
Master’s Degree in Informatics Engineering
Dissertation

Network Softwarization for IACS
Security Applications

Miguel Rosado Borges de Freitas

miguelbf@student.dei.uc.pt

Supervisor: Prof. Doutor Tiago Cruz
Co-Supervisor: Prof. Doutor Paulo Simões

Coimbra, Sunday 2nd September, 2018

iii

Abstract

Over recent years, Industrial and Automation Control Systems (IACS) adopted in critical
infrastructures have become more complex due to the increasing number of interconnected
devices. Business goals to improve efficiency and productivity within critical infrastructures
have connected the once isolated and trusted (due to obscurity) industrial control systems
with external networks. This inter-connectivity disclosed and amplified the weaknesses of
traditional IACS protocols, leading to a growing number of cyber-attacks specifically target-
ing critical infrastructures.
Enforcing security policies through the deployment of network intrusion and detection sys-
tems, honeypots (security probes) or other security mechanisms (such as uni-directional
gateways) is hard to accomplish (and often error prone) in traditional network architectures.
The network ecosystem is extremely complex, composed of several multi-vendor physical
devices which are statically deployed in the network and configured on a per-device level. In
the occurrence of a cyber-attack, the network cannot easily block unwanted traffic or evolve
to new topologies. New ICT paradigms such as Software Defined Network (SDN) and Net-
work Function Virtualization (NFV) are showing promising results in the cloud computing
domain, providing innovative features for flexible and efficient management, monitoring and
control of the network. The first (SDN) by allowing network programmability and protocol
abstractions from a logically centralized location (the network controller). The later (NFV)
by shifting network packet inspection from physical dedicated hardware to virtualized com-
putational instances running in commercial-off-the-shelf hypervisors.
This thesis explores the synergies between SDN and NFV to apply a software defined security
approach to IACS. An SDN based architecture is proposed and implemented for the easy
deployment of containerized versions of typical IACS security probes. The proposed archi-
tecture explores the distributed nature of an SDN controller (ONOS) targeting performance
and availability in a multi-tenancy network environment.

Keywords: Industrial Automation and Control systems, Software Defined Networking, Net-
work Function Virtualization, Intrusion and Detection Systems, Network Honeypot, Data
Diode, Multi-tenancy, Container based virtualization

v

Acknowledgement

I would like to express my sincere gratitude to both my supervisors, Prof.Doutor Tiago Cruz
and Prof.Doutor Paulo Simões, for the enormous contribution and valuable discussions pro-
vided throughout the accomplishment of this dissertation. For the availability, development
and implementation of the datacenter Environmental Monitoring Unit (EMU) and for pro-
viding the necessary conditions for a successful research effort.
To Luis Rosa for the guidance and continuous availability anytime a shortcoming was faced,
a request had to be fulfilled or a complex problem needed to be tackled as a team. Thanks
also for the development of the generic IADS-Avro library which greatly reduced the work
required to have a working SDN event factory proof-of-concept.
Victor Graveto for the Golang primer necessary for the development of the SDN glue agent
and global help during the project.
To Jorge Proença for the prompt response to any network/virtual machine (VM) tickets
and for the work on the RapidScada HMI.
To Pedro Quitério for the joint work and last stage help in developing the IADS management
web-interface.
To Leonardo Toledo for the all the help eliciting the IADS requirements.
To Rui Queiroz for the initial input regarding SDN/OpenFlow and for reviewing the state-
of-the art chapter.
To Filipe Sequeira for proof-reading several sections of this thesis. To all of them for con-
tributing to the spirit of the room G5.4 making it one of the best places to do research
within LCT.

A worth mention to the Israel Electric Corporation (IEC) team (specially Ofer Bar) for
providing the required hardware and help troubleshooting the replication of the SDN testbed
for the final review of the ATENA project. To the ATENA H2020 Project (H2020-DS-
2015-1 Project 700581), consortium and all its partners for funding this research.

Last words go to my family, to whom this thesis is dedicated. For all the support and
perseverance during these though years - that I sincerely hope lead to complete career shift.

vii

Contents

List of Figures xi

List of Tables xv

List of Acronyms xix

1 Introduction 1
1.1 Motivation . 1
1.2 Context . 2
1.3 Objectives . 2
1.4 Contributions . 3

1.4.1 Research papers . 3
1.4.2 Research projects . 4
1.4.3 Project reviews . 5
1.4.4 Open-Source contributions . 5

1.5 Structure of the document . 5

2 Reference Technologies 7
2.1 Industrial Automation and Control Systems 7
2.2 Software Defined Networking . 9

2.2.1 Data plane . 13
2.2.2 Control plane . 13
2.2.3 Management plane . 14

2.3 Network Function Virtualization . 15
2.3.1 Container-based virtualization . 16

2.4 OpenFlow . 20
2.4.1 Flow tables and processing pipeline 22

2.5 Chapter wrap-up . 26

3 State of the Art 29
3.1 The evolution of IACS and the need for a paradigm shift 29
3.2 SDN in the IACS domain: benefits and use-cases 32
3.3 SDN in the IACS domain: security aspects 37
3.4 SDN-assisted security probe deployment 42
3.5 On the use of NFV with container-based virtualization 46
3.6 State of the art overview and conclusions 49

4 Requirements 51
4.1 The Intrusion and Anomaly Detection System - IADS 51

4.1.1 The role of SDN/NFV in the IADS platform 53
4.2 Requirements Elicitation . 54

4.2.1 Requirement types . 55

viii

4.2.2 Requirement conventions . 56
4.2.3 Methodology . 57
4.2.4 Product Perspective . 63
4.2.5 System actors . 63
4.2.6 System functional scopes . 64
4.2.7 System packages and context diagram 65

4.3 Functional requirements . 68
4.4 Non-functional requirements . 76

4.4.1 Security requirements . 77
4.4.2 Performance requirements . 78
4.4.3 Availability requirements . 78
4.4.4 Operational and environmental requirements 79
4.4.5 Interoperability requirements . 79

4.5 Design constraints . 79
4.6 Chapter wrap-up . 80

5 Software Architecture 81
5.1 Distributed controller architectures . 81

5.1.1 OpenDayLight . 82
5.1.2 ONOS - Open Network Operating System 87
5.1.3 Performance of Distributed controller 92
5.1.4 Selected Network Controller . 95

5.2 System Architecture overview . 97
5.3 High-level architecture . 97
5.4 System Applications and Components . 102

5.4.1 Users Management SDN Application 103
5.4.2 Network Management SDN Application 104
5.4.3 Docker Integration SDN Application 104
5.4.4 vNIDS SDN Application . 105
5.4.5 vHoneypot SDN Application . 106
5.4.6 Data Diode SDN Application . 107
5.4.7 Network Event Factory Application 107
5.4.8 Web API Application . 108
5.4.9 Management and Visualization Web-interface 109

5.5 Chapter Wrap-up . 109

6 Development Methodologies and Work Plan 111
6.1 Development Life-cycle . 111
6.2 Software artifact development and component reutilization 115
6.3 Work Plan . 116

6.3.1 Application development timeline 118
6.4 Final reflections . 119

7 Development and implementation Notes 121
7.1 Data plane . 121
7.2 Control plane network programming . 122
7.3 Application datastores . 127
7.4 External interfaces . 128
7.5 Virtualization infrastructure . 129

ix

7.5.1 SDN glue agent . 129
7.5.2 Probe development . 130

7.6 Management Web-interface . 131
7.7 Chapter wrap-up . 136

8 Validation 137
8.1 Testbed description . 137
8.2 Functional validation . 138

8.2.1 vNIDS evaluation . 138
8.2.2 vHoneypot evaluation . 140
8.2.3 Data diode evaluation . 142
8.2.4 Network event factory evaluation 143

8.3 Non-functional validation . 144
8.3.1 Scalability and Performance . 145
8.3.2 Availability . 156

8.4 Chapter wrap-up . 158

9 Conclusions 161
9.1 Suggestions for future work . 163

Bibliography 165

xi

List of Figures

2.1 Generic representation of IACS (from MSec 2017). 7
2.2 SCADA layers (from MachineryEquipment 2015). 8
2.3 Tightly coupled control and data planes in traditional networks (reproduced

from Kreutz et al. 2014). 10
2.4 Software Defined Network Architecture (from Kreutz et al. 2014). 11
2.5 Software Defined Network layers (from Kreutz et al. 2014). 12
2.6 Illustrating SDN/NFV complementarity (from Li et al. 2015). 16
2.7 Type-I hypervisor (left), Type-II hypervisor (middle), Container-based virtu-

alization with docker (right), (from Combe et al. 2016). 17
2.8 Docker image layers (from Docker Documentation 2017). 19
2.9 The OpenFlow switch (from Open NF 2015). 20
2.10 The OpenFlow processing pipeline (from Open NF 2015). 22
2.11 The role of meter bands in OpenFlow flow rules (from Raj Jain 2013). . . 26

3.1 Network layers in IACS and possible attack vectors (from Kaspersky 2016). 31
3.2 Advantages of SDN over IP multicasting for PMU networking (adapted from

Goodney et al. 2013). 34
3.3 Towards the virtual PLC. (Cruz et al. 2016) 35
3.4 ARES architecture (Lopes et al. 2017). 37
3.5 Multipath routing based approach to mitigate eavesdropping in SDN-SCADA

networks – (reproduced from Da Silva et al. 2015). 38
3.6 SCADA IDS architecture sugestted by (E. G. Da Silva et al. 2016). 39
3.7 The security framework for SDN-enabled smart power grids (Ghosh et al.

2017). 40
3.8 Reactive SFC framework proposed by (Fysarakis et al. 2017). 41
3.9 Traditional ICT network with the (manual) deployment of monitoring probes

(IDS and Honeypot) – physical placement is key. 42
3.10 A scalable SDN based IDS (adapted from Shanmugam et al. 2014). 44
3.11 The HoneyMix framework for SDN honeypots (Han et al. 2016). 46
3.12 The GLANF agent proposed by Cziva et al. 2016 to attach docker containers

to the SDN network. 47
3.13 The OVS-Docker utility workflow. 48
3.14 The ConMon multi-host scenario (proposed by Moradi et al. 2017). 48

4.1 The ATENA Intrusion Anomaly Detection System (IADS) reference archi-
tecture . 52

4.2 Software requirements contribution to the overall system design (adapted
from Williams 2006). 55

4.3 Requirements elicitation process (adapted from Taima 2014). 58
4.4 Use-case relationships. Caption used for the use-case UML diagrams of

Annex A (Vol. II) . 60

xii

4.5 Scenario based approach for the elicitation of non-functional requirement
(reproduced from eTutorials.org 2008). 62

4.6 IADS use-case context diagram. 66
4.7 The virtual infrastructure management use-case package. 67
4.8 The virtual infrastructure monitoring use-case package. 68

5.1 Distributed controller architectures (Naseer 2016). 81
5.2 The RAFT algorithm in SDN distributed controllers (adapted from Zhang

et al. 2017). 82
5.3 OpendayLight controller architecture (from OpenDayLight 2018). 83
5.4 OpenDaylight network function interaction (from Paliou 2016). 85
5.5 OpenDaylight plugin generation from YANG models (from LinuxFoundation

2014). 86
5.6 OpenDaylight application containers (adapted from Seetharaman 2015). . . 86
5.7 ONOS cluster synchronization (from ONOS-wiki2 2018). 89
5.8 ONOS stack architecture (from ONOS-wiki3 2018). 89
5.9 ONOS subsystems and abstractions (from ONOS-wiki3 2018). 90
5.10 ONOS applications and core services relationship (from ONOS-wiki3 2018). 91
5.11 ONOS intent framework (from ONOS-wiki5 2018). 92
5.12 Cbench test results for OpenDayLight and ONOS (plotted from data in

(Darianian 2017)). 93
5.13 CPU usage of both controllers with 8 switches (from (Darianian 2017)). . 94
5.14 Btest test results (plotted from (Cadenas et al. 2016)). 94
5.15 Btest stress test results (plotted from (Cadenas et al. 2016)). 95
5.16 IADS SDN high level architecture. 97
5.17 Distributed control plane node architecture. 98
5.18 Virtualization host internal architecture. 100
5.19 Probe deployment workflow. 101
5.20 Allocation view. 102
5.21 User Management application component and connector view. 103
5.22 Network Management application component and connector view. 104
5.23 Docker integration application component and connector view. 105
5.24 vNIDS application component and connector view. 105
5.25 vHoneypot application component and connector view. 106
5.26 Data diode application component and connector view. 107
5.27 Network event factory component and connector view. 108
5.28 Web API application component-and-connector view. 108
5.29 Vue-js MVVM design pattern, from Whatpixel.com 2016 109

6.1 Waterfall software development life-cycle (Royce 1970) – (adapted from
(Hughey 2017)). 111

6.2 Modified waterfall lifecycle with a RERO approach in the development phase. 112
6.3 Continuous Integration, Testing and Deployment for the IADS. 114
6.4 OWASP dependency vulnerability analysis on the web-management interface. 114
6.5 Gantt chart for the thesis activities (expected by the intermediate thesis

delivery). 117
6.6 Gantt chart for the thesis activities (actual timeline). 118
6.7 Development effort per application. 120

7.1 Example topology with two hosts and a vProbe. 122

xiii

7.2 Datastore model diagram. 127
7.3 SDN glue agent development. 129
7.4 Main SDN subsystem view. 132
7.5 Information panel depending on the asset type. 132
7.6 Network graph filtering. 133
7.7 Topology quick actions. 133
7.8 Services available for vProbe deployment. 133
7.9 Additional configurations for vHoneypot. 134
7.10 All services deployed on a logical network. 134
7.11 Add or remove virtualization nodes from the platform. 134
7.12 Configure the image registry (vNIDS and vHoneypot). 135
7.13 Detailed view of a vProbe container with its network statistics and console. 135

8.1 Testbed scenario. 137
8.2 TCP flood attack against the EMU and the HMI unable to trace the oper-

ational variables. 139
8.3 vNIDS launch. 139
8.4 IADS denial-of-service alert issued by the vNIDS probe container. 140
8.5 vHoneypot container deployed in the datacenter logical network (plus net-

work information). 141
8.6 PLCScan results against the vHoneypot container. 141
8.7 Network topology graph of the IADS web interface showing 2 hosts for the

same container. 141
8.8 Nmap port scan against the fake IP. 141
8.9 IADS web-interface topology graph after the deployment of the data diode. 142
8.10 Representation of the restricted connection domains and the unidirectional

link. 142
8.11 Network Event Factory application test. 143
8.12 Non-functional validation workflow. 144
8.13 Host detection latency depending on the control plane cluster size. 146
8.14 Topology scaling test results - the effect of the control plane size and network

complexity on the topology construction. 147
8.15 Spine-leaf topology example in the ONOS web-interface. 148
8.16 Logical network creation times depending on the control plane cluster size

and number of hosts. 149
8.17 Time taken for each individual step in SDN probe deployment (3 host network).151
8.18 Probe container launch times depending on the container image. 151
8.19 Host addition to a deployed vNIDS service depending on the overall network

and control plane cluster sizes. 152
8.20 vHoneypot network programming (DHCP + flow rule installation). 153
8.21 Data diode deployment times depending on the number of network hosts

and control plane size. 154
8.22 UDP bandwidth vs. TCP and Theoretical bandwidth. 155
8.23 Percentage of lost packets vs. bandwidth and write buffer size (UDP). . . 155
8.24 TCP bandwidth comparison: Host traffic vs vNIDS probe container. 156
8.25 Link failure event and the selection of a redundant path. 156
8.26 Intent fail-over latency depending on the control plane cluster size. 157
8.27 Switch mastership test representation. 158

xiv

8.28 Switch mastership fail-over latency depending on the control plane cluster
size. 158

xv

List of Tables

2.1 The OpenFlow enabled switch flow table. 23
2.2 OpenFlow match fields. 23
2.3 OpenFlow switch available actions. 24
2.4 The group table. 25
2.5 The meter table. 25
2.6 OpenFlow counters. 28

4.1 Requirement presentation. 56
4.2 Template for use-case description. 59
4.3 System actors. 63
4.4 System functional scopes. 64
4.5 System functional requirements organized per system package. 68
4.6 Security non-functional requirements of the system. 77
4.7 Performance non-functional requirements. 78
4.8 Availability non-functional requirements. 78
4.9 Operatonal and environmental non-functional requirements. 79
4.10 Interoperability non-functional requirements. 79
4.11 System design constraints. 79

6.1 Use cases not implemented in the final delivery. 119

7.1 Host information. 122
7.2 Default switch flow table. 122
7.3 Network Management application intent translation. 123
7.4 vNIDS installed flow rules for switch S1. 124
7.5 vNIDS installed flow rules for switch S1. 124
7.6 vHoneypot installed flow rules for switch S1. 125
7.7 Data diode application flow rule programming. 126

8.1 Latency effect of the data layer on Modbus TCP readings. 143
8.2 Host detection latency depending on the control plane cluster size. 146
8.3 Topology scaling results. 147
8.4 Number of intents and installed flow rules depending on the number of hosts

of the network to be created. 149
8.5 Logical network creation times depending on the control plane cluster size

and number of hosts. 150
8.6 Elapsed time for each step involved in vProbe deployment. 151
8.7 Container deployment times depending on the vProbe container image . . . 151
8.8 Host addition to a deployed vNIDS service depending on the overall network

and control plane cluster sizes. 152
8.9 vHoneypot network programming (DHCP + flow rule installation). 153

xvi

8.10 Data diode deployment times depending on the number of network hosts
and control plane size. 154

8.11 Intent fail-over latency depending on the control plane cluster size. 157
8.12 Switch mastership fail-over latency depending on the control plane cluster

size. 158

xvii

List of Algorithms

7.1 vNIDS algorithm exemplification. 124
7.2 vHoneypot algorithm exemplification. 125
7.3 Probe startup example (not pseudo-code). 131

xix

List of Acronyms

ACL Access Control Lists.
AMQP Advanced Message Queuing Protocol.
API Application Programming Interface.
ARP Address Resolution Protocol.

BDDP Broadcast Domain Discovery Protocol.
BGP Border Gateway Protocol.

CLI Command-Line.
COTS Commercial off-the-shelf.

DCS Distributed Control System.
DDoS Distributed Denial of Service.
DER Distributed Energy Resources.
DMA Direct Memory Access.
DOM Document Object Model.
DoS Denial of Service.
DPDK Data Plane Development Kit.
DPI Deep Packet Inspector.
DSCP Differentiated Services Code Point.

EMU Environment Monitoring Unit.
EV Electric Vehicles.

FCA Forensics and Compliance Auditing.
FPGA Field-Programmable Gate Array.

HAZOP Hazard and operability study.
HMI Human Machine Interface.

I/O Input/Output.
IaaS Infrastructure-as-a-Service.
IACS Industrial and Automation Control Systems.
IC Integrated circuit.
ICT Information and Communication Technology.
IDS Intrusion Detection System.
IED Intelligent Electronic Device.
ILP Integer Linear Programming.
IoT Internet of Things.
IP Internet Protocol.
IPAM IP Address Management.

xx

LLDP Link Layer Discovery Protocol.
LXC Linux Containers.

MD-SAL Model Driven Service Abstraction Layer.
MVC Model-View-Controller.
MVVM Model–View–Viewmodel.

NFV Network Function Virtualization.
NIDS Network Intrusion Detection System.
NOS Network Operating System.

ONOS Open Networking Operating System.
OSGi Open Services Gateway initiative.
OVS Open Virtual Switch.

PCE Path Computation Element.
PDC Power Distribution Center.
PID Process ID.
PLC Programmable Logic Controller.
PMU Phasor Measurement Unit.

QoS Quality-of-Service.

RERO Release Early Release Often.
REST Representational State Transfer.
RT Real-Time.
RTOS Real-Time Operating System.
RTSP Rapid Spanning Tree Protocol.
RTU Remote Terminal Unit.

SCADA Supervisory Control and Data Acquisition.
SDECN Software Defined Energy Communication Net-

work.
SDN Software Define Networking.
SIEM Security Information and Event Management.
SNMP Simple Network Management Protocol.
SPAN OpenDayLight.
SPAN Switch Port Analyzer.
SVM Support Vector Machines.

TAP Test Access Point.
TCAM Ternary Content Addressable Memory.
TCP Transmission Control Protocol.
TLS Transport Layer Security.

VFIO Virtual Function I/O.
VLAN Virtual Local Area Network.
VM Virtual Machine.

xxi

vNF Virtual Network Function.

WAN Wide-Area Network.

1

Chapter 1

Introduction

1.1 Motivation

Today, the industrial automation and control systems (IACS) used to control and monitor
mission critical applications such as the power grid, oil and gas distribution or chemicals
manufacturing are turning ubiquitous. Current trends such as the "Industry 4.0" and the
Internet of Things (IoT) are making traditional industrial control systems to move away from
their original isolation concept and to get interconnected and exposed to external networks.
These systems generate, process and exchange vast amounts of critical information, making
them attractive targets for cyber based attacks. Cyber-attacks against IACS can result in
much more disastrous consequences compared to other targets. The cyber-physical inter-
dependencies in IACS give cyber-attacks the ability to disrupt nations’ essential services, to
cause physical damage and to even threaten human lives. The convergence between ICT
and IACS greatly expanded the cyber-attack exploitation surface: not only the control in-
strumentation is accessible from corporative networks but used communication protocols are
just minor revisions of legacy protocols so they can operate over the TCP/IP stack (without
any improvements in terms of security and privacy). The Stuxnet attack in 2010 (Wired
2014) made the world aware of the vulnerabilities of IACS and led to a growing research
interest in securing such systems.

Monitoring and deploying security devices for intrusion detection can no longer comply with
traditional network architecture, as we move towards the IoT-generation of IACS and try
to monitor every single point of the critical infrastructure. Traditional network architectures
have the forwarding and control planes strongly coupled in each network device and require
multiple physical deployments to monitor the whole control system infrastructure. Software
Defined Networking (SDN), an architecture which aims at decoupling the control plane from
the forwarding plane of network devices and promotes network flow programmability from a
centralized location; has moved out of the research field and started to be used in real world
implementations – pushed by internet giants and big telecom companies. Complemented
with network function virtualization (NFV), SDN is being used by service providers to re-
place network functions implemented in legacy middle-boxes with virtual network functions
operating in virtual machines (VMs) of their datacenter. While the first IACS-SDN turn-key
solutions are starting to appear the synergies between SDN and NFV in the IACS field are
yet to mature and be investigated. In distributed and ubiquitous IACS, taking advantage
of both technologies seems to be a promising way of overcoming the current bottlenecks
associated with monitoring the critical infrastructure.

2 Chapter 1. Introduction

1.2 Context

Considering today’s highly distributed IACS, the ATENA H2020 project (ATENA 2017) aims
at building upon the knowledge acquired in previous European Research activities (particularly
from FP7 CockpitCI and MICIE projects) to push innovation through the exploitation of
advanced features of ICT and Cyber Security so they can be adopted at the operational
industrial level. The University of Coimbra (FCTUC) leads a work package in the ATENA
project which proposes to tackle the challenges of monitoring (and securing) such high
capillarity infrastructures with a distributed awareness approach. Hence, the adoption of Big
Data-like data processing strategies (such as the use of Scalable Complex Event Processing),
coupled with Fog-Computing mechanisms (supported by containerization) are envisioned as
strategic assets in the architecture to be developed. The overall platform to be developed
by the University of Coimbra in the ATENA context is called the Intrusion and Anomaly
Detection System (IADS).

The ATENA distributed security awareness concept encompasses a Big Data SIEM (Secu-
rity Information Event Management) capable of providing a source data-frame for forensics
and auditing purposes, which also represents the central logical piece of the architecture. In
the SIEM, machine learning algorithms predict the probabilities of the infrastructure being
under a cyber-attack. This architecture strongly depends on security probes: to be able to
accomplish big-data processing, distributed assets have to collect and forward monitoring
data (or security events) to the SIEM. From this perspective, Software Defined Networking
and Network Function Virtualization arise as auxiliary (and complementing) technologies to
support the distributed monitoring infrastructure. While NFV is used to remove the com-
plete dependency on physical probes moving some of them to the datacenter (hypervisors)
as virtual network functions (VNFs), SDN programs the network flows (through flow rule
deployments) to ensure the virtual security probes are able to operate. The application of
NFV and SDN within the context of the IADS cyber-security constitutes one of the main
innovations of the ATENA project.

1.3 Objectives

The nature of this thesis is twofold, since it has a strong research component as well as a
strong development and implementation component. The main goal of this dissertation
work is to propose and implement a high-availability and performant architecture for the
deployment of IACS security probes though the combination of SDN and NFV technologies.
More precisely, this work focuses on porting existing security IACS mechanisms - intrusion
detection systems (IDS), honeypots or unidirectional gateways (data diodes) - to a new,
software defined, security paradigm. Security probes once requiring dedicated hardware need
to be ported to lightweight containers and deployed in a shared virtualization infrastructure.
The deployment of such virtual probes should be managed by means of an SDN controller
that orchestrates deployments and programs the underlying network through the installation
of flow rules, e.g. using the OpenFlow protocol. More precisely, the system has to install
rules to provide copies of host traffic (intrusion detection systems), redirect traffic flows
(honeypot) or block traffic in certain directions (data diode). The system should be managed
by a logically centralized entity, assuring both the virtual probes (containers) and the network
hosts share the same network topology and are able to communicate.

1.4. Contributions 3

Regarding the research component, it is fundamental to understand if the supporting tech-
nologies can be used in the IACS domain and respect some of their fundamental require-
ments. For example, in current IACS, multiple operators are involved in managing the net-
work and the process control operations (e.g. subcontractors). The need for multi-tenancy
and the stratification of user roles is a fundamental requirement. It is also important to
understand how the SDN architecture can be used to improve the resilience of the critical
infrastructure and the solutions (or similar concepts) that are available in the literature. A
careful evaluation of the state-of-the-art in other fields is advantageous, since the proposed
architecture can easily borrow ideas and apply them on this field.
As network controllers move from their classical centralized model to highly distributed clus-
tering software packages, understanding their internal architecture, programming models
and performance metrics is also a central task before proposing an architecture.

Concerning the development and implementation component the goal of this thesis is to
provide a framework/subsystem capable of:

1. Leveraging SDN to create logical sub-networks (basis for multi-tenancy).

2. Combining SDN and NFV (through container based virtualization) to create a virtual
IDS service.

3. Exploring SDN and NFV as the technologies for the deployment of a virtual honeypot
on the network.

4. Designing and implement a software emulated version of a data diode, via SDN and
NFV

5. Exploring the architecture of the SDN controller to pipe relevant network events for
further security analysis and correlation in a SIEM.

6. Targeting performance and availability (and security) above all other quality attributes.

The envisaged subsystem implies the development and implementation of an easily portable
hardware testbed. Security probe deployments should be also made via a management web-
interface (common to the whole ATENA project) to improve the user-experience and the
likelihood of adopting the system in the IACS domain.

Proper architecture validation based on performance and availability metrics (as well as a
set of real use cases for each of the developed virtual services) is also fundamental objective
of this thesis.

1.4 Contributions

The research efforts of this thesis lead to the several outcomes listed below.

1.4.1 Research papers

– Freitas, M. and Rosa, L. and Tiago Cruz and Simões, P. , "SDN-enabled virtual data
diode", in Proc. of the 4th ESORICS Workshop On The Security Of Industrial Control
Systems & Of Cyber-Physical Systems (CyberICPS 2018), September 2018

4 Chapter 1. Introduction

The article is appended in Annex D of Volume II. Two more papers are currently being
prepared for journal submission.

1.4.2 Research projects

Contributions to different research projects and their respective documentation/deliverables.

• ATENA H2020 Project (H2020-DS-2015-1 Project 700581)

– Deliverable D4.1 - Requirements and reference architecture of the cyber-physical
IDS (interim version)

– Deliverable D4.2 - Distributed Intrusion and Anomaly Detection Strategies for
IACS (interim version)

– Deliverable D4.3 - Design of detection agents and security components (interim
version)

– Deliverable D4.4 - Design of the Distributed IDS for IACS (interim version)

– Deliverable D4.5 - Requirements and reference architecture of the cyber-physical
IDS (final version)

– Deliverable D4.6 - Distributed Intrusion and Anomaly Detection Strategies for
IACS (final version)

– Deliverable D5.4 - Security Defined Software (interim report)

– Deliverable D6.3 - Design and development report of the 1st release of compo-
nents

The following future deliverables will also include contents from this thesis:

– Deliverable D5.9 - Security Defined Software (final report)

– Deliverable D4.7 - Design of detection agents and security components (final
version)

– Deliverable D4.8 - Design of the Distributed IDS for IACS (final version)

– Deliverable D7.4 - Final ATENA prototype validation and evaluation of validation
results (Final report)

• 5GO P2020 - Mobilizador 5G (Components and Services for 5G Networks)

– Deliverable D2.1 - Use cases and requirements for solutions targetting 5G network
core

• Mobiwise P2020 SAICTPAC/0011/2015 Project

– The developed SDN subsystem is currently under viability evaluation for inclusion
in the Software Defined Orchestration approach of the project.

1.5. Structure of the document 5

1.4.3 Project reviews

Part of work performed in this thesis was of very importance to the success of the ATENA
intermediate review in November 2017, at the European Commission. The implemented
testbed was successfully replicated at the Israel Electric Corporation large scale testbed in
May 2018, in preparation for the final ATENA review.

1.4.4 Open-Source contributions

Two pull-requests were made by the author and merged on the following upstream reposi-
tories:

– OpenXENManager PR#132 - Add support for multiple VNC windows (B.Freitas
2017)

– Open Network Operating System (ONOS) PR#18996 - Remove host location
when a switch port is removed (B.Freitas 2018)

1.5 Structure of the document

The remainder of this document is organized as follows:

• Chapter 2 provides a short overview of the reference technologies used in this thesis.
IACS basics, SDN and NFV concepts are explained.
The OpenFlow protocol is described with more detail. The reader should consider this
chapter as optional owing to briefly introduce the technologies.
If the reader is already familiar with those technologies, this chapter can be skipped.

• Chapter 3 is dedicated to the state of the art. The evolution of IACS and the need
for a paradigm shift are identified. A literature review on the use of SDN on IACS is
provided, and SDN based architectures for security probe deployment are presented.
Lastly, a review of container-based NFV approaches is provided.

• Chapter 4 is dedicated to software requirements. The contextual environment of this
project (the ATENA IADS platform) is presented, along with its building blocks. The
requirements elicitation process is explained and all the requirements (functional, non-
functional and design constraints) are summarized in a uniform detailed way. Use
case diagrams and descriptions are relegated to Annex A and Annex B (volume II)
respectively.

• Chapter 5 is dedicated to software architecture. Distributed SDN controller archi-
tectures, clustering mechanisms, programming models and performance metrics are
compared, in order to select the network controller for the platform (an architectural
trade-off). Lastly, the architecture of the platform to be developed in this work is
detailed.

• Chapter 6 discusses the adopted software development lifecycle and the whole work-
plan. Components built from scratch in the context of this thesis (and component
reutilization) are clearly identified. Development timelines, challenges and deviations

6 Chapter 1. Introduction

are explained. A reflexion is made concerning the proposed requirements (use case
descriptions) and their completion.

• Chapter 7 is focused on the implementation and development component of this the-
sis. Network programming and the chosen algorithms are detailed as well as a brief
reference to the external interfaces, application datastores and the management web-
interface.

• Chapter 8 addresses the validation of the overall subsystem. Functionality is evaluated
by defining a use-case per application. Non-functional validation targets the evaluation
of the subsystem main design attributes: availability and performance.

• Chapter 9 concludes the thesis and provides some guidelines for future work.

Annexes to support the dissertation are provided in Volume II. They are organized as follows:

• Annex A contains the use-case diagrams organized by use case package. The overall
system is stratified into functional blocks to improve the organization and readability.

• Annex B lists and details all elicited use-cases per functional package – identifying the
success scenarios and respective exceptions.

• Annex C details the external interfaces of the developed subsystem organized per
application.

• Annex D appends the published paper "SDN-enabled virtual data diode". The paper
provides a state-of-the-art review of commercial data diodes, explains the advantages
and the challenges of virtualizing the data diode (bi-directional network requirements)
and provides a proof-of-concept implementation based on the data diode application
developed in this thesis.

7

Chapter 2

Reference Technologies

This chapter provides an overview of the reference technologies used in this thesis – it
is of fundamental importance to familiarize the reader with their base concepts. Section
2.1 refers to Industrial Automation and Control Systems (IACS), identifying their types
and main instrumentation. Section 2.2 discusses Software Defined Networking breaking
the architecture into its three fundamental planes. Section 2.3 is dedicated to Network
Function Virtualization (NFV) explaining how it complements SDN. It also provides a brief
introduction to container-based virtualization. Section 2.4 discusses the OpenFlow protocol,
the packet processing pipeline, flow tables and advanced protocol features. Finally, Section
2.5 provides a wrap-up of the chapter.

2.1 Industrial Automation and Control Systems

Industrial automation and control systems (IACS) are a broad class of command and control
networks and systems used to support all types of industrial processes. They are the funda-
mental systems supporting critical infrastructures such as electricity generation transmission
and distribution, gas production and distribution or water distribution. IACS includes a va-
riety of system types, such as supervisory control and data acquisition (SCADA) systems,
distributed control systems (DCS), process control systems (PCS) and other smaller control
systems such as programmable logic controllers (PLCs) (MSec 2017).

Figure 2.1: Generic representation of IACS (from MSec 2017).

Although normally referred as a synonym of IACS, SCADA systems (Figure 2.1) are in fact
only a subset (a specific type of architecture) of industrial control systems. SCADA systems

8 Chapter 2. Reference Technologies

are employed when centralized data acquisition is fundamental to the critical infrastructure
operation. They reflect an highly distributed architecture used to control disperse process
elements. Concrete examples include the oil and gas sector and power grids. In SCADA
systems a "control centre" exists where centralized monitoring and control is performed. In
the control centre operators (or an automated process) can push supervisory commands to
field devices (to affect the process operation), can collect data from sensors, and monitor
the distributed environment.

DCSs are mainly used to control industrial production processes such as oil, gas or chem-
icals plants. Contrarily to SCADA cannot be geographically distributed, but still entail a
level of supervisory control which is extended to the whole production process. DCS typi-
cally integrates multiple control loops, each responsible for controlling one localized process
section.

Despite the different subsets of IACS, some key elements are common to either SCADA
and DCS (Endi et al. 2010):

• Control Loop - The control loop consists of sensors for measurement of process
variables, controller hardware such as programmable logic controllers and actuators
such as valves, switches and motors. The PLC interprets digital and analogue signals
sent from sensors, computes deviations from the normal plant operation (set-points)
and transmits control parameters to actuators. When a disturbance occurs in the
process, signals sent by sensors to the PLC reflect the current state of the process
making the PLC transmit new values to actuators so the process state can evolve as
desired.

• Human-Machine Interface (HMI) - Graphical user interfaces that operators and
engineers use to define set-points, control algorithms and to define the parameters of
PLC’s. The HMI also presents the process sensor values and historical information.

• Remote Diagnostics and Maintenance Utilities - Utilities used in IACS to prevent,
identify and recover from failures

In current SCADA systems, control operations are stratified in three layers: supervisory
control, process control and field instrumentation control (Figure 2.2).

Figure 2.2: SCADA layers (from MachineryEquipment 2015).

The supervisory control layer (which includes master stations) corresponds to one or more
general purpose computers which essentially have two functions:

2.2. Software Defined Networking 9

1. Periodically obtain data from remote terminal units (RTU) and programmable logic
controllers (PLCs) located in remote stations. This data is stored in historian servers
which log process data over time.

2. Control remote field devices through commands sent to remote RTUs and PLCs.

Remote substations (the process control layer) are composed by several RTUs and/or PLCs.
Traditionally, PLCs and RTUs had different implementation goals but, due to the increase
of cheaper hardware, their provided functionality started to overlap (Endi et al. 2010). In
the past, RTUs did not include control algorithms and were only used as wireless devices,
providing single communication points to multiple PLCs. Nowadays, it is common to see both
devices controlling the process field instrumentation layer interchangeably. Both equipments
internally use ladder-logic to implement Boolean expressions – supported by switch or relay
contacts (Ecmweb 2003).

The field instrumentation control layer (field devices) consists of sensors and actuators
controlled directly by PLCs (and RTUs). Sensors get measurement data to feed PLCs,
while actuators execute actions issued by the PLC. The PLC configuration and manage-
ment is achieved in the SCADA upper layer – from the master station. Field devices are
often input-output (I/O) devices used to signal the process status or to emit alarm sig-
nals. In some specific areas of IACS, like the electric power grid, field devices also include
other microprocessor-based equipments such as: circuit breakers, transformers and capacitor
banks. These devices are often categorized, and referred, as Intelligent Electronic Devices
– IED (Techtarget 2017).

Regarding the communication infrastructure, data transfer within master stations uses
generic ICT protocols such as TCP/IP or IPX over Ethernet (and Token Ring) (Thomp-
son 2007). In the control layer, apart from Ethernet, other technologies such as RS-485,
CAN, EtherCAT, Profinet or Industrial Ethernet are also used in what concerns the phys-
ical layer. Between master stations and RTUs/PLCs SCADA specific protocols, such as
Modbus, IEC 60870-5-104 (IEC 104) or DNP3 are often used (Graveto 2017). For remote
control, instructions are often sent through wide-area networks (WAN) using leased lines,
radio or satellite technologies. The communication between the process control layer and
field devices is typically point-to-point (wire pairs) – using voltage pulses or electric current
intensity levels (4-20mA). Those values are interpreted by PLCs/RTUs depending on how
they are programmed.

2.2 Software Defined Networking

Computer networks can be divided in three planes: the data plane, the control plane and
the management plane. The data plane is represented by network equipment (routers and
switches) that contain forwarding tables and are responsible for effectively forwarding data
across the network. To efficiently forward data, forwarding tables in some network devices
are called TCAMs (ternary content-addressable memory) since they can perform an entire
table lookup in just one clock cycle. TCAMs greatly increase the speed of route-look-up,
packet classification, packet forwarding and access control list commands. Such functions
are responsibility of the data plane (TechTargetDef 2017). The control plane is the set of
protocols used by the network device to populate the forwarding tables of the data plane
elements. Finally, the management plane is composed of software services (e.g. SNMP

10 Chapter 2. Reference Technologies

based tools) or web applications that enable network monitoring and management of the
control plane.

Figure 2.3: Tightly coupled control and data planes in traditional networks
(reproduced from Kreutz et al. 2014).

Despite the exponential innovations seen in areas such as computing and storage virtualiza-
tion, networking itself has remained essentially similar over the past 20 years. In traditional
IP networks the control and data plane are coupled together in the same network device,
and the whole management interface is highly decentralized (Figure 2.3).

The decentralized nature of traditional networks could easily be seen as an advantage since,
hypothetically, it would lead to the improvement of the resilience of the network. How-
ever, managing such a decentralized infrastructure made clear some disadvantages that are
more close to the architectural foundations of the network than to the amount of network
elements:

• Vendor lock-in: The proliferation of network devices and the strategic choice of
network vendors force customers to use products and services tied to a single vendor,
which makes the transition to competitors’ products hard to accomplish. Most of the
time, to take full advantage of the network equipment, customers are forced to have
an ecosystem where a single vendor provides the majority of software and services.
This fact leads to a difficult transition to new protocols or architectures (Subramanian
et al. 2016).

• Management complexity: Different equipment from different vendors have also dif-
ferent configuration instructions or interfaces. This results in a management night-
mare, forcing network operators to have multiple management solutions and the cor-
responding specialized teams (Mousa et al. 2016).

• Error prone: Management of multiple devices, with different interfaces and instruc-
tion sets, is error-prone (Mousa et al. 2016). There is a big likelihood of producing
inconsistencies in the network as a result of network configuration. This leads to
poor network performance and even security holes (e.g. incorrectly configured firewall,
wrong ACL entries, etc). Traditional ICT networks are also rather static and cannot
dynamically respond to network attacks, load or faults.

• Hampered innovation: Capital and operational costs of managing the network are
high with long return investment which hamper innovation and the addition of new
features or services in the network (Sieber et al. 2016). Network equipment software
(and hardware) is proprietary and brand-specific making research efforts difficult (and
sometimes even illegal).

2.2. Software Defined Networking 11

Software-defined networking is an architecture that attempts to solve most of the prob-
lems mentioned above by making the network programmable. The percursor of SDN can
be considered the Active Networking, which appeared in the mid-1990s, motivated by the
massification of the internet. Active Networking was an effort to open the network control
plane through an envisioned programming interface that exposed resources (e.g. processing,
storage and packet queues) on network nodes and supported the development of custom
functionalities to subsets of packets traversing the network node. Later, between 2001 and
2007 efforts were made to separate the control plane and the forwarding plane from network
devices. Examples of such efforts are ForCES, PCE and Ethane (Feamster et al. 2014).
The fundamental development that made SDN gain sufficient traction was the introduc-
tion (circa 2007) of the OpenFlow protocol. One assumption of the early SDN research
community was that network routers should be simple and homogeneous, working with IPv4
forwarding and Ethernet MAC switching. The OpenFlow protocol also assumed modern
switches and routers contain TCAMs which could be exploited to construct flow tables in a
simple match:action manner (Kreutz et al. 2014).

The idea behind SDN is quite simple: remove the control plane from network devices (leav-
ing the forward plane) and shift it to a logical centralized remote location where network
applications can define (and program) the network state (see Figure 2.4).

Figure 2.4: Software Defined Network Architecture (from Kreutz et al. 2014).

Recent developments in cloud computing and virtualization lead to the existence of multiple
network programmability approaches. This fact has made the term SDN ambiguous since
multiple authors refer to SDN as anything that is able to define the network behaviour
through software. Nevertheless, to be considered SDN, the network architecture has to be
supported by four main pillars as referred by Kreutz et al. 2014:

1. The control functionality is removed from the network devices, turning them into
simple forwarding elements. In SDN, control and data planes are no longer tightly
coupled.

2. SDN provides an homogeneous way of interfacing with the network equipment, making
it possible to unify network behaviour and to virtualize the behaviour of traditional
network middleboxes. The forwarding decisions are not based on destinations but
instead on flow rules made of match fields and a set of actions (see Section 2.4).

12 Chapter 2. Reference Technologies

3. The control plane is shifted to an external entity called the network controller or
network operating system (NOS). The name comes from the fact that the features of
the controller are similar to those of traditional operating systems although targeting
network devices. The SDN controller is a software framework that runs on commodity
hardware and provides the essential resources and abstractions to permit network
equipment programmability from a logically centralized location.

4. The network is programmable by the means of software applications running on top of
the controller, taking advantage of its essential services and abstractions. The network
controller abstracts the communication protocols with the underlying network devices
through a set of common interfaces exposed to network application.

Software defined networking segregates the network architecture into three main layers, as
depicted in Figure 2.5.

Figure 2.5: Software Defined Network layers (from Kreutz et al. 2014).

The separation of the network architecture through a set of different planes really entails
the biggest advantages of SDN. SDN makes it easy to program network applications, since
abstractions provided by the network controller core can be shared between applications. All
SDN applications can access the same datastore, being aware of the global network state
and topology. This fact makes network programming possible regardless of the location
of the device. It is no longer needed to think about a specific strategy depending on the
location of an asset (e.g. a middlebox) within the network topology (as opposed to what
happens nowadays with traditional networking).

A bottom-up approach of the SDN architecture in terms of its respective planes (Figure
2.5) is depicted in the next subsections.

2.2. Software Defined Networking 13

2.2.1 Data plane

The data plane in an SDN architecture is composed by the forwarding devices and by the
southbound interfaces. Forwarding devices are provided by the SDN-enabled switch fab-
ric (such as OpenFlow-enabled switches), composed by network equipment which usually
do not have any forwarding decision implemented without being programmed by the net-
work controller. These network devices have been called by some authors as "bare metal
switches", in a clear allusion to bare metal hypervisors. Examples of such switches include
those produced by Brocade, Pica8, Pantu or the Open vSwitch (an open source virtual switch
implementation capable of being installed in any common physical host) (SDNCentral 2016).
The southbound interface is a set of common Application Programing Interfaces (APIs) to
abstract the communication protocols between the network controller and the forwarding
devices. Albeit OpenFlow is the most common protocol, other protocols such as ForCes
(which provides configuration for some non-openflow enabled switches), OVSDB (advanced
management capabilities for Open vSwitch), OpFlex (an alternative to OpenFlow) or even
SNMP can also be accessible through the southbound interface (Azevedo F. 2015).

2.2.2 Control plane

The control plane in the SDN architecture is composed by the following components:

• Network hypervisors - Network hypervisors are commodity virtualization servers where
the network controller stack is installed. Hypervisors extend virtualization benefits to
the SDN control plane, since they allow computational resource allocation in a shared
pool of network controller nodes. Across SDN history, other projects such as Flowvisor
(an OpenFlow proxy controller with the aim of creating virtual network slices) could
also be part of this category (Azodolmolky 2013).

• Network controller - Software stack that provides abstractions (high-level program-
ming interfaces) for concurrently access forwarding network devices and to program
the network logic. The essential functionalities of the network controller include ac-
cessing the network state, device discovery, network topology, flow rule installation,
device and flow statistics, and replication of the network state between multiple con-
troller nodes. The controller is the critical piece of the SDN architecture and serves
as the base for network applications to be developed. Multiple network controller
softwares exist, from which OpenDaylight, ONOS, Floodlight and Ryu are the most
known. The network controller can be centralized (and as a result be the master of
all network switches) or can be distributed (sharing the network state and the switch
mastership between multiple nodes). An overview of distributed controller architec-
tures is provided in Section 5.1 emphasizing the architecture of both OpenDaylight
and ONOS.

• Northbound Interfaces - Programming APIs that glue the control and the manage-
ment plane together. There is little information on standardization of the northbound
API. Some authors interpret the northbound API as only the external APIs other sys-
tems can access to interface with the controller (Banse et al. 2015). If that is the
case, REST is without a doubt the most used interface. However, a few references
(e.g. Kreutz et al. 2014) also consider the APIs between the main core services (e.g.
topology, flows, etc) and their respective applications as northbound APIs, while these
interfaces can be also viewed as internal to the controller (they are normally based

14 Chapter 2. Reference Technologies

on remote procedure calls). Network applications can often extend the controller
Representational State Transfer (REST) or command-line (CLI) APIs.

• East/Westbound interfaces - Interfaces responsible for horizontally connecting sev-
eral controller nodes in a distributed control plane architecture. They are dependent
on the controller software and are used to enforce synchronization algorithms such as
RAFT or Gossip/Anti-Entropy (Naseer 2016).

It is also important to mention in this section the three ways the network controller can
apply to define the forwarding plane logic if the OpenFlow protocol is used (NetworkStatic
2013):

1. Reactive flow instantiation: every time a new packet arrives into the switch a lookup
is made by the switch in its flow tables. In the case where no match is found the
packet is replicated, encapsulated and redirected to the network controller for it to
take a decision. The network applications registered as packet processors/advisors are
then responsible for forwarding or dropping the network packet. Additionally, they may
install rules on the network devices to apply a similar logic to future identical network
packets (either in a persistent or temporary way). The resulting overhead of this
approach might by significant if we take into account the necessary logical steps and
that not all network switches have flow tables built into specific application integrated
circuits (ASICS) with Ternary content-addressable memory (TCAM) memory (Queiroz
2017).

2. Proactive flow instantiation: The network controller applications fill the network de-
vices flow tables in anticipation, eliminating the need for the switch to redirect packets
to the controller and the respective overhead of the process. This approach takes as
an assumption that the network packets or the allowed communication between net-
work hosts are known beforehand. It has a great impact on the system performance
but compromises the system network flexibility.

3. Hybrid flow instantiation: Most of the flow rules are installed in advance by the net-
work controller/applications ensuring low-latency to the network operation. However,
if a packet that does not match any of the device flow rules reaches the network device
it is forwarded to the network controller for it to take a reactive approach.

2.2.3 Management plane

The management plane is composed by the network applications responsible for receiving
information from the southbound interfaces and for defining the way network packets are
treated in the network. Applications make use of generic high-level object-oriented pro-
gramming languages such as Java or Python (Trois et al. 2016) that abstract the network
elements in the form of programming objects (device, flow or flow rule objects). During
the evolution of SDN, virtualization languages with the goal of homogenizing the network
programmability independently of the network controller were also suggested. One example
is the Pyretic language (Pyretic 2015). However, the concept has not gained sufficient
traction and those projects are no longer active.

2.3. Network Function Virtualization 15

2.3 Network Function Virtualization

Network Function Virtualization (NFV) offers new ways of designing, deploying and manag-
ing network services (SDxcentral 2016). It aims at decoupling the network functions from
proprietary hardware appliances so they can run in software. More specifically, NFV makes
use of virtualization technologies to virtualize common network functions (firewals, intru-
sion detection systems, DNS) so they can be consolidated in COTS hypervisors. The NFV
concept can be traced back to the introduction of the first network functions: VLANS.
However, its growth and continuous development can be attributed to telecommunication
service providers. To accelerate the deployment of new network services, and recognizing
the constraints of hardware-based appliances, telecommunication providers started to employ
virtualization technologies in their networks. The European Telecommunications Standards
Institute (ETSI) NFV group was formed to accelerate the research and to enforce common
standards in NFV. More precisely, four working groups were created, defining the main NFV
pillars (ONF-ESTI 2015):

• INF: Architecture for the virtualization Infrastructure.

• MANO: Management and orchestration.

• SWA: Software architecture.

• REL: Reliability and Availability, resilience and fault.

In September 2014 the Linux foundation announced the OPNFV platform as a means to
provide a generic framework for the integration between SDN controllers and virtualization
stacks (computing and storage) in open source ecosystems (OPNFV 2018). The platform
heavily depends on OpenStack components for management and orchestration.

Network function virtualization (NFV) and Software defined networking (SDN) are com-
plementary subjects. NFV can be used, for instance, for the virtualization of the network
controller in the cloud, providing easy migration mechanisms. Another use, is to delegate
network functions to virtual machines or containers in the SDN network. Software defined
networking, in the other hand, complements NFV providing programmable network connec-
tivity between virtualized network functions (vNFs), traffic steering to VNFs and network
traffic optimization. Despite being complementary technologies, their concepts differ (Li
et al. 2015):

• NFV is a concept for implementing network functions in software, while SDN is a
concept for achieving a centralized programmable network architecture, to improve
and control network connectivity.

• The goal of NFV is to reduce CapEx, OpEx and computational resource consumption
accelerating the time-to-market of network solutions. SDN targets network abstrac-
tion to achieve flexible network control, configuration and a better environment for
network innovation.

• NFV decouples network functions from proprietary hardware (easy deployment) while
SDN decouples the control plane from the forwarding plane (easy network flow pro-
grammability).

To better understand how the two technologies differ (and complement each other), a
software defined NFV system is shown in Figure 2.6.

16 Chapter 2. Reference Technologies

Figure 2.6: Illustrating SDN/NFV complementarity (from Li et al. 2015).

The SDN controller with an orchestration layer represents the logical control module of the
system. The communication between both components happens through standard inter-
faces, i.e. the northbound interfaces of the controller. The orchestration layer can be a
SDN application or an independent component which ties the external interfaces of the con-
troller and the NFV platform interfaces together. The NFV platform is a set of hypervisors
in which virtual network functions can be deployed in the form of virtual machines or con-
tainers. The control plane is responsible for orchestrating vNF creation, obtaining the global
network topology and computing optimal paths (leading to vNFs) in the network. It finally
programs network switches, using OpenFlow flow rules, to steer traffic to the appropriate
vNFs.

2.3.1 Container-based virtualization

For a very long time, the term virtualization implied the use of hypervisor-based virtualiza-
tion. An hypervisor is a piece of software that enables the execution of multiple operating
systems (virtual machines) on the same physical hardware. They can be classified in Type-I
hypervisors (if the hypervisor runs in bare-metal) or Type-II hypervisors (if they run on top of
an existing operating system) (Combe et al. 2016). To simplify, the term hypervisor in this
subsection is used to refer to Type-I hypervisors only. As virtual machines denote the exact
same behaviour as real physical machines, hypervisors abstract the host physical hardware
resources (CPU, memory, network) in a shared pool of logical resources from which each
VM may draw. A mapping layer is created by the hypervisor to emulate the behaviour of
real hardware. If we consider the virtualization of x86 platforms, this is not a trivial task. In
the hierarchical protection domains model, Operating Systems are designed to run at ring
0 having instructions (and interrupts) that execute only in this ring. To virtualize the x86
platform, simply moving the OS to ring 1 without recompiling the OS force the hypervi-
sor to perform binary translation which leads to a high performance overhead due to the
use of unwanted emulation (Nagesh et al. 2017). Several advances have appeared in the
virtualization field, mainly Intel VT (Intel Virtualization Technology) and AMD-V (AMD
Virtualization) to enable hardware-based virtualization (also known as paravirtualization).

2.3. Network Function Virtualization 17

With paravirtualization, both the hypervisor and the Operating system share ring 0. The
operating system calls the hypervisor services instead of using direct hardware resources
(Marinescu et al. 2007).

Figure 2.7: Type-I hypervisor (left), Type-II hypervisor (middle), Container-
based virtualization with docker (right), (from Combe et al. 2016).

Despite the continuous improvements, hypervisor-based virtualization still brings a lot of
overhead, specially considering the fact each virtual machine still represents independent and
complete operating system stacks. On the other hand, container-based virtualization uses
kernel features to create an isolated environment for running processes. Containers directly
use the hardware of the host system without the need for emulating hardware or creating
virtual device drivers. Several container-based virtualization solutions exist, depending on
the host operating system: e.g. Solaris zones, BSD jails, LXC, OpenVZ, etc (Y. et al.
2017). In recent years, this kind of virtualization has gained sufficient traction. Specially
Docker, a high-level API written in Golang around LXC containers, got mature and started
to be highly used in production environments to sandbox specific applications (InfoWorld
2017). In fact, 79% of the Portworx Annual Container Adoption Survey 2017 (Portworx
2017) sample chose Docker as their primary container technology, showing that the Docker
Engine project is still today a synonym of containers. For the sake of simplicity, containers
will be mentiones throughout this document as LXC and specifically LXC managed by the
Docker engine/API.

Figure 2.7 ilustrates the main differences in the computational stack of both hypervisor-based
virtualization and container-based virtualization. In spite of the disadvantage of having to
be compatible with the physical host CPU architecture, container-based virtualization has a
huge performance gain since it completely strips the need for an hypervisor and uses features
provided by the kernel for process isolation. Since they do not need to emulate hardware
nor to boot a complete operating system, containers usually start in a few milliseconds and
are far more efficient than classic VMs (Brikman 2017). Furthermore, container images do
not need to contain a complete toolchain to run a full operating system. They are only
composed by the binaries and shared libraries required to run the specific application which
being isolated. Their small resource footprint, great scalability and security benefits are the
main reason containers are becoming so popular.
The use of OpenFlow with linux containers requires some of the features LXC uses for
process isolation. Hence, a simple analysis of some of these features is mandatory in the

18 Chapter 2. Reference Technologies

context of this thesis. In the Linux operating system, LXC (which Docker inherently uses)
take advantage of the following kernel features for process isolation (Eder et al. 2016):

• Linux kernel namespaces: Kernel namespaces are the foundation of process separa-
tion in Linux. Composed of several different namespaces (e.g. network namespaces),
this feature allows the isolation of processes, groups of processes and even complete
subsystems like inter-process communication or the network subsystem. This is the
feature that enables containers to be paused or suspended, since each container pro-
cesses are grouped in a different namespace. It is also possible to create a namespace
which has a PID already used by the system or other containers, which greatly sim-
plifies the container migration process. User namespaces are also possible through
mapping of processes to user IDs, user groups and even other security-related identi-
fiers such as the root directory.
In the scope of container networking, linux namespaces (particularly network names-
paces) make it possible to attach virtual network interfaces (veth - created on the
host) to running containers by setting the network namespace of the veth to the PID
of the container.

• Control groups: Although not completely required for process isolation, cgroups rep-
resent a mechanism to track processes (and process groups - including forked pro-
cesses). They make possible the assignment of resources to each container and the
further management of those assignments without unrestricted waste of physical re-
sources. They also guarantee that physical resources are not unavailable when other
processes claim the resources for themselves. This is the mechanism used in Linux to
restrict resource utilization on a per-container basis.

• Mandatory Access Control: Mandatory access control is a set of mechanisms to
improve security in Linux. Two of the most known MAC toolchains are respectively
SELinux and AppArmor. Mandatory access control enforces polices when a resource
is requested only allowing access if the policies are met. These security policies add
another layer of protection to containers in order to mitigate attacks against the host
(and other containers) from inside a container.

Another reason Docker is becoming so popular is the fact it facilitates container deployment
and versioning. Part of this success is due to the way Docker handles container images and
the high availability of template images stored in public repositories such as the Docker Hub.

Each container image is composed by a sequence of layers stacked on top of each other.
When a container is created, a new writeable layer is created above all the other (underlying)
layers. All the changes made to the running container like newly created or modified files
are written to the top layer on the image layer stack (also known as "the container layer").
It is common for each container image to have a base template image (usually based on a
specific linux distribution). Figure 2.8 shows a container running on top of an Ubuntu base
image. Docker handles the interactions between image layers through a storage driver (e.g.
Overlay driver) and uses a copy-on-write approach (Docker Documentation 2017).

2.3. Network Function Virtualization 19

Figure 2.8: Docker image layers (from Docker Documentation 2017).

Regarding networking, Docker’s networking model might itself be considered Software De-
fined Networking since container network behaviour is programmable through the Docker
engine API. Docker provides several network options to containers (Docker Networking
2017):

• Bridge mode: Used by default if no other mode is specified, the bridge driver cre-
ates a private network internal to the host so containers can communicate with each
other. Internally, the bridge driver creates the necessary linux bridges, virtual ether-
net interfaces, iptables rules and host routes to enable the connectivity. The bridge
mode automatically creates a docker0 interface in the container being its IP address
assigned by a built-in IPAM driver. In this mode, external access is only possible if
port-forwarding is set on the container itself.

• Host: This network mode does not "containerize the containers network". That is,
all the hosts existing in the host network are also accessible to the container. This
sort of network option raises, however, a few security concerns and severely limits the
amount of services a host can run.

• User created networks: A few user-defined networking options were added to the lat-
est versions of Docker; namely: overlays and MACVLANS. Overlays simplify many of
the complexities in multi-host networking and are used by default in clustered (swarm)
modes. IPAM, service discovery, multi-host connectivity, encryption, and load balanc-
ing are built in the overlay driver. With this mode, the user can create several logical
networks between a set of containers. The MACVLAN driver, on the other hand, is a
lightweight driver which directly connects host interfaces to container virtual inter-
faces avoiding bridging and port mapping. This approach creates a L2 segment from
the container to the network gateway and as a result containers are addressed with
routable IP addresses that are on the subnet of the external network (hicu.be 2016).

None of the options detailed above enables linux container networking to be defined by an
SDN controller through the use of the OpenFlow protocol. This is a mandatory requirement
in order to relegate network function virtualization to containers in the scope of an SDN
controllable network. Connectivity (supported by OpenFlow defined flow-rules) has to exist

20 Chapter 2. Reference Technologies

between containers and the other hosts on the network. Apart from this "issue", container-
based virtualization still shows great promise as an NFV solution due to its lightweight nature
and simplified image template model.

2.4 OpenFlow

The information presented in this section was obtained from the OpenFlow protocol version
1.5.1 (Open NF 2015), except when stated otherwise.

The OpenFlow protocol is a Layer 3 communication protocol that gives access to the for-
warding plane of a network switch or router over the network. It enables network controllers
to determine the path of network packets across the switch fabric. The original concept
of OpenFlow originated at the Standford University in 2008 and the first version of the
protocol standard was introduced in 2011 by the Open Network Foundation which has been
managing the standard since then (Lara et al. 2013). As of today, Openflow is in version
1.5.1, although version 1.6.0 has been accessible to foundation members since September
2016. The protocol works on top of the Trasmission Control Protocol (TCP) although the
communication between the controller and the switch can also make use of the Transport
Layer Security (TLS). Controllers listen on TCP port 6653 for switches wanting to set-up
a new connection.

Figure 2.9: The OpenFlow switch (from Open NF 2015).

The architecture of an OpenFlow enabled switch is presented in Figure 2.9. The switch
is composed by several secure OpenFlow channels (for controller communication), one or
more flow tables, a group table and a meter table. When a packet arrives at a switch port,
the switch checks their flow tables to find a flow rule matching the packet header. The
corresponding action can be to drop the packet, forward it to a another flow table, forward
it to a given switch port, flood the packet to all the ports or temporarily send the packet
header to the controller and wait for a decision. Switches that support Openflow can be
hybrid: some ports are controllable through OpenFlow while a few ports still behave as a
regular switch. OpenFlow switches can be physical (e.g. datacenter solutions from Brocade,
NEC, Cisco) or virtual – e.g. Open vSwitch (SDNCentral 2016).

The OpenFlow channel set up between the switch and the network controller is usually
made over a secure connection (using VLANS). The switch can have a single OpenFlow

2.4. OpenFlow 21

channel (being controlled by a single controller) or support multiple channels so the switch
management is shared by multiple controller nodes. If the switch is configured to have
multiple channels, one of the controller nodes is configured as the master of the switch.
The remaining channels remain inactive and become active if the main channel fails. Hence,
in case of a controller failure, another node will take the mastership of the switch.

The Openflow protocol defines three types of messages:

• Controller-to-switch - Connections initiated by the controller and used to directly
manage the switch or inspect its state. These messages can be:

– Features - Request the identify and the main capabilities of the switch.

– Configuration - The controller queries and sets configuration parameters of the
switch.

– Modify-State - Used to modify the internal state of the switch. Examples of such
messages are the insertion, removal or modification of the switch flow entries.
Groups and action buckets are also configured through this class of messages.

– Read-State - Messages used to collect information about the switch (e.g. flow
statistics, port statistics, switch configurations).

– Packet-Out - Messages used by the controller to send packets out of a specific
switch port. The switch may be configured in a way any packet that reaches
the switch and does not match any of the flows in the flow table is sent to the
controller through Packet-in messages. Packet-out messages are the controller
request to those messages.

– Barrier - Used to receive notifications about the completion of switch operations.
These messages are normally used to ensure message ordering.

– Role-Request - Messages used by the controller to define the role of the switch.
These messages are used to define the mastership of the switch.

– Asynchronous-Configuration - Advanced messages used by the controller to con-
figure the number and type of asynchronous messages it wants to receive from
switches.

• Asynchronous - Asynchronous messages are sent by the switch without solicitation
from the controller. They are used to inform the controller about a packet arriving
the switch or to denote a state change on the switch.

– Packet-in - Messages used to transfer the control of a packet to the SDN con-
troller. Switches can support internal buffering and transfer only a part of the
packet header (and a buffer id) to the controller. If the switch does not support
buffering, the full packet is transferred to the network controller.

– Flow-removed - Messages used to inform the controller that a flow rule was
removed from the switch. The events leading to these messages can be the
expiration of a rule (timeout is exceeded) or a flow removal request initiated by
the controller.

– Port-Status - Messages sent by the switch to inform the controller of a change
in one of its OpenFlow ports. These events can be a change in the port config-
uration, a link that went down or a port that was removed by a user.

22 Chapter 2. Reference Technologies

– Role-status - When the mastership of a switch changes, the switch sends mes-
sages to the former controller master containing the new role-status.

– Controller-status - Messages sent to all the controller nodes when the state of
an OpenFlow channel changes.

– Flow-monitor - Messages resulting from monitors set on the flow table. Once a
change occurs in the flow table, the controller sends Flow-Monitor messages to
the controller.

• Symmetric - Messages sent in either direction without solicitation. These can be ac-
knowledgement messages, error messages or experimental message types. The Open-
Flow protocol does not automatically guarantee message acknowledgement. Symmet-
ric messages are used to keep the connection between the switch and the controller
alive. As an example, the controller is allowed to ignore any message sent by the switch
but it has to keep responding to symmetric messages to avoid closing the OpenFlow
channel.

2.4.1 Flow tables and processing pipeline

One or more flow tables are at the heart of an OpenFlow switch. The processing pipeline
(starting at flow table 0) defines how packets interact with those flow tables (Figure 2.10).
When a network packet arrives at a switch, a table lookup is performed in the first flow
table. The packet headers can then traverse a sequence of other flow tables if the switch
is configured to have egress tables. Table lookups are performed in order to match packets
against flow rules so a flow entry is selected. If one is found, the instruction set included in
the flow entry is executed. If multiple flow tables exist, the action set can be configured to
redirect the packet to a flow table with a higher number in the process pipeline (Goto-table
instruction).

Figure 2.10: The OpenFlow processing pipeline (from Open NF 2015).

In case the switch only contains a single flow table, the processing pipeline ends with the
execution of the actions specified by the matched flow rule. If the packet does not match
any of the switch flow rules, a table miss occurs and the corresponding action depends on
the table configuration. Usually, packets are sent to the controller in the form of Packet-In
messages. However other actions such as dropping the packet or moving the packet further
in the processing pipeline are also possible.

2.4. OpenFlow 23

The structure of a flow table is represented on the Table 2.1. Details for each field are
provided below.

Table 2.1: The OpenFlow enabled switch flow table.

Match Fields Priority Counters Instructions Timeouts Cookie Flags

– Match fields - Ingress switch port and packet headers. Optionally, they might comprise
other fields such as meta-data specified by a previous flow table. Used to match
packets against flow rules, they comprise fields ranging from Layer 1 to Layer 4 and
support both IPV4 and IPV6. Available match fields for OpenFlow are summarized in
Table 2.2.

Table 2.2: OpenFlow match fields.

Match Field Required Description
IN_PORT Ingress Port (either physical or a switch defined logical port)
ETH_DST Ethernet destination address
ETH_SRC Ethernet source address
ETH_TYPE Ethertype of the packet payload
ETH_PROTO IPv4 or IPv6 protocol number
IPv4_SRC Source IP address
IPv4_DST Source IP address
IPv6_SRC Source IP address (IPv6 address format)
IPv6_DST Destination IP address (IPv6 address format)
TCP_SRC TCP Source port
TCP_DST TCP Destination port
UDP_SRC UDP Source port
UDP_DST UDP destination port

– Priority - Defines the priority order for each rule. Only a single rule can be triggered
when a packet arrives at a switch port. Hence, priority is used as a selector if multiple
rules apply to the same network packet.

– Counters - Properties that are updated once a packet matches a flow rule. The
number of counter fields depend on the switch implementation. Not all the counters are
required by the protocol specification. Counters provide usefull statistical information
regarding each flow table, flow entry, port, queue, group, group bucket, meter and
meter band. Counters also provide the duration a flow rule, port, group or queue has
been available in the switch. The several types of counters are represented in Table
2.6. Please note that not all of them are required but some controllers (e.g. ONOS
or OpenDaylight) implement many of the optional counters.

– Instructions - They define a set of operations to modify the usual packet processing.
Examples of such instructions are Apply-Actions (apply rule actions immediately),
Clear-Actions (remove all the actions if the rule is triggered), Write-Actions (ap-
pend an action to the existing action set), etc. Once a packet matches a flow rule,
the switch can then apply several actions as part of the instruction set. Those actions
are summarized in Table 2.3.

24 Chapter 2. Reference Technologies

Table 2.3: OpenFlow switch available actions.

Action Required Description
Output port_no The output action forwards the network packet

to the specified OpenFlow port
Group group_id Delegate packet processing to a specific group

(see 2.4.1)
Drop If no action or no group is defined the default

action the switch will apply to the packet is to
drop it

Set-Queue queue_id Used in some switches as a way to provide QoS,
this action forwards the packet to a given queue.
Forwarding schedule depends on the queue con-
figuration

Meter meter_id Delegate packet processing to a meter SEE REF.
As a result of metering the packet may be
dropped.

Push-Tag/Pop-Tag ethertype This action will push or pop specific ethernet tags
from the packet. In case there are multiple ac-
tions, all actions are executed by the provided or-
der. The associated data for this action may be

– Push VLAN header
– Pop VLAN header
– Push MPLS header
– Pop MPLS header
– Push PBB header
– Pop PBB header

Change-TTL ttl Modify the time-to-live values for IPv4, IPv6 Hop
Limit or MPLS.

– Timeouts - Maximum time (in seconds) until a flow rule expires and is removed from
the switch.

– Cookie - String set by the controller. The cookie parameter can be used by the network
controller to match several rules introduced by a single application (e.g. batch removal
of flow rules).

– Flags - Flags alter the way flow rules are managed. For example, an OFPFF_SEND_-
FLOW_REM flag set on a rule will trigger the removal of the rule from the switch.

Group table

Group tables are the OpenFlow mechanism for applying a set of actions to multiple flow
entries at the same time. The network administrator creates buckets of actions and associate
them to a group identifier. Flow rule actions can then be created to move packet processing
to the created group. The structure of the meter table and the definition of its parameters
are presented below.

2.4. OpenFlow 25

Table 2.4: The group table.

Group identifier Group Type Counters Action Buckets

• Group identifier - Integer (32 bit) used to uniquely identify a group on the OpenFlow
enabled switch.

• Group type - Used to specify the group behaviour. Actions applied in a bucket typically
refer to packet modification (e.g. push-pop tags) or output via a given port. If the
action group is empty, packets are dropped every time they are processed via the
group. Group type semantics can be one of the following options:

– Indirect: Only execute the actions of the first action bucket. As a result, packet
processing is faster in this type of bucket.

– All : Execute all buckets in the group. Each network packet is cloned before
applying the actions of the bucket.

• Counters - Statistical information that are updated each time the group is triggered
(see Table 2.6 for group available counters).

• Action buckets - This item contains an ordered list of action buckets. Action buckets
represent a set of actions that are executed as a whole if the group is triggered.

Meter table

The meter table is the de-facto mechanism for rate-limiting (QoS) in the OpenFlow proto-
col. Metering in OpenFlow may consist of simple QoS modes (e.g. associating a network
bandwidth to specific flow rules) or more complex modes based on DSCP (classifying pack-
ets in multiple categories based on their rates). The structure of the OpenFlow meter table
is represented in Table 2.5.

Table 2.5: The meter table.

Meter identifier Meter Bands Counters

The main purpose of a meter is to measure the rate of packets assigned to it and, as a
result, to control the rate packets exit the switch. They are a mechanism similar to queues
although appended to flow rules instead of switch ports.

The parameters in Table 2.5 can be defined as:

• Meter identifier - Is a 32 bit integer that uniquely identifies the meter.

• Meter bands - Are a set of measurement bands that specify the rate of network flows
and the way their packets are processed. A meter can have one or more meter bands
but only a single band is applied for a flow at a time based on the measured packets
rate. A flow which is mapped to a meter, directs packets to the meter which activates
appropriate meter band if the measured rate of packets go beyond the rate defined in

26 Chapter 2. Reference Technologies

meter band. The structure of a meter band can be found in Figure 2.11. Meter bands
in OpenFlow have essentially two optional types:

– Drop - Discard packets if the rate limit is reached.

– DSCP remark - Change the drop precedence of the DSCP field in the IP header
of the packet.

Figure 2.11: The role of meter bands in OpenFlow flow rules (from Raj Jain
2013).

In a meter band, the rate field is used by the meter to select the rate at which the
band applies. Note that for each packet only a single meter band will process the
packet. If multiple bands are defined, the first of the list is used.

• Counters - Statistical counters specific to meters. Those are updated each time a
meter matches a packet. Counters are also available for each meter band (see Table
2.6 for the list of available counters).

2.5 Chapter wrap-up

Software defined networking defines a completely new paradigm making the network man-
agement process no longer a per-device task. Traditional networks limitations start to reveal
once the number of interconnected devices scales. In the future, due to the advent of IoT,
the global network size is only expected to increase with a broad new class of devices joining
already existing networks. In traditional networking the configuration process is error-prone
(creating possible attack vectors), use proprietary protocols, is complex on multi-vendor en-
vironments or force companies to adopt single equipment vendors hampering the potential
for innovation in the field. By shifting the control plane from network devices to a central-
ized entity, SDN promotes global state awareness (even for complex networks) and makes
it possible to have a new model: network programming. SDN applications are developed
and installed in the network controller to program the underlying devices by the installation
of flow rules. Network switches can also be instructed to send packets to the controller
for additional inspection and processing. The importance of the network controller in SDN

2.5. Chapter wrap-up 27

is so relevant that they are also known by Network Operating Systems. Although several
protocols exist to program the data plane, OpenFlow has emerged as the default protocol for
SDN. It works in a match-action manner and has a fine grain control over each of the fields
contributing to the overall flexibility of the architecture. It contains advanced mechanisms
for quality-of-service assurance as well as device and flow rule statistics.

The Network function virtualization (NFV) concept adds a new layer of orchestration to
the network controller, complementing the SDN approach. It approximates SDN implemen-
tations to the cloud computing model with the possibility of launching new virtual hosts
on-demand. The SDN controller can request a new virtual deployment and then program
the network flows to delegate packet processing to external machines. In this field, con-
tainer based virtualization is gaining sufficient traction and is recognized to have better
performance than virtual machines. Container based virtualization, specifically docker, was
also detailed in this chapter.

28 Chapter 2. Reference Technologies

Table 2.6: OpenFlow counters.

Counters Bits Required
Per flow table

Reference Count (active entries) 32
Packet Lookups 64
Packet Matches 64

Per Flow Entry
Received Packets 64
Received Bytes 64

Duration (seconds) 32
Duration (nanoseconds) 32

Per Flow Port
Received Packets 64

Transmitted Packets 64
Received Bytes 64

Transmitted Bytes 64
Received Drops 64
Transmit Drops 64
Receive Errors 64

Transmitted Errors 64
Received Frame Alignment Errors 64

Received Overrun Errors 64
Received CRC errors 64

Collision 64
Duration (seconds) 32

Duration (nanoseconds) 32
Per Queue

Transmit packets 64
Transmit bytes 64

Transmit overrun errorrs 64
Duration (seconds) 32

Duration (nanoseconds) 32
Per Group

Reference count (flow entries) 32
Packet Count 64
Byte Count 64

Duration (seconds) 32
Duration (nanoseconds) 32

Per Group Bucket
Packet Count 64
Byte Count 64

Per Meter
Flow count 32

Input packet count 64
Input byte count 64

Duration (seconds) 32
Duration (nanoseconds) 32

Per meter band
In band packet count 64
In band byte count 64

29

Chapter 3

State of the Art

This section provides an overview on the use of SDN in the IACS field. Section 3.1 details the
evolution of IACS and explains the reasons why the current networking paradigm is in need
of a complete shift. Section 3.2 presents some advantages of bringing SDN to IACS and
details literature use cases. Section 3.4 is used to encompass all the security aspects related
to the application of SDN in IACS. The section illustrates how SDN can serve to improve
the security of the critical infrastructure and also details security vulnerabilities that might
come from the shift to SDN. Moreover, literature proposals that adopt SDN-based IDs and
honeypots are detailed in this section. Section 3.4 is dedicated to generic mechanisms for
deploying SDN security probes. Section 3.5 explores NFV container-based virtualization and
presents background work on how to use containers with SDN. Finally, section 3.6 provides
a final discussion and explains what was learned from the literature review.

3.1 The evolution of IACS and the need for a paradigm shift

Today’s industrial automation and control systems (IACS) are a result of a gradual evo-
lution from analog wiring, towards digital lines, buses and finally networks. Since SCADA
systems first appeared in 1960, the process control communication infrastructure was al-
ways intended to be mixed within the production line, and isolated from corporate networks.
Control systems were designed as air-gapped "islands" where security was granted to the
obscurity nature of their hardware and software (Eric Byres 2016). This fact traditionally
was not perceived as a problem. At first, direct wiring between components allowed to
rapidly detect any errors in the production line and to avoid their escalation to other parts
of control network. Then, bus systems and serial solutions resulted as the natural evolution
from analog wiring but have not brought substantial changes to the process control infras-
tructure: communication got digital but the main responsables were still electric technicians
and engineers, instead of IT specialists.
In the 90’s, business requirements with the goal of improving efficiency and productivity
within process lines have forced IACS to get interconnected with corporate networks. In
some cases, the geo-dispersed nature of the infrastructure have made them share wide-area
networks and even be accessible through the internet (Pires et al. 2007). This genera-
tion of IACS broke with the isolated nature of the previous generations by including in its
network designs open connections using TCP/IP. The Ethernet/IP protocol was developed
while other common IACS protocols such as MODBUS and DNP3 were adapted to work
on top of the TCP/IP stack (but not further enhanced to provide any sort of encryption
(Drias et al. 2015)). A good example of a still undergoing modernization process is the
power grid, which is transforming the electrical system into smart grids. Smart grids are

30 Chapter 3. State of the Art

characterized by a two-way flow of electricity and information to create an automated and
widely distributed energy delivery network that enables integration, effective cooperation,
and information interchange among the many interconnected elements of the electric power
grid (Panajotovic et al. 2011). In other words, the smart grid represents the perfect example
to illustrate how critical infrastructures and their control systems evolved to adopt common
ICT technologies. These connections allowed real-time monitoring, peer-to-peer communi-
cation from anywhere at any time, multiple sessions, concurrency and maintenance possible
in IACS (Alcaraz et al. 2015). However, they came with the cost of losing isolation and
greatly expanding the attack surface through the exploitation of vulnerabilities in the cor-
porate network or in common ICT technologies and protocols. In the context of the power
grid, with the advent of smart metering technologies, part of the critical infrastructure (CI)
is also shifting to consumers’ households, imposing several privacy and security concerns
(Sadeghi et al. 2015).

It was not surprising that multiple cyber-attacks have arisen targeting the critical infras-
tructure and taking advantage of the inter-dependabilities between the cyber and physical
domains. Stuxnet, a computer worm first uncovered in 2010, caused substantial damage
to the Iran’s nuclear program and made the world aware of the vulnerabilities of the once
though safe SCADA architectures. While one could think such malware could only success-
fully infect the target due to some zero-day flaw in industrial control systems, the stuxnet
worm (among other things) exploited a category of attacks well-known from the ICT do-
main: man-in-the middle attacks. The worm faked industrial process control sensor signals
so the infected system did not shut down due to detected abnormal behaviour. The process
centrifuges were gradually damaged while still looking under normal operation to process
operators and engineers (Wired 2014).

In 2015, a cyber-attack against the Ukranian power grid, allegedly politically motivated, was
able to successfully compromise information systems of three energy distribution companies
in Ukraine and temporarily disrupt electricity supply to nearly a quarter-million end consumers
(Kim Zetter 2015). Such an attack proved how a motivated (and resourceful) attacker can
cause an outage on a country’s essential services and defined the blueprint of cyber attacks
that are yet to come. In 2016, it was found that cyberspies from China and Russia have
hacked into the US electricity grid and hidden software that could be used to disrupt power
supplies.

More recently, in 2017, TRITON, a new cyber-attack framework targeting IACS and with its
roots in Stuxnet, was unveiled (Fireeye 2017). TRITON was designed to implement the TriS-
tation protocol, a protocol used to configure Triconex SIS programmable logic controllers.
The worm can send specific commands such as halt, read the PLC’s memory contents
and remotely reprogram them with an attacker-defined payload. Such attacks against crit-
ical infrastructures can have disruptive effects on essential services. This brings even more
concerns if we take into consideration CIs are often inter-dependable with each other. For
instance, a cyber attack targetting the power grid will also compromise the water distribution
domain, since power is required in certain points of the infrastructure (Menashri et al. 2015).

The increasing number of attacks against critical infrastructures proves that IACS were not
prepared for a connected world. This is mainly due to a common "if it works don’t change
it" mindset typically found in the industry. With the constant attempt to not compromise
the usual plant operation (and the company’s income) IACS tend to evolve rather slow, with
small technological increments in terms of innovation. It is not unusual to still find hardware

3.1. The evolution of IACS and the need for a paradigm shift 31

and software dating from the 70’s running for process control. Chemical industries, for
instance, tend to use turn-key solutions (vendor lock-in) from reputable manufacturers and
to outsource process control auditing (and maintenance) to third parties. What was once
though as an intrisic security feature of IACS is now turning into a complexity bottleneck
as the number of connected devices increases and IT engineers rush to keep the critical
infrastructure safe from cyber attacks. In the future, as infrastructures evolve towards an
IoT-generation of IACS, the number of connected devices and the overall network complexity
is only expected to increase.

Figure 3.1: Network layers in IACS and possible attack vectors (from Kasper-
sky 2016).

In industrial Ethernet, unlike office networks and datacenters, the network is composed by a
large number of small switches with low port count and only a few high-end switches (Gyorgy
2016). Furthermore, several network segments exist within the DCS network, normally
formed through the partitioning of the broadcast domain at the data link layer (layer 2) by
VLAN tagging and isolated with proprietary firewall middleboxes (Figure 3.1). The ISA99
committee is currently responsible for defining standards for implementing security practices
and assessing electronic security performance in the IACS field (ISA99 2017). Every network
device is configured and managed in a per-node basis using vendor-specific web interfaces
or device-specific command line instructions. This leads to a very time consuming and

32 Chapter 3. State of the Art

error-prone configuration process remarkably limiting the potential for innovation in the field
(Mousa et al. 2016). Network reconfiguration or adjustment is also hard to be accomplished
in the case of a cyber-attack. On the other hand, there is also the desire for network engineers
working in IACS to have a global view of the network and to quickly identify any real-time
misbehaviours. This goes in-line with what HMI devices nowadays provide for the control
status of the production process. In traditional industrial ethernet networks monitoring is
often delegated to the SNMP protocol (De Freitas 2012). Support for SNMP in network
equipment, again, depends on the manufacturer of the device.

Although every industrial system has is own specificities, there are requirements that are
usually common to all of them. One of them is network performance while providing redun-
dancy at the link layer – thus not affecting the production process. As a result, it is common
to find network topologies in the IACS domain not often found in other areas. Network ring
topologies (e.g. Ethernet/IP) are a common way to ensure that all nodes in the network
are dual-homed. The Rapid Spanning Tree Protocol is used to disable redundant links and
to keep the quality of service level in case of a link failure. This kind of protocols may,
however, not be suitable to keep the network performance as industrial networks scale (or
even in some IACS applications like the power grid due to strict time-recovering constraints)
(Minicz et al. 2017).

Hence, IACS are in urge of simpler and more systematic network designs. To keep up with
the scalability challenges while keeping performance, QoS and manageability, newer network
approaches should be considered and evaluated for IACS. Preferably, network solutions that
aim to simplify the data path layer and accommodate the differences introduced by each
vendor in the network equipment, since the majority of IACS traffic focuses on the Layer 2
level (Gyorgy 2016).

3.2 SDN in the IACS domain: benefits and use-cases

At the same time network operators struggled to manage traditional networks, a new net-
work architecture originated around 2009 from the academia: Software Defined Networking.
Software defined networking (see Subsection 2.2) removes the control plane from forwarding
devices and transfers it to a logically centralized location called the network controller. The
network controller (also known as Network Operating System) keeps a global view of the
network and relies on specially crafted network applications to flexibly and dynamically man-
age forwarding devices. Combined with the Openflow protocol (c.f. Section 2.4) network
switches are turned into "dumb devices" only meant to be controllable from a central place
through the instantiation of flow rules. It was only a matter of time until the advantages
of SDN and Openflow started to gain acceptance in production environments, pushed by
internet giants such as Google, Facebook and Amazon, and telecom companies from which
AT&T and Deutsche Telekom are the best examples (Cox et al. 2017). OpenFlow set the
precedent for a stardardized vendor-independent interface between a centralized control-
plane schema and a number of distributed data-plane entities. Leveraging on OpenFlow
control-plane architectures, large cloud providers began to develop proprietary Software De-
fined Networks (SDNs) to create production-quality, global-scale, single-tenant control plane
architectures, e.g. Google’s internal WAN and NTT’s Enterprise Cloud (Argyropoulos et al.
2015). Cloud computing revolutionized the way networking is managed. At a distance of
a single click new networks are deployed/built following a multi-tenancy environment and
centralized management (Wang et al. 2017).

3.2. SDN in the IACS domain: benefits and use-cases 33

As defined by the Open Networking foundation (O.N.F. 2012), SDN entails a number of
advantages when compared to traditional networking. Hence, academia was also quick to
address the advantages of SDN in the context of IACS scenarios.

Although mostly focused on the power-grid use case, Da Silva et al. 2015 showed how
the fault, configuration, accounting, performance and security of traditional SCADA sys-
tems can be greatly improved by taking advantage of certain characteristics of the SDN
architecture, namely:

• Programmability: allowing the creation of customized services in the SCADA network
(e.g. applications to control the reading frequency of field devices).

• Flexibility: easing the addition of new field devices and the upgrade of existing network
applications in the SCADA network.

• Centralized management: promoting the creation of a SDN-SCADA control center
which allows not only the management of field devices but also to monitor and control
the network which interconnects them.

• Standard API: through the use of open standards such as the OpenFlow protocol
geographically dispersed multi-vendor SCADA equipment can be better integrated.

Sharma et al. 2016 share the same vision. They further identify that SDN can contribute
to green networking, since most of the heat generated by network equipment is due to
computational effort of their control plane. SDN decouples the control plane from the data
plane, delegating the first to the network controller who treats the network as a whole and
thus reducing the overall energy consumption of forwarding devices.

Kim et al. 2015 also identify several advantages of bringing SDN to the grid network:

• Interoperability - By using the OpenFlow protocol as the default standard, SDN can
guarantee fine-grained control over all the network devices in the IACS infrastructure.
Service providers can access and control the device behaviour without the isolated
stack regulations of each device.

• Situational awareness - With SDN, the service provider can monitor the real-time
network status by using information obtained from each device. Furthermore, this
information can be used to implement custom logic in SDN applications to quickly
adapt to the current network state. In the current grid architecture, the service provider
may not understand the need of upgrading the infrastruture stability without further
network equipment (firewalls or other packet inspection systems).

• Simplified service deployment - The network controller on a SDN smart grid would be
located in the control center where service providers could deploy flow rules without
the need for new hardware installation and configuration. With SDN, the service
application is embedded within the application layer of the SDN controller.

• Simplified business model: The SDN-enabled smart grid business model could be
simplified to include policy development, service provisioning and service monitoring.
In this business model, the system administrator just deploys an SDN application, such
as topology construction, routing, QoS and traffic-filtering program to enforce a given
profile.

Sainz 2017, albeit pointing other potential advantages, states the core change SDN can
bring to IADS is due to securing the critical infrastructure. Security opportunities and

34 Chapter 3. State of the Art

the respective challenges of SDN-based IACS are quite a broad subject. Although many
published works detailed in this section are also inherently bringing security since they focus
on improving the infrastructure resilience, a full subsection is dedicated to the security
implications of SDN-IACS (Subsection 3.3).

Several studies and use-cases have been proposed to evaluate how Software Defined Network
could change the current status-quo of IACS networking, some are presented in the next
text.

Goodney et al. 2013 propose to use SDN for data synchronization between multi-station
synchronous Phasor Measurement Units (PMUs). PMUs are used for wide area measure-
ments and control of the grid network. They operate by sampling the state of a power line
and by streaming data to a single client. In order to guarantee a global view of the grid state,
multiple clients are interested in receiving the data stream (thus following a mechanism sim-
ilar to the publish-subscribe software pattern). So, the grid contemplates the existence of
PDCs (phasor data concentrators) which concentrate data from multiple PMUs and sends it
to clients (often dispersed across regions). In PMU networking, IP multicasting solves part
of the problem: clients either join an existing multicast group or create a new one. However,
according to the authors, this approach introduces a few problems: PMUs would have to
be redesigned to transmit data in the multicast format, support multiple group addresses
and support UDP checksum calculations for data integrity. Also, with multicast trees the
problems of network contention are also important since multiple copies of the same packet
are sent over the same link. Moreover, network optimization is poor and some links have
to support high throughput to compensate the clients’ bitrate needs. SDN, on the other
hand, flattens the network topology. It overcomes the need for PDCs since flow rules are
created to provide copies of the traffic to all the subscriber switch ports. Network packets
are replicated at edge devices, which significantly lowers the load on certain network links
and the network latency optimizing the overall network. Figure 3.2 shows the advantages
of SDN when compared to traditional IP multicasting for PMU networking.

Figure 3.2: Advantages of SDN over IP multicasting for PMU networking
(adapted from Goodney et al. 2013).

Cahn et al. 2013 demonstrate how NFV can be coupled with SDN to take advantage of
modern computation approaches such as those of virtualization and Fog computing in the
energy communication network (SDECN). The authors analyze the recent developments

3.2. SDN in the IACS domain: benefits and use-cases 35

of intelligent electronic devices (smart meters) which are evolving to simple devices that
"packetize" measured values over Ethernet. So, this would allow the creation of a power
grid where multiple measurement devices delegate data processing to virtual machines close
to the sensor location whereas SDN would be the means to achieve network connectivity
between them. Furthermore, the authors also emphasize how SDN could be used to create
virtual (hence logically separated) sub-networks in the power grid leading to a multi-tenant
environment. In SDECN, network tenants would be seen as each virtual sub-station that
could be dedicated to a particular costumer, a utility, an energy source or even a region. The
authors also provide an analogy between IaaS cloud computing model and the hypothetical
Grid-IaaS model.

A similar approach is also followed by Cruz et al. 2016, although applied to a different sub-
set of IACS equiment – programmable logic controllers (PLCs) – aiming towards a vPLC
concept. A great level of detail is dedicated to the viability of such a solution by evaluating
details often neglected by similar proposals. In fact, the virtualization of industrial grade
equipment has a different set of requirements when compared to general-purpose workload
virtualization in COTS hypervisors. It requires real-time operating systems (RTOS) in which
low latency and determinism are essential. x86 virtualization in COTS hypervisors often pri-
oritize throughput using techniques such as resource sharing, deferred interrupt processing,
hyperthreading and frequency-scaling which impact the latency of real-time (RT) applica-
tions. However, the authors present how some of the developments in the x86 virtualization
domain (e.g. system management interrupts) may also favour real-time virtualization and
also point out the presence of the first real time hypervisors. Thus, a solution for a virtual
PLC is presented which replaces the traditional I/O bus by a deterministic and a high-speed
network infrastructure supported by SDN (Figure 3.3). SDN is then proposed as the vehicle
which enables connectivity between the vPLC and their I/O physical modules (implemented
using Field-programmable gate arrays (FPGAs) or common integrated circuit (IC) com-
ponents). The RT hypervisors integrate well with other IACS components already being
virtualized nowadays (e.g. human machine interfaces - HMI) in the proposed solution.

Figure 3.3: Towards the virtual PLC. (Cruz et al. 2016)

Another important aspect presented by Cruz et al. 2016 is the enhancement of the SDN
network through the use of Intel’s Data Path Development Kit (DPDK). DPDK enables
low latency and high-throughput packet processing (on supported hardware) bypassing the
operating system kernel and bringing the network stack directly to the user space. This

36 Chapter 3. State of the Art

severely reduces packet processing overhead leading to network applications able to perform
direct memory access (DMA) operations.

In the scope of the Smart Grid IACS, much attention has been devoted to the IEC 61850
standard and the need to guarantee near real-time network adjustment in the occurrence of
a topology link failure. This standard recommends delays from 3 to 100ms for protection
messages depending on the message type. Stricter standards such as the IEC 1646 set the
maximum delay requirements as little as 4 and 5ms for 60Hz and 50Hz AC frequencies.
These time thresholds are, however, smaller for applications relying on the communication
between the power grid sub-stations. The remote activation of a protection scheme at
a sub-station must occur within 8-10ms after the fault has been detected. As a result,
multiple authors have been evaluating SDN as a way to meet the IEC 61850 standard while
the network scales.

Molina et al. 2015 proposed a smart grid SDN management application for an IEC 61850-
based smart grid system. The system presented an algorithm capable of translating a
sub-station configuration description (SCD) into OpenFlow flow rules. The SCD is an
application profile of the IEC 61850 standard and indicates various metering profiles, such
as monitoring intervals, attributes and types. The authors were capable of using the SDN
controller real-time flow monitoring features to detect potential denial of service attacks
without the need for additional network monitoring devices such as firewalls. The authors
also stand out the aptitude of the SDN controller (Floodlight) to enable routing, traffic
filtering, QoS and load balancing in the smart grid network.

Aydeger et al. 2016 showed how SDN can be applied in Smart Grid communications to
provide redundancy between sub-stations. The authors forced two hosts (sub-stations)
with multiple network interfaces to share TCP MMS (manufacturing message specification)
packets each 4ms and then forced the removal of an existing wired link. The change in the
global topology was detected by the network controller (OpenDaylight) which adapted the
flow rules to use the backup link. Thus, the authors conclude the SDN architecture can be
easily used to provide redundancy within the smart grid network despite not providing any
performance test metrics.

ARES (Lopes et al. 2017) is a recent SDN-SCADA based architecture suited to meet the
IEC 61850 standard requirements. In this study, the authors compared the recovery times
of SDN with those achieved through the use of traditional fail-over protocols such as the
Rapid Spanning Tree Protocol (RSTP). RTSP typically has recovery times in the order of
a few seconds. On the other hand, ARES combined with the OpenFlow protocol version
1.3 was able to achieve average recovery times of 0.6 ms. In order to reach such small
recovery times, ARES used a proactive flow instantiation approach (setting layer 2 multicast
trees in order to reduce the impact of layer-2 flooding). Interestingly, the authors also
add another application layer (called SCADA-NG) above the controller core which enclosed
SCADA applications requiring automatic interaction with the core network. Monitoring of
the SCADA smart grid assets such as DERs, EVs and smart meters is also responsibility
of the SCADA-NG layer. The overall architecture is presented in Figure 3.4. Please note
that despite the small recovery times achieved by the ARES proposal, the study is merely
conceptual and the selected SDN controller (Ryu) is not a distributed controller. Hence, it
easily represents a single point of failure within the smart grid.

3.3. SDN in the IACS domain: security aspects 37

Figure 3.4: ARES architecture (Lopes et al. 2017).

Either way, the efforts in studying and evaluating SDN in the IACS domain lead us to the
point where the first SDN turn-key commercial solutions are finally (although shyly) hitting
the market. In 2016, Scheitzer Engineering Laboratories (SEL), a company well-known in
the automation field for their sub-station automation equipment applied in power production
and distribution, launched an Openflow-based flow controller and a set of configurations for
some models of their industrial Ethernet switches (Scheitzer 2016). The SEL suite targets
SCADA sub-stations which typically are composed of a small number of message types and
redundant links. The company’s flow controller is able to both assign rules to industrial
switches and enforce path redundancies in the network and to forward all non pre-defined
packets to the network controller. This succeeding aspect is pointed by sub-station engineers
as the most relevant since they now can become aware of any packets entering the network
which do not match the expected network behaviour (Forbes 2017).

Another example is the recent announcement from the Yogagawa Electric group stating
the company is using an OpenFlow system in four paper mill plants owned by the Oji
Holdings Corporation (Automation.com 2017). In this case, SDN is being used to secure the
enterprise-to-plant sub-network routing. As seen before, the common industry practice is to
isolate both networks recurring to the extensive use of firewalls and other security devices.
These appliances are limited and cause difficulties if legitimate enterprise applications (for
supervision or support of the manufacturing operations) need to run at the enterprise network
level.

3.3 SDN in the IACS domain: security aspects

IACS architectures, as seen in Subsection 3.1, are insecure by design as they were never
developed to be connected to external systems. Despite the existence of some encrypted
extensions to industrial control protocols, most of IACS systems still rely in unencrypted
message exchange. Priorities for IACS and ICT are opposites: for IACS availability comes

38 Chapter 3. State of the Art

first even if at the cost of losing integrity and confidentiality. Packet eavesdropping which
can easily lead to replay attacks in the network are a severe problem in SCADA systems
(Mo et al. 2012). Da Silva et al. 2015 propose to address this issue with SDN by adopting
a multi-path routing strategy. They took advantage of the Timeout field of the OpenFlow
flow table to implement an SDN application capable of dynamically computing the available
paths between two hosts in the network and to install an expiring flow rule matching one of
the computed paths. To be able to choose a different flow path, the application maintained
a local path storage and registered itself in the controller as a Packet Processor, i.e., an
application capable of receiving and react to Packet-in OpenFlow messages sent by the
network controller. The proposed algorithm was able to greatly reduce the percentage of
intercepted packets exchanged between the master station and the grid sub-stations (by a
factor between 25-75% - Figure 3.5).

(a) Multipath test bed implementation (b) Available routes from the master station to each
SCADA sub-station

Figure 3.5: Multipath routing based approach to mitigate eavesdropping in
SDN-SCADA networks – (reproduced from Da Silva et al. 2015).

Additionally, Dong et al. 2015 adopt a moving defence strategy by proposing to use SDN
to establish dynamic routes for the grid control commands. Dynamic routing would prohibit
malicious re-routing and denial-of-service (DoS) attacks. Moreover, the authors propose to
use SDN to reset switches and to re-establish routing upon the detection of a compromised
device. A reactive architecture was developed introducing a "control center" composed
by the cooperation and data synchronization between a SCADA IDS, the SCADA master
and the SDN controller. Possible attacks against the new network architecture could be
categorized into three main classes:

1. Compromised network switches.

2. Compromised grid devices (such as SCADA slaves, RTUs and relays).

3. Compromised SDN controllers and their applications.

Their paper illustrates how the SDN controller can be used to defeat attacks 1 and 2 by
establishing a route to transmit control commands only when necessary, shortening the time
window an attacker can use to inject malicious commands from a compromised switch or
grid element. Such mechanism of blocking network traffic in certain link directions is well-
known within the IACS domain and is typical of unidirectional gateways (Heo et al. 2016).
SDN can also be effectively used against DDoS attacks (i.e. if a compromised grid asset
spoofs packets that request sensors or relays to send measurement data to a specific RTU or

3.3. SDN in the IACS domain: security aspects 39

data aggregator) since the network controller can easily adjust the QoS of a certain network
link or route in the network topology. The effectiveness of SDN to improve QoS routing
in smart grids is also detailed in J. Zhao et al. 2016 in which the shortest path between
network hosts is computed taking into account parameters such as the link throughput. In
case a significant section of the grid is unavailable, Dong et al. 2015 state SDN provides
the perfect environment for hot-swapping between private and public networks, borrowing
resources from cloud providers through secure channels. Furthermore, the SDN possibility of
creating logical networks within a global network also contributes to the mitigation of such
high grid damage. In what concerns the compromise of the SDN controllers, the authors
propose to use the available "control center" IDS to inspect every single OpenFlow message
sent and received by the SDN controller. A testbed was build using the NOX SDN controller
and Bro network security monitor as the IDS.

The above examples show how network intrusion detection systems play an essential role
in securing industrial control systems. In fact, current automation security practices rec-
ommend that the network should be partitioned and each security shell should comprise a
network IDS (Mckay 2012). SCADA traffic is somehow different from those found in other
environments. Flows are periodic and the connection matrix is rather static (Barbosa 2014).
Datasets concerning SCADA vulnerabilities and attacks are scarce, since industrial compa-
nies do not want to expose such data to avoid future attacks (Cagalaban et al. 2011). As
a result, classification algorithms are often used and reported to have high levels of attack
detection in SCADA networks. A good example is the work published by Cheung et al. 2006
which used three different models to detect anomalies in MODBUS TCP network traffic.
Multiple other authors have been proposing SDN IACS architectures that contemplate at
least a network IDS.

E. G. Da Silva et al. 2016 propose a SDN-Based SCADA IDS inspired on big-data concepts
(c.f. Figure 3.6). The authors extend the Historian Server typically found in traditional
SCADA systems to also store snapshots of the network packets flowing in the network.

Figure 3.6: SCADA IDS architecture sugestted by (E. G. Da Silva et al.
2016).

40 Chapter 3. State of the Art

Map-reduce in a distributed fashion is used in the historian server to find flows matching
a given packet header and to reduce them into searchable keys. These keys are used to
train a one-class classification machine learning algorithm based on support vector machines
(SVM). The classifier continuously evaluates snapshots of the network traffic predicting the
probabilities of being representative of an attack. In that case, it generates an alert which
is visible in a management interface which SCADA operators can use to take further action.
In the provided concept, SCADA operators would define network policies when an attack is
detected that are then translated by the network controller in a set of flow rules through
the OpenFlow protocol. Examples of such actions are identified by the authors as blocking
the traffic or redirecting the attacker to a HoneyPot. The published work claims to be able
to detect 98% of the DoS attacks committed against the infrastructure.

Lallo et al. 2017 also recognize the importance of using a network IDS to monitor the
critical infrastructure. By applying a non-automatic approach (i.e. delegating decisions
to the infrastructure operators) the authors state nor all of the CI traffic has the same
monitoring priority. Hence, they propose to leverage SDN in combination with an integer
linear programming (ILP) solver to find which flows should be copied to an IDS. CI operators
firstly identify the most relevant network equipment and protocols and the solver is run aside
from the network monitoring process (to avoid the creation of a bottleneck).

Figure 3.7: The security framework for SDN-enabled smart power grids
(Ghosh et al. 2017).

Ghosh et al. 2017 raise an interesting point: most of the available SDN-SCADA research
focuses on protecting the infrastructure against outsider attacks while only providing security
assurance within the cyber (and SDN) domain. Insider attackers that may influence the
power grid as a whole are often overlooked. Hence, the authors propose an architecture
composed of several network controllers and multiple intrusion detection systems. A local
IDS is deployed in a sub-station to collect the measurement data periodically and to monitor
the control commands that are executed on SCADA slaves. A global IDS runs in the control
center and collects the measurement data from the sub-stations, estimating the overall grid
state using the theory of differential evolution. The system also uses a reactive approach
against the detection of attacks since every alarm triggered by the IDS notifies an intrusion

3.3. SDN in the IACS domain: security aspects 41

elimination system that in turn calls the local SDN controller to eliminate the asset from
the network (Figure 3.7).

Fysarakis et al. 2017, present an industrial grade security framework equipped with both SDN
and SCADA honeypots suited for being deployed to an operating wind park. The framework
makes use of service function chaining (SFC), steering client traffic whose destination is
the wind park between a sequence of virtual machines (a firewall, a general purpose IDS, a
SCADA-based IDS, a deep packet inspector (DPI) and a traffic classifier) - see Figure 3.8 .
The traffic classifier virtual machine built around a simple ACL, forwarded suspicious and/or
not authorized network packets to a network of SCADA honeypots.

Figure 3.8: Reactive SFC framework proposed by (Fysarakis et al. 2017).

Using the OpenDaylight SDN controller and its SFC manager module, the authors conclude
the system can greatly enhance the security of SCADA systems while keeping a low overhead
in the network performance. In fact, albeit the network packets are chained through a set
of virtual machines, sub-chaining pipelines can co-exist within a single SFC entry. Hence,
only the packets detected as unknown by the firewall were forwarded to the deep packet
inspection virtual machine and only SCADA-based protocol packets were forwarded to the
SCADA IDS. It is also important to mention the proposed system used virtual machines
created beforehand and did not rely on any kind of orchestration. Integration with OpenStack
is planned as future work.

Despite all the solutions proposed to address SCADA security through the use of SDN, an
important question does remain: the centralized control plane by the means of the network
controller can easily represent a single point of failure. This is of significant importance in
IACS since availability is often the most (and sometimes the only) important quality attribute
industrial companies value. In fact, many of the solutions mentioned above rely on simple
single node network controllers thus impractical to be used in production environments.
Ghosh et al. 2016 studied how arbitrary failures in the control plane can affect the stability
of the grid. Faults were injected in the control plane by both dropping network packets
in the controller-to-switch secure channel or by causing excessive delays in the said link.
The authors concluded the delays in the grid adjustment can reach seconds and thus cause
significant degradation of the automatic gain control (a fundamental closed-loop control
that regulates the electricity grid frequency) especially when the grid is in a transient state
and experiencing large fluctuations in its system state.

Gyorgy 2016 argues SDN in IACS should use distributed controllers or, at least, redundant
deployments in the network. This redundancy should not only be an availability requirement

42 Chapter 3. State of the Art

in the point-of-view of the infrastructure but also as a way to protect the control plane
against DoS attacks. The authors also point the necessity of adopting cryptographic suites
(e.g. Transport Layer Security - TLS) in the path between the controller and the data plane.

Kurtz et al. 2017 also address this issue proposing a method comprising active redundancy
regarding the network controller and a voting system to select the best decision regarding
the programmability of the data plane. To avoid the unavailability of the controller the
authors suggest to use multiple controllers in the same network. All of them receive a copy
of status updates and incoming requests. In turn, their response is sent to a voting system
that, upon receiving all the answers from the controllers, decides according to the majority
and sends the most voted programming command to the data plane. In this way, a fail-over
system is established for the controllers and it is possible to eliminate the propagation of
orders issued by compromised controllers (as long as they do not reach a majority). This
strategy is shown to meet the strict requirements of smart grids.

3.4 SDN-assisted security probe deployment

Network probes can be defined as a program or other device inserted at key locations of the
network for the purpose of monitoring or collecting data about network activity. Examples of
probes are intrusion and detection systems (IDS), network intrusion and prevention systems
(IPS) or network honeypots. We have seen that, in traditional networks, network functions
requiring packet monitoring often depend on dedicated appliances (Figure 3.9). When a new
network policy is required (e.g. the deployment of a new IDS appliance) prior knowledge
of the network configuration by the network operator is mandatory. The network operator
has to have a high degree of expertise and extensive knowledge of all the device types since
this normally means dealing with a multi-vendor network device environment (each of them
having different configuration instructions). Even in the case an IDS is deployed through
the configuration of a Switched Port Analyzer (SPAN) port, the operator has to deal with
the management tools of a specific device. Moreover, as the network scales, problems with
network contention at the link layer or the exhaustion of the monitoring device computational
resources are likely to happen.

Figure 3.9: Traditional ICT network with the (manual) deployment of moni-
toring probes (IDS and Honeypot) – physical placement is key.

SDN, on the other hand, shows to be a promising approach for the deployment of virtual
network monitoring assets (probes). The SDN controller provides effective network traffic

3.4. SDN-assisted security probe deployment 43

monitoring since it has direct or indirect control over the entire network topology. Also,
the global awareness of the network state can enable the network controller to balance the
traffic being monitored through different instances of an IDS thus avoiding the known con-
tention problems of traditional deployments. Coupled with virtualization and orchestration
technologies, the controller can also be used to instantiate and deploy new virtual machines
for monitoring probes, greatly improving resource usage, similarly to the cloud computing
paradigm.
The network controller, as seen in Section 2.2, has essentially two methods for flow in-
stantiation: reactive and proactive flow instantiation. If the deployment of a network IDS
is considered, it is quite easy to figure out how the network controller would program the
network depending on the flow instantiation method.
If the controller uses a reactive flow instantiation approach the controller can simply forward
the packet to the destination and to the running IDS host. In a proactive flow instantiation
approach, logically sub-networks are created beforehand by the controller. So, when instan-
tiating flow rules in the available network switches, the controller has to ensure the flow rule
has two output ports: one leading to a path to the destination host and another leading to
the IDS host.

Despite not directly applied to the context of IACS, there are several references in the
literature which goal is to deploy probes (IDS and honeypots) recurring to SDN and the
OpenFlow protocol. Those possibilities should not be discarded since their key concepts
can easily be ported to other domains. Existing SDN-based network IDS solutions can be
classified in terms of their implementation into two big groups (Lallo et al. 2017):

1. Those that implement the IDS as an SDN controller module.

2. Those that exploit SDN to easily forward traffic to dedicated IDSs.

If the mode of operation is taken into account, we can further expand those that belong to
group (2) into two more groups:

• Those that use a reactive approach to receive the network packets in the controller
and then offload a copy to a dedicated IDS.

• Those that simply modify the existing flow rules of the network switch fabric to also
provide a copy of the traffic to a network IDS.

More recently, due to the advances in artificial intelligence, a few SDN IDS deployments
that just exploit the statistical information of the controller are also starting to be proposed.
Consequently, this subsection is aimed at exploring IDS and Honeypot solutions deployed
through SDN and applied in other areas.

A literature review is provided next regarding existing IDS and Honeypot solutions as well as
their deployments.

Yoon et al. 2015 point that the decoupling between data and control planes that SDN
provides makes it inefficient for an IDS implementation since the network controller is only
able to receive packet headers for the incoming packets at the L2 switch. According to the
authors, a robust intrusion detection mechanism should have also access to the contents of
the packet payload. The authors proposed to use the network controller to chain network
traffic through a dedicated IDS as a possible alternative, although stating it would bring a
performance overhead to the network.

44 Chapter 3. State of the Art

Huang et al. 2015 used SDN as a mechanism to block attackers on the network, to prevent
network scanning techniques and to prevent DDoS with the aid of an honeypot. An Openflow
enabled switch (Pica8) was configured to have a monitoring port connected to a Snort virtual
machine. Snort had a set of rules installed to detect botnets, network scanning operations or
network flooding attacks and triggers the network controller each time an attack is detected
(and an alert generated). The SDN controller installs a rule in the switch to drop the
network connection of the attacker. In the case of a DoS attack, a webserver with weak
security (acting as a honeypot) is added to the network as a means to detect attacks in
Snort.

Z. Zhao et al. 2017 propose to use an IDS inserted in the path of the SDN switch fabric
in order to detect host fingerprinting attempts. The system adopts the idea of the moving
target defense to show hopping fingerprinters towards fingerprinting attackers.

Monshizadeh et al. 2017 also simply define a mirroring port in one of the network uplink
switches but aim at a more scalable IDS. Hence, in order not to overflow the controller
with network packets, the port is connected to a load balancer that distributes packets to
multiple IDSs. The packet is only sent to the controller if it is considered malicious. An
SDN application is then responsible to aggregate the malicious packets and to decide which
flows to remove from the switch.

Jeong et al. 2014 propose a scalable intrusion detection system architecture on a SDN
environment implemented using the Kernel Virtual Machine (KVM) infrastructure. In the
proposed system all the network hosts are connected to OpenFlow-enabled devices and
multiple IDSs (suricata) are pre-deployed on the network. Since the number of packets an
IDS can process is limited the authors developed an optimization algorithm to calculate the
sampling rate at which each switch should sample traffic while keeping the capacity of each
IDS VM below its maximum value. Since the network controller stores statistical information
regarding each of the flow rules, it was used to dynamically install rules resulting from the
optimization model.

Shanmugam et al. 2014 also propose a scalable IDS for cloud environments (Figure 3.10).
They argue that existing IDS/IPS solutions are inflexible and do not scale in terms of
computing and networking resources.

Figure 3.10: A scalable SDN based IDS (adapted from Shanmugam et al.
2014).
.

3.4. SDN-assisted security probe deployment 45

Furthermore, the authors also state there are use cases in which the traffic should be analysed
by different IDS software packages. Hence, they propose to exploit SDN and OpenFlow
along with the cloud computational model to modify the switch fabric pre-installed flow
rules in order to provide multiple output ports for each rule. This is the typical example of
an SDN-based IDS that applies a proactive flow instantiation approach.

Ajaeiya et al. 2017 propose to monitor SDN traffic with a lightweight IDS that periodically
gathers statistical flow information from OpenFlow-enabled devices. PACKET_IN messages
were collected in normal and "under-attack" conditions to extract flow headers and to train
a classification model after feature aggregation. Feature aggregation such as packet and
byte count, flow duration and byte count per duration ratio was performed in order to
standardize a way of training classification models. The authors conclude Random Forests
was the best classification algorithm, achieving a classification efficiency of 98% with minimal
false positive rate. Additionally, the authors emphasize how this intrusion detection method
has little performance overhead since it does not have any effect on the data plane and only
takes advantage of the periodic statistical data asynchronous sent by the OpenFlow-enabled
devices.

Abubakar et al. 2017 also follow a machine learning approach proposing a flow-based in-
trusion detection system to extend the already existing signature-based IDS (Snort) in a
network star topology. Implemented on top of the network controller (and using its built-in
REST interface), the system used a backpropragation algorithm to achieve a detection ef-
ficiency of 97%. Similarly to Ajaeiya et al. 2017, the authors did not change the network
behaviour and exploited only the statistical data sent by the devices to the controller. The
SDN controller device statistics are also used by Neu et al. 2017 as a way to detect insider
attacks in encrypted communications between hosts in a SDN network. With no access to
the packet payload, deviations to the usual network traffic patterns might be a sign of an
undergoing attack. Thus, the authors state the controller itself can be seen as a lightweight
IDS.

Trandafir et al. 2016 introduce an anomaly-based IDS and honeypot service developed with
the closed-source Cisco implementation for SDN (onePK) that creates two different zones
in the network topology: an IDS zone and an Honeypot zone. For the honeypot zone, the
authors propose to use a controller as an "invisible" in-line traffic inspection appliance. All
the network packets originating on the external network with the vulnerable honeypot virtual
machines as the destination are sent from the network devices to the network controller. On
the other hand, for the IDS implementation the network controller is not used in-line with
the network traffic. All the internal network switches were configured to provide copies of
the internal network traffic to an IDS virtual machine. The IDS VM made use of a machine
learning algorithm trained with normal network patterns in order to generate signature-based
rules for intrusion detection.

HoneyMix (Han et al. 2016) is one of the most important references on the use of SDN-
based honeynets and serves as inspiration for similar proposals. The HoneyMix system
was designed to leverage SDN to simultaneously establish multiple connections with a set
of honeypots and to select the most desirable connection to inspire attackers to remain
connected. Honeymix keeps a map of all available services in the network and implements
multicast communication at the switch level for honeypot discovery. When a new connection
is made targeting a specific protocol, a forwarding decision engine application is responsible
for handling the forwarding logic. To accomplish that, all the network packets that arrive
at the L2 switch fabric are forwarded to the controller. This application is aided by another

46 Chapter 3. State of the Art

SDN application (behaviour learner) which computes the available load between the edge
switches and all the available honeypots as a means to establish the best possible data
stream. Since the selected connection is not always the same, another SDN application
(connection selection engine) is responsible for re-writing the packet headers to successfully
establish the connection. The system is shown in Figure 3.11.

Figure 3.11: The HoneyMix framework for SDN honeypots (Han et al. 2016).

Manzano et al. 2016 show a prototype for an honeynet based on the SDN architecture,
capable of detecting two types of network attacks: denial of service and network spoofing.
Similarly to the reference above, the controller is also configured to receive and process
every single network packet that arrives at L2. The controller runs a sequence of six modules
against the received packet header to decide where to forward the packet.

3.5 On the use of NFV with container-based virtualization

Despite not available as a network driver option, OpenFlow support for Docker networking
can still be enabled externally to the Docker API if we take advantage of the Linux Kernel
namespaces (discussed in Section 2.3.1).

To the best of our knowledge, there is no published research related to container-based NFV
in the context of IACS and critical infrastructures. However, a few references do exist which
combine SDN and docker containers in other areas. These solutions should be evaluated
and taken into consideration for the definition of architecture of this work.

It is of particular importance the work published by Cziva et al. 2016. The authors present
GLANF, a framework for the deployment and management of virtual network functions in
OpenFlow enabled networks using containers running common open-source utility binaries.
An IDS (Snort), a packet filter (Scapy), a firewall (iptables), a traffic controller (Tc) and a
load balancer (Scapy) were implemented in containers to which network flows were redirected
by a network application installed in the OpenDaylight SDN controller. The authors conclude
that container-based NFV improves function instantiation time up to 68% when compared
with hypervisor-based alternatives. The authors explain why they used the Docker engine to
encapsulate network functions in containers, pointing out advantages in line with the ones
already mentioned above:

3.5. On the use of NFV with container-based virtualization 47

• It provided an easy way to encapsulate network functions in light-weigh containers
with fast instantiation time, platform independent with high network throughput and
low resource utilization.

• It provided a transparent way for network manipulation. Hosts in the network did
not need to change their traffic patterns since traffic re-routing was handled by the
network controller.

• It provided easy segregation mechanisms between data centre routing policies and the
routing policies of the containers.

• NFs shared in public or private repositories alleviated redundant implementations and
promoted collaborative development, contributing to the overall software quality of
the product.

In order to achieve traffic redirection, Cziva et al. 2016 created a software daemon agent
(GLANF agent) which included a REST API and was responsible for the instantiation of
containers (using the Docker API) and for the attachment of running containers to the SDN
network. Each instantiated container had two ethernet interfaces in the SDN network in
order to perform service chaining. Network packets redirected from a network host enter
the container through one of the interfaces, are processed by the software stack running
inside the container and leave through the other interface (see Figure 3.12).

Figure 3.12: The GLANF agent proposed by Cziva et al. 2016 to attach
docker containers to the SDN network.

The daemon REST API was exposed to a client application running on the SDN controller
in order to issue commands for the creation and removal of containers on a given physical
host. This agent also communicated with the Open vSwitch running on the physical host
to create two virtual interfaces for each container and to attach them to a bridge controlled
by the virtual switch.

No concrete information is provided regarding the way the agent attaches containers to the
SDN network: only that the agent communicates with OpenvSwitch (OVS) directly. The
OVS project provides a small bash script (see OVS-Docker Github 2017) which is able to
create virtual interfaces and bind them to an existing Open vSwitch bridge.
Through a deep analysis of the utility source code it is possible to understand the ovs-docker
workflow. Represented in Figure 3.13, when an container attachment request is issued by
the user, the workflow of the ovs-docker utility follows the following logic:

1. The utility tries to find the PID of the running container (through the docker inspect
containerId) command.

48 Chapter 3. State of the Art

2. It then creates a network bridge in the OVS with the provided name if it does not exist
already (ovs-vsctl add-br bridgename).

3. If the bridge exists, It creates a Linux virtual interface on the physical host (ip link
add type veth peer name).

4. It attaches the virtual interface to the OVS bridge (ovs-vsctl add-port bridge
port).

5. It moves the created virtual interface under the container PID namespace using the
Linux kernel network namespaces (ip link set port netns PID).

6. The name of the interface is changed to a friendly name (e.g. eth0) and the interface
is enabled (ip netns exec PID ip link set dev PORTNAME name FRIENDLYNAME
&& ip netns exec PID ip link set FRIENDLYNAME up).

Figure 3.13: The OVS-Docker utility workflow.

Another important reference in this scope is the work proposed by Moradi et al. 2017, that
created a distributed system (ConMon) to monitor container traffic in order to generate
the network traffic matrix. Each physical host was composed by an instance of the Open
vSwitch, a monitoring controller agent, a container management system (docker engine)
and different types of containers: application containers and monitoring containers (active
and passive) – c.f. Figure 3.14.

Figure 3.14: The ConMon multi-host scenario (proposed by Moradi et al.
2017).

Active monitoring containers communicate with each other in order to measure the overall
network bandwidth. Passive monitoring containers receive copies of the network traffic

3.6. State of the art overview and conclusions 49

flowing between application containers through the installation of OpenFlow rules in the
OpenvSwitch. The orchestration of monitoring containers is achieved by the monitoring
controller agent which rely on the container management system to obtain container life-
cycle events and to instantiate and remove monitoring containers. This monitoring controller
agent is also responsible for attaching all the containers to the OpenvSwitch bridge of each
host, for launching monitoring containers and to dynamically configure TAP ports on the
switch itself.
Network data in the proposed system is stored in a distributed fashion using a distributed
database shared between every physical host. Interestingly, this solution strips down the
SDN stack: it neglects the need for a centralized network controller and relies the network
orchestration to shared monitoring "controller" agents located in all physical nodes. Despite
this fact, the idea of using a multi-host approach, the idea of relying on the docker engine
container life-cycle events and the way the topology allows communication between physical
nodes can easily be transferred to an SDN-controlled network and greatly inspire the proposed
architecture of this thesis. Multi-host communication is achieved in ConMon by placing the
physical network interfaces of the host (eth0 in Figure 3.14) also on the OVS bridge. Since
OpenvSwitch natively supports the OpenFlow protocol, the whole container networking can
be controllable by manipulating the flow rules of the virtual switch.

3.6 State of the art overview and conclusions

Multiple relevant aspects are important to take into consideration after reviewing the avail-
able literature:

– Current SCADA architectures are segregated into multiple networks for security pur-
poses. Within production lines, although a global view of the control process does
exist, multiple sections can be considered somehow independent (each one comprising
specific control equipment). Engineers, network administrators and process techni-
cians cooperate together on a per-process level. So, in bringing SDN to the IACS
domain this aspect should be contemplated. Multi-tenancy and stratification of the
link layer must be considered a requirement.

– IACS is an area where innovation moves slowly. The drastic architectural change of
redesigning the network via SDN should be attenuated by reusing security practices
already well explored in this domain. Intrusion detection systems, honeypots and
unidirectional gateways already exist in plant installations. Hence, if SDN comes to
IACS it should be used only as a way to adapt and simplify existing security equipment
instead of forcing a complete shift in existing security policies. New technologies
come with the price of requiring education and training for process operators and pose
a significant effect in the companies’ financial budget.

– In process engineering, engineers rely in automation to keep a steady operation but
still want to take the final decision in case an issue occurs in the production process.
Operators are trained to perform specific actions depending on process indicators pro-
vided by the control loop. Plant equipment is designed with process troubleshooting in
mind, often resulting from HAZOP (hazard and operability study) analysis. Similarly,
if the infrastructure is under attack automatic reactions should be avoided as much as
possible. Security mechanisms should be applied just as a way to detect and identify

50 Chapter 3. State of the Art

possible threats and to provide feedback to network operators so a corrective action
could be manually applied.

– Most of the suggested solutions that contemplate SDN in the IACS field are merely
conceptual and often don’t rely or explore the clustering nature of some SDN con-
trollers. SDN is normally evaluated as a possible benefit to improve the resilience of
the critical infrastructure but the effect of the control plane representing a single point
of failure in the infrastructure is often neglected. Essential services value availability
above any other attribute and, as a result, the big majority of the reviewed proposals
would see difficulties in being accept by current industry stakeholders.

– It is common to see many frameworks create another architectural layer above the
interfaces of the controller, e.g. using their REST APIs. This fact somehow violates
the SDN architecture as critical logic requiring the controller services is shifted from
the controller application layer. This results in a high number of HTTP calls between
applications and the controller leading to low performance.

– Many SDN based IDS solutions are implemented as a controller module, thus forcing
all the packet headers to be sent by network switches to the controller. This can easily
be exploited in the form of DDoS attacks against the control plane. Furthermore, the
advantages of SDN (through the definition of flow rules with multiple port outputs) are
well-known when compared to IP multicast or switch SPAN ports. Recall that SCADA
network flows are somehow static and the connection matrix is (most of the time)
known beforehand. Hence, network intrusion and detection systems in IACS can take
advantage of the OpenFlow protocol to build more intelligent and dynamic solutions
while lowering effects on the network performance at the same time. Proactive flow
instantiation seems to be the correct approach to build an IACS network intrusion
detection system.

– Container based virtualization shows to be promising in reducing the time required
for creating new network assets, in optimizing computational resource usage and in
simplifying the workflow required to deploy (and version) new software. There are
almost no references in the literature that take advantage of containerization and
SDN. Specially, as far as we know, the usage of containers in IACS was never evaluated
nor implemented.

– Honeypot and IDS solutions present in the literature do not contemplate orchestration
nor automatic deployment. Scalability is often pointed as an advantage for SDN IDSs
(in the form of use cases) but no real world deployments or solutions exist.

The outcome of this thesis can then be considered important as it proposes to address the
above mentioned issues. We propose to develop a set of SDN applications in a distributed
network controller (favouring availability) and take other design decisions to improve the
performance of the system. Using Docker containers for network function virtualization and
a proactive rule instantiation approach lowers the impact on the control plane and reduces
resource usage in the virtualization infrastructure. Using virtualized versions of IACS probes
deployed through a common web-management interface and storing all the probe images
in a common registry location bring unprecedented flexibility for IACS operators. Taking
advantage of the topology graph served by the SDN controller helps the deployment pro-
cess and reduces the barrier created when shifting from physical deployments to virtualized
instances consolidated in the virtual infrastructure.

51

Chapter 4

Requirements

This chapter details the elicited requirements (and the requirements elicitation process) for
this thesis. Since the work of this thesis emerges in the context of an Horizon H2020 project
(the ATENA project), subsection 4.1 provides an overview of the platform proposed by the
University of Coimbra (in which the work of this thesis is applied). Section 4.2 presents
the elicitation process detailed for each of the elicited requirement types. Subsection 4.2.4
provides the product perspective. Within the section, the system actors, the functional
blocks of the so. Afterwards, the elicited requirements are summarized:

• Section 4.3 details the elicited functional requirements.

• Section 4.3 presents the non-functional requirements.

• Section 4.5 is due to the design constraints of the system.

Finally, Section 4.6 provides a chapter wrap-up providing a synthesis of the requirements
elicitation process. Functional requirements were collected in the form of use-cases. The
use-case diagrams can be found in Annex A of volume II. Use-case descriptions for each
use-case can be found in Annex B. Note that this section is a result of a joint work and was
published in the project internal documentation (AtenaConsortium4.1 2017).

4.1 The Intrusion and Anomaly Detection System - IADS

This thesis emerges in the context of the ATENA project, an European research effort which
aims at addressing the interdependencies between critical infrastructures and at proposing
new tools to access and mitigate the effects of ICT components on the critical infrastructure.
Within ATENA, the University of Coimbra (UC) proposes to develop an Intrusion Anomaly
and Detection System (IADS) responsible for the detection of unwanted and/or unauthorized
actions such as those resulting from cyber attacks. This component is strongly connected
with other parts of the ATENA architecture either for receiving events (from probes) or to
generate security alerts which can then be further processed by the ATENA architecture
upper layers. The IADS module is responsible for monitoring the underlying critical infras-
tructure environment by recurring to distributed probes. Probes, in the IADS context, can
be perceived as regular ICT network probes (e.g honeypots, honeynets, network intrusion
and detection systems) or specific physical domain probes (e.g. shadow RTUs responsible
for monitoring the process control I/O channel and reporting deviations to the expected PLC
response (Cruz et al. 2015)). Probes are physically dispersed in the critical infrastructure and
generate events for suspicious activity. Those events are processed by the IADS platform

52 Chapter 4. Requirements

before being sent to the upper layers of the ATENA architecture (which is then responsible
for classifying all the alerts generated by either the IADS or other ATENA components).

To better understand the context in which the work of this thesis is being applied, the IADS
reference architecture is presented in Figure 4.1.

Intrusion and Anomaly Detection System

Distributed Intrusion Detection System

Security Information and
Event Management

Stream
Analysis

(Fastpath)

Slowpath
Processing

Forensics and
Compliance

Auditing

Probe

Domain Processor

Aggregation

Filtering

Probe

Event Publisher Analytics

Security Mediation Gateway

Data Lake

Search and
Visualization

Monitoring

Data flow
Communication
Data flow
Communication

External
Component

Internal
Component

Data
Source

Management

Event
Monitoring

Platform
Health

SDN

Platform
Management

User
Management

Figure 4.1: The ATENA Intrusion Anomaly Detection System (IADS) refer-
ence architecture

.

As seen in Figure 4.1, the IADS reference architecture is meant to be highly distributed,
indulging the infrastructure availability above any other type of requirements. The IADS
architecture includes several components, such as (Graveto 2017):

• Probes - The "eyes" of the critical infrastructure, ranging from conventional network
and host security components (e.g. network IDS) to IACS field-specific probes. Probes
generate events to a domain processor using a established data model (AtenaConsor-
tium4.3 2017) and the Apache Avro encoding.

• Domain processor - Clustering brokers per probe scope, backed by a Message Queuing
system. The domain processor is used to receive all the events generated by distributed
probes and to apply simple and quick processing to events (e.g. aggregation, filtering,
time-windows).

• SIEM - The "brain" of the platform, the Security Information Event Management
component is used to support streaming and batch processing of the received events.
Several machine learning algorithms and specially crafted applications run on the SIEM

4.1. The Intrusion and Anomaly Detection System - IADS 53

to decide if the events generated by the security probes are in fact a result of an on-
going cyber attack.

• Data Lake - A distributed database used to store all the data transiting the system.
It is useful as the data source for SIEM processing and also to allow forensics on the
infrastructure data.

• Forensics and Compliance Auditing (FCA) - The component responsible for enabling
post-mortem data analysis on the incidents of the critical infrastructure or ongoing
compliance validation of organizational security policies.

Each of the above modules is built on a distributed fashion inspired by Big-Data principles.
The architecture is designed to accommodate and scale in/out according to the specific
needs of the infrastructure being monitored (and protected) by the IADS since the replication
factor of each of the IADS components highly depends on the specificity of each critical
infrastructure (i.e. number of events, sources, etc). In the ATENA IADS architecture, all the
events sent to the domain processor are encoded using the Apache Avro binary format (for
increased message transfer performance). The domain processor component is supported
by clusters of Apache Kafka (backed by the Kafka Streams API for data processing while
receiving events). The data lake component is built on a cluster of Cassandra NO-SQL
database nodes. The IADS SIEM is built over the Apache Spark framework aided by its
internal MLlib (for machine learning).

4.1.1 The role of SDN/NFV in the IADS platform

Despite the completeness of the architecture presented in Figure 4.1, there are a few impor-
tant missing pieces, namely the orchestration and the management of distributed probes.
Furthermore, all those actions are normally performed on a common management dash-
board. In the IADS context, probes can be either physical (e.g. physical network TAPs
in-line with the IACS network equipment) or virtualized versions of such probes (virtual ma-
chines or containers) running on common-of-the shelf hypervisors or physical hosts. While
probe management falls a bit out of the scope of SDN (and is more a role of protocols such
as MQTT, CoAP or management toolsets as Apache Leshan), the orchestration, provision-
ing and network programmability of such virtual probes are key aspects which can only be
enabled by coupling SDN with NFV. If we take a virtualized version of a network IDS as an
example, the simple deployment of a IDS container (or virtual machine) does not make every
network packet to reach the launched container. A SDN application is required to program
the switch fabric so that copies of the network packets can reach the instantiated container.
The same happens with any virtual version of an honeypot. The automatic deployment of
an honeypot can only be viable if along with the container/VM deployment specific rules are
installed to forward network traffic to the launched asset. The network controller provides
easy access to the global network topology making it easy to program the network traf-
fic matrix (authorized host-pairs and respective protocols), to create sub-logical networks
based on host-pair communication and to define what happens on a specific network link
(block or allow traffic). As a result, SDN is perfect to combine probe instantiation (e.g. the
creation of a container) with network programming to enable the probe operation (network
orchestration), since the global awareness makes the location of the probe negligible. Fur-
thermore, the global network topology provides SDN with fine grained control over which
devices to monitor and the locations for specific services to be deployed (e.g. choose the

54 Chapter 4. Requirements

edge link that operates as a data diode). Network controllers also receive network statis-
tics from OpenFlow enabled switches (along with other controller specific events) allowing
custom applications to also operate as probes for the IADS platform. Network controllers
also have REST API’s and often allow extending those API’s. As a result, this information
can be exposed to a management dashboard where network operators will be able to deploy
services.
The main goals of SDN in the ATENA project (and inherently in this thesis) are identified
below. These goals are useful to segregate the SDN subsystem of the IADS platform by
functional blocks.

1. Logical sub-networks - Leverage SDN to create a multi-tenancy network. Logical
network should be created in the overall network topology and associated with specific
user (tenant) accounts.

2. Virtual IDS - To develop an SDN application that enables the existence of virtual IDS
services. An IDS in the context of this thesis is not related to the detection capabilities
of the probe itself but instead with the network programmability that makes achieving
the said probe operation possible. The application should be able to instantiate a new
container based on a IDS image template (e.g. Snort), provide copies of the traffic
to the container and scale the number of containers according to the network load or
container resources constraints (e.g. CPU utilization).

3. Virtual Honeypot - To develop an honeypot SDN application that is able to instantiate
a container (with a specific image) and specify a range of IP addresses for the honeypot
container operation. The application must program the network so that any connection
attempts to the said IP addresses are redirected to the honeypot container.

4. Data Diode - To develop a data diode application based on SDN. The application
should allow the selection of a given edge link in the network topology and block any
traffic on one of its directions. In fact, the Evaluation Assurance Level 7 criteria
(EAL7) requires the use of data diodes (uni-directional gateways) between networks
as a security mechanism (FortFox 2010).

5. Network Event factory probe - To develop a probe (SDN application) that forwards
any SDN event (controller, device, host, link, statistics) to a domain processor. The
application must encode the event in Avro using the ATENA datamodel.

6. Management and visualization web-interface - To concurrently develop a web-
interface where network tenants (and operators) can deploy and monitor the mentioned
network services. Ideally, it should make use of the network topology graph to help
visualizing service (and container) deployment.

4.2 Requirements Elicitation

This section explains the methodology followed for the elicitation of requirements in the
context of the IADS system and their sub-components. Subsection 4.2.1 contains the elicited
requirement categories and their definition. In subsection 4.2.2 the conventions followed to
systematize and identify all the requirements in the current document are explained. The
actual methodology followed for the elicitation of the requirement types is discussed in
Subsection 4.2.3.

4.2. Requirements Elicitation 55

4.2.1 Requirement types

IEEE Std 1233 1998, defines a requirement as:

1. a condition or capability needed by a user to solve a problem or achieve an objective.

2. a condition or capability that must be met or possessed by a system or system compo-
nent to satisfy a contract, standard, specification, or other formally imposed document.

3. a documented representation of a condition or capability as in (1) or (2).

In the specific context of a software system, requirements are the description of services
that a software piece must provide and the constraints under which it must operate. These
can be divided in:

• Functional requirements - they relate to system features, i.e., the statement of services
the system should provide, how the system should react to a particular set of inputs
and how the system should behave in particular situations. They are often further
classified on user and system requirements. User requirements come from a system
actor or any other type of stakeholder and express a property of the domain that the
introduction of the new system will bring. On the other hand, system requirements
express a desirable system property that when implemented will lead to at least one
user requirement.

• Non-Functional requirements - Also known as quality attributes they define the char-
acteristics on the services or functions offered by the system. These might be related
to timing constraints, security, to the development process or standards. They define
design and implementation constraints and usually apply to the system itself.

• Design Constraints - Usually hard to define and tending to be “nebulous”, they refer
to requirements the system should follow in order to ensure the system complies with
the specified functional requirements or system goals.

Figure 4.4 illustrates how the elicitation of the different types of software requirements
contribute to the overall system design.

Goal

Use-Case

Functional Requirement

Design

Implementation

Non-functional requirement

Design constraints

Is achieved by enabling

Is enabled by implementing

...with the following characteristics

...with the following constraints

Figure 4.2: Software requirements contribution to the overall system design
(adapted from Williams 2006).

56 Chapter 4. Requirements

Apart from the above classification of requirements, there are few common characteristics
that make a “good” requirement:

• Minimal – means that only the necessary requirements are stated so that the design
space is not restricted prematurely.

• Complete – means that all the requirements of the stakeholders are captured.

• Focused – means that the impact of the requirement on the solution is clear. This
definition supports unambiguity in the sense of the IEEE Std. 830 (IEEE 1994).

• Measurable – especially important in the context of non-functional requirements,
means that a metric is given on how to verify that the system satisfies the requirement.
This supports verifiability and unambiguity in the sense of the IEEE Std. 830 (IEEE
1994).

• Traceable – rationales are given that describe why the non-functional requirement
(NFR) is necessary and how it is refined into sub-characteristics. This also supports
modifiability in the sense of the IEEE Std. 830 (IEEE 1994).

4.2.2 Requirement conventions

Table 4.1 shows the structure used in this section to present the elicited requirements.
This convention was followed in order to ensure consistency across the presentation of all
requirements independently of their type.

Table 4.1: Requirement presentation.

ID Requirement Priority

#id #use-case name and description #use-case priority

The table contains a brief description of each requirement, its identification (ID) and its
respective priority. The rationale used for the definition of each parameter is presented
below.

ID

The requirement identifier follows a logical convention, e.g.:

PackageName_RequirementType_RequirementNumber

where the package name identifies the context of the requirement and is mapped with a
specific system package, namely:

• Users Management (UM),

• Network Management (NM),

• Network Event Factory (NEF),

• Container Management (CM),

4.2. Requirements Elicitation 57

• Virtual Network Intrusion and detection system (VN),

• Virtual Honeypot (VH),

• Network Statistics (NS),

• Container Statistics (CS).

The requirement type clearly identifies if the requirement is a functional requirement (FR),
a non- functional requirement (NFR) or a design constraint (DC). The requirement number
unequivocally identifies the requirement inside each package. As an example, the requirement
UM_FR4 means the functional requirement number four of the package Users Management.

There are, however, some cases in which the requirement is transversal to multiple system
packages and is better applied to the whole system itself. In those cases, IADS is used instead
of the package name (e.g. IADS_DC1 – The IADS system design constraint number one).

Priority

Since the project has a fixed deadline, the MoSCoW prioritization technique was used in
order to reach a common agreement on the importance of each requirement. The MoSCoW
method defines four well established prioritization categories (adapted from Taylor and Mead
2016):

• Must have (MH) – Requirements labelled as Must have are critical to the current
delivery. If even one Must have requirement is not included, the project delivery should
be considered a failure.

• Should have (SH) – Requirements labelled as Should have are important but not
critical for delivery. While Should Have requirements can be as important as Must
have there might be another way of satisfying the requirement.

• Could have (CH) - Requirements labelled as Could have are desirable but not necessary
as they often represent possible user experience improvements. These are included if
time and resources permit.

• Won’t have (WH) - Requirements labelled as Won’t have were considered by the
project stakeholders as the least-critical and, as a result, are not part of the delivered
implementation.

4.2.3 Methodology

The requirements elicitation represents an active effort to extract information from stake-
holders and subject matter experts. It does not represent a step or a task within the devel-
opment process but defines a set of techniques to be applied during the requirements phase.
In some software development life-cycles, the requirements phase might follow the whole
life-cycle. Even though the techniques used to elicit requirements are different depending
on the requirement type, a standard pro-active deliberated search approach was followed
throughout all the elicitation process as illustrated in Figure 4.3 (Taima 2014).

58 Chapter 4. Requirements

Application
Domain

Problem to
be solved

Stakeholder
needs and
constraints

Business
context

Figure 4.3: Requirements elicitation process (adapted from Taima 2014).

The iterative process started with the effort to understand the application domain, i.e., the
knowledge of the general area where the system is to be applied (Industrial Automation
and Control Systems). After understanding the application domain, it was important to
correctly define the problem to solve (problem understanding). This step was followed by
the correct understanding of the business area of the problem. By doing this, it was possible
to determine stakeholders and their interactions (business understanding) and to map them
to system actors. The last step of the elicitation process was to actually discuss and gather
the requirements that apply to each one of the system actors. That implied the correct
understanding of the specific needs of the people who require the existence of features on
the system to be designed and developed.

Throughout the accomplishment of the all the process elicitation steps, several auxiliary
techniques were used to elicit and gather the requirements:

• Brainstorming – Generating creative ideas and reason about the overall system and
the respective solutions through intensive and free-wheeling group discussions.

• Process Modelling – Understanding the system scopes, actors and their relationships
in a way the system can be reasonably explained to stakeholders not familiar with the
system (use-cases mentioned in the next subsection “Functional Requirements” are an
example).

• Prototyping

– Visually representing parts of the user interface in order to understand the orga-
nization of the information system scope, possible metrics to be monitored and
filling uncovering gaps.

– Building early stage versions of the software in order to better understand how
some protocols work or the requirements of other software components the sys-
tem depends on.

Functional requirements

For the elicitation of the cyber-physical IADS functional requirements the Use-Case defini-
tion approach was followed. Use-cases are a formal methodology to document functional
requirements that, for each of them, provides a list of actions or event steps. These steps

4.2. Requirements Elicitation 59

typically define the interactions between a role (or the actor as it is known from UML) and
a system in order to achieve a final goal. The use-cases are very useful and provide farther
more information than other less-formal functional requirement elicitation methods such as
user stories (that just describe a brief story and the final goal). Thus, in the software de-
velopment lifecycle, use-cases provide the developers a greater level of system detail prior
to the development and implementation phases. A use-case also helps to identify the sys-
tem’s exceptions to the expected success scenario and the interactions between the system
roles and the various system functional scopes. Furthermore, use-cases provide the needed
software artefacts for the stakeholders to reason about the system in the context of the
definition of the software architecture. In other phases of the software development process
lifecycle such as software testing, use-cases are also a valuable asset.

During the functional requirements elicitation phase the use-case definition approach has
made clear some other important advantages, such as (J. Goss 2007):

• Helping to improve the communication between team members.

• Encouraging the reachability of a common agreement about system requirements.

• Revealing process alternatives, process exceptions and undefined terms.

• Exposing what belongs outside a project scope.

• Transforming manual processes into automated processes.

• Recognizing patterns and contexts in functional requirements.

• Helping to prioritize work.

• Helping to discover gaps between the requirements and the expected software to be
delivered.

Each use-case description followed a common template as exemplified in Table 4.2. This
table contains the definition of all of its fields.

Table 4.2: Template for use-case description.

Use-Case ID

Primary Actor The role name for the primary actor that has the main responsi-
bility for this use-case

Secondary
Actors

The role name of another actor(s) that have permissions to use
it. (It is not a mandatory field for some use-cases)

Scope The name of the design scope where this use-case is integrated

Level The use-case level (Summary-Goal, User-Goal, Sub-Functions)

Stakeholders
and Interests

List of all interested stakeholders and key interests in the realiza-
tion of the use-case

Pre-Conditions All pre-conditions that must to be have successful executed before
its use-case is triggered and that we expect that they are the state
of the world

60 Chapter 4. Requirements

Last Review The last review date of this use-case

Minimum
Guarantees

All minimum guarantees that must be ensured in case the main
success scenario fails

Success
Guarantees

All success guarantees that must be ensured if the main success
scenario ends successfully

Trigger The main action that starts the use-case

Process - Main
Success
Scenario

All steps that describe the process of the main success scenario
of this use-case (upon successful completion)

Exceptions All exception descriptions if an exception/error occurs in a step
of the main success scenario

Table 4.2 has all the use-case fields in the left column and the respective description in
the right column. All these fields are useful to guarantee that a clear understanding of the
needed process steps to achieve the use-case goal, the interested stakeholders, the pre-
conditions that must be met before the use-case starts and the exceptions to the success
scenario. Although a few fields might need additional explanation. The level field can be
one of three types: summary-goal, user-goal and sub-functions. A summary-goal involve
multi user-goal levels, i.e., cannot be completed in one sitting and may require multiple
people, organizations, and systems interacting to achieve the goal. A user-goal is in the
level of a greatest interest representing the goal of the primary actor trying to get the work
done. A sub-function (also represented in the diagrams by a clam symbol) is a use-case
representing a low-level system requirement needed to carry out a user-goal task. Use-cases
are summarized in use-case diagrams respecting the UML modelling language (see Annex
A (Volume II). Due to their low-level, sub-functions usually are not detailed in the form of
use-cases; they are only present on the use-case diagrams in order to help understanding the
system and the relationship between use-cases (Cockburn 2000; K. M. Anderson 2005).
It is also important to mention that some of the UML relationships used in the definition
of the use-case diagrams shown in the figure below and used in the diagrams of Annex A
(Volume II).

Figure 4.4: Use-case relationships. Caption used for the use-case UML dia-
grams of Annex A (Vol. II)

.

4.2. Requirements Elicitation 61

• Association – Used to associate a specific use-case with a given system actor.

• Inclusion – Base use-case is incomplete and the included use-case is required, not
optional.

• Generalization – Base use-case could be abstract (incomplete) or concrete (complete).
The specialized use-case is required, not optional if the base use-case is abstract.
Generalization may also be applied for actor relationships defining their inheritance.

• Extension – Base use-case is complete by itself and can be defined independently. The
extending use-case is optional/supplementary.

• Realization – Special abstraction relationship between two use-cases. The base use-
case is abstract and the realization use-case is an implementation of the first, i.e., a
concrete use-case.

Non-functional requirements

The quality attributes of a system define an important class of non-functional requirements.
They concern software system attributes such as functional suitability, performance, avail-
ability, security and are important for achieving stakeholder goals (Fotrousi et al. 2014).
ISO/IEC 2010 defines a quality model in order to identify the degree to which the sys-
tem satisfies the stated and implied needs of its various stakeholders. This model re-
lates to both static and dynamic properties of computer and software systems. It cate-
gorizes non-functional requirements in eight attributes (which in turn are also divided in
sub-characteristics):

• Functional suitability

• Performance efficiency

• Compatibility

• Usability

• Reliability

• Security

• Maintainability

• Portability

Meeting the right level of quality is important to balance benefits and cost (Regnell et al.
2008). The quality definition of a software system needs to be good enough to make the
software useful but not so excessive that makes its financial and resource costs impracticable.
In addition, some quality attributes often reveal to be incompatible. A good example is the
CAP theorem (Consistency Availability Partition tolerance), also named Brewer’s theorem,
usually applied to distributed data stores (Brewer 2000).

The most known method of eliciting non-functional requirement is based on the definition of
scenarios. These scenarios are small stories that provide a global framework for systematizing
non-functional requirements since they include:

• Stimulus (a fault happening to the system).

62 Chapter 4. Requirements

• The source of the stimulus (internal or external).

• Environment (the state of the system when the failure occurs).

• Response (the reaction of the system to the failure).

• Response measure (the response of the system to the failure as a specific measure –
percentage, downtime, mean time between failures, etc.).

A graphical representation of the scenario approach to elicit non-functional requirements is
presented in Figure 4.5.

Figure 4.5: Scenario based approach for the elicitation of non-functional
requirement (reproduced from eTutorials.org 2008).

Since the scenarios elicitation approach requires concrete metrics to validate each quality
attribute (and these metrics are not always clearly identifiable) an alternative approach similar
to the one introduced in Fotrousi et al. 2014 was followed. The elicitation method for non-
functional requirements was based on inquiries between stakeholders with the main focus of
understanding the relationships between quality attributes and their impact on the system.
The method was composed of four iterative steps (which could have also been composed of
several rounds) and had its main strength on the construction of small prototypes :

1. Preparation: Construction of prototypes and other materials needed to allow the
stakeholders to experience the quality attributes under investigation.

2. Measurement: Workshops were performed with some stakeholders with the aim of
collecting quality measurements and user feedback. They were especially important
to reason about the system quality.

3. Analysis: Correlation between the collected feedback and the several opinions on the
impact of each quality attribute on the system.

4. Decision-Making: Decision regarding the system quality attributes and whether to
evolve a given attribute to specific requirements for the requirements document.

The result of the process above led to the definition of four main quality attributes for the
IADS system:

• Security: Measure of the system’s ability to resist unauthorized usage while still pro-
viding its services to legitimate users. Security can be characterized as a system
ability to provide non-repudiation, confidentiality, integrity, assurance, availability and
auditing.

4.2. Requirements Elicitation 63

• Performance: Indication of the responsiveness for the system to execute actions
within a given time interval.

• Availability: Availability quality attribute is concerned with the system failure and its
associated consequences. A system failure occurs when the system no longer delivers
consistent service with its own specification.

• Interoperability: the ability of a system or different systems to operate successfully
by communicating and exchanging information with other external systems written
and run by external parties. An interoperable system makes it easier to exchange and
reuse information internally as well as externally (Microsoft 2017).

Other non-functional requirements that are not directly mapped to any of the quality at-
tributes presented above were also identified. Those requirements were grouped in a cat-
egory named “Operational and Environmental requirements” (see Section 4.4.4) and relate
to either the deployment of the system within the IACS infrastructure or the operational
environment of the system itself. This category of requirements limits the effect that the
external environment has on the system and/or the effect the system is to have on the
external enveloping environment (Tinsley et al. 2006). Each of the quality attributes were
evolved to specific formal requirements. Those requirements and the respective mapping to
the quality attribute are presented in Section 4.4.

4.2.4 Product Perspective

This section is aimed at giving a brief overview over the system context, its actors and sub-
systems.

4.2.5 System actors

An actor represents a division of system behaviour defined by the role played by an external
entity that interacts with the system through the exchange of signals and/or data. The
role is often used informally as a particular user group that require specific functionalities or
properties from the system. Any external entity interacting with the system is said to play
the role of a defined actor. In order to meet the goals of the IADS system, several actors
were identified. The actors are differentiated in terms of frequency of use (i.e. the work done
by the system to answer functions for the specified user group), subset of available functions
and privilege levels. The user privilege level builds up on a hierarchical fashion meaning each
actor may inherit privileges/ability to perform actions in the system from another user. Table
4.3 presents the system actors, their need for the system design (role/rationale) and their
level of privilege. The level of privilege is directly related with the possibility of the actor to
execute administration tasks.

Table 4.3: System actors.

Actor Rationale Privilege Level

System
Admin

Actor has full administration and control over all the
cyber-physical IADS platform

HIGH

64 Chapter 4. Requirements

Security
Admin

Actor has full administration access only to the se-
curity components of the cyber-physical IADS (e.g.
Probe management)

HIGH

Security
Monitor

Actor has monitoring privileges over all the cyber-
physical IADS system including the virtual infrastruc-
ture. However, he cannot perform any administration
action (i.e. any action that changes the system state
such has the deployment of new probes)

MEDIUM

Network
Admin

Actor responsible for managing or administrate the
virtual infrastructure (SDN). This includes create
and manage sub-networks, assign them to network
tenants and perform all the actions a network tenant
has access to.

HIGH

Network
Tenant

Actor has a logical sub-network in the virtual infras-
tructure and is able to deploy virtualization services
(virtual NIDS (vNIDS), virtual Honeypots (vHoney-
pots)) or apply software defined networking function-
alities (e.g. set a network link as a data diode) to his
own sub-network.

LOW

4.2.6 System functional scopes

Functional scopes, used in the context of use-cases, refer to the services the system offers.
They are elicited at the same time use-cases are being written as it is not always an easy
task to pointedly define them or to draw a boundary between which functionalities belong
to each scope. In the case of the Cyber-Physical IADS, if seen as the overall system to be
developed, it is quite easy to infer it is internally divided in several subsystems. Table 4.4
shows the different subsystems that compose the IADS system.

Table 4.4: System functional scopes.

Functional scopes System Subsystem

IADS

SDN

Probes

Event Streaming
Platform

Domain Processor

SIEM

4.2. Requirements Elicitation 65

In the scope of this thesis, all elicited requirements are under the SDN scope (Table 4.4) of
the IADS platform. The description of all scopes that compose the IADS system is detailed
below:

• SDN – Scope that represents the virtual-infrastructure controlled with a software
defined networking approach.

• Probes – Virtual or physical elements that analyse available information and push
relevant events to the domain processor component.

• Event Streaming Platform – Scope for the component responsible for consuming
events and to distribute them internally within the IADS system.

• Domain Processor – Scope related with the component responsible for consuming
events from the event streaming platform, executing data pre-processing logic and
push the processed events to the event streaming platform.

• SIEM – Scope that receives events from the domain processor, persists the events in
a data lake and adopts the slow-path and fast-path big data processing approaches on
the received events.

Also in the context of use-cases and when the scope is mentioned it is common practice
to clarify if the respective use-case is viewed as a black-box or as a white-box use-case in
relation to the scope. In other words, a use-case that defines a process in which the only
interest is to describe the actor inputs and the correspondent system output (i.e. the actor
interactions with the system) is viewed as a black-box use-case. If, otherwise, the use-case
description specifies the system behaviour in a way that defines how the system implements
the interactions internally, it is viewed as a white-box use-case. It is a good principle to avoid
the definition of too many white-box use-cases to avoid restricting the system design phase
and to block completely the modifiability of a given requirement (refer to Section 4.2.1).

4.2.7 System packages and context diagram

When a use-case model is structured there are advantages on thinking and organizing it
into smaller units, since it makes easier to show relationships between the model’s main
domain and the way the system is decomposed. To accomplish the decomposition, use-case
packages are often used. Each package is a portion of the global use-case model and is
composed by a semi-independent collection of closely related use-cases. It is also easy to
understand that it is possible to have multiple levels of use-case packages, depending on the
complexity of the software system (IBM Corp 2006).

The IADS system is divided in many packages for clear understanding and organization.
Starting by Figure 4.6, it is possible to see the IADS system is composed by two “big”
packages called Management and Monitoring. These two big packages divide the IADS
system in terms of management functional tasks and monitoring tasks. Each of these are
also composed by more sub-packages. The system context diagram presented on Figure
4.6 shows the connections between the system packages and the respective actors. Colored
packages aggregate use-cases developed in the context of this thesis.

As shown in Figure 4.6 the IADS platform has a management and monitoring domains. The
management domain can be further decomposed into the following sub-packages:

66 Chapter 4. Requirements

• Users_Management - use-case package responsible for the management of platform
users. Since the SDN subsystem of the IADS platform requires the existence of
different roles (Network Admins, Network Tenants and Security Monitors) users have
to be also registered in the SDN controller so functionalities in the SDN domain can
be segregated into a per user type level.

• Platform_Management - Out of the bounds of this thesis, this use-case package
is related to management of probe components, domain processor, event stream and
SIEM.

• Virtual_Infrastructure_Management – this use-case package is the core of this
thesis and relates to management of containers, logical sub-networks and security
services deployed on the SDN network.

IADS

Security Monitor

Network Admin

Network Tenant

Management

Platform_Management

Virtual_Infrastructure_Management

Users_Management

Virtual_Infrastructure_Monitoring

Security_MonitoringPlatform_Monitoring

Monitoring

Figure 4.6: IADS use-case context diagram.

Figure 4.7 details how the Virtual_Infrastructure_Management use-case package is de-
composed into several other use-case packages that group use-cases belonging to the same
domain. This use-case package is split into three other sub-packages:

• Network - Use-case package that groups all networking related requirements related
to the section of the IADS platform controlled via SDN. The package can also be
further divided in two more packages:

– Network Management - The management of the SDN network. The package
includes all the use-cases which are related to the creation of sub-networks, as-
sociation of sub-networks to network tenants, accessing the network topology
and/or listing of network assets (hosts, links, devices).

4.2. Requirements Elicitation 67

– Network Event Factory - Groups all the use-cases related with the SDN probe
which goal is to send SDN related controller events to the upper layers of the
IADS platform.

• Containers - Sub use-case package which groups all the requirements which relate ti
the management of container applications and its supporting infrastructure.

• Services - Management package for the different virtualized network functions oper-
ating in the SDN network. This includes:

– vNIDS - Scalable network IDS service requirements.

– vHoneypot - Virtual honeypot deployment service.

– Data Diode - Virtual data diode service requirements.

Figure 4.7: The virtual infrastructure management use-case package.

It is important to mention that virtual services (such as IDS and honeypot), in the context
of this thesis are perceived as network abstraction service deployments, being totally inde-
pendent of the respective running software package logic. That being said, an HoneyPot
or a vNIDS deployment is an SDN service that allows copying network packets to specific
container images and not with the detection of security events within the container itself.
For instance, three instances of a vNIDS service can be deployed on the network all of them
based on the same container image (e.g. Snort).

Similarly, the Virtual infrastructure monitoring use-case package can be further decomposed
into two other packages as shown in Figure 4.8.

68 Chapter 4. Requirements

Figure 4.8: The virtual infrastructure monitoring use-case package.

Container Statistics use-case package groups all the use-cases related to the visualization
of statistics (CPU, memory, network) and respective live charts related to the container
infrastructure. Network Statistics use-case package is related to all the statistical information
that can be retrieved from the SDN network by means of the SDN controller.

4.3 Functional requirements

Following the conventions stated in Subsection 4.2.2, the list of elicited functional require-
ments is listed below. Please recall these requirements were mostly gathered using the
use-cases approach (see Subsection 4.2.3). Use-case diagrams per package and their de-
scriptions are presented in Annexes A and B, of Volume II, respectively.

Table 4.5: System functional requirements organized per system package.

ID Requirement Priority

UM_FR1 Authenticate – The system has to provide a way for users
to be authenticated

MH

UM_FR2 Create Account – The system has to provide a way ac-
count creation in order to allow the segregation of func-
tionalities

MH

UM_FR3 Remove Account – The system has to provide a way of
removing user accounts

MH

UM_FR4 Modify Account – The system should provide a way of
modifying user account information

SH

UM_FR5 List Accounts – The system has to provide a way of
listing all the registered users in the system

MH

4.3. Functional requirements 69

UM_FR6 View profile – The system should provide a specific view
for the profile associated with any of the registered users

SH

CM_FR1 Add physical host to the platform – The system must
provide a way to associate physical hosts where contain-
ers can be deployed

MH

CM_FR2 Remove physical host from the platform – The system
must provide a way of removing a previously added phys-
ical host

MH

CM_FR3 List physical hosts – The system must provide a way of
listing all the physical hosts associated with the platform

MH

CM_FR4 Associate container image registry – The system must
provide a way of associating a container repository to
the system where container images /templates can be
deployed

MH

CM_FR5 Disassociate container image registry – The system must
allow the removal of the information of a container reg-
istry previously associated with the platform

MH

CM_FR6 Add container image to registry – The system should
provide a way of adding container images/templates to
the registry

SH

CM_FR7 Remove container image from registry – The system
should provide a way of removing a previously added con-
tainer image from the registry

SH

CM_FR8 List container images from registry – The system has to
provide a way of listing the available container images in
the registry

MH

CM_FR9 Start Container – The system has to provide a way of
starting a container based on a previously added image

MH

CM_FR10 Stop running Container – The system has to provide a
way of stopping a running container

MH

CM_FR11 List Running Containers - They system has to provide
a way of listing all the running containers on the SDN
network

MH

CM_FR12 List running containers belonging to network tenant –
The list of running containers should allow a way of fil-
tered by the network tenant that owns the container run-
ning service

SH

70 Chapter 4. Requirements

CM_FR13 Filter by network service name – The running containers
list should allow filtering by the network virtualized service
that is running inside the container

SH

CM_FR14 Filter by IP address – The running containers list should
be filterable by Ip address

CH

CM_FR15 Filter by Mac Address – The running containers list
should be filterable by mac address

CH

CM_FR16 Filter by network service name – The list of images in the
registry should be also filterable by network virtualized
service

SH

CM_FR17 Attach container to SDN network – The system must
provide a way of attaching containers to the underlying
SDN controllable network

MH

CM_FR18 Request IP Address on SDN network – The system
should provide a way for containers to request an IP ad-
dress on the SDN network

SH

CM_FR19 Detach container from the SDN network – The system
has to have a way of detaching stopped containers from
the SDN network

CH

CM_FR20 Pull image from container registry – The system must
be able to pull a previously added container image from
the registry

MH

NM_FR1 Create Logical Sub-Network – The system must provide
a way of creating logical sub-networks within the main
SDN network

MH

NM_FR2 Remove Logical Sub-Network – The system must provide
a way of removing a previously created logical subsection
of the network

MH

NM_FR3 List sub-networks – The system has to provide a way of
listing all the logical subsections of the network

MH

NM_FR4 Add Host to Sub-Network – The system must provide a
way to add a network host to one created sub-network

MH

NM_FR5 Remove Host from Sub-Network – The system must
have a way of removing a host from a sub-network

MH

NM_FR6 Rename Logical Sub-Network – An existing sub-network
could be renamed once created

CH

NM_FR7 Associate Sub-Network to Network Tenant – A logical
sub-network must be associated with a network tenant

MH

4.3. Functional requirements 71

NM_FR8 Disassociate Sub-Network from Network Tenant – The
system has to provide a way of disassociating a sub-
network from a network tenant if it was previously as-
sociated

MH

NM_FR9 View Network Information – The system should provide
global information regarding the network usage/assets

MH

NM_FR10 View Sub-Network Information – It should be possible to
view the information of the logical sub-networks within
the overall network

MH

NM_FR11 View Network Topology Graph – The system should pro-
vide a global network topology graph

SH

NM_FR12 Filter Network Topology Graph by Sub-Network – The
system should provide a way of filtering the network
graph by showing/hiding specific parts of the network

SH

NM_FR13 View Sub-Network Topology Graph - The system should
provide a way of showing the topology graph of a sub-
network

SH

NM_FR14 List Network Hosts – The system must allow the listing
of all network hosts

CH

NM_FR15 List Network Links – The system must allow the listing
of all network links

CH

NM_FR16 List Network Devices – The system must allow the listing
of all network devices (OpenFlow enabled switches)

CH

NM_FR17 Filter By Host Id – The system could provide ways of
filtering a host list by Host Id

CH

NM_FR18 Filter by Device Id – The system could provide ways of
filtering the device list by device id

CH

NM_FR19 Filter by Link Id – The system could provide ways of
filtering the link list by a link Id

CH

NM_FR20 Filter by Mac Address – The system should provide ways
to filter network assets by mac address

CH

NM_FR21 Filter by IP Address - The system should provide ways to
filter network assets by IP address

CH

NM_FR22 Ensure communication between the added host and all
the hosts on the sub-network – When a network host is
added to a sub-network the system has to ensure it can
contact other hosts on the same sub- network

MH

72 Chapter 4. Requirements

NM_FR23 Compute shortest path between host pairs – The sys-
tem has to include methods for computing the best path
between network devices

MH

NM_FR24 Create and install flow rules on the devices in the path
between each host-pair – The system has to have the
ability to install rules in network devices

MH

NM_FR25 Remove flow rules from the devices in the path between
each host pair – The system has to have the ability to
remove rules installed on the network devices

MH

NEF_FR1 Add message broker topic URI – The system has to pro-
vide a way of defining a broken and topic URI for it to
publish network events (to identify the destination do-
main processor)

MH

NEF_FR2 Remove message broker topic URI – The system has
to provide the ability to remove a previously associated
domain processor for network event publishing

MH

NEF_FR3 Publish network events – The system has to publish net-
work events to a domain processor

MH

NEF_FR4 Publish device events – The system has to publish device
events to a domain processor

MH

NEF_FR5 Publish link events – The system has to publish link
events to a domain processor

MH

NEF_FR6 Publish topology events – The system has to publish net-
work topology events to a domain processor

SH

NEF_FR7 Publish host events – The system has to publish network
events related to network hosts to a domain processor

MH

NEF_FR8 Publish network controller events – The system has to
publish network controller events to the domain processor

CH

NEF_FR9 Stop publishing events to message broker topic – The
system has to have methods to allow starting the publi-
cation of network events

MH

NEF_FR10 Start publishing events to message broker topic - The
system has to have methods to allow stopping the pub-
lication of network events

MH

VN_FR1 Enable vNIDS service – The system must provide a way
for tenants to enable a vNIDS service

MH

VN_FR2 Disable vNIDS service – The system has to provide a way
to disable a running vNIDS service

MH

4.3. Functional requirements 73

VN_FR3 Add host to vNIDS service – The system has to allow
tenants to add hosts to be monitored by a running vNIDS
service

MH

VN_FR4 Remove host from vNIDS Service – The system has to
allow tenants to remove hosts that are being monitored
by a vNIDS service

MH

VN_FR5 List hosts on vNIDS service – The system has to list all
the hosts that are being monitored by a specific vNIDS
service belonging to a tenant

MH

VN_FR6 List all vNIDS containers – The system should have a list
of running containers associated with the vNIDS appli-
cation

MH

VN_FR7 List vNIDS containers belonging to tenant – The system
should have a way to filter the list of running containers
by the vNIDS service and the tenant it belongs

SH

VN_FR8 Configure vNIDS service – The system should let a net-
work tenant configure its own vNIDS service

MH

VN_FR9 Create Scalability Policy – A running vNIDS must have
associated a scalability policy

CH

VN_FR10 List scalability policies – The system must allow listing
of the scalability policies associated with a given vNIDS
service

CH

VN_FR11 Remove scalability policy – The system must provide a
way of removing an associated scalability policy from a
vNIDS service

CH

VN_FR12 Start vNIDS container – The system must have internal
methods to start a vNIDS based container

MH

VN_FR13 Start monitoring host traffic – The system must have
internal methods to start monitoring host traffic on a
specific vNIDS service

MH

VN_FR14 Compute path between host and container – The sys-
tem must be able to compute the shortest path between
a host being monitored and the respective container run-
ning the vNIDS service

MH

VN_FR15 Stop monitoring host traffic – The system must have
internal methods to stop monitoring host traffic on a
vNIDS service

MH

74 Chapter 4. Requirements

VN_FR16 Remove copy/forwarding rules from affected devices –
The system must allow the removal of rules that provide
copies of the traffic of a specific host to vNIDS containers
from the devices of the network

MH

VN_FR17 Install rules to copy/forward traffic on all affected devices
– The system must be able to install rules to copy traffic
generated by network hosts on the network devices of
the network

MH

VN_FR18 Stop vNIDS container – The system must have internal
methods to stop a running vNIDS container

MH

VN_FR19 Remove all flow rules to copy network traffic from hosts –
When stopping a vNIDS container the system should be
able to remove all the rules to duplicate traffic that were
previously providing copies of the traffic to the stopped
container

SH

VN_FR20 Start monitoring service for the vNIDS service – The
system should monitor the running vNIDS containers pe-
riodically so that it is able to scale the service according
to the defined scalability policies

MH

VN_FR21 List all vNIDS services – The system should list all the
running vNIDS services (i.e. ability to differentiate vNIDS
belonging to different network tenants)

SH

VN_FR22 Stop monitoring service for the vNIDS service – When
a vNIDS container is stopped the monitoring service for
the scalability of that container should be stopped as well

MH

VH_FR1 Deploy vHoneypot – The system must provide ways for
tenants to deploy virtual honeypots on their sub-network

MH

VH_FR2 Remove vHoneypot – The system must provide a way of
removing a previous deployed honeypot

MH

VH_FR3 List all vHoneypots – The system must provide the ability
to list all the vHoneypots on the global network

MH

VH_FR4 List vHoneypots belonging to Tenant – The system must
provide the ability to filter the list of network vHoneypots
to display only those belonging to a specific network ten-
ant

MH

VH_FR5 Stop vHoneypot container – The system must internally
be able to stop a vHoneypot container

MH

VH_FR6 Remove flow rules from all the devices – The system
must remove rules from network devices that were pre-
viously redirecting traffic to a deployed vHoneypot

MH

4.3. Functional requirements 75

VH_FR7 Compute the shortest network paths between all devices
and the vHoneypot container – The system must be able
to compute the shortest path between a vHoneypot con-
tainer and an attacker on the network

MH

VH_FR8 Redirect traffic with SRC or DST to the given IP address
range to the vHoneypot container – The system has to
provide a way for tenants to configure the IP address
range that a vHoneypot should be targeting

MH

VH_FR9 Install flow rules to forward the traffic to the vHoney-
pot on all network devices – The system must be able
to install rules on the network devices so that any traffic
generated with source or destination to the IP range de-
fined when the vHoneypot was deployed is redirected to
the vHoneypot container

MH

VH_FR10 Start vHoneypot container – The system must internally
be able to start a vHoneypot container

MH

VH_FR11 Define IP address range for vHoneypot – The system
must provide a way for tenants to define a IP address
range for the vHoneypot operation

MH

DD_FR1 Set Network Link as a data diode – The system has to
allow tenants to set a network link as a unidirectional
gateway/data diode

MH

DD_FR2 Set Network Link as a regular link – A previously link set
as a data diode must be removable by the network tenant

MH

DD_FR3 List all network links set as a data diode – The system
should allow the listing of all data diodes on the network

SH

DD_FR4 Filter network link by sub-network name – The list of
data diodes should be filterable by network name

CH

DD_FR5 Filter network link by network tenant – The list of data
diodes must be filterable by the network tenant username

CH

DD_FR6 List all network links set as a data diode for links belong-
ing to a tenant sub-network – The system must provide
a way of listing data diodes that are deployed by a tenant

MH

DD_FR7 Remove rules associated with the respective data diode
– The system should allow the removal of flow rules that
block traffic on a link set as a data diode

MH

76 Chapter 4. Requirements

DD_FR8 Install rules to drop the network packages on the network
device that contains the edge link – The system should
be able to install rules on devices so that traffic on a link
set as a data diode only occurs on the opposite direction
of the one specified for the data diode operation

MH

NS_FR1 Network Statistics – The system must consider the dis-
play of network statistics

MH

NS_FR2 View host statistics – The system must display network
statistics related to network hosts

CH

NS_FR3 View device statistics – The system must display network
statistics related to network devices

CH

NS_FR4 View link statistics – The system must display network
statistics related to network links

CH

NS_FR5 Real time plots – Network statistics should be visible in
the form of dashboards/real time plots

SH

CS_FR1 Container real-time statistics – The system should dis-
play real time statistics for running containers (those as-
sociated to network services such as vNIDS and vHoney-
pot)

MH

CS_FR2 View memory consumption – The system should display
statistics related to the memory utilisation of a specific
container

MH

CS_FR3 View host CPU usage – The system should display met-
rics related to host CPU usage of a running container

MH

CS_FR4 View Network bandwidth usage – The system should dis-
play metrics related to the network bandwidth usage of
a given running container

MH

4.4 Non-functional requirements

Following the approach detailed in section 4.2.3 all the elicited non-functional requirements
are presented in respect to the specific system quality attribute and system scope. There
are five sub-categories for non-functional requirements:

• Security Requirements,

• Performance Requirements,

• Availability Requirements,

• Operational and Environmental Requirements,

• Interoperability Requirements.

4.4. Non-functional requirements 77

Below presented requirements, despite being named IADS, also apply to the SDN scope of
the IADS platform. Requirements that do not apply were removed from this report. As a
result, in some tables requirement identifiers do not follow a sequential order.

4.4.1 Security requirements

Table 4.6 details the security requirements in the context of the SDN scope of the IADS
platform.

Table 4.6: Security non-functional requirements of the system.

ID Requirement Priority

IADS_NFR1 The system must not store user passwords in plain-text.
All sensitive information must be stored encrypted using
a robust hashing algorithm

MH

IADS_NFR2 Network tenants must have access to the platform web
interface but not to the network controller (network op-
erating system) interface

MH

IADS_NFR3 Hosts belonging to two different logical sub-networks
must not be able to communicate with each other

MH

IADS_NFR4 Communication between the network devices (OpenFlow
enabled switches) and the network controlled has to be
encrypted

SH

IADS_NFR5 The network controller nodes and the hosts of a logi-
cal tenant sub- network should be in a different physical
network so that the tenant hosts cannot establish a con-
nection with the controller nodes

MH

IADS_NFR6 In case a network link is set as a data diode in a given
direction, network packets must not be able to flow in
the specified direction (only in the opposite direction)

MH

IADS_NFR7 The system must not allow, when possible, sensitive in-
formation to be transmitted between components with-
out encryption.

MH

IADS_NFR10 Management tasks should, ideally, be transmitted in off-
band channels, and using secure communications.

CH

IADS_NFR11 All accesses should be registered, using log mechanisms,
for non- repudiation effects

MH

78 Chapter 4. Requirements

4.4.2 Performance requirements

Table 4.7 lists the performance requirements elicited for the SDN scope of the IADS plat-
form.

Table 4.7: Performance non-functional requirements.

ID Requirement Priority

IADS_NFR12 Software defined networking core logic must be imple-
mented at the application level of the network controller
and not rely on high- latency controller external API’s
(e.g., not use the controller REST API)

SH

IADS_NFR13 The network controller should be able to balance
the master ships of the associated OpenFlow enabled
switches across different controller nodes in order to
maximize the overall system performance

MH

IADS_NFR14 The network controller software should be selected ac-
cording to performance metrics

MH

4.4.3 Availability requirements

Availability requirements are listed in Table 4.8.

Table 4.8: Availability non-functional requirements.

ID Requirement Priority

IADS_NFR16 The network controller should be distributed to avoid
single point of failures

MH

IADS_NFR17 Every network device (OpenFlow enabled switch) must
be associated with different network controller nodes in
a master-slave fashion so that its availability is not com-
promised by a controller node failure

MH

IADS_NFR18 Network services that rely on scalability policies (e.g.,
vNIDS) should be continuous monitored to be automat-
ically scaled if the defined policy is reached

MH

IADS_NFR19 The platform components should be fault tolerant. CH

IADS_NFR20 The transport and processing mechanisms of the plat-
form should be redundant.

SH

IADS_NFR21 For SDN-based communication, proactive (pre-set) flows
should be privileged over reactive (new) flows.

MH

4.5. Design constraints 79

4.4.4 Operational and environmental requirements

Elicited non-functional requirements belonging to Operational and environmental category
are listed in Table 4.9.

Table 4.9: Operatonal and environmental non-functional requirements.

ID Requirement Priority

IADS_NFR24 Components should be containerized as much as possible,
and be isolated to allow a neutral deployment.

SH

IADS_NFR25 The deployment of the platform should not impose, when
possible, constrains on the availability of the IACS infras-
tructure.

MH

4.4.5 Interoperability requirements

Interoperability non-functional requirements are summarized in Table 4.10.

Table 4.10: Interoperability non-functional requirements.

ID Requirement Priority

IADS_NFR26 Logs must be based on a format that assures interoper-
ability between the logs of each component.

SH

IADS_NFR28 The platform should be able to have new components
integrated into it (such as new probes).

MH

4.5 Design constraints

The system also has a set of design constraints that inherently affects its development.
Design constraints are summarized in Table 4.11.

Table 4.11: System design constraints.

ID Requirement Priority

IADS_DC1 The system must have a web interface MH

IADS_DC2 All the events transiting within the IADS system must
be encoded following the data model established for the
platform. The data model definition is not part of this
thesis but can be consulted in AtenaConsortium4.3 2017

MH

80 Chapter 4. Requirements

IADS_DC4 All the network devices on the SDN scope must support
the OpenFlow protocol (versions 1.0 – 1.3)

MH

IADS_DC7 The container infrastructure must contain an agent to
attach containers to the SDN network

MH

IADS_DC8 A virtual probe container (IDS or honeypot) must have a
pre-defined name on its SDN virtual Ethernet interface

MH

IADS_DC9 A virtual probe to be attached to the SDN network must
be tagged in order for the agent to identify the container
before attaching it to the SDN network

MH

4.6 Chapter wrap-up

By adopting an engineering approach to the requirements elicitation process, the team
developing the IADS was able to better understand and grasp the complexity of the overall
system. The stratification of the IADS architecture in functional blocks and the prioritization
of requirements allowed for a clear segmentation of the platform into manageable subsystems
and components – reducing the risk for project failure. Identifying the platform actors and
looking at platform from the perspective of the operations each specific role was allowed
to perform, was a key strategy which encouraged the development team to engage in the
collective design effort of the main system functionalities. Furthermore, the development
of several prototypes/tests along the elicitation process helped finding requirements (and
design constraints) that would have been really hard to find at later stages of the project
and that likely would require a complete revision of the requirements document. Globally,
we think the requirements elicitation process is one of the most important parts of software
development – affecting its overall lifecycle. The presented requirements, and the level of
detail that was devoted to the section, is further reflected on the completeness of proposed
architecture.
The elicited requirements were formalized in the form of use-cases. Use-case diagrams and
use-case descriptions are a substantial part of this thesis’ annexes (Vol. II).

81

Chapter 5

Software Architecture

This chapter details the software architecture of the platform proposed in this thesis. Since
the architecture highly depends (and inherits) from the architecture of the adopted network
controller, Section 5.1 provides an overview of distributed controller architectures. Within
this section, the architectures and application development models of the most known dis-
tributed controllers are explored (OpenDaylight and ONOS - Subsections 5.1.1 and 5.1.2,
respectively). Performance comparison between both controllers are provided in Subsection
5.1.3. The architectural differences, programming model and their performance aspects lead
to the selection of one controller in Subsection 5.1.4. Finally, in section 5.2 an architec-
ture overview of the proposed subsystem is provided. High-level architecture is presented in
Section 5.3, whilst specific application and component architectures are further detailed in
Section 5.4. Section 5.5 concludes the chapter.

5.1 Distributed controller architectures

In SDN the network controller represents the logically centralized control plane of the net-
work which can access all the network switches in the underlying network. The fact it is
logically centralized does not mean it is only composed by a single controller node. In crit-
ical infrastructures, availability is the most important design goal. If a network controller
is represented in the architecture by a single node, it can easily be seen as a single point
of failure. There are alternative architectures in which the control plane is also physically
distributed despite being logically centralized.

Figure 5.1: Distributed controller architectures (Naseer 2016).

82 Chapter 5. Software Architecture

In those distributed architectures, controller nodes share the network state (through mes-
sages) via their east/westbound interfaces and organize switch mastership among nodes
(switches are configured to have one node as master and other nodes as slaves). Dis-
tributed controller architectures (Figure 5.1) bring numerous advantages when compared to
single node architectures: resilience of the control plane is improved and the control over-
head is reduced.
Typically, distributed network controllers employ strong consistency models, meaning data
is not made available to the switches unless the controller has been fully updated. This type
of model is used when exchanged information is critical and outdated information can create
anomalies in network operation. The RAFT algorithm (Figure 5.2) is the base for strong
consistency models in SDN controller clusters. RAFT consists of a cluster of nodes, each
having a log to maintain. This log is fully replicated in all nodes achieving consensus through
replicated state machines. These state machines process identical sequences of commands
to produce the same output. In order to keep consistency, elections occur between nodes
– a distinguished leader (responsible for replicating the log to other nodes) is elected within
the cluster. Other nodes request the network state from the leader, which serves and guides
them through log changes to avoid inconsistencies. In case of a leader failure, any other
node is eligible to become leader. The leader selection is achieved through elections between
nodes in randomized time intervals. All nodes in the cluster move to candidate state and
vote for themselves as leaders. As the election time is randomized, the likelihood of having
split-votes is quite low. In case of a split vote situation, a new election takes place. When a
node is elected as leader, all the others move to follower state (Lamport et al. 2014; Zhang
et al. 2017).

Figure 5.2: The RAFT algorithm in SDN distributed controllers (adapted
from Zhang et al. 2017).

Although there are multiple network controller software packages, only a small minority is
distributed. The two main distributed controllers are OpenDaylight and ONOS. An archi-
tectural (and application development model) comparison between both is provided next.

5.1.1 OpenDayLight

OpenDaylight is an open source project formed and hosted under the Linux Foundation
with the goal of furthering the adoption and innovation of SDN. OpenDayLight aims at
building a common SDN stack and enforcing programming standards so each of the common
network functions and services can be developed on a collaborative effort by different industry
members (Cisco 2013). Founded on April 2013, it was first released in February 2014
(Hernandez 2016). Since then, eight stable releases were issued at a constant period of
around 6 months. The current release (codename Oxygen) is available since March 2018.

5.1. Distributed controller architectures 83

OpenDaylight is licensed under the Eclipse Public License v.1.0 (ODL-license 2017). Initial
OpenDaylight consortium members included a broad range of industry players, from leading
networking vendors such as Cisco and Brocade to IBM, HP and Microsoft. While the project
has increased to 49 partners, some key players have been abandoning the project or reducing
the investment. Examples are Microsoft and Citrix (nowadays only silver project members)
and IBM and VMWare (no longer project members). If a single reason has to be pointed
out to explain OpenDaylight’s success and adoption it was for sure the commitment of its
several members. In fact, as a result of the partner’s commitment, a dedicated official
security-response team exists in order to apply a formal internal process to handle security
related patches when a serious vulnerability is disclosed (Thenewstack 2015).

OpenDaylight has started as a non-distributed SDN controller, as an effort for multiple play-
ers to have a common SDN framework which promoted openness, transparency and agility
for the development of SDN solutions. Its architecture have been evolving to support con-
troller clustering and improve the degree of abstraction. For this reason, architecture wise
the controller has suffered deep modifications which negatively impact performance, com-
patibility and the quality of available code and documentation. The controller is written in
the Java Programming Language and leverages the OSGi framework – which allows plugins
and applications to be deployed as application containers and registered into the controller
during runtime. OSGi also makes it possible to link plugins with the corresponding south-
bound interfaces. In OpenDaylight, Apache Karaf is used as the container management
platform. Opendaylight’s architecture (Figure 5.3) can be sliced into three main logical
layers, although the architecture can also be viewed as an horizontal service oriented archi-
tecture in which all the micro-services communicate through a centralized bus (the Model
Driven Service Layer Abstraction – MD-SAL).

Figure 5.3: OpendayLight controller architecture (from OpenDayLight 2018).

The fundamental layers of the Opendaylight controller architecture are:

• Top-Layer/ Northbound interface – This layer provides external access for applica-
tions running a different namespace to access the control layer (middle services). The
access can be achieved through standard interfaces such as REST API’s, RESTCONF

84 Chapter 5. Software Architecture

(YANG models to REST), NETCONF or AMQP. All those protocols are enabled as
external installable plugins in the controller which directly communicate with the ser-
vice abstraction layer. For instance, the AMQP plugin exposes to the northbound
interface the datastore, notifications and RPC registries of MD-SAL. This protocol
can then be used to communicate with a broker either loaded in Karaf itself or an ex-
ternal broker such as ActiveMQ.(OpenDayLight-Wiki 2018) OpendayLight Graphical
User Interface Applications (DLUX), communicate with the controller via the REST
API(OpenDayLight-Tutorial 2016).

• Middle Layer/Controller Layer - The layer in which the controller communicates
with the underlying network infrastructure with the help of control plane functions
and embedded controller applications. All those are OpenDaylight extensions that
are loaded in Karaf and use MD-SAL to communicate with the southbound plugins.
In fact, MD-SAL acts as an active registry for brokering contracts between service
providers (control plane functions and protocol plugins) and the consumers – the
applications. In the middle layer, several network services/functions are part of the
shipped base. These include services for topology discovery, a forwarding manager for
forwarding rules management, a switch manager to identifying networking elements in
the underlying physical topology:

1. Topology Processing – is responsible for discovering the OpenFlow topology using
LLDP and putting them into the operational data store for applications’ use.

2. OpenFlow Stats Manager – Network service for managing statistics and counters
across OpenFlow enabled nodes: flows, queues and groups. Implements the
collection of statistics by sending requests for statistics to all active nodes (i.e.
the managed switches) of the intelligent network and stores their responses to
operational datastore (Paliou 2016).

3. OpenFlow Forwarding rules manager – A network service for registering and ob-
taining flows from the OpenDaylights datastore. It manages key forwarding rules,
resolve any conflicts between those rules and validates them (Paliou 2016).

4. OpenFlow Switch Manager - Provides information for nodes and the ports which
are connected. As new network elements are discovered, their information is
stored in the Switch Manager data tree.

• Southbound interfaces - Opendaylight supports the Openflow protocol between ver-
sions 1.0-1.3. Appart from Openflow, a multitude of other protocols are also sup-
ported at the southbound interface. Examples are CoAP, NetConf, HTTP, SNMP,
BGP, among others.

Figure 5.4 shows how the different control plane functions co-exist and interact both with
each other and with southbound providers.

5.1. Distributed controller architectures 85

Figure 5.4: OpenDaylight network function interaction (from Paliou 2016).

When an OpenFlow enabled switch first tries to connect with the controller, a notification
is issued to either the Switch Manager, the Topology Processing Service and the OpenFlow
Stats manager. All the services share a distributed operational data store built upon the Akka
framework (ODLWiki-clustering 2017) although separated between applications in individual
data trees. Upon receiving the notification, each network function updates its respective
data tree in the distributed store (Mirantis 2015).

The Model Driven Service Abstraction Layer (MD-SAL) is the central piece that enables
plugin and application development in OpenDaylight. It goes a step forward from the prede-
cessor (AD-SAL - Application Driven Service Abstraction Layer – deprecated since Hydro-
gen) by allowing OpenDaylight applications to be designed using the MVC design pattern, as
application silos. MD-SAL logically separates plugins, gluing them horizontally as providers
and consumers. Models are constructed in the form of YANG definitions, used to define the
plugin data model, the services it exposes to other plugins or the services it requires from
MD-SAL. These services consist of both:

• Remote Procedure Calls – input/output calls.

• Asynchronous notifications – to any registered listeners.

MD-SAL is a reactive architectural measure from the OpenDaylight community to solve the
problem of having different teams working on the core platform. With MD-SAL, some API
standardization can be achieved while minimizing the chance of having code "honeypots"
(big chunks of code) where multiple teams have to touch to implement a given feature.
The service abstraction layer manages the contracts and state exchanges between every
application by keeping a centralized state.

YANG models are compiled to generate uniform APIs for consumers. Such a design pattern
allows dynamic late binding, runtime and compile code generation (LinuxFoundation 2014).
Furthermore, plugins are loaded into the controller as soon and they are pushed into the
Karaf container platform in the form of OSGi bundles. As a result, the functionality of the
controller can be dynamically changed without requiring a reboot. OSGi bundles are built
from Maven Build Tools, which handles plugin external dependencies – helping reducing the
plugin size. Figure 5.5 illustrates the process of creating an OpenDaylight application from
the YANG Model definition until the deployment in the controller.

86 Chapter 5. Software Architecture

Figure 5.5: OpenDaylight plugin generation from YANG models (from Lin-
uxFoundation 2014).

It is important to mention that the generated APIs are both for the Northbound interface
(REST APIs through RESTCONF) as well as standard Java Interfaces to enforce a consis-
tent programming model. At the core of the MD-SAL platform there is a logically centralized
data store that keeps relevant state in two different buckets (Seetharaman 2015):

1. Configuration data store – always kept persistent (and exposed through RESTConf).

2. Operational data store – used for transient data.

All the data referent to configuration instructions (e.g. VLAN mappings to port numbers,
flow definitions) are stored in the configuration data store. Other data, such as the system
status or statistics are stored on the operational data store (ODL-team 2017). The opera-
tional data store is only created when the plugin is loaded into the controller. Opendaylight
uses a strong consistency model in its distributed store. The RAFT algorithm is used to
keep the network state consistent between controller nodes. The MD-SAL subsystem is
responsible for accessing the shared data store to provide data storage for plugins and/or to
provide request routing (mappings between a consumer and a provider) through their RPCs
or notification services. Figure 5.6 shows how SDN applications are viewed as applicational
silos within the network controller.

Figure 5.6: OpenDaylight application containers (adapted from Seetharaman
2015).

5.1. Distributed controller architectures 87

The MD-SAL subsystem is agnostic to the location of the application. Plugin interfaces are
generated from YANG models and built around MD-SAL either if they are a Southbound
plugin or if they are a plugin supposed to be accessed though the Northbound interface.
MD-SAL only cares about the notion of provider and consumer and ultimately can be seen
only as a "request routing" service (Thenewstack 2015).

As an example, if we think about a simple network application such as a packet processor
application, a YANG model has to be defined to specify which services from MD-SAL the
application requires. In this case those would be:

• mdsal:binding-async-data-broker (to write to the data store).

• mdsal:binding-notification-service (to access notifications).

• mdsal:binding-rpc-registry (to access the rpc registry).

The YANG model would also contain all the services the application exposes and its respec-
tive data model. Application Java interfaces would be generated afterwards using YANG
Tools as well as all the REST endpoints to externally access the application services. The
programmer would then need to implement those interfaces and request specific services
from the md-sal rpc registry. An example would be to create the necessary bindings for
the PacketProcessingService which is registered in the MD-SAL by the controller (to react
to packet_in events received by the notification service). Furthermore, in some cases it
is necessary to access the operational store of other applications or to react to events on
those stores. This kind of programming philosophy despite helping to maintain a consistent
interface and to reduce the need for big core modules has the disadvantage of increasing
the learning curve for application development. The programmer has to be aware of the
several OpenDaylight plugins (some are not even enabled by default), their API’s and their
respective data model. Furthermore, since the main application codebase depends on gen-
erated interfaces, the programmer has to generate a new model (and compile it) in order
to generate new interfaces it might want to implement. All this effort just to create a few
more methods on the application.

5.1.2 ONOS - Open Network Operating System

Unlike OpenDaylight which started as a single-node controller, the Open Network Oper-
ating System was the result of a series of prototypes developed by On.Lab to accomplish
a distributed controller with specific quality attributes in mind: availability, modularity and
performance. In the first paper presenting the ONOS framework, the developers present the
main requirements leading to the controller development (Berde et al. 2014):

1. High Throughput: up to 1M requests/second.

2. Low Latency: 10 - 100 ms event processing.

3. Global Network State Size: up to 1TB of data.

4. High Availability: 99.99% service availability.

Started in 2014 as an Apache 2.0 licensed project, ONOS has seen more than 14 releases
and have seen the number of project members increase on a regular basis. The Open-
Source project is now supported by companies such as Google, Samsung, AT&T, Ericsson,
Cisco, Huawei or T-mobile (ONOS-website 2018). Since 2006, the project is also under the

88 Chapter 5. Software Architecture

umbrella of the Linux Foundation (ONOSproject 2016). Despite the high number of releases,
the ONOS API for SDN application developers have been quite stable overtime. Changes to
the project have been related to the internal architecture, to improve the controller resilience
and performance while keeping external interfaces (and programming model) unchanged. As
an example, ONOS started by using Cassandra as the chosen distributed store and Zookeeper
for cluster coordination. However, On.Lab has realised the kind of data SDN applications
needed to store was so simple that such a complex database model like Cassandra was not
justified. Hence, ONOS replaced Cassandra by Hazelcast - an high-density in-memory map
data store. As an effort to bring the storage model more close to the program model, ONOS
uses nowadays the MapDB database for its distributed store. MapDB provides Java Maps,
Sets, Lists, Queues and other collections backed by off-heap or on-disk storage (MapDB
2018). Clustering mechanisms also have changed over time. Due to the deprecation of the
Zookeeper, recent versions of ONOS rely on the Atomix framework for cluster coordination.
This change greatly contributed to improve the controller performance since the cluster
coordination can now leverage MapDB to achieve different distributed primitives, depending
on the criticality of the data to be stored. This is made possible by having each service’s
store implement the appropriate distribution mechanism. SDN developers can now choose
between two consistency models: strong and eventually consistent stores (ONOS-wiki1
2018):

1. Eventually Consistent - Backed by data structures such as EventuallyConsistentMap,
this consistency model fully replicates all its state between all nodes in the cluster. This
means each node in the cluster will have a full copy of the map contents stored in
memory and data will not survive a node reboot. This consistency model provides
weaker consistency guarantees in favor of superior read and write performance. Appli-
cations can also configure eventually consistent maps with a ClockService to ensure
each map replica applies changes to local state in the correct order. The model uses
a lightweight background process known as anti-entropy (also known as the optimistic
Gossip replication algorithm) to ensure all replicas eventually converge to the same
state.

2. Consistent - Data structures (consistent maps) backed by the RAFT consensus algo-
rithm. This model ensures that any changes made to the a given key on the distributed
map are serialized to disk. Furthermore, the entire map space is partitioned between
all the nodes in the cluster. For instance, in a 3 node cluster each consistent map is
partitioned into three shards and each shard is distributed between the three nodes.
In case of a node partition, another cluster node will have all the data of the "lost"
shard.

Figure 5.7 shows data replication between onos nodes. Internally, ONOS uses eventually
consistent stores for Device, List and Host management. Each of these "subsystems"
stores are completely independent from each other. The device mastership (the associating
between OpenFlow switches and the master controller node) is assured by a consistent
model. All controller nodes start by being in the STAND_BY mode when a switch attempts
to connect. Elections then start to take place in a timely manner (however randomized)
in order to elect the master of the switch (changing one of the nodes state to MASTER).
Other critical information, such as the FlowRuleStore, also employ a strong consistency
model. Despite the internal choices, SDN developers are, however, free to adopt any of the
two types of consistency models in their applications (ONOS-wiki2 2018).

5.1. Distributed controller architectures 89

Figure 5.7: ONOS cluster synchronization (from ONOS-wiki2 2018).

Similarly to OpenDaylight, ONOS also uses an OSGi runtime framework to promote mod-
ularity and flexibility in application development, using Apache Karaf as the OSGi runtime
environment. However, it differs from OpenDaylight since applications do not follow an
Model-view-controller (MVC) design pattern. ONOS leverages the Apache Felix framework
to create application bundles (oar - ONOS application repository files) and to provide late-
binding (at runtime) for OSGi services and components (through @Service and @Component
annotations) – core service dependency injection (ONOS-wiki4 2018). Unlike OpenDaylight,
the ONOS architecture (Figure 5.8) is not a service oriented architecture (SOA) and is much
better interpreted as a layered design. In fact, some authors state ONOS application devel-
opment model is similar to the one employed by OpenDaylight before MD-SAL (Goransson
et al. 2014).

Figure 5.8: ONOS stack architecture (from ONOS-wiki3 2018).

The ONOS architecture is based on the notion of Providers and Consumers. Providers
and consumers glue together to create what ONOS developers call ONOS subsystems - a
vertical slice on the architectural layer stack. ONOS is composed of the following subsystems
(ONOS-wiki3 2018):

90 Chapter 5. Software Architecture

• Device Subsystem - Manages the inventory of infrastructure devices (switches).

• Link Subsystem - Manages the inventory of infrastructure links.

• Host Subsystem - Manages the inventory of hosts and their location in the switch
fabric.

• Topology Subsystem - Manages net topology graph representations.

• PathService - Computes/finds paths between infrastructure devices or between end-
station hosts using the most recent topology graph snapshot.

• FlowRule Subsystem - Manages inventory of the match/action flow rules installed
on infrastructure devices and flow statistics.

• Packet Subsystem - Allows applications to listen for data packets received from
network devices and to emit data packets onto the network via device ports.

One of the most interesting aspects of the ONOS subsystems is the fact that each of them
provides object abstractions. For example, for an SDN application to install a flow rule it just
has to inject the FlowRuleService as a dependency (through a Java annotation) prior to
the application activation method. The OSGi runtime will provide late-binding making the
service available as a Java object when the application is activated. The FlowRuleService
contains methods to create a FlowRule object and to install it on a Device object. Device
objects are obtained through a search method in DeviceService or through iteration on the
Topology object provided by the TopologyService. This level of abstraction (and ONOS
exceptionally good documentation) results in a much more familiar environment for software
developers. Figure 5.10 shows available abstractions provided by the ONOS core.

Figure 5.9: ONOS subsystems and abstractions (from ONOS-wiki3 2018).

The ONOS architecture clearly separates the boundaries between the southbound interfaces
and the northbound interfaces accessible for applications (dashed lines in Figure 5.10). This
separation is ensured by the existence of a "monolithic core" which contains the fundamental
subsystems every application requires. As a result, the problems with code honeypots that
affected OpenDaylight development (see Section 5.1.1) did not express in ONOS. Although
multiple project partners also work in ONOS development, it happens a layer above of
the controller core services through applications that extend the controller. CORD, is an

5.1. Distributed controller architectures 91

example of a framework where multiple companies work together to create a applications
(installed in ONOS) for datacenter use-cases (OpenCORD 2018).

The abstraction between the forwarding plane and ONOS applications uses a publish-
subscribe design pattern, heavily supported by events and provider and consumer components
(see Figure 5.10).

Figure 5.10: ONOS applications and core services relationship (from ONOS-
wiki3 2018).

A provider in ONOS is an OSGi component responsible for interfacing with network equip-
ment via protocol specific libraries (e.g. OpenFlow, NetConf, OVSDB). Providers register
in the ONOS core via a service manager. The service manager is responsible for interacting
with the provider either synchronously (via query-response) or asynchronous by implementing
listeners for protocol specific events. The service manager is also responsible for translating
protocol descriptions and events into high-level abstractions, homogeneously across proto-
cols. Descriptions and events are immutable objects that map each specific protocol event
and description into high-level objects such as Device, Host, Flow or FlowStatistics.
These objects are then exposed to high-level applications via the northbound interface via
a common API. Application components can then query each subsystem or subscribe to
network events. Aditionally they can also extend the controller external interfaces: REST,
command-line, Web-sockets and GUI.

ONOS also stands out due to the internal concept of Intent-based networking (ONOS-wiki5
2018). Intent-based networking treats network operations in the form of policy and goal,
rather than a mechanism. An intent specification (e.g. "ensure connectivity between two
hosts") is installed in ONOS (via the intent framework), which compiles the intent and
translates it into essential operations in the network environment. The controller internally
tracks the network state to ensure the intent is always guaranteed. For instance, if an
host-to-host connectivity intent is installed and a switch becomes unavailable, the intent
framework will try to find a redundant path to ensure connectivity and automatically create
new rules. Figure 5.11 shows intent compilation in ONOS.

92 Chapter 5. Software Architecture

Figure 5.11: ONOS intent framework (from ONOS-wiki5 2018).

As of the last version, the Open Network Operating System supports the following intents
(ONOS-JAVAdocs 2018):

• Host-To-Host intent: Ensures connectivity between two hosts in the network.

• Flow-Rule-Intent: Groups several FlowRule objects into a single intent.

• Multi-Point-To-Single-Point-Intent: Ensures bi-directional connectivity between a
group of multiple hosts and a single host (e.g. webserver).

• Point-To-Point-Intent: Ensures the connectivity between two points in the network
always happen between a pre-defined set of network switches.

In what concerns performance, a single ONOS instance can install just over 700K local flow
setups per second. An ONOS cluster of seven can handle 3 million local, and 2 million
multi-region flow setups per second (On.Lab 2017).

5.1.3 Performance of Distributed controller

Throughout the years, multiple authors have been evaluating and publishing SDN controller
benchmarks in the literature. Many of those works contemplate no-longer maintained con-
trollers (Tootoonchian et al. 2012, Shah et al. 2013, Shalimov et al. 2013, Fernandez 2013
and Y. Zhao et al. 2016) or provide performance metrics that do not allow a direct com-
parison between OpenDaylight and ONOS (Khattak et al. 2014). Other references provide
a direct comparison between both controllers but rely on older controller versions (Salman
et al. 2016, for instance, present a comparison between OpenDaylight and Floodlight – the
predecessor of ONOS). Due to substantial architectural changes in both controllers (MD-
SAL change in OpenDaylight and the new distributed primitives in ONOS) such comparative
studies may not be directly transposed to current versions. Furthermore, ONOS and ODL

5.1. Distributed controller architectures 93

have benchmark tests incorporated on their continuous development pipeline (buildbots)
but not only test machines have different specifications but also the tests focus on as-
pects that do not allow to infer a comparison conclusion. Nevertheless, all those efforts
have been contributing to standardize performance benchmarks and to the development
of common evaluation tools. CBench (Trema 2018), initially developed for evaluating the
Trema controller is now the de-facto tool to benchmark performance aspects of SDN con-
trollers (Tootoonchian et al. 2012). The CBench test evaluates two performance metrics:
throughput and flow set-up latency. In throughput mode, each CBench virtual switch con-
stantly sends Packet_in messages to the controller and counts the number of corresponding
Packet_out messages received from the controller. In latency mode, each CBench virtual
switch sends a Packet_in to the controller and waits for the Packet_out message. The
average flow setup latency is then calculated by CBench through evaluation of the delay
between responses in the test period. Darianian 2017 performed the CBench experiment
against current versions of OpenDaylight and ONOS. The testbed was composed of 3 Intel
Xeon E5-2670 (24 cores @ 2.30 GHz, 256 GB RAM, 4 TB hard drive, and a 10 Gbps
network connection for controller-to-switch communication achieved through a Cisco UCS
6248 switch). One server was used for CBench, while the other two were due to the in-
stallation of both controllers. Test results are presented in Figure 5.12. The authors also
evaluated the effect of Hyper-Threading in controller performance.

1 8 16 32 64 128 256
Number switches

0.0

0.5

1.0

1.5

T
h
ro

u
g
h
p
u
t

(M
ill

io
n
 r

e
sp

/s
)

ONOS OpenDaylight

(a) Throughput comparison

1 8 16 32 64 128
Number switches

0

20

40

60

80

100

120

La
te

n
cy

 (
µ
s)

ONOS OpenDaylight

(b) Flow setup latency results

Figure 5.12: Cbench test results for OpenDayLight and ONOS (plotted from
data in (Darianian 2017)).

The authors’ evaluation of ONOS and OpenDaylight through CBench indicates that ONOS
outperforms OpenDaylight for throughput and latency tests. In fact, in throughput mode
ONOS response scaled well with the increase of the number of switches. It reached a max-
imum plateau of 1.5 M responses/second in average. OpenDaylight, on the other hand
showed performance degradation while the number of connected switches increased. Flow
setup latency in ONOS was found to be nearly half of the latency of OpenDaylight. The
presented results are interesting since both ONOS and ODL use the Netty framework for net-
work I/O (UDP and TCP socket servers), so similar results would have been expected. We
can infer the threading mechanisms of both controllers and the consistency models for their
internal stores play a significant role on the overall controller performance. Hyper-threading
brought improvements in both controller experiments but performance-wise differences re-
mained the same. The authors also analysed the CPU usage of both controllers by grabbing

94 Chapter 5. Software Architecture

metrics from Netdata during test execution. CPU usage for both controllers with 8 switches
are presented in Figure 5.13. The differences in Packet_in handling latency can also be
seen on the CPU usage. It should be noted that ODL, unlike ONOS, serialize all the data
to disk in order to enforce a strong consistency model. Hence, the obtained results were
somehow expected.

(a) ONOS CPU usage (b) OpenDayLight CPU usage

Figure 5.13: CPU usage of both controllers with 8 switches (from (Darianian
2017)).

Another important reference is BTest, an SDN controller benchmark tool proposed by the
Politecnico di Milano (Cadenas et al. 2016). BTest is a Cbench extension to account for
stress testing (perform latency and throughput tests over long periods of time) and automatic
plotting supported through a web interface. Although not stating the specification of used
machines, the test environment was kept consistent to perform tests on ODL (Helium
version) and ONOS (version Falcon).

Throughput and latency test results are presented in Figure 5.14. The results of the same
tests executed through a 24 hour interval (stress test) are presented in Figure 5.15.

8 16 32 64 128
Number switches

4

6

8

10

12

T
h
ro

u
g
h
p
u
t

(T
h
o
u
sa

n
d
 r

e
sp

/s
)

ONOS OpenDaylight

(a) Btest - throughput mode

8 16 32 64 128
Number switches

0.12

0.13

0.14

0.15

0.16

0.17

0.18

0.19

La
te

n
cy

 (
m

s)

ONOS OpenDaylight

(b) Btest - latency mode

Figure 5.14: Btest test results (plotted from (Cadenas et al. 2016)).

Obtained results are in-line with those of Darianian 2017: ONOS surpassed ODL in both
latency and throughput tests. Note, however, that both tests only reflect the operation of a
single controller node and completely neglect the clustering capabilities of both controllers.
As the ONOS team states (ONOS-team 2016), new testing methodologies should be de-
veloped to better interpret the effects of clustering on SDN controller benchmarks. It is
impossible to extrapolate performance of a multi-node controller from a single-node one, as

5.1. Distributed controller architectures 95

8 16 32 64 128
Number switches

4

5

6

7

8

9

10

11
T
h
ro

u
g
h
p
u
t

2
4
h
 (

T
h
o
u
sa

n
d
 r

e
sp

/s
)

ONOS OpenDaylight

(a) Throughput mode 24 hours

8 16 32 64 128
Number switches

0.12

0.14

0.16

0.18

0.20

La
te

n
cy

 2
4
h
 (

m
s)

ONOS OpenDaylight

(b) Latency mode 24 hours

Figure 5.15: Btest stress test results (plotted from (Cadenas et al. 2016)).

with multi-node controllers one can easily get worse performance or even poorer reliability.
However, we can expect a ONOS cluster operating in the same conditions as a ODL cluster
will show better performance metrics due to its internal eventually-consistent primitives.

5.1.4 Selected Network Controller

In Section 4.4.2 we state the SDN controller platform should be selected according to
performance metrics. If we account for this and take benchmark results from Subsection
5.1.3 into consideration, ONOS is an obvious choice.

Moreover, in our opinion there are stronger facts which also lead us to ONOS. Unlike ODL,
ONOS started from the early days as a distributed controller with clear quality attributes
in mind: performance and availability. It is thus expected to be much more mature in what
concerns its internal clustering mechanisms. Furthermore, those quality attributes are similar
to the ones chosen for the development of the platform of this thesis. The architectural
evolution of both controllers also shows different trends. The evolution of ONOS has
been to improve its quality attributes while keeping a stable API. ODL, on the other hand,
dramatically changed its API as an effort to keep a consistent development model where
multiple partners can co-operate. By doing so, YANG (used by network operators with the
NetConf protocol) was selected as the data model for the MVC design pattern, probably as
a way to reduce the learning curve for network operators in the SDN transition. However,
for someone without prior YANG or Netconf experience, the SDN application development
experience can be cumbersome with OpenDaylight. ONOS, on the other hand, has a stable
core which provide all the functionalities any network application requires.

ONOS also distinguishes itself from ODL on other important aspects in the context of this
thesis. The distributed primitives give SDN developers more flexibility as a part of the appli-
cation data can be stored in a non-consistent way to minimize the effects on performance.
ONOS intents are also a key aspect for some design decisions in this thesis. Host-to-Host
intents, for instance, automatically create host-pair flow rules leading for an easier way to
create logical sub-networks than relying on VLAN tagging. Since sub-networks are con-
structed in the form of flow rules, an SDN-based IDS application can then change those

96 Chapter 5. Software Architecture

rules in a proactive way, to make network switches to provide multiple output ports per
rule. The extensive existence of event types and the possibility of receiving those events in
SDN applications by means of listeners also makes the development of an SDN probe (event
factory) easier.
Considering all the advantages presented above, ONOS was selected as the SDN controller
for the platform to be implemented within the scope of this thesis.

5.2. System Architecture overview 97

5.2 System Architecture overview

This section aims at providing a bird’s-eye view over the architecture of the SDN subsystem.
The design internals (lower-level architecture) of all the SDN applications are provided in
section 5.4.

5.3 High-level architecture

Figure 5.16 presents the high-level architecture of the SDN subsystem of IADS. It is com-
posed of 4 main components: a management web-interface, a distributed control plane,
the field network and the virtualization infrastructure. The domain processor (see section
4.1) is responsible for receiving events produced within the SDN subsystem. However, its
architecture definition is out of the scope of this thesis.

Figure 5.16: IADS SDN high level architecture.

The control plane is composed by a cluster of SDN controller nodes containing a set of
specially crafted applications. Those applications enforce the goal of the control plane
(managing the field network) through the installation of flow rules via the OpenFlow pro-
tocol. The virtualization infrastructure is a set of several physical computing nodes where
virtual probes (virtual IDS, virtual honeypot) are deployed in the form of containers. Each
virtualization host is composed by a containerization engine (Docker) responsible for orches-
trating containers and a virtual switch (supporting the OpenFlow protocol) whose goal is
to place containers "accessible" to the field network. Applications in the network controller
issue container creation requests and, once they are accessible from the controller, program
the network to provide copies of the network traffic to launched containers. In broad terms,

98 Chapter 5. Software Architecture

the distributed control plane can be seen as the SDN domain of the platform whereas the
virtualization infrastructure represents the NFV domain. The management web-interface is
responsible for providing a global administration interface to the whole platform (including
the control plane, the underlying network, the virtual infrastructure and any other component
in the IADS platform).

The architecture of each control plane node is presented in Figure 5.17.

Figure 5.17: Distributed control plane node architecture.

As seen in Figure 5.17, the application layer of the distributed controller includes 11 applica-
tions. Three of them are already part of the ONOS controller and help to respond to some
of the elicited requirements:

• Device mastership load balancer - This application automatically balances switch
mastership across all available SDN controller nodes. It greatly improves performance,
since management overhead is seamlessly distributed across all nodes. For instance,
if we have 3 nodes and 3 switches, each switch will be configured by the controller
to have a different master controller node. Redundant (and inactive) connections are
still kept to other nodes in the controller cluster.

• Proxy Arp - An application that makes any ARP packet in the network to be sent
to the controller. It is required so the global topology is constructed by the network
controller, and to discover new hosts in the network.

• DHCP - A DHCP server implementation with SDN. Any DHCP requests are sent to
the controller. The controller is also responsible for responding with an available IP
address. This application is useful in the platform since it makes easy to attribute
IP addresses to hosts in the network without the need of configuring each host with
static IP information.

5.3. High-level architecture 99

The remaining applications did not exist yet in the controller and were developed in the
scope of this thesis - they are the core of the SDN subsystem of the IADS platform. Func-
tional aspects of the platform (c.f. Section 4.2.7) map well to individual applications. By
using multiple applications, quality aspects such as code modularity and interoperability are
promoted within the platform. Below, a simple description of each application is provided.
Note, however, that component and connector views are provided for each of these applica-
tions in Section 5.4, allowing a lower-level analysis of its architectural internals. Note also
that in Figure 5.17, and contrarily to some references in the literature, all network logic is
implemented in the application layer of the controller (using its core services) not relying
on high-latency controller external interfaces (such as REST). This design decision greatly
contributes for improving the performance of the subsystem.

• Users management application - This application is responsible for creating and
storing user information (network admins, network tenants and security monitors) in
the controller distributed store. It is also responsible for providing the core logic for
user authentication.

• Network management application - Application responsible for creating logical sub-
network in the overall network, by taking advantage of intent-based networking. Since
the global topology graph is available at the controller, the application can install
host-to-host intents as part of the definition of a sub-network. This application is also
responsible for mapping each sub-network with a network tenant profile. Host, link,
device information and statistics are also retrieved from the service this application
exposes on the controller.

• Docker integration application - This application works as an API to access docker
physical hosts from the network controller. Furthermore, it also implements an API
to a private docker registry to upload docker template images. Other applications use
the services exposed by this application to issue container start requests or to retrieve
container network information as if they were regular SDN hosts. It is also through this
application that physical docker nodes (and a registry) are associated with the SDN
subsystem. Container statistics are also retrieved via this application. Any container
launched from this application contains a label to indicate if it should be attached to
the SDN network.

• vNIDS application - Application that implements the network logic for a virtual IDS
service in SDN. This application issues IDS container start requests via the docker
integration application (specifying which IDS image to use from the docker registry),
modifies the rules installed by the network application so they have multiple output
ports (a copy of the packet has to reach the container) and also installs lower priority
rules to ensure any packet reaching any switch (and sent or received by the hosts
being monitored) also reaches the launched container. Note an IDS in SDN is just a
service definition. A network tenant can have multiple IDS services associated with
a logical network, each one having different container images (e.g. one using Snort,
other using Bro).

• vHoneypot application - Application which allows the user to specify an IP address
range for the operation of a virtual honeypot. It requests a container start via the
docker integration application and installs rules in the underlying switch infrastructure
to forward any packets (whose destination is an IP in the specified range) to the
launched honeypot container and vice-versa.

100 Chapter 5. Software Architecture

• Data diode - The data diode application is a simple SDN application which allows
network tenants to block traffic in a specified edge link (the link between a host and
device) in one of its directions. It works similarly to a physical data diode, however, it
is a virtualized version implemented with SDN and OpenFlow.

• Network event factory application - This SDN application is a special probe in the
IADS platform. It encodes any SDN event (device, host, link, topology, statistics)
received in the controller and sends it asynchronously to the domain processor. En-
coding is performed according to the ATENA data model (AtenaConsortium4.3 2017)
using the Avro serialization format. The existence of this application allows the SIEM
component of the IADS architecture (see section 4.1) to also employ machine learning
algorithms in data originating on the control plane.

• Web API application - This application extends the REST and Websockets external
interfaces of the controller in order to expose the services defined (and exported)
by all the other applications. Having all the applications defining independent REST
interfaces could have been a possible alternative. However, as the application layer of
the controller scales, having all the REST definitions in one single place might reveal a
better architectural decision on the long run. A consistent namespace can also be used
to the whole platform. This application is accessed (via the REST and websockets
interface) by the management web interface.

Network programming within the SDN subsystem is furthered explored in Chapter 7. Note
that in Figure 5.17 OpenFlow is the only southbound protocol enabled in the controller. Ad-
ditionally, all applications also expose their services to the controller command-line interface.
The CLI interface enables quick testing for application logic and provides the network admin
with an alternative to REST. Figure 5.18 illustrates the architecture of another important
block in the IADS subsystem: the virtualization host architecture.

Figure 5.18: Virtualization host internal architecture.

5.3. High-level architecture 101

Each virtualization node is required to have at least two Ethernet physical interfaces. One
is connected directly to the SDN network while the other connects to the management
network. The SDN interface enables virtual probe containers to receive network packets from
the field network. The management network allows the network controller (more precisely
the docker integration application) to request the start of new virtual probe containers. The
virtualization node uses the Docker container engine to orchestrate the container lifecycle.
This lifecycle is exposed to the SDN controller via its REST API implementation. The docker
container engine also manages container networking: by default it creates a network bridge
to which all containers are attached. This bridge makes it possible for containers to have
access to the management network, meaning virtual probe containers can send events to
the domain processor without changes to Docker. However, making virtual probe containers
to receive network packets from the field network is not a trivial task, since Docker does
not support OpenFlow by default. To accomplish this, each physical virtualization host
has a virtual OpenFlow switch installed and a custom agent (SDN glue agent) developed
specifically for this architecture. The SDN glue agent connects to the Docker API via its
unix socket and listens for container-based events. Once a start event is detected and if
the container contains a known label (e.g. "–is-sdn=true") the agent creates a virtual
ethernet interface, places it under the container Linux namespace and attaches it to the
virtual switch bridge. The process is similar to the one described in Section 3.5.
The fact containers can belong to each of the two networks really entails one of the biggest
advantages of the proposed architectures: the platform can use virtualization to efficiently
manage its computational resources. Generic containers (e.g a database server) can co-
exist with virtual probe containers within the same physical hardware. Recall from Section
3.5 container based virtualization has a lower resource footprint when compared to virtual
machines. Hence, the whole platform is designed with performance in mind. To better
understand the steps required for virtual probe deployment and how the several architectural
blocks interact, a workflow diagram is shown in Figure 5.19.

Figure 5.19: Probe deployment workflow.

The docker private registry in Figure 5.19 is a generic container which can run either on
the virtualization infrastructure or in a special machine. It can also take advantage of the
clustering mechanisms of Docker (e.g. Docker swarm) to be distributed. The private registry
is based on the official Docker registry image template and stores all the container images

102 Chapter 5. Software Architecture

used for probes in different categories. For instance, the NIDS category groups templates
specific for intrusion detection (e.g Snort) while the Honeypot category groups template
images related to the vHoneypot (e.g. Honeyd). The registry can be seen as a "security
probe" store.

To conclude the presentation of the high-level architecture of the SDN subsystem, an allo-
cation architectural view is provided in Figure 5.20, identifying the used protocols.

Figure 5.20: Allocation view.

The architecture goes a step further in the way it also sees internal components (such as
the control plane) as micro-services. Each controller node is, in fact, a container running in
general-purpose hardware. Deploying the control plane or migrating to more recent versions
of the controller is easier due to containerization. It is also important to mention the
web-interface is served by a Nginx container which also acts as a reverse proxy and load
balancer. Note that the REST interface exposed from the network control plane (which
the mentioned SDN applications extend) is available at any node. The NGINX container
proxies REST API requests to the network controller using round-robin in order to distribute
the load across all controller nodes. The architecture is also though to support encryption
in every communication possible. Openflow switches can be configured to use TLS in
the connection with the control plane. The docker registry is also configured with x509
certificates to communicate over HTTPS as well as the virtualization nodes.

5.4 System Applications and Components

For each application present in Figure 5.17 component and connector views are provided
in this section, in order to deeply document the SDN subsystem architecture. The goal is
to identify all the services each application exposes to the controller runtime as well as any
dependencies on the controller core (accessed through the northbound interface).

5.4. System Applications and Components 103

Since SDN applications are OSGi bundles, a few notes are required before going into each
application details. OSGi (OSGiAlliance 2018) has essentially two building blocks: services
and components. An OSGi service is any object that is registered in the OSGi Service
Registry and can be looked up using its interface name(s). An OSGi component tends to be
an object whose lifecycle is managed, usually by a component framework such as Declarative
Services (DS), Blueprint or iPOJO. OSGi components have some specificities:

• A component may be started and stopped.

• A component may publish itself as an OSGi service.

• A component may bind to or consume OSGi services.

In component-connector views provided in below sections, OSGi components and services are
clearly identified. Other components referred just as "components" are internal functional
blocks of the application (e.g.: the implementation of a client to an external system) required
by published OSGi services and components. Each SDN application expose one or more
services to the service registry. Those services can then be looked up in the OSGi service
directory by other applications and their logic can be consumed by other applications. The
services exported by each application are coloured in blue in the following diagrams. Note
that, in the following figures, ALL the services and components above the northbound
interface were developed by the author of this thesis.

5.4.1 Users Management SDN Application

The Users management SDN application expose an OSGi service (UserManagementService)
which results from implementing the service definition interface. This is one of the simplest
applications in the SDN-subsystem since it does not implement a distribured store. The
application only exists as a means to validate users’ provided authentication tokens and to
provide the information contained within a valid token to the network controller. Authenti-
cation in IADS is executed by an external middleware component (IADS-auth) using JSON
Web Tokens (JWT) - out of the scope of this thesis. The Users management application
shares the same encryption key as IADS-auth to be able to validate provided tokens. The
application makes use of ONOS ConfigurationService to let administrators configure the
encryption key as an application property. ONOS ApplicationService is used to register
the application in the controller.

«OSGi Service»
UserManagement Service

«OSGi Component»
JWT Component Use

«OSGi Service»
ONOS Application Service

Use

«Interface»
UserManagementInterface

Northbound Interface

Users Management Application

«OSGi Service»
ONOS Configuration Service

Use

Figure 5.21: User Management application component and connector view.

104 Chapter 5. Software Architecture

5.4.2 Network Management SDN Application

Contrarily to the Users Management application, the Network Management application
implements a distributed store. The store is used to store sets of hosts belonging to each sub-
network (and the network name). The store also maps network names to network tenants.
To do this, the main NetworkManagement OSGi service depends on the UsersManagement
service which is registered in the service directory by the User management application.

Figure 5.22: Network Management application component and connector
view.

The application highly depends on ONOS core services. The IntentService is used so
the NetworkManagementService can compute host-to-host intents based on the hosts be-
longing to each subnetwork. TopologyService is used for the application to compute the
topology graph of the whole network or of logical sub-networks. The remaining services
are used just as a means to proxy information from the controller (e.g. device, link and
host statistics). Note that the network controller by itself cannot filter the network infor-
mation of assets belonging to logical sub-networks (sub-networks are a concept of the IADS
SDN subsystem). Hence, this application has all the logic required to reduce the network
information available to users.

5.4.3 Docker Integration SDN Application

The Docker Integration application is just middleware that creates a common service to
interact with the Docker container engine. Similarly to the Users Management applica-
tion, it does not depend on other applications but it is itself a dependency for other ap-
plications. It exposes three OSGi services to the service register: DockerClientService,
DockerRegistryService and DockerNodeService. The DockerClientService groups
all the logic required to start, stop, pause, get logs or execute commands on containers. It
uses the DockerClient component - an implementation of the Docker API via REST built
from scratch. This service does not implement any store since it is simply an API to be used
within ONOS.

5.4. System Applications and Components 105

Figure 5.23: Docker integration application component and connector view.

The DockerRegistryService exposes the Docker registry REST API to ONOS. The com-
munication between the registry and the controller is achieved with the RegistryClient
component. The DockerRegistryService stores the information of the registry associated
with the platform (IP address, port, username and password). The DockerNodeService is
the service the application uses to associate or remove physical virtualization nodes from
the platform. This information is stored in the DistributedDockerNodeStore OSGi ser-
vice. Note that when an external application requests the start of a container it expects
the Docker management application to respond with a Host ONOS object. In order to do
this, the application relies on the HostService to find the Host object corresponding to the
container (a lookup by IP or MAC address).

5.4.4 vNIDS SDN Application

The vNIDS application uses the services exposed by the Users Management application,
Network Management application and the Docker integration application. It uses the
NetworkManagementService and the UserManagementService to verify if the host re-
quested to be monitored belongs to a tenant. Furthermore, it requests the topology graph
of the sub-network also from the NetworkManagementService.

«OSGi Service»
vNIDSService

«OSGi Service»
vNIDSDistributedStore

Extends

«OSGi Component»
ONOSStore

«OSGi Service»
ONOS Application

Service

«Interface»
vNIDSStore

Northbound Interface

vNIDS Application

«OSGi Component»
ONOS CLI service

Extends

Users Management Appplication

«OSGi Service»
UserManagement Service

Use

Network Management
 Appplication

«OSGi Service»
NetworkManagement

Service

Use

Docker Integration Application

«OSGi Service»
DockerClientService Use

«OSGi Component»
vNIDS CLI

Use

«OSGi Service»
FlowRuleService

Use Use

«Interface»
vNIDSService

«OSGi Component»
LogicalNetworkMonitor

Use

Use

«OSGi Service»
LeadershipService

«OSGi Service»
ClusterService

Use Use

Figure 5.24: vNIDS application component and connector view.

106 Chapter 5. Software Architecture

It then requests the start of a new vNIDS container from the DockerClientService and
receives the container information as an Host object abstraction. This abstraction allows
the application to also find the edge device to which the container is connected. The
ONOS TopologyService is used to find the path between the host being monitored and
the container. For all of the devices in the path, the vNIDSService installs the necessary
flow rules using ONOS FlowRuleService. Data (maps) for each service are stored in the
vNIDSDistributedStore OSGi service. As logical subnetworks are subject to change (e.g
a new host might be added to or removed from a given sub-network), the vNIDS appli-
cation needs to be able to adjust dynamically to changes in the underlying network. The
LogicalNetworkMonitor component is responsible for listening to NetworkEvents pro-
duced within the Network Management application. The component follows an observer
design pattern, receiving any of the events (network created, removed and modified) asyn-
chronously. Since there are multiple controller nodes in the cluster, the component makes
use of ONOS LeadershipService to perform an election on a shared variable/topic to de-
cide which node is responsible for performing the actions a given network event requires.
ClusterService is used by the application to obtain the list of available controller nodes.
In the case the leader fails, a new election takes place and another controller node will be
responsible for mapping the application state with the state of the network. If a given host
is removed from a network and a vNIDS service is deployed on the network, the event will be
captured by the LogicalMonitor, the respective flow rules are removed for this particular
host and the container may be destroyed. Using the same logic, when a network is destroyed,
all the vNIDS containers associated with the network are also destroyed.

5.4.5 vHoneypot SDN Application

Architecturally, this application is similar to the vNIDS application. The main difference is
that since the honeypot operations might require containers to have (or fake) IP addresses,
the application must be able to lock them in the DHCP application so they won’t get
assigned to other hosts in the network. Flowrules are installed by the FlowRuleService
and the topology graph is provided by the TopologyService to the NetworkManagement
service of the Network Management application upon which this application depends.

«OSGi Service»
vHoneypotService

«OSGi Service»
vHoneypotDistributedStore

Extends

«OSGi Component»
ONOSStore

«OSGi Service»
ONOS Application

Service

«Interface»
vHoneypotStore

Northbound Interface

vHoneypot Application

«OSGi Component»
ONOS CLI service

Extends

Users Management Appplication

«OSGi Service»
UserManagement Service

Use

Network Management
 Appplication

«OSGi Service»
NetworkManagement

Service

Use

Docker Integration Application

«OSGi Service»
DockerClientService Use

«OSGi Component»
vHoneypot CLI

Use

«OSGi Service»
FlowRuleService

Use

«Interface»
vHoneypotService

«OSGi Component»
LogicalNetworkMonitor

Use

Use

Use

«OSGi Service»
LeadershipService

«OSGi Service»
ClusterService

Use
Use

DHCP Application

«OSGi Service»
DHCPService

Figure 5.25: vHoneypot application component and connector view.

The application exposes a vHoneypotService and stores the information of each honeypot
instance in a distributed store. It is important to note that the application also implements

5.4. System Applications and Components 107

a LogicalNetworkMonitor component that listens to NetworkEvents issued by the Network
Management SDN application and adjusts the deployed services, depending on the event
that occurred in the underlying network.

5.4.6 Data Diode SDN Application

The data diode application is the simplest application of all the three network security
functions (vNIDS, vHoneypot and data diode). It just depends on the FlowRuleService to
install rules in edge switches once a network tenant requests a link to operate as a data diode.
It retrieves the Link object abstraction from the NetworkManagementService, programs the
network and stores the instance data in a distributed store (DataDiodeStore).

«OSGi Service»
DataDiodeService

«OSGi Service»
DataDiodeDistributedStore

Extends

«OSGi Component»
ONOSStore

«OSGi Service»
ONOS Application

Service

«Interface»
DataDiodeStore

Northbound Interface

Data Diode Application

«OSGi Component»
ONOS CLI service

Extends

Users Management Appplication

«OSGi Service»
UserManagement Service

Use

Network Management
 Appplication

«OSGi Service»
NetworkManagement

Service

Use

«OSGi Component»
DataDiode CLI

Use

«OSGi Service»
FlowRuleService

Use Use

«Interface»
DataDiodeService

«OSGi Component»
LogicalNetworkMonitor

Use

Use

«OSGi Service»
LeadershipService

«OSGi Service»
ClusterService

Use Use

Figure 5.26: Data diode application component and connector view.

Similarly to the other two network functions, in order to react to network events and adjust
the deployed services accordingly, the application also implements a LogicalNetworkMonitor.
Note that commercial data diodes used in IACS provide several features that need additional
support in software. The research paper presented in Annex D of Volume II discusses those
features and details how they can be emulated in software.

5.4.7 Network Event Factory Application

The Network Event Factory probe application implements listeners/monitors for events pub-
lished by the majority of ONOS OSGi services: Topology, Device, Link, Host, Packet,
FlowRule and intent. Events are monitored by five OSGi components: TopologyMonitor,
DeviceMonitor, HostMonitor, LinkMonitor and ControllerMonitor. Each of these
monitors asynchronously receives events from the services enumerated above, encodes them
in the Avro format (using the IADSModelConverter OSGi component) and dispatches mes-
sages to Kafka via the KafkaPublisher OSGi component. It is important to refer that due
to the reasons mentioned before each monitor must also use the ClusterService and the
LeadershipService to elect a leader for each of the event types. Hence, each monitor
only processes the event in one of the controller nodes. The application configuration is
not stored in a datastore but relies on the ONOS ConfigurationService directly. The
application also defines a distributed store (NetworkEventFactoryStore) which is solely
used to store counters for the events sent by the KafkaPublisher component.

108 Chapter 5. Software Architecture

«OSGi Service»
NetworkEventFactoryManager

«OSGi Service»
ONOS Application

Service

Northbound Interface

Network Event Factory Application

«OSGi Service»
TopologyService

«Interface»
NetworkEventFactoryService

«OSGi Service»
KafkaPublisher

«OSGi Service»
DeviceService

«OSGi Service»
HostService

«OSGi Service»
LinkService

«OSGi Service»
ConfigurationService

«OSGi Component»
IADSDataModelConverter

«OSGi Service»
NetworkEventFactoryStore

«Interface»
NetworkEventFactoryStore

«OSGi Service»
ONOS Store

Extends

«OSGi Component»
TopologyMonitor

«OSGi Component»
DeviceMonitor

«OSGi Component»
LinkMonitor

«OSGi Component»
HostMonitor Use

Use

Use
Use

Use Use Use

Usedispatch

«OSGi Component»
ControllerMonitor

«OSGi Service»
PacketService

«OSGi Service»
IntentService

«OSGi Service»
FlowRuleService

Use

«OSGi Service»
LeadershipService

«OSGi Service»
ClusterService

* Used by all monitors

Use

Use

Figure 5.27: Network event factory component and connector view.

5.4.8 Web API Application

This application makes necessary methods and data from exposed OSGi services (those
identified in blue in other component-and-connector views) accessible through REST and
Websocket endpoints. The application contains a manifest that describes all the web servlets
the application contains and their respective path. A simplified version of a component and
connector view (assuming the exposure of one of the registered OSGi services) is presented in
Figure 5.28. Authentication is achieved via JAX-RS annotations on each endpoint. Several
filters (e.g. @isAdmin and @isAuthenticated) are available depending on the role of the
user calling the endpoint. These filters make use of the UsersManagement OSGi service to
validate the provided JWT.

Figure 5.28: Web API application component-and-connector view.

The goal of this application is the creation of an abstraction layer that serves as middleware
to the (web) User Interface and any other components that desire to consume services

5.5. Chapter Wrap-up 109

belonging to the SDN network. It contributes to the centralization of all REST endpoints
in a single location lowering the development and maintenance burden.

5.4.9 Management and Visualization Web-interface

The management web-interface is a single page application written in Javascript. Its internal
architecture inherits from the used development framework: Vue-JS. Vue-JS empowers a
model view-model view (MVVM) design pattern (Figure 5.29).

Figure 5.29: Vue-js MVVM design pattern, from Whatpixel.com 2016

The MVVM design pattern distinguishes itself from the MVC approach since it does not
rely on a controller component to manipulate the Document Object Model (DOM). The
Model contains data and some business logic while the View is responsible for the model
representation. ViewModel (Vue) handles data binding, ensuring that the data changed in
the Model is immediately affecting the View layer and vice versa. Thus, the Views in Vue-Js
are data driven. Vue implements the pattern internally by setting reactive getters and setters
for the elements in the View. Listeners (watchers) are set on the Model object. Once data
changes in the Model, changes are notified to watchers which will trigger the reactive setter
methods of DOM elements updating the view (Filipova 2016).

5.5 Chapter Wrap-up

This section was focused on the software architecture developed for the SDN context, exten-
sively documenting its architecture, providing both a birds’ eye view of its main components
(control plane, virtualization infrastructure and management web interface) and a low-level
architectural view of each developed application. It first starts by discussing the fundamen-
tal cluster mechanisms in distributed SDN controllers and the main differences between the
most disseminated distributed controllers (ONOS and OpenDayLight) — while such con-
tent may at first seem to be more suitable for a state-of-the-art section, the reason for
its inclusion has to do with the intention to detail the rationale and criteria used for the
selection of the network operation system platform for the SDN subsystem. This selection
process was highly dependent on the architecture of the controller and provided features, as

110 Chapter 5. Software Architecture

well as the implicit architectural trade-offs which strongly influenced the proposed architec-
ture. The evaluation of existing network controllers allowed to conclude that ONOS, unlike
OpenDayLight, has the same design goals as the quality attributes defined for the IADS
platform. Furthermore, its documentation, performance and versatility are far superior than
OpenDayLight. Thus, ONOS was selected as the base controller supporting the IADS SDN
subsystem.

111

Chapter 6

Development Methodologies and
Work Plan

This chapter is focused on the development and implementation methodologies and over-
all thesis work plan – the adopted development strategies. Section 6.1 details the applied
software life-cycle and explains the implemented continuous-integration infrastructure which
was later adopted by the IADS development team. Section 6.2 clearly identifies what was
developed/implemented as part of this thesis and the reused software components. Section
6.3 presents the expected and actual work plan explaining the deviations. Development
timelines per SDN application are also presented. Finally, Section 6.4 provides a final re-
flexion regarding planed (and achieved) goals clearly identifying which use-cases were not
implemented.

6.1 Development Life-cycle

When developing large and complex software products, composed of several components,
there is an implicit need to follow well-structured and defined software development life-
cycles such as the waterfall model. In this kind of iterative lifecycles, a big part of the
project’s time is devoted to the requirements and design phases. This approach is expected
to lead to the production of high quality software documentation artifacts and to a greater
understanding of the software environment, but the development phase is deferred to later
stages of the project timeline. It is common to also treat the development phase as a unique
and monolithic stage. The usual waterfall model is shown in Figure 6.1.

Figure 6.1: Waterfall software development life-cycle (Royce 1970) –
(adapted from (Hughey 2017)).

112 Chapter 6. Development Methodologies and Work Plan

Eric Raymond, in "The cathedral and the bazaar" (Raymond 2008), named this kind of
approach to the development phases of a project as the cathedral-building style of devel-
opment, since each release is built as a cathedral: the source code remains private to the
developer and is released after all the implementation is done. By analyzing the overall
quality of the software projects that adopted this kind of development style, the author
concluded that this style of implementation did not reflect on the number of found bugs.
Moreover, the author refers the amount of effort in the testing phase devoted to debugging
between releases (usually under pressure due to time constrains) was sometimes impracti-
cal. Therefore, for the implementation strategy of this thesis, an alternative version of the
waterfall method was followed – mixing the implementation and testing phases and breaking
the system into its fundamental features. Similarly to waterfall, the same effort was given
to the requirements analysis of the system (as provided in the form of use-cases) and to its
architectural definition. However, the implementation and testing phases followed a Release
Early Release Often (RERO) approach (Figure 6.2).

Figure 6.2: Modified waterfall lifecycle with a RERO approach in the devel-
opment phase.

With the aid of continuous integration, and using component container virtualization, early
versions of the software were released and deployed after each feature was implemented.
This means that all the time between feature release was deferred to the execution of tests.
The testing phase comprised some unit, integration, system and acceptance testing. The
adoption of a RERO approach with continuous feature building and deploying helped au-
tomating some of the mentioned tests – mainly the execution of unit tests and other code
quality approaches such as static code analysis. The project build is only successfully (i.e.
results in a deployment) if the execution of unit tests passes. Unit tests for SDN applications
test mainly the activation and deactivation of the application in the controller. Static code
analysis consisted of using an external continuous code quality server (Sonarqube - (Sonar-
Source 2018)) to find issues in the code base. Each commit to version control resulted
in built application bundles (oar files) that were automatically installed in the production
distributed control plane. Integration testing was greatly improved by the use of container
based virtualization, since each component of the architecture was treated as a micro ser-
vice. For example, a continuous integration job exists for deploying the control plane in a
single click and install the current versions of all applications. Another CI job existed for
removing all the probe containers from the virtual infrastructure so the test scenario can
be restarted completely. For some components, the container deployment automatically
means the component integration is verified. For instance, the web-interface needs to be
"compiled" (uglify and minify the javascript code) and a new NGINX container needs to be
generated. If the build passes, we can be sure that the integration of the code in the NGINX
server was successful. System testing and acceptance testing relate normally to black-box
testing approaches so, the early release of each feature allowed enough time to ensure the
execution of tests on the deployed release until a new release was launched.

6.1. Development Life-cycle 113

The term "Release Early, Release Often" was originally referred by Eric Raymond (Raymond
2008). Associated with a bazaar-like style of development, where each project member
contributes code to the code-base, it often results in the release of versions untested /
known beforehand to contain bugs. However, its early release gives beta-testers enough
time to virtually find "every" bug.

Some of aforementioned advantages, along with other advantages provided by the RERO
implementation approach are presented below (Haack 2011):

• Results in a better product.

• Results in a happier team by splitting the effort spent in the testing phase.

• Provides a rapid feedback loop so faster value is added.

• Gets feature and bug fixes in costumer hands faster.

• Reduces the pressure in the development team to make a release.

• Keeps the developer team always stimulated and rewarded.

• Makes the schedule more predictable and easier to scope.

• Lowers the barrier between the testing team and the development team allowing the
first to follow the development efforts and to take a continuous part in the development
process.

In this thesis we implemented all the continuous integration (and delivery) for the IADS
platform. Specific build jobs existed for the control plane, the virtualization infrastructure,
for the web interface as well as for other components of the IADS architecture. Figure 6.3
illustrate the overall automated process of continuous integration, testing and deployment
we adopted.

Starting from the requirements elicitation and local development, all the code, typically small
and verifiable changes, are committed to a Source Code management (a git server). Each
commit will trigger a web hook in the Continuous Integration (CI) server, Jenkins instance
responsible from static code quality auditing, testing and finally the deployment. To avoid
excessive building times, dedicated building servers are used according the needs of each
internal component. With the use of containers to ease the process of building, packaging
and deployment, the build process consists in building a new container image for each com-
ponent of the architecture. Then, those images can be pushed to different environments
(testing, production) without the need of recompiling. An extra step of having a private and
dedicated image registry was considered to make the move of images between servers, all
the image builds are pushed to the Image registry, that stores specific image versions and
tags. This private registry is only used for the CI infrastructure and should not be confused
with the one used to store virtual probe images. Then, at the end of the building step, both
testing and production environments pull the images from the registry. The development
process loop is closed with the feedback observed in the production environment.

In alignment with the Open Web Application Security Project (OWASP) security guidelines
(OWASP-Project 2017), the continuous integration process also encompasses an automated
dependency check in its workflow (see Figure 6.4). This module is continuously updated in
a daily basis, providing the means to seamlessly integrate the OWASP security compliance
guidelines within the development process, avoiding common pitfalls, such as the use of
dangerous dependencies or inadequate development practices. It is used to test dependencies

114 Chapter 6. Development Methodologies and Work Plan

Pull Images

Feedback

Pull ImagesPush ImagesTrigger

Trigger

Webhook trigger

Requirements
and Design

Continuous
Integration (CI)

Continuous
Integration (CI)

Continuous
Integration (CI)Building ServerBuilding Server

Build Images

Production
Enviroment
Production
Enviroment

Testing
Enviroment

Testing
Enviroment Image RegistryImage RegistryImage Registry

1

Source Code
Management (SCM)

Source Code
Management (SCM)

Source Code
Management (SCM)

Development
Enviroment

Development
Enviroment

commit

2

3

4

5
6

7

8

9

Figure 6.3: Continuous Integration, Testing and Deployment for the IADS.

of SDN applications (analysis of the maven XML manifest - pom.xml file of each application)
and the website (package.json file) for known security vulnerabilities. The website deployed
container (in production environment) is tested with the OWASP Zed proxy tool (OWASP-
Zap 2018) to check for known web vulnerabilities (IP address disclosing, XSS, CSRF and
SQL injection). This CI framework was firstly defined by the author of this thesis and later
adopted by the whole ATENA team at the University of Coimbra.

Figure 6.4: OWASP dependency vulnerability analysis on the web-
management interface.

6.2. Software artifact development and component reutilization 115

6.2 Software artifact development and component reutilization

The design and implementation of the architecture and testbed of this thesis made use of
several already existing software packages, namely:

• OpenvSwitch - Software-based switch implementation with OpenFlow support.

• Open Network Operating System (ONOS) - The distributed control plane of the
SDN subsystem.

• Docker - Used for the containerization of virtual probes in the virtualization infras-
tructure and also to ease the deployment of the control plane.

In the control plane, ONOS, three already existing SDN applications (identified in Figure
5.17) were included in the architecture, to solve some of the project requirements, namely:

• Proxy ARP - To support the topology discovery within the controller.

• DHCP - To reserve static leases for virtual containers and to assign IP address for
the topology hosts as an alternative to static IP assignment.

• Mastership Load Balancer - Used to automatically balance switch mastership across
the cluster, improving the overall performance and distributiveness of the architecture.

Some other software components, on which the SDN subsystem depends or directly uses,
were made by other team members for the ATENA project:

• IADS-auth - External authentication component of IADS. The SDN Users manage-
ment application does not authenticate users but only validates provided authentication
tokens previously attributed by the IADS-auth middleware.

• IADS-avro - A Java library for the encoding of events in the IADS datamodel (in Avro
format), used in the Network Event Factory application.

• IADS-management - Middleware for probe and component configuration using the
MQTT protocol that seamlessly integrates with the management web interface. Probes
and components include a manifest file that defines which files (and regular expres-
sions) are used for post-deployment variable configuration (out of the scope of this
thesis).

For the intermediate review of the ATENA project, two of the testbed hosts were not
developed by the author:

• RapidScada Human-Machine Interface.

• Environmental Monitoring Unit (EMU).

All the other components of the architecture (and auxiliary tasks), listed below, were devel-
oped by the author in the ATENA project.

• Control plane:

– Users management SDN application.

– Network management SDN application.

– Docker integration application.

– vNIDS SDN application.

116 Chapter 6. Development Methodologies and Work Plan

– vHoneypot SDN application.

– Data diode SDN application.

– WebAPI SDN application (extending the external interfaces of the controller).

• Virtualization infrastructure:

– SDN glue agent.

– Probe containerization and adaption.

• Visualization:

– SDN section of the management web-interface (circa 90%).

• Automatic deployments:

– Continuous integration (CI) for SDN applications, SDN glue agent, web interface
and components developed by others (e.g. IADS-auth).

– Continuous code quality (Sonarqube) for the IADS-avro library and SDN appli-
cations.

– Different pipelines for complete deployment and configuration of the SDN sub-
system (and management interface) in Coimbra and IEC (Israel).

6.3 Work Plan

This thesis is affected by three main milestones:

• M1 (on 14/11/2017) - A demo of the IADS platform was presented at the European
Comission in the scope of the first project review. In the context of this thesis, a
minimum viable product (deployment of a vNIDS through the web interface) had to
be developed.

• M2 (on 22/01/2018) - Intermediate thesis delivery

• M3 (on 02/07/2018 or 03/09/2018 for the special season) - Final thesis delivery

Having started the work on the IADS platform early than the scheduling of the dissertation
course, a total of 8 tasks were defined until the final thesis delivery:

• Task 1 - Introduction to the ATENA project and the IADS platform. Familiariza-
tion with the state of the art (OpenFlow, SDN, NFV). Development of early stage
prototypes to validate possible architectural options.

• Task 2 - Requirements elicitation and formal definition of all IADS requirements for
the project documentation (used in AtenaConsortium4.1 2017).

• Task 3 - Architecture definition and test bed implementation.

• Task 4 - First development and implementation stage:

– Users Management SDN application.

– Partial Network Management SDN application.

– Partial Docker Integration SDN application.

6.3. Work Plan 117

– vNIDS SDN application.

– SDN glue agent.

– Management web interface to support the above applications.

– Concurrent implementation of the continuous integration infrastructure.

• Task 5 - Writing of the first version of the thesis (intermediate thesis)

• Task 6 - Second phase of development:

– Refinement of the architecture and final testbed implementation.

– vHoneypot, data diode, network event factory

– Finish the Network Management application and the Docker Integration appli-
cation with missing features to support the new functionality introduced by the
new network services.

• Task 7 - Testing and validation methodology development. Validation of the proposed
architecture in terms of performance and availability. Preparation of the first round of
research papers.

• Task 8 - Writing of the final thesis.

The work timeline, proposed at the intermediate delivery of this thesis is represented in the
gantt chart of Figure 6.5.

2017 2018

04 05 06 07 08 09 10 11 12 01 02 03 04 05 06 07

Apr May Jun Jul Aug Sep Oct Nov Dec Jan Feb Mar Apr May Jun Jul

Task1

Task2

Task3

Task4

M1

Task5

M2

Task 6

Task 7

Task 8

M3

Figure 6.5: Gantt chart for the thesis activities (expected by the intermediate
thesis delivery).

118 Chapter 6. Development Methodologies and Work Plan

In reality, the timeline suffered some deviations, delegating the final delivery of the thesis to
the special season (3/9/2018). The second phase of the development (and the conclusion
of the applications partially developed on the first phase of development) took longer than
initially expected. Note that building and deployment the applications (as well as application
debugging) is a time consuming process, usually requiring complete cluster reboots. A new
milestone (M4) was meanwhile introduced targeting the replication and extension of the
developed architecture in one of the partners testbed (Israel Electric Corporation - IEC) for
the final ATENA project review. The validation scenarios also took longer than expected due
to the complexity of the overall time-based metric collection. Project deliverables and writing
the companion research article also stole some time from the development and validation
tasks. The final work plan of this thesis is presented in Figure 6.6.

2017 2018

04 05 06 07 08 09 10 11 12 01 02 03 04 05 06 07 08 09

Apr May Jun Jul Aug Sep Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sep

Task1

Task2

Task3

Task4

M1

Task5

M2

Task 6

M4

Task 7

Task 8

M3

Figure 6.6: Gantt chart for the thesis activities (actual timeline).

6.3.1 Application development timeline

The gantt chart of Figure 6.7 specifies the effort spent per application and per development
stage (Tasks 4 and 6). The chart was computed taking into account the overall git com-
mit dates for each particular application/component. It is possible to see, unlike originally
expected, that the docker integration application was the the one requiring more time to
develop. In fact, despite the existence of two public Java libraries for the docker engine, one
had to be built completely from scratch. Existing libraries depend on Jersey (which ONOS
already uses) and could not be used in an OSGi environment, since it requires dependency
injection at runtime. Existing libraries could not even be reused if bundled as dependencies
(fat jar) in the docker integration application. As a result, a library was developed with the
requirement of being as simple as possible in terms of dependencies, requiring only java.net.

6.4. Final reflections 119

The first stage of development did not include the ability of pulling images from the registry
and required the images to exist in every virtualization node. In the second development
stage, a client for the Docker Registry REST API also had to be built from scratch as
well as the mechanisms for image pulling. The WebAPI application and the management
web-interface development followed the development of all the other applications closely.
Low level requirements (such as the information that should be made available from the
WebAPI) suffered several changes throughout the project development. If virtual security
services are compared (vNIDS, vHoneypot and data diode), it is possible to note all of them
took more or less the same time to be built. vNIDS took more time since it was the first
application to be developed, while the others required changes in the Network Management
application or SDN glue agent, leading to a similar development effort.

6.4 Final reflections

Considering the 139 use-cases proposed for the SDN subsystem (c.f. Section 4), the devel-
opment effort can be considered successful since only 17 use cases were not implemented.
Use cases for user registration (Users Management application) were initially developed and
a part of the application but were removed from the final version and implemented in a com-
mon IADS component (IADS-auth). Table 6.1 lists the use cases that were not implemented
along with the specific reasoning.

Table 6.1: Use cases not implemented in the final delivery.

Use Case Reasoning

NM_FR6

Renaming a created logical network was a low priority (CH) requirement.
Logical networks are supposed to have a small number of hosts while
the functionality is redundant if we consider the network can be removed
(and a new one created with a different name)

NM_FR14-21
Use cases relate to features already available in the controller web interface.
Functionality is redundant since the management web interface already
provides the topology graph with filtering capabilities

VN_FR8
This use case is out of the scope of this thesis. Probe configuration was
implemented in IADS-management in another internship.

VN_FR9-11

To properly implement scalability policies for the vNIDS service more
development time would be needed. Between scaling the virtual service and
create new ones (vHoneypot, data diode, network event factory)
the author opted for the last so more value can be added to the final
ATENA review.

NS_FR2-4

Statistics are already available in the controller web interface. The
network event factory pipes all the statistics to the upper layers of
IADS where further processing is required to take advantage of this data
for any meaningful alarm. Having the host statistics in the web interface
would not add any value to the user. Probe containers already show
statistics for monitored hosts.

IADS_NFR18 Use case relates to scalability policies

Globally, the author considers the project timeline was adequate (even considering the devi-
ations), if the required work load is taken into account.

120 Chapter 6. Development Methodologies and Work Plan

-01

2017
2018

09
10

11
12

01
02

03
04

05

Sep
O
ct

N
ov

D
ec

Jan
Feb

M
ar

A
pr

M
ay

1
st
dev

stage
(T
ask

4)
2

nd
dev

stage
(T
ask

6)
U
sers

M
anagem

ent

N
etw

ork
M
anagem

ent

D
ocker

Integration

SD
N
glue

agent

vN
ID
S

vH
oneypot

D
ata

D
iode

N
etw

ork
E
vent

Factory

W
ebA

P
I

M
anagem

ent
w
eb-interface

F
igure

6.7:
D
evelopm

ent
eff

ort
per

application.

121

Chapter 7

Development and implementation
Notes

Apart from the research component, this project has a strong development and implemen-
tation component. Thus, this chapter discusses the development decisions and the overall
development path taken in each particular section of the architecture. Section 7.1 explains
what was done on the data plane side to increase the performance of the subsystem. Section
7.2 explains network programming from the point-of-view of the developed SDN applica-
tions as well as the chosen algorithms. Section 7.3 focus on the design of the datastores
for the SDN applications and how they relate, despite being self-contained in each indi-
vidual application. Subsection 7.4 details the developed external interfaces, their use and
consumption. Section 7.5 explains the work performed on the virtualization infrastructure:
the development of the SDN glue agent and the work done on porting probe images to the
platform. Section 7.6 targets the management web-interface development. Finally, section
7.7 provides a wrap-up of the chapter.

7.1 Data plane

The work performed on the data plane was mostly the installation, configuration and reuti-
lization of already existing software packages. The OpenvSwitch project is a production-level,
multilayer open-source virtual switch implementation. It is the de-facto software switch for
OpenFlow, being extensively used in research projects. It is also the default virtual switch
in the Citrix XEN hypervisor. OpenvSwitch was used for the testbed implementation, either
in a bare-metal setup (a server operating as a switch) or virtual (in the virtualization infras-
tructure as another layer to manage container networking). It was configured with support
for the Data Plane Development Kit (DPDK) for faster packet processing (TLF 2018).
DPDK is a direct memory access (DMA) framework that enables the OSI application layer
to directly access the buffers of the network interface card, bypassing the Linux kernel and
avoiding expensive memory copy operations. DPDK is backed by the Virtual Function I/O
(VFIO) universal driver and requires the setup of hugepages. Setting up OpenvSwitch with
DPDK support was not a trivial task as the management of the network interface cards is
no-longer achieved by (nor visible to) the Linux kernel.

122 Chapter 7. Development and implementation Notes

7.2 Control plane network programming

Section 5.4 shows the low-level architecture of each developed application, identifying its
component and OSGi service that are used from the controller core layer. However, it lacks
a detailed overview over the network programming process and how it translates into flow-
rules at the switch level. Hence, this section details network programming in the IADS SDN
subsystem and briefly describes the chosen algorithms. Each developed SDN application,
depending on its purpose, applies a different set of OpenFlow flow rules to the underlying
switch fabric. Note that the Docker integration and Network Event Factory applications
are middleware applications that interface either with Docker (virtualization infrastructure)
or Kafka (domain processor). As a result, they do not program the network and are not
referred in this subsection. To better explain what happens in the background, the topology
presented in Figure 7.1, containing two hosts and an already deployed vProbe container
(in the virtualization infrastructure), is used for exemplification purposes. The figure also
presents each connection point (port to which any host is connected to each switch). Note
that despite the topology simplification, the SDN subsystem is prepared to work on top of
any topology, since connection points are obtained "on-the-fly" from the topology graph
provided by the controller core layer.

Host A Host B

S1

S2 vProbe
container

1 2

3

1

2

Virtualization infrastructure

Figure 7.1: Example topology with
two hosts and a vProbe.

Table 7.1: Host information.

Host MAC Connection
address point

Host A 00:0C:29:26:E4:49 S1-1
Host B 00:0C:29:2B:99:F7 S1-2
vProbe 00:00:00:00:00:0A S2-2

When a switch is first associated with the control plane, the ONOS controller, via the
Proxy ARP application, automatically installs three rules on the switch to forward any ARP,
LLDP (Link Layer Discovery Protocol) and BDDP (Broadcast Domain Discovery Protocol)
network packets to the controller. Thus, the flow table of each switch is similar to Table
7.3.

Table 7.2: Default switch flow table.

Priority Match Fields Action App name
40000 ETH_TYPE:arp OUTPUT:CONTROLLER core
40000 ETH_TYPE:lldp OUTPUT:CONTROLLER core
40000 ETH_TYPE:bbdp OUTPUT:CONTROLLER core

LLDP is used to discover direct links between switches and BDDP is used to discover the
switches in the same broadcast domain. ONOS periodically (every 5 seconds) injects LLDP
and BBDP packets containing a unique ID through all switch output ports. When packets are
sent back from the switch to the controller, it becomes possible to know the packet path and
determine the infrastructure topology. Similarly, before any IP communication occur between

7.2. Control plane network programming 123

hosts, ARP packets have to be generated by the communication hosts. ONOS instructs
the switch to send ARP packets to the controller and the Proxy ARP application floods
the packet through all the switch ports. This allows the controller to identify all network
hosts (including vProbes) and correctly identify their location within the topology graph.
The following subsections detail how flow-rules are installed per developed application, i.e.
per deployed network service.

Network Management Application

The Network Management application relies on ONOS intent framework to create logical
topologies. Considering the example topology of Figure 7.1, the application asks for the
creation of a HOST-TO-HOST intent between Host 1 and Host 2 when a request for a
logical network creation is placed. ONOS internally compiles the intent, finds the connection
points and the path between hosts and translates it into flow rules installed on all applicable
switches. In this case, since both hosts are attached to the same switch (S1), flow rules are
only installed in this switch with the following fields:

Table 7.3: Network Management application intent translation.

Priority Match Fields Action App name
... core

100
IN_PORT:1,

ETH_DST:00:0C:29:26:E4:49, OUTPUT:2 intent
ETH_SRC:00:0C:29:2B:99:F7

100
IN_PORT:2,

ETH_SRC:00:0C:29:26:E4:49, OUTPUT:1 intent
ETH_DST:00:0C:29:2B:99:F7

It is important to note that the Intent framework was selected instead of individual rule
installation since ONOS automatically tracks any installed intent state and readjusts them
in case of a switch or link failure.

vNIDS Application

In OpenFlow, if a packet reaching a switch flow table has match fields aligned with more
than one flow rule, only the rule with higher priority is triggered. As a result, the vNIDS
application could not simply install another rule with a different port as connectivity between
hosts would be disrupted. Two alternative approaches could have been used:

(a) Install a rule similar to the intent, with a higher priority.

(b) Modify the treatment/action of the pre-installed rule.

We decided to use (b), since in our opinion network connectivity should take precedence
over packet monitoring (availability is the fundamental requirement of IACS). Also, with
(a) we would increase the amount of installed rules making one of them redundant. Intent
readjustment would also be lost if (a) was used resulting in service disruption in a switch/link
failure case.

124 Chapter 7. Development and implementation Notes

Additionally to changing the previously installed intent flow rules, the application also installs
other flow rules (with lower priority) to guarantee that any packets generated or received
by the hosts being monitored are also redirected to the vProbe container. Note that when
monitoring host traffic, although connectivity is restricted by the logical network definition
(host-to-host intent pairs) and packets which header does not contain the match fields for
base connectivity cannot reach any host, there is an interest in monitoring those packets
from a cybersecurity standpoint. Hence, for switch S1, the flow table after adding both
hosts to a vNIDS service is shown in Table 7.4.

Table 7.4: vNIDS installed flow rules for switch S1.

Priority Match Fields Action App name
... core

100
IN_PORT:1,

ETH_DST:00:0C:29:26:E4:49, OUTPUT:2,3 intent
ETH_SRC:00:0C:29:2B:99:F7

100
IN_PORT:2,

ETH_SRC:00:0C:29:26:E4:49, OUTPUT:1,3 intent
ETH_DST:00:0C:29:2B:99:F7

80 ETH_DST:00:0C:29:2B:99:F7 OUTPUT:3 vnids
80 ETH_DST:00:0C:29:26:E4:49 OUTPUT:3 vnids

80
IN_PORT:1,

ETH_SRC:00:0C:29:2B:99:F7 OUTPUT:3 vnids

80
IN_PORT:2,

ETH_SRC:00:0C:29:26:E4:49 OUTPUT:3 vnids

Similarly, in switch S2, the same low priority rules are installed as shown on Table 7.5.
Note in this case there are no rules installed by the Network Management application as
Host1-Host2 base connectivity does not traverse this switch.

Table 7.5: vNIDS installed flow rules for switch S1.

Priority Match Fields Action App name
... core
80 ETH_DST:00:0C:29:2B:99:F7 OUTPUT:2 vnids
80 ETH_DST:00:0C:29:26:E4:49 OUTPUT:2 vnids

80
IN_PORT:1,

ETH_SRC:00:0C:29:2B:99:F7 OUTPUT:2 vnids

80
IN_PORT:1,

ETH_SRC:00:0C:29:26:E4:49 OUTPUT:2 vnids

The developed algorithm is presented below in simplified pseudo-code. The application
performs additional checks to ensure the same traffic is not replicated multiple times in the
path between the host and the vProbe container.

Algorithm 7.1: vNIDS algorithm exemplification.
1 i n p u t : h o s t I d , vProbe Id , hostMAC , t o po l o g y g r a p h
2

3 b eg i n
4 hos tSw i t ch , ho s tPo r t = ge t_connec t i on_po in t (h o s t I d)

7.2. Control plane network programming 125

5 vProbeSwi tch , vP robepo r t = ge t_connec t i on_po in t (vP robe I d)
6

7 f o r sw i t c h : t o p o l o g y g r a p h
8 do
9 r u l e s = f i n d _ i n t e n t _ r u l e s (hostMAC)

10 i f r u l e s
11 po r t = ge t_connec t i on_po i n t s (sw i t ch , vProbeSw i t ch)
12 f o r r u l e : r u l e s
13 do
14 modify_rule_with_new_output_port (p o r t)
15 done
16 i n s t a l l _ l o w _ p r i o r i t y _ f l o w _ r u l e s ()
17 done
18 end

vHoneypot Application

When a vHoneypot container is deployed, the resulting host does not have any connectivity
with the remaining network hosts. Hence, the goal of the vHoneypot application is to ensure
every host is able to reach the container. Table 7.6 shows the installed flow rules in switch
S1, considering the vHoneypot container has a MAC address of 00:00:00:00:00:0A and a
fake IP address of 192.168.1.137. In generic terms, for each host in the logical network, the
application finds the switch to which the host is connected and computes a path leading to
the running container. For each switch in the said path, rules are installed to forward traffic
from the input port to the output port (and vice-versa), considering the MAC addresses of
the host and the container. Since vHoneypot containers can fake IP addresses, rules are
also installed to forward traffic to any fake IP addresses the container is configured to use.
The following pseudocode illustrates the process for a single host.

Algorithm 7.2: vHoneypot algorithm exemplification.
1 i n p u t : host , vProbe , f a k e i p s , t o p o l o g y g r a p h
2

3 b eg i n
4 hos tSw i t ch , ho s tPo r t = ge t_connec t i on_po in t (ho s t . I d)
5 vProbeSwi tch , vP robepo r t = ge t_connec t i on_po in t (vProbe . I d)
6

7 path = get_path (hos tSw i t ch , vProbeSw i t ch) i n t o p o l o g y g r a p h
8 f o r sw i t ch , c onn e c t i o n_po i n t i n path
9 do

10 f o r w a r d _ t r a f f i c (ho s t .MAC, vProbe .MAC, conne c t i o n_po i n t)
11 f o r i p : f a k e i p s
12 do
13 f o r w a r d _ t r a f f i c (ho s t .MAC, ip , c onn e c t i o n_po i n t)
14 done
15 done
16 end

For switch S2, rules are the same as presented in Table 7.6, although with port 1 and 2
both replaced by port 1, and port 3 replaced by port 2.

Table 7.6: vHoneypot installed flow rules for switch S1.

Priority Match Fields Action App name

85
IN_PORT:1,

ETH_DST:00:00:00:00:00:0A, OUTPUT:3 vhoneypot
ETH_SRC:00:0C:29:2B:99:F7

126 Chapter 7. Development and implementation Notes

85
IN_PORT:2,

ETH_SRC:00:0C:29:26:E4:49, OUTPUT:3 vhoneypot
ETH_DST:00:00:00:00:00:0A

85
IN_PORT:3,

ETH_DST:00:0C:29:26:E4:49, OUTPUT:2 vhoneypot
ETH_SRC:00:00:00:00:00:0A

85
IN_PORT:3,

ETH_DST:00:0C:29:2B:99:F7, OUTPUT:1 vhoneypot
ETH_SRC:00:00:00:00:00:0A

85

IN_PORT:1,
ETH_SRC:00:0C:29:26:E4:49,

ETH_TYPE:ipv4 OUTPUT:3 vhoneypot
IPV4_DST:192.168.1.137/32

85

IN_PORT:2,
ETH_SRC:00:0C:29:26:E4:49,

ETH_TYPE:ipv4 OUTPUT:3 vhoneypot
IPV4_DST:192.168.1.137/32

Data diode application

Since the goal of the Data diode application is to block traffic, we chose a priority (200)
higher than the one provided by the Network Management application (100) for any appli-
cation installed rules. As multitenancy is a requirement of the SDN subsystem, rules cannot
be simply installed to drop all traffic at a port if a data diode is instantiated. An host is
an asset that can belong to multiple networks while data diodes are virtual services which
only apply to a single network. Dropping traffic at an edge link would disrupt connectivity
in other logical networks. Hence, the network programming of the Data diode application
is the following:

• Find the edge switch of the host which is required to have an uni-directional link.

• Install rules to drop traffic depending on the direction of the unidirectional link taking
into account the MAC addresses and input/output ports of all hosts in the sub-network.

For the topology of Figure 7.1, and considering a data diode is deployed in the Host A - S1
edge link (making Host A a transfer only - TX - device), the resulting flow table of S1 is as
simple as the one presented in Table 7.7.

Table 7.7: Data diode application flow rule programming.

Priority Match Fields Action App name

200
IN_PORT:1,

ETH_DST:00:0C:29:26:E4:49, DROP data diode
ETH_SRC:00:0C:29:2B:99:F7

100 intent

By selecting an higher priority for data diode flow rules, when a packet that matches both
MAC addresses reaches the S1 switch it will automatically be dropped regardless of the rule

7.3. Application datastores 127

installed by the Network management application (intents). It is also important to note
that, by default, if the packet matches no rule, the switch simply drops it as well.

7.3 Application datastores

ONOS makes use of MapDB for its internal distributed datastores. MapDB is a simple
NO-SQL database that transforms standard Java data structures (maps and lists) into
document models using different distributed primitives. Applications may decide to store
the data consistently (with a penalty on performance) or eventually consistent. Since SDN
applications are OSGi bundles (i.e. applicational containers), data stores are contained
within each specific application. The developer is free to expose the datastore directly in
the OSGi service directory or to create custom OSGi services that expose behavior rather
than data. The later was the selected approach.

Document: Network
Location: Network datastore
Application: Network Management

{
 name: unique string,
 hosts: list,
 tenant: list
}

Document: Node
Location: Docker datastore
Application: Docker integration

{
 LinkID: unique string,
 Type:string
 A: {
 type: string,
 id: int,
 item: object
 },
 B: {
 type: string,
 id: int,
 item: object
 }
}

{
 HostID: unique string,
 Location:
 {
 DeviceID: string,
 Port: int,
 }
 IpAddresses: list,
 MACaddress: list,
 VLAN: int
}

Document: HOST
Location: Host datastore
Application: core

n

n

Document: Container
Location: Docker datastore
Application: Docker integration

{
 id: unique string,
 MacAddress: list,
 IPAddresses: list,
 image: string,
 dockernode: string
 isSDN: bool
}

Document: Image
Location: Docker datastore
Application: Docker integration

{
 name: unique string,
 repository: string,
 logo: string,
 description: string,
}

1

1

{
 docker node: unique string,
 url: string,
}

1

1

Document: vNIDS
Location: vNIDS datastore
Application: vNIDS

{
 serviceID: unique string,
 network: string,
 hostsinService: list
 containers: list
}

n

n

n
1

n

1

Document: vHoneypot
Location: vHoneypot datastore
Application: vHoneypot

{
 serviceID: unique string,
 network: string,
 hostsinService: list
 container: string
}

1

1

n

n

n

1

Document: Data Diode
Location: data diode datastore
Application: data diode

{
 serviceID: unique string,
 network: string,
 linkid: string
}

n

nDocument: Link
Location: Link datastore
Application: core

1
1

Document: EventCount
Location: NEF datastore
Application: Network event factory

{
 link: int,
 controller: int,
 host: int,
 device: int,
 topology: int
}

Figure 7.2: Datastore model diagram.

To overcome the limitations of using a non-relational database, each developed application
defines Map structures that have a unique primary key (e.g serviceID) and that hold refer-
ences to unique keys in other documents regardless of its location (e.g. network, container id,
etc). The relationship between datastore documents in the IADS subsystem is simplified in
Figure 7.2 showing how, ultimately, a "relational model" exists between structures. Almost
all application data is stored consistently in the IADS subsystem using the consistentMap
primitive. The only application using an eventually consistent store is the Network Event

128 Chapter 7. Development and implementation Notes

Factory application. It simply stores counters for sent events - data that is not relevant
enough to justify a performance penalty.

7.4 External interfaces

This subsection details the developed external interfaces (REST, Websockets and command
line) of the SDN subsystem. The web-based interfaces are ultimately consumed by the
presentation layer of IADS, i.e. the management web-interface, for network orchestration.
Command-line provides an easy way for testing and performing operations in the SDN con-
troller itself.

As seen in Section 5.4 the WebAPI SDN application is the component responsible for
exposing the subsystem functionality over HTTP: defining an abstraction layer that groups
the main OSGi services of each of the other applications. This application extends ONOS
webserver (Netty) with new HTTP endpoints, following guidelines and good practices for
REST API development (Dharani 2017). For each particular applications, the services the
application consumes are grouped into a consistent namespace (e.g. networks, docker, vnids)
while application objects (e.g. hosts, devices, tenants) constitute a single endpoint. Since
HTTP methods map well to CRUD (Create, Read, Update, Delete) operations, different
HTTP methods are used on the same endpoint as a means to keep the API simple and
intuitive. GET methods often mean the endpoint will return a list of objects, POST methods
create new objects, PUT methods update a given object, and DELETE methods delete the
object. The REST API returns different HTTP status codes depending on the request. In
case of errors, an optional error JSON field is returned. Status codes are listed below.

• 200 - Successful request

• 401 - Unauthorized request

• 400 - Bad request *

• 409 - Conflict occurred while performing the request *

The developed REST interface makes use of the JAX-RS API (Oracle 2018a) of the included
controller Jersey framework (Oracle 2018b), and is fully stateless. Each endpoint expects
the presence of an Authorization header containing a JSON Web Token (JWT). The token
(base64 encoded) is generated by another component of the IADS architecture (IADS-auth,
which is out of the scope of this thesis). It includes the role of the user (see Section 4.2.5)
and the respective username as the token claims. The WebAPI SDN application is able to
validate the provided token as it is configured to use the same encryption key as the IADS-
auth component. All REST endpoints were tested prior to the web interface development
by means of a custom developed python client built around the requests module.

The websockets interface provides an alternative to REST for data that is prone to change
periodically, such as the topology graph, the list of running containers or device statistics.
Since this data can be changed outside the domain of the management web interface (e.g.
by using the controller command-line or interfacing with the tools - OpenvSwitch or docker
- directly at the running host) the web interface needs a way to be kept updated without
the need of a complete refresh. Similarly to the REST interface, Websockets are secured
with the Sec-Websocket-Protocol header containing the JWT authentication token. Each

* Error JSON field is returned

7.5. Virtualization infrastructure 129

websocket instance periodically checks if the connection is still open. Hence, if a given client
closes the connection (by leaving a specific view in the web interface) the websocket instance
on the server will end up being removed by the socket servlet.

The command-line interface is the least important of all interfaces since it is not directly
consumed by any client. It only exists as a means for runtime testing while developing
the applications or for the system admin to perform the same operations directly on the
controller CLI.

The complete external interface definitions are provided in Annex C of Volume II.

7.5 Virtualization infrastructure

This subsection details the work performed on the virtualization infrastructure. Apart from
setting up the system (docker, docker registry and OpenvSwitch installation and configura-
tion), other components had to be built from scratch. Subsection 7.5.1 details the effort
in developing the SDN glue agent while Subsection 7.5.2 addresses the development of
vProbes.

7.5.1 SDN glue agent

The SDN glue agent is an important piece of the overall architecture. Without it, containers
deployed from the Docker integration application could not be added to the SDN network,
vProbe containers would not be recognized as network hosts in the topology graph, and
there would be no way to install OpenFlow flow rules at the container boundary. The
workflow/design of the agent is represented in Figure 7.3.

Buffered
channel

Consumer
goroutines

Consumer
goroutines

Consumer
goroutines

Consumer
goroutines

Docker
Engine

Main
Loop

Container
start
event

Event pipe

Event consumption

Linux tools
(if, network namespaces) OpenvSwitch

Figure 7.3: SDN glue agent development.

130 Chapter 7. Development and implementation Notes

Like the rest of the SDN subsystem, the main quality attributes limiting the agent design
are performance and availability. Hence, the agent was developed in the Golang program-
ming language taking advantage of its exceptional concurrency mechanisms (channels and
goroutines). When the agent starts up, a buffered channel is created and a number of
configurable goroutines are launched to consume events published to the channel. The
main agent loop listens to docker engine events (using the builtin golang docker library) and
simply pipes the events to the buffered channel. Events are consumed (and automatically
removed) from the channel by the first goroutine to get the event. When an event is con-
sumed (e.g. a container was started), the goroutine looks for a label (–sdn=true) in the
container metadata and attaches the container to OpenvSwitch bridge (in a process identical
to the one documented in Section 3.5). The design choice results in a pattern similar to a
publish-subscribe mechanism within the agent itself. By having several consumers the agent
is able to concurrently process multiple events and guarantee containers are added to the
OpenFlow network as soon as they are launched.

As part of the development, a systemd service was created to start the agent from the
command-line. To ease the migration of the agent, it has Makefiles (and a Jenkins CI job
definition) to build a CentOS 7 .rpm file out of the agent source code.

7.5.2 Probe development

Probe development was not a direct objective of this thesis. However, to have a working
prof-of-concept it was required to also develop or port some software packages to container
images. To make the deployment as fast as possible, probes were build using the Alpine
Linux base image (only 17 MB per container). The following probes where developed:

• Snort (vNIDS) - One of the world’s most powerful signature-based network intrusion
and detection systems. Highly configurable in what concerns attack detection and
preprocessing.

• Tcpdump (vNIDS) - A simple probe to capture network packets reaching the SDN
interface.

• Conpot (vHoneypot) - A known IACS honeypot able to emulate Modbus TCP, Siemens
S7 and other SCADA protocols. Custom profiles can be developed on top of the
framework and the registries can be customized.

• Honeyd (vHoneypot) - A general purpose honeypot to emulate the FTP, SSH, DNS,
HTTP, SNMP protocols. Custom configurations are possible to emulate specific op-
erating systems and/or to create custom honeypots.

The developed images were uploaded to the private docker registry of the platform to keep
a central vProbe repository.

It is also worth mentioning that the startup of a vProbe container is not as simple as starting
the main probe executable. The container has to wait for the SDN to be available (the SDN
glue agent has to create the virtual interface and attach it to the OpenvSwitch bridge first)
and generate an ARP packet so it can be detected on the controller topology. For this
purpose, the arping unix tool is used to generate a gratuitous ARP request as shown in
Algorithm 7.3.

7.6. Management Web-interface 131

Algorithm 7.3: Probe startup example (not pseudo-code).
1 b eg i n
2

3 w h i l e ! {SDN_INTERFACE}
4 do
5 s l e e p
6 done
7 a r p i n g −U − I {SDN_INTERFACE} {IP_ADDRESS} −c 1 ;
8 s t a r t_p robe
9

10 end

7.6 Management Web-interface

The ONOS controller already provides a web interface with several functionalities for network
monitoring. Nevertheless, a fundamental part of the IADS platform is a custom developed
web interface that allows the management and monitoring of all its building blocks. This
affects not only the SDN subsystem but all its other components such as probe configuration,
streaming platform configuration, domain processor, data lake and SIEM applications (out
of the scope of this thesis). As a result, we opted to develop new web views for the SDN
subsystem that could seamlessly integrate with the overall IADS web-interface and take
advantage of the developed external interfaces (Annex C of Vol. II).

To reduce the effort in developing a new web interface, we only implemented features that did
not overlap with the ones already provided by the controller. Functionalities such as listing
installed flow rules, network hosts and devices were left out of the web interface. Additionally,
an effort was made to keep the web-interface as simple and intuitive as possible, delegating
all the fundamental actions to a topology graph view of the network. Note that in IACS,
process operators and engineers are used to perform actions at HMI interfaces, unequivocally
selecting a given process equipment and checking all the relevant process variables in real
time. Similarly, by making the decision of performing all network service’s deployment in the
topology view, the IADS platform increases its market value by lowering the learning curve
in adopting SDN, minimizing the barrier created by the virtualization of its probes.

The implemented user interface is thus responsible for network topology operations (service
deployment and network segmentation), virtual infrastructure configuration (adding or re-
moving virtualization nodes) and vProbe monitoring. User interface elements are correctly
filtered according to the degree of permissions of the logged user. Figure 7.4 shows the
network topology view of the IADS web interface, along with the SDN subsystem menu. It
is possible to see that the main options accessible via the web interface are:

1. Main menu.

2. Live topology graph.

3. Topology actions menu.

4. Network graph filtering by logical sub-network.

5. Information panel per selected topology asset.

132 Chapter 7. Development and implementation Notes

Figure 7.4: Main SDN subsystem view.

The interface main menu has the following options:

• Network (topology and network list).

• Virtual infrastructure (node and registry configuration; vProbe listing and monitoring).

• Services (list vNIDS, vHoneypot and data diode services).

• Event factory (enable and access SDN event piping to IADS domain processor).

Regarding the network topology view, selecting an asset will show different information and
options depending on its type (host, vProbe, switch or link), as shown in Figure 7.5.

Figure 7.5: Information panel depending on the asset type.

By clicking on the filtering select element, the topology graph is filtered in realtime, showing
the combined graph of the selected logical networks. Figure 7.6 shows the difference in

7.6. Management Web-interface 133

selecting only the datacenter network and the all option (two new switches appear that
correspond to the two virtual infrastructure switches).

Figure 7.6: Network graph filtering.

The quick actions button in Figure 7.4 gives access to the main operations of the IADS
subsystem, namely:

1. Create network.

2. Associate a network tenant with a network.

3. Deploy a service.

by opening an overlay over the topology (Figure 7.8).

Figure 7.7: Topology quick actions.

Creating a network or associating an existing network with a tenant profile are simple modal
dialogs with input and dropdown elements. Hosts are added to an existing logical network
by clicking on the network button in the info panel of the host. By clicking on services in
Figure 7.8, the user is presented with several container images and associated service.

Figure 7.8: Services available for vProbe deployment.

134 Chapter 7. Development and implementation Notes

Further configurations are available after selecting an image. For example, configurations
pre-vHoneypot deployment are shown below.

Figure 7.9: Additional configurations for vHoneypot.

Hosts are added to a created vNIDS service by clicking on the vNIDS button in the infor-
mation panel of an host. Similarly, a data diode is deployed by clicking on the data diode
button on the link infopanel. Figure 7.10 shows the topology view with an honeypot, vNIDS
and data diode deployed as seen in the webinterface with clear visual feedback provided to
the user.

Figure 7.10: All services deployed on a logical network.

The virtualization infrastructure menu item allows adding or removing virtualization nodes
from the platform (c.f Figure 7.11).

Figure 7.11: Add or remove virtualization nodes from the platform.

7.6. Management Web-interface 135

Figure 7.12: Configure the image registry (vNIDS and vHoneypot).

Adding new images to the registry (or modifying the registry information) is also possible,
making the overall virtualization infrastructure to work similarly to a vProbe security store -
as shown in Figure 7.12.

It is also important to mention that statistics concerning deployed containers (those of
vProbes) are available at a specific view. It can be accessed via the list of deployed services
or in the information panel that opens after clicking on a vProbe host. In this view, CPU and
RAM usage can be checked in real-time and network statistics (byte and packet counters)
are displayed in the form of live charts. In the same view a console of the container (and
their logs) is also presented as illustrated in the figure below.

Figure 7.13: Detailed view of a vProbe container with its network statistics
and console.

The web-interface of IADS tries to respect the Norman principles for interaction design
(Norman 2013) as much as possible. Feedback for any executed action is provided through
alerts in the user interface. Furthermore, the execution of operations on the topology graph
helps the user to develop a mental modal regarding the use of the web-interface.

The developed interface is written in Javascript, HTML and CSS, using the Vue JS frame-
work and webpack for artifact generation. It makes uses of the Vuex module (Vuex 2018)

136 Chapter 7. Development and implementation Notes

for global state sharing between components and the Axios module (Axios 2018) to perform
promise-based HTTP requests.

7.7 Chapter wrap-up

Globally, no subjective choice was made on the selected tools, frameworks and programming
languages. They were selected either due to imposed limitations of the reused software
packages or to "maximize" the quality attributes (performance and availability) that are
requirements of both the platform and its applied context. This approach was followed even
at the cost of a steeper learning curve. The chosen approach to flow rule installation (and
application algorithms) was also made to overcome the complete dependency on the control
plane and to take advantage of the distributed nature of the control plane - distinguishing the
work of this thesis from the majority of the state-of-the-art in the field. The web-interface
was planned with focus on the final user - critical infrastructure operators - borrowing ideas
from similar human-machine interfaces they are used to work with and prepared for multi-
tenancy with role segregation. The developed subsystem integrates seamlessly in the IADS
platform, resulting in a powerful framework, capable of being used for research in the future
(for a broad range of fields/use cases) while using a scalable, flexible and decentralized
infrastructure.

137

Chapter 8

Validation

This chapter is focused on the validation of the developed framework and overall SDN
subsystem. Section 8.1 explains the testbed layout specifies all the machines used in the
validation scenarios. Section 8.2 focuses on the functional validation with a set of use cases
created to evaluate each specific application. Section 8.3 details the tests executed to access
the non-functional aspects of the platform with focus on its performance, scalability and
availability. Finally, section 8.4 provides a chapter wrap-up, drawing the main conclusions
from the validation scenarios. Note that the functional validation of the subsystem was
verified by tracing the elicited use-cases to the implemented functionalities, as referred in
Chapter 6.

8.1 Testbed description

Figure 8.1 shows the testbed implemented to demonstrate and validate the proposed SDN
subsystem. The control plane was composed of a cluster of containerized ONOS controller
nodes (scalable from 3 to 5 nodes), each one running on a different VM. The hypervisor
containing the VMs had 192 GB of RAM and 2 physical Intel(R) Xeon(R) CPUs @ 2.80GHz
each. Each controller VM was assigned 30GB of RAM and 8 vCPUs. A Dell Poweredge R210
server with 8 GB of RAM and running CentOS 7 was configured to work as an OpenFlow
switch. The server had five gigabit Ethernet NICs and the OpenvSwitch (open-source
software switch implementation) installed. Furthermore, OpenvSwitch was configured with
Intel DPDK (TLF 2018) for increased network performance (see Section 7.1).

Docker virtualization
server

Docker virtualization
server

EMU

HMI

Database
Server

OpenFlow
switch

Datacenter
ventilation

ESXI
vSwitch

ONOS cluster

Control network
SDN network
Electrical wiring

Caption:
Mininet
Server

Figure 8.1: Testbed scenario.

138 Chapter 8. Validation

Two virtualization servers, following the architecture illustrated in Figure 5.18 were directly
attached to the physical OpenvSwitch, to act as virtualization nodes for the deployment of
vProbe containers. Both virtualization servers were commodity HP Proliant servers (contem-
porary Core 2 Duo Xeons) with 8 GB of RAM, with the Docker engine and an OpenvSwitch
installed. The servers contained two interface cards: one for direct physical attachment
to the OpenFlow switch and another to access the management network (for container
deployment).

In what concerns the network hosts, the implemented testbed was composed of four different
machines. Two ESXi VMs served the purpose of simulating a database server and an Human
Machine Interface (HMI). Both VMs had virtual NICs attached to a ESXi vSwitch configured
in passthrough mode in respect to the physical server NIC (so the vSwitch itself did not
represent a non-Openflow layer in the overall topology). The HMI machine was running
RapidScada, issuing queries to the topology Environmental Monitoring Unit (EMU) in order
to present the datacenter humidity and temperature values in a user-friendly interface. The
HMI monitored both values and triggered the start of a ventilation fan if the temperature
exceeded a certain threshold. Temperature and humidity values were kept updated by the
EMU in three holding registries and made available to the SDN network via the Modbus
TCP protocol.

A Mininet VM was also attached to the main OpenFlow switch as a means to evaluate the
scalability of the system. Mininet is an Ubuntu based distribution that allows the creation
of virtual OpenFlow switches and network hosts, using Linux control groups and network
namespaces. With Mininet it was possible to create hybrid network topologies with a part
being represented by virtual network assets (in custom-"scripted" topologies). The server
had a total of 16GB of RAM and ran in a Citrix XEN server hypervisor.

8.2 Functional validation

A set of scenarios was defined to functionally validate the developed platform. The tests
herein documented were performed in the testbed illustrated in Section 8.1, and tried to use
tools from the IACS domain whenever possible or justified.

8.2.1 vNIDS evaluation

The functional validation of a vNIDS deployment took place in November 2017, at the
European Commission, during the intermediate review of the ATENA project. The security
use case demonstration was based on a situation where the Inventory database host was
compromised by an external attacker which was able to gain access to the host command line.
A logical network was previously created and the three hosts (EMU, HMI and InventoryDB)
were added to it so they could have connectivity. A TCP SYN-flood attack was launched
from the database server against the EMU in order to "blind" the HMI. Under the attack
conditions, the HMI was no longer capable of performing the Modbus TCP queries for
temperature and humidity nor to obtain the state of the fan. The temperature of the
datacenter was increased with the help of a heater to confirm the EMU would not start the
fan (Figure 8.2).

8.2. Functional validation 139

Figure 8.2: TCP flood attack against the EMU and the HMI unable to trace
the operational variables.

The infrastructure operator, accessing the HMI would not have any hint that a cyber-attack
was targeting the datacenter network. The same attack was replayed after deploying a
vNIDS from the IADS web-interface: a vNIDS service was created, the container image
was selected (a Snort based image with pre-configured rules to detect SYN-flood attacks)
and all the hosts in the datacenter logical network were associated with the service. The
association of hosts to the service led to the deployment/launch of a new vProbe container,
located at one (arbitrary) virtualization node of the testbed (Figure 8.3).

Figure 8.3: vNIDS launch.

By replaying the attack with the vProbe deployed, the underlying switch fabric made copies

140 Chapter 8. Validation

of the network traffic available to the vProbe container. This triggered the signature-based
rule installed in Snort and the container was able to generate, encode and send an event
to the upper layers of the IADS architecture. Ultimately, the event reached the IADS web
interface as shown in Figure 8.4.

Figure 8.4: IADS denial-of-service alert issued by the vNIDS probe container.

This use-case proved the suitability of the SDN subsystem to start containers on the virtu-
alization infrastructure and to program the underlying network to duplicate network traffic
with the launched container as destination. Videos for this particular use case demonstration
are publicly available in Youtube (ATENA youtube 2018) as part of the intermediate project
review.

8.2.2 vHoneypot evaluation

The vHoneypot functional validation was twofold, since each of the developed vprobes (con-
pot and honeyd) have different purposes and allow the evaluation of different functionalities
of the vHoneypot SDN application. In both cases, similarly to Section 8.2.1, it was assumed
that from a security standpoint the InventoryDB host machine was compromised by an ex-
ternal attacker. Using the IADS web-interface (network topology view), a vHoneypot service
was created on the datacenter logical network and Conpot was selected as the container
template image. The default conpot profile emulates a Siemens SIMATIC S7-200 PLC
with S7comm, Modbus TCP and SNMP support. This process resulted in the automatic
deployment of a vHoneypot container with the IP address 192.168.5.10 attributed by the
DHCP SDN application (Figure 8.5). From the InventoryDB host terminal, the PLCScan
tool (PLCScan 2012) was used to enumerate any existing PLCs at the given IP address, as
shown in Figure 8.6.

8.2. Functional validation 141

Figure 8.5: vHoneypot container de-
ployed in the datacenter logical network

(plus network information).

Figure 8.6: PLCScan results against
the vHoneypot container.

The scanning process against the vHoneypot container IP address found a Siemens PLC as
expected. This proved the vHoneypot SDN application was able to correctly program the
underlying network to enable the conpot operation.

A subsequent test consisted on the creation of another vHoneypot service on the datacenter
network by:

1. Selecting the Honeyd container image from the private registry.

2. Setting the option to reserve the fake ip 192.168.1.137 to the vhoneypot service.

The honeyd container image had a Windows NT profile mapped to the "fake" IP address
and the following services enabled: SSH, telnet, HTTP server and DNS server. Once the
service was created, the resulting container got the IP address 192.168.6.88 assigned by
the DHCP application. The Nmap tool was used to perform a port-scan against the "fake"
IP address. Figure 8.8 shows the scanning result.

Figure 8.7: Network topology graph of
the IADS web interface showing 2 hosts

for the same container.

Figure 8.8: Nmap port scan against the
fake IP.

142 Chapter 8. Validation

Results shown the attacker was able to correctly enumerate the container emulated services
even though it was scanning a non-existing IP address. In fact, after the scanning process,
a new host with the IP 192.168.1.137 appeared on the topology - the result of faked ARP
packets generated by the container.

8.2.3 Data diode evaluation

For validating the data diode service operation, we assumed the InventoryDB and Mininet
machines played the role of usual application proxies and protocol breakers (RX and TX
agents) in traditional data diodes (see companion research paper in Annex D of Vol.II). A
data diode was deployed in the link between the RX and the testbed OpenFlow switch (in
the host direction). Hence, although there is a logical network between the three hosts,
the link between the RX agent and the rest of the network was effectively unidirectional
(receiving only). Figure 8.9 shows the real IADS web-interface topology view, while Figure
8.10 presents a diagram representation of the test.

Figure 8.9: IADS web-interface topol-
ogy graph after the deployment of the

data diode.

EMU Modbus
TX Agent

Modbus
RX Agent

OpenFlow
Switch

ONOS
cluster

Restricted (sending)
domain

Receiving
domain

Figure 8.10: Representation of the re-
stricted connection domains and the

unidirectional link.

Recurring to the Netcat tool (Giacobbi 2006), the RX agent was configured as an UDP
server while the TX agent acted as a client, and vice-versa. We confirmed that in the
former case packets were able to flow while in the last no communication occurred.

Using a modified version of the Dyode framework (Wavestone 2018), a test was designed
to simulate a real industrial control system operation aiming at studying the effectiveness
of data diode in supporting bidirectional protocols (Modbus TCP) and the latency created
by such process. In this test, the TX agent queries the EMU holding registries, serializes
the data into the pickle format and sends it through the UDP protocol to the RX agent.
The RX agent behaves as the EMU device on the other side of the network: it deserializes
the received data, updates the internal registries and exposes a Modbus TCP server. An
increasing number of sequential reads of ten EMU holding registries was then performed.
To accurately collect the time values we removed the ability to process and packetize the
obtained data from the TX agent and measured the time immediately before and after each
query. The measured times should be taken as the base values for reading latency. For the
RX readings, the time was recorded right after data has been deserialized and updated in
the agent context. Moreover, a counter was increased upon receiving a reading from the
TX agent. Total test duration was computed using the temporal instant before the first

8.2. Functional validation 143

query and both machines were synchronized via NTP. The results (5 sample test) can be
found on Table 8.1.

Table 8.1: Latency effect of the data layer on Modbus TCP readings.

Modbus Agent Number of Queries Time (s) Failed Reads (%)

TX

1 0.067± 0.139 -
10 9.889± 0.640 -
100 111.045± 0.331 -
500 566.654± 0.558 -

RX

1 0.654± 0.344 0
10 10.185± 0.777 0
100 111.820± 0.897 0
500 567.679± 0.549 0.360± 0.444

The obtained results allow to conclude the same functionalities available in commercial-off-
the-shelf data diodes are easily implemented in software, using an SDN approach. Despite
all the additional processing work performed by both proxy agents, the induced latency of
the Modbus readings was only one additional second for the highest number of sequential
reads. However, note that as the number of reading operations increases, a few failed reads
were noticed. This is expected due to the no-guarantee nature of the UDP protocol. This
issue is further explored in Section 8.3.1.

8.2.4 Network event factory evaluation

The network event factory application was validated by simply leaving the system configured
to send all SDN events to a known Kafka broker and topic for a long period of time. After 2
days of stable operation, the SDN subsystem was able to pipe more than 385,000 events to
the upper layers of the IADS platform (Figure 8.11). The events were confirmed received
by inspecting the respective Kafka topic.

Figure 8.11: Network Event Factory application test.

The absence of Link, Topology and Host events generated during this period also serves to
prove the stability of both the testbed and the overall IADS SDN-subsystem. Unlike device
and controller events (which provide statistic information every 5 seconds), those events are
only generated if changes occur in the topology.

144 Chapter 8. Validation

8.3 Non-functional validation

This section provides the non-functional assessment of the SDN subsystem. All the tests
were carefully designed in order to reason and conclude about the main quality attributes
chosen for the platform: performance and scalability (Section 8.3.1), and availability (Section
8.3.2).

The containerization of the control plane, although contributing to the overall portability
of the system, poses numerous challenges to the correct collection of time-based metrics.
With the OpenFlow protocol, any action taken by the controller in respect to a specific
network event always starts with a PACKET_IN message sent by an OpenFlow switch to
the controller node which has the mastership of the switch. After processing the network
packet, the SDN controller node synchronizes its state with all the other nodes in the
cluster and generates an event that can be consumed by the controller application layer.
For some tests, to accurately compute the latency of a given action both the Openflow
network packets and the controller events need to intercepted. Network packets arrive at
the physical host where the controller node is running. SDN controller events are triggered
to SDN applications that run in the controller node (in an OSGi environment sand-boxed in a
Docker container). This makes the non-functional validation an extremely complex process
– requiring means of automation and mechanisms for inter-process communication.

As a result, an SDN application was developed (and installed in the controller cluster) to
collect all the meaningful network events. Concomitantly, a small program was developed
and installed in the controller host (outside the container) to intercept and inspect network
packets arriving at the node. The overall workflow followed to perform the non-functional
validation is presented in Figure 8.12.

<<Component>>
Packet

Sniffer/DPI

Controller Host
(Python)

<<Component>>

TCP Server

Controller docker container
(Java)

Reports to

<<Component>>
Controller Event

Listener

<<Component>>
TCP Client

(Controller event sink)

Reports to
<<Component>>

Controller CLI
commands *

Host Event

Link Event

Mastership Event

Cluster Event

Intent Event

User

Reports to

* Note:

Each test has a
unique CLI command.
The command
receives the number
of times the test
should run.

Activates

Executes

listens

<<Service>>
IADS SDN

OSGI ServicesUses

vNIDS
vHoneypot
Data diode
Network Management

Figure 8.12: Non-functional validation workflow.

For each test, a controller CLI command was developed to automate and repeat each test a
given number of times. Those CLI commands activate specific Event Listeners (depending

8.3. Non-functional validation 145

on the test) and consume the logic exposed by the OSGi services developed as part of the
IADS subsystem. When a given event is triggered by the controller cluster, the Event Listener
annotates the event with a timestamp and pipes it to a common observable component
which acts as a sink and dispatcher for events. This component is in fact a TCP client,
connected to a TCP server running on the host (via the loopback interface) which simply
flushes the received events to the standard output. The TCP server also dispatches a
Packet Sniffer thread that intercepts any PACKET_IN OpenFlow packets, processes and
filters each packet according to a given rule (e.g. ARP packet). The sniffer made use of
the much known Scapy Python library (Biondi 2018). It is worth mentioning that although
there is latency in the SDN Application → TCP Server channel, it does not reflect on the
collected values. Measured latencies use both the timestamps of the intercepted network
packets (provided by Scapy) and the timestamps of the received SDN events, "tagged" by
the SDN validation application right after the event is received. To execute a given test, it
is required to start the TCP server on the Host and execute the specific test CLI command
on the controller CLI. Confidence intervals for all test results were computed using a normal
distribution with 95% of confidence level, unless stated otherwise.

8.3.1 Scalability and Performance

The following subsections detail all the non-functional tests performed to access the per-
formance and scalability of the SDN subsystem. Some of the tests attempt to evaluate
features that are either built into the chosen distributed controller (ONOS) or that depend
on the OpenFlow switch software (OpenvSwitch). They do not have a strict dependency
on the developed applications but still affect the performance of the subsystem as a whole.

Host detection

Host detection is an important part of the IADS subsystem. Although it is part of the
controller core functionalities, it strongly affects any of the developed applications. To be
able to create a logical network via the developed Network management application, to
add a specific network host to a vNIDS, to deploy a data diode or vHoneypot in a given
network, the controller has to know the host beforehand. As seen in Section 7.2, it is
upon the reception of an ARP packet sent by a network host that the controller computes
the topology graph and fills the Host internal datastore. Hence, minimal latencies when
detecting network hosts are desired.

The test procedure was as follows:

1. The TCP server was started on the network controller host and the test CLI command
was started in the controller CLI (configured to wait for 25 events).

2. From an host connected to the physical switch of the testbed (see Figure 8.1), ARP
packets were generated 25 times using the macof utility.

3. The host detection latency was calculated as the difference between the timestamp of
the ARP PACKET_IN and the timestamp of the HOST_ADDED controller event.

The independent variables for the test were respectively:

• Network controller cluster size (1, 3 and 5 nodes).

146 Chapter 8. Validation

The results of the test are ploted in Figure 8.13 and summarized in Table 8.2.

1 nodes 3 nodes 5 nodes
Control plane cluster size

0

2

4

6

8

10

12

H
os

t
de

te
ct

io
n

la
te

nc
y

(m
s)

Figure 8.13: Host detection latency de-
pending on the control plane cluster

size.

Table 8.2: Host detection
latency depending on the
control plane cluster size.

Number of Host
controller detection
nodes latency (ms)

1 5.909± 2.231
3 9.524± 1.594
5 9.905± 2.274

By analyzing Figure 8.13 it is possible to conclude that the formation of a SDN controller
cluster contributes negatively to the host detection latency. This is expected since the
HOST_ADDED event is only propagated to the validation application after the cluster
state is synchronized. It is also possible to see that increasing the cluster size (from 3
to 5 nodes) does not play a significant effect on the obtained latency. The latency for a
5-node cluster has a mean value higher (but not too distant) from the one obtained for
the 3-node cluster although with higher variance. Despite the effect of the cluster size, the
control plane shows small latency values for the detection and addition of new hosts to the
topology, ranging from 5 to 9 ms.

Network topology scaling

The network topology scaling test aimed at studying the effect of the number of connected
OpenFlow switches on the controller global topology graph construction. Furthermore, it
also helps understanding the effect of the control plane cluster size on the said process
and the respective implications of its built-in mastership load balancer. The test followed a
different process than the one detailed in Figure 8.12 - it was conducted solely in Mininet.
A Mininet script was created to generate a growing number of virtual switches (from 10
to 1,000) and each switch was associated with the controller cluster. Virtual switches used
one node as master (active connection) and all the others as slave/redundant connections.
Timestamps were collected before and after running the main virtual switch start loop.

The independent variables of the test were respectively:

• The number of switches (10-1,000),

• The control plane cluster size (1, 3 and 5 nodes).

For each combination, the test was repeated 25 times. Mean values can be seen in Figure
8.14, while Table 8.3 summarizes all measurements. Note that in this test the results strongly
depend on the performance of Mininet and are constrained by the Mininet machine resources.
Nevertheless, the test allows to infer the ONOS ability to handle complex topologies and
manage switch associations.

8.3. Non-functional validation 147

1 node 3 nodes 5 nodes
Number of controller nodes

0

200

400

600

800

To
po

lo
gy

 s
ta

bi
liz

at
io

n
(s

)

Number of switches:
10 switches
50 switches
100 switches
500 switches
1000 switches

Figure 8.14: Topology scaling test results - the effect of the control plane
size and network complexity on the topology construction.

Contrarily to what was expected, Figure 8.14 shows that scaling the control cluster from 1 to
3 nodes does not play a significant difference on the obtained timings. For the most complex
networks (500 and 1,000 switches) the process was even faster for the cluster than relying
on a single-node controller. This fact shows that apart from the increased control plane
availability, the use of a control node cluster can improve the overall system performance
since the cluster is able to balance the mastership of each switch across all available nodes.
However, with the biggest cluster size (5 nodes), the overall topology creation was slower.
This can be explained by the fact that when a new switch attempts to establish a connection
with the cluster the controller automatically tries to modify the mastership of the switch
so that all nodes are masters of an equal number of switches. This means the controller
can change the original master of the switch and also reassign other switches previously
associated with the cluster. For a 5-node cluster, the controller has more nodes to chose
from when performing the association but it also has a higher number of nodes to equalize.
Furthermore, the fact that all switches are virtualized on the same machine (due to the
usage of Mininet) also affects the overall test results.

Table 8.3: Topology scaling results.

Cluster size Number of switches Topology stabilization (s)
10 0.41± 0.002
50 2.461± 0.01

1 node 100 6.212± 0.009
500 89.13± 0.756
1000 339.719± 0.604
10 0.443± 0.014
50 2.579± 0.064

3 nodes 100 6.159± 0.074
500 76.998± 0.17
1000 296.597± 0.396
10 0.737± 0.01
50 4.863± 0.024

148 Chapter 8. Validation

5 nodes 100 13.325± 0.265
500 232.658± 1.229
1000 881.347± 1.208

Despite the issues mentioned above, the testbed control plane cluster was able to keep
a stable operation, regardless of the massive amount of connected switches. Note that
in IACS, although network topologies are composed of a high number of switches with
low port count (4 to 8 ports), the test maximum value of 1,000 switches is an extreme
value compared to the number of switches typically found in process control. Moreover,
IACS network topologies are quite predictable (and stable) which means the topology graph
theoretically only needs to be generated once.

Logical-network creation

The logical-network creation test was designed as a means to evaluate the performance of
the developed Network Management application, i.e the SDN application responsible for
the creation of network slices in the overall topology graph and that provides the core for
multi-tenancy in the IADS platform. Network topologies were generated in Mininet and
associated with the controller cluster. Spine-leaf topologies were scripted assumed 8 port
switches for leaf switches and a maximum of 16 ports for spine switches (see Figure 8.15).

Figure 8.15: Spine-leaf topology example in the ONOS web-interface.

This kind of topology was chosen to emulate a real process control network.
Please recall that logical networks are created pro-actively using the ONOS intent framework
by installing Host-to-Host intents between host pairs (and are ultimately translated into flow
rules). When the number of hosts to be added to a network scales, the number of installed
intents and flow rules grows exponentially. This can represent a problem since switches
normally have a maximum TCAM capacity of about 15,000 rules. Hence, the topologies

8.3. Non-functional validation 149

generated for this test had a maximum number of 100 hosts. Table 8.4 summarizes the
network size (number of hosts) used in the test along with the number of intents and flow
rules that are installed in the switch fabric when creating a network with the specified size.

Table 8.4: Number of intents and installed flow rules depending on the number
of hosts of the network to be created.

Number of Hosts Number of Intents Number of installed flow rules
3 3 18
10 153 720
50 1,653 9,184
100 5,356 30,765

The test was executed in the controller CLI (see Figure 8.12) through a specifically developed
CLI command that used the exposed Network Management OSGi service to create and
remove networks in a loop. Each test was executed 25 times varying the network size and
control plane cluster size. Results are presented in Figure 8.16, while the overall data can
be found in Table 8.5.

1 node 3 nodes 5 nodes
Control plane cluster size

0

2

4

6

8

10

12

N
et

w
or

k
cr

ea
ti

on
 t

im
e

(s
)

Network size:
3 hosts
10 hosts
50 hosts
100 hosts

Figure 8.16: Logical network creation times depending on the control plane
cluster size and number of hosts.

The obtained results show that even in the case of a 100 host network, in which more than
30,000 flow rules are installed, the network creation process has minimal latency - with mean
values between 8 and 10 seconds. The obtained values are in line with the test outlined in
(ONOS testcases 2018), which obtained a 2 to 3 second latency per 1,000 intent batch
install.

150 Chapter 8. Validation

Table 8.5: Logical network creation times depending on the control plane
cluster size and number of hosts.

Cluster size Network size Network creation time (s)
3 hosts 0.007± 0.001

1 node 10 hosts 0.051± 0.009
50 hosts 0.402± 0.042
100 hosts 1.324± 0.082
3 hosts 0.024± 0.025

3 nodes 10 hosts 0.131± 0.018
50 hosts 0.946± 0.081
100 hosts 9.624± 3.621
3 hosts 0.021± 0.003

5 nodes 10 hosts 0.166± 0.042
50 hosts 1.215± 0.161
100 hosts 8.265± 0.376

It is also worth noticing the high increase in the logical network setup time when we move
from a single-node controller to a cluster installation. For the 100 hosts network, the
latency increases by a factor of 4 when a cluster is formed - which is expected due to
cluster synchronization. Some peak values were also seen in the experiment with a 3 node
cluster (reflected on the high variance values). This indicates that forming a bigger cluster
is advantageous to reduce the number of masterships attributed to each controller node and
to distribute flow rule installation across them. Note that each switch periodically reports
the OpenFlow counters per switch port and flow rule to the respective master node. If the
number of installed flow rules is high, a controlled node can be flooded when the periodic
reporting occurs.

Virtual probe deployment

With the networks previously created (c.f. Section 8.3.1), virtual probes (vNIDS and vHoney-
pot containers) were deployed 25 times in a loop. Virtual probes are deployed in the vir-
tualization infrastructure physical servers (see Figure 5.20) and a path is required between
the emulated Mininet hosts and the actual deployed vProbe container. Hence, there was
the need to create an hybrid topology. To accomplish this, one of the physical ports of the
Mininet machine (physically connected to testbed OpenvSwitch) was added to one of the
Mininet OpenFlow bridges. As a result, the vProbe container was able to receive network
packets originated in the emulated hosts. In Figure 8.15 it is possible to see the physical
testbed on the top right corner.

Elapsed times were collected before and after each individual step performed by the vNIDS
and the vHoneypot applications during a probe deployment (container deployment, DHCP
container assignment and network programming). Figure 8.17 shows the relative proportion
of each individual step. It is possible to see the developed application is able to deploy
a virtual probe in approximately 4.5 seconds. This time is almost completely devoted to
the docker container startup/launch. For a 3 host network, the network programmability is
almost negligible. Figure 8.18 shows the container startup depending on the probe image
for three of the implemented probes. It is possible to conclude there are no significant
differences in the startup times of each container.

8.3. Non-functional validation 151

vNIDS vHoneypot
Virtual service

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5
5.0
5.5
6.0
6.5

Ti
m

e
(s

)

Container deployment
DHCP configuration
Network programming

Figure 8.17: Time taken for each indi-
vidual step in SDN probe deployment (3

host network).

Snort Conpot Honeyd
Probe container

0

1

2

3

4

5

D
ep

lo
ym

en
t

ti
m

e
(s

)

Figure 8.18: Probe container launch
times depending on the container im-

age.

Table 8.6: Elapsed time for each step involved
in vProbe deployment.

vProbe Step Time (s)
Container launch 4.495± 0.317

vNIDS DHCP assign 0.000± 0.000
Network prog. 0.051± 0.008

Container launch 4.579± 0.126
vHoneypot DHCP assign 0.003± 0.001

Network prog. 0.016± 0.002

Table 8.7: Container deploy-
ment times depending on the

vProbe container image

Container
Probe deployment

time (s)
Snort 4.495± 0.317
Conpot 4.579± 0.126
Honeyd 4.538± 0.102

The performance results for the vNIDS application are shown in Figure 8.19 and summarized
in Table 8.8. In this test, the container launch is not taken into account since an host is
added to a previously created vNIDS service (with the respective container already started).
It can be understood as the effect of the network and control cluster size on the network
programming step of the vNIDS service.

152 Chapter 8. Validation

1 node 3 nodes 5 nodes
Control plane cluster size

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

H
os

t
ad

di
ti

on
 t

o
vN

ID
S

(s
)

Network size:
3 hosts
10 hosts
50 hosts
100 hosts

Figure 8.19: Host addition to a deployed vNIDS service depending on the
overall network and control plane cluster sizes.

Through the analysis of the obtained results, it is possible to see the cluster size does not
have a major influence in the network programming throughput of the vNIDS application.
Contrarily to the Network Management application, the vNIDS application mainly modifies
the previously installed (see Section 7.2). As a result, for a 100 host network, the addition
of an host to the service can be achieved in just 3 to 4 seconds.

Table 8.8: Host addition to a deployed vNIDS service depending on the overall
network and control plane cluster sizes.

Cluster size Network size vNIDS host addition latency (s)
3 hosts 0.011± 0.0

1 node 10 hosts 0.129± 0.002
50 hosts 0.664± 0.664
100 hosts 2.034± 2.034
3 hosts 0.016± 0.001

3 nodes 10 hosts 0.244± 0.004
50 hosts 1.293± 0.028
100 hosts 3.793± 0.105
3 hosts 0.028± 0.009

5 nodes 10 hosts 0.261± 0.007
50 hosts 1.18± 0.085
100 hosts 4.026± 0.129

The same test was also executed for the vHoneypot application. Network programming in
the vHoneypot application (c.f. Section 7.2) is simpler, with less flow rules, than in the
vNIDS application. Hence, obtained times are smaller - the process is completed in 1 to 3
seconds.

8.3. Non-functional validation 153

1 node 3 nodes 5 nodes
Control plane cluster size

0

1

2

3

4

5

N
et

w
or

k
pr

og
ra

m
m

in
g

of
 v

H
on

ey
po

t
(s

)

Network size:
3 hosts
10 hosts
50 hosts
100 hosts

Figure 8.20: vHoneypot network programming (DHCP + flow rule installa-
tion).

It is also possible to note (as observed before in Section 8.3.1) a big variance value for the
three node cluster when programming the vHoneypot for the 100 host network. This fact
could indicate that a small control cluster may be unable to process such high amounts of
flow-rule operations in short periods of time.

Table 8.9: vHoneypot network programming (DHCP + flow rule installation).

Cluster size Network size honeypot host addition latency (s)
3 hosts 0.012± 0.002

1 node 10 hosts 0.053± 0.005
50 hosts 0.154± 0.154
100 hosts 0.334± 0.334
3 hosts 0.019± 0.002

3 nodes 10 hosts 0.115± 0.004
50 hosts 0.451± 0.034
100 hosts 3.349± 2.237
3 hosts 0.05± 0.045

5 nodes 10 hosts 0.515± 0.887
50 hosts 0.421± 0.057
100 hosts 1.384± 0.183

Data diode deployment

The data diode deployment test was similar to the ones outlined in the previous subsection.
A CLI command was developed in the validation application to deploy and remove (25 times
in a loop) a data diode on a known topology link. Results can be seen in Figure 8.21 and
Table 8.10.

154 Chapter 8. Validation

1 node 3 node 5 node
Control plane cluster size

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

D
at

a
di

od
e

de
pl

oy
m

en
t

ti
m

e
(s

)

Network size:
3 hosts
10 hosts
50 hosts
100 hosts

Figure 8.21: Data diode deployment times depending on the number of net-
work hosts and control plane size.

The data diode is the network service achieving the fastest deployment times when compared
to IADS vProbes. For small networks, the deployment of the data diode occurs in the
millisecond range. For the biggest network of this test, the data diode deployment took only
1 to 2 seconds. A small value considering that for n hosts, n-1 flow rules have to be installed
and the datastore has to be consistently synchronized between all the controller nodes.

Table 8.10: Data diode deployment times depending on the number of net-
work hosts and control plane size.

Cluster size Network size Data diode deployment time (s)
3 hosts 0.003± 0.0

1 node 10 hosts 0.06± 0.002
50 hosts 0.162± 0.162
100 hosts 0.371± 0.371
3 hosts 0.163± 0.176

3 nodes 10 hosts 0.177± 0.062
50 hosts 0.511± 0.036
100 hosts 1.898± 1.611
3 hosts 0.245± 0.157

5 nodes 10 hosts 0.284± 0.185
50 hosts 0.554± 0.142
100 hosts 1.535± 0.113

Data plane performance

The overall SDN subsystem strongly depends on the capacity and link performance of the
underlying data plane. The control plane and the respective developed applications may have
a high throughput capacity when installing flow rules or reacting to network events but the
OpenFlow switch fabric may represent a limiting effect on the supported bandwidth. Please

8.3. Non-functional validation 155

recall from Section 7.1 that DPDK was installed and configured in OpenvSwitch hosts to
improve the performance of the data plane.

The performance evaluation was done using the Iperf2 tool, by setting the Mininet machine
as the server and the InventoryDB machine as the client. Both virtual machines are config-
ured in passthrough mode in the hypervisor and have a dedicated physical gigabit interface.
The theoretical maximum bandwidth in the link can then be assumed to be 1Gbps.

2 4 6 8 10
Trial

700

750

800

850

900

950

1000

1050

Ba
nd

w
id

th
 (

M
Bp

s)

Theoretical bandwidth
TCP bandwidth
UDP bandwidth

Figure 8.22: UDP bandwidth vs. TCP
and Theoretical bandwidth.

0 1000 2000 3000 4000 5000 6000
Buffer Size (KB)

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

Pa
ck

et
 lo

ss
 (

%
)

Bandwidth (MBps)
10MBps
100MBps
500MBps
1000MBps

Figure 8.23: Percentage of lost pack-
ets vs. bandwidth and write buffer size

(UDP).

The experiment was conducted in both TCP and UDP modes. The UDP test is important
since in data diode links the traffic flow is unidirectional, so as the protocols used to carry
data in the link. The TCP test achieved a value of 943.6± 0.36 Mbps, while the maximum
bandwidth using UDP was 769.7 ± 7.4Mbps (cf. Figure 8.22)1. The TCP values for the
maximum bandwidth were expected to be higher than the ones achieved by UDP since TCP
automatically adjusts the window size during the transfer. Both values are comparable with
some commercial switches, despite the software-based testbed.

Another test (Figure 8.23) was performed to study the effect of the sender packet buffer size
on the obtained packet loss in UDP transfers. Please recall from subsection 8.2.3 that for a
high number of sequential EMU readings, and due to the no-guarantee nature of the UDP
protocol, some readings were not able to reach the RX machine. Hence, both the sender
buffer size and the bandwidth were varied in this test. Measurements show that the buffer
size plays a significant role on the packet loss, since it affects the total number of packets
that can be sent in a single transfer. Thus, if the expected bandwidth is known beforehand
(the case of SCADA traffic) both the sending and receiving agents can be optimized for
minimal packet loss.

The last test regarding the data plane performance targeted the study of the latency in
the path between the monitoring hosts and virtual probes. In the ATENA testbed, virtual
probes (docker containers) are deployed in virtualization servers physically connected to the
main testbed OpenFlow switch. Hence, for a packet to be copied to a vProbe, it has
to traverse two switches: the main OpenFlow switch and the virtual switch deployed in
the virtualization infrastructure (c.f Figure 8.1). A logical network was created between two
hosts in the network, a vNIDS service was created in the network and both hosts were added

1Due to the low number of samples, bandwidth values were calculated using a t-student distribution for
a 95% confidence level

156 Chapter 8. Validation

to the vNIDS service. The iptraf tool (Paul 2005) was installed in the vProbe container to
passively monitor the bandwidth reaching the container SDN interface.

1 2 3 4 5 6 7
Trial

943.0

943.2

943.4

943.6

943.8

944.0

Ba
nd

w
id

th
 (

M
Bp

s)

Measuring point
Between hosts
Probe container

Figure 8.24: TCP bandwidth comparison: Host traffic vs vNIDS probe con-
tainer.

Results for this test are plotted in Figure 8.24. The average bandwidth between the hosts
being monitored and the peak bandwidth measured in the vProbe container denote an exact
match. Thus, we can conclude the path to the container in the testbed (and the additional
virtual switch) does not pose a significant effect on the performance of the monitoring
process.

8.3.2 Availability

Availability tests served the purpose of quantifying the robustness of the created logical
networks and the testbed performance in case of a controller node failure.

Intent fail-over

Logical networks in the Network Management application are created using the ONOS
intent framework. This means the application basically tells the controller that connectivity
is required between host A and host B without specifying the host location nor the respective
flow rules.

Host A Host B

S1 S2

S3

Active path
Redundant path

Link failure

Caption:

Figure 8.25: Link failure event and the selection of a redundant path.

8.3. Non-functional validation 157

ONOS internally keeps track of all installed intents and readjusts them in case of a link or
switch failure as long as a redundant path exists between the hosts. A topology (represented
in Figure 8.25) with two hosts and three switches (2 redundant paths) was generated in
Mininet and a logical network was created between the two hosts.

By default, ONOS uses Dijkstra’s algorithm to find the shortest path between hosts in the
topology. So, when the logical network is first created the path between Host A and Host
B uses S1 and S2. In the Mininet command line, a failure in the link between both switches
was simulated:

1 > l i n k s1 s2 down

The procedure was repeated 25 times while the validation application captured the sequence
of generated LINK_REMOVED and INTENT_INSTALLED events. The latency (repre-
sented in Figure 8.26 and Table 8.11) is thus calculated upon the subtraction of both event
timestamps. The SDN subsystem showed minimal latency values for intent readjustment
operations. A redundant path is selected and the respective flow rules are installed in a
period between 20 to 30 milliseconds.

1 node 3 nodes 5 nodes
Control plane cluster size

0

5

10

15

20

25

30

Li
nk

 fa
il-

ov
er

 la
te

nc
y

(m
s)

Figure 8.26: Intent fail-over latency depend-
ing on the control plane cluster size.

Table 8.11: Intent fail-
over latency depending on
the control plane cluster

size.

Number of Intent
controller fail-over
nodes latency (ms)

1 27.716± 0.977
3 30.239± 1.235
5 23.074± 7.619

The obtained results are extremely important since the overall fail-over process is much
quicker than traditional network protocols used in the IACS field. For the Rapid Spanning
Tree protocol (RSTP), the equivalent process usually takes a few seconds.

Switch mastership fail-over

In the switch mastership fail-over test, the elapsed time between a broken switch-to-controller
connection and the respective mastership reassignment was measured. Using the imple-
mented testbed, the main OpenFlow switch was associated with one specific controller node
as master while keeping fallback connections to all the other controller nodes. The master
node was rebooted while the validation application listened to the INSTANCE_DEACTI-
VATED and MASTERSHIP_CHANGED events. The latency was calculated as the mean
value between both event timestamps.

158 Chapter 8. Validation

ONOS controller
cluster

OpenFlow switch

Active mastership connection

Backup mastership connection

Broken connection

Caption:

Figure 8.27: Switch mastership test representation.

Figure 8.27 shows a diagram representation of the test. Test results are presented in Figure
8.28 and Table 8.12.

3 nodes 5 nodes
Control plane cluster size

0.0

0.5

1.0

1.5

2.0

2.5

Sw
it

ch
 m

as
te

rs
hi

p
fa

il-
lo

ve
r

la
te

nc
y

(s
)

Figure 8.28: Switch mastership fail-over la-
tency depending on the control plane cluster

size.

Table 8.12: Switch mas-
tership fail-over latency
depending on the control

plane cluster size.

Number of Switch mastership
controller fail-over
nodes latency (s)

3 1.863± 0.527
5 1.203± 0.552

The obtained results show that an SDN controller cluster setup is able to reassign the
mastership of a switch in approximately 1 to 2.5 seconds.

8.4 Chapter wrap-up

Globally, it is possible to conclude the subsystem proposed in this thesis meets its design
goals: performance and availability. The functional validation scenarios showed the developed
control plane applications could successfully take advantage of SDN and NFV to deploy
containers and program the network according to the class of virtual service. The vNIDS
container was able to passively obtain copies of selected network host traffic, while the
vHoneypot container was able to behave as a generic host in the network. Data diode links,
as expected, provided uni-directional communications while still keeping the rest of the
logical network operational. Its validation also shown how bi-directional protocols can easily
be ported to work in unidirectional links. The network event factory showed stability when
operating for long periods of time, demonstrating how it can be an important point for event
collecting (and statistics) in the overall IADS platform. The vNIDS functional validation
was of extreme importance for the ATENA intermediate review success. The non-functional
validation showed how network programming (flow rule installation) is a quick process in the
IADS subsystem. Logical networks are created and virtual probes are deployed in a matter

8.4. Chapter wrap-up 159

of seconds - which is a market advantage if compared to the traditional, manual and slow
process of traditional probe deployment. The data plane bandwidth tests demonstrated the
work done to support DPDK in the testbed was beneficial: testbed switches had bandwidth
values comparable to commercial switches, despite being software based. The non-functional
validation also helped concluding that increasing the control plane size can both be an
advantage (redundancy and performance) and a disadvantage (performance penalty due to
synchronization). Its size should be carefully selected, depending on the overall goal and
taking into account possible performance trade-offs. The proposed subsystem was able to
operate even in the case of a link or controller node failure.

161

Chapter 9

Conclusions

Current trends, such as Industry 4.0 and Internet of Things, are evolving IACS towards ubiq-
uity, moving away from the traditional monolithic and self-contained infrastructure paradigm,
in favor of highly distributed and interconnected architectures. In this perspective, the man-
agement and monitoring of the critical infrastructure using traditional network architectures
and traditional probe deployment may become extremely complex processes. Network equip-
ment is provided by different vendors, relying on closed management protocols and different
configuration instructions or interfaces. In the long term, it requires specialized training, it
hampers innovation due to the closed nature of the protocols, and may lead to configuration
errors. In the case of IACS, configuration mistakes create cyber-security holes which can
lead to severe consequences. IACS support essential services such as the power grid and
the water distribution systems; have cyber-physical implications and often depend on other
critical infrastructures. Opting for turn-key solutions provided by a single enterprise (includ-
ing technical support) is not really an alternative as it results in a complete vendor lock-in
environment, imposing difficulties for innovation. Network passive monitoring is nowadays
implemented in IACS with in-line physical probes (in the same path as other network de-
vices), introducing latency and jitter in the network. As physical devices, they suffer from
the problem of physical placement and can disrupt connectivity when flooded. This contra-
dicts the IACS essential requirements: availability, performance and the need for real-time
operations. Defining monitoring ports in a physical switch is also common. However, this
approach lacks flexibility: (i) sometimes only a single port can be defined as a mirror port;
(ii) switches often do not allow to select specific traffic patterns; and (iii) the process lacks
a global network view and is still executed on a per-device basis. Software defined networks
can help overcome the limitations enumerated above. By decoupling the data plane from
the control plane, SDN can adopt open protocols and promote network programmability at
a global level from a logical centralized location. Business value is shifted from the hardware
level to crafted SDN applications with specific virtual network functions. SDN can also
provide the means for new cyber-security techniques as it can effectively block traffic under
certain circumstances and provide counters for packets traversing the network. Coupled with
NFV, probes can deviate from the traditional physical model and move to the datacenter,
consolidated in common hypervisors as virtual machines or containers.

SDN and NFV have been extensively evaluated in the literature as viable network alternatives
for industrial control systems. However, the state-of-the-art review also found several points
for possible improvement. Many of the proposed frameworks are merely conceptual, imple-
mented in simple network controllers (often in Python) and with no source code available
for direct reutilization. They do not explore the clustering nature of some SDN controllers
and do not globally target performance. Single node controllers can represent a single point
of failure in the architecture, violating the availability requirement of IACS. Many of the

162 Chapter 9. Conclusions

studies implement external components which communicate with the controller via their
REST interfaces to achieve flow rule installation. This results in high latency values for
network operations that were supposed to occur in near real-time. With the rise of artificial
intelligence (AI) and machine learning (ML), researchers are starting to evaluate SDN as a
possible source for data mining and, ultimately, intrusion detection. Many research projects
use a reactive approach, instructing OpenFlow switches to send every single packet header
to the network controller for model training and validation. This process reduces the network
bandwidth, creates latency in network flows, and can be exploited as denial-of-service attacks
against the network controller. DDoS attacks are even more dangerous if SDN frameworks
rely on single node network controllers. Another issue found in the reviewed literature was
the lack of usability for the proposed tools: they do not contemplate multi-tenancy nor role
segregation (essential in IACS). Furthermore, they do not take advantage of the controller
web interfaces and create steep learning curves in a field where innovation moves slowly.

The ATENA project, and more specifically, the IADS framework developed by the University
of Coimbra, proposed to solve many of the enumerated issues by creating an highly decen-
tralized and distributed platform for intrusion detection - relying on machine learning (and
big data) techniques. The SDN subsystem of IADS proposed in this thesis can leverage this
infrastructure to properly collect any meaningful events and delegate further processing to
the upper layers of the IADS architecture. In the SDN subsystem, network functions were
implemented as abstracted services tied to logical sections of the network (the root basis for
multi-tenancy) and flow rules are installed using a proactive approach. The logic is imple-
mented directly at the application layer, using the controller native APIs, and is exposed via
external interfaces only for visualization purposes. A distributed (clustered) controller was
used to support the system and carefully select according to performance metrics available
in the literature. The subsystem includes a user-friendly web interface, with different priv-
ileged levels, where service deployment was achieved in the network topology graph. This
helped reducing the learning curve and the likelihood of SDN adoption as the model is sim-
ilar to HMIs already being used in IACS for control operations. The proposed subsystem
also explores container-based virtualization, combining it with the OpenFlow protocol for
container networking – a novel approach not yet explored in the IACS. It took advantage of
the docker container engine and its built-in image management capabilities to store probe
images/templates on a private registry. The registry separates images according to the type
of service, and allows the administrator to upload and remove new images to the system –
creating an environment similar to a security probe store. The system also allows scaling
the number of virtualization servers available for probe deployment. A total of four services
were developed and explored for the IACS domain:

• vNIDS - a virtual intrusion detection system,

• vHoneypot - a virtual honeypot service, designed for IACS,

• Data diode - a virtual SDN enabled data diode service,

• Network event factory - a special type of probe that piped SDN events to the upper
layers of the platform,

matching the goals outlined for this implementation component of this thesis. Probe de-
ployment in IADS happens in a matter of seconds (mostly due to container launching) and
the network programming step can be neglected in the overall logical network is small. The
validation of the subsystem allowed to conclude that every service behave exactly as ex-
pected considering the security use-cases outlined in the test methodology. Non-functional

9.1. Suggestions for future work 163

validation confirmed the main design quality attributes: performance and availability. The
system is able to operate even in cases of a link, switch or controller node failure showing
there is not a complete dependency on the control plane. The validation also permitted
to conclude that scaling the control plane size can represent both an advantage or a dis-
advantage in terms of performance. Its size should be carefully selected depending on the
situation. Regarding the data plane, the efforts to improve performance through DPDK in-
stallation shown OpenFlow software switches can have similar bandwidth values if compared
to commercial switches. The path to the virtualization infrastructure does not introduce
significant latency in the monitoring process as the same bandwidth was obtained within
virtual probe containers. Overall, the virtualized services developed in this thesis can thus
compare favorably with traditional approaches while maintaining functional equivalence to
their physical counterpart.

9.1 Suggestions for future work

The developed system is not yet able to automatically scale the number of deployed con-
tainers for a given service as the network traffic reaching a vProbe increases. Developed
applications provide the necessary APIs to achieve it but monitor components need to be
developed to periodically check the deployed container’s state and reacting accordingly.
Scale-up/scale-down mechanisms in IADS are, at the moment, a manual process. If scala-
bility policy support is added to the subsystem, value would be added as its model would be
more close to the one provided by the cloud computing paradigm. New containers would
be launched automatically, with changed sets of flow rules, to reduce the load of existing
containers.

A worth note to the future of Software defined networking is also imperative. The SDN
architecture is a relatively new field and new advances have been proposed in recent years.
Contrarily to Computer Networking domain itself, SDN is an area were innovation moves
relatively fast. Originated in 2008, the OpenFlow protocol is starting to get deprecated in
favor of new approaches such as the P4 programming language. In fact, despite allowing
data plane programming from the control plane, OpenFlow includes a lot of features that,
depending on the use case, are often not needed. In this research work, action buckets,
meters or QoS mechanisms are concrete examples of features that are built-in into each
switch and are not explored. P4 uses a different approach, it represents an abstraction layer
that sits above the vendor firmware. It can be used to program the switch behavior (flow
rules), delegate decisions to a network controller or add support for newer protocols in the
switch. P4 is not exactly a replacement for OpenFlow but a complementary technology to
add support for a multitude of protocols (including OpenFlow) on the same hardware. Like
OpenFlow, switches are treated as "open"/"empty" boxes and it is up to the programmer to
define the range of protocols or implicit data plane behavior it should have. In fact, ONOS
is moving in that direction too: the big majority of the recent developments are focused on
P4 support rather than updating the OpenFlow support for higher protocol revisions. In the
IADS subsystem P4 could be used to clearly define what rules are allowed in each switch at
installation time, similarly to a "firmware update", and to limit the code base (and inherently
the network switch attack surface) to a minimum.

165

Bibliography

Abubakar, Atiku et al. (2017). “Machine Learning Based Intrusion Detection System for
Software Defined Networks”. In: Proceedings of the 2017 Eighth International Conference
on Emerging Security Technologies (EST). IEEE.

Ajaeiya, Georgi A. et al. (2017). “Flow-based Intrusion Detection System for SDN”. In:
Proceedings - IEEE Symposium on Computers and Communications, pp. 787–793. isbn:
9781538616291. doi: 10.1109/ISCC.2017.8024623.

Alcaraz, Cristina et al. (2015). “Security Aspects of SCADA and DCS Environments”. In:
pp. 1–32.

Argyropoulos, C. et al. (2015). “Control-plane slicing methods in multi-tenant software
defined networks”. In: Proceedings of the 2015 IFIP/IEEE International Symposium on
Integrated Network Management, IM 2015, pp. 612–618. isbn: 9783901882760. doi: 10.
1109/INM.2015.7140345. arXiv: arXiv:1307.8198v1.

ATENA (2017). ATENA project official website. [Online] Accessed 3 January 2018. url:
https://www.atena-h2020.eu/.

ATENA youtube (2018). IADS demo 2 videos. [Online] Accessed 21 January 2018. url:
https://www.youtube.com/watch?v=NxLZ2Sqtujk%7B%5C&%7Dlist=PLyl2zhykZrH8nHidjvjG5B-
9OKOw3uDd-.

AtenaConsortium4.1 (2017). D4.1: Requirements and Reference Architecture for the Cyber-
physical IDS. Project Deliverable. UC, UL, IEC, UNIROMA3, iTRUST, ENEA.

AtenaConsortium4.3 (2017). D4.3 – Design of Detection Agents and Security Components.
Project Deliverable. UC, UL, iTrust.

Automation.com (2017). Yokogawa enhances plant network for four Japanese paper plants.
Accessed: 2017-12-20.

Axios (2018). Axios library. [Online] Accessed 21 January 2018. url: https://github.com/
axios/axios.

Aydeger et al. (2016). “SDN-based resilience for smart grid communications”. In: 2015 IEEE
Conference on Network Function Virtualization and Software Defined Network, NFV-SDN
2015, pp. 31–33. isbn: 9781467368841. doi: 10.1109/NFV-SDN.2015.7387401.

Azevedo F. (2015). “A Scalable Architecture for OpenFlow SDN Controllers”. MA thesis.
Lisboa, Portugal: IST-UL.

Azodolmolky, Siamak (2013). Software Defined Networking with OpenFlow. Packt Publish-
ing. isbn: 1849698724, 9781849698726.

Banse, Christian et al. (2015). “A secure northbound interface for SDN applications”. In:
Proceedings - 14th IEEE International Conference on Trust, Security and Privacy in Com-
puting and Communications, TrustCom 2015. Vol. 1, pp. 834–839. isbn: 9781467379519.
doi: 10.1109/Trustcom.2015.454.

Barbosa, R.R.R. (2014). Anomaly detection in SCADA systems: a network based approach.
doi: 10.3990/1.9789036536455.

Berde, Pankaj et al. (2014). “ONOS: towards an open, distributed SDN OS”. In: Proceedings
of the third workshop on Hot topics in software defined networking - HotSDN ’14, pp. 1–

https://doi.org/10.1109/ISCC.2017.8024623
https://doi.org/10.1109/INM.2015.7140345
https://doi.org/10.1109/INM.2015.7140345
http://arxiv.org/abs/arXiv:1307.8198v1
https://www.atena-h2020.eu/
https://www.youtube.com/watch?v=NxLZ2Sqtujk%7B%5C&%7Dlist=PLyl2zhykZrH8nHidjvjG5B-9OKOw3uDd-
https://www.youtube.com/watch?v=NxLZ2Sqtujk%7B%5C&%7Dlist=PLyl2zhykZrH8nHidjvjG5B-9OKOw3uDd-
https://github.com/axios/axios
https://github.com/axios/axios
https://doi.org/10.1109/NFV-SDN.2015.7387401
https://doi.org/10.1109/Trustcom.2015.454
https://doi.org/10.3990/1.9789036536455

166 BIBLIOGRAPHY

6. doi: 10.1145/2620728.2620744. url: http://dl.acm.org/citation.cfm?id=
2620728.2620744.

B.Freitas, M (2017). Allow multiple VNC windows. url: https://github.com/OpenXenManager/
openxenmanager/pull/132.

– (2018). Remove host location when a switch port is removed. url: https://gerrit.
onosproject.org/#/c/18996/.

Biondi, Philippe (2018). Scapy - Packet crafting for Python2 and Python3. [Online] Accessed
31 August 2018. url: https://scapy.net/.

Brewer, Ea (2000). “Towards Robust Distributed Systems”. In: Podc, p. 50. issn: 01635700.
doi: 10.1145/343477.343502.

Brikman, Y. (2017). Terraform: Up and Running : Writing Infrastructure as Code. O’Reilly
Media. isbn: 9781491977088. url: https://books.google.pt/books?id=MLkRMQAACAAJ.

Cadenas, Manuel et al. (2016). BTest - A performance analysis tool for SDN controllers:
OpenDayLight versus ONOS comparison. http://onos-cord-eu.create-net.org/
wp-content/uploads/2016/09/07-Btest-RA-1.pdf.

Cagalaban, Giovanni et al. (2011). “Towards Improving SCADA Control Systems Security
with Vulnerability Analysis”. In: PARALLEL AND DISTRIBUTED COMPUTING AND
NETWORKS. Vol. 137, pp. 27–32. isbn: 978-3-642-22705-9.

Cahn, Adam et al. (2013). “Software-defined energy communication networks: From substa-
tion automation to future smart grids”. In: 2013 IEEE International Conference on Smart
Grid Communications, SmartGridComm 2013, pp. 558–563. isbn: 9781479915262. doi:
10.1109/SmartGridComm.2013.6688017.

Cheung, Steven et al. (2006). “Using Model-based Intrusion Detection for SCADA Net-
works”. In: Science And Technology 329.7461, pp. 1–12. issn: 09598138. doi: 10.1136/
bmj.329.7461.331.

Cisco (2013). OpenDaylight: The Start of Something Big for SDN. http://blogs.cisco.
com/datacenter/opendaylight-the-start-of-something-big-for-sdn. [Online]
Accessed 12 June 2017.

Cockburn, Alistair (2000). Writing Effective Use Cases. 1st. Boston, MA, USA: Addison-
Wesley Longman Publishing Co., Inc. isbn: 0201702258.

Combe, Theo et al. (2016). “To Docker or Not to Docker: A Security Perspective”. In: IEEE
Cloud Computing 3.5, pp. 54–62. issn: 23256095. doi: 10.1109/MCC.2016.100.

Cox, Jacob H. et al. (2017). “Advancing Software-Defined Networks: A Survey”. In: IEEE
Access 99, pp. 1–1. issn: 2169-3536. doi: 10.1109/ACCESS.2017.2762291. url: http:
//ieeexplore.ieee.org/document/8066287/.

Cruz, Tiago et al. (2016). “Virtualizing programmable logic controllers: Toward a convergent
approach”. In: IEEE Embedded Systems Letters 8.4, pp. 69–72. issn: 19430663. doi:
10.1109/LES.2016.2608418.

Cruz, Tiago et al. (2015). “Improving network security monitoring for industrial control
systems”. In: 2015 IFIP/IEEE International Symposium on Integrated Network Manage-
ment (IM), pp. 878–881. isbn: 978-1-4799-8241-7. doi: 10.1109/INM.2015.7140399.
url: http://ieeexplore.ieee.org/document/7140399/%7B%5C%%7D5Cnhttp://
ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=7140399.

Cziva, Richard et al. (2016). “Container-based network function virtualization for software-
defined networks”. In: Proceedings - IEEE Symposium on Computers and Communications.
Vol. 2016-February, pp. 415–420. isbn: 9781467371940. doi: 10.1109/ISCC.2015.
7405550.

https://doi.org/10.1145/2620728.2620744
http://dl.acm.org/citation.cfm?id=2620728.2620744
http://dl.acm.org/citation.cfm?id=2620728.2620744
https://github.com/OpenXenManager/openxenmanager/pull/132
https://github.com/OpenXenManager/openxenmanager/pull/132
https://gerrit.onosproject.org/#/c/18996/
https://gerrit.onosproject.org/#/c/18996/
https://scapy.net/
https://doi.org/10.1145/343477.343502
https://books.google.pt/books?id=MLkRMQAACAAJ
http://onos-cord-eu.create-net.org/wp-content/uploads/2016/09/07-Btest-RA-1.pdf
http://onos-cord-eu.create-net.org/wp-content/uploads/2016/09/07-Btest-RA-1.pdf
https://doi.org/10.1109/SmartGridComm.2013.6688017
https://doi.org/10.1136/bmj.329.7461.331
https://doi.org/10.1136/bmj.329.7461.331
http://blogs.cisco.com/datacenter/opendaylight-the-start-of-something-big-for-sdn
http://blogs.cisco.com/datacenter/opendaylight-the-start-of-something-big-for-sdn
https://doi.org/10.1109/MCC.2016.100
https://doi.org/10.1109/ACCESS.2017.2762291
http://ieeexplore.ieee.org/document/8066287/
http://ieeexplore.ieee.org/document/8066287/
https://doi.org/10.1109/LES.2016.2608418
https://doi.org/10.1109/INM.2015.7140399
http://ieeexplore.ieee.org/document/7140399/%7B%5C%%7D5Cnhttp://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=7140399
http://ieeexplore.ieee.org/document/7140399/%7B%5C%%7D5Cnhttp://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=7140399
https://doi.org/10.1109/ISCC.2015.7405550
https://doi.org/10.1109/ISCC.2015.7405550

BIBLIOGRAPHY 167

Da Silva et al. (2015). “Capitalizing on SDN-based SCADA systems: An anti-eavesdropping
case-study”. In: Proceedings of the 2015 IFIP/IEEE International Symposium on Inte-
grated Network Management, IM 2015, pp. 165–173. isbn: 9783901882760. doi: 10.
1109/INM.2015.7140289.

Da Silva, Eduardo Germano et al. (2016). “A One-Class NIDS for SDN-Based SCADA Sys-
tems”. In: Proceedings - International Computer Software and Applications Conference.
Vol. 1, pp. 303–312. isbn: 9781467388450. doi: 10.1109/COMPSAC.2016.32.

Darianian, Mohamad (2017). “Experimental Evaluation of Two OpenFlow Controllers”. MA
thesis. Calgary, Alberta: University of Calgary.

De Freitas, Breno Jácomo (2012). “Preventive actions in protection relays network using
SNMP”. In: 2012 11th International Conference on Environment and Electrical Engi-
neering, EEEIC 2012 - Conference Proceedings, pp. 36–40. isbn: 9781457718281. doi:
10.1109/EEEIC.2012.6221401.

Dharani, R. (2017). Web API Design: Crafting Interfaces That Developers Love. Indepen-
dently Published. isbn: 9781973436249. url: https://books.google.pt/books?id=
ow8ZuAEACAAJ.

Docker Documentation (2017). About images, containers, and storage drivers. [Online] Ac-
cessed 11 December 2017. url: https://docs.docker.com/engine/userguide/
storagedriver/imagesandcontainers/.

Docker Networking (2017). Docker container networking. [Online] Accessed 7 December
2017. url: https://docs.docker.com/engine/userguide/networking/#user-
defined-networks.

Dong, Xinshu et al. (2015). “Software-Defined Networking for Smart Grid Resilience: Op-
portunities and Challenges”. In: Proceedings of the 1st ACM Workshop on Cyber-Physical
System Security, pp. 61–68. issn: 21615330. doi: 10.1145/2732198.2732203. url: http:
//doi.acm.org/10.1145/2732198.2732203.

Drias, Zakarya et al. (2015). “Taxonomy of attacks on industrial control protocols”. In:
International Conference on Protocol Engineering, ICPE 2015 and International Con-
ference on New Technologies of Distributed Systems, NTDS 2015 - Proceedings. isbn:
9781467392655. doi: 10.1109/NOTERE.2015.7293513. arXiv: 0-387-31073-8.

Ecmweb (2003). The Basics of Ladder Logic. http://www.ecmweb.com/archive/basics-
ladder-logic. [Online] Accessed 13 January 2018.

Eder, Michael et al. (2016). “Hypervisor- vs. Container-based Virtualization”. In: Network
Architectures and Services July, pp. 1–7. doi: 10.2313/NET-2016-07-1.

Endi, Mohamed et al. (2010). “Three-Layer PLC / SCADA System Architecture in Process
Automation and Data Monitoring”. In: pp. 774–779.

Eric Byres (2016). The Industrial Cybersecurity Problem - ISA. [Online] Accessed 16 De-
cember 2017. url: https://www.isa.org/pdfs/the-industrial-cybersecurity-
problem/.

eTutorials.org (2008). Quality Attribute Scenarios in Practice. http://etutorials.org/
Programming/Software+architecture+in+practice,+second+edition/Part+Two+
Creating+an+Architecture/Chapter+4.+Understanding+Quality+Attributes/4.
4+Quality+Attribute+Scenarios+in+Practice/. Accessed 5 July 2017.

Feamster, Nick et al. (2014). “The road to SDN”. In: ACM SIGCOMM Computer Commu-
nication Review 44.2, pp. 87–98. issn: 01464833. doi: 10.1145/2602204.2602219. url:
http://dl.acm.org/citation.cfm?doid=2602204.2602219.

Fernandez, Marcial P. (2013). “Comparing OpenFlow controller paradigms scalability: Reac-
tive and proactive”. In: Proceedings - International Conference on Advanced Information

https://doi.org/10.1109/INM.2015.7140289
https://doi.org/10.1109/INM.2015.7140289
https://doi.org/10.1109/COMPSAC.2016.32
https://doi.org/10.1109/EEEIC.2012.6221401
https://books.google.pt/books?id=ow8ZuAEACAAJ
https://books.google.pt/books?id=ow8ZuAEACAAJ
https://docs.docker.com/engine/userguide/storagedriver/imagesandcontainers/
https://docs.docker.com/engine/userguide/storagedriver/imagesandcontainers/
https://docs.docker.com/engine/userguide/networking/#user-defined-networks
https://docs.docker.com/engine/userguide/networking/#user-defined-networks
https://doi.org/10.1145/2732198.2732203
http://doi.acm.org/10.1145/2732198.2732203
http://doi.acm.org/10.1145/2732198.2732203
https://doi.org/10.1109/NOTERE.2015.7293513
http://arxiv.org/abs/0-387-31073-8
https://doi.org/10.2313/NET-2016-07-1
https://www.isa.org/pdfs/the-industrial-cybersecurity-problem/
https://www.isa.org/pdfs/the-industrial-cybersecurity-problem/
http://etutorials.org/Programming/Software+architecture+in+practice,+second+edition/ Part+Two+Creating+an+Architecture/Chapter+4.+Understanding+Quality+Attributes/4. 4+Quality+Attribute+Scenarios+in+Practice/
http://etutorials.org/Programming/Software+architecture+in+practice,+second+edition/ Part+Two+Creating+an+Architecture/Chapter+4.+Understanding+Quality+Attributes/4. 4+Quality+Attribute+Scenarios+in+Practice/
http://etutorials.org/Programming/Software+architecture+in+practice,+second+edition/ Part+Two+Creating+an+Architecture/Chapter+4.+Understanding+Quality+Attributes/4. 4+Quality+Attribute+Scenarios+in+Practice/
http://etutorials.org/Programming/Software+architecture+in+practice,+second+edition/ Part+Two+Creating+an+Architecture/Chapter+4.+Understanding+Quality+Attributes/4. 4+Quality+Attribute+Scenarios+in+Practice/
https://doi.org/10.1145/2602204.2602219
http://dl.acm.org/citation.cfm?doid=2602204.2602219

168 BIBLIOGRAPHY

Networking and Applications, AINA, pp. 1009–1016. isbn: 9780769549538. doi: 10.1109/
AINA.2013.113.

Filipova, O. (2016). Learning Vue.js 2. Packt Publishing, Limited. isbn: 9781786469946.
url: https://books.google.pt/books?id=q0FkvgAACAAJ.

Fireeye (2017). Attackers Deploy New ICS Attack Framework “TRITON” and Cause Op-
erational Disruption to Critical Infrastructure. [Online] Accessed 18 January 2018. url:
https://www.fireeye.com/blog/threat-research/2017/12/attackers-deploy-
new-ics-attack-framework-triton.html.

Forbes, Harry (2017). “Software-defined Industrial Networks Deliver Cybersecurity Break-
throughs”. In: ARC BRIEF.

FortFox (2010). Security Target Common Criteria FFHDD – EAL7+. Tech. rep. FortFox.
url: https://www.commoncriteriaportal.org/files/epfiles/Fox%20DataDiode%
20Security%20Target%20EAL7%20(v2.04).pdf.

Fotrousi, Farnaz et al. (2014). “Quality requirements elicitation based on inquiry of quality-
impact relationships”. In: 2014 IEEE 22nd International Requirements Engineering Con-
ference, RE 2014 - Proceedings, pp. 303–312. isbn: 9781479930333. doi: 10.1109/RE.
2014.6912272.

Fysarakis, Konstantinos et al. (2017). “A Reactive Security Framework for operational wind
parks using Service Function Chaining”. In: Proceedings - IEEE Symposium on Computers
and Communications, pp. 663–668. isbn: 9781538616291. doi: 10.1109/ISCC.2017.
8024604.

Ghosh, Uttam et al. (2017). “A Security Framework for SDN-Enabled Smart Power Grids”.
In: 2017 IEEE 37th International Conference on Distributed Computing Systems Work-
shops (ICDCSW), pp. 113–118. doi: 10.1109/ICDCSW.2017.20. url: http://ieeexplore.
ieee.org/document/7979803/.

Ghosh, Uttam et al. (2016). “A Simulation Study on Smart Grid Resilience under Software-
Defined Networking Controller Failures”. In: Proceedings of the 2nd ACM International
Workshop on Cyber-Physical System Security - CPSS ’16, pp. 52–58. isbn: 9781450342889.
doi: 10.1145/2899015.2899020. url: http://dl.acm.org/citation.cfm?doid=
2899015.2899020.

Giacobbi, Giovanni (2006). The GNU Netcat project. [Online] Accessed 31 August 2018.
url: http://netcat.sourceforge.net/.

Goodney, Andrew et al. (2013). “Efficient PMU networking with software defined networks”.
In: 2013 IEEE International Conference on Smart Grid Communications, SmartGrid-
Comm 2013, pp. 378–383. isbn: 9781479915262. doi: 10.1109/SmartGridComm.2013.
6687987.

Goransson, Paul et al. (2014). Software Defined Networks: A Comprehensive Approach.
1st. San Francisco, CA, USA: Morgan Kaufmann Publishers Inc. isbn: 012416675X,
9780124166752.

Graveto, Vitor (2017). “Evolving Monitoring Approaches for Cyber-Physical Systems”. Ph.D.
Research Proposal. University of Coimbra.

Gyorgy, Kalman (2016). “Prospects of Software-Defined Networking in Industrial Opera-
tions”. In: 9.3, pp. 101–110.

Haack, P. (2011). Release Early, Release Often. http://haacked.com/archive/2011/
04/20/release-early-and-often.aspx. [Online] Accessed July 2017.

Han, Wonkyu et al. (2016). “HoneyMix: Toward SDN-based Intelligent Honeynet”. In: . . .
in Software Defined Networks & . . . Pp. 1–6. doi: 10.1145/2876019.2876022. url:
http://dl.acm.org/citation.cfm?id=2876022.

https://doi.org/10.1109/AINA.2013.113
https://doi.org/10.1109/AINA.2013.113
https://books.google.pt/books?id=q0FkvgAACAAJ
https://www.fireeye.com/blog/threat-research/2017/12/attackers-deploy-new-ics-attack-framework-triton.html
https://www.fireeye.com/blog/threat-research/2017/12/attackers-deploy-new-ics-attack-framework-triton.html
https://www.commoncriteriaportal.org/files/epfiles/Fox%20DataDiode%20Security%20Target%20EAL7%20(v2.04).pdf
https://www.commoncriteriaportal.org/files/epfiles/Fox%20DataDiode%20Security%20Target%20EAL7%20(v2.04).pdf
https://doi.org/10.1109/RE.2014.6912272
https://doi.org/10.1109/RE.2014.6912272
https://doi.org/10.1109/ISCC.2017.8024604
https://doi.org/10.1109/ISCC.2017.8024604
https://doi.org/10.1109/ICDCSW.2017.20
http://ieeexplore.ieee.org/document/7979803/
http://ieeexplore.ieee.org/document/7979803/
https://doi.org/10.1145/2899015.2899020
http://dl.acm.org/citation.cfm?doid=2899015.2899020
http://dl.acm.org/citation.cfm?doid=2899015.2899020
http://netcat.sourceforge.net/
https://doi.org/10.1109/SmartGridComm.2013.6687987
https://doi.org/10.1109/SmartGridComm.2013.6687987
http://haacked.com/archive/2011/04/20/release-early-and-often.aspx
http://haacked.com/archive/2011/04/20/release-early-and-often.aspx
https://doi.org/10.1145/2876019.2876022
http://dl.acm.org/citation.cfm?id=2876022

BIBLIOGRAPHY 169

Heo, Youngjun et al. (2016). “A design of unidirectional security gateway for enforcement
reliability and security of transmission data in industrial control systems”. In: International
Conference on Advanced Communication Technology, ICACT. Vol. 2016-March, pp. 310–
313. isbn: 9788996865063. doi: 10.1109/ICACT.2016.7423372.

Hernandez, Esteban (2016). “Implementation and Performance of a SDN Cluster Controller
Based on the OpenDayLight Framework”. MA thesis. Milano: Politecnico di Milano.

hicu.be (2016).Macvlan vs Ipvlan. [Online] Accessed 7 December 2017. url: https://hicu.
be/macvlan-vs-ipvlan.

Huang, Nen Fu et al. (2015). “An OpenFlow-based collaborative intrusion prevention system
for cloud networking”. In: Proceedings of 2015 IEEE International Conference on Com-
munication Software and Networks, ICCSN 2015, pp. 85–92. isbn: 9781479919833. doi:
10.1109/ICCSN.2015.7296133.

Hughey, D. (2017). Comparing Traditional Systems Analysis and Design with Agile Method-
ologies. http://www.umsl.edu/ hugheyd/is6840/waterfall.html. Accessed July 2017.

IBM Corp (2006). Guideline: Use-Case Package. http://www.michael- richardson.
com / processes / rup _ for _ sqa / core . base _ rup / guidances / guidelines / use -
case_package_1EFD6458.html. Accessed 8 July 2017.

IEEE (1994). IEEE recommended practice for software requirements specifications. IEEE
Std. Institute of Electrical and Electronics Engineers. isbn: 9781559373951. url: https:
//books.google.pt/books?id=CnopAQAAMAAJ.

IEEE Std 1233 (1998). IEEE Std 1233, 1998 Edition: IEEE Guide for Developing System
Requirements Specifications. IEEE. url: https://books.google.pt/books?id=f7O%
5C_nQAACAAJ.

InfoWorld (2017). What is Docker? Linux containers explained. [Online] Accessed 15 De-
cember 2017. url: https://www.infoworld.com/article/3204171/linux/what-is-
docker-linux-containers-explained.html.

ISA99 (2017). ISA99: Developing the ISA/IEC 62443 Series of Standards on Industrial
Automation and Control Systems (IACS). [Online] Accessed 28 December 2017. url:
http://isa99.isa.org/.

ISO/IEC (2010). ISO/IEC 25010 System and software quality models. Tech. rep.
J. Goss (2007). 10 reasons why use cases are indispensable to your software development
project. http://www.techrepublic.com/blog/software-engineer/10-reasons-
why-use-cases-are-indispensable-to-your-software-development-project.
Accessed 19 July 2017.

Jeong, Chiwook et al. (2014). “Scalable network intrusion detection on virtual SDN envi-
ronment”. In: 2014 IEEE 3rd International Conference on Cloud Networking, CloudNet
2014, pp. 264–265. isbn: 9781479927302. doi: 10.1109/CloudNet.2014.6969003.

K. M. Anderson (2005). Lecture 7 and 8: Use Cases CS-Colorado. https://www.cs.
colorado.edu/~kena/classes/6448/s05/lectures/lecture07-08.pdf. Accessed 6
July 2017.

Kaspersky (2016). Threat landscape for industrial automation systems in the second half
of 2016. [Online] Accessed 16 January 2017. url: https://ics-cert.kaspersky.com/
reports/2017/03/28/threat-landscape-for-industrial-automation-systems-
in-the-second-half-of-2016/.

Khattak, Zuhran et al. (2014). “Performance evaluation of OpenDaylight SDN controller”.
In: Proceedings of the International Conference on Parallel and Distributed Systems -
ICPADS. Vol. 2015-April, pp. 671–676. isbn: 9781479976157. doi: 10.1109/PADSW.
2014.7097868.

https://doi.org/10.1109/ICACT.2016.7423372
https://hicu.be/macvlan-vs-ipvlan
https://hicu.be/macvlan-vs-ipvlan
https://doi.org/10.1109/ICCSN.2015.7296133
http://www.michael- richardson.com/processes/rup_for_sqa/core.base_rup/guidances/guidelines/use- case_package_1EFD6458.html
http://www.michael- richardson.com/processes/rup_for_sqa/core.base_rup/guidances/guidelines/use- case_package_1EFD6458.html
http://www.michael- richardson.com/processes/rup_for_sqa/core.base_rup/guidances/guidelines/use- case_package_1EFD6458.html
https://books.google.pt/books?id=CnopAQAAMAAJ
https://books.google.pt/books?id=CnopAQAAMAAJ
https://books.google.pt/books?id=f7O%5C_nQAACAAJ
https://books.google.pt/books?id=f7O%5C_nQAACAAJ
https://www.infoworld.com/article/3204171/linux/what-is-docker-linux-containers-explained.html
https://www.infoworld.com/article/3204171/linux/what-is-docker-linux-containers-explained.html
http://isa99.isa.org/
http://www.techrepublic.com/blog/software-engineer/10-reasons-why-use-cases-are- indispensable-to-your-software-development-project
http://www.techrepublic.com/blog/software-engineer/10-reasons-why-use-cases-are- indispensable-to-your-software-development-project
https://doi.org/10.1109/CloudNet.2014.6969003
https://www.cs.colorado.edu/~kena/classes/6448/s05/lectures/lecture07-08.pdf
https://www.cs.colorado.edu/~kena/classes/6448/s05/lectures/lecture07-08.pdf
https://ics-cert.kaspersky.com/reports/2017/03/28/threat-landscape-for-industrial-automation-systems-in-the-second-half-of-2016/
https://ics-cert.kaspersky.com/reports/2017/03/28/threat-landscape-for-industrial-automation-systems-in-the-second-half-of-2016/
https://ics-cert.kaspersky.com/reports/2017/03/28/threat-landscape-for-industrial-automation-systems-in-the-second-half-of-2016/
https://doi.org/10.1109/PADSW.2014.7097868
https://doi.org/10.1109/PADSW.2014.7097868

170 BIBLIOGRAPHY

Kim Zetter (2015). Inside the cunning, unprecedented hack of Ukraine’s power grid. [Online]
Accessed 16 January 2018. url: https://www.wired.com/2016/03/inside-cunning-
unprecedented-hack-ukraines-power-grid/.

Kim, Jaebeom et al. (2015). “Trends and potentials of the smart grid infrastructure: from
ICT sub-system to SDN-enabled smart grid architecture”. In: Applied Sciences 5.4, pp. 706–
727.

Kreutz, Diego et al. (2014). “Software-Defined Networking: A Comprehensive Survey”. In:
arXiv preprint arXiv: . . . P. 49. issn: 0018-9219. doi: 10.1109/JPROC.2014.2371999.
arXiv: 1406.0440. url: http://arxiv.org/abs/1406.0440.

Kurtz, Fabian et al. (2017). “Advanced Controller Resiliency in Software-Defined Networking
Enabled Critical Infrastructure Communications”. In: pp. 673–678.

Lallo, Roberto di et al. (2017). “Leveraging SDN to monitor critical infrastructure networks
in a smarter way”. In: 2017 IFIP/IEEE Symposium on Integrated Network and Service
Management (IM), pp. 608–611. doi: 10.23919/INM.2017.7987341. arXiv: 1701.04293.
url: http://ieeexplore.ieee.org/document/7987341/.

Lamport, Leslie et al. (2014). “In Search of an Understandable Consensus Algorithm”. In:
Atc ’14 22.2, pp. 305–320. issn: 07342071. doi: 10.1145/1529974.1529978. arXiv:
1505.01448.

Lara, Adrian et al. (2013). “Network Innovation using OpenFlow: A Survey”. In: IEEE Com-
munications Surveys & Tutorials PP.99, pp. 1–20. issn: 1553-877X. doi: 10.1109/SURV.
2013.081313.00105.

Li, Yong et al. (2015). “Software-defined network function virtualization: A survey”. In: IEEE
Access 3, pp. 2542–2553. issn: 21693536. doi: 10.1109/ACCESS.2015.2499271.

LinuxFoundation (2014). Developing OpenDaylight Apps with MD-SAL. https://events.
static.linuxfound.org/sites/events/files/slides/os2014-md-sal-tutorial_
0.pdf. Accessed 11 June 2017.

Lopes et al. (2017). “A Security Framework for SDN-Enabled Smart Power Grids”. In: 2017
IFIP/IEEE Symposium on Integrated Network and Service Management (IM). doi: 10.
23919/INM.2017.7987283.

MachineryEquipment (2015). Industrial control networks: supervisory control and data acqui-
sition (SCADA) network. [Online] Accessed 15 January 2018. url: http://machineryequipmentonline.
com/electric-equipment/industrial-control-networkssupervisory-control-
and-data-acquisition-scada-network/.

Manzano, Andrés et al. (2016). “A prototype for a honeynet based on SDN”. In: 2016 8th
Euro American Conference on Telematics and Information Systems, EATIS 2016. isbn:
9781509024360. doi: 10.1109/EATIS.2016.7520100.

MapDB (2018). MapDB about page. http://www.mapdb.org/. Accessed 4 January 2018.
Marinescu, Dan et al. (2007). State of the art in autonomic computing and virtualization.
SoA. Distributed Systems Lab, Wiesbaden University of Applied Sciences.

Mckay, Murray (2012). “Best practices in automation security”. In: url: http://citeseerx.
ist.psu.edu/viewdoc/download?doi=10.1.1.1001.6096%7B%5C&%7Drep=rep1%7B%
5C&%7Dtype=pdf.

Menashri, Harel et al. (2015). “Critical Infrastructures and their Interdependence in a Cyber
Attack – The Case of the U.S”. In: Military and Strategic Affairs 7.1, p. 22. url: http:
//www.inss.org.il/uploadImages/systemFiles/5%7B%5C_%7DMenashri%7B%5C_
%7DBaram.pdf.

Microsoft (2017). Chapter 16: Quality Attributes, from Microsoft, Developer Network.
https://msdn.microsoft.com/en-us/library/ee658094.aspx. Accessed 4 July
2017.

https://www.wired.com/2016/03/inside-cunning-unprecedented-hack-ukraines-power-grid/
https://www.wired.com/2016/03/inside-cunning-unprecedented-hack-ukraines-power-grid/
https://doi.org/10.1109/JPROC.2014.2371999
http://arxiv.org/abs/1406.0440
http://arxiv.org/abs/1406.0440
https://doi.org/10.23919/INM.2017.7987341
http://arxiv.org/abs/1701.04293
http://ieeexplore.ieee.org/document/7987341/
https://doi.org/10.1145/1529974.1529978
http://arxiv.org/abs/1505.01448
https://doi.org/10.1109/SURV.2013.081313.00105
https://doi.org/10.1109/SURV.2013.081313.00105
https://doi.org/10.1109/ACCESS.2015.2499271
https://events.static.linuxfound.org/sites/events/files/slides/os2014-md-sal-tutorial_0.pdf
https://events.static.linuxfound.org/sites/events/files/slides/os2014-md-sal-tutorial_0.pdf
https://events.static.linuxfound.org/sites/events/files/slides/os2014-md-sal-tutorial_0.pdf
https://doi.org/10.23919/INM.2017.7987283
https://doi.org/10.23919/INM.2017.7987283
http://machineryequipmentonline.com/electric-equipment/industrial-control-networkssupervisory-control-and-data-acquisition-scada-network/
http://machineryequipmentonline.com/electric-equipment/industrial-control-networkssupervisory-control-and-data-acquisition-scada-network/
http://machineryequipmentonline.com/electric-equipment/industrial-control-networkssupervisory-control-and-data-acquisition-scada-network/
https://doi.org/10.1109/EATIS.2016.7520100
http://www.mapdb.org/
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.1001.6096%7B%5C&%7Drep=rep1%7B%5C&%7Dtype=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.1001.6096%7B%5C&%7Drep=rep1%7B%5C&%7Dtype=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.1001.6096%7B%5C&%7Drep=rep1%7B%5C&%7Dtype=pdf
http://www.inss.org.il/uploadImages/systemFiles/5%7B%5C_%7DMenashri%7B%5C_%7DBaram.pdf
http://www.inss.org.il/uploadImages/systemFiles/5%7B%5C_%7DMenashri%7B%5C_%7DBaram.pdf
http://www.inss.org.il/uploadImages/systemFiles/5%7B%5C_%7DMenashri%7B%5C_%7DBaram.pdf
https://msdn.microsoft.com/en-us/library/ee658094.aspx

BIBLIOGRAPHY 171

Minicz et al. (2017). “Fault Recovery Performance in Multicast Networks for Smart Grid”.
In: IEEE Latin America Transactions 15.11, pp. 2207–2213. issn: 15480992. doi: 10.
1109/TLA.2017.8070428.

Mirantis (2015). What’s in OpenDaylight? https://www.mirantis.com/blog/whats-
opendaylight/. Accessed 10 June 2017.

Mo, Yilin et al. (2012). “Cyber-physical security of a smart grid infrastructure”. In: Pro-
ceedings of the IEEE 100.1, pp. 195–209. issn: 00189219. doi: 10.1109/JPROC.2011.
2161428.

Molina, Elias et al. (2015). “Using Software Defined Networking to manage and control IEC
61850-based systems”. In: Computers and Electrical Engineering 43, pp. 142–154. issn:
00457906. doi: 10.1016/j.compeleceng.2014.10.016.

Monshizadeh et al. (2017). “Detection as a service: An SDN application”. In: Interna-
tional Conference on Advanced Communication Technology, ICACT, pp. 285–290. issn:
17389445. doi: 10.23919/ICACT.2017.7890099.

Moradi, Farnaz et al. (2017). “ConMon: An automated container based network perfor-
mance monitoring system”. In: Proceedings of the IM 2017 - 2017 IFIP/IEEE Inter-
national Symposium on Integrated Network and Service Management, pp. 54–62. doi:
10.23919/INM.2017.7987264.

Mousa, Mohammad et al. (2016). “Software Defined Networking concepts and challenges”.
In: 2016 11th International Conference on Computer Engineering & Systems (ICCES),
pp. 79–90. doi: 10.1109/ICCES.2016.7821979. url: http://ieeexplore.ieee.org/
document/7821979/.

MSec (2017). Industrial Control Systems ARCHITECTURES & SECURITY ESSENTIALS.
https://www.msec.be/verboten/seminaries/ICS_archs_and_sec_essentials/
ICS_Overview.pdf. [Online] Accessed: 2018-01-2.

Nagesh, Osri et al. (2017). “A survey on security aspects of server virtualization in cloud com-
puting”. In: International Journal of Electrical and Computer Engineering 7.3, pp. 1326–
1336. issn: 20888708. doi: 10.11591/ijece.v7i3.pp1326-1336.

Naseer, Muhammad (2016). “Modeling Control Traffic in Distributed Software Defined Net-
works”. MA thesis. Stockholm, Sweden: KTH ROYAL INSTITUTE OF TECHNOLOGY
SCHOOL OF ELECTRICAL ENGINEERING.

NetworkStatic (2013). OpenFlow: Proactive vs Reactive Flows. [Online] Accessed 27 De-
cember 2017. url: http://networkstatic.net/openflow-proactive-vs-reactive-
flows/.

Neu, Charles V. et al. (2017). “An approach for detecting encrypted insider attacks on
OpenFlow SDN Networks”. In: 2016 11th International Conference for Internet Technology
and Secured Transactions, ICITST 2016, pp. 210–215. isbn: 9781908320735. doi: 10.
1109/ICITST.2016.7856698.

Norman, D. (2013). The Design of Everyday Things: Revised and Expanded Edition. Basic
Books. isbn: 9780465072996. url: https://books.google.pt/books?id=I1o4DgAAQBAJ.

ODL-license (2017).OpenDaylight Licensing. https://www.opendaylight.org/licensing.
Accessed 12 June 2017.

ODL-team (2017).OpenFlow Plugin Project Developer Guide. http://docs.opendaylight.
org/en/stable-boron/developer-guide/openflow-plugin-project-developer-
guide.html. Accessed 13 January 2018.

ODLWiki-clustering (2017).OpenDaylight/ Controller:MD-SAL:Architecture:Clustering. https:
//wiki.opendaylight.org/view/OpenDaylight_Controller:MD-SAL:Architecture:
Clustering. Accessed 18 January 2018.

https://doi.org/10.1109/TLA.2017.8070428
https://doi.org/10.1109/TLA.2017.8070428
https://www.mirantis.com/blog/whats-opendaylight/
https://www.mirantis.com/blog/whats-opendaylight/
https://doi.org/10.1109/JPROC.2011.2161428
https://doi.org/10.1109/JPROC.2011.2161428
https://doi.org/10.1016/j.compeleceng.2014.10.016
https://doi.org/10.23919/ICACT.2017.7890099
https://doi.org/10.23919/INM.2017.7987264
https://doi.org/10.1109/ICCES.2016.7821979
http://ieeexplore.ieee.org/document/7821979/
http://ieeexplore.ieee.org/document/7821979/
https://www.msec.be/verboten/seminaries/ICS_archs_and_sec_essentials/ICS_Overview.pdf
https://www.msec.be/verboten/seminaries/ICS_archs_and_sec_essentials/ICS_Overview.pdf
https://doi.org/10.11591/ijece.v7i3.pp1326-1336
http://networkstatic.net/openflow-proactive-vs-reactive-flows/
http://networkstatic.net/openflow-proactive-vs-reactive-flows/
https://doi.org/10.1109/ICITST.2016.7856698
https://doi.org/10.1109/ICITST.2016.7856698
https://books.google.pt/books?id=I1o4DgAAQBAJ
https://www.opendaylight.org/licensing
http://docs.opendaylight.org/en/stable-boron/developer-guide/openflow-plugin-project-developer-guide.html
http://docs.opendaylight.org/en/stable-boron/developer-guide/openflow-plugin-project-developer-guide.html
http://docs.opendaylight.org/en/stable-boron/developer-guide/openflow-plugin-project-developer-guide.html
https://wiki.opendaylight.org/view/OpenDaylight_Controller:MD-SAL:Architecture:Clustering
https://wiki.opendaylight.org/view/OpenDaylight_Controller:MD-SAL:Architecture:Clustering
https://wiki.opendaylight.org/view/OpenDaylight_Controller:MD-SAL:Architecture:Clustering

172 BIBLIOGRAPHY

O.N.F. (2012). “Software-defined networking: The new norm for networks”. In: ONF White
Paper 2, pp. 2–6.

ONF-ESTI (2015). Relationship of SDN and NFV. https://www.opennetworking.org/
images/stories/downloads/sdn-resources/technical-reports/onf2015.310_
Architectural_comparison.08-2.pdf. Accessed 15 January 2018.

On.Lab (2017). Raising the bar on SDN performance, scalability, and high availability. Tech.
rep. On.Lab. url: http://onosproject.org/wp-content/uploads/2017/08/ONOS_
Performance_White_Paper-2.pdf.

ONOS testcases (2018). Experiment C - Intent Install/Remove/Re-route Latency. [Online]
Accessed 21 January 2018. url: https://wiki.onosproject.org/pages/viewpage.
action?pageId=23332278.

ONOS-JAVAdocs (2018). ONOS JAVA docs. http://api.onosproject.org/1.12.0/.
Accessed 4 January 2018.

ONOSproject (2016). ONOS blog - ON.Lab and The Linux Foundation Form CORD Project
to Define the Future of Access. https://onosproject.org/2016/07/26/on-lab-and-
the-linux-foundation-form-cord-project-to-define-the-future-of-access/.
Accessed 4 January 2018.

ONOS-team (2016).OpenDaylight & ONOS Performance white-paper. https://onosproject.
org/2016/05/20/opendaylight-onos-performance-white-paper/.

ONOS-website (2018). ONOS project members. https://onosproject.org/members/.
[Online] Accessed 4 January 2018.

ONOS-wiki1 (2018). ONOS Distributed Primitives. https://wiki.onosproject.org/
display/ONOS/Distributed+Primitives. Accessed 4 January 2018.

ONOS-wiki2 (2018). ONOS Cluster Coordination. https://wiki.onosproject.org/
display/ONOS/Cluster+Coordination. Accessed 4 January 2018.

ONOS-wiki3 (2018). ONOS System Components. https://wiki.onosproject.org/
display/ONOS/System+Components. Accessed 4 January 2018.

ONOS-wiki4 (2018). Troubleshooting ONOS OSGi components. https://wiki.onosproject.
org/display/ONOS/Troubleshooting+ONOS+OSGi+components. Accessed 4 January
2018.

ONOS-wiki5 (2018).ONOS intent framework. https://wiki.onosproject.org/display/
ONOS/Intent+Framework. Accessed 4 January 2018.

Open NF (2015). OpenFlow Switch Specification Version 1.5.1 (Protocol version 0x06).
[Online] Accessed 20 December 2017. url: https://www.opennetworking.org/wp-
content/uploads/2014/10/openflow-switch-v1.5.1.pdf.

OpenCORD (2018). OpenCORD website. https://opencord.org/. Accessed 4 January
2018.

OpenDayLight (2018).OpenDaylight Boron: Platform For Network-Driven Businesses. https:
//www.opendaylight.org/what-we-do/current-release/boron. Accessed 18 Jan-
uary 2018.

OpenDayLight-Tutorial (2016).OpenDayLight: installing Berillium. https://blog.rojerfarre.
com/2016/03/01/opendaylight-installing-beryllium/. Accessed 15 June 2017.

OpenDayLight-Wiki (2018). Messaging4Transport:AMQP Bindings for MD-SAL. https:
//wiki.opendaylight.org/view/Messaging4Transport:AMQP_Bindings_for_MD-
SAL. Accessed 18 January 2018.

OPNFV (2018). OPNFV Euphrates documentation. http : / / docs . opnfv . org / en /
stable-euphrates/index.html. [Online] Accessed 15 January 2018.

Oracle (2018a). JAX-RS documentation. [Online] Accessed 20 August 2018. url: https:
//docs.oracle.com/javaee/7/api/javax/ws/rs/package-summary.html.

https://www.opennetworking.org/images/stories/downloads/sdn-resources/technical-reports/onf2015.310_Architectural_comparison.08-2.pdf
https://www.opennetworking.org/images/stories/downloads/sdn-resources/technical-reports/onf2015.310_Architectural_comparison.08-2.pdf
https://www.opennetworking.org/images/stories/downloads/sdn-resources/technical-reports/onf2015.310_Architectural_comparison.08-2.pdf
http://onosproject.org/wp-content/uploads/2017/08/ONOS_Performance_White_Paper-2.pdf
http://onosproject.org/wp-content/uploads/2017/08/ONOS_Performance_White_Paper-2.pdf
https://wiki.onosproject.org/pages/viewpage.action?pageId=23332278
https://wiki.onosproject.org/pages/viewpage.action?pageId=23332278
http://api.onosproject.org/1.12.0/
https://onosproject.org/2016/07/26/on-lab-and-the-linux-foundation-form-cord-project-to-define-the-future-of-access/
https://onosproject.org/2016/07/26/on-lab-and-the-linux-foundation-form-cord-project-to-define-the-future-of-access/
https://onosproject.org/2016/05/20/opendaylight-onos-performance-white-paper/
https://onosproject.org/2016/05/20/opendaylight-onos-performance-white-paper/
https://onosproject.org/members/
https://wiki.onosproject.org/display/ONOS/Distributed+Primitives
https://wiki.onosproject.org/display/ONOS/Distributed+Primitives
https://wiki.onosproject.org/display/ONOS/Cluster+Coordination
https://wiki.onosproject.org/display/ONOS/Cluster+Coordination
https://wiki.onosproject.org/display/ONOS/System+Components
https://wiki.onosproject.org/display/ONOS/System+Components
https://wiki.onosproject.org/display/ONOS/Troubleshooting+ONOS+OSGi+components
https://wiki.onosproject.org/display/ONOS/Troubleshooting+ONOS+OSGi+components
https://wiki.onosproject.org/display/ONOS/Intent+Framework
https://wiki.onosproject.org/display/ONOS/Intent+Framework
https://www.opennetworking.org/wp-content/uploads/2014/10/openflow-switch-v1.5.1.pdf
https://www.opennetworking.org/wp-content/uploads/2014/10/openflow-switch-v1.5.1.pdf
https://opencord.org/
https://www.opendaylight.org/what-we-do/current-release/boron
https://www.opendaylight.org/what-we-do/current-release/boron
https://blog.rojerfarre.com/2016/03/01/opendaylight-installing-beryllium/
https://blog.rojerfarre.com/2016/03/01/opendaylight-installing-beryllium/
https://wiki.opendaylight.org/view/Messaging4Transport:AMQP_Bindings_for_MD-SAL
https://wiki.opendaylight.org/view/Messaging4Transport:AMQP_Bindings_for_MD-SAL
https://wiki.opendaylight.org/view/Messaging4Transport:AMQP_Bindings_for_MD-SAL
http://docs.opnfv.org/en/stable-euphrates/index.html
http://docs.opnfv.org/en/stable-euphrates/index.html
https://docs.oracle.com/javaee/7/api/javax/ws/rs/package-summary.html
https://docs.oracle.com/javaee/7/api/javax/ws/rs/package-summary.html

BIBLIOGRAPHY 173

– (2018b). Jersey framework. [Online] Accessed 20 August 2018. url: https://jersey.
github.io/.

OSGiAlliance (2018). OSGi Alliance wiki. https://www.osgi.org/community/wiki/.
Accessed 4 January 2018.

OVS-Docker Github (2017). Accessed: 2017-12-7.
OWASP-Project (2017). OWASP Project Home Page. https://www.owasp.org/. [Online]
Accessed 12 June 2017.

OWASP-Zap (2018). OWASP Zap home page. https://www.owasp.org/index.php/
OWASP_Zed_Attack_Proxy_Project. Accessed 15 January 2018.

Paliou, Despoina (2016). “SDN Application for Dynamic Routing in Software Defined Net-
works”. MA thesis. Athens, Greece: National Technical University of Athens - Department
of Electrical and Computer Engineering.

Panajotovic, Boban et al. (2011). “ICT and smart grid”. In: 2011 10th International Confer-
ence on Telecommunications in Modern Satellite, Cable and Broadcasting Services, TEL-
SIKS 2011 - Proceedings of Papers, pp. 118–121. doi: 10.1109/TELSKS.2011.6112018.

Paul, Gerard (2005). IPTraf - IP Network Monitoring Software. [Online] Accessed 31 August
2018. url: http://iptraf.seul.org/.

Pires, P. et al. (2007). “Security aspects of SCADA and corporate network interconnection:
An overview”. In: Proceedings of International Conference on Dependability of Computer
Systems, DepCoS-RELCOMEX 2006, pp. 127–134. isbn: 0769525652. doi: 10.1109/
DEPCOS-RELCOMEX.2006.46.

PLCScan (2012). PLCScan. [Online] Accessed 21 January 2018. url: http://code.google.
com/p/plcscan.

Portworx (2017). Portworx Annual Container Adoption Survey 2017. [Online] Accessed
19 January 2018. url: https://portworx.com/wp- content/uploads/2017/04/
Portworx_Annual_Container_Adoption_Survey_2017_Report.pdf.

Pyretic (2015). Pyretic Language web site. [Online] Accessed 19 January 2018. url: http:
//frenetic-lang.org/pyretic/.

Queiroz (2017). “Integration of SDN technologies in SCADA Industrial Control Networks”.
MA thesis. Coimbra, Portugal: University of Coimbra.

Raj Jain (2013). Recent Advances in Networking - Data Center Virtualization, SDN, Big
Data, Cloud Computing, Internet of Things. http://www.cse.wustl.edu/~jain/
cse570-13/. Accessed 22 December 2017.

Raymond, E. (2008). The Cathedral & the Bazaar - Musings on Linux and Open Source by
an Accidental Revolutionary.

Regnell, Björn et al. (2008). “Supporting roadmapping of quality requirements”. In: IEEE
Software 25.2, pp. 42–47. issn: 07407459. doi: 10.1109/MS.2008.48.

Royce, Walker W. (1970). “Managing the development of large software systems: concepts
and techniques”. In: Proc. IEEE WESTCON, Los Angeles. Reprinted in Proceedings of
the Ninth International Conference on Software Engineering, March 1987, pp. 328–338,
pp. 1–9. url: http://www.cs.umd.edu/class/spring2003/cmsc838p/Process/
waterfall.pdf.

Sadeghi, Ahmad-Reza et al. (2015). “Security and privacy challenges in industrial internet
of things”. In: Proceedings of the 52nd Annual Design Automation Conference on - DAC
’15, pp. 1–6. isbn: 9781450335201. doi: 10.1145/2744769.2747942. url: http://dl.
acm.org/citation.cfm?doid=2744769.2747942.

Sainz, Markel others (2017). “Software Defined Networking opportunities for intelligent se-
curity enhancement of Industrial Control Systems”. In: Proceedings in International Joint
Conference SOCO’17-CISIS’17-ICEUTE’17 León, Spain, September 6–8, 2017,

https://jersey.github.io/
https://jersey.github.io/
https://www.osgi.org/community/wiki/
https://www.owasp.org/
https://www.owasp.org/index.php/OWASP_Zed_Attack_Proxy_Project
https://www.owasp.org/index.php/OWASP_Zed_Attack_Proxy_Project
https://doi.org/10.1109/TELSKS.2011.6112018
http://iptraf.seul.org/
https://doi.org/10.1109/DEPCOS-RELCOMEX.2006.46
https://doi.org/10.1109/DEPCOS-RELCOMEX.2006.46
http://code.google.com/p/plcscan
http://code.google.com/p/plcscan
https://portworx.com/wp-content/uploads/2017/04/Portworx_Annual_Container_Adoption_Survey_2017_Report.pdf
https://portworx.com/wp-content/uploads/2017/04/Portworx_Annual_Container_Adoption_Survey_2017_Report.pdf
http://frenetic-lang.org/pyretic/
http://frenetic-lang.org/pyretic/
http://www.cse.wustl.edu/~jain/cse570-13/
http://www.cse.wustl.edu/~jain/cse570-13/
https://doi.org/10.1109/MS.2008.48
http://www.cs.umd.edu/class/spring2003/cmsc838p/Process/waterfall.pdf
http://www.cs.umd.edu/class/spring2003/cmsc838p/Process/waterfall.pdf
https://doi.org/10.1145/2744769.2747942
http://dl.acm.org/citation.cfm?doid=2744769.2747942
http://dl.acm.org/citation.cfm?doid=2744769.2747942

174 BIBLIOGRAPHY

Salman, Ola et al. (2016). “SDN controllers: A comparative study”. In: Proceedings of the
18th Mediterranean Electrotechnical Conference: Intelligent and Efficient Technologies
and Services for the Citizen, MELECON 2016. isbn: 9781509000579. doi: 10.1109/
MELCON.2016.7495430.

Scheitzer (2016). “SEL-2740S Software-Defined Network (SDN) Switch Traffic-Engineered
Ethernet Communication for Substation and Plant Networks Major Features and Bene-
fits”. In: Product Specification.

SDNCentral (2016). Special Report: OpenFlow and SDN – State of the Union. Special
report. url: https://www.opennetworking.org/images/stories/downloads/sdn-
resources/special-reports/Special- Report-OpenFlow- and-SDN- State-of-
the-Union-B.pdf. ONF, On.Lab, SDxCentral.

SDxcentral (2016).What is NFV – Network Functions Virtualization – Definition. https://
www.sdxcentral.com/nfv/definitions/whats-network-functions-virtualization-
nfv/. Accessed 15 January 2018.

Seetharaman, Srini (2015).OpenDayLight: App development tutorial. https://pt.slideshare.
net/sdnhub/opendaylight-app-development-tutorial. Accessed 11 June 2017.

Shah, Syed Abdullah et al. (2013). “An architectural evaluation of SDN controllers”. In: IEEE
International Conference on Communications, pp. 3504–3508. isbn: 9781467331227. doi:
10.1109/ICC.2013.6655093.

Shalimov, Alexander et al. (2013). “Advanced Study of SDN / OpenFlow controllers”. In:
Proceeding CEE-SECR ’13 Proceedings of the 9th Central & Eastern European Software
Engineering Conference in Russia, pp. 1–6. doi: 10.1145/2556610.2556621.

Shanmugam, P K et al. (2014). “DEIDtect: Towards distributed elastic intrusion detection”.
In: DCC 2014 - Proceedings of the ACM SIGCOMM 2014 Workshop on Distributed Cloud
Computing, pp. 17–23. doi: 10.1145/2627566.2627579.

Sharma, Abhinav et al. (2016). “SDN in SCADA Based System for Power Utilities: A Case
Study of Himachal Pradesh State Electricity Board Limited SCADA System”. In: Indian
Journal of Science and Technology 9.32. issn: 0974 -5645. url: http://52.172.159.
94/index.php/indjst/article/view/100220.

Sieber, Christian et al. (2016). “Towards a programmable management plane for SDN and
legacy networks”. In: IEEE NETSOFT 2016 - 2016 IEEE NetSoft Conference and Work-
shops: Software-Defined Infrastructure for Networks, Clouds, IoT and Services, pp. 319–
327. isbn: 9781467394864. doi: 10.1109/NETSOFT.2016.7502428.

SonarSource (2018). The leading product for Continuous Code Quality. [Online] Accessed
31 August 2018. url: https://www.sonarqube.org/.

Subramanian, S. et al. (2016). Software-Defined Networking (SDN) with OpenStack. Packt
Publishing. isbn: 9781786465993. url: https://books.google.pt/books?id=g%5C_
UNvgAACAAJ.

Taima (2014). SE- 565 Software System Requirements III. Requirements Elicitation. https:
//www.slideserve.com/taima/se-565-software-system-requirements-iii-
requirements-elicitation. Accessed 4 July 2017.

Taylor, P. and R. Mead (2016). Delivering Successful PMOs: How to Design and De-
liver the Best Project Management Office for Your Business. Taylor & Francis. isbn:
9781317153283. url: https://books.google.pt/books?id=-7a1CwAAQBAJ.

Techtarget (2017). The Basics of Ladder Logic. http : / / whatis . techtarget . com /
definition/intelligent-electronic-device. [Online] Accessed 15 January 2018.

TechTargetDef (2017). Ternary content-addressable memory (TCAM). [Online] Accessed
25 December 2017. url: http://searchnetworking.techtarget.com/definition/
TCAM-ternary-content-addressable-memor.

https://doi.org/10.1109/MELCON.2016.7495430
https://doi.org/10.1109/MELCON.2016.7495430
https://www.opennetworking.org/images/stories/downloads/sdn-resources/special-reports/Special-Report-OpenFlow-and-SDN-State-of-the-Union-B.pdf
https://www.opennetworking.org/images/stories/downloads/sdn-resources/special-reports/Special-Report-OpenFlow-and-SDN-State-of-the-Union-B.pdf
https://www.opennetworking.org/images/stories/downloads/sdn-resources/special-reports/Special-Report-OpenFlow-and-SDN-State-of-the-Union-B.pdf
https://www.sdxcentral.com/nfv/definitions/whats-network-functions-virtualization-nfv/
https://www.sdxcentral.com/nfv/definitions/whats-network-functions-virtualization-nfv/
https://www.sdxcentral.com/nfv/definitions/whats-network-functions-virtualization-nfv/
https://pt.slideshare.net/sdnhub/opendaylight-app-development-tutorial
https://pt.slideshare.net/sdnhub/opendaylight-app-development-tutorial
https://doi.org/10.1109/ICC.2013.6655093
https://doi.org/10.1145/2556610.2556621
https://doi.org/10.1145/2627566.2627579
http://52.172.159.94/index.php/indjst/article/view/100220
http://52.172.159.94/index.php/indjst/article/view/100220
https://doi.org/10.1109/NETSOFT.2016.7502428
https://www.sonarqube.org/
https://books.google.pt/books?id=g%5C_UNvgAACAAJ
https://books.google.pt/books?id=g%5C_UNvgAACAAJ
https://www.slideserve.com/taima/se-565-software-system-requirements-iii-requirements-elicitation
https://www.slideserve.com/taima/se-565-software-system-requirements-iii-requirements-elicitation
https://www.slideserve.com/taima/se-565-software-system-requirements-iii-requirements-elicitation
https://books.google.pt/books?id=-7a1CwAAQBAJ
http://whatis.techtarget.com/definition/intelligent-electronic-device
http://whatis.techtarget.com/definition/intelligent-electronic-device
http://searchnetworking.techtarget.com/definition/TCAM-ternary-content-addressable-memor
http://searchnetworking.techtarget.com/definition/TCAM-ternary-content-addressable-memor

BIBLIOGRAPHY 175

Thenewstack (2015). OpenDaylight Licensing. https://thenewstack.io/sdn-series-
part-vi-opendaylight/. Accessed 15 June 2017.

Thompson, L.M. (2007). Industrial Data Communications. Resources for Measurement and
Control Series. ISA. isbn: 9781934394243. url: https://books.google.pt/books?id=
N8IvCes1o4cC.

Tinsley, S. et al. (2006). Environmental Management Systems: Understanding Organiza-
tional Drivers and Barriers. Earthscan. isbn: 9781853839368. url: https : / / books .
google.pt/books?id=LrbtAAAAMAAJ.

TLF (2018). DPDK official website. [Online] Accessed 21 January 2018. url: https://
dpdk.org/.

Tootoonchian, Amin et al. (2012). “On controller performance in software-defined networks”.
In: Proceeding Hot-ICE’12 Proceedings of the 2nd USENIX conference on Hot Topics in
Management of Internet, Cloud, and Enterprise Networks and Services, pp. 10–10. issn:
0740-7475. doi: 10.1145/2491185.2491199. url: https://www.usenix.org/system/
files/conference/hot-ice12/hotice12-final33%7B%5C_%7D0.pdf.

Trandafir, Ruxandra et al. (2016). “HoneYDSPK: Cisco onePK implementation for anomaly-
based IDS and honeypot services”. In: Networking in Education and Research: RoEduNet
International Conference 15th Edition, RoEduNet 2016 - Proceedings. isbn: 9781509053988.
doi: 10.1109/RoEduNet.2016.7753221.

Trema (2018). Cbench source code repository. https://github.com/trema/cbench.
Accessed 4 January 2018.

Trois, Celio et al. (2016). A Survey on SDN Programming Languages: Toward a Taxonomy.
doi: 10.1109/COMST.2016.2553778.

Vuex (2018). Vuex library. [Online] Accessed 21 January 2018. url: https://vuex.vuejs.
org/.

Wang, Haopei et al. (2017). “Bring Your Own Controller : Enabling Tenant-defined SDN
Apps in IaaS Clouds”. In:

Wavestone (2018). A low-cost, DIY data diode for ICS. [Online] Accessed 21 January 2018.
url: https://github.com/wavestone-cdt/dyode.

Whatpixel.com (2016). Vue-JS learning resources. http://whatpixel.com/images/2016/
vuejs-learning-resources/. Accessed 4 January 2018.

Williams, James (2006). Non-Functional Requirements List. http://tynerblain.com/
blog/2006/05/05/non-functional-requirements-list/. Accessed 3 July 2017.

Wired (2014). An unprecedented look at Stuxnet, the world’s first digital weapon. [Online]
Accessed 16 January 2018. url: https://www.wired.com/2014/11/countdown-to-
zero-day-stuxnet/.

Y., Zhang et al. (2017). “A Communication-Aware Container Re-Distribution Approach
for High Performance VNFs”. In: Proceedings - International Conference on Distributed
Computing Systems, pp. 1555–1564. isbn: 9781538617915. doi: 10.1109/ICDCS.2017.
10.

Yoon, Changhoon et al. (2015). “Enabling security functions with SDN: A feasibility study”.
In: Computer Networks 85, pp. 19–35. issn: 13891286. doi: 10.1016/j.comnet.2015.
05.005.

Zhang, Yang et al. (2017). “When Raft Meets SDN”. In: Proceedings of the First Asia-
Pacific Workshop on Networking - APNet’17, pp. 1–7. doi: 10.1145/3106989.3106999.
url: http://dl.acm.org/citation.cfm?doid=3106989.3106999.

Zhao, Jinjing et al. (2016). “Network-Aware QoS Routing for Smart Grids Using Software
Defined Networks”. In: LNICST 166, pp. 384–394. issn: 0717-6163. doi: 10.1007/978-

https://thenewstack.io/sdn-series-part-vi-opendaylight/
https://thenewstack.io/sdn-series-part-vi-opendaylight/
https://books.google.pt/books?id=N8IvCes1o4cC
https://books.google.pt/books?id=N8IvCes1o4cC
https://books.google.pt/books?id=LrbtAAAAMAAJ
https://books.google.pt/books?id=LrbtAAAAMAAJ
https://dpdk.org/
https://dpdk.org/
https://doi.org/10.1145/2491185.2491199
https://www.usenix.org/system/files/conference/hot-ice12/hotice12-final33%7B%5C_%7D0.pdf
https://www.usenix.org/system/files/conference/hot-ice12/hotice12-final33%7B%5C_%7D0.pdf
https://doi.org/10.1109/RoEduNet.2016.7753221
https://github.com/trema/cbench
https://doi.org/10.1109/COMST.2016.2553778
https://vuex.vuejs.org/
https://vuex.vuejs.org/
https://github.com/wavestone-cdt/dyode
http://whatpixel.com/images/2016/vuejs-learning-resources/
http://whatpixel.com/images/2016/vuejs-learning-resources/
http://tynerblain.com/blog/2006/05/05/non-functional-requirements-list/
http://tynerblain.com/blog/2006/05/05/non-functional-requirements-list/
https://www.wired.com/2014/11/countdown-to-zero-day-stuxnet/
https://www.wired.com/2014/11/countdown-to-zero-day-stuxnet/
https://doi.org/10.1109/ICDCS.2017.10
https://doi.org/10.1109/ICDCS.2017.10
https://doi.org/10.1016/j.comnet.2015.05.005
https://doi.org/10.1016/j.comnet.2015.05.005
https://doi.org/10.1145/3106989.3106999
http://dl.acm.org/citation.cfm?doid=3106989.3106999
https://doi.org/10.1007/978-3-319-33681-7_32
https://doi.org/10.1007/978-3-319-33681-7_32
https://doi.org/10.1007/978-3-319-33681-7_32

176 BIBLIOGRAPHY

3-319-33681-7_32. arXiv: 9809069v1 [arXiv:gr-qc]. url: http://dx.doi.org/10.
1007/978-3-319-33681-7%7B%5C_%7D32.

Zhao, Yimeng et al. (2016). “On the performance of SDN controllers: A reality check”. In:
2015 IEEE Conference on Network Function Virtualization and Software Defined Network,
NFV-SDN 2015, pp. 79–85. isbn: 9781467368841. doi: 10 . 1109 / NFV - SDN . 2015 .
7387410.

Zhao, Zheng et al. (2017). “An SDN-based fingerprint hopping method to prevent finger-
printing attacks”. In: Security and Communication Networks 2017. issn: 19390122. doi:
10.1155/2017/1560594.

https://doi.org/10.1007/978-3-319-33681-7_32
https://doi.org/10.1007/978-3-319-33681-7_32
https://doi.org/10.1007/978-3-319-33681-7_32
http://arxiv.org/abs/9809069v1
http://dx.doi.org/10.1007/978-3-319-33681-7%7B%5C_%7D32
http://dx.doi.org/10.1007/978-3-319-33681-7%7B%5C_%7D32
https://doi.org/10.1109/NFV-SDN.2015.7387410
https://doi.org/10.1109/NFV-SDN.2015.7387410
https://doi.org/10.1155/2017/1560594

Master’s Degree in Informatics Engineering
Volume II - Dissertation Annexes

Network Softwarization for IACS
Security Applications

Miguel Rosado Borges de Freitas

miguelbf@student.dei.uc.pt

Supervisor: Prof. Doutor Tiago Cruz
Co-Supervisor: Prof. Doutor Paulo Simões

Coimbra, Friday 31st August, 2018

iii

Contents

A Use-case diagrams 1

B Use-case descriptions 11
B.1 Management Package . 11

B.1.1 Users_Management package . 11
B.1.2 Network_Management package 17
B.1.3 Container_Management . 39
B.1.4 vNIDS package . 55
B.1.5 vHoneyPot package . 67
B.1.6 Data_Diode package . 71
B.1.7 Network_Event_Factory package 78

B.2 Monitoring Package . 85
B.2.1 Network_Statistics package . 85
B.2.2 Container_Statistics package . 88

C External Interfaces 93
C.1 Network Management . 93

C.1.1 HTTP endpoints . 93
C.1.2 Web-sockets endpoints . 95
C.1.3 Command line . 95

C.2 Docker integration . 96
C.2.1 HTTP endpoints . 96
C.2.2 Web-sockets endpoints . 97
C.2.3 Command line . 98

C.3 vNIDS . 99
C.3.1 HTTP endpoints . 99
C.3.2 Command line . 100

C.4 vHoneypot . 100
C.4.1 HTTP endpoints . 100
C.4.2 Command line . 101

C.5 Data Diode . 102
C.5.1 HTTP endpoints . 102
C.5.2 Command line . 102

C.6 Network Event Factory . 103
C.6.1 HTTP endpoints . 103
C.6.2 Web-sockets endpoints . 103
C.6.3 Command line . 103

D Research Paper 105

1

Appendix A

Use-case diagrams

1 Users_Management use case package . 2
2 Network_Management use case package . 3
3 Container_Management use case package . 4
4 Network_Event_Factory use case package . 5
5 vNIDS use case package . 6
6 Data diode use case package . 7
7 vHoneypot use case package . 8
8 Network_Statistics use case package . 9
9 Container_Statistics use case package . 10

2

U
C
D
iagram

1:
U
sers_

M
anagem

ent
use

case
package

3

U
C
D
ia
gr
am

2:
N
et
w
or
k_

M
an
ag
em

en
t
us
e
ca
se

pa
ck
ag
e

4

U
C
D
iagram

3:
C
ontainer_

M
anagem

ent
use

case
package

5

U
C
D
ia
gr
am

4:
N
et
w
or
k_

E
ve
nt
_
Fa

ct
or
y
us
e
ca
se

pa
ck
ag
e

6

U
C
D
iagram

5:
vN

ID
S
use

case
package

7

U
C
D
ia
gr
am

6:
D
at
a
di
od
e
us
e
ca
se

pa
ck
ag
e

8

U
C
D
iagram

7:
vH

oneypot
use

case
package

9

U
C
D
ia
gr
am

8:
N
et
w
or
k_

St
at
is
ti
cs

us
e
ca
se

pa
ck
ag
e

10

U
C
D
iagram

9:
C
ontainer_

Statistics
use

case
package

11

Appendix B

Use-case descriptions

B.1 Management Package

B.1.1 Users_Management package

Table B.1: Use case: UM_FR1 - Authenticate

Use Case UM_FR1: Authenticate

Primary Actor System Admin

Secondary
Actors

Security Monitor, Security Admin, Network Admin, Network Ten-
ant

Scope IADS (system) - Black-box

Level System goal

Stakeholders
and Interests

– System Admin: interest in ensuring the segregation of func-
tionalities

– Security Admin: interest in being able to perform the features
that his/her level of permissions grants

– Security Monitor: interest in being able to perform the fea-
tures that his/her level of permissions grants

– Network Admin: interest in being able to perform the features
that his/her level of permissions grants

– Network Tenant: interest in being able to perform the features
that his/her level of permissions grants

Pre-Conditions – The website is available

Minimum
Guarantees

An error message is presented

Success
Guarantees

The actor is successfully authenticated

Trigger Actor (unauthenticated) accesses the platform

12 Appendix B. Use-case descriptions

Process - Main
Success
Scenario

1. Actor (unauthenticated) accesses the platform and it is redi-
rected to login page view

2. Actor fills corresponding username and password
3. Actor confirms the action by clicking "Login"
4. Actor is authenticated by the system
5. Actor is redirected to the home page view

Exceptions 2. (a) The username and password are incorrect
i. The system presents a popup message "Your user-
name or password are incorrect, please try again!"

ii. The use case ends
(b) The account does not exist

i. The system presents a popup message "This ac-
count does not exist!"

ii. The use case ends
3. (a) Actor does not confirm the authentication action

i. The use case ends
4. (a) A backend occurred

i. The system presents a popup message "An error
occurred and the previous operation was not exe-
cuted! Please try again later." and the exception
is logged

ii. The use case ends

Table B.2: Use case: UM_FR2: Create Account

Use Case UM_FR2: Create Account

Primary Actor System Admin

Scope IADS (system) - Black-box

Level User goal

Stakeholders
and Interests

– System Admin: interest in ensuring the segregation of func-
tionalities

– Security Admin: interest in having an account to perform the
features that his/her level of permissions grants

– Security Monitor: interest in having an account to perform
the features that his/her level of permissions grants

– Network Admin: interest in having an account to perform the
features that his/her level of permissions grants

– Network Tenant: interest in having an account to perform the
features that his/her level of permissions grants

Pre-Conditions – The website is available
– Actor must be authenticated as System Admin via use case
UM_FR1

Minimum
Guarantees

An error message is presented

B.1. Management Package 13

Success
Guarantees

The account is successfully created

Trigger Actor clicks on "Create Account"

Process - Main
Success
Scenario

1. Actor is redirected to the view "Create account"
2. Actor selects which kind of account wants to create and

also fills all required fields
3. Actor clicks on "Create Account" and a confirmation modal

is opened
4. Actor confirms the action by clicking "Yes"
5. A new account is created
6. The system displays a success message

Exceptions 4. (a) Actor does not confirm the action by clicking "Yes"
i. The use case ends

5. (a) A backend error occurs
i. The system presents a popup message "An error
occurred and the previous operation was not ex-
ecuted! Please try again!" and the exception is
logged

ii. The use case ends

Table B.3: Use case: UM_FR3: Remove Account

Use Case UM_FR3: Remove Account

Primary Actor System Admin

Scope IADS (system) - Black-box

Level User goal

Stakeholders
and Interests

– System Admin: interest in deleting a specific account

Pre-Conditions – The website is available
– Actor must be authenticated as System Admin via use case
UM_FR1

– Actor has completed use case UM_FR5

Minimum
Guarantees

An error message is presented

Success
Guarantees

An existing account is removed from the platform

Trigger Actor selects the account to remove

14 Appendix B. Use-case descriptions

Process - Main
Success
Scenario

1. Actor selects the account to remove by clicking on "Remove
Account" and a confirmation modal is opened

2. Actor confirms the account removal by clicking on "Yes"
3. The account is removed
4. A success message is displayed by the system

Exceptions 2. (a) Actor does not confirm the action by clicking "No"
i. The use case ends

3. (a) A backend error occurs
i. The system presents a popup message "An error
occurred and the previous operation was not ex-
ecuted! Please try again!" and the exception is
logged

ii. The use case ends

Table B.4: Use case: UM_FR4: Modify Account

Use Case UM_FR4: Modify Account

Primary Actor System Admin

Secondary
Actors

Security Monitor, Security Admin, Network Admin, Network Ten-
ant

Scope IADS (system) - Black-box

Level User goal

Stakeholders
and Interests

– System Admin: interest in modifying the information for a
specific account

– Security Monitor: interest in modifying own account informa-
tion

– Security Admin: interest in modifying own account informa-
tion

– Network Admin: interest in modifying own account informa-
tion

– Network Tenant: interest in modifying own account informa-
tion

Pre-Conditions – The website is available
– Actor must be authenticated via use case UM_FR1
– Actor has completed use case UM_FR5 if the actor is the
System Admin

– Actor has completed use case UM_FR5 if the actor is the
Network Admin and the account to be modified belongs to a
Network Tenant

Minimum
Guarantees

An error message is presented

Success
Guarantees

The account is modified

B.1. Management Package 15

Trigger Actor clicks on "Modify Account"

Process - Main
Success
Scenario

1. Actor changes all the fields that he intends to modify
2. Actor confirms the action by clicking on "Save"
3. The account information is modified
4. The system displays a success message

Exceptions 2. (a) Actor does not confirms the action of save modifica-
tions
i. The use case ends

(b) The actor leaves a required field empty
i. The system presents a popup message "Field X is
required. Please review the provided information"

(c) The actor has not changed any field
i. The system presents a popup message "There are
no fields to be updated".

3. (a) A backend error occurs
i. The system presents a popup message "An error
occurred and the previous operation was not ex-
ecuted! Please try again!" and the exception is
logged

ii. The use case ends

Table B.5: Use case: UM_FR5: List Accounts

Use Case UM_FR5: List Accounts

Primary Actor System Admin

Secondary
Actors

Network Admin

Scope IADS (system) - Black-box

Level User goal

Stakeholders
and Interests

– System Admin: interest in listing all platform accounts
– Network Admin: interest in listing all platform accounts be-
longing to Network Tenants

Pre-Conditions – The website is available
– Actor must be authenticated as System Admin or Network Ad-
min via use case UM_FR1

Minimum
Guarantees

An error message is presented

Success
Guarantees

The system presents a list of accounts registered in the system

Trigger Actor clicks on the "Users" item in the website menu

16 Appendix B. Use-case descriptions

Process - Main
Success
Scenario

1. Actor clicks on the "Users" item in the website menu
2. Actor views a list of registered users. The list contains:

(a) All the users registered in the platform if the actor is
the System Admin

(b) The list of Network Tenants if the actor is a Network
Admin

Exceptions 2. (a) There are no registered users in the platform
i. The system displays a message "There are no reg-
istered users in the platform"

ii. The use case ends
(b) A backend error occurs

i. The system presents a popup message "An error
occurred and the previous operation was not ex-
ecuted! Please try again!" and the exception is
logged

ii. The use case ends

Table B.6: Use case: UM_FR6: View Profile

Use Case UM_FR6: View Profile

Primary Actor System Admin

Secondary
Actors

Security Monitor, Security Admin, Network Admin, Network Ten-
ant

Scope IADS (system) - Black-box

Level User goal

Stakeholders
and Interests

– System Admin: interest in viewing his profile data and the
account data of all the users on the platform

– Network Admin: interest in viewing his profile data and the
account data of all the network tenants

– Network Tenant, Security Monitor, Security Admin: inter-
est in viewing his profile data

Pre-Conditions – The website is available
– Actor must be authenticated via use case UM_FR1
– Actor has completed use case UM_FR5 if the actor is a Net-
work Admin or a System admin and intends to view a profile
belonging to other user

Minimum
Guarantees

An error message is presented

Success
Guarantees

The user profile is displayed

Trigger Actor clicks on "View Profile"

B.1. Management Package 17

Process - Main
Success
Scenario

1. Actor clicks on "View profile". This can be accomplished:
(a) From the navigation bar of the website for any user
(b) From the list of registered users displayed by use case

UM_FR5 if the actor is a Network Admin or a System
Admin

2. The system displays all the information associated with the
selected profile. This includes:
(a) All the data provided when the user was registered on

the system via use case UM_FR2
(b) All the account data the user might have modified via

use case UM_FR4
(c) Any other information or assets associated with the

user

Exceptions 2. (a) A backend error occurs
i. The system presents a popup message "An error
occurred and the previous operation was not ex-
ecuted! Please try again!" and the exception is
logged

ii. The use case ends

B.1.2 Network_Management package

Table B.7: Use case: NM_FR1: Create Logical Sub-Network

Use Case NM_FR1: Create Logical Sub-Network

Primary Actor Network Admin

Scope SDN (Sub-system) - Black-box

Level User-Goal

Stakeholders
and Interests

– Network Admin: interest in creating logical sub-sections of
the overall network

– Network Tenant: interest in managing his own logical section
of the overall network

Pre-Conditions – The website is available
– Actor must be authenticated as a Network Admin via use case
UM_FR1

– The actor is in the networks list via use case NM_FR3

Minimum
Guarantees

An error message is presented

Success
Guarantees

Logical sub-network is successfully created

Trigger Actor clicks on "Create new network"

18 Appendix B. Use-case descriptions

Process - Main
Success
Scenario

1. Actor selects "Create new network" and a modal is opened
2. Actor fills the name of the sub-network
3. Actor confirms the creation of the sub-network by clicking

"Save"
4. The list of available sub-networks is updated and contains

the created sub-network and a success message is shown

Exceptions 3. (a) The system already contains a network with the same
name
i. The system presents a popup message "A network
with the same name already exists" and the modal
is kept open

(b) SDN controller/API is not available
i. The system presents a popup message "Could not
connect to the controller, please try again later"
and the exception is logged

(c) Actor dismisses the modal without clicking save
i. User is redirected to the sub-network list via use-
case NM_FR3 and the sub-network creation pro-
cess is aborted

4. (a) SDN controller/API is not available
i. The system presents a popup message "Could not
connect to the controller, please try again later"
and the exception is logged

Table B.8: Use case: NM_FR2: Remove Logical Sub-Network

Use Case NM_FR2: Remove Logical Sub-Network

Primary Actor Network Admin

Scope SDN (Sub-system) - Black-box

Level User-Goal

Stakeholders
and Interests

– Network Admin: interest in removing an existing sub-section
of the network

Pre-Conditions – The website is available
– Actor must be authenticated as a Network Admin via use case
UM_FR1

– The actor is in the networks list via use case NM_FR3

Minimum
Guarantees

An error message is presented

Success
Guarantees

Logical sub-network is successfully removed

Trigger Actor finds the sub-network to remove in the list of sub-networks

B.1. Management Package 19

Process - Main
Success
Scenario

1. Actor finds the sub-network to remove in the list of sub-
networks

2. Actor clicks on "remove sub-network" and a confirmation
modal is opened

3. Actor confirms the sub-network removal by clicking on
"Yes"

4. The system removes all host-pair OpenFlow rules from the
network devices between each host-pair

5. A success message is shown
6. The list of available sub-networks is updated and no longer

contains the removed sub-network

Exceptions 2. (a) The system could not remove the sub-network
i. The system presents a popup message "Could not
remove the sub-network" and provides the excep-
tion cause

(b) SDN controller/API is not available
i. The system presents a popup message "Could not
connect to the controller, please try again later"
and the exception is logged

3. (a) Actor dismisses the modal by clicking "NO"
i. User is redirected to the sub-network list and the
sub-network removal process is aborted

4. (a) OpenFlow enabled device is not available
i. Sub-network removal process is aborted and an
error message is show. The exception is logged.

6. (a) SDN controller/API is not available
i. The system presents a popup message "Could not
connect to the controller, please try again later"
and the exception is logged

Table B.9: Use case: NM_FR3: List sub-networks

Use Case NM_FR3: List sub-networks

Primary Actor Network Admin

Secondary
Actor

Security Monitor

Scope SDN (Sub-system) - Black-box

Level User-Goal

Stakeholders
and Interests

– Network Admin: interest in viewing the logical sub-sections of
the overall network for management purposes

– Security Monitor: interest in viewing the logical sub-sections
of the overall network for monitoring purposes

20 Appendix B. Use-case descriptions

Pre-Conditions – The website is available
– Actor must be authenticated as a Network Admin or as a Se-
curity Monitor via use case UM_FR1

Minimum
Guarantees

An error message is presented

Success
Guarantees

Logical sub-networks are listed

Trigger Actor selects the network tab on the platform menu

Process - Main
Success
Scenario

1. Actor selects the Network tab on the platform menu
2. Actor is redirected to the Network List view

Exceptions 2. (a) SDN controller/API is not available
i. The system presents a popup message "Could not
connect to the controller, please try again later"
and the exception is logged

Table B.10: Use case: NM_FR4: Add Host to Sub-Network

Use Case NM_FR4: Add Host to Sub-Network

Primary Actor Network Admin

Scope SDN (Sub-system) - Black-box

Level User-Goal

Stakeholders
and Interests

– Network Admin: interest in creating logical sub-sections of
the overall network

– Security Tenant: interest in having hosts on his own logical
section of the overall network

Pre-Conditions – The website is available
– Actor must be authenticated as a Network Admin via use case
UM_FR1

– The actor is in a view containing a list of hosts. These can be:
1. Via use-case NM_FR11 (view network topology graph)
2. Via use-case NM_FR14 (list network hosts)

Minimum
Guarantees

An error message is presented

Success
Guarantees

Host is added to the sub-network

Trigger Actor clicks on "Add Host to Sub-Network"

B.1. Management Package 21

Process - Main
Success
Scenario

1. Actor clicks on "Add Host to Sub-Network". This can be
achieved by:
(a) Clicking on a network host on the topology graph (via

UC NM_FR11) and the corresponding button on the
tools panel related to selected host

(b) Clicking on the button that is presented on the list
provided by UC NM_FR14

2. The system presents a confirmation dialog along with the
message "Are you sure you want to add host x to sub-
network y?"

3. Actor confirms the action by clicking on "Yes"
4. The system ensures the communication between the host

to be added and all the hosts that were already on the sub-
network (NM_FR22) by:
(a) Computing the shortest path (network devices and re-

spective ports) between the added host and all the
hosts already on the sub-network (sub-function NM_-
FR23)

(b) Creating host-pair rules for each device using the Mac
Addresses of the host pair and the ingress and egress
ports of the network device (sub-function NM_FR24)

(c) Install the created rules on all devices on the path (sub-
function NM_FR24)

5. The system presents a success message
6. The information provided by use case NM_FR10 (View

Sub-Network Information) is updated. This includes:
(a) The added host shows in the sub-network topology

graph (use case NM_FR13)
(b) The added host shows in the list of sub-network hosts

(use case NM_FR14)

22 Appendix B. Use-case descriptions

Exceptions 1.
3.
6. (a) SDN controller/API is not available

i. The system presents a popup message "Could not
connect to the controller, please try again later"
and the exception is logged

3. (a) Actor dismisses the modal without clicking save
i. User is redirected to the sub-network list via use-
case NM_FR3 and the sub-network creation pro-
cess is aborted

4. (a) An OpenFlow enabled device on a path between an
host-pair is not available before the host is added to
the sub-network
i. The system computes an alternate path and the
use case continues

(b) An OpenFlow enabled device on a path between an
host-pair is not available before the host is added to
the sub-network and there are no alternative paths be-
tween the host-pair
i. An error message is shown "There is no path be-
tween host x and y", the exception is logged and
the UC terminates

(c) An OpenFlow enabled device on a path between an
host-pair goes down after the host is added to the
network
i. The system tries to find an alternative path be-
tween the hosts and recomputes and install alter-
native OpenFlow rules

(d) An OpenFlow enabled device on a path between an
host-pair goes down after the host is added to the net-
work and there is no alternative paths between hosts
i. An alert is displayed to the user "There is an out-
age on the communication between x and y be-
cause network device z is offline" the exception is
logged and the use case ends

B.1. Management Package 23

Table B.11: Use case: NM_FR5: Remove Host from Sub-Network

Use Case NM_FR5: Remove Host from Sub-Network

Primary Actor Network Admin

Scope SDN (Sub-system) - Black-box

Level User-Goal

Stakeholders
and Interests

– Network Admin: interest in changing existing logical sub-
sections of the overall network

Pre-Conditions – The website is available
– Actor must be authenticated as a Network Admin via use case
UM_FR1

– The actor is in a view containing a list of hosts. These can be:
1. Via use-case NM_FR11 (view network topology graph)
2. Via use-case NM_FR13 (view sub-network topology

graph)
3. Via use-case NM_FR14 (list network hosts)

Minimum
Guarantees

An error message is presented

Success
Guarantees

Host is removed from the sub-network

Trigger Actor clicks on "Remove Host from Sub-Network"

24 Appendix B. Use-case descriptions

Process - Main
Success
Scenario

1. Actor clicks on "Remove Host from Sub-Network". This
can be achieved by:
(a) Clicking on a network host on the topology graph (via

UC NM_FR11 or via UC NM_FR13) and the corre-
sponding button on the tools panel related to selected
host

(b) Clicking on the button that is presented on the list
provided by UC NM_FR14

2. The system presents a confirmation dialog along with the
message "Are you sure you want to remove host x from
sub-network y?"

3. Actor confirms the action by clicking on "Yes"
4. The system ensures there is no communication between the

removed host and all the other hosts on the sub-network.
Thus, the system:
(a) Computes the shortest path between the host all

all the other hosts on the sub-network (sub-function
NM_FR23)

(b) For all devices in the path, remove the flow rules con-
taining Mac Address of the host to be removed from
the network (sub-function NM_FR25)

5. A success message is presented to the user
6. The information provided by use case NM_FR10 (View

Sub-Network Information) is updated. This includes:
(a) The removed host no longer shows in the sub-network

topology graph (use case NM_FR13)
(b) The removed host no longer shows in the list of sub-

network hosts (use case NM_FR14)

Exceptions 1.
3.
6. (a) SDN controller/API is not available

i. The system presents a popup message "Could not
connect to the controller, please try again later"
and the exception is logged

3. (a) Actor dismisses the modal without clicking "Yes"
i. The sub-network creation process is aborted

4. (a) An OpenFlow enabled device on a path between an
host-pair is not available before the host is removed
from the sub-network
i. The system stores the action so it is applied when
the device is back

B.1. Management Package 25

Table B.12: Use case: NM_FR7: Associate Sub-Network to Network Tenant

Use Case NM_FR7: Associate Sub-Network to Network Tenant

Primary Actor Network Admin

Scope SDN (Sub-system) - Black-box

Level User-Goal

Stakeholders
and Interests

– Network Admin: interest in delegating management of a log-
ical section of the overall network

– Network Tenant: interest in managing a logical section of the
overall network

Pre-Conditions – The website is available
– Actor must be authenticated as a Network Admin via use case
UM_FR1

– The sub-network exists and was created via use case NM_FR1
– The network tenant account exists and was created via use
case UM_FR2

– The actor is in the networks list via use case NM_FR3, in the
users list via use case UM_FR5 or in a specific user profile via
use case UM_FR6

Minimum
Guarantees

An error message is presented

Success
Guarantees

Logical sub-network is associated with a network tenant

Trigger Actor clicks on "Associate Sub-Network to Network Tenant"

Process - Main
Success
Scenario

1. Actor selects "Associate Sub-Network to Network Tenant"
and a modal is opened. The modal shows:
(a) The list of available sub-networks that do not belong

already to the given tenant if use case is fulfilled via
use cases UM_FR5 or UM_FR6

(b) The list of network tenants that do not have an asso-
ciated network if the use case is fulfilled via use case
NM_FR3

2. A confirmation message is displayed by the system
3. The actor confirms the association between the network

tenant and the sub-network by clicking "Ok"
4. A success message is displayed

26 Appendix B. Use-case descriptions

Exceptions 1.
4. (a) SDN controller/API is not available

i. The system presents a popup message "Could not
connect to the controller, please try again later"
and the exception is logged

3. (a) Actor dismisses the modal without clicking "ok"
i. The use case terminates and the user is redirected
to the view of the origin use case (see 1)

4. (a) An exception occurs in the SDN controller during the
association
i. The system presents a popup message containing
the exception

ii. The exception is logged

Table B.13: Use case: NM_FR8: Disassociate Sub-Network from Network
Tenant

Use Case NM_FR8: Disassociate Sub-Network from Network Tenant

Primary Actor Network Admin

Scope SDN (Sub-system) - Black-box

Level User-Goal

Stakeholders
and Interests

– Network Admin: interest in removing the management privi-
leges of a logical section of the overall network from a network
tenant

Pre-Conditions – The website is available
– Actor must be authenticated as a Network Admin via use case
UM_FR1

– The sub-network exists and was created via use case NM_FR1
– The network tenant account exists and was created via use
case UM_FR2

– The sub-network was associated to a given tenant via use case
UM_FR7

– The actor is in the networks list via use case NM_FR3, in the
users list via use case UM_FR5 or in a specific user profile via
use case UM_FR6

Minimum
Guarantees

An error message is presented

Success
Guarantees

Logical sub-network is disassociated from the network tenant

Trigger Actor clicks on "Disassociate Sub-Network from Network Ten-
ant"

B.1. Management Package 27

Process - Main
Success
Scenario

1. Actor selects "Disassociate Sub-Network from Network
Tenant" and a modal is opened. The user may select this
button from:
(a) The network item in the sub-networks section of the

tenant profile (if use case is fulfilled from use case
UM_FR6)

(b) The network item in list of sub-networks (if use case
is fulfilled via use case UM_FR3)

2. A confirmation message is displayed by the system
3. The actor confirms the disassociation action by clicking

"Ok"
4. A success message is displayed

Exceptions 1.
4. (a) SDN controller/API is not available

i. The system presents a popup message "Could not
connect to the controller, please try again later"
and the exception is logged

3. (a) Actor dismisses the modal without clicking "ok"
i. The use case terminates and the user is redirected
to the view of the origin use case (see use case
pre-conditions)

4. (a) An exception occurs in the SDN controller
i. The system presents a popup message containing
the exception

ii. The exception is logged

Table B.14: Use case: NM_FR9: View Network Information

Use Case NM_FR9: View Network Information

Primary Actor Network Admin

Secondary
Actor

Security Monitor

Scope SDN (Sub-system) - Black-box

Level User-Goal

Stakeholders
and Interests

– Network Admin: have access to all the information regarding
the network

– Security Monitor: be able to monitor the network

Pre-Conditions – The website is available
– Actor must be authenticated as a Network Admin or Security
Monitor via use case UM_FR1

Minimum
Guarantees

An error message is presented

28 Appendix B. Use-case descriptions

Success
Guarantees

Actor can access the network information

Trigger Actor clicks on the Network item in the platform menu

Process - Main
Success
Scenario

1. Actor clicks on the network item in the platform menu
2. A sub-menu opens from where the actor can select on the

following options
(a) View network topology graph via use case NM_FR11
(b) List network devices via use case NM_FR16
(c) List network hosts via use case NM_FR14
(d) List network links via use case NM_FR15
(e) View sub-network information via use case NM_FR10
(f) View network statistics via use case NS_FR1

Exceptions -

Table B.15: Use case: NM_FR10: View Sub-Network Information

Use Case NM_FR10: View Sub-Network Information

Primary Actor Network Admin

Secondary
Actor

Security Monitor, Network Tenant

Scope SDN (Sub-system) - Black-box

Level User-Goal

Stakeholders
and Interests

– Network Admin: have access to all the information regarding
all the logical sub-networks

– Security Monitor: be able to monitor all the sub-networks
– Network Tenant: be able to monitor his own sub-network

Pre-Conditions – The website is available
– The sub-network exists and was created via use case NM_FR1
– Actor must be authenticated as a Network Admin or Security
Monitor via use case UM_FR1

– The actor is authenticated as network tenant via use case
UM_FR1 and the sub-network is associated to his profile via
use case NM_FR7

Minimum
Guarantees

An error message is presented

Success
Guarantees

Actor can access the sub-network information

Trigger Actor clicks on the Network item in the platform menu (if a net-
work tenant) or a specific sub-network (if a network admin or
security monitor)

B.1. Management Package 29

Process - Main
Success
Scenario

1. Actor clicks on the Network item in the platform menu (if
a network tenant) or a specific sub-network (if a network
admin or security monitor)

2. A submenu opens from where the actor can select on the
following options
(a) View the sub-network topology graph via use case

NM_FR13
(b) List the sub-network devices via use case NM_FR16
(c) List the sub-network hosts via use case NM_FR14
(d) List the sub-network links via use case NM_FR15
(e) View the sub-network statistics via use case NS_FR1

Exceptions -

Table B.16: Use case: NM_FR11: View Network Topology Graph

Use Case NM_FR11: View Network Topology Graph

Primary Actor Network Admin

Secondary
Actor

Security Monitor

Scope SDN (Sub-system) - Black-box

Level User-Goal

Stakeholders
and Interests

– Network Admin: have a centralized view of the network for
administration purposes

– Security Monitor: have a centralized view of the network for
monitoring purposes

Pre-Conditions – The website is available
– The actor is authenticated as network admin or as security
monitor via use case UM_FR1

– The actor has fulfilled use case NM_FR9

Minimum
Guarantees

An error message is presented

Success
Guarantees

Actor can see the network topology graph

Trigger Actor clicks on the "Network topology" item in the platform menu

Process - Main
Success
Scenario

1. Actor clicks on the "network topology" item in the platform
menu

2. The actor is presented with the topology graph.
(a) The network assets of the network can be distin-

guished by their icon (host, device, container)

30 Appendix B. Use-case descriptions

Exceptions 2. (a) SDN controller/API is not available
i. The system presents a popup message "Could not
connect to the controller, please try again later"
and the exception is logged

Table B.17: Use case: NM_FR12: Filter Network Topology graph by sub-
network

Use Case NM_FR12: Filter Network Topology graph by sub-network

Primary Actor Network Admin

Secondary
Actor

Security Monitor

Scope SDN (Sub-system) - Black-box

Level User-Goal

Stakeholders
and Interests

– Network Admin: have a global view of a given sub-network
– Security Monitor: have a global view of a given sub-network

Pre-Conditions – The website is available
– The actor is authenticated as network admin or as security
monitor via use case UM_FR1

– The actor has fulfilled use case NM_FR11

Minimum
Guarantees

An error message is presented

Success
Guarantees

Actor can see the sub-network topology graph

Trigger Actor checks the sub-network from the network list panel in the
global network topology view (use case NM_FR11)

Process - Main
Success
Scenario

1. Actor checks the sub-network from the network list panel
in the global network topology view (use case NM_FR11)

2. The actor is presented with the sub-network topology graph
(use case NM_FR13)

Exceptions 1.
2. (a) SDN controller/API is not available

i. The system presents a popup message "Could not
connect to the controller, please try again later"
and the exception is logged

B.1. Management Package 31

Table B.18: Use case: NM_FR13: View Sub-Network Topology Graph

Use Case NM_FR13: View Sub-Network Topology Graph

Primary Actor Network Admin

Secondary
Actor

Network Tenant, Security Monitor

Scope SDN (Sub-system) - Black-box

Level User-Goal

Stakeholders
and Interests

– Network Admin: have a global view of a given sub-network
– Security Monitor: have a global view of a given sub-network
– Network Tenant: have a global view of the the logical network
the actor controls

Pre-Conditions – The website is available
– The actor is authenticated as a network admin, a network ten-
ant or as security monitor via use case UM_FR1

– The sub-network does exist and was created via use-case NM_-
FR1

– The actor has fulfilled use case NM_FR11 in case he/she is a
network admin or security monitor

– The actor is a network tenant, the sub-network was associated
with the actor profile via use case NM_FR7 and the actor has
fulfilled use case NM_FR10

Minimum
Guarantees

An error message is presented

Success
Guarantees

Actor can see the sub-network topology graph

Trigger
1. Network Tenant: actor clicks on the network topology sub-

menu
2. Network Admin and Security Monitor: actor filters the

topology graph via use case NM_FR12

Process - Main
Success
Scenario

1. Actor clicks on the network topology sub-menu (if a net-
work tenant) or filters the global network topology graph
via use case NM_FR12 (if the actor is a network admin or
a security monitor)

2. The actor is presented with the sub-network topology graph

Exceptions 1.
2. (a) SDN controller/API is not available

i. The system presents a popup message "Could not
connect to the controller, please try again later"
and the exception is logged

32 Appendix B. Use-case descriptions

Table B.19: Use case: NM_FR14: List Network Hosts

Use Case NM_FR14: List Network Hosts

Primary Actor Network Admin

Secondary
Actor

Network Tenant, Security Monitor

Scope SDN (Sub-system) - Black-box

Level User-Goal

Stakeholders
and Interests

– Network Admin: have access to all network assets
– Security Monitor: have access to all network assets for mon-
itoring purposes

– Network Tenant: have access to all assets on the actor sub-
network

Pre-Conditions – The website is available
– The sub-network exists and was created via use case NM_FR1
(if applied to a sub-network)

– The actor is authenticated as network admin or as security
monitor via use case UM_FR1

– The actor is authenticated as network tenant via use case
UM_FR1 and the sub-network is associated to his profile via
use case NM_FR7

Minimum
Guarantees

An error message is presented

Success
Guarantees

Actor can see the list of hosts belonging to the network (or sub-
network)

Trigger Actor clicks on the hosts item in the platform menu

Process - Main
Success
Scenario

1. Actor clicks on the hosts item in the platform menu
2. The actor is presented with a list of hosts

Exceptions 2. (a) SDN controller/API is not available
i. The system presents a popup message "Could not
connect to the controller, please try again later"
and the exception is logged

Table B.20: Use case: NM_FR15: List Network Links

Use Case NM_FR15: List Network Hosts

Primary Actor Network Admin

Secondary
Actor

Network Tenant, Security Monitor

B.1. Management Package 33

Scope SDN (Sub-system) - Black-box

Level User-Goal

Stakeholders
and Interests

– Network Admin: have access to all network assets and their
connections

– Security Monitor: have access to all network assets and their
connections for monitoring purposes

– Network Tenant: have access to all assets and their connec-
tions on his/her sub-network

Pre-Conditions – The website is available
– The sub-network exists and was created via use case NM_FR1
(if applied to a sub-network)

– The actor is authenticated as network admin or as security
monitor via use case UM_FR1 or the actor is authenticated as
network tenant via use case UM_FR1 and the sub-network is
associated to his profile via use case NM_FR7

Minimum
Guarantees

An error message is presented

Success
Guarantees

Actor can see the list of links belonging to a network (or sub-
network)

Trigger Actor clicks on the hosts item in the platform menu

Process - Main
Success
Scenario

1. Actor clicks on the links item in the platform menu
2. The actor is presented with a list of links

Exceptions 2. (a) SDN controller/API is not available
i. The system presents a popup message "Could not
connect to the controller, please try again later"
and the exception is logged

Table B.21: Use case: NM_FR16: List Network Devices

Use Case NM_FR16: List Network Devices

Primary Actor Network Admin

Secondary
Actor

Network Tenant, Security Monitor

Scope SDN (Sub-system) - Black-box

Level User-Goal

34 Appendix B. Use-case descriptions

Stakeholders
and Interests

– Network Admin: have access to all network assets
– Security Monitor: have access to all network assets for mon-
itoring purposes

– Network Tenant: have access to all assets on the actor sub-
network

Pre-Conditions – The website is available
– The sub-network exists and was created via use case NM_FR1
(if applied to a sub-network)

– The actor is authenticated as network admin or as security
monitor via use case UM_FR1 or the actor is authenticated as
network tenant via use case UM_FR1 and the sub-network is
associated to his profile via use case NM_FR7

Minimum
Guarantees

An error message is presented

Success
Guarantees

Actor can see the list of devices belonging to a network (or sub-
network)

Trigger Actor clicks on the devices item in the platform menu

Process - Main
Success
Scenario

1. Actor clicks on the devices item in the platform menu
2. The actor is presented with a list of devices

Exceptions 2. (a) SDN controller/API is not available
i. The system presents a popup message "Could not
connect to the controller, please try again later"
and the exception is logged

Table B.22: Use case: NM_FR17: Filter by Host Id

Use Case NM_FR16: List Network Devices

Primary Actor Network Admin

Secondary
Actor

Network Tenant, Security Monitor

Scope SDN (Sub-system) - Black-box

Level User-Goal

Stakeholders
and Interests

– Network Admin: have access to all network assets
– Security Monitor: have access to all network assets for mon-
itoring purposes

– Network Tenant: have access to all assets on the actor sub-
network

B.1. Management Package 35

Pre-Conditions – The website is available
– The sub-network exists and was created via use case NM_FR1
(if applied to a sub-network)

– The actor is authenticated as network admin or as security
monitor via use case UM_FR1 or the actor is authenticated as
network tenant via use case UM_FR1 and the sub-network is
associated to his profile via use case NM_FR7

– The actor has fulfilled use case NM_FR14

Minimum
Guarantees

An error message is presented

Success
Guarantees

Actor can see the list of hosts or links belonging to a network (or
sub-network)

Trigger Actor searches for a Host Id

Process - Main
Success
Scenario

1. Actor searches for a Host Id
2. The actor is presented with a list of filtered hosts (if use

case starts via use case NM_FR14) or with a list of network
links (if use case starts via use case NM_FR15)

Exceptions 2. (a) SDN controller/API is not available
i. The system presents a popup message "Could not
connect to the controller, please try again later"
and the exception is logged

Table B.23: Use case: NM_FR18: Filter by Device Id

Use Case NM_FR18: Filter by Device Id

Primary Actor Network Admin

Secondary
Actor

Network Tenant, Security Monitor

Scope SDN (Sub-system) - Black-box

Level User-Goal

Stakeholders
and Interests

– Network Admin: have access to all network assets
– Security Monitor: have access to all network assets for mon-
itoring purposes

– Network Tenant: have access to all assets on his/her sub-
network

36 Appendix B. Use-case descriptions

Pre-Conditions – The website is available
– The sub-network exists and was created via use case NM_FR1
(if applied to a sub-network)

– The actor is authenticated as network admin or as security
monitor via use case UM_FR1 or the actor is authenticated as
network tenant via use case UM_FR1 and the sub-network is
associated to his profile via use case NM_FR7

– The actor has fulfilled use case NM_FR16

Minimum
Guarantees

An error message is presented

Success
Guarantees

Actor can see a filtered list of network devices

Trigger Actor searches for a device by device id

Process - Main
Success
Scenario

1. Actor fills the search input in the view provided by use case
NM_FR16 with the device id

2. The actor is presented with a list of filtered network devices

Exceptions 2. (a) SDN controller/API is not available
i. The system presents a popup message "Could not
connect to the controller, please try again later"
and the exception is logged

Table B.24: Use case: NM_FR19: Filter by Link Id

Use Case NM_FR19: Filter by Link Id

Primary Actor Network Admin

Secondary
Actor

Network Tenant, Security Monitor

Scope SDN (Sub-system) - Black-box

Level User-Goal

Stakeholders
and Interests

– Network Admin: have access to all network assets and their
connections

– Security Monitor: have access to all network assets and their
connections for monitoring purposes

– Network Tenant: have access to all assets and their connec-
tions on his/her sub-network

B.1. Management Package 37

Pre-Conditions – The website is available
– The sub-network exists and was created via use case NM_FR1
(if applied to a sub-network)

– The actor is authenticated as network admin or as security
monitor via use case UM_FR1 or the actor is authenticated as
network tenant via use case UM_FR1 and the sub-network is
associated to his profile via use case NM_FR7

– The actor has fulfilled use case NM_FR15

Minimum
Guarantees

An error message is presented

Success
Guarantees

Actor can see a filtered list of network links

Trigger Actor searches for a network link by link id

Process - Main
Success
Scenario

1. Actor fills the search input in the view provided by use case
NM_FR15 with the link id

2. The actor is presented with a list of filtered network links

Exceptions 2. (a) SDN controller/API is not available
i. The system presents a popup message "Could not
connect to the controller, please try again later"
and the exception is logged

Table B.25: Use case: NM_FR20: Filter by Mac Address

Use Case NM_FR20: Filter by Mac Address

Primary Actor Network Admin

Secondary
Actor

Network Tenant, Security Monitor

Scope SDN (Sub-system) - Black-box

Level User-Goal

Stakeholders
and Interests

– Network Admin: have access to all network assets
– Security Monitor: have access to all network assets for mon-
itoring purposes

– Network Tenant: have access to all assets on his/her sub-
network

Pre-Conditions – The website is available
– The sub-network exists and was created via use case NM_FR1
(if applied to a sub-network)

– The actor is authenticated as network admin or as security
monitor via use case UM_FR1 or the actor is authenticated as
network tenant via use case UM_FR1 and the sub-network is
associated to his profile via use case NM_FR7

– The actor has fulfilled use case NM_FR14

38 Appendix B. Use-case descriptions

Minimum
Guarantees

An error message is presented

Success
Guarantees

Actor can see the list of hosts or links belonging to a network (or
sub-network)

Trigger Actor fills the search field of the view presented by NM_FR14
with the host Mac Address

Process - Main
Success
Scenario

1. Actor fills the search field of the view presented by NM_-
FR14 with the host Ip Address

2. The actor is presented with a list of filtered hosts

Exceptions 2. (a) SDN controller/API is not available
i. The system presents a popup message "Could not
connect to the controller, please try again later"
and the exception is logged

Table B.26: Use case: NM_FR21: Filter by IP Address

Use Case NM_FR21: Filter by IP Address

Primary Actor Network Admin

Secondary
Actor

Network Tenant, Security Monitor

Scope SDN (Sub-system) - Black-box

Level User-Goal

Stakeholders
and Interests

– Network Admin: have access to all network assets
– Security Monitor: have access to all network assets for mon-
itoring purposes

– Network Tenant: have access to all assets on his/her sub-
network

Pre-Conditions – The website is available
– The sub-network exists and was created via use case NM_FR1
(if applied to a sub-network)

– The actor is authenticated as network admin or as security
monitor via use case UM_FR1 or the actor is authenticated as
network tenant via use case UM_FR1 and the sub-network is
associated to his profile via use case NM_FR7

– The actor has fulfilled use case NM_FR14

Minimum
Guarantees

An error message is presented

Success
Guarantees

Actor can see the list of hosts or links belonging to a network (or
sub-network)

B.1. Management Package 39

Trigger Actor fills the search field of the view presented by NM_FR14
with the host Ip Address

Process - Main
Success
Scenario

1. Actor fills the search field of the view presented by NM_-
FR14 with the host Ip Address

2. The actor is presented with a list of filtered hosts

Exceptions 2. (a) SDN controller/API is not available
i. The system presents a popup message "Could not
connect to the controller, please try again later"
and the exception is logged

B.1.3 Container_Management

Table B.27: Use case: CM_FR1: Add physical host to the platform

Use Case CM_FR1: Add physical host to the platform

Primary Actor Network Admin

Scope SDN (Sub-system) - Black-box

Level System-Goal

Stakeholders
and Interests

– Network Admin: configure the virtual infrastructure
– Security Monitor: have access to a virtual infrastructure for
monitoring purposes

– Network Tenant: have a virtual infrastructure to which he/she
can deploy network services

Pre-Conditions – The website is available
– Actor must be authenticated as Network Admin via use case
UM_FR1

– The user is in the view provided by use case CM_FR3

Minimum
Guarantees

An error message is presented

Success
Guarantees

Container physical host is associated with the platform

Trigger Actor clicks on "Add Physical Host" button

Process - Main
Success
Scenario

1. The actor clicks on "Add Physical Host"
2. The actor fills the information regarding the physical host.

This may include:
(a) Host IP address
(b) Host port
(c) Private key

3. The actor clicks "Save"
4. The container physical host is associated with the platform
5. The system displays a success message

40 Appendix B. Use-case descriptions

Exceptions 2. (a) Required information is missing
i. The system presents a popup stating "The field
X is mandatory" the exception is logged

(b) Incorrect information was submitted by the actor
i. The system presents a popup stating "The field
X contents are incorrect"

2. (a) The actor does proceed / click on "save"
i. The use case ends

4. (a) The system cannot connect to the container physical
host
i. The system presents an error message "Could not
connect to container host" and the exception is
logged

(b) SDN controller/API is not available
i. The system displays an error message stating
"Could not contact the controller/API"

(c) An exception is thrown while adding the host
i. The system displays an error message containing
the exception and the exception is logged

Table B.28: Use case: CM_FR2: Remove physical host from the platform

Use Case CM_FR2: Remove physical host from the platform

Primary Actor Network Admin

Scope SDN (Sub-system) - Black-box

Level System-Goal

Stakeholders
and Interests

– Network Admin: configure the virtual infrastructure
– Security Monitor: have access to a virtual infrastructure for
monitoring purposes

– Network Tenant: have a virtual infrastructure to which he/she
can deploy network services

Pre-Conditions – The website is available
– Actor must be authenticated as Network Admin via use case
UM_FR1

– The physical host was previously added to the system via use
case CM_FR1

– The user is in the view provided by use case CM_FR3

Minimum
Guarantees

An error message is presented

Success
Guarantees

Container physical host is removed from the platform

Trigger Actor finds the physical host he/she wants to remove in the phys-
ical hosts list

B.1. Management Package 41

Process - Main
Success
Scenario

1. Actor finds the physical host he/she wants to remove in the
physical hosts list

2. Actor clicks on "Remove Physical Host" and a confirmation
modal is open

3. Actor confirms his/her intention by clicking "Yes"
4. All the containers running on host are destroyed
5. The container physical host is removed from the platform
6. The system displays a success message

Exceptions 3. (a) The actor clicks on "No"
i. The use case ends

(b) Incorrect information was submitted by the actor
i. The system presents a popup stating "The field
X contents are incorrect"

5. (a) SDN controller/API is not available
i. The system displays an error message stating
"Could not contact the controller/API"

(b) An exception is thrown while removing the host
i. The system displays an error message containing
the exception and the exception is logged

Table B.29: Use case: CM_FR3: List physical hosts

Use Case CM_FR3: List physical hosts

Primary Actor Network Admin

Scope SDN (Sub-system) - Black-box

Level System-Goal

Stakeholders
and Interests

– Network Admin: configure the virtual infrastructure
– Security Monitor: have access to a virtual infrastructure for
monitoring purposes

– Network Tenant: have a virtual infrastructure to which he/she
can deploy network services

Pre-Conditions – The website is available
– Actor must be authenticated as Network Admin via use case
UM_FR1

Minimum
Guarantees

An error message is presented

Success
Guarantees

The system displays the list of physical hosts

Trigger Actor clicks on the sub-menu item "Nodes" of the menu item
"Virtual Infrastructure"

42 Appendix B. Use-case descriptions

Process - Main
Success
Scenario

1. Actor clicks on the sub-menu item "Nodes" of the menu
item "Virtual Infrastructure"

2. Actor is presented with the list of physical hosts that sup-
port the virtual infrastructure (i.e. the physical hosts where
containers are deployed)

Exceptions 2. (a) SDN controller/API is not available
i. The system displays an error message stating
"Could not contact the controller/API"

(b) An exception is thrown while getting the list
i. The system displays an error message containing
the exception and the exception is logged

Table B.30: Use case: CM_FR4: Associate container image registry

Use Case CM_FR4: Associate container image registry

Primary Actor Network Admin

Scope SDN (Sub-system) - Black-box

Level System-Goal

Stakeholders
and Interests

– Network Admin: add a centralized repository for virtual images
– Network Tenant: have a centralized repository from which the
services images can be stored

– Security Monitor: monitor the virtualized services

Pre-Conditions – The website is available
– Actor must be authenticated as Network Admin via use case
UM_FR1

– A container image registry exists and was created externally to
the system

Minimum
Guarantees

An error message is presented

Success
Guarantees

Container registry is successfully associated with the system

Trigger Actor clicks on "template registry" sub-menu item from the "Vir-
tual Infrastructure" menu item

Process - Main
Success
Scenario

1. Actor clicks on "template registry" sub-menu item from the
"Virtual Infrastructure"

2. Actor fills the registry url
3. Actor provides the username and password to access the

registry
4. Actor confirms the action by clicking on "Save"
5. The image registry is associated with the system
6. A success message is presented

B.1. Management Package 43

Exceptions 4. (a) The actor does not click on "Save"
i. The use case ends

5. (a) The registry is not accessible
i. The system presents an error message "Could not
connect to registry"

ii. The exception is logged
(b) The actor has provided a wrong username or password

i. The system presents an error message "Could not
connect to registry, check the authentication de-
tails"

ii. The exception is logged
(c) SDN controller/API is not available

i. The system displays an error message stating
"Could not contact the controller/API"

Table B.31: Use case: CM_FR5: Disassociate container image registry

Use Case CM_FR5: Disassociate container image registry

Primary Actor Network Admin

Scope SDN (Sub-system) - Black-box

Level System-Goal

Stakeholders
and Interests

– Network Admin: add a centralized repository for virtual images
– Network Tenant: have a centralized repository from which the
services images can be stored

– Security Monitor: monitor the virtualized services

Pre-Conditions – The website is available
– Actor must be authenticated as Network Admin via use case
UM_FR1

– An image registry was associated with the platform via use case
CM_FR4

Minimum
Guarantees

An error message is presented

Success
Guarantees

Container registry is successfully disassociated from the system

Trigger Actor clicks on "template registry" sub-menu item from the "Vir-
tual Infrastructure" menu item

44 Appendix B. Use-case descriptions

Process - Main
Success
Scenario

1. Actor clicks on "template registry" sub-menu item from the
"Virtual Infrastructure"

2. The system presents the actor with the details of the cur-
rent associated registry

3. The actor clicks in "Remove registry" and the system
presents the actor with a confirmation modal

4. Actor confirms the action by clicking on "Yes"
5. The image registry is disassociated from the system
6. A success message is presented

Exceptions 4. (a) The actor clicks on "No"
i. The use case ends

5. (a) An exception is thrown while removing the registry
i. An error message is shown containing the excep-
tion

ii. The exception is logged
(b) SDN controller/API is not available

i. The system displays an error message stating
"Could not contact the controller/API"

Table B.32: Use case: CM_FR6: Add container image to registry

Use Case CM_FR5: Disassociate container image registry

Primary Actor Network Admin

Scope SDN (Sub-system) - Black-box

Level System-Goal

Stakeholders
and Interests

– Network Admin: manage the virtualized services
– Network Tenant: make use of the virtualized services
– Security Monitor: monitor the virtualized services

Pre-Conditions – The website is available
– Actor must be authenticated as Network Admin via use case
UM_FR1

– An image registry was associated with the platform via use case
CM_FR4

– The actor has fulfilled use case CM_FR8

Minimum
Guarantees

An error message is presented

Success
Guarantees

Container image is added to the registry

Trigger The actor clicks on "Add a new image" and is presented with a
modal

B.1. Management Package 45

Process - Main
Success
Scenario

1. The actor clicks on "Add a new image" and is presented
with a modal

2. The actor fills a text input with the name for the image and
the category it refers to

3. The actor selects a tarball containing the container tem-
plate file from his/her own machine

4. The tarball is uploaded to the system
5. The actor confirms the intent by clicking "Save"
6. The image is deployed to the registry
7. A success message is displayed

Exceptions 5. (a) The actor does not click on "Save"
i. The use case ends

(b) The actor has not provided a name for the image or a
tarball containing the template and/or a category for
the template image
i. An error message is shown: "The required param-
eter X is missing"

ii. The use case ends
6. (a) The SDN controller/ API is not available

i. The system presents a popup message "Could not
connect to the controller, please try again later"
and the exception is logged

(b) There is a syntax error in the template or there is an
error building the image on the physical host
i. The image is not deployed to the registry
ii. An error message is shown containing the rational

for the exception
iii. The exception is logged

Table B.33: Use case: CM_FR7: Remove container image from registry

Use Case CM_FR7: Remove container image from registry

Primary Actor Network Admin

Scope SDN (Sub-system) - Black-box

Level System-Goal

Stakeholders
and Interests

– Network Admin: manage the virtualized services
– Network Tenant: make use of the virtualized services
– Security Monitor: monitor the virtualized services

46 Appendix B. Use-case descriptions

Pre-Conditions – The website is available
– Actor must be authenticated as Network Admin via use case
UM_FR1

– An image registry was associated with the platform via use case
CM_FR4

– A container image was deployed to the registry via use case
CM_FR6

– The actor has fulfilled use case CM_FR8

Minimum
Guarantees

An error message is presented

Success
Guarantees

Container image is removed from the registry

Trigger Actor finds the image to remove from the displayed list

Process - Main
Success
Scenario

1. The actor finds the image to remove from the displayed list
2. The actor clicks on remove image and a confirmation modal

is opened
3. The actor confirms the intent by clicking on "Yes"
4. The image is removed from the registry
5. A success message is displayed

Exceptions 3. (a) The actor clicks on "No"
i. The use case ends

4. (a) The SDN controller/ API is not available
i. The system presents a popup message "Could not
connect to the controller, please try again later"
and the exception is logged

(b) There is an error while removing the image
i. The image is not removed
ii. An error message is shown containing the excep-

tion
iii. The exception is logged

Table B.34: Use case: CM_FR8: List Container images from registry

Use Case CM_FR8: List Container images from registry

Primary Actor Network Admin

Scope SDN (Sub-system) - Black-box

Level System-Goal

Stakeholders
and Interests

– Network Admin: manage the virtualized services
– Network Tenant: make use of the virtualized services
– Security Monitor: monitor the virtualized services

B.1. Management Package 47

Pre-Conditions – The website is available
– Actor must be authenticated as Network Admin via use case
UM_FR1

– An image registry was associated with the platform via use case
CM_FR4

Minimum
Guarantees

An error message is displayed

Success
Guarantees

The actor is presented with the list of images currently in the
image registry

Trigger Actor clicks on "Template Registry" sub-menu item from the
"Virtual Infrastructure" menu item

Process - Main
Success
Scenario

1. Actor clicks on "Template Registry" sub-menu item from
the "Virtual Infrastructure"

2. The actor is presented with the list of images currently in
the image registry

Exceptions 2. (a) The SDN controller/ API is not available
i. The system presents a popup message "Could not
connect to the controller, please try again later"
and the exception is logged

(b) The registry is not available
i. The system presents a popup message "Could not
connect to registry" and the exception is logged

Table B.35: Use case: CM_FR9: Start Container

Use Case CM_FR9: Start Container

Primary Actor Network Admin

Scope SDN (Sub-system) - Black-box

Level System-Goal

Stakeholders
and Interests

– Network Admin: manage the virtualized services
– Network Tenant: make use of the virtualized services
– Security Monitor: monitor the virtualized services

Pre-Conditions – The website is available
– Actor must be authenticated as Network Admin via use case
UM_FR1

– An image registry was associated with the platform via use case
CM_FR4

– A container image was deployed to the registry via use case
CM_FR6

– The actor has fulfilled use case CM_FR8

Minimum
Guarantees

An error message is presented

48 Appendix B. Use-case descriptions

Success
Guarantees

The container is started, is attached to the SDN network and has
an assigned Ip Address

Trigger Actor finds the container image in the list

Process - Main
Success
Scenario

1. Actor finds the container image in the list
2. Actor clicks in "Start container"
3. The system pulls the container image from the registry (via

sub-function CM_FR20)
4. The container is started by the system
5. The container id is stored by the system
6. The container is attached to the SDN network (sub-

function CM_FB18)
7. The container requests an IP Address on the SDN network

(sub-function CM_FB19)
8. A success message is shown to the actor

Exceptions 4.
5. (a) The SDN controller/ API is not available

i. The system presents a popup message "Could not
connect to the controller, please try again later"
and the exception is logged

7. (a) The controller fails to assign an IP address to the con-
tainer
i. The platform cannot recognize the container as a
network host

ii. The container is removed by the system
iii. An error message is presented to the actor
iv. The exception is logged

Table B.36: Use case: CM_FR10: Stop running container

Use Case CM_FR10: Stop running container

Primary Actor Network Admin

Scope SDN (Sub-system) - Black-box

Level System-Goal

Stakeholders
and Interests

– Network Admin: manage the virtualized services
– Network Tenant: make use of the virtualized services
– Security Monitor: monitor the virtualized services

B.1. Management Package 49

Pre-Conditions – The website is available
– Actor must be authenticated as Network Admin via use case
UM_FR1

– An image registry was associated with the platform via use case
CM_FR4

– A container image was deployed to the registry via use case
CM_FR6

– A container was started via use-case CM_FR9 or by the system
itself (if originated by one of the virtual services)

– The actor has fulfilled use case CM_FR11

Minimum
Guarantees

An error message is presented

Success
Guarantees

The container is stopped

Trigger Actor finds the running container in the list provided by use case
CM_FR11

Process - Main
Success
Scenario

1. Actor finds the running container in the list provided by use
case CM_FR11

2. Actor clicks in "Stop container"
3. The container is stopped by the system
4. The container is detached from the SDN network (sub-

function CM_FR19)
5. A success message is shown to the actor

Exceptions 3. (a) The SDN controller/ API is not available
i. The system presents a popup message "Could not
connect to the controller, please try again later"
and the exception is logged

Table B.37: Use case: CM_FR11: List Running Containers

Use Case CM_FR11: List Running Containers

Primary Actor Network Admin

Secondary
Actors

Security Monitor

Scope SDN (Sub-system) - Black-box

Level System-Goal

Stakeholders
and Interests

– Network Admin: manage the virtualized services
– Security Monitor: monitor the virtualized services

50 Appendix B. Use-case descriptions

Pre-Conditions – The website is available
– Actor must be authenticated as Network Admin or Security
Monitor via use case UM_FR1

– An image registry was associated with the platform via use case
CM_FR4

Minimum
Guarantees

An error message is presented

Success
Guarantees

The list of running containers is displayed to the actor

Trigger Actor clicks on the "Containers" sub-menu item of the "Virtual
infrastructure" menu item

Process - Main
Success
Scenario

1. Actor clicks on the "Containers" sub-menu item of the "Vir-
tual infrastructure" menu item

2. The list of running containers is displayed to the actor

Exceptions 2. (a) The SDN controller/ API is not available
i. The system presents a popup message "Could not
connect to the controller, please try again later"
and the exception is logged

Table B.38: Use case: CM_FR12: List running containers belonging to
network tenant

Use Case CM_FR12: List running containers belonging to network
tenant

Primary Actor Network Admin

Secondary
Actors

Security Monitor, Network Tenant

Scope SDN (Sub-system) - Black-box

Level System-Goal

Stakeholders
and Interests

– Network Admin: manage the virtualized services
– Security Monitor: monitor the virtualized services
– Network Tenant: monitor his/her own running virtualized ser-
vices

Pre-Conditions – The website is available
– Actor must be authenticated as Network Admin, Network Ten-
ant or Security Monitor via use case UM_FR1

Minimum
Guarantees

An error message is presented

Success
Guarantees

The list of running containers is displayed to the actor

B.1. Management Package 51

Trigger Actor clicks on the "Containers" sub-menu item of the "Virtual
infrastructure" menu item

Process - Main
Success
Scenario

1. Actor clicks on the "Containers" sub-menu item of the "Vir-
tual infrastructure" menu item

2. The list of running containers is displayed to the actor:
(a) The list shows only the containers belonging to the

tenant if the actor is a network tenant
(b) The list shows all the running containers and the ten-

ant they are associated with if the actor is either a
network admin or a security monitor

(c) The list can be filtered by specific tenant if the actor
is a network admin or a security monitor

Exceptions 2. (a) The SDN controller/ API is not available
i. The system presents a popup message "Could not
connect to the controller, please try again later"
and the exception is logged

Table B.39: Use case: CM_FR13: Filter by network service name

Use Case CM_FR13: Filter by network service name

Primary Actor Network Admin

Secondary
Actors

Security Monitor, Network Tenant

Scope SDN (Sub-system) - Black-box

Level System-Goal

Stakeholders
and Interests

– Network Admin: manage the virtualized services
– Security Monitor: monitor the virtualized services
– Network Tenant: monitor his/her own running virtualized ser-
vices

Pre-Conditions – The website is available
– Actor must be authenticated as Network Admin, Network Ten-
ant or Security Monitor via use case UM_FR1

– The actor has fulfilled use case CM_FR11 if he/she is a net-
work administrator or a security monitor

– The actor has fulfilled use case CM_FR12 if he/she is a net-
work tenant

Minimum
Guarantees

An error message is presented

Success
Guarantees

The list of running containers is displayed to the actor

Trigger Actor selects the network service name from the dropdown list of
network services

52 Appendix B. Use-case descriptions

Process - Main
Success
Scenario

1. Actor selects the network service name from the dropdown
list of network services. These network services can be:
(a) vNIDS
(b) vHoneyPot

Exceptions 2. (a) The SDN controller/ API is not available
i. The system presents a popup message "Could not
connect to the controller, please try again later"
and the exception is logged

(b) The container host is not reachable
i. The system presents a popup error message
"Could not reach the container host"

ii. The exception is logged

Table B.40: Use case: CM_FR14: Filter by IP address

Use Case CM_FR14: Filter by IP address

Primary Actor Network Admin

Secondary
Actors

Security Monitor, Network Tenant

Scope SDN (Sub-system) - Black-box

Level System-Goal

Stakeholders
and Interests

– Network Admin: manage the virtualized services
– Security Monitor: monitor the virtualized services
– Network Tenant: monitor his/her own running virtualized ser-
vices

Pre-Conditions – The website is available
– Actor must be authenticated as Network Admin, Network Ten-
ant or Security Monitor via use case UM_FR1

– The actor has fulfilled use case CM_FR11 if he/she is a net-
work administrator or a security monitor

– The actor has fulfilled use case CM_FR12 if he/she is a net-
work tenant

Minimum
Guarantees

An error message is presented

Success
Guarantees

The system updates the list of running containers showing only
the container which has the requested Ip Address (if exists)

Trigger Actor fills the Ip address search field with the Ip address to filter

B.1. Management Package 53

Process - Main
Success
Scenario

1. Actor fills the Ip address search field with the Ip address to
filter

2. The system updates the list of running containers showing
only the container which has the requested Ip Address (if
exists)

Exceptions 2. (a) The SDN controller/ API is not available
i. The system presents a popup message "Could not
connect to the controller, please try again later"
and the exception is logged

(b) The container host is not reachable
i. The system presents a popup error message
"Could not reach the container host"

ii. The exception is logged

Table B.41: Use case: CM_FR15: Filter by Mac Address

Use Case CM_FR15: Filter by Mac Address

Primary Actor Network Admin

Secondary
Actors

Security Monitor, Network Tenant

Scope SDN (Sub-system) - Black-box

Level System-Goal

Stakeholders
and Interests

– Network Admin: manage the virtualized services
– Security Monitor: monitor the virtualized services
– Network Tenant: monitor his/her own running virtualized ser-
vices

Pre-Conditions – The website is available
– Actor must be authenticated as Network Admin, Network Ten-
ant or Security Monitor via use case UM_FR1

– The actor has fulfilled use case CM_FR11 if he/she is a net-
work administrator or a security monitor

– The actor has fulfilled use case CM_FR12 if he/she is a net-
work tenant

Minimum
Guarantees

An error message is presented

Success
Guarantees

The system updates the list of running containers showing only
the container which has the requested mac address (if exists)

Trigger Actor fills the mac address search field with the mac address to
filter

54 Appendix B. Use-case descriptions

Process - Main
Success
Scenario

1. Actor fills the mac address search field with the mac address
to filter

2. The system updates the list of running containers showing
only the container which has the requested mac address (if
exists)

Exceptions 2. (a) The SDN controller/ API is not available
i. The system presents a popup message "Could not
connect to the controller, please try again later"
and the exception is logged

(b) The container host is not reachable
i. The system presents a popup error message
"Could not reach the container host"

ii. The exception is logged

Table B.42: Use case: CM_FR16: Filter by network service image

Use Case CM_FR16: Filter by network service image

Primary Actor Network Admin

Secondary
Actors

Security Monitor, Network Tenant

Scope SDN (Sub-system) - Black-box

Level System-Goal

Stakeholders
and Interests

– Network Admin: manage the virtualized services
– Security Monitor: monitor the virtualized services
– Network Tenant: monitor his/her own running virtualized ser-
vices

Pre-Conditions – The website is available
– Actor must be authenticated as Network Admin, Network Ten-
ant or Security Monitor via use case UM_FR1

– The actor has fulfilled use case CM_FR11 if he/she is a net-
work administrator or a security monitor

– The actor has fulfilled use case CM_FR12 if he/she is a net-
work tenant

Minimum
Guarantees

An error message is presented

Success
Guarantees

The system updates the list of running images showing only the
ones with the corresponding template image

Trigger Actor fills the search input field

Process - Main
Success
Scenario

1. Actor fills the search input field
2. The system updates the list of running images showing only

the ones with the corresponding template image

B.1. Management Package 55

Exceptions 2. (a) The SDN controller/ API is not available
i. The system presents a popup message "Could not
connect to the controller, please try again later"
and the exception is logged

(b) The container host is not reachable
i. The system presents a popup error message
"Could not reach the container host"

ii. The exception is logged

B.1.4 vNIDS package

Table B.43: Use case: VN_FR1: Enable vNIDS service

Use Case VN_FR1: Enable vNIDS service

Primary Actor Network Tenant

Secondary
Actors

Network Admin

Scope SDN (Sub-system) - Black-box

Level User-Goal

Stakeholders
and Interests

– Network Admin: interest in having a global vNIDS service or
in managing network tenant vNIDS services

– Network Tenant: interest in having a vNIDS service on his
own sub-network

Pre-Conditions – The website is available
– Actor must be authenticated as Network Tenant or Network
Admin via use case UM_FR1

– A vNIDS container image was added to the system by a network
admin via use case CM_FR6

– Actor has completed use case VN_FR21

Minimum
Guarantees

An error message is shown

Success
Guarantees

The vNIDS service is enabled

Trigger The actor finds the vNIDS service in the list of available vNIDS
services

56 Appendix B. Use-case descriptions

Process - Main
Success
Scenario

1. The actor finds the vNIDS service in the list of available
vNIDS services

2. The actor clicks on "Enable vNIDS service"
3. The system enables the vNIDS service for the specific actor

by starting a vNIDS container (sub-function VN_FR12).
Note this sub-function is an extension of the use case CM_-
FR9 since it is performed by the system itself and not by a
system actor

4. A success message is displayed

Exceptions 3. (a) SDN controller/API is not available
i. The system presents a popup message "Could not
connect to the controller, please try again later"
and the exception is logged

(b) The container service is not available
i. The system presents a popup message "Could not
launch container, please try again later" and the
exception is logged

Table B.44: Use case: VN_FR2: Disable vNIDS service

Use Case VN_FR2: Disable vNIDS service

Primary Actor Network Tenant

Secondary
Actors

Network Admin

Scope SDN (Sub-system) - Black-box

Level User-Goal

Stakeholders
and Interests

– Network Admin: interest in having control over a global vNIDS
service or network tenant vNIDS services

– Network Tenant: interest disabling network services on his
own sub-network

Pre-Conditions – The website is available
– Actor must be authenticated as Network Tenant or Network
Admin via use case UM_FR1

– The vNIDS service was enabled by the network tenant via use
case VN_FR1

– Actor has completed use case VN_FR21

Minimum
Guarantees

An error message is shown

Success
Guarantees

The vNIDS service is disabled

Trigger The actor finds the vNIDS service in the list of available vNIDS
services

B.1. Management Package 57

Process - Main
Success
Scenario

1. Actor finds the vNIDS service he wants to disable in the list
of available vNIDS services

2. The actor clicks on "Disable vNIDS service" and a confir-
mation modal is opened.

3. The actor confirms his intention by clicking on "Yes"
4. The system stops the vNIDS containers (sub-function

VN_FR18)
5. The system uninstalls all the rules that were previously in-

stalled to copy the network traffic coming from the network
hosts (sub-function VN_FR19)

6. The vNIDS service is disabled
7. A success message is displayed

Exceptions 3.
4.
5. (a) SDN controller/API is not available

i. The system presents a popup message "Could not
connect to the controller, please try again later"
and the exception is logged

3. (a) The actor does not confirm the action
i. The use case ends

4. (a) The container service is not available
i. The system presents a popup message "Could not
stop container, please try again later" and the
exception is logged

5. (a) A network device is not available at the moment
i. The system stores the removal intention and
deletes the rules when the device comes back on-
line

Table B.45: Use case: VN_FR3: Add host to vNIDS service

Use Case VN_FR3: Add host to vNIDS service

Primary Actor Network Tenant

Secondary
Actors

Network Admin

Scope SDN (Sub-system) - Black-box

Level User-Goal

Stakeholders
and Interests

– Network Admin: interest in having a global vNIDS service or
in managing network tenant vNIDS services

– Network Tenant: interest in having control over the hosts
being monitored by the vNIDS service on his own sub-network

58 Appendix B. Use-case descriptions

Pre-Conditions – The website is available
– Actor must be authenticated as Network Tenant or Network
Admin via use case UM_FR1

– The vNIDS service was enabled by the network tenant via use
case VN_FR1

Minimum
Guarantees

An error message is shown

Success
Guarantees

The host is added to the vNIDS service

Trigger The actor clicks in "Add host to vNIDS service"

Process - Main
Success
Scenario

1. The actor clicks in "Add host to vNIDS service"". This can
be achieved through:
(a) The network topology view (use case NM_FR3) by

clicking on a host
(b) From the hosts list (use case NM_FR14)

2. The actor selects the correspondent vNIDS service
3. The system starts to monitor the host traffic (sub-function

VN_FR13). To accomplish this:
(a) The system finds the path between the host to be

monitored and the vNIDS container (sub-function
VN_FR14)

(b) The system installs rules to copy the traffic coming
from the host or with the host destination on all de-
vices in the path between both of them (sub-function
VN_FR17)

4. A success message is displayed

Exceptions 2. (a) The actor does not select any of the available vNIDS
services
i. The use case ends

2.
3. (a) SDN controller/API is not available

i. The system presents a popup message "Could not
connect to the controller, please try again later"
and the exception is logged

(b) The vNIDS containers are not available
i. The system launches new containers and adapts
the rules

(c) A failure occurs in a network device
i. The system finds an alternative path and adapts
the rules

ii. The system launches a job to monitor the avail-
ability of the switch that stopped working so that
when it comes back online the rules are adapted
again

B.1. Management Package 59

Table B.46: Use case: VN_FR4: Remove host from vNIDS Service

Use Case VN_FR4: Remove host from vNIDS Service

Primary Actor Network Tenant

Secondary
Actors

Network Admin

Scope SDN (Sub-system) - Black-box

Level User-Goal

Stakeholders
and Interests

– Network Admin: interest in having a global vNIDS service or
in managing network tenant vNIDS services

– Network Tenant: interest in having control over the hosts
being monitored by the vNIDS service on his own sub-network

Pre-Conditions – The website is available
– The actor is authenticated as a network tenant or as a network
admin via use case UM_FR1

– The host was added to the vNIDS service via use case VN_FR3

Minimum
Guarantees

An error message is shown

Success
Guarantees

The host is removed from the vNIDS service

Trigger The actor clicks in “Remove host from vNIDS service”

Process - Main
Success
Scenario

1. The actor clicks in “Remove host from vNIDS service”. This
can be achieved through:
(a) The network topology view (use case NM_FR3) by

clicking on a host
(b) From the hosts list (use case NM_FR14)
(c) From the list of hosts already being monitored on the

vNIDS service
2. The system stops monitoring the host traffic (sub-function

VN_FR15). To accomplish this:
(a) The system finds the path between the host and the

vNIDS container (sub-function VN_FR14)
(b) The system removes the previous installed rules to

copy the traffic (subfunction VN_FR16)
3. A success message is displayed

60 Appendix B. Use-case descriptions

Exceptions 2. (a) SDN controller/API is not available
i. The system presents a popup message "Could not
connect to the controller, please try again later"
and the exception is logged

(b) A network device (in the path between host and con-
tainer) stops working
i. The system launches a job to monitor the avail-
ability of the switch that stopped working so that
when it comes back online the rules are removed

Table B.47: Use case: VN_FR5: List hosts on vNIDS service

Use Case VN_FR5: List hosts on vNIDS service

Primary Actor Network Tenant

Secondary
Actors

Network Admin, Security Monitor

Scope SDN (Sub-system) - Black-box

Level User-Goal

Stakeholders
and Interests

– Network Admin: interest in having a global vNIDS service or
in managing network tenant vNIDS services

– Network Tenant: interest in having control over the hosts
being monitored by the vNIDS service on his own sub-network

– Security Montior: interest in having knowledge about the
hosts that are being monitored for security monitoring purposes

Pre-Conditions – The website is available
– The actor is authenticated as a network tenant, as a security
monitor or as a network admin via use case UM_FR1

– A vNIDS service was enabled via use case VN_FR1
– The actor has selected a specific vNIDS service via use case
VN_FR21

Minimum
Guarantees

An error message is shown

Success
Guarantees

A list of hosts being monitored is displayed to the actor

Trigger The actor has selected a specific vNIDS service via use case VN_-
FR21

Process - Main
Success
Scenario

1. The actor has selected a specific vNIDS service via use case
VN_FR21

2. The actor sees the list of hosts being monitored

B.1. Management Package 61

Exceptions 2. (a) SDN controller/API is not available
i. The system presents a popup message "Could not
connect to the controller, please try again later"
and the exception is logged

Table B.48: Use case: VN_FR6: List all vNIDS containers

Use Case VN_FR6: List all vNIDS containers

Primary Actor Network Admin

Secondary
Actors

Security Monitor

Scope SDN (Sub-system) - Black-box

Level User-Goal

Stakeholders
and Interests

– Network Admin: interest in managing the virtual infrastruc-
ture

– Security Montior: interest in monitoring the virtual infrastruc-
ture

Pre-Conditions – The website is available
– The actor is authenticated as a security monitor or as a network
admin via use case UM_FR1

– The actor has completed use case VN_FR21

Minimum
Guarantees

An error message is shown

Success
Guarantees

A list of running containers is displayed

Trigger The actor clicks on the "Containers" link associated with a spe-
cific vNIDS service displayed by use case VN_FR21

Process - Main
Success
Scenario

1. The actor clicks on the "Containers" link associated with a
specific vNIDS service displayed by use case VN_FR21

2. The actor sees the list containers associated with his vNIDS
service

Exceptions 2. (a) SDN controller/API is not available
i. The system presents a popup message "Could not
connect to the controller, please try again later"
and the exception is logged

(b) A container associated with the service is not running
i. The system provides visual feedback in the list
item corresponding to the failing container

62 Appendix B. Use-case descriptions

Table B.49: Use case: VN_FR7: List vNIDS containers belonging to tenant

Use Case VN_FR7: List vNIDS containers belonging to tenant

Primary Actor Network Tenant

Secondary
Actors

Network Admin, Security Monitor

Scope SDN (Sub-system) - Black-box

Level User-Goal

Stakeholders
and Interests

– Network Admin: interest in managing the virtual infrastruc-
ture

– Security Montior: interest in monitoring the virtual infrastruc-
ture

– Network Tenant: interest in managing his own virtual services

Pre-Conditions – The website is available
– The actor is authenticated as a network tenant, security mon-
itor or as a network admin via use case UM_FR1

Minimum
Guarantees

An error message is shown

Success
Guarantees

A list of running containers is displayed

Trigger The actor

Process - Main
Success
Scenario

1. The actor clicks on the "Containers" link associated with a
specific vNIDS service displayed by use case VN_FR21

2. The actor sees the list containers associated with his vNIDS
service

Exceptions 2. (a) SDN controller/API is not available
i. The system presents a popup message "Could not
connect to the controller, please try again later"
and the exception is logged

(b) A container associated with the service is not running
i. The system provides visual feedback in the list
item corresponding to the failing container

Table B.50: Use case: VN_FR8: Configure vNIDS service

Use Case VN_FR8: Configure vNIDS service

Primary Actor Network Tenant

Secondary
Actors

Network Admin

B.1. Management Package 63

Scope SDN (Sub-system) - Black-box

Level User-Goal

Stakeholders
and Interests

– Network Admin: interest in configuring all the vNIDS services
– Network Tenant: interest in managing his own vNIDS service

Pre-Conditions – The website is available
– The actor is authenticated as a network tenant or as a network
admin via use case UM_FR1

– The vNIDS service was enabled via use case VN_FR1
– The actor has selected a vNIDS service from the list provided
by use case VN_FR21

Minimum
Guarantees

The actor is presented with a list of options

Success
Guarantees

The actor is presented with a list of options

Trigger The actor clicks on the "Configure service" in the list of vNIDS
services

Process - Main
Success
Scenario

1. The actor clicks on the "Configure service" in the list of
vNIDS services

2. The actor is presented with a list of options:
(a) List scalability policies (via use case VN_FR10)
(b) Create scalability policy (via use case VN_FR9)
(c) Remove scalability policy (via use case VN_FR11)

Exceptions

Table B.51: Use case: VN_FR9: Create Scalability Policy

Use Case VN_FR9: Create Scalability Policy

Primary Actor Network Tenant

Secondary
Actors

Network Admin

Scope SDN (Sub-system) - Black-box

Level User-Goal

Stakeholders
and Interests

– Network Admin: interest in configuring all the vNIDS services
– Network Tenant: interest in managing his own vNIDS service

Pre-Conditions – The website is available
– The actor is authenticated as a network tenant or as a network
admin via use case UM_FR1

– The use case VN_FR8 was completed

64 Appendix B. Use-case descriptions

Minimum
Guarantees

An error message is displayed

Success
Guarantees

A scalability policy is created

Trigger The actor clicks on "Create scalability policy"

Process - Main
Success
Scenario

1. The actor clicks on "Create scalability policy"
2. The actor selects the type of policy to create. This can be:

(a) A scalability policy based on the container network
bandwith

(b) A scalability policy based on the container memory
consumption

(c) A scalability policy based on the container CPU usage
3. The actor fills the threshold to trigger the scalability policy
4. The actor confirms the intention by clicking on "Save"
5. The system launches a job to monitor the vNIDS containers

based on the scalability policy (sub-function VN_FR20).
Anytime the threshold is reached and depending on the type
of policy:
(a) The system may launch a new container to attenuate

the overall load and redirect new traffic to the new
container

(b) The system might move the container to a different
physical host

(c) The system might modify existing rules to move net-
work traffic to another container

(d) The opposite will happen if the service has been scaled
up and is in the state it can be scaled down again

6. A success message is displayed

Exceptions 5. (a) SDN controller/API is not available
i. The system presents a popup message "Could not
connect to the controller, please try again later"
and the exception is logged

(b) The container physical host is not available
i. The system will use other physical host. If none
available, the system will present an error message

(c) A network device that have rules to forward traffic to
a vNIDS container stops working
i. The system tries to find another path to continue
to provide the vNIDS container with a copy of the
traffic

ii. If the network device is attached to the vNIDS
container, a new container is launched, the rules
are modified accordingly to reflect the new path
and the old container is removed

B.1. Management Package 65

Table B.52: Use case: VN_FR10: List scalability policies

Use Case VN_FR10: List scalability policies

Primary Actor Network Tenant

Secondary
Actors

Network Admin

Scope SDN (Sub-system) - Black-box

Level User-Goal

Stakeholders
and Interests

– Network Admin: interest in configuring all the vNIDS services
– Network Tenant: interest in managing his own vNIDS service

Pre-Conditions – The website is available
– The actor is authenticated as a network tenant or as a network
admin via use case UM_FR1

– The use case VN_FR8 was completed

Minimum
Guarantees

An error message is displayed

Success
Guarantees

The actor views the list of scalability policies

Trigger Actor clicks on "Scalability policies"

Process - Main
Success
Scenario

1. Actor clicks on "Scalability policies"
2. The system displays the list of defined scalability policies for

the service instance

Exceptions 5. (a) SDN controller/API is not available
i. The system presents a popup message "Could not
connect to the controller, please try again later"
and the exception is logged

Table B.53: Use case: VN_FR11: Remove scalability policy

Use Case VN_FR11: Remove scalability policy

Primary Actor Network Tenant

Secondary
Actors

Network Admin

Scope SDN (Sub-system) - Black-box

Level User-Goal

Stakeholders
and Interests

– Network Admin: interest in configuring all the vNIDS services
– Network Tenant: interest in managing his own vNIDS service

66 Appendix B. Use-case descriptions

Pre-Conditions – The website is available
– The actor is authenticated as a network tenant or as a network
admin via use case UM_FR1

– The use case VN_FR10 was completed

Minimum
Guarantees

An error message is displayed

Success
Guarantees

The scalability policy is removed

Trigger Actor selects the scalability rule to be removed from the list

Process - Main
Success
Scenario

1. Actor selects the scalability rule to be removed from the list
2. Actor clicks on "Remove" and a modal is opened
3. Actor confirms the intention by clicking on "Yes"
4. The scalability rule is removed
5. The monitoring service that was launched when the scalabil-

ity policy was created is removed (sub-function VN_FR22)
6. A success message is displayed

Exceptions 2.
3. (a) The actor does not confirm the action

i. The use case ends
4.
5. (a) SDN controller/API is not available

i. The system presents a popup message "Could not
connect to the controller, please try again later"
and the exception is logged

Table B.54: Use case: VN_FR21: List all vNIDS services

Use Case VN_FR21: List all vNIDS services

Primary Actor Network Tenant

Secondary
Actors

Network Admin

Scope SDN (Sub-system) - Black-box

Level User-Goal

Stakeholders
and Interests

– Network Admin: interest in configuring all the vNIDS services
– Network Tenant: interest in managing his own vNIDS service

Pre-Conditions – The website is available
– The actor is authenticated as a network tenant or as a network
admin via use case UM_FR1

Minimum
Guarantees

An error message is displayed

B.1. Management Package 67

Success
Guarantees

The actor views the list of available vNIDS services

Trigger Actor clicks on the "vNIDS" sub-menu item of the "Services"
menu item

Process - Main
Success
Scenario

1. Actor clicks on the "vNIDS" sub-menu item of the "Ser-
vices" menu item

2. The system presents the actor with the list of available
vNIDS services

Exceptions 2. (a) SDN controller/API is not available
i. The system presents a popup message "Could not
connect to the controller, please try again later"
and the exception is logged

B.1.5 vHoneyPot package

Table B.55: Use case: VH_FR1: Deploy vHoneypot

Use Case VH_FR1: Deploy vHoneypot

Primary Actor Network Tenant

Secondary
Actors

Network Admin

Scope SDN (Sub-system) - Black-box

Level User-Goal

Stakeholders
and Interests

– Network Admin: interest in managing all the virtual services
on the network

– Network Tenant: interest in setting a virtual honeypot in his
sub-network

Pre-Conditions – The website is available
– Actor must be authenticated as Network Tenant or Network
Admin via use case UM_FR1

– The actor is in the view provided by the completion of use case
VH_FR3 (if the actor is a network admin) or VH_FR4 (if the
actor is a network tenant)

– A vHoneypot container image was associated to the platform
by a network administrator via use case CM_FR6

Minimum
Guarantees

An error message is shown

Success
Guarantees

The vHoneypot is deployed

Trigger Actor clicks on "Deploy vHoneypot"

68 Appendix B. Use-case descriptions

Process - Main
Success
Scenario

1. Actor clicks on "Deploy vHoneypot"
2. The system provides the actor with a view in which he can

provide a list of Ip Addresses for the virtual honeypot service
3. The actor fills the list with the desired range of Ip addresses

for the vHoneypot operation (sub-function VH_FR11)
4. The actor confirms the intent by clicking on save
5. The system redirects the network traffic with source or des-

tination in the given Ip address range to the vHoneypot
container (sub-function VH_FR8). To do this:
(a) It computes the shortest network paths between all

devices and the vHoneypot container (sub-function
VH_FR7)

(b) It installs flow rules to forward the traffic to the vir-
tual honeypot on all previous detected network devices
(sub-function VH_FR9)

6. The vHoneypot is deployed
7. A success message is displayed

Exceptions 3. (a) The list contains Ip Addresses already in use
i. The system provides an error message "The speci-
fied Ip Address range contains Ip addresses already
in use" and the exception is logged

4. (a) The actor does not confirm the intent by clicking on
save
i. The use case ends and no vHoneypot is deployed

5.
6. (a) SDN controller/API is not available

i. The system presents a popup message "Could not
connect to the controller, please try again later"
and the exception is logged

Table B.56: Use case: VH_FR2: Remove vHoneypot

Use Case VH_FR2: Remove vHoneypot

Primary Actor Network Tenant

Secondary
Actors

Network Admin

Scope SDN (Sub-system) - Black-box

Level User-Goal

Stakeholders
and Interests

– Network Admin: interest in managing all the virtual services
on the network

– Network Tenant: interest in setting a virtual honeypot in his
sub-network

B.1. Management Package 69

Pre-Conditions – The website is available
– Actor must be authenticated as Network Tenant or Network
Admin via use case UM_FR1

– The actor is in the view provided by the completion of use case
VH_FR3 (if the actor is a network admin) or VH_FR4 (if the
actor is a network tenant)

– A vHoneypot container was deployed via use case VH_FR1

Minimum
Guarantees

An error message is shown

Success
Guarantees

The vHoneypot container is removed

Trigger Actor finds the vHoneypot he wants to remove in the list of
vHoneypots

Process - Main
Success
Scenario

1. Actor finds the vHoneypot he wants to remove in the list
of vHoneypots

2. Actor clicks on "Remove vHoneypot" and a confirmation
modal is opened

3. The actor confirms the intent by clicking on "Yes"
4. The vHoneypot is removed. To do this, the system:

(a) Stops the vHoneypot container (sub-function VH_-
FR5)

(b) It computes the paths between all the devices and the
vHoneypot to be removed (sub-function VH_FR7)

(c) It removes the forwarding rules from all the devices
(sub-function VH_FR6)

5. The vHoneypot is removed
6. A success message is displayed

Exceptions 3. (a) The actor does not confirm the intent by clicking on
"No"
i. The use case ends and no vHoneypot is removed

4. (a) SDN controller/API is not available
i. The system presents a popup message "Could not
connect to the controller, please try again later"
and the exception is logged

(b) The container system fails during the removal of the
container
i. The system presents an error message "Could not
connect to the container system, please try again
later" and the exception is logged

70 Appendix B. Use-case descriptions

Table B.57: Use case: VH_FR3: List all vHoneypots

Use Case VH_FR3: List all vHoneypots

Primary Actor Network Admin

Secondary
Actors

Security Monitor

Scope SDN (Sub-system) - Black-box

Level User-Goal

Stakeholders
and Interests

– Network Admin: interest in managing all the virtual services
on the network

– Security Monitor: interest in monitoring all the virtual services
on the network

Pre-Conditions – The website is available
– Actor must be authenticated as a Security Monitor or as a
Network Admin via use case UM_FR1

Minimum
Guarantees

An error message is shown

Success
Guarantees

The actor sees the list of previously deployed vHoneypots

Trigger Actor clicks in the vHoneypot sub-menu item of the "Services"
menu item

Process - Main
Success
Scenario

1. Actor clicks in the vHoneypot sub-menu item of the "Ser-
vices" menu item

2. The system presents the list of all the previously deployed
vHoneypots

Exceptions 2. (a) SDN controller/API is not available
i. The system presents a popup message "Could not
connect to the controller, please try again later"
and the exception is logged

Table B.58: Use case: VH_FR4: List vHoneypots belonging to Tenant

Use Case VH_FR4: List vHoneypots belonging to Tenant

Primary Actor Network Tenant

Secondary
Actors

Network Admin

Scope SDN (Sub-system) - Black-box

Level User-Goal

B.1. Management Package 71

Stakeholders
and Interests

– Network Admin: interest in managing the virtual services on
his sub-network

– Network Tenant: interest in monitoring all the virtual services
on the network

Pre-Conditions – The website is available
– Actor must be authenticated as a Network Tenant or as a Net-
work Admin via use case UM_FR1

– The actor is a network admin and has completed use case VH_-
FR3

Minimum
Guarantees

An error message is shown

Success
Guarantees

The actor sees the list of previously deployed vHoneypots

Trigger Actor clicks in the vHoneypot sub-menu item of the "Services"
menu item

Process - Main
Success
Scenario

1. Actor clicks on the "vHoneypot" sub-menu item of the
"Services" main menu item. If the actor is a network admin:
(a) The actor selects the Tenant name from the Network

Tenants filtering dropdown list
2. The system presents the list of all the previously deployed

vHoneypots

Exceptions 1.
2. (a) SDN controller/API is not available

i. The system presents a popup message "Could not
connect to the controller, please try again later"
and the exception is logged

B.1.6 Data_Diode package

Table B.59: Use case: DD_FR1: Set Network Link as a data diode

Use Case DD_FR1: Set Network Link as a data diode

Primary Actor Network Tenant

Secondary
Actors

Network Admin

Scope SDN (Sub-system) - Black-box

Level User-Goal

Stakeholders
and Interests

– Network Admin: interest in managing all the virtual services
on the network

– Network Tenant: interest in setting a network link as a data
diode

72 Appendix B. Use-case descriptions

Pre-Conditions – The website is available
– Actor must be authenticated as Network Tenant or Network
Admin via use case UM_FR1

– The actor has fulfilled use case NM_FR15 or NM_FR11 (if a
network admin) or NM_FR12 (if a network tenant or network
admin)

Minimum
Guarantees

An error message is shown

Success
Guarantees

The link is set as a data diode in the specified direction

Trigger Actor clicks on "Set link as a data diode"

Process - Main
Success
Scenario

1. Actor clicks on "Set link as a data diode". This can achieved
by:
(a) Clicking on the button on the modal that opens after

clicking on a link in the network topology view (if the
actor is a network admin and has fulfilled use case
NM_FR11 or if the actor is a network tenant and has
fulfilled use case NM_FR12 or NM_FR11)

(b) Clicking directly on the button in the list of network
links (if the actor has fulfilled use case NM_FR15)

2. The system presents the actor the the two directions of the
network link

3. The actor selects one of the directions
4. The actor confirms his intent by clicking on "Save"
5. The system install rules to drop the network packages on

the network device that contains the edge link (sub-function
DD_FR9)

6. The link is set as a data diode in the specified direction
7. A success message is shown

B.1. Management Package 73

Exceptions 1. (a) The link selected is not an edge link
i. The use case ends. The actor has to click on an
edge link

2. (a) The link is already set as a data diode on one of the
link directions
i. The system also shows the two directions but
identifies correctly the direction the data diode is
already set. The direction defined as a data diode
has no option to "set direction as a data diode"

3. (a) The actor does not select any direction
i. The use case ends

4. (a) Actor does not click on save
i. The use case ends

5.
6. (a) SDN controller/API is not available

i. The system presents a popup message "Could not
connect to the controller, please try again later"
and the exception is logged

Table B.60: Use case: DD_FR2: Set Network Link as a regular link

Use Case DD_FR2: Set Network Link as a regular link

Primary Actor Network Tenant

Secondary
Actors

Network Admin

Scope SDN (Sub-system) - Black-box

Level User-Goal

Stakeholders
and Interests

– Network Admin: interest in managing all the virtual services
on the network

– Network Tenant: interest in setting a network link as a data
diode

Pre-Conditions – The website is available
– Actor must be authenticated as Network Tenant or Network
Admin via use case UM_FR1

– The actor has fulfilled use case DD_FR3 (if the actor is a
network tenant or network admin) or DD_FR4 (if the actor is
a network admin)

– A link was previously set as a data diode via use case DD_FR1

Minimum
Guarantees

An error message is shown

Success
Guarantees

The link is set as a regular link

74 Appendix B. Use-case descriptions

Trigger Actor clicks on "remove data diode"

Process - Main
Success
Scenario

1. Actor clicks on "remove data diode". This can achieved by:
(a) Clicking on the button on the modal that opens after

clicking on a link previously set as a data diode in the
network topology view (if the actor is a network admin
and has fulfilled use case NM_FR11 or if the actor is
a network tenant and has fulfilled use case NM_FR12
or NM_FR11)

(b) Clicking directly on the button in the list of network
links set as data diode (via use case DD_FR3 if the
actor is a network tenant or via use case DD_FR4 if
the actor is a network admin)

2. The system presents the actor with a confirmation modal
3. The actor confirms his intent by clicking on "Yes"
4. The system remove the rules to drop the network packages

on the network device that contains the edge link (sub-
function DD_FR7)

5. The link is set as a regular link
6. A success message is shown

Exceptions 3. (a) Actor does not click on "Yes"
i. The use case ends

2. (a) The link is already set as a data diode on one of the
link directions
i. The system also shows the two directions but
identifies correctly the direction the data diode is
already set. The direction defined as a data diode
has no option to "set direction as a data diode"

5.
6. (a) SDN controller/API is not available

i. The system presents a popup message "Could not
connect to the controller, please try again later"
and the exception is logged

Table B.61: Use case: DD_FR3: List all network links set as a data diode

Use Case DD_FR3: List all network links set as a data diode

Primary Actor Network Admin

Secondary
Actors

Security Monitor

Scope SDN (Sub-system) - Black-box

Level User-Goal

B.1. Management Package 75

Stakeholders
and Interests

– Network Admin: interest in managing all the virtual services
on the network

– Security Monitor: interest in monitoring all the virtual services
on the network

Pre-Conditions – The website is available
– Actor must be authenticated as Network Admin or Security
Monitor via use case UM_FR1

Minimum
Guarantees

An error message is shown

Success
Guarantees

The system presents the actor with the list of network links set
as a data diode

Trigger Actor clicks on the "Data Diode" sub-menu item of the "Ser-
vices" menu item

Process - Main
Success
Scenario

1. Actor clicks on the "Data Diode" sub-menu item of the
"Services" menu item

2. The system presents the actor with the list of network links
set as a data diode. From there the actor can:
(a) Filter the data diodes by network tenant via use case

DD_FR6
(b) Filter the data diodes by sub-network name via use

case DD_FR7
(c) Perform any other filters that are available for use case

NM_FR15

Exceptions 2. (a) SDN controller/API is not available
i. The system presents a popup message "Could not
connect to the controller, please try again later"
and the exception is logged

Table B.62: Use case: DD_FR4: Filter network link by sub-network name

Use Case DD_FR4: Filter network link by sub-network name

Primary Actor Network Admin

Secondary
Actors

Security Monitor

Scope SDN (Sub-system) - Black-box

Level User-Goal

Stakeholders
and Interests

– Network Admin: interest in managing all the virtual services
on the network

– Security Monitor: interest in monitoring all the virtual services
on the network

76 Appendix B. Use-case descriptions

Pre-Conditions – The website is available
– Actor must be authenticated as Network Admin or Security
Monitor via use case UM_FR1

– The actor has to have fulfilled use case DD_FR6

Minimum
Guarantees

An error message is displayed

Success
Guarantees

The system presents an updated list of network links

Trigger The actor fills the search field with the sub-network name

Process - Main
Success
Scenario

1. The actor fills the search field with the sub-network name
2. The system presents an updated list of network links (set

as a data diode)

Exceptions 2. (a) SDN controller/API is not available
i. The system presents a popup message "Could not
connect to the controller, please try again later"
and the exception is logged

Table B.63: Use case: DD_FR5: Filter network link by network tenant

Use Case DD_FR5: Filter network link by network tenant

Primary Actor Network Admin

Secondary
Actors

Security Monitor

Scope SDN (Sub-system) - Black-box

Level User-Goal

Stakeholders
and Interests

– Network Admin: interest in managing all the virtual services
on the network

– Security Monitor: interest in monitoring all the virtual services
on the network

Pre-Conditions – The website is available
– Actor must be authenticated as Network Admin or Security
Monitor via use case UM_FR1

– The actor has to have fulfilled use case DD_FR6

Minimum
Guarantees

An error message is displayed

Success
Guarantees

The system presents an updated list of network links

Trigger The actor fills the search field with the tenant name

B.1. Management Package 77

Process - Main
Success
Scenario

1. The actor fills the search field with the tenant name
2. The system presents an updated list of network links (set

as a data diode)

Exceptions 2. (a) SDN controller/API is not available
i. The system presents a popup message "Could not
connect to the controller, please try again later"
and the exception is logged

Table B.64: Use case: DD_FR6: List all network links set as a data diode
for links belonging to a tenant sub-network

Use Case DD_FR6: List all network links set as a data diode for links
belonging to a tenant sub-network

Primary Actor Network Tenant

Secondary
Actors

Network Admin, Security Monitor

Scope SDN (Sub-system) - Black-box

Level User-Goal

Stakeholders
and Interests

– Network Tenant: interest in managing his virtual data diode
service

– Network Admin: interest in managing all the virtual services
on the network

– Security Monitor: interest in monitoring all the virtual services
on the network

Pre-Conditions – The website is available
– Actor must be authenticated as a Network Tenant, Network
Admin or Security Monitor via use case UM_FR1

– In the case the actor is a network admin or a security monitor
he has to have fulfilled use case DD_FR6 previously

Minimum
Guarantees

An error message is displayed

Success
Guarantees

The system presents the actor with the list of network links set
as a data diode

Trigger Actor clicks on the "Data Diode" sub-menu item of the "Virtual
infrastructure" menu item if he is a network tenant. Actor finishes
DD_FR6 otherwise.

Process - Main
Success
Scenario

1. Actor clicks on the "Data Diode" sub-menu item of the
"Virtual infrastructure" menu item if he is a network tenant.
Actor finishes DD_FR6 otherwise.

2. The system presents the actor with the list of network links
set as a data diode

78 Appendix B. Use-case descriptions

Exceptions 2. (a) SDN controller/API is not available
i. The system presents a popup message "Could not
connect to the controller, please try again later"
and the exception is logged

B.1.7 Network_Event_Factory package

Table B.65: Use case: NEF_FR1: Add message broker topic URI

Use Case NEF_FR1: Add message broker topic URI

Primary Actor Network Admin

Scope SDN (Sub-system) - Black-box

Level System-Goal

Stakeholders
and Interests

– Network Admin: be able to have the system to publish network
events to an external SIEM

– Security Admin: management of SDN events
– Security Monitor: monitoring the SDN network
– ystem Admin: management of SDN events

Pre-Conditions – The website is available
– Actor must be authenticated as Network Admin via use case
UM_FR1

Minimum
Guarantees

An error message is presented

Success
Guarantees

The broker and topic URL are added to the system

Trigger Actor clicks on "Network Event factory" menu item

Process - Main
Success
Scenario

1. Actor clicks on "Network Event factory" menu item
2. The actor fills the broker and topic URL in the view pre-

sented by the system
3. The system connects to the provided URL and topic
4. The actor selects the kind of events he wants the platform

to publish to an external system. This consists of a list of
checkboxes:
(a) Device Events
(b) Link Events
(c) Topology Events
(d) Host Events
(e) Controller Events

5. The actor confirms his selection by clicking on "Save"
6. The system presents a success message
7. The system starts to publish events to the broker topic via

sub-function NEF_FR10

B.1. Management Package 79

Exceptions 2. (a) The broker or the topic do not exist
i. The system presents a popup message "Could not
contact broker" and the exception is logged

ii. The system presents a popup message "Topic
does not exist" and the exception is logged

5. (a) The actor does not click on "save"
i. The use case ends

(b) The SDN/Controller API is not available
i. The system shows a popup stating "Could not
contact backend please try again later" and the
exception is logged

6. (a) An exception occurs while adding the broker URI
i. A popup is shown containing information about
the exception and the exception is also logged

Table B.66: Use case: NEF_FR2: Remove message broker topic URI

Use Case NEF_FR2: Remove message broker topic URI

Primary Actor Network Admin

Scope SDN (Sub-system) - Black-box

Level System-Goal

Stakeholders
and Interests

– Network Admin: be able to have full control over whether or
not the SDN sub-system publishes events to an external SIEM

Pre-Conditions – The website is available
– Actor must be authenticated as Network Admin via use case
UM_FR1

– The broker and topic uri were added to the platform via use
case NEF_FR2

Minimum
Guarantees

An error message is presented

Success
Guarantees

The broker and topic URI are removed from the system

Trigger Actor clicks on "Network Event factory" menu item

Process - Main
Success
Scenario

1. Actor clicks on "Network Event factory" menu item
2. The actor clicks on a remove button located near the bro-

ker and topic (SIEM) settings and a confirmation modal is
opened

3. The actor confirms his intent by clicking on "Yes"
4. The system presents a success message
5. The system stops publishing events to the broker topic

80 Appendix B. Use-case descriptions

Exceptions 3. (a) The actor does not click on "Yes"
i. The use case ends without changes to the system

5. (a) The SDN/Controller API is not available
i. The system shows a popup stating "Could not
contact backend please try again later" and the
exception is logged

(b) An exception is thrown while removing the URI from
the system
i. An error message is shown containing the excep-
tion information

ii. The exception is logged

Table B.67: Use case: NEF_FR3: Publish network events

Use Case NEF_FR3: Publish network events

Primary Actor -

Scope SDN (Sub-system) - Black-box

Level System-Goal

Stakeholders
and Interests

– Network Admin: be able to have the system to publish network
events to an external SIEM

– Security Admin: management of SDN events
– Security Monitor: monitoring the SDN network
– System Admin: management of SDN events

Pre-Conditions – Use case NEF_FR1 was completed
– At least an SDN controller node is running

Minimum
Guarantees

An exception is logged

Success
Guarantees

The network event is published to the broker and topic previously
configured via use case NEF_FR1

Trigger A network event occurs in the SDN network

Process - Main
Success
Scenario

1. A network event occurs in the SDN network
2. The system publishes the event to the broker and topic de-

fined via use case NEF_FR1. The event can be published:
(a) Via use case NEF_FR4 if it is a device event
(b) Via use case NEF_FR5 if it is a link event
(c) Via use case NEF_FR6 if it is a topology event
(d) Via use case NEF_FR7 if it is a host event
(e) Via use case NEF_FR8 if it is a controller event

Exceptions 2. (a) An exception is thrown during an event
i. The exception is logged

B.1. Management Package 81

Table B.68: Use case: NEF_FR4: Publish device events

Use Case NEF_FR4: Publish device events

Primary Actor -

Scope SDN (Sub-system) - Black-box

Level System-Goal

Stakeholders
and Interests

– Network Admin: be able to have the system to publish network
events to an external SIEM

– Security Admin: management of SDN events
– Security Monitor: monitoring the SDN network
– System Admin: management of SDN events

Pre-Conditions – Use case NEF_FR3

Minimum
Guarantees

An exception is logged

Success
Guarantees

The device event is published to the broker and topic previously
configured via use case NEF_FR1

Trigger A network event occurs in the SDN network

Process - Main
Success
Scenario

1. A device event occurs in the SDN network
2. The system publishes the event to the broker and topic

defined via use case NEF_FR1. The event can be of type:
(a) DEVICE_ADDED
(b) DEVICE_AVAILABILITY_CHANGED
(c) DEVICE_REMOVED
(d) DEVICE_SUSPENDED
(e) DEVICE_UPDATED
(f) PORT_ADDED
(g) PORT_REMOVED
(h) PORT_STATS_UPDATED
(i) PORT_UPDATED

Exceptions 2. (a) An exception is thrown during an event
i. The exception is logged

Table B.69: Use case: NEF_FR5: Publish link events

Use Case NEF_FR5: Publish link events

Primary Actor -

Scope SDN (Sub-system) - Black-box

Level System-Goal

82 Appendix B. Use-case descriptions

Stakeholders
and Interests

– Network Admin: be able to have the system to publish network
events to an external SIEM

– Security Admin: management of SDN events
– Security Monitor: monitoring the SDN network
– System Admin: management of SDN events

Pre-Conditions – Use case NEF_FR3

Minimum
Guarantees

An exception is logged

Success
Guarantees

The link event is published to the broker and topic previously
configured via use case NEF_FR1

Trigger A network event occurs in the SDN network

Process - Main
Success
Scenario

1. A link event occurs in the SDN network
2. The system publishes the event to the broker and topic

defined via use case NEF_FR1. The event can be of type:
(a) LINK_ADDED
(b) LINK_REMOVED
(c) LINK_UPDATED

Exceptions 2. (a) An exception is thrown during an event
i. The exception is logged

Table B.70: Use case: NEF_FR6: Publish topology events

Use Case NEF_FR6: Publish topology events

Primary Actor -

Scope SDN (Sub-system) - Black-box

Level System-Goal

Stakeholders
and Interests

– Network Admin: be able to have the system to publish network
events to an external SIEM

– Security Admin: management of SDN events
– Security Monitor: monitoring the SDN network
– System Admin: management of SDN events

Pre-Conditions – Use case NEF_FR3

Minimum
Guarantees

An exception is logged

Success
Guarantees

The topology event is published to the broker and topic previously
configured via use case NEF_FR1

Trigger A topology event occurs in the SDN network

B.1. Management Package 83

Process - Main
Success
Scenario

1. A topology event occurs in the SDN network
2. The system publishes the event to the broker and topic

defined via use case NEF_FR1. The event can be of type:
(a) TOPOLOGY_CHANGED

Exceptions 2. (a) An exception is thrown during an event
i. The exception is logged

Table B.71: Use case: NEF_FR7: Publish host events

Use Case NEF_FR7: Publish host events

Primary Actor -

Scope SDN (Sub-system) - Black-box

Level System-Goal

Stakeholders
and Interests

– Network Admin: be able to have the system to publish network
events to an external SIEM

– Security Admin: management of SDN events
– Security Monitor: monitoring the SDN network
– System Admin: management of SDN events

Pre-Conditions – Use case NEF_FR3

Minimum
Guarantees

An exception is logged

Success
Guarantees

The host event is published to the broker and topic previously
configured via use case NEF_FR1

Trigger An host event occurs in the SDN network

Process - Main
Success
Scenario

1. An host event occurs in the SDN network
2. The system publishes the event to the broker and topic

defined via use case NEF_FR1. The event can be of type:
(a) HOST_ADDED
(b) HOST_MOVED
(c) HOST_REMOVED
(d) HOST_UPDATED

Exceptions 2. (a) An exception is thrown during an event
i. The exception is logged

84 Appendix B. Use-case descriptions

Table B.72: Use case: NEF_FR8: Publish network controller events

Use Case NEF_FR8: Publish network controller events

Primary Actor -

Scope SDN (Sub-system) - Black-box

Level System-Goal

Stakeholders
and Interests

– Network Admin: be able to have the system to publish network
events to an external SIEM

– Security Admin: management of SDN events
– Security Monitor: monitoring the SDN network
– System Admin: management of SDN events

Pre-Conditions – Use case NEF_FR3

Minimum
Guarantees

An exception is logged

Success
Guarantees

The network controller event is published to the broker and topic
previously configured via use case NEF_FR1

Trigger A network controller event occurs in the SDN network

Process - Main
Success
Scenario

1. A network controller event occurs in the SDN network
2. The system publishes the event to the broker and topic

defined via use case NEF_FR1. The event can be of type:
(a) APP_ACTIVATED
(b) APP_DEACTIVATED
(c) APP_INSTALLED
(d) APP_PERMISSIONS_CHANGED
(e) APP_UNINSTALLED
(f) CLUSTER_INSTANCE_ACTIVATED
(g) CLUSTER_INSTANCE_ADDED
(h) CLUSTER_INSTANCE_DEACTIVATED
(i) CLUSTER_INSTANCE_REMOVED
(j) RULE_ADD_REQUESTED
(k) RULE_ADDED
(l) RULE_REMOVE_REQUESTED

(m) RULE_REMOVED
(n) RULE_UPDATED
(o) INTENT_INSTALLED
(p) INTENT_WITHDRAWN
(q) INTENT_PURGED
(r) INTENT_CORRUPT
(s) INTENT_FAILED
(t) MASTERSHIP_MASTER_CHANGED
(u) MASTERSHIP_BACKUPS_CHANGED
(v) PACKET_EMIT

B.2. Monitoring Package 85

Exceptions 2. (a) An exception is thrown during an event
i. The exception is logged

B.2 Monitoring Package

B.2.1 Network_Statistics package

Table B.73: Use case: NS_FR1: Network Statistics

Use Case NS_FR1: Network Statistics

Primary Actor Network Admin

Secondary
Actors

Network Tenant, Security Monitor

Scope SDN (Sub-system) - Black-box

Level User-Goal

Stakeholders
and Interests

– Network Tenant: interest in monitoring the actor sub-network
assets

– Network Admin: interest in monitoring the overall network
– Security Monitor: interest in monitoring the overall network

Pre-Conditions – The website is available
– The actor is authenticated as a network tenant, as a security
monitor or as a network admin via use case UM_FR1

– The user has completed use case NM_FR10 if he is a network
tenant

– The user has completed use case NM_FR9 or NM_FR10 if
he is a network admin or security monitor

Minimum
Guarantees

An error message is displayed

Success
Guarantees

The actor can access statistical information regarding the network

Trigger The actor clicks on the "Statistics" menu item

Process - Main
Success
Scenario

1. The actor clicks on the "Statistics" menu item
2. The system displays three menu items from where the user

can:
(a) View host statistics via use case NS_FR2
(b) View device statistics via use case NS_FR3
(c) View link statistics via use case NS_FR4

Exceptions -

86 Appendix B. Use-case descriptions

Table B.74: Use case: NS_FR2: View host statistics

Use Case NS_FR2: View host statistics

Primary Actor Network Admin

Secondary
Actors

Network Tenant, Security Monitor

Scope SDN (Sub-system) - Black-box

Level User-Goal

Stakeholders
and Interests

– Network Tenant: interest in monitoring the actor sub-network
assets

– Network Admin: interest in monitoring the overall network
– Security Monitor: interest in monitoring the overall network

Pre-Conditions – The website is available
– The user has completed use case NS_FR1

Minimum
Guarantees

An error message is displayed

Success
Guarantees

The actor can access statistical information regarding host

Trigger The actor clicks on "Hosts"

Process - Main
Success
Scenario

1. The actor clicks on "Hosts"
2. The actor selects the respective host from the displayed list
3. The system displays the host statistics. These include:

(a) Global inbound traffic (total and realtime)
(b) Global outbound traffic traffic (total and realtime)
(c) Inbound traffic form other hosts (total and realtime)
(d) Outbound traffic to other hosts (total and realtime)

4. The view are also displayed in the form of live charts (sub-
function NS_FR5)

Exceptions 3. (a) SDN controller/API is not available
i. The system presents a popup message "Could not
connect to the controller, please try again later"
and the exception is logged

Table B.75: Use case: NS_FR3: View device statistics

Use Case NS_FR3: View device statistics

Primary Actor Network Admin

Secondary
Actors

Network Tenant, Security Monitor

Scope SDN (Sub-system) - Black-box

B.2. Monitoring Package 87

Level User-Goal

Stakeholders
and Interests

– Network Tenant: interest in monitoring his network assets
– Network Admin: interest in monitoring the overall network
– Security Monitor: interest in monitoring the overall network

Pre-Conditions – The website is available
– The user has completed use case NS_FR1

Minimum
Guarantees

An error message is displayed

Success
Guarantees

The actor can access statistical information regarding device

Trigger The actor clicks on "Devices"

Process - Main
Success
Scenario

1. The actor clicks on "Devices"
2. The actor selects the respective host device the the provided

list
3. The system displays the device statistics. These include:

(a) Statistics per port (total and real time)
(b) Statistics per flow (total and real time)

4. The view are also displayed in the form of live charts (sub-
function NS_FR5)

Exceptions 3. (a) SDN controller/API is not available
i. The system presents a popup message "Could not
connect to the controller, please try again later"
and the exception is logged

Table B.76: Use case: NS_FR4: View link statistics

Use Case NS_FR4: View link statistics

Primary Actor Network Admin

Secondary
Actors

Network Tenant, Security Monitor

Scope SDN (Sub-system) - Black-box

Level User-Goal

Stakeholders
and Interests

– Network Tenant: interest in monitoring his network assets
– Network Admin: interest in monitoring the overall network
– Security Monitor: interest in monitoring the overall network

Pre-Conditions – The website is available
– The user has completed use case NS_FR1

Minimum
Guarantees

An error message is displayed

88 Appendix B. Use-case descriptions

Success
Guarantees

The actor can access statistical information regarding link

Trigger The actor clicks on "Links"

Process - Main
Success
Scenario

1. The actor clicks on "Links"
2. The actor selects the respective link in the displayed list
3. The system displays the link statistics. These include:

(a) Statistics per port (total and real time)
(b) Statistics per flow (total and real time)
(c) Statistics per host (inbound and outbound traffic - to-

tal e real time) The view are also displayed in the form
of live charts (sub-function NS_FR5)

Exceptions 3. (a) SDN controller/API is not available
i. The system presents a popup message "Could not
connect to the controller, please try again later"
and the exception is logged

B.2.2 Container_Statistics package

Table B.77: Use case: CS_FR1: Container real-time statistics

Use Case CS_FR1: Container real-time statistics

Primary Actor Network Admin

Secondary
Actors

Network Tenant, Security Monitor

Scope SDN (Sub-system) - Black-box

Level User-Goal

Stakeholders
and Interests

– Network Tenant: interest in monitoring his network assets
– Network Admin: interest in monitoring the overall network
– Security Monitor: interest in monitoring the overall network

Pre-Conditions – The website is available
– The actor is authenticated as a network tenant, as a security
monitor or as a network admin via use case UM_FR1

– The user has completed use case CM_FR12 if he is a network
tenant

– The user has completed use case CM_FR11 or CM_FR12 if
he is a network admin or security monitor

Minimum
Guarantees

An error message is displayed

Success
Guarantees

The actor can access statistical information regarding the con-
tainer

Trigger The actor selects a specific container from the list of running
containers

B.2. Monitoring Package 89

Process - Main
Success
Scenario

1. The actor selects a specific container from the list of run-
ning containers

2. The actor clicks on the "Statistics" option of the list item
3. The system redirects the actor to a view where the actor

can:
(a) View CPU usage via use case CS_FR3
(b) View network bandwidth usage via use case CS_FR4
(c) View memory usage via use case CS_FR2

Exceptions -

Table B.78: Use case: CS_FR2: View memory consumption

Use Case CS_FR2: View memory consumption

Primary Actor Network Admin

Secondary
Actors

Network Tenant, Security Monitor

Scope SDN (Sub-system) - Black-box

Level User-Goal

Stakeholders
and Interests

– Network Tenant: interest in monitoring his network assets
– Network Admin: interest in monitoring the overall network
– Security Monitor: interest in monitoring the overall network

Pre-Conditions – The website is available
– The actor is authenticated as a network tenant, as a security
monitor or as a network admin via use case UM_FR1

– The user has completed use case CS_FR1

Minimum
Guarantees

An error message is displayed

Success
Guarantees

The actor can see the real-time memory usage of the container

Trigger The actor clicks on the "Memory" tab

Process - Main
Success
Scenario

1. The actor clicks on the "Memory" tab
2. The system displays the memory consumption of the con-

tainer. The provided information is:
(a) Real time memory consumption
(b) Percentage of host used memory
(c) Percentage of used memory (if the container was

launched with memory limits)
Data is displayed in live charts (sub-function NS_FR5)

90 Appendix B. Use-case descriptions

Exceptions 3. (a) SDN controller/API is not available
i. The system presents a popup message "Could not
connect to the controller, please try again later"
and the exception is logged

(b) Container engine is not available
i. The use case ends with an error message
ii. The exception is logged

Table B.79: Use case: CS_FR3: View host CPU usage

Use Case CS_FR3: View host CPU usage

Primary Actor Network Admin

Secondary
Actors

Network Tenant, Security Monitor

Scope SDN (Sub-system) - Black-box

Level User-Goal

Stakeholders
and Interests

– Network Tenant: interest in monitoring his network assets
– Network Admin: interest in monitoring the overall network
– Security Monitor: interest in monitoring the overall network

Pre-Conditions – The website is available
– The actor is authenticated as a network tenant, as a security
monitor or as a network admin via use case UM_FR1

– The user has completed use case CS_FR1

Minimum
Guarantees

An error message is displayed

Success
Guarantees

The actor can see the real-time CPU usage of the container

Trigger The actor clicks on the "CPU" tab

Process - Main
Success
Scenario

1. The actor clicks on the "CPU" tab
2. The system displays the CPU usage of the container. The

provided information is:
(a) Percentage of host used CPU
(b) Percentage of container used CPU (if the container

was launched with CPU limitations)
Data is displayed in live charts (sub-function NS_FR5)

Exceptions 3. (a) SDN controller/API is not available
i. The system presents a popup message "Could not
connect to the controller, please try again later"
and the exception is logged

(b) Container engine is not available
i. The use case ends with an error message
ii. The exception is logged

B.2. Monitoring Package 91

Table B.80: Use case: CS_FR4: View Network bandwidth usage

Use Case CS_FR4: View Network bandwidth usage

Primary Actor Network Admin

Secondary
Actors

Network Tenant, Security Monitor

Scope SDN (Sub-system) - Black-box

Level User-Goal

Stakeholders
and Interests

– Network Tenant: interest in monitoring his network assets
– Network Admin: interest in monitoring the overall network
– Security Monitor: interest in monitoring the overall network

Pre-Conditions – The website is available
– The actor is authenticated as a network tenant, as a security
monitor or as a network admin via use case UM_FR1

– The user has completed use case CS_FR1

Minimum
Guarantees

An error message is displayed

Success
Guarantees

The actor can see the real-time network bandwidth used by the
container

Trigger The actor clicks on the "Network" tab

Process - Main
Success
Scenario

1. The actor clicks on the "Network" tab
2. The system displays the network usage of the container.

This information refers to:
(a) TX byte count
(b) Number of TX packets
(c) TX dropped packet number
(d) TX dropped byte count
(e) RX byte count
(f) Number of RX packets
(g) RX dropped packet number
(h) RX dropped byte count
Data is displayed in live charts (sub-function NS_FR5)
Data above refers to the container management interface
but it is also available for the SDN network interface (via
use case NFS_FR2)

Exceptions 3. (a) SDN controller/API is not available
i. The system presents a popup message "Could not
connect to the controller, please try again later"
and the exception is logged

(b) Container engine is not available
i. The use case ends with an error message
ii. The exception is logged

93

Appendix C

External Interfaces

C.1 Network Management

C.1.1 HTTP endpoints

• /sdn/networks – Used to globally access network information

GET – Provides a list of created logical sub-network. The result depends on the
role of the user calling the method. If the user is a network tenant, the API will return
only the networks that are associated with his account. Example response:

{
" networks " : [
{

"name" : " da tacen te r " ,
" hos t s " : [" 02 : 4 2 : 2 5 : 7 1 : 0 8 : 2 2/NONE"] ,
" tenant s " : [" tenant1 "]

}
]

}

POST # – Creates a new sub-network. It accepts the following JSON payload:

{"name" : " da tacen te r "}

• /sdn/networks/<network> – Manipulate a specific logical-network (where <net-
work> refers to the logical network name)

GET – Lists the information associated with a specific sub-network. This includes
the list of Hosts belonging to the network and the tenant to which the network is
associated (see the former endpoint)

DELETE # – Removes the given network

• /sdn/networks/<network>/hosts – Access logical network hosts

GET – Lists all the hosts present in the logical network

• /sdn/networks/<network>/hosts/<hostid> – Manipulates the association of hosts
and networks

POST – Adds the host to the network (no payload)

Admin only

94 Appendix C. External Interfaces

DELETE – Removes the host from the network

GET – Obtain detailed information about a given host. Example response:

{
" i d " : " 00:0C : 2 9 : C6 :0A:18/None" ,
" i p " : [" 192 .168 .1 . 11 "] ,
"mac" : " 00:0C : 2 9 : C6 :0A:18 " ,
" v l an " : n u l l ,
" type " : " host " ,
" assetType " : "HOST" ,
" r e a l t y p e " : " host " ,
" inNetworks " : [" da tacen te r "] ,
"canBeAddedToNetworks" : []

}

• /sdn/networks/<network>/tenants – Refer to the network-tenant relationship

GET # – List all the tenants that own the network (i.e. can deploy services on
the network)

• /sdn/networks/tenants/<network> # – Links to the above endpoint

• /sdn/networks/<network>/tenants/<tenant> – Manipulates the association of ten-
ants and networks (<tenant> refers to the username)

POST – Associates the tenant with the network (no payload)

DELETE – Dissociates the tenant from the network

• /sdn/networks/<network>/devices #

GET – Lists all the devices (OpenFlow enabled switches) belonging to a sub-
network

• /sdn/networks/<network>/devices/<deviceid>

GET – Obtain the properties of a given switch. Example response:

{
" type " : " dev i c e " ,
" assetType " : "SWITCH" ,
" i d " : " o f :0000 a0369f4c8 f7a " ,
" vendor " : "N i c i r a , I nc . " ,
"HW" : "Open vSwitch " ,
"SW" : " 2 . 7 . 0 " ,
" S e r i a l " : "None" ,
" Pro toco l " : "OF_13" ,
"Port s " : 4 ,
"Flows" : 3

}

• /sdn/networks/<network>/links

GET – Obtain the list of links in the network

• /sdn/networks/<network>/links/<linkid>

GET – Obtain specific link information. Example response:

Admin only

C.1. Network Management 95

{
" type " : " l i n k " ,
" L ink type " : "Edge" ,
"aType" : " host " ,
" a Id " : " 00:0C : 2 9 : C6 :0A:18/None" ,
"bType" : " dev i c e " ,
" bId " : " o f :0000 a0369fbc27f0 " ,
"bPort " : 3 ,
" be longsToDataDiodeServ i ces " : [] ,
"canBeSetAsDataDiodeInNetworks " : [" da tacen te r "]

}

C.1.2 Web-sockets endpoints

• /ws/network – Provides the topology graph as streaming websocket frames each 2
seconds. The graph of each sub-network is combined to provide a global view of the
selected networks. It expects the frame below to start/or change the streaming data.

{
" a c t i o n " : " topo logy " ,
" networks " : [" da tacen te r " , "networkx "]

}

In simple terms, the topology graph has a representation similar to the one presented
below.

{
"nodes" : [

{" i d " : " o f :0000 a0369fbc27f0 " , . . . } ,
{" i d " : " o f :0000 a0369fbc27f0 " . . . } . . .

]
" edges " : [

{
" from" : " o f :0000 a0369fbc27f0 " ,
" to " : " o f :0000 a0369 f 4 c 8 f f f " , . . .

}] ,
" event " : " topo logygraph "

}

C.1.3 Command line

• add-host <network> <hostid> - add host to a network

• associate-user-network <network> <username> - associate a user with a network

• create-network <network> - create a network

• disassociate-user-network <network> <username> - disassociate a user from a
network

• get-all-hosts - list all topology hosts

• get-hosts <network> - list all hosts in a network

• list-networks - list all created networks

96 Appendix C. External Interfaces

• get-tenants <network> - list all users (tenants) associated with a network

• get-networks <username> - list all networks belonging to a given tenant

• network-management-clearall - "factory reset"

• remove-host <network> <hostid> - remove an host from a network

• remove-network <network> - remove a network

C.2 Docker integration

C.2.1 HTTP endpoints

• /sdn/docker/registry # – Manages the private registry information

GET – Obtain the url of the registry associated with the platform

POST – Associate a registry with the platform. It expects the following JSON
payload:

{
" u r l " : " h t tp s :// r e g i s t r y . i a d s . d e i . uc . pt " ,
"username" : " xxxx " ,
"password " : " xxxx "

}

DELETE #– Removes the registry from the controller datastore (no payload)

• /sdn/docker/registry/<repo>/upload #– Manages the private registry informa-
tion

POST – Uploads a given container image to the registry and to a specific repository
(e.g. vNIDS). This is a multi-part upload, the expected payload:

{
"name" : " sno r t " ,
" d e s c r i p t i o n " : " con t a i n e r image d e s c r i p t i o n " ,
" f i l e " : "a r e f e r e n c e to the up loaded f i l e " ,
" image" : "a logo f o r the c on t a i n e r "

}

• /sdn/docker/registry/<repo>/<image> # – Manages specific images

GET – Obtain the information regarding an image (name, description, logo)

DELETE – Removes the image from the repository

• /sdn/docker/nodes – Manages the virtualization nodes

GET – Obtain the list of virtualization nodes associated with the platform

POST – Associate a new node with the platform. Payload:

Admin only

C.2. Docker integration 97

{
" u r l " : " h t tp s :// docker1 . d e i . uc . pt :4243 "

}

• /sdn/docker/containers #

GET – Obtain a list of all the containers running in the virtualization infrastructure
pool. Example response:

{
" c o n t a i n e r s " : [

{
" i d " : "693 a 8 j f 3 l d l 2 " ,
" s t a t e " : " runn ing " ,
" i s s d n " : t r u e ,
" image" : " sno r t " ,
" tenant " : " tenant1 " ,
"network" : " da tacen te r " ,
" s e r v i c e I d " : " a sd sa343 sd f d f " ,
" ca tego ry " : " vn i d s "

}
]

}}

• /sdn/docker/containers/<containerid> #

GET – Obtain the information of a specific container

• /sdn/docker/containers/<containerid>/logs #

GET – Obtain the container runtime logs as a string

• /sdn/docker/containers/<containerid>/top #

GET – List the processes running in the containers as a string

C.2.2 Web-sockets endpoints

• /ws/docker/ # – The websocket endpoint expects the following message frames:

– To start streaming the list of nodes and their details with a new frame containing
the state of all the virtualization nodes (CPU usage, RAM usage, docker version,
operating system, number of running containers) each two seconds:

{" a c t i o n " : " nodes t r eamsta r t "}

– To stop streaming the list of nodes:

{" a c t i o n " : " nodest reamstop "}

– To start streaming the list of containers and their state. The list always reflects
the current state of each container:

{" a c t i o n " : " c o n t a i n e r l i s t s t a r t "}

Admin only

98 Appendix C. External Interfaces

– To stop streaming the list of containers:

{" a c t i o n " : " c o n t a i n e r l i s t s t a r t "}

– To stream the network, CPU, RAM and SDN network statistics of a given con-
tainer :

{" a c t i o n " : " c o n t a i n e r s t a t s s t a r t " , " c o n t a i n e r i d " : " xxx "}

– Stops streaming the container stats:

{" a c t i o n " : " c o n t a i n e r s t a t s s t o p "}

C.2.3 Command line

• docker-node-add <url> - Add a docker node to the virtualization infrastructure

• docker-registry-add <registry> - Add a public (unauthenticated) registry to the
platform

• docker-registry-add-auth <url> <username> <password> - Add a private reg-
istry to the platform

• docker-get-container <containerId> - Check for the existence of a container in
the docker node pool

• docker-containers-list - List all containers in the docker node pool

• docker-node-list - List all docker nodes associated with the platform

• docker-node-remove - Remove a docker node from the platform

• docker-node-list-info - List all docker nodes with extended information

• docker-container-start <repository> <image> <serviceId> <username> <network>
- Start a container with a given image and attach it to a user and network

• docker-container-stats <containerId> - List a container statistics

• docker-container-stats-stream <containerid> <period> - Stream container
statistics for a given amount of time

• docker-container-ashost <containerId> - Find the hostId (ONOS topology) of
a running container

• docker-get-registry - List the registry associated with the platform along with its
information

• docker-registry-image-details <repository> <image> - Get the image details
from the registry

• docker-registry-list-images <repository> - List all images for a given reposi-
tory (vnids, vhoneypot) from the registry

• docker-registry-list-image-details - Same as above but with extended infor-
mation/details

• docker-registry-list-repositories - List all repositories in the registry

C.3. vNIDS 99

• docker-rm-registry - Remove the registry from the platform

• docker-registry-remove-image <repository> <image> - Delete an image from
the registry

• docker-container-logs-since-now <containerid> <time> - Stream container
logs for a given amount of time

C.3 vNIDS

C.3.1 HTTP endpoints

• /sdn/vnids – global vNIDS namespace

GET – Lists all the vnids services that have been instantiated. Example response:

{
" vn i d s " : [

{
" s e r v i c e i d " : "65 d49a4f1dd067c46439ef096bb64a6a" ,
"username" : "admin" ,
"network" : " da tacen te r " ,
" image" : " sno r t " ,
" hostsMon i to red " :

[
" 00 : 00 : 00 : 00 : 00/None" ,
" 00 : 00 : 00 : 01 : 00/None"

] ,
" c o n t a i n e r s " : [

{
" i d " : "45 c7f15dc3a64 " ,
" i p " : " 192 .168 .0 . 82 " ,
"mac" : "C2 : 7 9 : 0A: 3 0 : 0E :92 " ,
" ho s t i d " : "C2 : 7 9 : 0A: 3 0 : 0E:92/None"

}
]

}
]

}

POST – Create a new vNIDS service. Example of a POST JSON payload:

{
"network" : " da tacen te r " ,
" image" : " sno r t "

}

Provided response:

{
" s e r v i c e I d " : "65 d49a4f1dd067c46439ef096bb64a6a" ,

}

• /sdn/vnids/<serviceid> – Manages a specific vNIDS service

GET – Returns the information for the service (see /sdn/vnids endpoint)

100 Appendix C. External Interfaces

DELETE – Remove the vNIDS service instance

• /sdn/vnids/<serviceid>/<hostid> – Manages host monitoring on each service

POST – The provided host will have its traffic replicated to the vNIDS container
(no payload)

DELETE – The service will stop monitoring the traffic of the provided host

C.3.2 Command line

• vnids-add-host <serviceid> <hostid> - Add an host to a vNIDS service

• create-vnids <username> - Create a vNIDS service and link it with a tenant

• vnids-delete-all - "Factory reset"

• vnids-list - List all vNIDS serviceIds

• vnids-list-details - List all vNIDS with details

• vnids-setimage <serviceid> <repository/image> - Associate an image with the
service (pre-deployment)

• vnids-setnetwork <serviceid> <network> - Associate a network with the service
(pre-deployment)

• vnids-remove <serviceid> - Delete a specific service

C.4 vHoneypot

C.4.1 HTTP endpoints

• /sdn/vhoneypot – Global vHoneypot url namespace

GET – Lists all the vHoneypot services that have been instantiated. Example
response:

{
" vhoneypots " : [

{
" s e r v i c e i d " : "65 d49a4f1dd067c46439ef096bb64a6a" ,
"username" : "admin" ,
"network" : " da tacen te r " ,
" image" : " conpot " ,
"macAddressForConta iner " : "" ,
" i pAdd r e s s e sCon ta i n e r " : [] ,
" con t a i n e r " :

{
" i d " : "1a5b67e35f624d4c49b95" ,
" i p " : " 192 .168 . 2 . 20 " ,
"mac" : " 36:8B:AE : 3 1 : 9 2 : 1B" ,
" ho s t i d " : " 36:8B:AE : 3 1 : 9 2 : 1B/None"

}
} ,
{

C.4. vHoneypot 101

" s e r v i c e i d " : "a4ddc2e6af4abc2ae9abb3333112d19c" ,
"username" : "admin" ,"network" : " da tacen te r " ,
" image" : "honeyd" ,"
macAddressForConta iner " : "" ,
" i pAdd r e s s e sCon ta i n e r " : [" 192 .168 .1 . 137 "] ,
" con t a i n e r " :

{
" i d " : "45 c7f15dc3a64747e67cb81" ,
" i p " : " 192 .168 . 0 . 82 " ,
"mac" : "C2 : 7 9 : 0A: 3 0 : 0E :92 " ,
" ho s t i d " : "C2 : 7 9 : 0A: 3 0 : 0E:92/None"

}
}

]
}

POST – Create a new vHoneypot service. The honeypot (depending on the pro-
vided image) may have a forced mac address or fake a list of IP addreses. Example of
a JSON payload:

{
"network" : " da tacen te r " ,
" image" : " conpot " ,
" i p s " : " 192 . 168 . 1 . 137 , 192 . 168 . 1 . 138 , 192 . 168 . 1 . 139 " ,
"macaddress " : " 00 : 00 : 0 0 : 0 0 : 0 0 "

}

• /sdn/vhoneypot/<serviceid> – Manages a specific vHoneypot service

GET – List the vHoneypot information (see /sdn/vhoneypot endpoint)

DELETE – Remove the vHoneypot service

C.4.2 Command line

• create-vhoneypot <username> - Create a vhoneypot service and link it with a tenant

• vhoneypot-delete-all - "Factory reset"

• vhoneypot-list - List all vHoneypot serviceIds

• vhoneypot-list-details - List all vHoneypot with details

• vhoneypot-setimage <serviceid> <repository/image> - Associate an image with
the service (pre-deployment)

• vhoneypot-setnetwork <serviceid> <network> - Associate a network with the
service (pre-deployment)

• vhoneypot-set-ips <serviceid> <iplist> - Associate a list of fake ip addresses
to the service

• vhoneypot-set-mac <serviceid> <mac> - Force the honeypot container to adopt
a fixed (and provided) MAC address

• vhoneypot-start <serviceid> - Start a specific service

• vhoneypot-remove <serviceid> - Delete a specific service

102 Appendix C. External Interfaces

C.5 Data Diode

C.5.1 HTTP endpoints

• /sdn/datadiode – Manages the data diode service

GET –Lists all the data diode services. Example response:

{
" datad iode " :

[
{

" s e r v i c e i d " : "65 d49a4f1dd067c46439ef096bb64a6a" ,
"username" : "admin" ,
"network" : " da tacen te r " ,
" l i n k i d " : " 00:0C : 2 9 : C6 :0A:18/None−o f :0000 a0369fbc27f0 " ,
" d i r e c t i o n " : " from"

}
]

}

POST – Create a new data diode service. The JSON payload is provided below.
The direction is relative to the host ("from" means blocking all packets coming from
the host while "to" means blocking all the packets which the direction is the host).

{
"network" : " da tacen te r " ,
" l i n k i d " : " 00:0C : 2 9 : C6 :0A:18/None−o f :0000 a0369fbc27f0 " ,
" d i r e c t i o n " : " from"

}

• /sdn/datadiode/<serviced> – Manages a specific data diode service

GET – Obtain the information of a specific service (works like a filter on the data
provided by the global namespace)

DELETE – Remove the data diode service

C.5.2 Command line

• datadiode-create <username> - Create a data diode service and link it to a tenant
account

• datadiode-set-network <serviceid> <network> - Set a network to a data diode
service (pre-deployment)

• datadiode-remove - "Factory reset"

• datadiode-list - List all data diode service Ids

• datadiode-list-details - List all data diode services with extended information
(network, user, link, direction, etc)

• datadiode-remove <serviceid> - Remove a specific data diode

• datadiode-set-link <serviceid> <linkid> <direction> - Set functional infor-
mation on a previously created data diode service instance

C.6. Network Event Factory 103

• datadiode-start <serviceid> - Start a service (i.e. begin the network program-
ming step)

C.6 Network Event Factory

C.6.1 HTTP endpoints

• /sdn/nef # – global application namespace

GET – Shows the application configuration:

{
"pt . uc . d e i . atena . ne two rkeven t f a c to r y . imp . components .
NetworkEventFactoryManager " :
{
" b roke r " : " ka fka . d e i . uc . pt " ,
" t o p i c " : " sdnevent s "

} ,
"pt . uc . d e i . atena . ne two rkeven t f a c to r y . mon i to r s . NEFDeviceMonitor" :

t r u e ,
"pt . uc . d e i . atena . ne two rkeven t f a c to r y . mon i to r s . NEFHostMonitor" :

t r u e ,
"pt . uc . d e i . atena . ne two rkeven t f a c to r y . mon i to r s . NEFTopologyMonitor" :

t r u e ,
"pt . uc . d e i . atena . ne two rkeven t f a c to r y . mon i to r s . NEFLinkMonitor" :

t r u e ,
"pt . uc . d e i . atena . ne two rkeven t f a c to r y . mon i to r s . NEFContro l l e rMon i tor
" : t r u e

}

POST – Modifies the application configuration. This includes the broker and topic
as well as enabling or disabling any monitor referenced above (JSON payload has the
exact same format)

C.6.2 Web-sockets endpoints

• /ws/nef # – A connection to the websocket endpoint with an admin token will lead
to the stream of the statistics concerning the number of events sent by each of
the monitors (device events, host events, link events, topology events and controller
events.

C.6.3 Command line

• nef-event-count - Get sent event count

Admin only

105

Appendix D

Research Paper

This Annex includes the produced research paper published in the scope of the first round
of research publications:

Freitas, M. and Rosa, L. and Tiago Cruz and Simões, P. , "SDN-enabled virtual data diode",
in Proc. of the 4th ESORICS Workshop On The Security Of Industrial Control Systems &
Of Cyber-Physical Systems (CyberICPS 2018), September 2018

Presented in Barcelona, in September 2018.

SDN-enabled virtual data diode

Miguel Borges de Freitas1, Luis Rosa1, Tiago Cruz1, and Paulo Simões1

Centre of Informatics and Systems, Department of Informatics Engineering,
University of Coimbra, Portugal

{miguelbf,lmrosa,tjcruz,psimoes}@dei.uc.pt

Abstract. The growing number of cyber-attacks targeting critical in-
frastructures, as well as the effort to ensure compliance with security
standards (e.g. Common Criteria certifications), has pushed for Indus-
trial Automation Control Systems to move away from the use of conven-
tional firewalls in favor of hardware-enforced strict unidirectional gate-
ways (data diodes). However, with the expected increase in the number of
interconnected devices, the sole use of data diodes for network isolation
may become financially impractical for some infrastructure operators.
This paper proposes an alternative, designed to leverage the benefits of
Software Defined Networking (SDN) to virtualize the data diode. Be-
sides presenting the proposed approach, a review of data diode products
is also provided, along with an overview of multiple SDN-based strate-
gies designed to emulate the same functionality. The proposed solution
was evaluated by means of a prototype implementation built on top
of a distributed SDN controller and designed for multi-tenant network
environments. This prototype, which was developed with a focus in per-
formance and availability quality attributes, is able to deploy a virtual
data diode in the millisecond range while keeping the latency of the data
plane to minimal values.

Keywords: Data Diode · Unidirectional gateways · Software Defined
Networks · Industrial and Automation Control Systems.

1 Introduction

Industrial Automation and Control Systems (IACS) encompass a broad range
of networks and systems used to monitor, manage and control cyber-physical
processes in critical infrastructures, such as the power grid or water distribution
facilities. The growing number of cyber-attacks against today’s highly distributed
IACS is raising awareness towards the need for in-depth cyber-security strate-
gies, somehow leading to a shift back to these system’s origins with the use of
data diodes. When SCADA systems first appeared in the 1960’s they were im-
plemented as air-gapped islands restricted to the process control perimeter and
specially isolated from corporative networks. Security was granted due to intrin-
sic isolation and the use of proprietary and poorly documented protocols [9].

In the 1990’s, business requirements to increase productivity and perfor-
mance, together and the massification of ICT technologies, broke with the pre-
vious isolated generation of IACS. Organizations began to adopt open TCP/IP

2 Miguel Borges de Freitas, Luis Rosa, Tiago Cruz and Paulo Simões

connections to link their process control and Enterprise Resource Planning (ERP)
systems. Corporate management layers took advantage of this real-time data to
manage plant inventories, control product quality and monitor specific process
variables. It is estimated this network interconnection lead to 3-8% cost savings
at large facilities [15] – however, it also brought a drastic increase on the inherent
cyber-security risks, by contributing to expand the exposed IACS attack surface.

To mitigate unwanted accesses to the IACS network, middleboxes such as
firewalls started to be implemented as digital barriers in the perimeter of both
process and organizational networks, sometimes sitting behind a DMZ. Firewalls
are often prone to configuration mistakes and are relatively accessible for exploit
development by skilled individuals. In the long-term, firewalls are known to have
considerable operating costs as firewall rules have to be continuously audited
and maintained while firmware updates must be installed as soon as they are
available [16]. The use of firewalls on IACS networks also contradicts some of
their fundamental requirements: the need for real-time access to plant data,
high availability and service continuity. As middleboxes, commercial off-the-shelf
(COTS) firewalls introduce latency and jitter in the network, also introducing
a point-of-failure (e.g., when subject to flooding attacks, throttling policies may
cause service disruption).

Unlike firewalls, data diodes provide a physical mechanism for enforcing strict
one-way communication between two networks. They are also known as unidi-
rectional gateways since data can be securely transfered from an restricted access
network (such as a process control network) to a less secure network (the corpo-
rate zone) with no chances of reverse communication. Data diodes are often built
using fibre optics transceivers, through the removal of the transmitting compo-
nent (TX) from one side of the communication and the respective receiver com-
ponent (RX) from the opposite side [11]. This makes it physically impossible to
compromise such devices to achieve reverse connectivity. Moreover, they usually
do not contain firmware, requiring minimal or no configuration at all, or have
minimal software supported by micro-kernels that can be formally verified [5].

Data diodes allow organizations to retrieve valuable data generated at the
process level, while guaranteeing the trustworthiness and isolation of the critical
infrastructure. They are the only devices receiving the Evaluation Assurance
Level 7 (EAL7) grade in the Common Criteria security evaluation international
standard. As a result, NIST recommends the adoption of data diodes [17].

Despite its advantages, from a security standpoint, data diode implementa-
tions come with high capital expenditure for organizations: it is estimated that
for a typical large complex facility such costs can reach $250,000 while recur-
ring support costs may ascend to values circa $50,000/year per data diode [19].
Furthermore, most data diode solutions are vendor-dependent, with the range
of supported protocols strongly depending on the specific implementation – this
means that many protocols on which some organizations rely upon may not be
supported at all. Moreover, like any middlebox, data diodes need to be physically
placed at a specific point in the network topology to be able to block network
traffic, eventually requiring multiple deployments to secure dispersed network

SDN-enabled virtual data diode 3

segments. Considering such shortcomings, many organizations may not be will-
ing to invest in devices that are not future-proof or lack flexibility, fearing they
may become outdated by the time their break-even point is reached.

To deal with the inherent limitations of existing solutions, we propose us-
ing Software Defined Networking (SDN) and Network Function Virtualization
(NFV) to implement a cost-effective data diode. SDN aims at shifting the net-
work equipment control plane functionality to a logically centralized entity –
the network controller. In SDN, network switches are turned into ”dumb” de-
vices whose forwarding tables are updated by the network controller, using open
protocols such as Openflow [13]. NFV provides a way to decouple network equip-
ment functionality in several chained Virtual Network Functions (VNFs), which
may be hosted in dispersed infrastructure points-of-presence.

SDN can be leveraged to implement innovative network security approaches:
the network controller has a global view of the network topology graph, has real-
time state awareness over all allowed network flows and can modify the network
state by means of a proactive (preinitializing flow rules) or reactive (deciding
upon packet arrival) approach. For such reasons, an SDN-based data diode could
provide an alternative to both firewalls and conventional appliances. Note that
to efficiently forward network packets, general purpose network switches contain
forwarding tables called TCAMs (ternary content-addressable memory) which
are able to perform an entire table lookup in just one clock cycle [18]. Hence,
an SDN-enabled virtual data diode could effectively block traffic at Layer 2,
avoiding the typical latency imposed by firewall middleboxes. Vendor lock-in,
management complexity and deployment issues are also mitigated due to the
use of open protocols, the existence of a single managing interface to control the
overall network and the removal of placement restrictions imposed by hardware
appliances. SDN also helps future proofing virtual data diode implementations:
the data diode application can be easily adapted to support new protocols,
and/or new network functions can be added to the network via NFV.

The remainder of this paper is organized as follows. Section 2 provides a
review of the major COTS data diode products, together with an overview of the
main challenges for protocol support in unidirectional communications. Section
3 explains how SDN can be leveraged to implement a functional data diode.
Section 4 presents our proof-of-concept (PoC) prototype: a simple SDN data
diode that is able to support the UDP protocol, implemented in a distributed
network controller environment and geared towards performance and availability.
Finally, Section 6 provides a wrap-up discussion and concludes the paper.

2 Data diodes for IACS security

Data diodes are devices that restrict the communication in a network connection
so that data can only travel in a single direction, having borrowed their name
from electronic diode semiconductors. Although different hardware implemen-
tations exist, supporting different physical layers (e.g. RS-232, USB, Ethernet),
most make use of optical couplers to guarantee physical isolation. The trans-

4 Miguel Borges de Freitas, Luis Rosa, Tiago Cruz and Paulo Simões

mitter side of a data diode converts electrical signals to optical form using light
emitting diodes (LEDs), while at the receiving end photo-transistors convert the
optical data back to electrical form [8]. It is the physical air-gap in the optical-
coupler that makes data diode devices so secure and appealing in the critical
infrastructure context.

In IACS, data diodes are often deployed to isolate specific network domains
or between corporate and process control networks, to support the unidirectional
transfer of historian data, HMI screen replication, or for one-way telemetry (op-
erational data, security events, alarms and syslog). Data diodes are commercially
available in two different form factors: single-box solutions and PCI express cards
[10]. The former category may also encompass single-box or split-device varia-
tions, in which a component is deployed at each side of the connection.

Despite the similarities in the key isolation mechanism, commercially avail-
able solutions differ significantly in terms of supported services and protocols.
Data diodes have to make use of additional software components for each side
of the unidirectional link to be able to support TCP/IP-based SCADA pro-
tocols, such as MODBUS/TCP, Ethernet/IP and DNP3. Such protocols were
designed for bidirectional operation, relying on a three-way handshake and re-
quiring continuous acknowledgments between communication peers. In [6] the
TCP workflow in unidirectional links is explained along with the presentation of
a design for a unidirectional gateway for IACS applications (Figure 1).

Restricted (sending) domain Receiving domain

Data diode sender side

Application
proxy

Protocol
 breaker

Data diode receiver side

TCP Client TCP Server

SYN/ACK
SYN SYN SYN

SYN/ACK
ACK
PUSH

ACK
PUSH

PUSH/ACK PUSH/ACK

FIN
FIN

FIN/ACK

FIN

ACK
PUSH

FIN/ACK
FIN

FIN/ACK
FIN/ACK

Application
proxy

Protocol
 breaker

FIN

Fig. 1: TCP workflow in uni-directional gateways (adapted from [6]).

The architecture includes two different components at the edge of the unidi-
rectional link: (i) an application proxy and (ii) a protocol breaker. The former
is responsible for acting as a proxy for TCP connections. In the sender side of
the data diode, the application proxy operates as a TCP server, automatically
responding with SYN/ACK, PUSH/ACK and FIN/ACK to any SYN, PUSH or
FIN packets sent by the TCP client. Any packet generated by the TCP client is

SDN-enabled virtual data diode 5

forwarded by the application proxy to the unidirectional link. On the receiving
end, the application proxy simply emulates the TCP client forwarding any re-
ceived packets. The protocol breaker component acts as a middleware for packet
encapsulation for protocols that do not require acknowledgments (e.g. UDP). It
can also be used to provide confidentiality within the unidirectional link or to
apply forward error correction to the data transfer.

2.1 Data Diode Products

There are diverse commercial data diode solutions in the market, depending on
the specific use case and protocol support. Table 1 provides a summary of the
three most notorious products in the context of IACS. Next, we provide a brief
review of those products, based on publicly available documentation.

Table 1: IACS commercial data diodes.

Company
Owl

CyberDefense
Fox-IT Waterfall

Form
Factors

1U rack mount,
DIN rail,

PCIe cards
1U rack mount

Modular designs:
gateway pairs (1U),

single box(1U),
DIN rail

Bandwidth 10Gbps 1.25Gbps 1Gbps

IACS
Applications

Rockwell,
OSIsoft PI,

Schneider Electric
OSIsoft PI

OSIsoft, GE,
Schneider Electric,

Siemens, Emerson, Areva,
Honeywell, AspenTech,

Scientech, Rockwell

IACS
Protocols

Modbus, OPC
Modbus, DNP3,

OPC, ICCP

OPC DA/HDA (backfill)/UA,
A&E, DNP3, ICCP, Siemens S7,

Modbus, Modbus Plus,
IEC 60870-5-104, IEC 61850

CC
Certification

EAL4 EAL7+ EAL4+

Owl CyberDefense provides the DualDiodeTM technology as part of the com-
pany cross domain solution portfolio. Owl’s data diodes make use of a hardened
Linux kernel, providing optical separation and a protocol breaker that converts
all packets to non-routable Asynchronous Transfer Mode (ATM) cells, also sup-
porting data transfers up to 10Gbps [14]. Protocol support includes TCP/IP
connections, UDP, Modbus and the OPC family, as well as historian solutions
from Rockwell Automation, Schneider Electric and OSIsoft. Latest revisions of
DualDiodeTM Network Interface cards received CC EAL4 certification.

Fox-IT’s DataDiodeTM, is compliant with the highest level of CC certifica-
tion: EAL7+ [3]. It implements full protocol break capabilities and uses a single

6 Miguel Borges de Freitas, Luis Rosa, Tiago Cruz and Paulo Simões

optical fiber strand, together with custom optoelectronics designed for one-way
operation. Being a firmware-less device, it has no configuration or local state,
relying on proxy servers deployed on each side of the connection. These proxies
implement several techniques for error detection and increased reliability, using
metadata for lost packet detection (supported by proxy-level logs, for manual
retransmission), forward error correction codes and heartbeat mechanisms [4].
In government editions, the device includes an anti-tampering mechanism [3].
The Fox-IT data diode is able to achieve 1.25Gbps in the link layer, although
the actual speed is lower due to the proxy servers. It claims to support Modbus,
DNP3, OPC and ICCP protocols along with file transfers, SMTP, CIFS, UDP
and NTP [7]. The OSIsoft PI Historian is also supported.

Waterfall Security Solutions provides data diode appliances in multiple form-
factors, including split-pair, single-box and DIN rail versions, based on a modular
combination of hardware and software[22]. Such unidirectional gateways include
a TX-only module (containing a fiber-optic laser), a fiber optic cable, an RX
module (optical receiver), together with host modules that gather data from
industrial servers and emulate different protocols and industrial devices. The
latter are provided either as standalone physical modules or virtual machines.
Popular industrial applications/historians are supported (e.g. Osisoft PI System,
GE iHistorian, Schneider-Electric Instep eDNA), as well as a long list of indus-
trial protocols (e.g. Modbus, DNP3, OPC, Modbus Plus [20]). Devices support
up to 1Gbps data transfers and are certified EAL4+. The company recently
announced a reversible hardware-enforced unidirectional gateway whose direc-
tion can be controlled by software, using a schedule or exception-based trigger
mechanism [21].

3 Leveraging SDN to virtualize the data diode

The OpenFlow protocol is a Layer 3 network protocol that gives access to the
forwarding plane of a network switch over the network. It enables network con-
trollers to determine the path of network packets across the switch fabric. The
protocol works on top of TCP/IP although the communication between the con-
troller and the switch can also be configured to make use of the Transport Layer
Security (TLS) protocol. The protocol works in a match-action manner: when a
packet arrives at a switch port, the switch starts by performing a table lookup
in the first flow table to match the packet headers against the set of flow rules
installed in the switch. If a match is found, the switch applies the instruction
set configured in the flow rule. In case of a table miss, the corresponding packet
action depends on the table configuration: the packet can be forwarded to the
controller for further processing (using Packet-In messages), can be moved fur-
ther on the flow table pipeline, can have header fields re-written or can simply
be dropped [13]. The match fields in an OpenFlow flow table comprise fields
ranging from Layer1 to Layer4 (Table 2) permitting a fine-grained control over
the packet identification and ultimate destination.

SDN-enabled virtual data diode 7

Table 2: The OpenFlow flow table match fields [13].

Match Field Description

IN PORT Ingress Port (physical or a switch defined logical port)
ETH DST Ethernet destination MAC address
ETH SRC Ethernet source MAC address
ETH TYPE Ethertype of the packet payload
IPv4 SRC Source IP address
IPv4 DST Destination IP address
IPv6 SRC Source IP address (IPv6 format)
IPv6 DST Destination IP address (IPv6 format)
TCP SRC TCP source port
TCP DST TCP destination port
UDP SRC UDP source port
UDP DST UDP destination port

Taking into account the workflow of a packet reaching an OpenFlow enabled
switch, we identify three different approaches for an SDN-based virtual data
diode: proactive; reactive; and NFV-assisted.

3.1 Proactive data diode

A proactive data diode is an SDN unidirectional gateway implementation that
takes advantage of OpenFlow’s proactive flow rule instantiation It is the simplest
and most limited implementation since it can only support applications that
rely on the UDP protocol. Considering two networks with different degrees of
classification (cf. Figure 3), the network controller installs (in advance) two rules
in the restricted (sending) domain uplink switch (cf. Table 3). One of the rules
instructs the switch to drop any packets entering the switch and originating
at the switch port that is connected to the receiving network uplink switch.
The other rule forwards any packets entering the remaining switch ports to the
receiving domain uplink switch port.

Further limitations can be applied in the second flow rule to limit the devices
from the receiving domain network that are allowed to unidirectionally transfer
data, using the IN PORT, ETH SRC and IPv4 SRC/IPv6 SRC match fields.
For the proactive data diode to support TCP applications, the sending machine
has to encapsulate the packet into an UDP packet. Alternatively, flow rules can
be installed on the switch to set the UDP source and destination ports (and
replace the TCP source and destination fields) to any TCP packets entering the
switch. In both cases, in order to support the TCP protocol, additional software
is required in the receiving machine to disassemble the received packets into
usable data. For this type of virtual data diode, only the uplink switch in the
restricted network domain needs to support OpenFlow. The remaining sections
of both networks may still rely on traditional network architectures.

8 Miguel Borges de Freitas, Luis Rosa, Tiago Cruz and Paulo Simões

3.2 Reactive data diode

Instead of installing rules in the up-link network switch, the reactive data diode
instructs the switch to forward any received packet headers to the network con-
troller for further processing (Table 4). The network controller can check if the
received packet comes from the receiving domain (by looking up the input port)
and simply instruct the switch to drop the packet. Similarly, it can instruct the
switch to forward the packet if it originates from the restricted (sending) net-
work domain.

Historian
replica

Work station Work station

Level 1: Basic control

PLC RTU

Level 2: Supervisory area control

HMI

Level 3: Operation Control

Plant Historian

1

Level 4 and 5: Enterprise Network

OpenFlow switch

2

Restricted (sending) domain

Receiving domain

SDN controller
cluster

Fig. 2: SDN-enabled virtual data diode.

Table 3: Proactive data diode flow
table.

Table Match Fields Action

0 in port=1 output:2
0 in port=2 drop

Table 4: Reactive data diode flow
table.

Table
Match
Fields

Action

0 in port=1 output:controller
0 in port=2 output:controller

Using a reactive approach, the network controller has greater flexibility since
it can add support to the TCP protocol. It can behave as an application proxy for
TCP connections implementing a workflow similar to the one in Figure 1. TCP
acknowledge packets can be faked by the controller and outputted via a switch
port to the host establishing the connection. Hence, the TCP protocol can be
supported while still only allowing unidirectional communications as long as an
application proxy is able to perform the same workflow in the low-priority net-
work. Furthermore, there are some cases in which bi-directional communication
between both networks is required or should be temporarily enabled (e.g. an ap-
plication that relies on TCP for initial connection establishment). The network
controller can be programmed in such a way that bi-directional communication
is enabled in certain situations. Thus, it is possible to emulate the behavior of the
Waterfall’s reversible data diode. Despite the provided flexibility, this approach

SDN-enabled virtual data diode 9

introduces latency in network flows (due to additional packet processing) and
the network controller is vulnerable to flooding attacks. Packets originating in
the receiving network domain will not be forwarded to the hosts on the restricted
domain without the permission of the controller. Nevertheless, hosts on the re-
ceiving domain are able to flood the OpenFlow switch with packets destined to
the restricted network. Those packets are ultimately redirected to the controller,
causing a denial of service which disrupts the unidirectional communication that
is expected to happen in the reverse direction.

3.3 NFV-assisted data diode

This approach requires SDN support at the edge of the restricted (sending)
network, as well as a virtualization infrastructure containing a virtual Open-
Flow switch (e.g. OpenvSwitch). It represents a combined approach where the
processing step is supported by virtualized hosts close to the uplink OpenFlow
switch and directly accessible to the SDN network. Network traffic originating
in the restricted domain with the receiving network as destination is offloaded
by the first OpenFlow switch to a dedicated virtual host. This virtual host can
either be a virtual machine or an application container with two virtual Ether-
net interfaces: one for receiving network packets and another for the output of
packets. TCP emulation is performed within the virtual host by automatically
generating acknowledgment packets for the three-way handshake and subsequent
TCP transfers. Packets that are meant to be sent to the low priority network
are chained from the input virtual interface to the output virtual interface (e.g.
using IPtables).

OpenFlow virtual switch

Hypervisor

OpenFlow virtual switch

Hypervisor

Restricted (sending) domain Receiving domain

OpenFlow
switch

OpenFlow
switch

SDN
controller
cluster

SDN
controller
cluster

Remaining network devices Remaining network devices

Fig. 3: NFV assisted SDN virtual data diode.

Flow rules are proactively installed by the network controller in the uplink
switch to: (i) drop any packets coming from the receiving network; (ii) forward
any packets from the virtualization host (output port) to the switch port con-
nected to the receiving network; (iii) forward any other packets to the virtualiza-

10 Miguel Borges de Freitas, Luis Rosa, Tiago Cruz and Paulo Simões

tion host input port. In the receiving network domain, a TCP emulation proxy
host should also exist and a similar approach can be applied. This data diode
implementation avoids flooding attacks against the control plane while keeping
the flexibility of the reactive design approach. Protocol support can easily be
added to the virtual application proxy. The global network topology available
at the controller can be used to automatically find the path (sequence of ports)
leading to the virtual host. Moreover, if a layer of orchestration is added to the
controller, it can continuously monitor the state of the virtual host and request
the creation of a new one in case of failure (adjusting the flow rules to respect
the new virtual ports).

4 Proof-of-Concept Virtual Data Diode Prototype

In the context of IACS, availability, performance and the need for real-time op-
eration are the key design system attributes. As such, we developed our PoC
virtual data diode using distributed SDN controllers, so that the control plane
itself does not represent a single point of failure in the overall system opera-
tion. Distributed controllers are multi-node architectures where each OpenFlow
switch maintains an active connection to one of the controller nodes (the master
node) but is configured to use redundant connections to other nodes (slaves),
in the case of master node failures. Although many network controller projects
exist, only a small minority is distributed [12]. Among those, we selected the
Open Network Operating System (ONOS) because it matches well into the crit-
ical infrastructure use-cases: high throughput (up to 1 M requests/second), low
latency (10-100 ms event processing) and high availability (99.99% service avail-
ability)[2]. Our PoC virtual data diode uses a proactive approach regarding flow
rule instantiation. Flow rules are installed from a dashboard containing the global
topology graph of the network. Using this approach, the OpenFlow switches are
still able to virtualize a data diode even in the case of an hypothetical full control
plane failure. To increase performance, the data diode does not rely on any con-
troller external interfaces. It was implemented directly in the application (using
its OSGi services), extending its external interfaces (REST, command-line and
websockets). Figure 4 presents the PoC architecture.

By default there is no connectivity between hosts in the SDN network. The
Proxy ARP application (ONOS-bundled) proactively installs rules in the switch
fabric to forward any ARP packets to the controller so the topology graph and
host location can be computed. The developed Network Manager application
relies on intent-based networking to provide connectivity between a set of hosts
in the network. Intents are ONOS high-level abstractions (protocol independent)
that allow applications to define generic connectivity policies that are translated
internally to flow rules. For each host pair, the host-to-host intent results into
two installed rules (with fixed priority) using the in port, eth src and eth dst as
match-fields and outputting to a port leading to a path to the host location.
ONOS monitors the network state and any installed intents: if a network switch
is unavailable and a redundant path between hosts exists, a new set of flow rules

SDN-enabled virtual data diode 11

is generated and installed, keeping the intent active. By ensuring selected host
connectivity, the Network Manager application creates logical subsections in the
overall topology graph, providing the basis for multi-tenancy.

Southbound Interface

Protocol ProvidersOpenFlow

TopologyService DeviceService IntentService FlowRuleService
Controller Core

ApplicationService

Northbound Interface Application Layer

External InterfacesREST CLIWebSockets

Network
Manager

Data diode

Distributed controller storeEast/West bound
interface

Proxy ARP

Caption:

 SDN controller layer Internal controller component SDN applications

Fig. 4: Architecture of the Virtual Data Diode PoC.

The Data Diode application then uses the information stored by the Network
Manager. When a deployment is requested, given a topology edge link and the
network name, the application finds the connection point (host-switch/port) in
the graph and requests the Network Manager the list of hosts belonging to that
network. The application then installs one rule per network host-pair in the edge
switch (identical to one of the rules installed by the Network Manager) with the
action field set to Drop. Those flow rules have a higher priority field than the
rules defined by the Network Manager application superseding them. A workflow
similar to the one depicted in Table 3 was not followed in the implemented
prototype, in order to avoid binding physical ports to data diode deployments
and preserve multitenancy support. Additionally, the Data Diode implements
a monitor that asynchronously receives any events produced by the network
(Network Manager application) – its purpose is to install new rules to enforce
the diode behavior for each new host.

5 Evaluation

This section discusses the experimental evaluation of our PoC virtual data diode.

5.1 Experimental Testbed

Figure 5 ilustrates the testbed and network topology used for the validation
of the virtual data diode prototype. It consists of a single OpenFlow switch
controller by a three node ONOS cluster. The OpenFlow switch was running
OpenvSwitch (CentOS 7) in a COTS server (Dell Poweredge R210), with six
available gigabit Ethernet interfaces. The server was configured with Intel DPDK

12 Miguel Borges de Freitas, Luis Rosa, Tiago Cruz and Paulo Simões

for increased network performance (bypassing the Linux Kernel and promoting
direct memory access using hugepages and the VFIO universal IO driver). The
switch configured to use the three controller plane nodes, connects to the master
node via an off-band management network not accessible to the hosts in the SDN
network. The three controller nodes were CentOS 7 virtual machines, each with
4GB of RAM. The network hosts are composed by an Environmental Monitoring
Unit (EMU) and two Modbus TCP agents. The EMU is an arduino-based board
with built-in Ethernet ASIC (Freetonics EthertTen), containing a DTH11 sensor
and an electromechanical relay. The temperature, humidity and relay state values
are kept updated in three holding registers, and made available in the SDN
network via the Modbus TCP protocol.

The Modbus TX and RX hosts are virtual machines with gigabit ethernet
configured in passthrough mode. Their role is to emulate the behavior application
proxies and protocol breakers found in commercial data diodes (cf. Figure 1).
The TX agent queries the EMU holding registries, serializes the data into the
pickle format and sends it through the UDP protocol to the RX agent. This RX
agent behaves as the EMU device on the other side of the network. It desserializes
the received data, updates the internal registries and exposes a Modbus TCP
server. A virtual data diode was deployed (from the SDN controller) in the edge
link connecting the switch to the RX agent. Thus, the connection between both
agents was considered unidirectional (TX→RX only).

EMU Modbus
TX Agent

Modbus
RX Agent

OpenFlow
Switch

ONOS
cluster

Caption:

 Management network: active OpenFlow mastership connection
 Management network: slave OpenFlow mastership connection
 SDN network link
 SDN network: virtual data diode link

Restricted (sending) domain Receiving domain

Fig. 5: Experimental testbed.

5.2 Validation and Lessons Learned

The functional validation of the virtual data diode was achieved recurring to
the Netcat tool: the RX agent was configured as an UDP server while the TX
agent acted as a client and vice-versa. We confirmed that in the former case
packets were able to flow while in the last no communication occurred. The
non-functional validation focused on assessing the prototype performance. Ex-
periments focused on three aspects:

SDN-enabled virtual data diode 13

(a) the effect of the data layer on the latency of Modbus TCP readings;
(b) the overall network performance of the data plane;
(c) and the deployment latency of the virtual data diode.

For (a) we designed a test consisting of an increasing number of sequential
reads of ten EMU holding registries. For the TX agent we removed the ability
to process and packetize the obtained data and measured the time immediately
before and after each query. The measured times should be taken as the base
values for reading latency. For the RX readings, the time was recorded right after
data has been desserialized and updated in the agent context. Furthermore, a
counter was increased upon receiving a reading from the TX agent. Total test
duration was computed using the temporal instant before the first query by the
TX agent as starting time. Both machines were synchronized via NTP before
performing the test and each test was repeated five times. Table 5 summarizes
the obtained latencies (and percentage of failed readings). Confidence intervals
were calculated using a t-student distribution with a 95% confidence interval.

Table 5: Latency effect of the data layer on Modbus TCP readings.

Modbus Agent Number of Queries Time (s) Failed Reads (%)

TX

1 0.067± 0.139 -
10 9.889± 0.640 -
100 111.045± 0.331 -
500 566.654± 0.558 -

RX

1 0.654± 0.344 0
10 10.185± 0.777 0
100 111.820± 0.897 0
500 567.679± 0.549 0.360± 0.444

It is possible to conclude that even though the added latencies show a cu-
mulative effect with respect to the number of readings (almost defining a linear
trend) the latency increase is almost negligible. For 500 EMU readings, the addi-
tional processing by the agents and the subsequent network transfer only delays
the overall reading time by 1 second. It is also possible to see that, as the num-
ber of queries increases, we start noticing a minimal amount of readings not
reaching the RX agent – although being reported as sent by the TX agent. This
can be explained by the no-guarantee nature of the UDP protocol. While this
problem could be mitigated by adding error correction mechanisms to the unidi-
rectional data packets or sending the same packet multiple times, in experiment
(b) we analysed the effect of the sender/receiver buffer size on packet loss. This
experiment also measured the maximum bandwidth of the data diode link.

For asssessing (b), iPerf was used to limit the TX sender bandwidth at values
ranging from 10 Mbps to the maximum theoretical value of the link (1 Gbps)
while changing the sender buffer size (100-6000 KB). The virtual data diode
was disabled during this test, since Iperf requires an initial TCP connection.
Measurements show that the buffer size plays a significant role on the packet

14 Miguel Borges de Freitas, Luis Rosa, Tiago Cruz and Paulo Simões

loss, since it affects the total number of packets that can be sent in a single
transfer (cf. Figure 6).

o

o o o

0 1000 2000 3000 4000 5000 6000

0.
00

0.
02

0.
04

0.
06

0.
08

0.
10

0.
12

0.
14

Buffer size (KB)

P
ac

ke
t

lo
ss

 (
%

)

*

* * *

+

+

+

+

+

+

+

+

o

*
+
+

Bandwidth

10Mbps
100Mbps
500Mbps
1000Mbps

Fig. 6: Percentage of lost packets vs.
bandwidth and write buffer size.

2 4 6 8 10

70
0

75
0

80
0

85
0

90
0

95
0

10
00

Elapsed time (s)
B

an
dw

id
th

 (
M

bp
s)

* *

*
* *

* * *
*

*

*

Bandwidth

Theoretical
TCP
UDP

Fig. 7: UDP bandwidth vs. TCP and
Theoretical bandwidth.

If the bandwidth is known beforehand, both agents can be optimized for minimal
packet loss. This is important in IACS scenarios, since SCADA traffic patterns
tend to be predictable, with stable network topologies [1]. Regarding the stress
test on the data diode link, we started by performing a TCP test. The bandwidth
achieved by TCP is expected to be higher than the actual bandwidth of the UDP
transfer since it optimizes the transfer window size during the transfer. We took
the measured value (944 Mbps) as the reference for the actual bandwidth. The
maximum bandwidth using UDP was 769.7± 7.4 Mbps (cf. Figure 7), a value
in line with some commercial switches, despite our software-based testbed.

3 7 12

60
80

10
0

12
0

14
0

16
0

Total network hosts

D
ep

lo
ym

en
t

ti
m

e
(m

s)

Fig. 8: Virtual data diode deployment
times vs number of network hosts.

Table 6: Virtual data diode
deployment times depending vs

number of network hosts

Network Deployment
hosts time (ms)

3 62.188± 14.810
7 93.330± 33.345
12 122.418± 39.790

For the (c) experiment, we measured how the deployment times of the vir-
tual data diode varied, accordingly to the number of network hosts. Hosts were

SDN-enabled virtual data diode 15

”faked” by changing the MAC address and the IP address of one of the ma-
chines, followed by the generation of ARP packets. Upon detection in the net-
work controller, those fake hosts were added to the previously created network.
A controller command-line command was introduced in the Data diode applica-
tion to deploy and remove the virtual-data diode in a loop, while collecting the
elapsed time. Table 6 and Figure 8 present the results. Although the deployment
times increase with the number of network hosts, it is in the millisecond range.
A small value considering that for n hosts, n-1 flow rules have to be installed
and the datastore has to be consistently synchronized between all the controller
nodes.

6 Conclusion

Current trends, such as Industry 4.0 and Internet of Things are evolving indus-
trial control networks towards ubiquity, moving away from the traditional mono-
lithic and self-contained infrastructure paradigm, in favor of highly distributed
and interconnected architectures. In this perspective, the use of data diodes pro-
vides a convenient way to isolate mission-critical network domains, while still
allowing for relevant information (i.e., telemetry) to be accessed from the out-
side. However, as the number of interconnected devices increases, the costs of
multiple physical data diodes may become impractical for organizations.

To deal with the inherent limitations of traditional implementations, we pro-
posed the virtual data diode concept, which leverages the benefits of SDN and
NFV. This concept was demonstrated and evaluated by means of a proof-of-
concept prototype, designed with performance and availability in mind. The use
of proactive flow rule instantiation removes the complete dependency on the con-
trol plane, allowing the virtual data diode to use the available switch bandwidth.
The use of a distributed controller provides reliability and continuous operation
in case of controller node failures. Prototype evaluation measurements recorded
virtual data diode deployment latencies in the millisecond range, with minimal
latency in the link layer. Even stressing the switch to its full rate capacity (with
much higher values than the ones typically found in IACS), packet loss in the
link was minimal. While not providing the same security levels of physical data
diodes (it is a software implementation), the virtualized version still compares
favorably with diode alternatives, such as firewalls, while maintaining functional
equivalence to its physical counterpart.

Acknowledgements

This work was partially funded by the ATENA H2020 Project (H2020-DS-2015-1
Project 700581) and Mobiwise P2020 SAICTPAC/0011/2015 Project.

References

1. Barbosa, R.: Anomaly detection in SCADA systems : a network based approach.
Ph.D. thesis, University of Twente (2014), doi:10.3990/1.9789036536455

16 Miguel Borges de Freitas, Luis Rosa, Tiago Cruz and Paulo Simões

2. Berde, P., Gerola, M., et al.: ONOS: towards an open, distributed SDN OS. Pro-
ceedings of the third workshop on Hot topics in software defined networking -
HotSDN ’14 pp. 1–6 (2014), doi:10.1145/2620728.2620744

3. FoxIT: Fox DataDiode Data Sheet (2018), https://www.fox-it.com/datadiode/
downloads/

4. FoxIT: Fox IT FAQ. Online (2018), https://www.fox-it.com/datadiode/faq/
5. Genua: Data Diode cyber-diode. Brochure (2018), https://www.genua.de/

fileadmin/download/produkte/cyber-diode-flyer-en.pdf
6. Heo, Y., et al.: A design of unidirectional security gateway for enforcement reliabil-

ity and security of transmission data in industrial control systems. In: Int. Conf. on
Advanced Communication Technology (2016), doi: 10.1109/ICACT.2016.7423372

7. Jeon, B.S., Na, J.C.: A study of cyber security policy in industrial control system
using data diodes. In: 18th International Conference on Advanced Communication
Technology (ICACT). p. 1 (jan 2016), doi:10.1109/ICACT.2016.7423373

8. Jones, D.W.: RS-232 Data Diode - Tutorial and reference manual. Tech. rep.,
United States (2006)

9. Mckay, M.: Best practices in automation security (2012),
doi:10.1109/CITCON.2012.6215678

10. Mraz, R.: Data Diode Cybersecurity Implementation Protects SCADA Network
and Facilitates Transfer of Operations Information to Business Users. Presentation
(2016)

11. Okhravi, H., Sheldon, F.T.: Data Diodes in Support of Trustworthy Cyber Infras-
tructure. In: Proceedings of the Sixth Annual Workshop on Cyber Security and
Information Intelligence Research. pp. 23:1—-23:4. CSIIRW ’10, ACM, New York,
NY, USA (2010), doi:10.1145/1852666.1852692

12. Oktian, Y.E., et al.: Distributed SDN controller system: a survey on design choice.
Comp. Networks 121, 100–111 (2017), doi:10.1016/j.comnet.2017.04.038

13. Open NF: OpenFlow Switch Specification Version 1.5.1 (Protocol v. 0x06)
(2015), https://www.opennetworking.org/wp-content/uploads/2014/10/

openflow-switch-v1.5.1.pdf
14. Owl Cyberdefense: Learn about data diodes. Online (2018)
15. Peterson, D.G.: Air Gaps Dead, Network Isolation Making a

Comeback. Online, http://www.digitalbond.com/blog/2011/07/19/

air-gaps-dead-network-isolation-making-a-comeback/
16. Scott, A.: Tactical Data Diodes in Industrial Automation and Control Systems.

Tech. rep., United States (2015)
17. Stouffer, K.A., et al.: NIST SP 800-82 rev2. Guide to Industrial Control Systems

(ICS) Security: SCADA Systems, DCS, and Other Control System Configurations
Such As Programmable Logic Controllers (PLC). Tech. rep., USA (2015)

18. Sun, Y., Liu, H., Kim, M.S.: Using TCAM efficiently for IP route lookup. In: 2011
IEEE Consumer Communications and Networking Conference, CCNC’2011. pp.
816–817 (2011), doi:10.1109/CCNC.2011.5766609

19. Waterfall Security: Unidirectional Security Gateways vs. Firewalls: Comparing
Costs. Tech. rep., Israel (2012)

20. Waterfall Security: Unidirectional Security Gateways (2018), https://static.

waterfall-security.com/Unidirectional-Security-Gateway-Brochure.pdf
21. Waterfall Security: Waterfall FLIP (2018), https://waterfall-security.com/

wp-content/uploads/Waterfall-FLIP-Brochure.pdf
22. Waterfall Security: Waterfall WF-500 product datasheet. Product

Datasheet (2018), https://waterfall-security.com/wp-content/uploads/

WF-500-Data-Sheet.pdf

122 Appendix D. Research Paper

	List of Figures
	List of Tables
	List of Acronyms
	Introduction
	Motivation
	Context
	Objectives
	Contributions
	Research papers
	Research projects
	Project reviews
	Open-Source contributions

	Structure of the document

	Reference Technologies
	Industrial Automation and Control Systems
	Software Defined Networking
	Data plane
	Control plane
	Management plane

	Network Function Virtualization
	Container-based virtualization

	OpenFlow
	Flow tables and processing pipeline

	Chapter wrap-up

	State of the Art
	The evolution of IACS and the need for a paradigm shift
	SDN in the IACS domain: benefits and use-cases
	SDN in the IACS domain: security aspects
	SDN-assisted security probe deployment
	On the use of NFV with container-based virtualization
	State of the art overview and conclusions

	Requirements
	The Intrusion and Anomaly Detection System - IADS
	The role of SDN/NFV in the IADS platform

	Requirements Elicitation
	Requirement types
	Requirement conventions
	Methodology
	Product Perspective
	System actors
	System functional scopes
	System packages and context diagram

	Functional requirements
	Non-functional requirements
	Security requirements
	Performance requirements
	Availability requirements
	Operational and environmental requirements
	Interoperability requirements

	Design constraints
	Chapter wrap-up

	Software Architecture
	Distributed controller architectures
	OpenDayLight
	ONOS - Open Network Operating System
	Performance of Distributed controller
	Selected Network Controller

	System Architecture overview
	High-level architecture
	System Applications and Components
	Users Management SDN Application
	Network Management SDN Application
	Docker Integration SDN Application
	vNIDS SDN Application
	vHoneypot SDN Application
	Data Diode SDN Application
	Network Event Factory Application
	Web API Application
	Management and Visualization Web-interface

	Chapter Wrap-up

	Development Methodologies and Work Plan
	Development Life-cycle
	Software artifact development and component reutilization
	Work Plan
	Application development timeline

	Final reflections

	Development and implementation Notes
	Data plane
	Control plane network programming
	Application datastores
	External interfaces
	Virtualization infrastructure
	SDN glue agent
	Probe development

	Management Web-interface
	Chapter wrap-up

	Validation
	Testbed description
	Functional validation
	vNIDS evaluation
	vHoneypot evaluation
	Data diode evaluation
	Network event factory evaluation

	Non-functional validation
	Scalability and Performance
	Availability

	Chapter wrap-up

	Conclusions
	Suggestions for future work

	Bibliography
	Use-case diagrams
	Use-case descriptions
	Management Package
	Users_Management package
	Network_Management package
	Container_Management
	vNIDS package
	vHoneyPot package
	Data_Diode package
	Network_Event_Factory package

	Monitoring Package
	Network_Statistics package
	Container_Statistics package

	External Interfaces
	Network Management
	HTTP endpoints
	Web-sockets endpoints
	Command line

	Docker integration
	HTTP endpoints
	Web-sockets endpoints
	Command line

	vNIDS
	HTTP endpoints
	Command line

	vHoneypot
	HTTP endpoints
	Command line

	Data Diode
	HTTP endpoints
	Command line

	Network Event Factory
	HTTP endpoints
	Web-sockets endpoints
	Command line

	Research Paper

