

order to perform the natural language interpretation by the chatbot’s side on the project.

Android App for Enterprise Bots

 17

Chapter 3
Methodology and Work Plan

This section is dedicated to the presentation and description of the methodology adopted, as

well as the work plan to be followed during the internship. The work plan includes a planning

of the tasks that were done during the course of time, the definition of the final success

scenario and a presentation of the risks that might interfere with that scenario. Planning is a

very important part of this project, as it allows to define personal milestones to be

accomplished and it gives a better control of one of the most important resources of this

project – time.

3.1 Methodology

Every software project must follow the methodology that fits better its needs. In this case, an

AGILE methodology may be more adequate, since, the project’s scope was not closed. During

the project’s life cycle, new requirements may be included. An adaptation of SCRUM[29] was

adopted.

In SCRUM, at the beginning of a project, the features that will be implemented in the product

are defined and joined in what is called the product backlog. During the course of the project,

new features can be added to the backlog and others can be removed. The development phase

is divided into cycles that are called sprints. For each sprint, a set of tasks from the product

backlog are selected and will compose the sprint backlog. The duration of the sprints should

be defined according to the necessities of each project. On each sprint, there is a set of formal

events. The first one is the sprint planning, on which the tasks for the sprint backlog are

selected. Tasks are selected taking into account the time and effort that they take to complete

in order for the sprint not to have too many tasks nor too few. During the sprint, every day

there is a meeting called daily scrum, on which the team elements talk about what they’ve done

since the last meeting what they plan to do until the next. And then, typically in the last day

of the sprint, there are the sprint review and the sprint retrospective, on which the team talks

about the final product of the sprint, and about how the sprint went.

Android App for Enterprise Bots

 18

Figure 3-1: SCRUM Framework

As the project is developed only by the intern, there isn’t a clear definition of roles. And in

the methodology adopted, there aren’t formal meetings. Instead, the intern’s tutor is always

aware of how the work is going and any problem is reported immediately. This is possible

because the intern and its tutor work side by side.

Android App for Enterprise Bots

 19

3.2 Work plan

Table 3-1 gives an overview of the work plan to be followed during the internship. The

complete plan can be found in Appendix A.

1st Semester

State of the Art September/October

Requirements October/ November

Architecture November

Development “Call Scheduling

Module”

December/January

First Presentation January

2nd Semester

Bot integration February

Verification and Validation February

Development “During Call

Module”

February/March/April

Verification and Validation May

Development “Call Tab” May/June

Verification and Validation June

Functional Tests June

Final Presentation July

Table 3-1: Work Plan

3.3 Threshold of Success

In order to know if a project was succeeded, there must be a criterion to measure against. The

Threshold of Success represents the boundary between success and failure of a project.

For this project the following Threshold of Success (ToS) was defined:

Android App for Enterprise Bots

 20

 Have all Must Have requirements (RequirementsChapter 4) accomplished

by the end of the project.

The definition of what is success in a given scenario increases the chance of achieving it

because it allows us to keep straight following the road that leads to the success scenario

defined.

3.4 Risk Management

In every software project, there are risks that should be managed. This process allows the

minimization of their possible negative impact. An incorrect handle of the risks might lead to

a project failure. Risk management should be a continuous process, because, as the project

evolves, new risks might appear and some might be mitigated.

A risk is an event that can have a negative effect on a software project.

The identifications of the risks is the first step of the risk management, followed by analyzing,

planning and monitoring.

3.4.1 Risk metrics

As for the metrics to measure the risks, there is the impact that they will have on the project

in case of happening and the probability, which represents how likely they are to occur.

 Impact

o Low – ToS can be achieved without much extra work

o Medium – ToS can be achieved but with extra work

o High – ToS isn’t likely to be achieved

 Probability

o Low – probability is less than 30%

o Medium – probability is between 30% and 70%

o High – probability is more than 70%

After the identification and evaluation of the risks, a risk matrix is used to ease the

understanding of their influence on the project. The matrix used is divided into 9 categories

with different colors. The green zone is for the risks that represent a low danger for the

project, the yellow, for the ones that represent a medium danger, the orange is for the ones

that represent a high danger and the red zone is for the most critical risks.

Android App for Enterprise Bots

 21

 Low danger for the project

 Medium danger for the project

 High danger for the project

 Critical danger for the project

3.4.2 Risks

Risk 1 – Android learning

Description The intern has never worked on mobile platforms before; might cause

some difficulty in the adaptation to the project

Impact High

Probability High

Mitigation Plan Study of the Android programming techniques

 Experienced colleagues at WIT Software are available to help

Table 3-2: Risk 1 - Android learning

Risk 2 – Adaptation to RCS+

Description The app to be developed is based on an existing one; might take some

time to understand how the existing app is structured

Impact High

Probability Medium

Mitigation Plan Study of the existing documentation

 Experienced colleagues at WIT Software are available to help

Table 3-3: Risk 2 - Adaptation to RCS+

Android App for Enterprise Bots

 22

Risk 3 - Estimations

Description The intern doesn't have much work experience; might lead to bad effort

estimations

Impact High

Probability Low

Mitigation Plan Help of supervisors in the definition of the work plans

Table 3-4: Risk 3 - Effort estimations

Risk 4 – Android devices and versions

Description The number of different devices that run Android and the number of

Android versions is quite big; In some devices, the app might not run

correctly or may have some bugs.

Impact Medium

Probability High

Mitigation Plan Use different devices for tests

 Try to cover the maximum Android versions with the code

components used

Table 3-5: Risk 4 - Android devices and versions

Android App for Enterprise Bots

 23

Figure 3-2: Risk Matrix

As can be seen in the risk matrix, risks 1, 2 and 4 are in the orange and red zones, which means

that are the most likely to damage to the project’s evolution. For that risks, the mitigation

plans must be followed carefully in order to lower the impact that they might have on the

project.

As for the remaining risk, although it has a low probability, it has a high impact, and so, due

to the low number of risks, the mitigation plan will be followed carefully for this risk also.

P
ro

b
a
b

il
it

y

L
o

w

 M

ed
iu

m

H
ig

h
 Risk 4 Risk 1

 Risk 2

 Risk 3

 Low Medium High

 Impact

Android App for Enterprise Bots

 24

Android App for Enterprise Bots

 25

Chapter 4
Requirements

One of the first steps of a software project is the requirements analysis, and it is one of the

most important too. Before doing something, it is important to decide what to do and how to

do it.

This process will almost always help in the understanding of the problem, allowing the

developer to have a clearer vision of it and minimizing the chances of failure. The first step

of the requirements elicitation of this project was the definition of User Stories. The choice

of this method is related to its simplicity and that fact that it allows the developer to view the

problem under the perspective of all the personas that have interest on a certain feature.

4.1 User Stories

User Stories are very high-level requirements. They should be short, simple, and be written in

the perspective of the person who desires the capabilities described. Typically, they are written

according to the formula “As a <person who desires a capability> I want to <goal> so that I can

<reason>”.

The definition of User Stories is useful to understand the point of view of the personas

involved on the project and to proceed to the functional requirements definition.

The way the User Stories are written, allows any team member to estimate the cost of a task

in a very easy and quick way.

User Stories

ID As a I want to So that I can

US1 User Schedule a conference call Talk with other people

US2 User Invite contacts Choose who is participating in a
conference call

US3 User Know if a date is available for a
call

Schedule a call

US4 User View my calendar Check my availability to schedule a
conference call

Android App for Enterprise Bots

 26

User Stories

ID As a I want to So that I can

US5 User Receive a confirmation after a
call schedule

Know it was successfully scheduled

US6 User Have my co-workers contacts
on the contact list

Invite them to a conference call

US7 User Receive a reminder when a call
is about to start

Not forget about a conference that I
am supposed to be in

US8 User Know who is participating in a
conference call

Know who I’m talking to

US9 User Mute a participant on a call that
I have created

Mute a participant

US10 User Unmute a participant on a call
that I have created

Unmute a participant

US11 User Remove a participant from a
call that I have created

Remove a participant

US12 User Know who left a conference call Know who still is on the conference
call

US13 User See information about a person
that is on a conference call

Know who I’m talking with

US14 User See who is muted on a
conference call when I am a

guest

Know who is muted

US15 User I want to receive a notification
when I am invited to a

conference

Know when I have a conference

Table 4-1: User Stories

Android App for Enterprise Bots

 27

4.2 Functional Requirements

After the definition of the User Stories, it is easier to write the functional requirements of the

project. This second approach allows the division of the user stories in specific tasks, which

are better guidelines for the development process.

Each requirement is composed by an ID, a description and a priority field. The prioritization

of the requirements was made according to the principles of the MoSCoW method[30], which

consists on the distribution of the requirements through the following four categories:

 Must Have: requirements that are critical for the success of the project

 Should Have: requirements that are important, but not mandatory for the success of

the project

 Could Have: requirements that are desirable but not necessary for the project

 Won’t Have: requirements that will not be included in this version of the project

Table 4-2 contains the project’s functional requirements.

Functional Requirements

ID Description Priority

FR1 User can select a date for a call while scheduling it Must Have

FR2 User can select participants for a call while scheduling it Must Have

FR3 User can ask the bot to schedule a call specifying a date and

an hour

Must Have

FR4 User can ask the bot to schedule a call specifying only a date Should Have

FR5 User can ask the bot to schedule a call without specifying a

date or an hour

Must Have

FR6 User can ask the bot to view his calendar Must Have

FR7 User can provide a name for a call Could Have

FR8 User can cancel a call he has scheduled Must Have

FR9 User can edit the date of a call he has scheduled Must Have

Android App for Enterprise Bots

 28

Functional Requirements

ID Description Priority

FR10 User can see who are the invited participants for a call Must Have

FR11 User can edit the participants of a call he has scheduled Must Have

FR12 User can see the number of participants on an ongoing call Should Have

FR13 User can see who is on the call on a given moment Must Have

FR14 User can see an ongoing call’s duration Must Have

FR15 User can see who is muted/unmuted on a conference call Must have

FR16 User can mute/unmute participants on a call that he has

created

Must Have

FR17 User can see call participant’s information Must Have

FR18 Bot sends message saying if an action was successfully done Must Have

FR19 Bot sends message saying that a call is about to start Must have

Table 4-2: Functional Requirements

Android App for Enterprise Bots

 29

4.3 Nonfunctional requirements

As the functional requirements define what the app does, nonfunctional requirements define

how the app works.

Non-Functional Requirements

ID Description Priority

NFR1 Data consistency – The conference calls’ data stored on

the Asterisk server must be consistent with the data on the

bot’s database and with the data written on the user’s

Google Calendar. To achieve this, all the data writing must

be done in a transactional way.

Must Have

NFR2 Reliability – At least 40 hours of Mean Time Between

Failures (MTBF), where a failure can be a conference call

that is not really scheduled on the calendar although a

positive feedback was received by the user, a conference call

that the user is not warned about, or, the user receiving

information that is not accurate about a call during that call.

Must Have

Table 4-3: Nonfunctional Requirements

Android App for Enterprise Bots

 30

Android App for Enterprise Bots

 31

Chapter 5
Architecture

This chapter contains an explanation of the system’s architecture. A good definition of the

system’s architecture is an important step in a software project’s lifecycle. The architecture will

define how the system will work. A good architecture should be simple, complete and precise.

If not, the developers may have a wrong interpretation of it and problems may arise from

there.

In order to achieve the desired easily interpreted architecture, various views were made. Each

view represents a different vision of the problem or of part of it. This approach was chosen

over having just one big diagram of the all project because when only one diagram is defined

for the architecture of such a big system, that diagram, even if well designed, will almost always

lead to misinterpretations. On the other hand, the approach adopted allows the person who

reads the architecture to view it from different perspectives and to have more detailed

information about each component of the system.

5.1 Overall System

Figure 5-1 represents the overall architecture of the system.

On this section it is possible to see that the RCS+ app, which is one of the two main

components of the project, communicates through HTTP with the other main component,

the WIT’s Bot Platform. This communication channel is the only one used by the RCS+ app.

All the services necessary to provide the information for the app are reached through the bot’s

platform, where the bot is.

Android App for Enterprise Bots

 32

Figure 5-1: System's overall architecture

The RCS+ app sends chat messages to the WIT’s bot platform, and receives messages from

it. The bot, on the WIT’s bot platform communicates with several services in order to perform

the tasks related to conference calls.

The bot has a NoSQL database where data like bot’s users, conferences or lunch orders are

stored. On this database, all conferences are saved on a collection named “conferences”. Each

conference on this collection is composed of the following fields.

 Id – a unique identifier for the object;

 Title – the title of the conference;

 Date – the start date of the conference;

 End – the end date of the conference;

 Number – the conference identifier on the Asterisk server;

 SecurityPin – the number to be dialed by users to join the conference

 ModeratorPin – the number to be dialed by the conference owner;

 Description – a description comprising all the conference’s main information;

 Participants – the group of participants that are invited to the conference;

Android App for Enterprise Bots

 33

The bot also communicates with an Asterisk server. This server is used to perform VoIP calls.

The communication with this server occurs during several operations. When a conference is

scheduled, a request is sent to the Asterisk server. Here, the most important aspect is the

conference identifier, a number that can be used in order to join the conference that was

created (once it starts). When the conference starts, that identifier is used by the bot in order

to send a request to the Asterisk server, so that a call to join that conference is performed to

the users’ phones. Those are situations where the bot sends requests to the Asterisk server.

But there are also some cases where it is the Asterisk server that performs the communication

to the bot. That happens when a conference event occurs. The events that can trigger that

communication are the following.

 Conference starts

 Conference ends

 User joins conference

 User leaves conference

 User is muted

 User is unmuted

Those events are communicated to the bot in order to be multicasted to all of the conference’s

participants.

There are also communications with the Google Calendar API service. Requests are sent in

order to perform both reading and writing operations. The calendar reading is the operation

that occurs more frequently, since requests to update the calendar are sent, for example, always

that the user opens the calendar tab on the RCS+ app. The writing operations are performed

when it is necessary to schedule, modify or delete a conference.

The other service used by the bot is the LDAP server. Communication with this service is

necessary in order to identify the conferences’ participants.

5.2 RCS+

The RCS+ app is composed of many modules. Figure 5-2 presents a diagram with the app’s

main modules, identifying the one that was created and the modified ones.

The conference calls module was entirely created during the internship. This module manages

most of the things that are related to the conference calls.

Android App for Enterprise Bots

 34

Figure 5-2: RCS+ modules

The architecture of the conference calls module can be seen in Figure 5-3, as well as its

interaction with the remaining modules.

The various components of the conference calls module have connections between them but

also with components of other modules.

The calendar tab element on the conference calls module, is managed by the app’s tab

manager. It is an Android’s fragment, and it contains a calendar view element. It also contains

the ongoing call expandable component and it is connected to the chat module, so it can

receive the updated calendar events of the user’s calendar.

The calendar view is the calendar that allows the user to select time slots to schedule

conferences. It is used on the calendar tab and on chat messages sent by chatbots. A calendar

view has an ArrayList of events and an event has an ArrayList of participants. From the

calendar view, it is possible to start the scheduling of a conference call.

The ongoing call manager is connected to the chat history manager, this connection exists

so that when the app starts, a search for ongoing conference calls is performed. It also

communicates conference calls’ events to the conference call expandable component. And,

through the chat module, it sends messages to perform actions like mute or unmute

conference participants.

Android App for Enterprise Bots

 35

The chatbot chat message calendar is a type of message to support the use of the calendar

view on a chat message that is sent by a bot.

The WIT contact manager receives the messages sent by the bot containing the information

related to the WIT’s workers contacts. It turns that information into contacts and adds them

to the contact’s list.

The chatbots’ module comprises a variety of chat message types. The message types allow for

example the use of sound messages, messages with maps to share locations or messages with

videos. A new type of message was created to support the use of the calendar view on a chat.

The chatbot chat is the component where it is decided how to treat each chatbot message

type. This component was modified in order to decide what to do with the new message types

defined.

The chat module contains the chat manager, the component where the chat messages arrive.

This component was modified in order to identify the type of message that arrives and forward

it to the right place. A message is forwarded to the chatbots’ module if it is a chatbot type

message, to the ongoing call’s listeners if it is an ongoing call event or to the contact’s module

if it is a message containing the contacts to be added to the contact list.

On the contact’s module, the WIT’s contacts manager was created in order to process the

contacts that arrive via bot message and the android contact manager was modified in order

to perform the contact integration.

Android App for Enterprise Bots

 36

Figure 5-3: RCS+ created and modified elements

When a conference call is happening, a component with the conference details is visible on

the app. This component is updated in runtime by chat messages that come from the bot.

When the app is running, there are listeners that are triggered every time a message related to

a conference call arrives. This approach works well when the conference events happen while

the app is running. Nevertheless, if the app is restarted, this method of getting the events does

not work, because the events that had been already received, will not be re-sent, and when a

Android App for Enterprise Bots

 37

new event arrives, it will not be recognized because as far as the app “knows” there are no

conferences happening.

In order to solve this problem, a chat verification needs to be done on the app start. The

calendar tab is one of the places where the ongoing call component can be found. Since this

tab is initialized when the app starts, the chat verification can be done here.

The chat history is stored on a database, and it’s accessed by the app through the COMLib.

The COMLib is a communication application operating with a stack protocol, which provides

communication components like messages, to the RCS+ App. It follows a service oriented

architecture, in order to be well organized and easily configurable. When the app starts, the

calendar tab, sends a request to the COMLib to get the bot’s chat conversation. When the

response comes, the messages are analyzed and if there is a message related to a conference

start that is not followed by a message related to a conference end, it means that there is a

conference happening. After processing a message related to a conference start, a search

occurs for other conference events, like participant entrances or exits.

Figure 5-4: RCS+ and COMLib interaction

Android App for Enterprise Bots

 38

5.3 WIT Bot Platform

Figure 5-5 allows the understanding of the whole bots communication structure inside WIT’s

network.

Figure 5-5: WIT Bot Platform

As the diagram shows, bots can be used through various channels. Either through SMS, Over

the Top (OTT) platforms like Facebook Messenger[8] or the RCS apps.

The requests to the WIT Bot Platform are made using the HTTP protocol. Those requests

may come directly from the OTT platforms or through the WIT RCS API Gateway, which

serves as intermediate for SMS and for RCS apps.

WIT Bot Platform is where all the bot’s artificial intelligence is done. This server is composed

of 3 major components.

 WIT RCS Bot Gateway – This component is responsible for receiving HTTP

requests and sending them to the proper next step. It is also responsible for

sending the HTTP answers back to their origin. This component also adapts

the response contents, having in consideration what is supported by the client.

 Bot Engine & Control – The component that allows the integration with 3rd

party bots, that allows bots to have access to users’ information and that

includes the module of the conversation engine. When the bot receives a

message, it decides the flow of actions to be taken.

Android App for Enterprise Bots

 39

 Bot Builder – Here, is created and stored the bots conversational capabilities.

These conversation capabilities are defined with BPMN workflows and AIML

files.

5.2.1 Witty Bot

The Witty Bot is composed of five main components. Three of them were not modified at

all. The “book room” element that allows the booking of rooms by the bot’s users, the “lunch”

component that allows bot’s users to order lunch and the “who is” element that allows the

users to search for people.

Among other things, the “witty main” component manages the bot’s main menu. This menu

was modified in order to contain the conference related features.

The “conference call manager” was the main focus of the work performed on the bot’s side.

This component is divided into two main parts, the “schedule” part, and the “look for

conferences” part. The “schedule” part already existed on a previous version. However, it had

to be done from scratch, in order to support the new functionalities. This module sends

requests to the Asterisk server, in order to schedule the calls. When a call is scheduled or

modified, it is also saved on the bot’s own database (a NoSQL database). When a schedule is

performed, it is also necessary to communicate with the LDAP service, in order to identify

the conference participants and with the Google Calendar API so it can be scheduled also on

the user’s own calendar.

The “look for conferences” part performs features related to conference calls that do not

involve creation or modification. Tasks like checking if a call is about to start or treating

ongoing call’s events are done by this module.

Android App for Enterprise Bots

 40

Figure 5-6: Witty Bot modules

5.2.2 Schedule a conference

Figure 5-7 shows the sequence of steps followed to schedule a conference on the bot.

Messages sent by the RCS+ app arrive on the RCS Endpoint of the bot. Here, the message is

analyzed in order to check if it matches any pattern defined. In the case of the schedule of a

conference, it will not match any pattern. In these cases, messages are sent to the DialogFlow

platform in order to understand the user’s intention. On the platform, uses NLP to extract

intentions and elements out of inputs. In the case of the schedule of a message, it will find a

date, an hour, a title and phone numbers of participants. The elements found are then sent

back to the bot, ready to be treated by the schedule module.

The first thing done by the schedule module is to search the participant’s phone numbers,

detected in the NLP analysis, on WIT LDAP. After this, besides the phone numbers, there

will be the emails and names of the participants.

When all the necessary information for the schedule of the conference is gathered, it can be

scheduled. Firstly, it is scheduled on the Asterisk server. After the confirmation of this server,

the conference is also scheduled on the bot’s database and in the end, in the user’s Google

Calendar.

Android App for Enterprise Bots

 41

After the schedule of the conference call, the schedule module composes a confirmation

message to be sent to the user. This message is prepared on the message constructor and is

sent to the user by the RCS Endpoint.

If an error occurs while scheduling on the Asterisk server, it will not be scheduled on the

remaining places. This approach contributes to increasing the app’s reliability, which is one of

the defined nonfunctional requirements.

Figure 5-7: Schedule a conference call flow

5.2.3 Calendar Message

The calendar message is used in two situations. It is used to keep the calendar tab updated and

to display the user’s calendar on a chat message when he asks for it.

In the first case, the request is sent automatically by the app when the “onResume” method

of the calendar tab is called.

When the message arrives on the bot, it is analyzed in order to search for pattern matches. In

this case, it will match the pattern defined to update the calendar tab. It is sent to the “Look

for conferences” module and there, a request is sent to the Google Calendar API. The

response will be a JSON message containing the user’s calendar events. This JSON cannot be

sent directly back to the app, because it contains more information than it is necessary and it

does not follow the structure required to the messages that are accepted by the RCS Gateway.

Android App for Enterprise Bots

 42

On the message constructor, a new JSON message is defined. For each calendar event, the

following fields are added to the message.

 Title – This field represents the event’s title.

 Start date – The day and hour when the event starts

 End date – The day and hour when the event ends

 Participants – The phone number of the participants of the event

 Description – Through the description, the app will be able to identify if the event

corresponds to a conference call or not

 Link – The link to the event on the Google Calendar service

The JSON message needs to have also a field identifying the message type.

The message will be sent to the app by the RCS endpoint. When the message arrives on the

RCS+ app, the chat manager processes it and identifies it as a message to update the calendar

tab. A listener is triggered in order to re-direct this message to the calendar tab fragment. In

the tab, the events that came on the message are displayed on the calendar view.

The other situation where the calendar view is used is when the user asks to see his calendar

on the chat. In this case, when the message arrives on the bot it will not match any pattern

defined. It is then analyzed on the DialogFlow platform in order to get the intent. The

remaining flow of actions in the bot’s side is the same as the one described before for the

calendar tab update. Once the RCS+ app receives the message, the chat manager processes it

and sends it to the chat history manager where a chat history entry is created. That history

entry is identified as a JSON containing calendar events and is then treated on the chatbots

module. In this module, a chatbot chat message calendar is created. This message consists on

a calendar view, with the events that came on the JSON message. After all this steps, the

message is ready to be displayed on the chatbot chat.

Figure 5-8 represents the flow followed when the user asks to see his calendar.

Android App for Enterprise Bots

 43

Figure 5-8: Calendar message flow

5.2.4 LDAP Integration

The integration of the WIT’s LDAP contacts is triggered when the app starts. A request is

sent to the bot in order to start this process. When the message arrives on the bot, it matches

a pattern and does not need to be analyzed by the NLP platform. It is then sent a request to

the WIT LDAP in order to get the contacts of all the users. The answer received is a JSON

message containing all the information about the LDAP contacts. This message is then sent

to the message constructor in order to build a JSON template message that is not blocked by

the RCS gateway. The JSON to be built contains the following fields.

 Name – the name of the contact

 Phone Number – the phone number of the contact

 Email – the email of the contact

 Job – the job of the contact

A field identifying the message type is also added to the JSON message. And then, the RCS

Endpoint sends the message to the RCS+ app.

When the message arrives on the app, the chat manager identifies it and passes it to the

contacts module. There, the WIT contact manager parses the JSON message, and creates

contacts. This contacts will have a field identifying that they represent a WIT worker. This

field will allow the app to filter the contacts when only the WIT workers’ contacts need to be

Android App for Enterprise Bots

 44

displayed. After the creation of the contacts, the Android contact manager add them to the

app’s contact list.

Figure 5-9 shows the flow of this process.

Figure 5-9: LDAP integration flow

5.2.5 Ongoing Call

Unlike the other processes, this one is not triggered by the RCS+ app. It occurs when a

message arrives on the bot coming from the Asterisk server. There are five types of messages

that can start this process.

 Start of a conference – a conference starts, this happens when the first participant

joins

 End of a conference – a conference ends, this happens when the last participant

leaves the conference

 Participant entrance – someone joins the conference

 Participant exit – someone leaves the conference

 Participant muted – someone is muted by the conference owner

 Participant unmuted – someone is unmuted by the conference owner

When any of those messages arrives on the bot, it is received on the Asterisk Endpoint. The

message will always contain the call id and if it is related to a participant, contains also the

participant’s id. The message is passed to the Look for conferences module and there, a

Android App for Enterprise Bots

 45

request is sent to the bot’s database, in order to get the calls participants. After that, a text

message is broadcasted to all participants.

On the app, the messages are received by the chat manager. Then, two separated paths are

followed. The message follows the regular trail to be displayed on the chat window and it is

also sent to the listener that redirects it to the ongoing call manager. Once it gets there, it is

analyzed in order to determine the type of message, the call’s id and, if is the case, the

associated contact.

To end this process, the information is passed to the calendar tab, where it is received by the

ongoing call expandable list component, and, if it the case, also passed to the ongoing call

expandable list child.

When a message represents the start of a conference, the ongoing call component is turned

visible, and it is removed when a message represents the end of a conference.

Figure 5-10 represents the flow that is followed when an event of this type happens.

Figure 5-10: Ongoing call events flow

Android App for Enterprise Bots

 46

Android App for Enterprise Bots

 47

Chapter 6
Implementation

This chapter gives an overview of the implementation done during the internship. During the

first semester, the implementation was focused on the call schedule module, which comprises

everything related to the scheduling of a conference call.

The second semester started with the conclusion of the work developed during the first

semester and proceeded with the development of the app’s new calendar tab, followed by the

ongoing conference call’s features. The last major part developed was the LDAP integration.

The implementation consisted mostly of two very different parts. The development of the

screen of the app and the development of the bot’s side.

The definition of the screens’ layout was an important aspect of this project. Since the work

developed was meant to be integrated into an existing app, the new functionalities layout

should be coherent with the remaining screens.

Two different approaches were adopted to design the screens. The first one was used in the

development of the calendar view.

For this component, the approach was to develop and then keep editing it until its design was

coherent with the app.

The remaining screens were defined by the WIT designers’ team. This is the standard process

used by the company when it comes to layout design definition.

For this to be done, a document must be written with a request, explaining the goals, the

constraints and the context of what is needed.

The methodology adopted for the requests consisted on the definition of requirements

explaining what the goal to be achieved is, and the definition of simple mockups that represent

an idea of what is pretended with the requirement.

The first thing to have in mind when writing a request is that the person who is reading the

request is not familiarized with the app. So, the request needs to be very detailed and clear.

During the project, two requests were sent to the designers’ team.

The first one was related to the “Schedule call screen” and the “Ongoing call component”.

The second one was related to images for the bot’s main menu.

Android App for Enterprise Bots

 48

Both requests and respective answers can be consulted on Appendix B – Requests to

Designers.

On the first document, there was a request for the definition of a presenter on the call. When

the request was analyzed, the concept of presenter was dropped and the role of “owner” took

its place. This happened because the role of presenter was considered not be relevant and

there was a lack that would be filled by the creation of the “owner” of the conference. The

owner role brought organization to the ongoing conference call. Before the creation of the

conference’s owner, any participant would be able to execute actions like mute and unmute

other participants. This could lead to situations that would not correspond to the desired

result.

With an “owner” (the user who creates the conference), the actions are restricted to only one

user. This way, the conference environment will be more controlled and people will be focused

on what really matters.

6.1 RCS+ App

This section contains the information about the functionalities developed and the way that

they work on the RCS+ app’s side.

6.1.1 Call Schedule Module

The first major outcome of the intern was the conference call scheduling module. At first, for

simplification of the development, this module was developed as a standalone app.

The integration with the RCS+ app occurred when every feature was already developed and

working correctly.

This module consists of three parts, the calendar view, the addition of participants and the

modification of a conference call’s data.

For purposes of reducing failure possibility, internet connection verifications are made when

an operation is done. This way, the conference call scheduling is only possible when the device

is connected to the internet, avoiding that changes are made locally and not remotely. Either

a change is immediately made both locally and remotely or it is not done at all. This choice

was made in order to achieve a bigger MTBF which is one of the nonfunctional requirements

of the project. And since all the operations are made through the bot, a connection is needed

in order to send the messages.

Android App for Enterprise Bots

 49

6.1.1.1 Calendar View

In this sub-module, the user has access to a calendar view of one day, three days or all week.

This component is based on an open source calendar view for Android. That calendar view

was modified in order to adapt it to the project’s context. The following adaptions were done:

 Addition and removal of events;

 Synchronization with Google calendar;

 Disable the possibilities of adding events in the past or on weekends;

This component is shown when a JSON template message containing calendar events is

received from the bot. Once that message is received, the calendar view is displayed. On that

calendar view, the events that correspond to a conference call are represented by a different

color. When an event that is not a conference call is selected, a message is shown saying that

the event cannot be opened by the app. On the other hand, when the event is a conference

call, it is opened in order to be consulted or edited.

If instead, the goal is to schedule a new conference call, the user will press an empty slot. Once

that happens, a temporary icon is created on the pressed slot. In order to schedule, the

selection must be confirmed, by pressing the temporary icon.

On the calendar, only events that represent conference calls can be opened and edited. In

order to know which events are conference calls, an extra field is added to conferences when

they are scheduled. That field will indicate that the event is a conference call and it will also

contain the conference’s id. It is necessary to save the conference’s id in order to perform

modifications. Events are displayed on the calendar with two different colors. The two colors

allow the user to identify which events are conference calls. If the user tries to open an event

that is not a conference call, a message is shown saying that the event cannot be opened by

the app.

Android App for Enterprise Bots

 50

Figure 6-1: Calendar view

Figure 6-2: Calendar view with add event icon

Android App for Enterprise Bots

 51

6.1.1.2 Call Schedule

Once a calendar slot is picked, a new screen is presented to the user. This new screen contains

information about the conference.

In order to keep the design coherent with the remaining screens of the app, this screen was

based on a mockup made by the WIT designer’s team.

Figure 6-3: Schedule call screen mockup

If the slot picked by the user was empty, the intention is to schedule a new conference call.

So, the date related field is pre-filled with the date corresponding to the calendar slot picked.

There is also a field for the conference’s title and one for its participants. There is an option

to add participants and one to cancel the call. In this case, this last option will be disabled,

because the user is creating a new conference.

Android App for Enterprise Bots

 52

Figure 6-4: Create conference call screen

On the other hand, if the slot picked contains a conference call, this screen will provide the

possibility to edit it. Current title, date, duration and participants of the call are shown on this

screen. And, since the call already exists, the option to cancel it is available.

Android App for Enterprise Bots

 53

Figure 6-5: Edit conference call screen

Once the user is satisfied with the changes made, he can select the “Done” options on the

right top corner of the screen and a message will be sent to the bot containing all the

information related to the changes made by the user.

6.1.1.3 Participants Addition

The addition of participants to a conference call is part of the scheduling process. This was

done, in conformity with the contact pickers of the RCS+ app, for purposes of design

consistency.

On this participant picker, only contacts that work at WIT are displayed. This filter was made

based on the LDAP integration that is described in section 6.1.4.

Android App for Enterprise Bots

 54

Figure 6-6: Participants Selection 1

Figure 6-7: Participants Selection 2

6.1.1.4 Participants Removal

The removal of conference call’s participants a feature of the scheduling process. The process

of removal was based on a mockup defined by the WIT designer’s team. It is possible to

remove one or more participants at a time. Figures 6-8 and 6-9 show the mockup and the final

implementation.

Android App for Enterprise Bots

 55

Figure 6-8: Participants removal (mockup)

Figure 6-9: Participants removal

6.1.2 During Call Module

The During Call module allows the user to have access to an ongoing conference call’s events.

During a conference call, a user should be able to see who is participating in a conference call

at a given moment. He should also see the duration of the conference. If the user is the owner

of the conference, he should also be able to mute, unmute and remove active participants

from the call.

For this module, an expandable component was added to the top of the screen. When this

component is collapsed, it shows the number of active participants and the call’s duration.

The design of this component was based on the mockup (figure 6-10) created by the WIT

designers’ team. Figure 6-11 represents the final result on the collapsed component.

Android App for Enterprise Bots

 56

Figure 6-10: Ongoing conference call component

collapsed (mockup)

Figure 6-11: Ongoing conference call component

collapsed

Once the component is expanded the user is able to see who the active participants are.

There are two labels on the component, the “me” label, that marks the user itself and the

“owner” label. If the “me” and the “owner” label are on the same user, that user will be able

to click the “remove participant icon” in order to remove a user from the call, and can also

click the “mute/unmute icon” in order to mute or unmute a user, depending on its current

state. Once again, the element was based on the mockup shown in figure 6-12. The final result

of the expanded element of the conference’s owner can be seen in figure 6-13.

Android App for Enterprise Bots

 57

Figure 6-12: Ongoing conference call component

expanded (owner view mockup)

Figure 6-13: Ongoing conference call component

expanded (owner view)

If the labels are on different participants, it means that the user is not the owner, and he will

be only able to see the mute/unmute state of the participants. Both the mockup and the final

result can be seen in figures 6-14 and 6-15 respectively.

Android App for Enterprise Bots

 58

Figure 6-14: Ongoing conference call component

expanded (normal view mockup)

Figure 6-15: Ongoing conference call component

expanded (normal view)

A participant leaves the call when he hangs up the phone or when he is kicked by the

conference’s owner. When a participant leaves the conference, the ongoing call component

must be updated. In order to make it clear for the user that someone left the conference, the

participant’s information is not removed right away when he leaves. The number of

participants on the top of the bar is updated right away, but the participant’s field stays for

five more seconds with its transparency changed. Figure 6-16 shows the screen on the moment

between the exit of the participant and the field removal.

Android App for Enterprise Bots

 59

Figure 6-16: Ongoing call component - Participant left conference

At the beginning of the internship, one of the requirements defined for this module was to

show when a user is speaking. During the development phase, it turned clear that this feature

could not be implemented. The conference’s events are sent by the bot. And the delivery time

of the bot’s messages on the app may vary a lot. In order to be well functioning, this feature

would require a very small delivery time. As this delivery time cannot be guaranteed, this

feature was left behind.

6.1.3 Conference Call’s Tab

This feature consisted on the addition of a new tab to the RCS+ app’s main menu. This new

tab allows the user to view its calendar without having to ask the bot for it. And also allows

the user to create new conferences or edit the existing ones.

This tab has all the functionalities of the calendar view used on chat messages and the

possibility to create a new call by pressing the floating action button on the screen’s bottom

right corner. This way of creating a conference will open the schedule screen that, by default

will be filled with the next available time slot for a conference call.

Android App for Enterprise Bots

 60

In order to keep this calendar view updated, a request is sent to the bot every time the tab is

selected. A JSON template is sent back by the bot containing all the events on the user’s

calendar.

For consistency purposes, an icon for the tab was developed by the WIT designers’ team.

Figure 6-17: Conference Call’s tab

6.1.4 LDAP Integration

This feature consists on the integration of the contacts of the WIT’s workers with the RCS+

app. Although it has an impact on all the functionalities developed, it was the last major feature

to be developed.

Once the app is launched, a request is sent to the bot asking for the LDAP integration.

The response comes as a JSON template, containing information about all of the WIT’s

workers. All this contact are added to the app’s contact list.

The app’s contact list is created every time that the app is launched. It reads the phone’s

contact list and adds every contact. The contact list of the app is not stored anywhere, so, the

list is created every time when the app is launched. That is why the message asking for the

integration has to be always sent when the app starts.

Android App for Enterprise Bots

 61

The contacts that come from the bot’s response, are added with the “organization” field saying

“WIT Software”. On the contact’s tab, a filter was created, in order to be possible to display

only the WIT’s workers contacts

When a conference is being scheduled, the same filter is applied to the participant picker. This

way, only WIT’s workers’ contacts can be added to a conference call.

This feature has also impact on the ongoing conference call’s top bar. For example, when a

user joins a conference call, a message is received on the app with the person’s phone number.

The LDAP integration makes it possible to associate every phone number received during a

conference call with a contact.

6.1.5 Message treatment

Some of the messages received on the app need to have a different treatment than the regular

ones. These messages are the JSON templates.

The template containing the user’s calendar needs to be displayed as a graphical component.

When it arrives, the app needs to recognize that this message is a template and that it is not

to be displayed in a textual way. Then, a “ChatbotChatMessageCalendar” object is created and

the properties of the message are attributed to the object. Then, this object is displayed on the

bot’s chat screen.

On the other hand, the template containing the LDAP contact’s information does not need

to be displayed either in a textual way neither graphically. The app needs to recognize that it

is a contacts list template, and create “Contact” objects with the information on the template,

add those contacts to the app’s contact list and then, don’t display the message at all.

6.2 Bot

This section contains the information about the work developed on the bot’s side.

On the bot, every functionality starts with the definition of a BPMN diagram. This diagram

defines the flow that the conversation will follow. Figure 6-18 shows one simple BPMN flow,

representing the update of the events of the calendar tab. All the BPMN diagrams developed

can be consulted on Appendix C – BPMN flows.

Android App for Enterprise Bots

 62

Figure 6-18: Update calendar tab's events - BPMN diagram

This BPMN flow is triggered when a request arrives on the bot matching the pattern defined

to the “Start Get Events to Tab” event. From there, the flow follows to the “Get Events to

Tab”. This is a service task. This kind of task is used to perform “backend” processes. In this

example, this task sends a request to the Google Calendar service to get the user’s calendar

events and waits for its response. Once the response arrives, the task builds a JSON object

with the events and the finishes. The flow continues with the “Send Events to Tab” task,

which is a send task. This type of task sends answers to the users. In this case, the task will send

the JSON object built by the previous task. The flow ends with the “End Get Events to Tab”

event, an end event.

Once the diagram is done, the remaining needed files can be generated based on it. It is

necessary to generate an AIML file and a JavaScript file.

The AIML can be modified in order to define templates for the bot’s answers and associate

them with user inputs.

The JavaScript is used to define what is done in each BPMN task.

6.2.1 Conference Call Schedule

On the bots side, the schedule module is the most complex module developed.

On the BPMN file of this feature, there are several “start events” that can be triggered in order

to start one flow.

The main “start event” is the “Start schedule”. This start event is triggered when the user

sends a message asking to schedule a call. The input is analyzed by the platform DialogFlow,

to check if it corresponds to request to schedule a conference call. If it does, this start event

Android App for Enterprise Bots

 63

is triggered. If the request already contains a valid date and an hour, the bot will send a message

to the user with the information that was contained in the request. The user will then have the

opportunity to add participants and a title to the call.

If the request contains a date but it is not valid, a message will be sent saying that it is not

possible to schedule a conference on the date mentioned. If it contains a valid date and an

invalid hour, it will be necessary to check if it is possible to suggest an alternative hour for the

conference. If it is, a message will be sent to the user saying that it was not possible to schedule

a conference on the hour indicated, but it is possible to schedule to the next hour available. If

the user accepts the alternative hour, the schedule will continue from then, if he does not, the

schedule is aborted.

If the request does not contain a date and an hour, the user is asked if he wants to check his

calendar. If he does, a JSON template message is sent with the user’s calendar events. If he

does not, the schedule will have by default the next available time slot.

Another “start event” is the “Show My Calendar”. The input is also analyzed by the

DialogFlow platform and if it contains an intent to see the calendar, it is triggered. This start

event will lead to the sent of a JSON template message with the user’s calendar events.

The events described are the ones that lead the user to the call schedule screen. Once the

“done” button on that screen is pressed, a request is sent to the bot containing the details of

the conference to be scheduled.

The bot starts by trying to schedule the call on the asterisk server (the server that manages the

WIT’s conference calls) if it succeeds, the bots proceeds to save the call on its database. To

finish the process, if both previous steps were completed with success, the bot saves the call

on the user’s Google Calendar. If any of the steps fail, the user will receive a message saying

that it was not possible to schedule the call.

There are two other “start events” on this BPMN file. One to cancel conference calls and

another to edit them. Both of them are triggered by a pattern. If the request sent by the app

matches the pattern defined for the start events, the cancelation or the edition starts.

As an extra, it was added support to schedule messages through the Facebook messenger’s

platform. The request that comes from the messenger platform cannot be processed in the

same way that the RCS+ app ones are. For instance, it is not possible to show the calendar

view on the Facebook messenger’s platform. Some adaptations were made in order to make

Android App for Enterprise Bots

 64

it functional. On the Facebook messenger’s platform, all the interactions had to textual in this

case.

 6.2.2 Ongoing Conference Call

Although the majority of the bot’s start events are triggered by user’s inputs or messages that

are received, there are some that are triggered on a time basis. An example of that is the events

that check if the user has a conference call about to start.

Every five minutes, the bot checks on its database if there any conference call about to start.

If there is, a message is sent to the user. This message is sent with three quick replies that the

user can select. The first is to join the call. If it is selected, the bot sends a request to the

asterisk server and the user will receive a call to join the conference. Another quick reply

available is to tell that the user is late for the call. The bot will send a message to the

conference’s participants telling that the user will be late, if this reply is selected. The last quick

reply is to say that the user cannot participate in the call. When it is selected, the bot sends a

message to the conference’s participants saying that he cannot participate on the call.

The asterisk server sends a message to the bot every time an event happens on the call.

When the call starts, the bot receives a message from the asterisk server, and it multicasts the

message to all the participants. The same happens every time a new user joins or leaves the

call.

On the RCS+ app, the owner of the conference can ask to mute, unmute or remove a

participant. When the bot receives any of those requests. The bot parses this information and

sends a request to the asterisk server. Once the confirmation is received, the message is sent

to all the conference’s participants.

6.2.3 Events to RCS+ Calendar Tab

The “start event” of this flow is triggered when the bot receives a message that matches a

certain pattern. That pattern is sent by the RCS+ app every time the calendar tab is selected.

Once the message is received, the bot will get the events from the user’s Google Calendar.

The user needs to have granted access to its calendar.

Android App for Enterprise Bots

 65

Once the bot gets the events, it builds a JSON template with them. Not all the information

received from the Google Calendar’s API is used. The JSON will only contain the event id,

the event title, start and end timestamp and time zone, the participants and the description.

The JSON template is then sent to the user, in order to be parsed and displayed on the calendar

view.

6.2.4 LDAP Contacts Integration

Like the previous one, this flow is triggered when the bot receives a message matching a certain

pattern. The message that matches the pattern is sent by the RCS+ app every time that the

app is launched.

When the message is received, the bot sends a request to LDAP server, asking for the

information of all the contacts.

Once the answer is received, a JSON template is built with the name, phone number, e-mail

and job of all the contacts. Then, it is sent to the user. Once it is received on the RCS+ app,

it is parsed and the contacts are added to the app’s contact list.

6.2.5 JSON Templates Constructor

The bot can send various types of messages. The most common are text messages. There are

also quick replies, which allow the user to choose from a set of options the answer that he

pretends to give. And there are template messages, which are JSON objects.

The JSON templates allow the bot to send information that will be displayed in a different

way by the receiver (most of the times it will compose graphical component).

For this project, two new template types were created. The first one was created to send the

user’s calendar events. The other allows the bot to send the LDAP’s contacts. Both of the

templates can be adapted in order to send other types of content, although they are optimized

for this kind of information.

6.2.6 Other aspects

In order to achieve the goals proposed on the non-functional requirements, some

particularities were implemented. The first requirement says that the data stored on the

Asterisk server, on the NoSQL database and on the user’s Google calendar must be consistent.

Android App for Enterprise Bots

 66

To do this, all the schedules, modifications and cancelations are performed in a transactional

way. Either a change is performed in all 3 platforms or it is not performed in any of them.

This aspect is also important for the second requirement because it reduces the possibility of

the user to receive a positive feedback when some error occurred performing the action.

Also to increase the system’s reliability, the verifications for conferences that are about to start

are performed every minute. A conference call is considered to be “about to start” when there

are less than ten minutes left to its start. Doing this verification every minute, even if a

connection error occurs during a verification, more verifications will be performed and the

chances to have at least one that is successful is bigger.

Android App for Enterprise Bots

 67

Chapter 7
Validation & Verification

Quality assurance is a very important phase of a project.

This stage allows the developer to validate whether the product satisfies the requirements

that led to its development. The validation of the product, in this case was done by the

internship’s supervisor, as he represents the client of the product, deciding if each feature is

implemented in the way that serves best the required functionalities.

Besides validation, this phase is also composed by the verification of the developed product.

Verification consists on the evaluation of the developed features in order to check whether

they satisfy the functional requirements and to verify if there are any errors.

This phase can be done either during the software development or at its end. In this case, the

validation and verification was a continuous process. In order to validate the developed

functionalities, regular meetings were scheduled with the internship’s supervisors. For the

verification, several tests were made during the development of each feature. At the end of

the development, a more formal verification took place. That verification started with the

definition and evaluation of the functional tests.

7.1 Functional Tests

Functional tests are a type o black-box testing. This kind of tests are based on the project’s

specifications and with no knowledge of the implemented code.

For each test, there is an input and an expected output. If the final result is equal to the

expected result, the test is considered to be passed with success. Otherwise, there is something

that needs to be corrected.

Each functional test is composed by an id, a sequence of steps to perform in order to make

the test, a description of the expected result and a result.

Table 7-1 represents an example of a functional test. This example consists on the cancelation

of a conference call.

Android App for Enterprise Bots

 68

FT39 Cancel a conference call

Steps
 Select a conference call on the calendar view

 Select the “Cancel conference call” field

Expected

Result

o The app sends a message to the bot saying to cancel the call

o The call is deleted from the bot’s database

o The call is removed from the user’s google calendar

o User receives a message saying that the call was successfully

canceled

Result SUCCESS

Table 7-1: Functional test 39 - Cancel a conference call

In order to test the various features developed, 71 different tests were defined, distributed

over six categories. Appendix D – Functional Tests, contains the complete list of tests and its

details.

After the development of each major module, a test phase dedicated to the features related

with that module occurred. During those test phases, some tests have failed and modifications

were made in order to correct the errors found. In the final stage of the internship, a new

verification phase took place, covering all the modules. Table 7-2 contains the results of this

final tests.

Category Success Failed

Schedule Calls 43 0

Call About to Start 4 0

Ongoing Call 12 0

LDAP Integration 2 0

Calendar Tab 7 0

General 3 0

TOTAL 71 0

Table 7-2: Functional Tests results

Android App for Enterprise Bots

 69

7.2 Calendar View Tests

One of the tasks performed during the app’s usage is reading the user’s Google Calendar

events and present them on the app’s calendar view. On the calendar view, only the events

that represent conference calls can be opened.

In order to test this feature, several calendar variants were used. For each test, the calendar

would vary the number of events, the number of events that correspond to conference calls

or not and the possibility to have simultaneous events.

For each calendar, the following tests were performed:

 Select an empty slot to schedule a conference

 Select an event that is not a conference call

 Select an event that is a conference call

 Perform a modification on a conference call

Not all the tests are applicable to all the calendar distribution used. For example, in the case

where the calendar does not have any event, it is not possible to select events or make

modifications on a conference.

With this test, it is possible to verify if all the events are identified with the correct type

(conference call or not) and to check if all conference calls are being identified with the correct

id (which is essential to perform modifications on a scheduled conference). It allows also to

verify the behavior of the calendar with different loads.

If all the tests are well succeeded, the result is considered to be correct (), otherwise, the test

failed ().

Android App for Enterprise Bots

 70

Number of

events

Contains events

at the same
time

Number of
events that are

conference calls

Number of
events that are
not conference

calls

Tests
results

0 No 0 0

1 No 0 1

1 No 1 0

5 No 5 0

5 No 0 5

5 Yes 1 4

10 No 4 6

10 Yes 5 5

20 No 2 18

20 Yes 8 12

40 Yes 8 32

100 Yes 15 75

Table 7-3: Calendar view tests

7.3 Usability Tests

Usability tests are particularly important on this project. It is vital for the project that the

features are simple, easy to use and improve the velocity of execution of the tasks. So, it is

important to evaluate how the users perform the tasks on the app.

For these tests, some users were asked to perform certain tasks. The goal of this task is to find

problems in the app’s layout and to find out if the app’s interface is intuitive enough.

Five users were selected to perform the usability tests. This number of users was chosen taking

into account Jakob Nielsen’s research[31]. According to Nielsen, there is no need to use more

than five users to perform usability tests. The use of more users does not compensate.

Everything that the first user does will be new. The second user will perform some of the

things that the first user did, and some new things. The third will do some things that the first

user did, some things that the second user did and some new things. Each user will perform

less and less new things. With 5 users, typically, 80% of the UI problems are detected. The

Android App for Enterprise Bots

 71

suggestion coming from the article says that instead of performing usability tests with more

users, it pays off to perform more usability tests with fewer users.

For each of the following Use Cases, a usability test was performed.

 Schedule a conference call

 Join a call as conference “owner” and mute a participant

For each use case, the number of steps that the user took to complete the task was measured.

Schedule a conference call

For this use case, the app is given to the user right after start, and it is asked to him to schedule

a conference call “today”.

Minimum required steps:

 Go to calendar tab

 Select a slot

 Confirm the selection

 Give a title to the call

 Select the “Add participants” button

 Add a participant

 Select “Done” button

Figure 7-1: Schedule a conference - Usability test results

0

2

4

6

8

10

12

User 1 User 2 User 3 User 4 User 5 Average

Steps Average

Android App for Enterprise Bots

 72

The results of this use case are considered good. For the completion of the task, there was a

minimum of 7 required steps. Even though there was a user who performed 10 steps (3

more than the minimum), the average of completion was 8 steps, an excellent result.

 Join a call as conference “owner” and mute a participant

This use case is started with a call to the user’s phone. That call will allow him to join the

conference.

Minimum required steps:

 Accept the call

 Go to the ongoing call component

 Expand component

 Select the “mute button” of a participant

Figure 7-2: Join call and mute participant - Usability test results

The results of this use case are very good. There was a minimum of 4 required steps to

complete the task, and the average number of steps needed by the users was 4.4. This

indicates that the UI on this use case is explicit and intuitive.

0

1

2

3

4

5

6

User 1 User 2 User 3 User 4 User 5 Average

Steps Average

Android App for Enterprise Bots

 73

Chapter 8
Conclusion

This last section contains an overview of the work developed during the internship, some

considerations regarding the project’s success and possible future work and finally, a personal

analysis of the internship.

8.1 Overview

The main goal of this internship was to develop features that could use bots in order to be

valuable in an enterprise context. Since that topic was far too broad, there was a need to reduce

the range and the internship focused on features related to conference calls.

WIT had already a very complete communications app that allowed the use of chatbots. So it

turned evident that it was a good choice to use that app as a base and add value to it.

The first challenge of the internship came with the fact that this was a project to be integrated

with an app that already existed. So, a study of the app was required in order to understand

how it was structured and how could the new functionalities be incorporated in that structure.

The study of the state of the art allowed to see what the best functionalities present in the

competitors were, both in terms of enterprise apps that comprise conference calls related

features and bots that have also conference call related capabilities.

After that analysis, the decision of what features would be implemented and what features

would be adaptable or not to the context of the project took place.

With the definition of the functionalities to be developed concluded, the requirements

elicitation followed. The definition of the requirements was a long process, initiated with the

writing of User Stories that later gave place to Functional and Non Functional Requirements.

Based on those requirements, an architecture for the solution was designed. Until the end, the

output of this phase suffered some modifications, but, in general, the initially designed

architecture does not differ much from the last versions.

The implementation of the features occurred mostly during the second semester and was

always complemented with phases of validation and verification. To assure the validity of the

work done, several meetings with the internship’s tutors were held. The feedback from those

meetings was always taken into account and some changes arose from there. The verification

Android App for Enterprise Bots

 74

was also always performed in order to check if the developed features were working as

suppose.

In the final stage of the project, a new verification phase took place, covering all the work

developed during the internship.

8.2 Success Evaluation

The threshold of success is one of the success criteria defined. It said that the project was

considered to be successful if all the “Must Have” requirements were completed by the end

of the project. Not only the “Must Have” requirements were completed, but all the

requirements defined in table 4-2 were. So, the threshold of success was achieved, and,

therefore, from this point of view, the project was well-succeeded.

This allows saying that from a perspective of completion, the project was succeeded. But there

are other aspects in which the project’s success can be evaluated.

If the developed features have anomalies that affect the use of them, the project cannot be

considered successful. So, another metric that can be used to test the success of the project is

the percentage of tests that were well succeeded. For the project, 71 functional tests were

defined. In this set of 71, there are tests related to all the developed features, trying to cover

all the project’s scope. The tests revealed a success rate of 100%, being, this way, an indicator

of the project’s success.

8.3 Future Work

Regarding what was defined for this project, there is not much left to do. All the requirements

were implemented and the results match the proposed goals. Although, during the state of the

art analysis, there were some interesting features present on some competitors that were not

adopted to the project due to the fact that they were either out of the internship’s scope or

there were limitations. Examples of this are the voice control support and the indication of

who is speaking in a given moment. The voice control support would be a nice feature to

have, because, one of the main goals of the project was to make tasks easier and quicker. That

was achieved with textual interaction and visual components, but if voice control support was

added, the results would be even more satisfactory. The “Who is speaking” was also a nice

feature to have on the project, but, due to the limitations of the response time of the bot, it

Android App for Enterprise Bots

 75

was not implemented. In the future, it would be nice to find a workaround for this problem

and implement this feature.

8.4 Final Considerations

This internship allowed me to grow both personally and professionally. This was without any

doubt, the biggest challenge that I have ever faced and I am glad to say that the goals that I

have established at the beginning of the project were achieved. It is a great feeling to start a

project from scratch, pass through all the development phases and finish with a complete

product.

I had the opportunity to put in practice many of the things that I have learned throughout the

years of study and I have had also the chance to deepen my knowledge in many technologies

and to learn some others, and I am sure that this experience will contribute to my future as a

software engineer.

The great environment of the company, and in particular, the team that welcomed me allowed

me to face every day with joy and will to give my best to this project.

The importance of the organization and documentation of a project was also something that

proved to be essential. That is something that I had already learned from several teachers but

in this project, I had the opportunity to experience it. The adaptation to the RCS+ app was

greatly facilitated by the well commented code and the organization of the project. On such a

big application, it was easy to let it turn into a confusion of files and functionalities. But, the

fact that it was well organized and documented allowed me to get my way around it easily.

And it inspired me also to follow the same line with my code.

Generally, this internship was a great experience and I am sure it will allow me to be a better

person and professional.

Android App for Enterprise Bots

 76

Android App for Enterprise Bots

 77

References

1. WIT Software | Witness the difference. (n.d.). https://www.wit-software.com/
(accessed January 10, 2018).

2. PORDATA - Produtividade do trabalho, por hora de trabalho (UE28=100). (n.d.).
https://www.pordata.pt/Europa/Produtividade+do+trabalho++por+hora+de+trab
alho+(UE28+100)-1992 (accessed January 7, 2018).

3. Eurostat - Tables, Graphs and Maps Interface (TGM) table. (n.d.).
http://ec.europa.eu/eurostat/tgm/table.do?tab=table&init=1&language=en&pcode
=tps00071&plugin=1 (accessed January 9, 2018).

4. R. Epstein, The Quest for the Thinking Computer. AI Magazine, 13 (1992) 81.
https://doi.org/10.1609/AIMAG.V13I2.993.

5. J. ~veizenba Um, ELIZA A Computer Program For the Study of Natural Language
Communication Between Man And Machine. (n.d.).

6. Dialogflow. (n.d.). https://dialogflow.com/.

7. Skype | Ferramenta de comunicação para chamadas e conversas gratuitas. (n.d.).
https://www.skype.com/ (accessed June 22, 2018).

8. Messenger. (n.d.). https://www.messenger.com/ (accessed January 19, 2018).

9. GSMA. (n.d.). https://www.gsma.com/.

10. Workplace do Facebook - Muda a forma como trabalhas. (n.d.).
https://www.facebook.com/workplace (accessed January 8, 2018).

11. Workplace by Facebook – Aplicações Android no Google Play. (n.d.).
https://play.google.com/store/apps/details?id=com.facebook.work (accessed
January 8, 2018).

12. Skype para Empresas. (n.d.). https://www.skype.com/pt/business/ (accessed January
8, 2018).

13. Skype for Business for Android – Aplicações Android no Google Play. (n.d.).
https://play.google.com/store/apps/details?id=com.microsoft.office.lync15
(accessed January 8, 2018).

14. Cisco Webex | Cisco Spark is now Cisco Webex Teams. (n.d.).
https://www.webex.com/products/teams/index.html (accessed June 18, 2018).

15. Cisco Webex Teams (ex-Cisco Spark) – Aplicações no Google Play. (n.d.).
https://play.google.com/store/apps/details?id=com.cisco.wx2.android (accessed
June 18, 2018).

16. Video Conferencing, Web Conferencing, Webinars, Screen Sharing - Zoom. (n.d.).
https://zoom.us/ (accessed January 8, 2018).

17. ZOOM Cloud Meetings – Aplicações Android no Google Play. (n.d.).
https://play.google.com/store/apps/details?id=us.zoom.videomeetings (accessed
January 8, 2018).

Android App for Enterprise Bots

 78

18. Amazon.com: Online Shopping for Electronics, Apparel, Computers, Books, DVDs
& more. (n.d.). https://www.amazon.com/.

19. Amazon Alexa. (n.d.). https://developer.amazon.com/alexa?cid=a.

20. Home Page Oficial da Microsoft. (n.d.). https://www.microsoft.com.

21. Personal Digital Assistant - Cortana Home Assistant - Microsoft. (n.d.).
https://www.microsoft.com/en-us/cortana.

22. x.ai – AI Personal Assistant Who Schedules Meetings For You. (n.d.). https://x.ai/.

23. Apple. (n.d.). https://www.apple.com/.

24. iOS - Siri - Apple. (n.d.). https://www.apple.com/ios/siri/.

25. Google Calendar. (n.d.). https://google.com/calendar.

26. Android Studio. (n.d.). https://developer.android.com/studio/index.html (accessed
January 15, 2018).

27. BPMN Specification - Business Process Model and Notation. (n.d.).
http://www.bpmn.org/ (accessed January 18, 2018).

28. B. S. Richard W A L L A C E, The Elements of AIML Style. (2003).

29. Homepage | Scrum.org. (n.d.). https://www.scrum.org/ (accessed January 18, 2018).

30. D. Clegg & R. Barker, Fast-track : a RAD approach (Addison-Wesley Pub. Co., 1994).

31. Why You Only Need to Test with 5 Users. (n.d.).
https://www.nngroup.com/articles/why-you-only-need-to-test-with-5-users/
(accessed June 21, 2018).

Android App for Enterprise Bots

 79

Appendices

Android App for Enterprise Bots

 80

Android App for Enterprise Bots

 81

Appendix A – Work Plan

This appendix contains the planning of the work developed during the first semester of the

internship and the work to be developed during the second semester.

1st Semester

State of the art

20/09/2017 –
20/10/2017

 Definition of the project’s main goals

 Analysis of the state of the art
o Competitor apps[30]
o Comparative analysis

 Analysis of the WIT RCS Suite

 Definition of the features to be developed

Table A-1: Planning - State of the Art

Requirements

23/10/2017 –
03/11/2017

 Definition of User Stories

 Definition of Functional Requirements

 Definition of Nonfunctional Requirements

Table A-2: Planning – Requirements

Analysis of the RCS+ Android app and definition of the architecture

06/11/2017 –
17/11/2017

 Analysis of the RCS+ Android app code

 Definition of the interaction between the app and the
new modules to be developed

Table A-3: Planning – Architecture

Sprint 1

20/11/2017 –
7/12/2017

 Search of an open source Calendar View;

 Modification of the chosen calendar
o Addition and removal of events
o Synchronization with Google Calendar
o Disable the possibility of schedule events on

weekends and in the past
o Disable the possibility to schedule events without

internet connection

Table A-4: Planning - Sprint 1

Android App for Enterprise Bots

 82

Sprint 2

11/12/2017 –
22/12/2017

 Select participants to a conference call

 Modify a conference call’s details
o Edit day
o Edit Hour
o Edit Duration
o Edit Title
o Edit participants

Table A-5: Planning - Sprint 2

Sprint 3

27/12/2017 –
10/01/2018

 Integration with the RCS+ app

Table A-6: Planning - Sprint 3

Sprint 4

10/01/2018 –
30/01/2018

 Bug fixing and improvements to the work developed

 Writing of the first version of the internship report and
preparation of the internship presentation

Table A-7: Planning - Sprint 4

2nd Semester

Sprint 5

31/01/2018 –
16/02/2018

 Integration of the Call Scheduling module with the bot

 Validation and basic testing of the Call Scheduling
module

 Preparation for the development of the During Call
module

Table A-8: Planning - Sprint 5

Android App for Enterprise Bots

 83

Sprint 6

February/March Development of the ongoing conference call’s basic
information element

Table A-9: Planning - Sprint 6

Sprint 7

March Development of the ongoing conference call’s detailed
information

o Participants
o Who is muted
o Type of device used

Table A-10: Planning - Sprint 7

Sprint 8

March/April Development of the ongoing conference call’s detailed
information

o Who is speaking
o Who is presenter

Table A-11: Planning - Sprint 8

Sprint 9

April Development of the ongoing conference call’s participant
information

o Name
o Phone Number
o E-mail

Table A-12: Planning - Sprint 9

Sprint 10

May Validation and basic testing of the During Call module

 Preparation for the development of the Conference Call’s
tab

Table A-13: Planning - Sprint 10

Sprint 11

May/June Development of the Conference Call’s tab

Table A-14: Planning - Sprint 11

Android App for Enterprise Bots

 84

Sprint 12

June Validation and basic testing of the Conference Call’s tab

Table A-15: Planning - Sprint 12

Sprint 13

June/July Overall testing of the developed product

 Writing of the final version of the internship report

Table A-16: Planning - Sprint 13

Android App for Enterprise Bots

 85

Appendix B – Requests to Designers

Request 1

App Android for Enterprise Bots –

UI Requirements

Request to WIT Designers

Overview: The goal is to create a prototype version of the RCS+ app with additional

features for users working in companies. Those features will be related to conference calls and

triggered via bots.

A user should be able to schedule conference calls through a bot as well as be aware of an

ongoing conference call’s events also though a bot.

The new components should follow the style of the RCS+ app.

Ongoing conference call: During a conference call, if a user opens the bot’s

conversation he should be able to see the call’s basic information. This should happen on any

device, even if it is not the one that is being used for the call.

Requirement #1:

If the user is participating on a conference call, the bot’s conversation screen should contain

a fixed element (ex: a bar) with the call’s duration and the number of active participants at the

moment. This component should be expandable.

When the component is not expanded, it should show the following elements:

 Number of active participants

Android App for Enterprise Bots

 86

 Duration

 Icon indicating that the component is expandable

When the component is expanded, it should show the following elements:

 Number of active participants

 Duration

 Icon indicating that the component is collapsible

 Information about each active participant

o RCS+ contact icon

o Name

o Speaker status

 Is speaking

 Is not speaking

 Is muted

 Who is the current presenter

When a user joins the call, the component’s information should be updated.

If the component is collapsed, the number of participants should be updates. If it is expanded,

the participant’s details should appear and the component’s size should be adapted if

necessary. The new user’s information should have an indication, for a few seconds, showing

that he just entered the call (for example, another colour).

When a user leaves the call, his information shouldn’t be removed right away, but instead, stay

for a few seconds with some indication showing that he’s no longer on the call and then, be

removed. Nevertheless, the number of participants on the top of the component should be

updated right away.

On this component it should be possible to mute and unmute a participant and change the

current presenter. There can be only one presenter at a time.

All the participants and all the icons should be clickable.

When expanded, if the number of participants, is big enough to not fit on the screen, it should

be possible to scroll on the component, in order to access all the participants’ information. If

Android App for Enterprise Bots

 87

the number of participants is not big enough to fill the screen, the bot’s conversation should

remain visible on the back.

Figures 1 and 2 show an example of what is pretended for this requirement.

Figure B-0-1: Ongoing conference element collapsed sketch

Figure B-0-2: Ongoing conference element expanded sketch

Expand
icon

Collapse icon

Expand icon

Collapse icon

Presenter

Android App for Enterprise Bots

 88

Modify conference call’s details: It should be possible for a user to modify

future call’s details.

Currently, when the user asks the bot to schedule or modify a conference call, a calendar view

is returned (figure 3). Here, the user can select an available slot to schedule a new call or select

a call to change its details.

Figure B-0-3 - Calendar View

Requirement #3:

On the calendar view, when a conference call is selected, a screen with the call’s details should

be presented. This screen should contain the following elements:

 Conference Name

 Conference Date

 Conference Hour

 Conference Duration

 List of the conference invited participants

Android App for Enterprise Bots

 89

The user should be able to edit the call’s name as well as its date and time. It should be also

possible to remove and add participants.

It should be also possible to cancel the conference call. In order to allow that action, a button

to cancel should be present (even if it is on the toolbar options).

Figure 4 shows an idea of what is pretended for this screen.

Figure B-0-4: Edit conference plan

Android App for Enterprise Bots

 90

Answer to Request 1

Ongoing Conference Call

 Normal User View Admin View
Figure B-0-5: Ongoing conference designers' proposal

Conference Call Details

Figure B-0-6: Schedule conference designers' proposal

Android App for Enterprise Bots

 91

Deleting Participant

Figure B-0-7: Remove participant designers' proposal

Request 2

App Android for Enterprise Bots –

Witty-bot images
Request to WIT Designers

Overview: The goal is to create a visual component to the witty bot’s new functionalities.

Requirement #1:

On the witty bot’s menu, every set of functionalities has an image related.

A new set of functionalities was developed and it needs its own image. The new functionalities

are related to conference calls.

Android App for Enterprise Bots

 92

Schedule of calls, management of ongoing calls and calendar synchronization are among the

functionalities available on this new set of features.

Image 1.1 shows one of the sets of functionalities currently available on the menu (worker

search directory) and the new one (that needs an image) related to the conference calls.

Figure B-0-8: Witty Bot's main menu

Requirement #2:

When a user asks to see his upcoming calls, a carousel list (like the bot’s menu) is shown where

each element on the carousel represents a conference call.

For this call components there should also be an image.

Image 2 shows the component without image.

Android App for Enterprise Bots

 93

Figure B-0-9: Conference call list element

Answer to Request 2

Figure B-0-10: Conference call image for Witty Bot's menu

Figure B-0-11: Conference call list image

Android App for Enterprise Bots

 94

Android App for Enterprise Bots

 95

Appendix C – BPMN Flows

Schedule Conference Call Flow

Figure C-0-1: Schedule conference BPMN diagram

Android App for Enterprise Bots

 96

Ongoing Conference Call Actions Flow

Figure C-0-2: Ongoing conference BPMN diagram

Calendar Tab Events Flow

Figure C-0-3: Calendar tab events BPMN diagram

Android App for Enterprise Bots

 97

LDAP Integration Flow

Figure C-0-4: LDAP integration

Android App for Enterprise Bots

 98

Android App for Enterprise Bots

 99

Appendix D – Functional Tests

SCHEDULE CALLS

FT1 Ask the bot to schedule a call to a specific date (numeric) and hour

Steps
 Open bot’s chat

 Send message (e.g. Schedule a call for 25/5/2018 at 4pm)

Expected
Result

o Bot returns a message (invisible to the user) with commands to
open the call scheduler screen with the date and hour values
specified by the user

Result SUCCESS

Table D-1: Functional Test 1

FT2 Ask the bot to schedule a call to a specific date (non-numeric) and
hour

Steps
 Open bot’s chat

 Send message (e.g. Schedule a call for tomorrow at 4pm)

Expected
Result

o Bot returns a message (invisible to the user) with commands to
open the call scheduler screen with the date and hour values
specified by the user

Result SUCCESS

Table D-2: Functional Test 2

FT3 Ask the bot to schedule a call to a past date (numeric) and hour

Steps
 Open bot’s chat

 Send message (e.g. Schedule a call for 25/5/2017 at 4pm)

Expected
Result

o Bot returns a message saying that the date specified is invalid

Result SUCCESS

Table D-3: Functional Test 3

FT4 Ask the bot to schedule a call to a past date (non-numeric) and hour

Steps
 Open bot’s chat

 Send message (e.g. Schedule a call for yesterday at 4pm)

Expected
Result

o Bot returns a message saying that the date specified is invalid

Result SUCCESS

Table D-4: Functional Test 4

Android App for Enterprise Bots

 100

FT5 Ask the bot to schedule a call for today for an hour that has already
passed

Steps
 Open bot’s chat

 Send message (e.g. Schedule a conference for today at 9 am)

Expected
Result

o Bot returns a message saying that the date specified is invalid
o Bot asks the user if he wants to schedule the call to the next

available slot (if it is 2:27pm, the bot suggests to schedule to
2:30pm)

Result SUCCESS

Table D-5: Functional Test 5

FT6 Ask the bot to schedule a call for today at a valid hour

Steps
 Open bot’s chat

 Send message (e.g. Schedule a call for today at 5pm)

Expected
Result

o Bot returns a message (invisible to the user) with commands to
open the call scheduler screen with the date and hour values
specified by the user

Result SUCCESS

Table D-6: Functional Test 6

FT7 Ask the bot to schedule a call for a specific day (with no hour)

Steps
 Open bot’s chat

 Send message (e.g. Schedule a call for tomorrow)

Expected
Result

o Bot returns a message (invisible to the user) with commands to
open the call scheduler screen with the date value specified by the
user (and by default to 9:00 am, which can later be modified by the
user)

Result SUCCESS

Table D-7: Functional Test 7

FT8 Ask the bot to schedule a conference without date and hour

Steps
 Open bot’s chat

 Send message (e.g. Schedule a call)

Expected
Result

o Bot returns a message with two quick replies for the user to
choose.

o View calendar
o Schedule

Result SUCCESS

Table D-8: Functional Test 8

Android App for Enterprise Bots

 101

FT9 Select quick reply “View my calendar” after ask to schedule a call with
no date and hour

Steps
 Open bot’s chat

 Send message (e.g. Schedule a call)

 Select the “View my calendar” quick reply

Expected
Result

o Bot returns a message with a template for the user’s calendar and
its events

Result SUCCESS

Table D-9: Functional Test 9

FT10 Select quick reply “Schedule” after ask to schedule a call with no date
and hour

Steps
 Open bot’s chat

 Send message (e.g. Schedule a call)

 Select the “Schedule” quick reply

Expected
Result

o Bot returns a message (invisible to the user) with commands to
open the call scheduler screen with the next valid date and hour

Result SUCCESS

Table D-10: Functional Test 10

FT11 Ask the bot to see the calendar

Steps
 Open bot’s chat

 Send message (e.g. View my calendar)

Expected
Result

o Bot returns a message with a template for the user’s calendar and
its events

Result SUCCESS

Table D-11: Functional Test 11

FT12 Select a future date while on the call scheduler screen

Steps
 Select the date field

 Select a future date

Expected
Result

o Hour selector is presented

Result SUCCESS

Table D-12: Functional Test 12

Android App for Enterprise Bots

 102

FT13 Select today’s date while on the call scheduler screen

Steps
 Select the date field

 Select today’s date

Expected
Result

o Hour selector is presented

Result SUCCESS

Table D-13: Functional Test 13

FT14 Select a past date while on the call scheduler screen

Steps
 Select the date field

 Select a past date

Expected
Result

o A toast message is presented saying that the selected date is not
valid

Result SUCCESS

Table D-14: Functional Test 14

FT15 Select a future hour after the selection of today’s date while on the call
scheduler screen

Steps
 Select the date field

 Select today’s date

 Select a future hour

Expected
Result

o The date and hour are properly selected and are presented in the
date field on the call scheduler screen

Result SUCCESS

Table D-15: Functional Test 15

FT16 Select a past hour after the selection of today’s date while on the call
scheduler screen

Steps
 Select the date field

 Select today’s date

 Select a past hour

Expected
Result

o A toast message is presented saying that the selected hour is not
valid

Result SUCCESS

Table D-16: Functional Test 16

Android App for Enterprise Bots

 103

FT17 Select a duration while on the call scheduler screen

Steps
 Select the duration field

 Select a duration value (between zero and 24 hours)

Expected
Result

o The duration is properly selected and is presented in the duration
field on the call scheduler screen

Result SUCCESS

Table D-17: Functional Test 17

FT18 Select an invalid duration while on the call scheduler screen

Steps
 Select the duration field

 Select duration zero hours and zero minutes

Expected
Result

o The minimum valid duration value is considered (half an hour).

Result SUCCESS

Table D-18: Functional Test 18

FT19 Give a title to a call while on the call scheduler screen

Steps
 Select the title field

 Insert a title

Expected
Result

o The title is properly given and it is presented on the title field on
the call scheduler screen

Result SUCCESS

Table D-19: Functional Test 19

FT20 Select the “Add Participants” field while on the call scheduler screen

Steps
 Select the “add participants” field

Expected
Result

o The WIT’s contact list is presented

Result SUCCESS

Table D-20: Functional Test 20

FT21 Select the “Add Participants” field when the number of participants
added is the limit (10)

Steps
 Select the “add participants” field

Expected
Result

o Nothing happens (the field is blocked and with a different color)

Result SUCCESS

Table D-21: Functional Test 21

Android App for Enterprise Bots

 104

FT22 Select a participant’s field while on the “add participants screen”

Steps
 Select a contact’s field

Expected
Result

o The contact’s icon changes
o The contact’s name is added to the top of the screen

Result SUCCESS

Table D-22: Functional Test 22

FT23 Select a participant’s field that is already selected while on the “add
participants screen”

Steps
 Press a selected contact’s field

Expected
Result

o The contact’s icon turns to its original
o The contact’s name is removed from the top of the screen

Result SUCCESS

Table D-23: Functional Test 23

FT24 Write the phone number of a contact while on the “add participants
screen”

Steps
 Write a phone number of a contact on the “add participants

screen”

Expected
Result

o The contact’s icon changes
o The contact’s name is added to the top of the screen

Result SUCCESS

Table D-24: Functional Test 24

FT25 Try to add own phone number to the participants list

Steps
 Write own phone number

Expected
Result

o A message is displayed saying that the action is not possible

Result SUCCESS

Table D-25: Functional Test 25

FT26 Write the name of a contact on the contact filter

Steps
 Write the name of a contact

Expected
Result

o Only the contacts that contain the written character sequence are
displayed

Result SUCCESS

Table D-26: Functional Test 26

Android App for Enterprise Bots

 105

FT27 Select the “Cancel call” field while creating a call

Steps
 Select the “cancel call” field

Expected
Result

o Nothing happens (the field is blocked and with a different color)

Result SUCCESS

Table D-27: Functional Test 27

FT28 Select a participant of a conference while on the schedule conference
screen

Steps
 Select a participant

Expected
Result

o The participant’s icon changes
o The toolbar’s color changes
o The “done” icon disappears
o The “remove” icon appears
o The toolbar title changes and indicates the number of participants

that are selected

Result SUCCESS

Table D-28: Functional Test 28

FT29 Select a participant of a conference while on the schedule conference
screen after having already selected another participant

Steps
 Select a participant

Expected
Result

o The participant’s icon changes
o The toolbar title, indicating the number of selected participants,

changes

Result SUCCESS

Table D-29: Functional Test 29

FT30 Select a participant after having already selected it

Steps
 Select a participant that is selected

Expected
Result

o The participant’s icon changes back to its original
o The toolbar is adapted

Result SUCCESS

Table D-30: Functional Test 30

Android App for Enterprise Bots

 106

FT31 Select the “go back” option while on the schedule conference screen
after having participants selected

Steps
 Select the “go back” options

Expected
Result

o The selected participants’ icons change back to the original
o The toolbar’s color changes
o The toolbar title changes
o The “remove” icon disappears
o The “done” icon appears

Result SUCCESS

Table D-31: Functional Test 31

FT32 Select the “remove” icon while on the schedule conference screen
after having selected participants

Steps
 Select the “remove” option

Expected
Result

o The selected participants are removed
o The toolbar’s color changes
o The toolbar title changes
o The “remove” icon disappears
o The “done” icon appears

Result SUCCESS

Table D-32: Functional Test 32

FT33 Select the “Done” button while scheduling a call

Steps
 Select the “Done” button

Expected
Result

o A message is sent to the bot with the calls information
o The call is scheduled on the asterisk server
o The call is scheduled on the bot’s database
o The call is scheduled on the user’s calendar

Result SUCCESS

Table D-33: Functional Test 33

FT34 Select an event that is not a conference call on the calendar view

Steps
 Select an event that is not a conference call on the calendar view

Expected
Result

o A toast message is shown saying that the event is not a conference
call and it cannot be opened on the app

Result SUCCESS

Table D-34: Functional Test 34

Android App for Enterprise Bots

 107

FT35 Select an event that is a conference call on the calendar view

Steps
 Select an event that is a conference call on the calendar view

Expected
Result

o The event is opened on the edit conference call screen

Result SUCCESS

Table D-35: Functional Test 35

FT36 Select an event on the calendar view without having internet access

Steps
 Select an event on the calendar view

Expected
Result

o A message is shown saying that the operation is not possible
without an internet access

Result SUCCESS

Table D-36: Functional Test 36

FT37 Try to select an empty slot on the calendar view without having
internet access

Steps
 Select an empty slot on the calendar view

Expected
Result

o A message is shown saying that the operation is not possible
without an internet access

Result SUCCESS

Table D-37: Functional Test 37

FT38 Select the floating action button on the calendar tab

Steps
 Press the button on the tab’s bottom right corner

Expected
Result

o The “schedule conference call screen” is opened filled with the
next available time slot

Result SUCCESS

Table D-38: Functional Test 38

FT39 Cancel a conference call

Steps
 Select a conference call on the calendar view

 Select the “Cancel conference call” field

Expected
Result

o The app sends a message to the bot saying to cancel the call
o The call is deleted from the bot’s database
o The call is removed from the user’s google calendar
o User receives a message saying that the call was successfully

canceled

Result SUCCESS

Table D-39: Functional Test 39

Android App for Enterprise Bots

 108

FT40 Edit a conference call’s participants

Steps
 Select a conference call on the calendar view

 Change the call’s participants

 Select the “Done” button

Expected
Result

o The app sends a message to the bot with the new information of
the call

o The call’s information is updated on the bot’s database
o The call’s information is updated on the user’s google calendar
o User receives a message saying that the call was successfully edited

Result

Table D-40: Functional Test 40

FT41 Edit a conference call’s date

Steps
 Select a conference call on the calendar view

 Change the call’s date

 Select the “Done” button

Expected
Result

o The app sends a message to the bot with the new information of
the call

o The call’s information is updated on the bot’s database
o The call’s information is updated on the user’s google calendar
o User receives a message saying that the call was successfully edited

Result

Table D-41: Functional Test 41

FT42 Select the participant “me” field on the “schedule conference screen”

Steps
 Select the participant “me” on the “schedule conference screen”

Expected
Result

o The user’s profile is opened with option to edit it

Result SUCCESS

Table D-42: Functional Test 42

FT43 Select another participant’s field on the “schedule conference screen”

Steps
 Select another participant on the “schedule conference screen”

Expected
Result

o The participant’s details are shown

Result SUCCESS

Table D-43: Functional Test 43

Android App for Enterprise Bots

 109

Call about to start

FT44 A call is about to start

Steps
 A call is scheduled

Expected
Result

o Bot sends a message saying that a call is about to start with the
following quick replies:

o Call me
o I’m running late
o Cannot make it

Result SUCCESS

Table D-44: Functional Test 44

FT45 A call is about to start and user selects “call me” quick reply

Steps
 A call is scheduled

 Bot sends a message with quick replies

 User selects “Call me” quick reply

Expected
Result

o User receives a call to join the call

Result SUCCESS

Table D-45: Functional Test 45

FT46 A call is about to start and user selects “I’m running late” quick reply

Steps
 A call is scheduled

 Bot sends a message with quick replies

 User selects “I’m running late” quick reply

Expected
Result

o Bot sends a message to the call’s participants saying that the user is
running late

Result SUCESS

Table D-46: Functional Test 46

FT47 A call is about to start and user selects “Cannot make it” quick reply

Steps
 A call is scheduled

 Bot sends a message with quick replies

 User selects “Cannot make it” quick reply

Expected
Result

o Bot sends a message to the call’s participants saying that the user
cannot make it to the call

Result SUCCESS

Table D-47: Functional Test 47

Android App for Enterprise Bots

 110

Ongoing call

FT48 User joins call

Steps
 A call starts

 User receives a call to join the call

Expected
Result

o User joins the call
o The ongoing call top bar turns visible on the app

Result SUCCESS

Table D-48: Functional Test 48

FT49 User leaves call

Steps
 User is participating on a call

 User hangs up the phone

Expected
Result

o User leaves the call
o The ongoing call top bar turns transparent and disappears after 5

seconds.

Result SUCCESS

Table D-49: Functional Test 49

FT50 User joins call again after leaving

Steps
 A call starts

 User joins the call

 User leaves the call

 User joins the call

Expected
Result

o User joins the call
o The ongoing call top bar adapts its content correctly

Result SUCCESS

Table D-50: Functional Test 50

FT51 Another user joins call

Steps
 User is participating on a call

 Another user joins the call

Expected
Result

o The ongoing call top bar adjusts the number of active participants
o The ongoing call top bar adapts its size and add the field of the

new participant

Result SUCCESS

Table D-51: Functional Test 51

Android App for Enterprise Bots

 111

FT52 Another user leaves call

Steps
 User is participating on a call

 Another user leaves the call

Expected
Result

o The ongoing call top bar adjusts the number of active participants
o The field associated to the user turns transparent and after 5

seconds it is removed and the ongoing call’s top bar size is adapted

Result SUCCESS

Table D-52: Functional Test 52

FT53 User is participating on a call and he is the owner

Steps
 User is participating on a call

Expected
Result

o The ongoing call’s top bar includes the options to mute/unmute
participants and the options to kick participants

Result SUCCESS

Table D-53: Functional Test 53

FT54 User is participating on a call and he is not the owner

Steps
 User is participating on a call

Expected
Result

o The ongoing call’s top bar includes the icons of muted/unmuted
participant but does not include the option to kick participants

Result SUCCESS

Table D-54: Functional Test 54

FT55 Owner mutes participant

Steps
 User presses the icon to mute a participant

Expected
Result

o The participant is muted

Result SUCCESS

Table D-55: Functional Test 55

FT56 Owner unmutes participant

Steps
 User presses the icon to unmute a participant

Expected
Result

o The participant is unmuted

Result SUCCESS

Table D-56: Functional Test 56

Android App for Enterprise Bots

 112

FT57 Owner kicks participant

Steps
 User presses the icon to kick a participant

Expected
Result

o The participant is removed from the call

Result SUCCESS

Table D-57: Functional Test 57

FT58 Guest presses the icon to mute a participant

Steps
 Guest presses the icon to mute a participant

Expected
Result

o Nothing happens

Result SUCCESS

Table D-58: Functional Test 58

FT59 Guest presses the icon to unmute a participant

Steps
 Guest presses the icon to unmute a participant

Expected
Result

o Nothing happens

Result SUCCESS

Table D-59: Functional Test 59

Ldap integration

FT60 Ldap integration

Steps
 Start the app

Expected
Result

o The app sends a request to the bot for the ldap contacts integration
o The bot sends a template message with the contacts of WIT’s

workers
o The contacts are added to the app’s contact list

Result SUCCESS

Table D-60: Functional Test 60

Android App for Enterprise Bots

 113

FT61 WIT’s contacts filter

Steps
 Select the WIT’s contact filter on the contact list

Expected
Result

o Only the WIT’s workers contacts are shown

Result SUCCESS

Table D-61: Functional Test 61

Calendar Tab

FT62 Go to calendar tab

Steps
 Go to calendar tab

Expected
Result

o App sends a request to the bot for the user’s calendar events
o Bot send’s a template message with the user’s calendar events
o The tab’s calendar is displayed with the user’s calendar events
o The tab’s icon turns white

Result SUCCESS

Table D-62: Functional Test 62

FT63 Leave calendar tab

Steps
 Leave calendar tab

Expected
Result

o Tab’s icon turns blue

Result SUCCESS

Table D-63: Functional Test 63

FT64 “Go to date” on calendar tab

Steps
 Select the “go to date” button on the calendar tab

 Select a date on the date picker presented

Expected
Result

o The calendar view adapts its content to the date selected

Result SUCCESS

Table D-64: Functional Test 64

Android App for Enterprise Bots

 114

FT65 “Go to today” on calendar tab

Steps
 Select the “Today” button on the calendar tab

Expected
Result

o The calendar view adapts its content to “today”

Result SUCCESS

Table D-65: Functional Test 65

FT66 Select “Day view” on calendar tab

Steps
 Select the “Day view” button on the calendar tab

Expected
Result

o The calendar view adapts its content and shows only one day
(today)

Result SUCCESS

Table D-66: Functional Test 66

FT67 Select “3 day view” on calendar tab

Steps
 Select the “3 day view” button on the calendar tab

Expected
Result

o The calendar view adapts its content and shows three days (today
and the next two days)

Result SUCCESS

Table D-67: Functional Test 67

FT68 Select “Week view” on calendar tab

Steps
 Select the “Week view” button on the calendar tab

Expected
Result

o The calendar view adapts its content and shows seven days (today
and the next six days)

Result SUCCESS

Table D-68: Functional Test 68

General

FT69 User starts app for the first time

Steps
 Start the app

Expected
Result

o Bot sends a message asking the user to register his email

Result SUCCESS

Table D-69: Functional Test 69

Android App for Enterprise Bots

 115

FT70 User registers in the bot

Steps
 User sends a message with his email

Expected
Result

o Bot analyses if it is a “WIT email”
o Bot sends a message with a link for the user to insert his credentials

Result SUCCESS

Table D-70: Functional Test 70

FT71 Log in on bot

Steps
 Open link to insert credentials

Expected
Result

o Bot registers user on its database
o Bot sends a personalized greeting and the main menu

Result SUCCESS

Table D-71: Functional Test 71

