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Resumo

O sono é um estado de descanso que desempenha um papel essencial na vida de

muitos seres vivos, inclusive humanos. A atividade do cérebro durante o sono au-

menta, o cérebro é ativo e responde aos est́ımulos externos como um buffer com

respostas rápidas e flex́ıveis, gerando fases de sono. Esta macroestrutura do sono de-

screve as diferentes fases do sono e é caracterizada com base nos diferentes ritmos do

eletroencefalograma (EEG). Os eventos transitórios também são uma caracteŕıstica

importante para caracterizar o EEG do sono.

Nesta tese, propõe-se um classificador robusto para a deteção desses eventos tran-

sitórios, especificamente arousals e complexos K. Os arousals são fenômenos periódicos

que perturbam o sono e os complexos K são ondas padronizadas estereotipadas do

EEG humano. O processo de classificação visual desses dois eventos é usado para

inspecionar a qualidade e a fragmentação do sono e ajudar na classificação das fases

do sono.

Para remover o rúıdo dos sinais, foram utilizados dois detetores de artefactos difer-

entes, o primeiro utilizou análise de entropia com a técnica Multisclale entropy e

o segundo utilizou a análise espectral de potência do sinal de EEG. Em seguida,

a remoção da interferência de ECG foi também aplicada aos sinais. Para detetar

arousals, duas técnicas foram comparadas: técnica de Spectrograma e Multitaper.

A detecção de complexos K foi testada usando filtros matched. Esses métodos foram

validados em um conjunto de dados de 40 indiv́ıduos de dois bancos de dados difer-

entes: MESA e MrOS da National Sleep Research Resource. Os algoritmos foram

testados alcançando AUC de 0.804 para o espectrograma, 0.853 para a técnica Mul-

titaper na classificação dos arousals. Para a deteção de complexos K, os filtros

correspondentes foram testados apenas em um único sujeito que continha a clas-

sificação visual, obtendo um AUC de 0.814. A análise qualitativa da deteção do

complexo K no conjunto de dados completo mostrou resultados encorajadores em

termos de distribuição espećıfica da fase do sono.
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Resumo

Palavras-chave: EEG em sono , eventos transientes, arousals, complexos K, detector

de artefactos, Espectrograma, Multitaper, filtro Matched
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Abstract

Sleep is an essential resting state that plays an essential role in the life of many living

beings, including humans. The activity of the brain during sleep is increased, the

brain is active and responds to external stimuli as a buffer with quick and flexible

responses creating sleep stages. This macrostructure of sleep describes the different

sleep stages and it is characterized based on the different rhythms of the electroen-

cephalogram (EEG). Transient events are also an important feature to characterize

sleep EEG.

In this thesis it is proposed a robust classifier for the detection of these transient

events, specifically arousals and K-complexes. Arousals are periodic phenomena

that disrupt sleep and K-complexes are a stereotyped pattern waves of the human

EEG. The visual scoring of these two events is used to inspect both the quality and

fragmentation of sleep and to aid in the scoring of sleep stages.

In order to remove the noise from the signals two different artifact detectors were

used, the first applied multiscale entropy analysis and the second used the EEG

power spectral analysis. Then a ECG interference removal was also applied to

the signals. To detect arousals two techniques were compared: Spectrogram and

Multitaper technique. The K-complexes detection was attempted using matched

filters. These methods were validated on a dataset of 40 subjects from two dif-

ferent databases: MESA and MrOS from the National Sleep Research Resource.

The algorithms were tested achieving AUC of 0.804 for the spectrogram, 0.853 for

the Multitaper technique in the classification of the arousals. For the detection

of K-complexes, the matched filters was tested only on a single subject with the

visual scoring, obtaining an AUC of 0.814. Qualitative analysis of K complex detec-

tion on the full dataset showed encouraging results in terms of sleep stage-specific

distribution.

Keywords: sleep EEG, transient events, arousals, K-complexes, artifact detectors,

Spectrogram, Multitaper, Matched filters
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Chapter 1

Introduction

1.1 Context

This dissertation has its focus on the study of the transient events of sleep, these

phenomena are the smallest elements that compose the sleep, they are the core

of sleep and complement the conventional approach of defining the sleep stages.

Moreover, the events are visible on the Electroencephalographic (EEG) signal, the

signal used to develop this thesis.

The EEG provides important and unique information about the sleeping brain. This

signal has been used in medicine since the 20th century, starting for the first time

when Richard Capton placed electrodes over the human scalp and tried to read

the electrical signals of the brain [6] allowing to investigate the bioelectrical activity

characteristic of the sleeping human brain. The popular myth that the brain activity

was shut down during sleep was then crushed, actually the activity of the brain is

strong and complex during sleep.
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The quality of sleep is essential for a good cerebral activity. During sleep the

EEG shows changes within the preponderant waves and the presence of the tran-

sient events studied in this work, is due to a complex mixture of neurophysio-

logical processes, that interact mutually to create a layered, efficient structure.

The sleep process is characterized by different stages with different characteris-

tics,(Macrostructure) and the Microstructure that defines the little transient events,

both of the structures will be described in detail in Chapter 2.

The trasient events, have an essential role for the evaluation of the quality of the

sleep. Arousals are associated with body movements, with respiratory events and

if their appearance is frequent the sleep quality is decreased. K-complexes are a

key factor for the definition of the sleep stages. Spindles are strongly connected to

the memory formation and sleep diseases. The detailed definition of these events is

described in the section 2.2.1, section 2.2.2 and section 2.2.3, respectively.

This project was developed in a partnership between University of Coimbra and

Politecnico di Milano, the work was developed in the B3 lab in Milan. Moreover

another key factor for the development of this thesis was the collaboration and guid-

ance of the researcher Sara Mariani at Brigham and Women’s Hospital, in Boston,

MA, USA.

1.2 Motivation

There is an ever-increasing global demand for clinical and healthcare services that

are effective and affordable for the overall population. Biomedical signals are an

important source of information in the medical world but their interpretation relies

on the opinion of the experts analysing them. The EEG is a complex signal that for

most of the physicians presents a challenge on its interpretation, besides even for an

expert it is a very time consuming process. In fact, the manual classification of the

EEG presents some reliability problems mainly because it is a subjective process [7].

Automatic detection of transient events on the EEG has been the subject of many

studies, however, it is still considered not robust enough to replace the visual scoring.

In this project we aim to develop robust classifiers for arousal and K-complexes, that

are tested and compared with previous work on the subject.

2



1. Introduction

1.3 Goals

The main goal of this project is the development of robust classifiers for the detection

of two transient events, sleep arousals and K-complexes, using only a EEG signal.

The software developed will be optimized to reduce the duration of the classification

processes. The results will be compared with the previous work.

1.4 Thesis Outline

This dissertation begins with a brief contextualization of the theme of this thesis,

followed by the motivation beneath this study, the main goals to be achieved and

the outline of the written document. This is the Chapter 1.

Chapter 2 describes the sleep macrostructure and microstructure, focusing on the

transient events that compose the sleep. The signals used and their characteristics

are also presented.

Chapter 3 describes an overview of the previous works developed for the classification

of arousals as well as K-complexes.

Chapter 4 details the materials used in this project, the databases and its corre-

sponding signals. Moreover, it is described all the methods used for the treatment

of these data and the detectors applied to them in order to classify the transient

events.

Chapter 5 presents all the results achieved with this thesis and the comparison

between them and the previous literature. As well as discussion of the validity and

the importance of the results.

Chapter 6 recalls the initial project goals and compares it with the project output,

also compares the classifiers with each other and with the results achieved in the

literature.

Last, in Chapter 7 the conclusions obtained through the development of this project

are presented, regarding the classifiers developed and their applications. Also it is

mentioned all the future work that can be done in the area of study to improve the

detections and in this specific study to produce a commercial interface.
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Chapter 2

Sleep Concepts and Definitions

Sleep is a rest stage, observed in Humans and animals. It is an essential physiological

phenomenon that takes part in the life of most creatures, [3] .When sleeping the brain

is active and responsive to external stimuli although it is in an unconsciousness state.

The arousal systems in the organism are responsible for controlling the duration

and the depth of sleep. Therefore, it reflects the state of the organism and has the

capability of affecting the mental and physical health of an individual. Different

activation forces act upon the brain at the same time. The stimuli are hierarchically

organized and the brain acts as a buffer with quick and flexible response to them,

creating different stages within the sleep period [8] .

2.1 Macrostructure of sleep

It was in 1968, that for the first time, a set of rules were defined to score sleep in

normal adults, established by a committee of experts chaired by Rechtschaffen and

Kales [9]. The information used for the classification was extracted from polysomno-
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graphic recordings (PSG) which includes multiple data entries : electroencephalo-

gram (EEG), regarding the cerebral activity ; electromyogram (EMG), information

from the muscle tone ; electrooculogram (EOG), eye movement data ; airflow, res-

piratory effort cardiac rhythm ; oxygen saturation and leg movements. The sleep

recording was then split into smaller pieces , epochs of 30 or 20 seconds depending

on the preferences and recording techniques of the sleep laboratory. R&K identified

five different sleep stages, rapid eye movement (REM) and four non rapid eye move-

ment (n-REM) stages (S1, S2, S3, S4) . Each stage is characterized by different

prevalence of specific cerebral waves accompanied with physiological changes.

Figure 2.1: The different Sleep stages and the waves that compose
them.(Adapted from: [10])
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With these rules it was possible to get the same classifications in different labs and

unify the classification of sleep but it neglected short-lasting events. In addition, this

approach performs the classification in fixed size epochs which introduces flaws. So

in 2007 this classification was revised by the American Academy of Sleep Medicine

and some changes were implemented, [11]. The slow wave sleep stages S4 and S3

were fused in one reducing to 3 NREM sleep stages.

The EEG signal is composed by four different wave types, with different frequency

ranges, from low to high frequencies, and are respectively: delta, theta, alpha and

beta [11]. The properties of these waves define the sleep stage. For the quiet

wakefulness stage the EEG signal has low amplitude, with at least 50% of the

epoch composed with alpha rhythms. N1 is a stage of light sleep, it is the transition

between sleep and awake. Through the life of the individual this stage suffers changes

due to the the aging process but in adults the signal has a frequency range of 2-7

Hz with a presence of alpha waves in less than half the cycle. As the waves slow

down and the low frequencies become dominant we change the Stage of sleep to

N2. This stage is characterized by occasional burst of rapid waves, the presence of

K-complexes and sleep spindles. In the deep sleep-stage, N3, delta waves begin to

appear these waves have high amplitude and slow frequency. In this last stage sleep

spindles still appear but with less frequency. The REM sleep is the part of sleep

associated with dreams and there is a notable movement of the eyes , a rise on the

heart rate and on the breathing rhythm and also an increase of the blood pressure.

The EEG from this stage presents waves with low amplitude and mixed frequencies

with a saw tooth like shape [3].

A number of different factors can affect the macrostructure of sleep, factors inherent

to the subject like age or sleep disorders and external factors from the environment.

Age is one of the factors that most affect the overall sleep structure [12, 13, 14],

mental diseases are often associated with sleep disorders [15], for example narcolepsy

which is a disabling sleep disorder. Studies also show that anxiety can create a

peaceless sleep, with nightmares and subjects show a clear difficulty to wake up

[16]. The Macrostructure of Sleep , defined previously, has been studied over the

years to inspect the sleep quality, [17] but is inside the Microstructure of Sleep, that

is, the transient events detected in the PSG during sleep that this thesis focus on.
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2.2 Microstructure of Sleep

The concept of microstructure of sleep allowed to define events that lasted less than a

normal epoch, i.e., less than 20-30 seconds. These events are not a part of a plateau

in a sleep stage but were transient events, shifts, occurring during the change of

stage. These events are arousals defined in the section 2.2.1, K-complexes in the

Section 2.2.2 and sleep spindles in the Section 2.2.3.

2.2.1 Arousals

It was in 1992 that the first definition of Arousal was proposed by the the Amer-

ican Association of Sleep Disorders (ASDA) [18], as a periodic phenomenon that

disrupted sleep. When the interruption caused by the arousal is not reversible the

subject is now in a awakening stage. Arousals are defined as abrupt changes of EEG

frequency content lasting at least 3 seconds and followed by at least 10 seconds of

sleep. The frequency change is towards faster rhythms, usually above 16 Hz , has it

can be seen in the figure 2.2 . It is also stated by the ASDA as one of the defining

rules of arousal that those are not spindles.

Figure 2.2: Example of an Arousal followed and preceded by sleep. (Adapted
from: [19])

Arousals are mostly coincident with other physiological events for example respira-

tory events (apnea and hypopnea) [20] and body movements. The movement caused

in an arousal is usually of the limbs, with some transitory intensification of the mus-

cle tone and changes of the body position. Furthermore, a temporary increase of the

heart rate was the third evidence of arousals. Arousals can be associated with other

physiological events, as stated before including obstructive sleep apnea (OSA), and

in this case the arousal is caused to keep the human being alive. For the subjects
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with OSA, arousal can occur more than once per minute, deteriorating the quality of

sleep significantly. Although arousals are normal and intrinsic components of sleep

the amount of arousals define if the sleep is disturbed or not.

Drinnan et al. [21] conducted a study on EEG changes that accompanied the

arousals and concluded that “EEG changes that accompany arousal can be quan-

tified using a number of automated indices. All of the indices investigated show

changes consistent with an increase in alpha activity or an increase in EEG fre-

quency”. The number of arousals is affected by aging, actually there is an increase

of the number of arousals from the younger to the older subjects [13].

On the other hand, in REM sleep arousals were marked by a transitory lack of eye

movements and alpha activities. In addition, these periods had a inconstant du-

ration that could last from few up to 10 seconds. After the temporary activation

a deactivation phase occurred generating a bi-phasic phenomenon. For a long pe-

riod of time there was no interest in the deactivation phase and only Terzano and

Parrino gave it significance when defining CAP in 1985 [22, 19] CAP is vital for

the description of sleep quality because it describes with detail the dynamics of the

brain during the night.

Due to the fact that arousals appear with other physiological events, in order to

visually detect them it is easier to use a combination of signals, including, heart rate

, EMG and respiratory signals. In REM sleep there are a lot of frequency changes,

so it is necessary to use EEG data alongside with data from other biosignals. The

EMG from the chin is usually selected to help in the classification of the arousals.

The presence of the arousals in sleep is more likely to occur in superficial sleep

stages, so more frequent in REM sleep and NREM stage 1.

2.2.2 K-complexes

A K-complex is an EEG pattern composed of three main events . The first is a

negative peak of small amplitude, the second fast positive component with parabolic

shape followed by a slower negative peak that also has an overall parabolic shape,

the waveform is shown in the figure 2.3. The duration of this waveform can range

from 0.5 up to 2 seconds, [23, 24]. K-complexes are a transient marker of NREM

sleep appearing particularly in S2 but also in S3, so they are a feature used to score

these sleep stages.

Moreover, these markers can be spontaneous as a marker of NREM sleep but also
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Figure 2.3: The approximate waveform representation of the K-complex.
(Adapted from: [1])

may be the result of external auditory or somatosensory stimuli [25]. K-complexes

can also be associated with other physiological events like vasoconstriction, an in-

crease in the activity of the sympathetic system and in the arterial pressure. Due

to these facts, K-complexes reflect the quality of NREM sleep. It is rare to find

a K-complex by itself and it is usually associated with other rhythms alpha, delta

or spindle. After the complexes long lasting changes occur to the EEG signal fre-

quency and amplitude. Vertex waves are from the neurophysiological perspective,

evoked potentials. In addition, these complexes and vertex waves result from the

same cellular behavior but the difference between them is the phase of the sleep in

which they appear, [26].

Figure 2.4: Example of K-complex sequences in S2 sleep. (Adapted from: [19])
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2.2.3 Spindles

R&K were the first to define spindles [9] but over the years the definition evolved,

there is still no exact definition but a spindle is a discrete event observed in the

EEG signal. They are short lasting and powerful bursts of frequency between 11-16

hz with a waxing and waning shape that resemble an actual spindle, as it can be

seen in Figure 2.5. They result from the powerful burst of synchronous neurons in

the thalamus-cortical networks, and they define the S2 sleep stage. The duration,

of the spindle, is of at least 0.5 seconds [18]. The changes in frequency within the

spindle are connected to depolarization of thalamus-cortical neurons, [27].

Figure 2.5: An example of mutiple Spindles in the EEG signal . (Adapted
from:[28])

Initially, spindles were used to aid sleep staging as all the others sleep events defined

so far, but over the years many studies show that spindles play a main role in

memory formation and consolidation during sleep, also they are an indicator of the

brain function and the sleep stability, [29, 30, 31]. The detection of spindles may be

performed on different EEG leads, but it was in the frontal derivations that their

presence showed a higher relevance to memory formation.

Moreover, spindles are associated with different pathologies including epilepsy and

schizophrenia [32, 33]. For example, before epileptic seizures studies have shown a

reduction of the power and density of spindles detected in the EEG signal. In the

case of schizophrenia also the number of spindles is reduced dramatically and they

appear to be less coherent.
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2.3 PSG

In the late 1920’s and 1930’s PSG blossomed in the medical world in the fields of

physiology, psychology and psychiatry [34]. Over the next 5 decades many studies

occurred with the goal to find what was the most likely stage of sleep associated

with dreaming. Currently PSG is essential to figure out if the sleep of an individual

is normal and to track and monitor many sleep disorders [35].

Figure 2.6: The Polysomnography of a normal individual, with all the
corresponding channels. (Adapted from: [2])

The PSG is now a non-invasive pain free diagnostic procedure in which an individual

must be asleep and many sensors are fixated to his/her body. It allows the movement

of the person during the sleep and it must be done in a controlled environment.

It was designed to record various physiological processes, for example the heart

beat (ECG), the electric brain activity (EEG), the muscular activity (EMG), the

movement of the eyes (EOG) . The sensors used are electrodes applied to the skin

of the individual in specific body parts.
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2.3.1 EEG

The Human brain consists of an intricate network of neurons and the number of

elements of this network is in the order of 1011. The brain is like a processor, that

takes into account the information from raw data and transforms it into cognitions,

storages it in the memory, and finds complex solutions to advanced problems.

To transit the information between cells, the neurons are activated and local current

flows are produced. Electric potentials are formed between the synapses of axons

and dendrites. Those currents are created of ions that are pumped through channels

following the direction of the membrane potential.

The EEG allows to view the combination of the electrical activities of the neurons.

To measure this electric activity many electrodes are displayed in a person’s scalp

in standard positions, as shown in figure 2.7. As for any electric measure a reference

is needed, so a monopolar channel is defined as a signal acquired from a specific

channel and a fixed reference.

Figure 2.7: The international 10-20 disposition of electrodes placed over the
scalp. (Adapted from:[3] )

There is a significant noise component in the monopolar channels, due to the fact

that they are taken at the body surface. It is possible to reduce these interferences by

using bipolar channels. These are the difference between two monopolar channels.
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Moreover the interference of other biological signals like EMG, ECG or EOG is

less significant and they provide better spatial resolution when compared to the

monopolar records [36].

2.3.2 ECG

The heart is the pump of the body, making sure that to every part of the system

gets the right amount of blood. This cardiovascular event is required to sustain the

life of the humans. The blood flow must follow a pattern so is necessary to maintain

a regular cycle of relaxation and contraction.

The myocardium has specialized working cells that produce electrical impulses through-

out the myocardium and they regulate the contraction of the heart. The electrical

signals can be monitored with electrodes over time, and this measure is what is

called the ECG [37].

In this thesis the ECG signal will be used to remove its interference with the EEG.

14



Chapter 3

Automatic Methods for the

detection of Transient Events on

Sleep EEG

Most of all transient events detectors share general steps, like pre-processing, fea-

ture extraction, feature selection, classification and performance evaluation. This

chapter briefly describes along its sections the previous works of other authors on

the previously enumerated steps. The automatic detection of transient events is

typically based on time-frequency analysis or recognition of patterns on the EEG,

potentially combined with the analysis of other signals.

The usual steps that make part of EEG-based detectors are :

1. Pre-processing - The idea of this step is to minimize the effect of noise and

artifacts.

2. Segmentation - Consists of the division of the EEG into epochs by applying

windows, that can be of fixed length or vary, depending on the local char-
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acteristics of the signal. Adaptive segmentation methods like spectral error

measure, nonlinear energy operator [38, 39], break up the signals into quasi-

stationary segments of variable length.

3. Feature extraction - The appropriate feature set depends on the transient event

to detect. For arousals an example is the power in the alpha and beta bands.

For K-complexes the shape and the frequency range are in the core of the

features extracted.

4. Classification - Many techniques allow a possible detection of the micro event.

Examples are rule based classifiers using mainly thresholds and Machine learn-

ing techniques.

An alternative option to points 2 and 3 is the use of time-scale methods, like the

wavelet transform, to obtain the spectral power in the frequency bands of interest

with variable time-frequency resolution [40]. Moreover, in the case of arousals to

detect them the information can be extracted not only from the EEG signal but from

a combination of signals, ECG, EMG and respiratory signals. This is due to the fact

that arousals are associated with other physiological like movements or obstructive

sleep apnea. The suggested EEG leads for this type of analysis are a central and an

occipital lead, to facilitate detection of beta and alpha activity, respectively.

3.1 Detection of Arousals

Arousals are transient events of variable length therefore an adaptive segmentation

is a very suitable technique. In adaptive segmentation the boundaries between

segments are set when significant changes are detected [41].

In 1999, Zamora et al. [42] used Artificial Neural Networks (ANNs) to analyze the

EEG signal to detect micro-arousals [43]. ANN is a interconnected network that

mimics the complexity of the brain and its decision process. The features were

extracted with a bank of band pass filters and with an autoregressive method to

estimate the power spectrum. From 88% up to 100% of the arousals were correctly

classified with this technique. The dataset included only the epochs in which the 3

experts agreed on the visual classification.

Carli et al. [44] also used a Machine learning technique to detect the arousals. In

this study the information from the EEG is combined with the information from

the EMG. Wavelets were used to compute the power spectrum in different bands
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and time frequency analysis was used to evaluate groups of indices describing the

changes on the EEG [45, 46]. These indices represent the ratios between short and

long term averages of each band of frequencies. A Linear Discriminant Analysis

(LDA) [47] is then used to classify the data. The score of the two EEG channels

(F4-C4 and C4-O2) and the EMG channel is then weighted and a final classification

is achieved. A sensitivity of 88.1% and a precision of 74.5% were achieved.

Sugi et al. [48] combined the information from four EEG channels (C3-A2, C4-A1,

O1-A2 and O2-A1) and the respiratory information (TFLO and CFLO). The fea-

tures were extracted from the spectral density achieved with fast Fourier transform

(FFT) applied to 1-second epochs. These are mainly parameters of duration, fre-

quency and amplitude of the delta and alpha waves. The results were then limited

by a threshold to determine the arousals, and achieving an accuracy of 77%.

In 2005 Agarwal et al. [49] developed an automatic classifier of MAs. First, for

preprocessing an adaptive noise canceller filter was used to remove the ECG inter-

ference in the EEG. For the segmentation step, a adaptive segmentation technique

was used, creating segments with a minimum size of three seconds. Frequency-

weighted energy defined by the non-linear energy operator (NLEO) [39] was used

to enhance the alpha and beta bursts in the segmentation scheme. The features

extracted were five, derived from the power bands and the maximum amplitude at

each seconds. Next, the authors employed rule-based selection to ignore candidate

arousal that did not respect the ASDA rules including the 10 seconds pause between

arousals. Sensitivity ranged from 70.1% to 82.2% and specificity from 56.6% up to

72.4%.

Cho et al. [50] retrieved the information from the bipolar channel C3-A2 of the

EEG to classify arousals. In the preprocessing several artifact removers were used,

including a band pass filter was applied to the EEG with a frequency range from 0.5

to 50 Hz to remove noise. A spectrogram with 257 points with a Hanning window

was applied to the signal and a power spectrum was computed every 60 seconds.

Six bands of frequencies and the ratios between them represented the features. As

a classifier an SVM (support vector Machine) with a radial basis function as kernel

was used. Finally, the arousal with a duration shorter than 3 seconds were rejected.

A Sensitivity of 75.26% and a specificity of 93.08%, were reported.

Shimel et al. [51] introduced a new technique that mimicked human behaviour of

learning and detecting. First they defined the critical points, points in time in which

significant change occur in the two EEG signals from the bipolar channels C4-A1

and C3-A2. Then, a classifier that applies a data mining technique based on the
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Sequential pattern discovery was applied [52, 53]. The approach needs the data to

be event oriented rather then having the data split, for example, in fixed size epochs.

Finally it uses meta-rules and actual-rules to classify the data. Meta-rules are rules

that governs the application of the actual rules. Using the data only from the EEG

it achieved and average sensitivity of %49.4 and a positive predictive value (PPV)

of %82.5 , if the data from the EMG is combined the average sensitivity rises to

63% and the PPV decreases to 82%.

In 2009 Sugi et al. [54] combined the data from four EEG channels(C3-A2, C4-

A1,O1-A2 and O2-A1) with the data from the airflow and EMG. The data is seg-

mented in blocks with fixed size and the periodograms were calculated using FFT

with a Hanning window. The features extracted from the EEG consist of the power

in the different bands and on an average of the results from the four channels. Fi-

nally for the detection it uses a threshold technique combined with duration rules to

ensure the AASM definition of arousal. The average sensitivity, false positive rate

(FPR) and FNR achieved were of 96%, 12% and 18%, respectively.

Behera et al. [55] used ANNs to classify this transient event. This study also com-

bines the data from multiple channels of the PSG: two EEG bipolar derivations

(C4-M1 and C3-M2) and an EMG channel. In the preprocessing stage it uses band-

pass filters to extract the alpha and the beta frequency bands (8-30Hz). This method

detects an event when the Power spectral density crosses a threshold and it also com-

bines the information from the Hjorth parameters. From each event are extracted

features from the power in all the frequency bands (Alpha, Beta,Theta, Delta and

sigma ). Finally an ANN is feed with all the features from the events, achieving

an average specificity of 91.4%, an average precision of 91.7% and an average area

under the receiver operating characteristic (ROC) curve (AUC) of 92.3%

Liang et al. [56] introduced a new SVM technique called Curious Extreme Learning

Machine which“ is a fast, easy to implement machine learning algorithm based on a

single hidden layer feedforward neural network.” In this work the data was extracted

from the two EEG channels C4-A1 and C3-A2. Then it was filtered with a low pass

filter with a frequency range of 0-50Hz. The signal was segmented in one second

epochs and 22 features were extracted with frequency analysis of each epoch and

the ratio between each neighbour epochs. The curious extreme learning machine

was then feed with all the information and it retrieved a average AUC of 0.85.

Wallant et al. [57] incorporated the data from the EEG and the data from EMG.

The novelty in this article is the introduction of two artifact removals techniques

that minimize the effects of the movement of the subject and the effects of technical
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faults. First, the EEG data is filtered using a band-pass filter (0.5-35Hz) that has

the lower cutoff frequency different from the usual aiming to remove the sweating

and breathing interference. Second, the data is segmented in fixed time epochs with

a duration of 1 second. For feature extraction it was used power spectral density

(PSD). For the final detection it uses thresholds, and it achieves a sensitivity of 76%

and a specificity of 76%.

The latest work developed for EEG arousal detection was developed by Fernandez et

al. [58]. In the pre-processing phase the signal is notch filtered at a frequency of 50Hz

to remove the power line interference. Then a short-time Fourier transform using a

sliding Hamming Window with a size of 3 seconds and with a shifting step of 0.2

seconds was applied. The point is to extract the “power content at a certain instant

of time with the corresponding baseline levels from the immediate past instants”.

The information from EEG is combined with the ECG signal. After the events are

marked the processing is focused only on them, comparing them with the spectral

power of past ones and analyzing their shape. An innovative aspect is the analysis

of the signal amplitude. A rejection step is the last, aiming to remove the arousals

that do not follow the AASM definition or that do not have an EMG activation.

This work achieved a precision value of 86% .

In conclusion, taking into consideration the literature presented above this thesis

used, for the detection of the arousals, two techniques of time and frequency analysis,

very common in the literature above to estimate the power spectrum of the signal.

The novelty introduced is a specific technique called Multitaper.

3.2 Detection of K complexes

K-complexes are one of the key features to determine sleep stages and therefore over

the years several investigators have done research regarding the best methods to

detect them. In 1970, Bremer G. et al. developed the first K-complex classifier.

This first project used the signal from three EEG channels F1-F7, P1-T5, O3-OZPZ

and a technique of matched filters [59, 60] to detect this transient event. The main

goal was to replicate the process of human visual classification so the waveform was

mimicked and then analogic and digital filters with thresholds were used. The main

conclusion of this study is that, although this first technique is primitive “the results

indicate that although the accuracy of the detection system is argumentative, it is

nevertheless comparable to that of Human scorers”, [4].
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Over the years many other authors used the technique of matched filters but only

in the digital domain.

Figure 3.1: The evolution of the template of the matched filter. a) the template
used by Bremer et al. [4] ; b) the three templates used by Kerkeni et al. [5]

In 2004, Woertz et al. [61] used the data from the bipolar channels C3–A2 and

C4–A1 from EEG signal and compares two different methods. First, a time-domain

analysis of the activity of low frequencies achieving a true positive rate (TPR) of

81%, a false positive rate of 7%. Second, applying matched filters using the same

data the results increased both the TPR and the FPR, 93% and 32% respectively. In

this study the filters used were based on the asymmetrical pattern of the waveform,

using three different templates of different durations from 0.5 seconds up to 1.5

seconds. The final score results from the combination of three filters and then were

classified accordingly to a threshold criterion. One particularity of this study is

that the threshold is calculated based on the manual classification of 45 experts.

Kerkeni et al. [5] also used matched filters but introducing a new concept, dynamic

time warping DTW [62] which is an algorithm that allows time compressions and

expansions on the templates of the waveform. The waveforms are three of different

shapes and and durations. A TPR of 53% and an FPR of 10% were achieved in this

study.

Other methodology used to classify this transient event was ANN’s [43]. It was

first used in 1990 by Jansen [63] in a multilayer ANN trained with backpropagation

algorithm. Data was retrieved from the EEG channel Fp1 and 10 features were

extracted considering the shape and the frequency range in the K-complex. A

maximum recognition rate of 67% was achieved. Bankman et al. [1] tested the

ANN with backpropagation fed with raw EEG data or with features. In [1] it was
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also taken in consideration a more detailed evaluation of the shape of the K-complex.

A TPR of 90% and a FPR of 8% were achieved using the features.

Moreover, Shete et al. [64] uses also ANN and compares them with the matched

filter technique. For feature extraction they used the likelihood thresholds based

on measures of amplitude and duration of the different phases of the K-complex.

Shede and his team achieved a sensitivity of 96% and a specificity of 52% with neural

networks and a sensitivity of 86% and a specificity of 67% using the matched filters.

These features were also applied in EEG data by Devuyst et.al [65] but with fuzzy

thresholds. The use of ANN in the study improved the results when compared to

the work done with the same features with the fuzzy technique.

Rosa et al. [66] used an algorithm based on a stochastic model [67] that is “used to

characterize the dynamics of the tonic and phasic activities of human sleep EEG”.

This model replicates the sleep with feedback loops of rhythms present in sleep

(alpha, beta, delta, theta and sigma) with white noise and pulses corresponding

to the K-complexes and the vertex waves. The detection algorithm works in the

opposite direction to detect the transient events. The EEG derivation studied was

C4 - A1 + A2. The average TPR and FPR were 82.4% and 53.2% respectively.

Another method used for the detection of the K-complexes was based on Wavelets

[68]. This approach was first introduced by Tang et al. [69] in the detection of

this transient events. Later, Erdamar et al. [70] used this method to classify the

selected EEG data from the bipolar channel C3-A2. Then the signal was classified

by two methods, wavelets on one side, Teager energy operator (TEO) on the other

side [71]. Afterwards, the results were compared and a final label arose. An average

TPR of 85% and an average FPR of 7% were achieved. Laerke Krohne et al. [72]

pick up the previous work from Erdamar et al. and decided to improve it. First

step was to change the Wavelets algorithm, the results were significantly better so

the TEO implementation was no longer necessary and therefore it was discharged.

Furthermore, 4 new features were introduced in a rejection step improving the PPV.

The results were a TPR of 74% and a PPV of 65%.

In 2017, a research Group from Montreal created a computational application to

detect both K-complexes and sleep spindles called Spinky [73, 74]. A Tunnel Q-factor

wavelet transform [75] with a morphological component analysis (MCA) [76] was

applied to decompose the signal collected by the C3 electrode into two components:

an oscillatory and a transient one. The transient component is the important one

given that it is associated with K-complexes. Then this component is filtered with

a finite impulse response (FIR) filter and a threshold is applied to find the transient
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events. This study achieved a sensitivity of 78.72% and a FDR (False discovery

rate) of 23.44%.

Yazdani et al. introduced a novel algorithm for the extraction of short term events in

EEG [77], including K-complexes. This method is a non-linear filter named Relative-

Energy. The algorithm combines the information of the short and long term energies

of the signal and provides a vector than enhances the points of interest. The channels

used for this study were CZ-A1 and C3-A1. It was achieved a maximum PPV of

80.98% , a sensitivity of 65.05% and a detection error rate (DER) of 1.29%.

Many other techniques were tested over the years. Pohl et al. [78] introduced a

Neuro-Fuzzy Detector combining Fuzzy logic with ANN. A joint Time and Time-

Frequency detection was introduced by Richard et al. [79]. This study uses also an

optimal method retrieved from the training data. Kam et al. presented a detector

using a continuous density Hidden Markov Model [80]. In 2010 a study conducted

at Instituto superior técnico (IST) uses a method based on Hjorth parameters and

on fuzzy decision mechanism [81]. The machine learning technique was also used for

the detection of this transient event [82]. In this paper also a new feature extraction

technique is implemented.

From all the literature studied for the detection of K-complexes, Matched filters is

a very common technique , that although was one of the first to be tested it is still

used today, achieving statistically significant results. The shape of the K-complex

is very particular and it is their essential feature, taking all this into consideration

the detection of the K-complex was performed with matched filters.
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Chapter 4

Materials and Methods

4.1 Materials

The data analyzed in this thesis belongs to the NSRR, the American National Sleep

Research Resource [83]. From many databases available two were carefully selected

to be the subject of study in this thesis. From each database the first 20 subjects

were selected.

4.1.1 MrOS

The Osteoporotic Fractures in Men (MrOS) Study was created to evaluate the effect

of the fractures in the quality of life, in this specific case their effects on sleep [84].

Although the goals of this thesis are very distinct, the data available is ideal for the

purpose of the study.

The subjects are 2911 men with age over 65 that were selected due to previous

fractures [85]. Two sleep study cycles were made over the years, one from 2003 to
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2005 and another from 2009 to 2015. For each visit of each subject it is available a

polysomnographic recording of the night of sleep in a European Data Format (EDF)

accompanied by a text file with the manual annotations of and the record of some

macrostructure events, like arousals and respiratory events.

The subset used from this database is reported in Table 4.1 .

Table 4.1: MrOS Dataset used for the analysis and development of this classifier.

Subject Filename
Total sleep time

(s)
Total sleep time

(h:m:s)
Number of
arousals

1 mros-visit1-aa0001 806400000 8h45’00 54
2 mros-visit1-aa0003 7011840 7h36’30 74
3 mros-visit1-aa0005 11128320 12h04’30 105
4 mros-visit1-aa0006 9971456 10h49’11 87
5 mros-visit1-aa0009 12080640 13h06’30 175
6 mros-visit1-aa0012 7226880 7h50’30 106
7 mros-visit1-aa0013 7426560 8h03’30 83
8 mros-visit1-aa0014 9523200 10h20’00 99
9 mros-visit1-aa0015 11504640 12h29’00 133
10 mros-visit1-aa0018 10229760 11h06’00 182
11 mros-visit1-aa0019 10606080 11h30’00 170
12 mros-visit1-aa0021 10106880 10h58’00 173
13 mros-visit1-aa0024 10867200 11h47’30 238
14 mros-visit1-aa0025 4300800 4h40’00 74
15 mros-visit1-aa0026 9561600 10h22’30 186
16 mros-visit1-aa0027 7910400 8h35’00 193
17 mros-visit1-aa0028 10129920 10h59’00 164
18 mros-visit1-aa0029 11527680 12h30’30 273
19 mros-visit1-aa0030 10583040 11h29’00 253
20 mros-visit1-aa0031 8102400 8h47’30 85

The MrOS database includes PSGs with multiple channels, as stated before, in-

cluding EEG and ECG. In the case of EEG there are 4 channels: two are bipolar

channels (C3-A2 and C4-A1) and the other two are monopolar, A1 and A2. For this

specific database the channel C4-A1 will be used. Data was acquired at a sampling

frequency of 256 Hz and was high pass filtered at 0.15 Hz. The ECG information

will be used to remove the interference in EEG.
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4.1.2 MESA

The second database used is, Multi Ethic Study of Atherosclerosis (MESA). MESA

was created to evaluate the differences in cardiovascular diseases and their progres-

sion in 4 different ethnicities, black, white, Hispanic, and Chinese-American. With

a total of 2237 subjects with ages between 45 and 84 both men and women. Like

the previous database this one also includes a PSG file correspondent to a night of

sleep for each subject and a text file including all the manual details of the sleep

classification by an expert.

In this thesis the diversity of the subjects is not essential but it is important to

analyze the applicability of the classifier. Diversity was one of the main reasons to

lead to the selection of this database. From all the subjects the first 20 were selected

and are reported in Table 4.2.

Table 4.2: MESA Dataset used for the analysis and development of this classifier.

Subject Filename
Total sleep time

(s)
Total sleep time

(h:m:s)
Number of
arousals

1 mesa-sleep-0001 11058944 11h59’59 197
2 mesa-sleep-0002 10137344 10h59’59 169
3 mesa-sleep-0006 8294144 8h59’59 189
4 mesa-sleep-0010 9215744 9h59’59 97
5 mesa-sleep-0012 10964480 11h53h50 161
6 mesa-sleep-0014 12902144 13h59’59 89
7 mesa-sleep-0016 9215744 9h59’59 124
8 mesa-sleep-0021 8294144 8h59’59 264
9 mesa-sleep-0027 8294144 8h59’59 124
10 mesa-sleep-0028 8754944 9h29’59 194
11 mesa-sleep-0033 8294400 9h00’00 334
12 mesa-sleep-0035 8294144 8h59’59 89
13 mesa-sleep-0036 8294144 8h59’59 122
14 mesa-sleep-0038 8294144 8h59’59 43
15 mesa-sleep-0046 9215744 9h59’59 125
16 mesa-sleep-0048 9215744 9h59’59 145
17 mesa-sleep-0050 9215744 9h59’59 88
18 mesa-sleep-0052 11058944 11h59’59 115
19 mesa-sleep-0054 9676544 10h29’59 179
20 mesa-sleep-0056 11058944 11h59’59 116

The Mesa database includes PSG with multiple channels, including EEG and ECG.

In the case of EEG there are 3 channels Fz-Cz, Cz-Oz and C4-M1. In this thesis

the channel Cz/Oz will be used considering its favorable central position over the
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occipital lobe. Data were acquired at a sample frequency of 256 Hz and low passes

filter of 100 Hz. All the files used in this study were imported to Matlab using

appropriate functions. The analysis of the signals and all the statistical work was

done in the Matlab.

4.2 Methods

In this Section, the methodology is explained and the different steps are represented

in the Figure 4.1. The methods used for the detection of the K complex differ

drastically from the detection of arousals, for example the segmentation is not an

essential step, the detection uses different methods and the classification is also

distinct. In the next sections a more meticulous description of all the methods used

in this thesis will be presented.

EEG signal

Preprocessing

Segmentation

Detection

Classification

Performance Evaluation

Figure 4.1: Diagram of the methodology used for the detection of the transient
events.

The signals are retrieved from the EDF file with an auxiliary function created in Mat-

lab to read these files. Moreover other function is used to open and read the annota-
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tion files in XML format and to access the expert classification of the macrostructure

of sleep, the hypnogram and the position and duration of the transient events.

4.2.1 Preprocessing

The preprocessing is essential to minimize all the undesirable noise and external

interferences, for that reason multiple techniques are used to minimize them, as seen

in Figure 4.2. Three methods are used, two complimentary algorithms to detect and

remove artifacts and one algorithm remove ECG interference. As mentioned before,

we employed different EEG leads from the two databases, so, although the steps are

similar, the details of each step vary with the database. The signal provenient from

the MESA is not contaminated with the heart beat therefore it is not necessary to

apply the ECG removal.

Preprocessing Spectro Artifact removal

MSE Artifact removal

ECG Removal

Figure 4.2: Diagram of the multiple preprocessing methods used.

In the next sections a closer look into each of the steps will be presented.

4.2.1.1 Multiscale Entropy analysis for Artifact Detection

The goal of Multiscale Entropy (MSE) [86, 87] is to quantify the complexity of a

signal. In the presence of an artifact the signal loses its information content and

tends to incorporate either almost random processes (e.g. white noise) or very

periodic events.

Entropy quantifies the degree of disorder and it is maximum for systems that are

completely random. The Shannon entropy, is calculated by :

H(X) = −
∑
xi∈Θ

p(xi)logp(xi) (4.1)
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(a)

(b)

Figure 4.3: The artifact scoring with the MSE technique in the EEG leads; (a)
the results for a subject from the MrOS database ; (b) the results for a subject

from the MESA database.

where X represents the variable with a maximum value of Θ and p(xi) is the prob-

ability mass function.

Due to the fact that the signals have a finite length that may be small and the

calculus of entropy by the Shannon’s Method is influenced by the length of the

sample a different method to calculate Entropy called the Sample Entropy [88].

The Sample Entropy is mathematically the negative of the natural logarithm of

the conditional probability of the sequences that are similar to each other within a

tolerance r, will continue so, after one more point is added to both sequences. And

its mathematical expression is :

SE(m,r,n) = ln

∑N−m
1 n

′m
i∑N−m

1 n
′m+1
i

(4.2)

r represents the tolerance ratio, m the number of components and n the value of the

signal.

Multiscale Entropy is an extension of the Sample Entropy method that allows to
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look at a signal with different levels of detail. First, the MSE method divides

the signal into non overlapping windows of fixed length τ . Second, the points inside

each window are averaged, and the result is a consecutive coarse-grained time series,

where each element is calculated by:

y
(τ)
j =

1

τ

jτ∑
i=(j−1)τ+1

xi,1 ≤ j ≤ N

τ
(4.3)

Last, it is calculated the entropy measure (SE) for each coarse grained time series.

To facilitate the detection of the artifact a concept called Complexity Index (CI) is

introduced [89]. Considering epochs of 10 seconds with 50% overlap we calculated

the sum of the entropy for scales 1 to 3. The maximum CI scale that can be used

is the fraction of the number of elements of the epoch (10× 256) and divided it by

750, because the sample entropy is largely independent of the number of elements

for samples with a cardinal bigger than 750 [88].

Finally, we scored as artifact all the epochs where CI was lower than an empirically

chosen threshold of 1.9. The score of the artifact for each time epoch is calculated

considering the average of the neighbour epochs. In the Figure 4.3 is possible to see

the detection of the artifacts using this MSE adapted method. The detector used is

a modification of the publicly available tool [90].

4.2.1.2 EEG power spectra for Artifact Detection

To complement the previous detector another artifact detector was used in series

with it. To detect the artifacts it uses the evaluation of the Spectral power of EEG

Figure 4.4: The Tukey window used for the calculus of the power spectra.
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epochs. This has been used by other authors before [91], and to specifically detect

artifacts [92].

First, it is computed the power spectrum of the slow frequency band [0.5-4.5Hz]

and the power spectrum of the fast frequency band [20-40Hz] for consecutive 30

second epochs. The average spectrum is computed using the Welch’s technique

that averages spectra computed on overlapping sub-windows reducing this way the

variance of the results. The window used for the calculation is the Tukey window

with a dimension of 4s (4*256 points) and with a taper of 0.5 as seen in the Figure

4.4.

Second, it is computed a moving average encompassing 15 seconds of signal for

both bands. Third, it is calculated for each power band the ratio between the

current epoch and its respective moving average. For each epoch if the ratio is

above a threshold it is considered to contain an artifact. The values of the thresholds

used were 2.0 and 2.5 for the slow and the fast frequency bands. The final score

is calculated by the sum of the results from each band, which means that if the

interference is detected only in one of the bands it is scored as an artifact.

(a)

(b)

Figure 4.5: The artifact scoring with the Spectra power technique in the EEG
leads; (a) the results for a subject from the MrOS database ; (b) the results for a

subject from the MESA database.
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Figure 4.6: The shape of the ECG P-QRS-T complex. (Adapted from: [96])

4.2.1.3 ECG interference removal

Some of the EEG signals present a significant interference produced by the heart

beat. In order to remove these and allow a better detection of the transient events

a ECG interference removal was introduced.

Firstly, it was calculated the position where the possible peaks related to the heart

beats and consequently related with the ECG peaks, were. It was used the Pan and

Tomkins method to detect the QRS peaks [93] for three essential reasons: first, it is

robust to the various types of interference that may appear on the ECG signal as a

result of applying a Zero-phase forward filter [94, 95]; second, the use low thresholds

that increase the sensibility of the detection, is allowed; third, the plasticity of the

algorithm allows it to adapt to the EEG changes in shape and in frequency.

Secondly, the peaks that represent outliers, were removed. It was calculated the

duration of the intervals between peaks, RR intervals. If the RR intervals were

either too short or had a duration too different from the average duration of the

neighbour intervals, they were eliminated.

Lastly, the interference of the ECG on the EEG was computed and removed. In

order to do so, the EEG is divided into windows centered at each R peak previously

detected. After, the average of all the windows is calculated. In case the ECG

artifact is in the EEG the average window has a shape very similar to the shape

of an ECG P-QRS-T complex, figure 4.6. Then, it was concatenate the average

artifact n times, where n is the number of R peaks and the location of the peaks is

used as guiding points. Finally, it was subtracted the artifact signal from the initial

EEG and the clean signal is obtained, as it can be seen in the figure 4.7, [97].
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(a)

(b)

(c)

(d)

Figure 4.7: The ECG channel from the MESA database (a), the correspondent
ECG signal (b) and the artifact it caused on the EEG channel (c). The result of

the ECG interference removal technique on the EEG signal (d).

4.2.2 Arousal Detection

The spectral analysis has been recognized as a beneficial method for arousal detec-

tion since the early 80’s [98, 99]. Taking into consideration the fact that arousals are

acute changes on the frequency of the signal, two different methods of spectral anal-

ysis were performed, the traditional Spectrogram and MultiTaper and are presented

in the sections below, 4.2.2.1 and 4.2.2.2, respectively.

4.2.2.1 Spectrogram

The spectrogram is a visual representation of the variation of the power of different

frequency bands over time. In order to obtain this time-frequency discretization it is

necessary to calculate the spectrum of frequencies for a specific stationary segment

of a signal.

The Discrete Time Fourier Transform is the simplest form of frequency analysis.
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Figure 4.8: The Kaiser window used for the calculus of the power spectra.

But since the biomedical signals are not stationary and the goal is to study the

changes of the spectrum over time it is necessary to study the signal as a group of

segments and apply the Short Time Fourier Transform (STFT) [100], represented

by the mathematical expression:

X [n,k] =
∞∑

m=−∞

x [m]w [n−m] e−j
2πkm
N (4.4)

where N is the total number of samples in a specific segment , x[m] is the value of

the signal at instant m, k is the discrete frequency, w represents the discrete window

function [101].

It is essential to fulfill the requirement of the stationarity of the signal within a

segment. Besides, it is important to keep in mind that the smaller the segment the

higher the time resolution and the lower the frequency resolution. So a balance has

to be made so that the size of the epochs is not to big to define the position of the

transient event and that is not too small to compromise the spectrum of frequencies.

Therefore the size of each epoch was set to one second containing 256 points each

with an overlap of 50%.

The window w used to apply the spectrogram was a Kaiser window [102] of 256

points corresponding to 1 second and with a β value of 18, as seen in the Figure 4.8.

The β characterizes the width of the curve defining for a specific point the influence

of its neighbours in the spectrogram.

From the Matlab spectrogram it is possible to retrieve the PSD centers of energy

and the correspondent time and frequency. The frequencies were only accepted in

the specific band from [8-30Hz] every PSD point with a center of energy with an
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Figure 4.9: The three channels of the MESA database EEG Fz/Cz (a), Cz/Oz
(b) and C4/M1 (c). The expert classification of the sleep stage, the hypnogram
(d), the arousal visual scoring with start of arousal (green arrow) and end (red

arrow) marked (e) and the result of the spectrogram with the respective time and
frequency of the centers of energy (f).

higher or lower frequency were discarded. Then the features used for the detection

were the respective frequency fCE and time tCE of a center of energy.

4.2.2.2 MultiTaper Technique

As aforementioned the spectral analysis is the quantitive approach for describing the

biomedical signal at different frequencies in terms of the basic sinusoids that compose

it. The signal power is a function of time and frequency. A new method to perform

the spectral analysis is presented in this section, and it is called Multitaper. The

Multitaper method was developed by David Thomson in the early 80’s [103]. This

technique has proven to be more robust and precise statiscally wise when compared

the use of a single taper to estimate the spectrum [104, 105]. A novelty aspect of this

thesis is that only in the recent years Multitaper has been applied to EEG signals.

To execute the Multitaper method it is necessary to follow some steps. Initially,

computes a set of window functions. These windows are part of a class of func-

tions named discrete prolate sheroidal sequence (DPSS) [106], also called Slepian
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(a) (b)

Figure 4.10: The different slepian windows used in the multitaper method:
(a)the first five discrete prolate spheroidal sequences of length 512 elements

corresponding to 2 seconds; (b) from the sixth to the ninth slepian sequences.

sequences. The advantages of these tapers are diverse, the most important is the

potential to reduce bias. Since they are all mathematically orthogonal functions,

the spectral estimate retrieved from each taper is uncorrelated with others. The

number of tapers is calculated by the following equations:

L = 2× TW − 1 (4.5)

TW = N ×∆f/2 (4.6)

where L is the number of tapers, TW is the time half-bandwidth, N the size of the

window and ∆f the frequency resolution [107].

Due to the fact that the use of the Multitaper to detect a microevent that occurs on

a scale of a few seconds the window size was N = 2s overlapped by 1 second , the

frequency resolution was to be compromised to maintain low-variance. A frequency

resolution ∆f = 5Hz was selected leading to, a number of tapes of 9 and their

shapes can be seen in the Figure 4.10.

After, for each taper it is calculated the single-taper spectrum. The results can be

averaged together as independent trials reducing the variance of the spectral analysis

due to the fact that the tapers are uncorrelated. The final spectral analysis can be

seen in the Figure 4.11.

The feature used for the detection is the sum of the power of frequency bands of
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(a) (b)

Figure 4.11: The color map generated from the spectral analysis using
Multitaper technique, representing the power in function of frequency and time.

(a) the over all look of the signal and (b) a zoom of a short period of time.
The first image tends to be segmented because the main point is to study transient events of

small duration and not to classify long lasting events.

interest. Considering the band of frequencies [8 30Hz] the result of the sum of the

powers can be seen in the Figure 4.12.

4.2.2.3 Rule-based Classifier

With the information retrieved from both detectors it is necessary to establish some

rules to define in which conditions the arousals are detected. Besides, it is of most

importance to follow the 11 scoring rules defined by the ASDA task force [18]:

1. The subject must be asleep for at least ten seconds before an arousal can be

scored.

2. Two arousals have to be separated for at least 10 seconds of continuous sleep.

3. The duration of the candidate arousal has to be bigger than 3 seconds.

4. In NREM sleep arousals can be scored without an increase of the EMG am-

plitude.

5. In REM sleep arousals can only be score with an increase of the EMG ampli-

tude.

6. A change of the EMG activity cannot be scored as an arousal.

7. Other transient events like K-complex and artifacts or even Delta waves cannot

be classified as an arousal, except for some exceptions.
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Figure 4.12: The three channels of the MESA database EEG Fz/Cz (a), Cz/Oz
(b) and C4/M1 (c). The expert classification of the sleep stage, the hypnogram (d)

the arousal visual scoring with start of arousal (green arrow) and end of arousal
(red arrow) (e) and the result of the sum of the powers of the bands of frequencies

[8 30Hz] as a function of time using Multitaper spectral analysis (f) .

8. If an arousal is contiguous with a pen blocking artifact they must be classified

as an arousal.

9. If a non concurrent but contiguous EEG and EMG changes are in total bigger

than 3 seconds and individually less than that, an arousal cannot be scored.

10. A three second long segment of sleep of alpha activity can only be scored as

an arousal if it is followed by 10 segments free of alpha activity.

11. Transitions of sleep are not enough to score an arousal unless they comply

with all the previous rules.

In this thesis the classification of the arousal was made with only the information

provenient from the EEG thefore from the rules above only some can influence the

arousal classification.

The arousal classifier started by imposing a minimum threshold, this value was

empirically tested and differed with the database and with the method. All the

segments where the hypnogram was zero, meaning that, the subject was awake

were excluded following the ASDA rule 1. The first valid point above the threshold
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was designated a possible arousal start (PAS) once a value below the threshold was

detected the point contiguous before that was designated as a possible arousal end

(PAE). If the ∆t = PAE−PAS was bigger than three seconds following rule number

3, the arousal was validated. Then the PAS is saved as arousal start (AS) and PAE

as arousal end (AE). In order to define the next PAS it was imposed that the time

within end of the previous scored arousal and the possible arousal start was bigger

that 10 seconds, PASn − AEn−1 > 10s.

4.2.3 K-complex Detection

Matched filters were defined by George Turin in 1960 [60] and over the years many

sleep researchers have benefited from this method ever since [4, 5, 64] for the detec-

tion of K-complex. It is of most importance to take into account the most defining

characteristic of the K-complex, is its shape, so this thesis focus the detection of

this transient event using Matched Filter technique.

4.2.3.1 Matched Filters

The Matched filter is a filter that compares a given shape or waveform to a signal,

in this study we are comparing the template of a K-complex with the EEG signal.

The Matched filter impulse response h(τ) , is given by:

h(τ) = ks(∆− τ) (4.7)

where s(t) is the function of the waveform to detect, and k and ∆ are arbitrary

constants [60].

This filter is also called a “conjugate ” filter because its transfer function is mathe-

matically the complex conjugate of the spectrum of the signal to which it is matched.

The challenge in using this filter for the detection of K-complex is the definition of

the waveform or shape used for the detection. The template is essential to detect

the transient events, it has started by having the perfect mathematical shape of the

waveform [4], evolving to some more complex waveforms and even the combination

of multiple shapes [5], as seen in figure 3.1.

The template used in this thesis was the result of the average shape of EEG signals

classified by experts as a K-complex. First, the segments where the transient event

was marked were selected. The position of the wave in the segment is not always
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Figure 4.13: The template used for the matched filter method in the detection of
K-complex in EEG signal.

the same, so a simple mathematical average would be a mistake and would ruin

the template. So all the segments were centered based on their maximum point the

peak and after averaged. The result is the template seen in the figure 4.13.

Finally, it is performed a convolution of the EEG signal with the template which

retrieves a template in which the elements are the area below the points of the

template sliding through the signal. The result can be seen in the Figure 4.14.

Figure 4.14: The result of the matched filter (b), applied to the independent
EEG signal (a) to detected the visual scorings of the K-complexes (green arrows).
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4.2.3.2 Rule-based Classifier

Unlike arousals, K-complex do not have many rules to define their validity, the shape

of the signal is easily identified visually discarding the need to impose complex rules.

Therefore the complexity of the classifier decreases. In this project, the classifier is

simply a threshold value that is empirically tested to find the most appropriate one.

4.2.4 Performance Evaluation

To evaluate the performance of the detector it is necessary to introduce some statis-

tical concepts that enable the classifier to be compared with the real classification.

Considering the label with only two classes to be or not to be a specific transient

event, and taking into consideration the result of the classifier, the combination of

possible results is:

• TP true positive - when in the presence of a transient event the classifier

detects it.

• FP false positive - when in the absence of a transient event the classifier detects

one.

• TN true negative - when in the absence of a transient event there is no detection

by the classifier.

• FN false negative - when in the presence of a transient event there is no

detection by the classifier.

With the four possible outcomes, a two-by-two confusion matrix can be constructed

representing the results of the classification. The confusion matrix is the first step

to that evaluate the performance, and it can be seen in the table 4.3.

Table 4.3: Confusion Matrix of a Binomial problem. The numbers along the
diagonal correspond to the correct decisions made by the classifier.

Label

P N

Results
P TP FP

N FN TN
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To evaluate the performance of the classifier four measures are used. Sensitivity,

(SS) which is also called true positive rate, is the probability of truly detecting an

event, the mathematical expression is the equation below:

SS =
TP

TP + FN
(4.8)

Specificity (SP), is the percentage of non-detections that are correct, and the math-

ematical equation is the one below.

SP =
TN

TN + FP
(4.9)

Accuracy (ACC), the measure of statistical bias, has the mathematical equation of:

ACC =
TP + TN

TP + TN + FP + FN
(4.10)

False positive rate is the probability of s the probability of falsely detecting an event

that is not truly present. Its equation is the one below.

FPR =
FP

TN + FP
= 1− SP (4.11)

To study the influence of the variance of the threshold within the classifier we in-

troduced the ROC curve. A Receiver Operating Characteristic is a two-dimensional

plot in which the SS is on the Y axis and the FPR is plotted in the X axis [108]. It

allows to see the behaviour the classifier with the shape of the curve. The diagonal

line with the equation y(x) = x is the graphic representation of randomly guessing

the presence of a transient event. A good classifier that is retrieving positive infor-

mation from the EEG and is able to strategically detect events is situated in the

upper region far from the random line.
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Figure 4.15: The plot of a ROC curve and the bisector line of the first quadrant.

To reduce this complex curve to a simple easily comparable number it is calculated

the area under the ROC curve [109], or AUC. The AUC possible values are between

[0 1] because AUC is a portion of the unit square. The random guess line now

corresponds to a AUC value of 0.5 and no value bellow that is reasonable. Other

characteristic of the AUC is that it is “equivalent to the probability that the clas-

sifier will rank a randomly chosen positive instance higher than a randomly chosen

negative instance” [109]. In conclusion, the higher the AUC the better the classifier.
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Results

The goal of this project was to achieve a robust classifier of transient sleep events.

In order to fulfil this goal three classifiers of transient events were developed, tested

and compared. Two classifiers were used for the detection of arousals and one

for the detection of K-complexes. In this chapter, the results achieved with the

classification process are reported. In Section 5.1 it is reported the influence of the

artifact detectors used in this project.

5.1 Artifact Detection

Aiming to improve the robustness of the classifiers, two artifact detectors were com-

puted. Artifacts are any interference that is not provenient from the brain signals

may be caused by muscular activity, movement of the eyes , or poor electrode content

and in any case they need to be removed from the signal. Their detection is essential

owing to the fact that an artifact may also produce an increase of the frequency and

in the classification process this can be mistaken as an arousal. Beyond that, their
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shape may resemble a K-complex but with bigger amplitude. There was no previous

classifications of the artifacts so the classifiers were produced with a conservative

approach to ensure that if an artifact is detected is actually a true artifact, reducing

the probability of false detections and exclusion of good signal.

We report an example of use of the EEG spectral power for artifact detection in

Figure 5.1, with two samples of a detection of an increase of slow waves, in Figure

5.1b and of the fast waves, in Figure 5.1a.

(a) (b)

Figure 5.1: The artifact classification from the Spectral detector by raise of the
power of fast waves (a) and slow waves (b) for subject 1 from the MESA database.

An example of the use of the MSE artifact detector is reported in Figure 5.2. This

technique allows to detect the artifact produced by the movements of the subject.

Figure 5.2: The artifact caused by movement of the subject classification from
the MSE detector in a lighter colour.
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Table 5.1: The total time classified as artifact by MSE and Spectral artifact
detector for each subject of the MrOS database.

Subject
MSE

detected
time (s)

Spectral
detected
time (s)

MSE ∩
Spectral(s)

Total (s)

1 730 2220 315 2635
2 415 990 220 1185
3 1220 4380 550 5050
4 170 2729 375 2524
5 2299 4589 859 6029
6 495 2069 320 2244
7 4019 2579 1229 5369
8 1055 1830 470 2415
9 7190 4500 1290 10400
10 1579 4769 584 5764
11 640 2580 160 3060
12 1095 3870 570 4395
13 1379 2460 285 3554
14 1450 1080 275 2255
15 5414 3870 1260 8024
16 835 1980 320 2495
17 965 3270 215 4020
18 2455 3690 380 5765
19 1075 2520 325 3270
20 490 1380 145 1725

The artifact detections reduced the size of the signal where a classification could

be done. After it the signal was not removed but with the ruled classifier it was

imposed that no arousals can be found during these periods of time. The sum of

the length of the artifacts present in each subject of the database MrOS and MESA

are reported in Table 5.1 and Table 5.2, respectively.

The process of visually scoring an EEG signal is slow and time consuming therefore

there is a possibility of wrong scores. Furthermore, sometimes arousals happen in

concert with movements leading to a certain overlap in scoring. Considering this, the

visual classifications were reviewed and the ones coincident with artifacts previously

scored were considered invalid.

The total number of valid arousals for each subject changed and in the appendices

is reported the valid visually scored arousals for both databases in the Table C.1.

After this step the label used to inspect the quality of algorithm, is the validated

visual score.

47



5. Results

Table 5.2: The total time classified as artifact by MSE and Spectral artifact
detector for each subject of the MESA database.

Subject
MSE

detected
time (s)

Spectral
detected
time (s)

MSE ∩
Spectral(s)

Total (s)

1 2595 4230 1370 5455
2 845 1710 385 2170
3 1460 2250 840 2870
4 805 2220 485 2540
5 1675 2640 965 3350
6 17190 2970 1975 18185
7 920 1770 550 2140
8 265 750 170 845
9 1695 4650 885 5460
10 685 2519 355 2849
11 1830 2250 775 3305
12 610 2310 415 2505
13 1855 2130 705 3280
14 1785 1020 185 2620
15 1280 2160 650 2790
16 1535 1769 644 2660
17 3095 1710 725 4080
18 5345 3180 1255 7270
19 2229 1920 460 3689
20 3700 3690 1085 6305

5.2 Arousal Detection

In this section the results from the detection of arousals are reported. Both tech-

niques presented in the methodologic section are applied.

5.2.1 Spectrogram

First, the thresholds were tested using binary classification of the presence or absence

of the arousal. With the variation of the threshold we generated the ROC curves

to evaluate the classifier and to test the ideal threshold value. For the spectrogram

the thresholds tested ranged from 0 to 20 for the MESA dataset and -59 to -40 for

the MrOS dataset.

We report in Table 5.3 the values of average and standard deviation of the AUC,

sensitivity, specificity, accuracy and the threshold value of the classification using
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the spectrogram method on the whole dataset for both MrOS and MESA. Subset

I and subset II differ on the number of subjects, subset II does not include the

three subjects that are outliers(see Appendix) . The values of sensitivity, specificity

and accuracy correspond to the threshold that have the minimum distance to the

perfect recognition point (0,1) of the ROC graph.

The outliers were excluded based on corruption of the signal more details are re-

ported in appendices in the Appendix A.

The results for every subject of the MrOS dataset are reported in the Table C.2

of the appendices, and the statistical variables for the MESA dataset subjects are

reported in Table C.3 .

Table 5.3: Detection statistics obtained on both datasets for the two different
subsets when using the spectrogram technique.

AUC SP SS ACC Threshold

MrOS
I 0.759 ± 0.108 0.700 ± 0.098 0.721 ± 0.104 0.703 ± 0.095 6.7 ± 1.9
II 0.804 ± 0.057 0.731 ± 0.062 0.751 ± 0.068 0.733 ± 0.060 7.1 ± 1.6

MESA
I 0.743 ± 0.071 0.702 ± 0.064 0.676 ± 0.083 0.686 ± 0.068 -51.8 ± 3.6
II 0.798 ± 0.037 0.701 ± 0.053 0.694 ± 0.047 0.700 ± 0.047 -52.1 ± 3.8

The MrOS dataset has a higher average AUC, specificity, sensitivity and accuracy,

although the standard deviation is higher too. This suggests the subjects present a

higher variability when compared to the subjects of the MESA dataset.

We report an average ROC curve generated by the average of each subject’s data

SS and FPR for all the thresholds in Figure 5.3.

(a) (b)

Figure 5.3: The average ROC curve of the MrOS (a) and MESA (b) for the
Spectrogram detector.
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Both of the ROC curves are fairly distant from the bisector of the first quadrant. It

can be noticed also that both the curves get close to the perfect recognition point

(0,1), but the closest is the one relative to MrOS dataset.

In the appendices section are reported all the ROC curves for subjects of the MrOS

dataset in Figure B.1 and in Figure B.2 the ones correspondent to MESA dataset.

The second part of our analysis consisted of imposing the AASM rules for arousal

definition. In this case we evaluated the performance of our classifier by comparing

the scored arousals as a whole and not one-second size epochs, thus the number of

FN cannot be calculated. In Table 5.4 , it is reported the ratio of correct detec-

tions(sensitivity), and the number of falsely detected arousals. The ratio of correct

detections is the quotient of the number of true detections over the number of valid

visual scores.

Table 5.4: Detection statistics obtained on both datasets for the two different
subsets and two different threshold values when using spectrogram technique and

applying the decision rules.

Average Threshold Ideal Threshold

SS
# False

detections
SS

# False
detections

MrOS
I 0.571 ±0.235 195 ± 140 0.780 ± 0.106 143 ± 72
II 0.604 ± 0.205 201 ± 134 0.808 ±0.068 147 ± 70

MESA
I 0.539 ± 0.312 311 ± 312 0.732 ± 0.171 301 ± 110
II 0.581 ± 0.306 352 ± 320 0.740 ± 0.046 284 ± 108

The ideal threshold for each subject is the value that minimizes the proximity to the

maximum recognition point before calculated. The average threshold is calculated

from the average of all the ideal thresholds of each subject.

The ratio of correct detections is significantly higher when using the ideal threshold

characteristic of each subject. The MrOS dataset seems to have higher average

results when compared to the MESA dataset.

5.2.2 Multitaper Technique

Similarly to what was done before, initially the thresholds were tested using binary

classification of the presence or absence of the arousal using as an only rule the

threshold limit.

In Table 5.5 the values of average and standard deviation of the AUC, sensitivity,

specificity, accuracy and the optimal threshold value of the classification using the
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multitaper method on the whole dataset for both MrOS and MESA, are reported.

Subset I and Subset II correspond to the same tests used in the spectrogram method

removing the same outliers. The values of sensitivity, specificity and accuracy were

calculated using the same method as before.

Table 5.5: Detection statistics obtained on both datasets for the two different
subsets when using the multitaper technique.

AUC SP SS ACC Threshold

MrOS
I 0.822 ± 0.089 0.777 ± 0.081 0.761 ± 0.079 0.770 ± 0.078 29.4 ± 12.4
II 0.853 ± 0.050 0.799 ± 0.054 0.789 ± 0.072 0.795 ± 0.052 32.0 ± 12.2

MESA
I 0.792 ± 0.112 0.766 ± 0.059 0.729 ± 0.013 0.746 ± 0.079 53.1 ± 29.7
II 0.833 ± 0.040 0.780 ± 0.042 0.775 ± 0.311 0.772 ± 0.041 59.5 ± 27.3

The MrOS dataset has a higher average AUC, specificity, sensitivity and accuracy,

with a lower standard deviation , when compared with the other dataset.

In Figure 5.4 we report an average ROC curve generated by the average of each

subject’s data SS and FPR for all the thresholds.

(a) (b)

Figure 5.4: The average ROC curve of the MrOS (a) and MESA (b) for the
Multitaper detector.

Both of the ROC curves are fairly distant from the bisector of the first quadrant. It

can be noticed also that both the curves get close to the perfect recognition point

(0,1), but the closest is the one relative to MrOS dataset.

In the appendices section are reported all the ROC curves for subjects of the MrOS

dataset in Figure B.1 and in Figure B.2 the ones correspondent to MESA dataset.

In Table 5.6, it is reported the ratio of correct detections, and the number of false

arousals. The ratio of correct detections is the quotient of the number of true detec-
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tions over the number of valid visual scored arousals. All the above are calculated

after imposing the AASM arousal detection rules.

For the first part of testing the classifiers of arousals generate the ROC curve for

each subject, the curves are in the appendices in the Figure B.1 and Figure B.2.

Table 5.6: Detection statistics obtained on both datasets for the two different
tests and two different threshold values when using multitaper technique applying

the decision rules.

Average Threshold Ideal Threshold

SS
# False

detections
SS

# False
detections

MrOS
I 0.600 ± 0.236 182 ± 143 0.750 ± 0.152 155 ± 76
II 0.664 ± 0.164 189 ± 131 0.803 ± 0.089 163 ± 75

MESA
I 0.595 ± 0.34 301 ± 331 0.793 ± 0.153 277 ± 105
II 0.674 ± 0.320 348 ± 342 0.833 ± 0.125 256 ± 107

The sensitivity is significantly higher when using the ideal threshold characteristic

of each subject. The MESA dataset seems to have higher average results when

compared to the MrOS dataset.

The results achieved when using the Multitaper are now compared with the ones

from Spectrogram. For MrOS in subset two it was achieved a SS of 0.803 while in

Spectrogram the SS value was of 0.808, so slightly higher in the Spectrogram. For

the MESA database in the same conditions spectrogram achieved an SS of 0.740

and Multitaper a SS of 0.833, so considerably higher for the Multitaper.

5.3 K-complex detection

In the MrOS and MESA datasets used there was no visual scoring of K-complexes.

One independent signal was visually classified in three different segments and those

were used to train and test the detector in this first phase of this analysis.

We report the ROC curve of the K-complex detector applied to this EEG signal, in

the Figure 5.5, when testing the threshold values between 0 and 4.

This ROC curve as an AUC of 0.814 and the value closer to the perfect recognition

point (0,1) has a sensitivity of 0.730 and specificity of 0.819.

Due to having no visual scores of K-complexes on the datasets under analysis we

performed a qualitative assessment of the performance of our detector. In addition,

we report the distribution of scored K complexes by sleep stage.
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Figure 5.5: The average ROC curve of the K-complex detection.

In the Figure 5.6 is reported an example of two detections using this macthed filter

technique in the MESA dataset.

(a)

(b)

Figure 5.6: An example of a K-complex detection in the EEG signal (b), with
the respective hypogram value (a), for the subject 1 from the MESA dataset.

In the Figure 5.7 is reported the boxplot of the results of the K-complex detection

for both dataset MrOS and MESA, in 5.7a and 5.7b respectively, with an empirically

threshold equal to 1.9 .
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(a) (b)

Figure 5.7: The boxplots of the ratio of K-complexes for the five sleep stages for
the datasets from MrOS (a) and MESA (b).

The percentage of K-complex detected is higher for both datasets in the Sleep nREM

2. In the MESA boxplot the second highest average is nREM 3 which in MrOS is

REM.
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Discussion

This study provides an efficient way to detect two types of transient sleep events,

K-complexes and arousals. The sample used for this study was composed of 40

subjects from two different databases, with more than 8 hours of sleep each, and a

EEG sample frequency of 256 Hz. This dataset is considered large enough to allow

the results to have significant importance. The diversity of the datasets and the use

of a different channel for each database allows to test the robustness of the classifier.

The use of the artifact detectors allowed the classifiers to avoid false detections

of arousals, due to the raise of frequency present in some of the artifacts, and K-

complex, due to the similarity of the shape shared by the two sleep structures. The

use of artifact detectors is common in EEG analysis [57, 50] but most studies use

only filters to remove the powerline interference [58]. Over the literature reviewed in

this thesis, to my knowledge, only Agarwal et al. used a ECG interference detector,

[49]. This is the first combination of three classifiers and it fulfils the needs of

removing noise from EEG signals provinient from different sources.

The MSE technique and the use of the spectral analysis to detect artifacts comple-
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ment each other, their theoretical principle is different and they can detect differences

of entropy (regularity) of the signal and changes in the frequency spectrum, respec-

tively. In the Table 5.1 and Table 5.2 the total duration of the artifacts detected

by both classifiers is reported, for both datasets, MrOS and MESA respectively.

They show that although there are some artifacts classified by both detectors, there

is always a certain period of time that is only detected by one of the classifiers.

Mathematically it can be seen because the total time of detection that results from

the intersection of both classifiers is always inferior to the total time of detection of

any single classifier.

Another conclusion that can be drawn from the detection of artifacts is the validity of

the signals. Three signals from each database were excluded due to being corrupted

in some way. One of the signals was provenient from the subject 6 from MESA

database. As it can be seen, in Table 5.2 it has a total time of artifacts with a

bigger order of magnitude when compared to the rest. Another potential use of this

artifact detection procedure would be to check the validity of the labelled arousals.

Unlike other sleep-related events such as spindles, arousals are not as well defined.

The processes of visually scoring an arousal is very subjective besides it is a very

long and time-consuming process that can easily lead to mistakes. So the visually

scored arousals were validated to make sure they were not present neither in a awake

stage neither in a segment of a signal classified as an artifact, the results can be seen

in the Table C.1. This step is essential for two reasons: first, because the label may

actually be a mistake; second, because our classifiers would no be able to detect this

arousal due to the imposed rules upon the classification process.

For the Spectrogram is clear in the Table 5.3 that statistical values improve after

excluding the subjects that were considered invalid. The AUC for MrOS increases

from 0.759 to 0.804 and in MESA from 0.743 to 0.798. It is important to notice that

the standard deviation is also reduced. The results from all subjects can be seen

in the Table C.2 and Table C.3. The results for the MrOS dataset are all better

when compare with the ones achieved for the MESA dataset, this may be due to the

expert classification, use of a different channel, or to the quality of the acquisition

of the signal.

The average ROC curve in Figure 5.3 reporting the average value for each threshold

is also better (higher AUC) for the MrOS dataset.

For the Second part, reported in the Table 5.4, the use of an average threshold

for all subjects resulted in lower performance when compared to the first part of
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this study when it was not imposed AASM rules. When using the ideal thresholds

characteristic of each subject the results are considerably higher, achieving for MrOS

a SS of 0.808 and for MESA 0.740.

Once again after excluding the invalid subjects subset II the results are better for

the same reasons as before. For the MrOS dataset the subset II has a SS of 0.808

while the other subset has a SS of 0.780, for MESA the results were 0.732 and 0.740

respectively. When using the ideal threshold the results are better compared to the

average threshold, and to the first part of the study. The reason for this is because

when using one second epochs the visual classification is not precise and our arousal

is never 100% coincident so the extra seconds that the arousals are not coincident

decrease the overall score. The number of false detections is very high, this is a

consequence of using only EEG. The AASM rule number four states that an arousal

can only be visual classified with an increase of the EMG amplitude, so if a raise

of frequency of the EEG signal is detected by the classifier may not be a visually

scored as an arousal for the lack of the change of the EMG signal.

The multitaper method was also tested in the same way. The first statistical results

are represented in the Table 5.5. The statistical results for MrOS were all higher

in subset II. As an example,the average AUC of subset I is 0.822 and the AUC

for subset II is 0.853. This dataset achieves better result than the other dataset,

MESA. The AUC of subset II in of MrOS is 0.853 while for MESA is 0.833. The

average ROC curve in Figure 5.4 reporting the average value for each threshold is

also better (higher AUC) for the MrOS dataset.

In the second part of the study (Table 5.6 ) comparing the ratio of correct detections

with the sensitivity of the first part of the study the results improve intra-dataset.

Unlike what happens with the other classifier the MESA achieves better results on

the ratio of correct detections but with a bigger standard deviation. In summary the

Multitaper technique has higher values in almost all statistical variables compared

to the traditional spectral analysis. The spectrogram produces high variance across

all the frequencies that are calculated representing there is a compromise between

time and frequency resolution, while the multitaper method has a better definition

of short time events because the number of tapers can compensate the small number

of data used to calculate the spectrum.

The models which use only EEG signal for the arousal classification and the study of

Agarwal et al. that combines the information of the ECG presented in the literature

are considered and compared with the Spectrogram and Multitaper method used in

this thesis in Table 6.1.
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Table 6.1: The statistical results of the presented literature in comparison with
the results achieved in this thesis.

Method AUC SS SP ACC

Agarwal et al. [49]
Adaptive segmentation

+ Decision rules
- 0.822 0.724

Cho et al. [50] TFA + SVM - 0.753 0.938 -

Shmiel et al. [51]
Critical Points +

MetaRules + Decision
rules

- 0.494 - 0.825

Liang et. al [56]
Curious Extreme
Learning Machine

0.79 - - 0.85

Thesis

Spectrogram + Decision
rules

- 0.808 - -

Multitaper + Decision
rules

- 0.833 - -

When comparing the results achieved in this thesis with the results achieved by

Agarwal et al.[49], the other author has a higher SS of 0.822 when compared to the

spectrogram, SS of 0.808 , but lower when compared with the multitaper, SS of 0.833

. However, their study used only two subjects for all the testing and were visually

scored by three experts each. While, in this thesis each subject from the dataset was

labelled by only one subject. The high inter-expert variability influences our study

[21] and also intra-expert variability seems to be high when performed over time ,

and this also happens in our study too. All the other experts that use the only EEG

channels [50, 51] have worse results when it comes to the SS achieved. Cho et al.

achieved a SS of 0.753 and Shimel et al. achieved a SS of 0.494. Although better

results were achieved by using EMG combined with the EEG, that crosses the goal

of this thesis.

For the detection of K-complexes is performed a matched filter technique. In the

first part of our analysis we used a signal with annotated K-complexes in this case it

is achieved a ROC curve with a AUC of 0.8127. The other authors that performed

K-complex detection did not calculate AUC values so the SS and the SP are the

values that are going to be discussed in this section. We are going to compare with

the previous studies that report a maximum SS and SP. In the Table 6.2 the results

achieved in this classifier are compared with this thesis.

Comparing the results with the ones from the Literature the Woertz study in the

first performed technique, TFA achieved a SS and SP of 0.81 and 0.93 both higher

than the results achieved in this thesis, the second study with matched filters has a

higher SS of 0.93 and a lower SP 0.68 when compared with this thesis. Woertz et
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Table 6.2: The statistical results of the K-complex detection from the presented
literature in comparison with the results achieved in this thesis.

Method SS SP

Woertz et al. [61]
TFA 0.81 0.93

Matched filters 0.93 0.68
Shete et al. [64] ANN 0.9606 0.5262
Erdamar et al. [70] TEO + Wavelets 0.85 0.93
Thesis Matched filters 0.730 0.819

al. [61] study employs 10 min epochs classified by 3 experts. The results achieved

in the Shete et al. study have a SS of 0.9606 and a SP of 0.5262 although the SS

is higher than the one achieved in this study the SP is significantly lower than the

achieved in this thesis. Erdamar et al. achieved a SS of 0.85 and a SP of 0.93: both

results are better than the ones achieved in this thesis, this study uses the results

from three expert visual scoring. The results from this thesis could be improved by

instead of comparing the 1-second epoch classification to consider the K-complex

as one single score and to check if the transient event has been detected or not.

Moreover, it would be good to increase the number of signals used for the training

of the detector and the number of experts that do the scoring of this transient event.

The K-complex detection was applied to the MESA and MrOS database and one

example of a good classificaton is shown in the results section in Figure 5.6. The

beginning of the K-complex (green arrow) is correctly scored although the end of

the transient event (red arrow) is not in the right position, which also decreases the

statistical results achieved. It would be relevant to adjust this value.

Finally, Figure 5.7 reports the distributions of the scored K-complexes by sleep

stage. These boxplots report the percentage of detections achieved by using the

matched filter detection in our database. As expected the percentage of detections

is higher in the sleep stage nREM 2 (orange box), due to this transient event being

an essential feature of this sleep stage. K-complex have a very similar shape to the

vertex waves, present in the sleep stage nREM 3 so the second highest box would

be expected to be in this sleep stage, but it only happens for the MESA database.

The MrOS is a dataset encompassing elderly men, thus it has a smaller percentage

of detections during this sleep stage. The deep sleep, nREM 3 is usually decreased

with aging, so that influences the number of detections [13].
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Chapter 7

Conclusions and Future Work

The main goal of this thesis was to develop robust classifiers of transient events on

sleep EEG, in specific, arousals and K-complexes.

This thesis presents multiple classifiers for the transient events of sleep, arousals and

K-complex. The novelty introduced in this study was the use of MSE and spectral

analysis for the detection of artifacts and ECG artifact remover, which improves

clearly our results and heightens the robustness of the classifier

Two different arousal classifiers were tested and it is possible to conclude that the

multitaper method is the best for the detection of the arousals. This method has the

ability to reduce the bias and the variance when compared to the Spectrogram. It

achieved a SS of 0.833 and its performance is better than that reported in our studies

literature, using only a information prevenient from the EEG signal. The high inter-

expert variability influences our study [21] and also intra-expert variability seems to

be high when performed over time, and this also happens in our study.

We can conclude that the methods explored in this thesis seem to have the potential

for developing a robust classifier of EEG arousals. It must be noted that “ideal
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threshold” for each individual is still the best way to achieve good classifications,

while using average thresholds reduces the performance. In order to develop a

classifier of new data, based on a single, universal threshold, in the future would

be beneficial to normalize the signals by their standard deviation, or to generate an

algorithm to calculate a threshold adapted for each subject.

The K-complex detector achieves good statistical results that are lower than some

from the literature. The SS achieved is significant lower than the SP but both are

good results considering the situations on which this detector was developed. The

classifier seems to have a good robustness, because it was applied to both datasets

and although there are no gold standard annotations, the results are acceptable by

visual inspection. Furthermore the high density of K-complexes in stage nREM 2

compared to other stages represents a reassurance of the accuracy of the method.

Taking into consideration all the results achieved, we can conclude that our main

goal was met. Future steps will involve the improvement and further testing of

the K-complex classifier, as well as the integration of a spindle detector. In the

near future, it is intended the development GUI for public use, that includes the

classification of these three transient events. This way giving to any non expert the

possibility of inspecting the sleep EEG.
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l’électroencéphalogramme du sommeil,” 5ème édition des Ateliers Traitement

et Analyse de l’Information : Méthodes et Applications - TAIMA 2007, May

2007.

[6] J. J. Vidal, “Toward direct brain-computer communication,” Annual Review

of Biophysics and Bioengineering, vol. 2, no. 1, pp. 157–180, 1973.

[7] S. L. Wendt, P. Welinder, H. B. Sorensen, P. E. Peppard, P. Jennum, P. Per-

ona, E. Mignot, and S. C. Warby, “Inter-expert and intra-expert reliability in

sleep spindle scoring,” Clinical Neurophysiology, vol. 126, no. 8, p. 1548–1556,

2015.

[8] L. Parrino, P. Halasz, C. A. Tassinari, and M. G. Terzano, “Cap, epilepsy

and motor events during sleep: the unifying role of arousal,” Sleep Medicine

63



Bibliography

Reviews, vol. 10, no. 4, p. 267–285, 2006.

[9] A. Kales and A. Rechtschaffen, A manual of standardized terminology, tech-

niques, and scoring system for sleep stages of human subjects. Brain Informa-

tion Service/Brain Research Institute, University of California, 1968.

[10] C. Sleep and E. R. Center, MrOS sleep PSG Procedure Manual. Case Western

Reserve University, 2004.

[11] C. Iber, The AASM manual for the scoring of sleep and associated events:

rules, terminology and technical specifications. American Academy of Sleep

Medicine, 2007.

[12] K. Crowley, J. Trinder, Y. Kim, M. Carrigton, and I. M. Colrain, “The ef-

fects of normal aging on sleep spindle and k-complex production,” Clinical

Neurophysiology, vol. 113, no. 10, p. 1615–1622, 2002.

[13] M. Boselli, l. Parrino, A. Smerieri, and M. G. Terzano, “Effect of age on eeg

arousals in normal sleep,” Sleep, p. 361–367, Jan 1998.

[14] N. Wolkove, O. Elkholy, M. Baltzan, and M. Palayew, “Sleep and aging: 1.

sleep disorders commonly found in older people,” Canadian Medical Associa-

tion Journal, vol. 176, no. 9, p. 1299–1304, 2007.

[15] K. Wulff, S. Gatti, J. G. Wettstein, and R. G. Foster, “Sleep and circadian

rhythm disruption in psychiatric and neurodegenerative disease,” Nature Re-

views Neuroscience, vol. 11, no. 8, p. 589–599, 2010.

[16] A. Horvath, X. Montana, J.-P. Lanquart, P. Hubain, A. Szucs, P. Linkowski,

and G. Loas, “Effects of state and trait anxiety on sleep structure: A

polysomnographic study in 1083 subjects,” Psychiatry Research, vol. 244,

p. 279–283, 2016.

[17] B. J. Swihart, B. S. Caffo, C. M. Crainiceanu, and N. M. Punjabi, “Character-

izing sleep structure using the hypnogram,” Journal of clinical Sleep Medicine,

vol. 4, no. 4, p. 349–355, 2008.

[18] ASDA, “Eeg arousals: Scoring rules and examples. a preliminary report from

the sleep disorders atlas task force of the american sleep disorders association,”

Sleep, p. 174–184, 1992.

[19] M. G. Terzano, L. Parrino, A. Sherieri, R. Chervin, S. Chokroverty,

C. Guilleminault, M. Hirshkowitz, M. Mahowald, H. Moldofsky, A. Rosa, and

et al., “Atlas, rules, and recording techniques for the scoring of cyclic alternat-

64



Bibliography

ing pattern (cap) in human sleep,” Sleep Medicine, vol. 2, no. 6, p. 537–553,

2001.

[20] M. J. Drinnan, A. Murray, C. J. Griffiths, and G. J. Gibson, “Interobserver

variability in recognizing arousal in respiratory sleep disorders,” American

Journal of Respiratory and Critical Care Medicine, vol. 158, no. 2, p. 358–362,

1998.

[21] M. J. Drinnan, A. Murray, J. E. S. White, A. J. Smithson, C. J. Griffiths, and

G. J. Gibson, “Automated recognition of eeg changes accompanying arousal

in respiratory sleep disorders,” Sleep, vol. 19, no. 4, p. 296–303, 1996.

[22] M. Terzano, D. Mancia, M. R. Salati, G. Costani, and A. Decembrino, “The

cyclic alternating pattern as a physiologic component of normal nrem sleep,”

Sleep, Jan 1985.

[23] M. Roth, J. Shaw, and J. Green, “The form, voltage distribution and phys-

iological significance of the k-complex,” Electroencephalography and Clinical

Neurophysiology, vol. 8, no. 3, p. 385–402, 1956.

[24] L. Johnson and W. E. Karpan, “Autonomic correlates of the spontaneous

k-complex,” Psychophysiology, vol. 4, no. 4, p. 444–452, 1968.

[25] P. Halasz, M. Terzano, L. Parrino, and R. Bodizs, “The nature of arousal in

sleep,” Journal of Sleep Research, vol. 13, no. 1, p. 1–23, 2004.

[26] F. Amzica and M. Steriade, “Cellular substrates and laminar profile of sleep

k-complex,” Neuroscience, vol. 82, no. 3, p. 671–686, 1997.

[27] T. Andrillon, Y. Nir, R. J. Staba, F. Ferrarelli, C. Cirelli, G. Tononi, and

I. Fried, “Sleep spindles in humans: Insights from intracranial eeg and unit

recordings,” Journal of Neuroscience, vol. 31, p. 17821–17834, Jul 2011.

[28] M. G. Terzano and L. Parrino, “Origin and significance of the cyclic alternating

pattern (cap),” Sleep Medicine Reviews, vol. 4, no. 1, p. 101–123, 2000.

[29] A. Ayoub, D. Aumann, A. Hörschelmann, A. Kouchekmanesch, P. Paul,

J. Born, and L. Marshall, “Differential effects on fast and slow spindle activity,

and the sleep slow oscillation in humans with carbamazepine and flunarizine

to antagonize voltage-dependent na and ca2 channel activity,” Sleep, Jan 2013.

[30] H. G. Wei, E. Riel, C. A. Czeisler, and D.-J. Dijk, “Attenuated ampli-

tude of circadian and sleep-dependent modulation of electroencephalographic

65



Bibliography

sleep spindle characteristics in elderly human subjects,” Neuroscience Letters,

vol. 260, no. 1, p. 29–32, 1999.

[31] S. M. Fogel and C. T. Smith, “The function of the sleep spindle: A physiologi-

cal index of intelligence and a mechanism for sleep-dependent memory consol-

idation,” Neuroscience n Biobehavioral Reviews, vol. 35, no. 5, p. 1154–1165,

2011.
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Chapter A

Invalid Subjects

From the all the data, three subjects from each dataset were considered invalid and

excluded in the subset II. In this section, it will be reported the main reasons for

the exclusion of this subjects.

A.1 MrOS

The three subjects that were excluded from subset II from the MrOS dataset were

subjects, 5, 8, and 18. The validity of these subjects will be inspected in the next

sections.

A.1.1 Subject 5

The inspection of the signal, showed no significant noise, neither was the power

spectrum of the signal in any way irregular. So it was inspected the visual clas-

sification performed by the expert. The labels seemed very unusual, most of the
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A. Invalid Subjects

arousal classification were dislocated randomly from the actual raise of frequency of

the EEG signal. An example is shown in Figure A.1.

(a) (b)

Figure A.1: Two examples of the visual scoring of subject 5 from MrOS dataset.
The arousal is marked with their start (green arrow), and their end (red arrow).

In Figure A.1a as it can be seen the label of the arousal is not an arousal but actually

a K-complex. In Figure A.1b, what was visually scored as an arousal was actually

an artifact. The artifact detectors could solve the problem of the second example,

but not the first. The visual scoring of this subject was not valid so although the

classifier could detect this transient event, the performance evaluation would not be

satisfying.

A.1.2 Subject 8

Subject 8 had a lot of noise. The power spectrum was inspected and it can be seen

in Figure A.2.

In the Power spectrum, it is possible to see multiple peaks at different frequencies.

The peak at 60hz is due to the powerline interference. This is due to differences in

the electrode impedances and the stray currents through the patient. Because the

signal was not filtered before the analogic-to-digital conversion, it is possible to see

the harmonic frequencies mirrored in the power spectrum. This corrupts the signal

and these peaks in the time domain represent a constant periodic interference at

these frequencies.
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Figure A.2: The power spectrum estimate of subject 8 calculated using Welch
method.

A.1.3 Subject 18

The inspection of the signal, showed no significant noise, neither was the power spec-

trum of the signal in any way irregular. So it was inspected the visual classification

performed by the expert like before. From all the visual scores half of them were

classified as an artifact, turning out not to be valid. An example of the visual scores

is shown in Figure A.3.

(a) (b)

Figure A.3: Two examples of the visual scoring of subject 18 from MrOS dataset.
The arousal is marked with their start (green arrow), and their end (red arrow).

In Figure A.3a the visual score is associated to what could be an artifact. In Fig-

ure A.3b second example of a the visual score, it is not noticeable any increase of

frequency, this scoring may be done to other EEG channel.
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The visual scoring of this subject was not valid so although the classifier could detect

this transient event, the performance evaluation would not be satisfying.

A.2 MESA

The three subjects that were excluded from subset II from the MrOS dataset were

subjects, 5, 6, and 16. The validity of these subjects will be inspected in the next

sections.

A.2.1 Subject 5

The power spectrum of subject 5 was inspected and it can be seen in the Figure

A.4.

Figure A.4: The power spectrum estimate of subject 5 calculated using Welch
method.

From the analyse of the power spectrum it is possible to conclude that the signal

is full of noise. There is a peak at approximately 43 Hz, for unknown reasons. It

is very likely that the signal was badly acquired generating this interferences and

invalidating the signal.

A.2.2 Subject 6

This subject had a very noisy signal and when the artifact detector was applied to

it, the amount of detections was of an higher order of magnitude from the rest of the
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subjects, suggesting high noise levels. The power spectrum was inspected anyway

and is reported in Figure A.5.

Figure A.5: The power spectrum estimate of subject 6 calculated using Welch
method.

The spectrum has an odd shape, the power interference is very strong but the signal

is completely corrupted by noise. For this reasons it was excluded from subset II.

A.2.3 Subject 18

The power spectrum of subject 18 is reported in Figure A.6.

Figure A.6: The power spectrum estimate of subject 18 calculated using Welch
method.
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In the Power spectrum, it is possible to see multiple peaks at different frequencies.

The peak at 60hz is due to the powerline interference. Besides the signal was not

filtered before the analogic-to-digital conversion and it is possible to see the harmonic

frequencies mirrored in the power spectrum. This corrupts the signal so it was

excluded from the dataset.
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B. ROCs

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

(m) (n) (o) (p)

(q) (r) (s) (t)

Figure B.1: The roc curves for each subject of the MrOS dataset for the two
detectors Multitaper (green) and Spectrogram (red).

84



B. ROCs

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

(m) (n) (o) (p)

(q) (r) (s) (t)

Figure B.2: The roc curves for each subject of the MESA dataset for the two
detectors Multitaper (green) and Spectrogram (red).
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C. Statistical Results

Table C.1: Number of arousals for all subjects from both datasets, before and
after the validation.

MrOS MESA

Subject
Visual

Classification
Valid

Visual
Classification

Valid

1 54 33 197 114
2 74 47 169 145
3 105 53 189 105
4 87 34 97 74
5 175 89 161 109
6 106 68 89 46
7 83 54 124 92
8 99 54 264 223
9 133 65 124 63
10 182 111 194 154
11 170 95 334 236
12 173 120 89 57
13 238 177 122 83
14 74 62 43 17
15 186 67 124 64
16 193 148 145 106
17 164 109 88 67
18 273 205 115 34
19 253 155 179 151
20 85 64 116 49

88
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Table C.2: The statistical results of the subjects from MrOS dataset using
spectrogram as an arousal detector.

Subject AUC SP SS ACC
Ideal

Threshold
1 0.7868 0.6930 0.7214 0.6947 7
2 0.7985 0.8415 0.7133 0.8384 9
3 0.8545 0.7010 0.8380 0.7041 9
4 0.7342 0.7333 0.8139 0.7342 5
5 0.5741 0.6472 0.4989 0.6408 2
6 0.7072 0.6379 0.6993 0.6400 5
7 0.8031 0.6946 0.7824 0.6970 7
8 0.4601 0.4662 0.4481 0.4658 6
9 0.7590 0.7821 0.6780 0.7788 6
10 0.8440 0.7731 0.7779 0.7733 7
11 0.7193 0.6855 0.6581 0.6844 10
12 0.8538 0.7673 0.7946 0.7684 6
13 0.7644 0.7001 0.6944 0.6996 5
14 0.7514 0.6044 0.7807 0.6163 9
15 0.8596 0.7324 0.8368 0.7482 7
16 0.8898 0.8572 0.7844 0.8511 9
17 0.8568 0.7222 0.8046 0.7364 7
18 0.5950 0.4698 0.7117 0.4950 5
19 0.8505 0.7593 0.7973 0.7618 5
20 0.7262 0.7379 0.5861 0.7331 7
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Table C.3: The statistical results of the subjects from MESA dataset using
spectrogram as an arousal detector.

Subject AUC SP SS ACC
Ideal

Threshold
1 0.7069 0.7019 0.6167 0.6947 -49
2 0.7752 0.7216 0.7696 0.8384 -47
3 0.7897 0.6931 0.7498 0.7041 -48
4 0.7131 0.6615 0.6458 0.7342 -51
5 0.6235 0.5648 0.6235 0.6408 -51
6 0.4226 0.5870 0.3601 0.6400 -56
7 0.7653 0.7051 0.6993 0.6970 -50
8 0.7696 0.7880 0.6300 0.4658 -48
9 0.7862 0.7080 0.7278 0.7788 -51
10 0.7526 0.6508 0.6785 0.7733 -48
11 0.6875 0.5896 0.7198 0.6844 -50
12 0.8379 0.8173 0.7363 0.7684 -47
13 0.7874 0.6798 0.7461 0.6996 -50
14 0.7565 0.6407 0.6758 0.6163 -50
15 0.7859 0.7173 0.6659 0.7482 -56
16 0.5122 0.8078 0.3824 0.8511 -53
17 0.7958 0.7568 0.7132 0.7364 -55
18 0.7264 0.6883 0.6486 0.4950 -54
19 0.7347 0.7285 0.6430 0.7618 -53
20 0.7733 0.6676 0.7481 0.7331 -48
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Table C.4: The statistical results of the subjects from MrOS dataset using
Multitaper as an arousal detector.

Subject AUC SP SS ACC
Ideal

Threshold
1 0.8767 0.8196 0.8242 0.8191 32
2 0.8637 0.8160 0.7763 0.8269 38
3 0.9027 0.8530 0.8327 0.8581 50
4 0.8864 0.8158 0.8202 0.8159 20
5 0.6776 0.7832 0.5625 0.7097 10
6 0.7657 0.8489 0.5510 0.7107 20
7 0.8128 0.7960 0.7176 0.7929 30
8 0.5758 0.5678 0.5347 0.5669 21
9 0.8016 0.7193 0.7771 0.7219 18
10 0.8954 0.8548 0.7979 0.8515 28
11 0.8088 0.7541 0.7816 0.7555 60
12 0.8799 0.7873 0.8457 0.7912 24
13 0.8287 0.7740 0.7754 0.7742 18
14 0.8359 0.7262 0.8021 0.7320 50
15 0.9029 0.8395 0.8643 0.8422 32
16 0.9277 0.8604 0.8732 0.8617 40
17 0.8955 0.8365 0.8330 0.8362 31
18 0.6944 0.6054 0.6978 0.6163 24
19 0.8766 0.8225 0.8161 0.8220 21
20 0.7427 0.6642 0.7336 0.6991 21
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Table C.5: The statistical results of the subjects from MESA dataset using
spectrogram as an arousal detector.

Subject AUC SP SS ACC
Ideal

Threshold
1 0.7854 0.7290 0.7737 0.7310 72
2 0.7752 0.7216 0.7696 0.7200 102
3 0.8503 0.7687 0.7764 0.7692 92
4 0.8082 0.7629 0.7183 0.7586 35
5 0.6824 0.6741 0.6394 0.6448 29
6 0.4026 0.5970 0.3401 0.5080 10
7 0.8326 0.7772 0.7462 0.7715 69
8 0.8637 0.8127 0.7980 0.8116 89
9 0.8346 0.7771 0.8244 0.7303 60
10 0.8306 0.7940 0.7399 0.7904 76
11 0.7422 0.6990 0.7543 0.7003 19
12 0.9002 0.8459 0.7976 0.8435 92
13 0.8818 0.7936 0.8293 0.7959 49
14 0.8376 0.7641 0.7809 0.7645 86
15 0.8639 0.8012 0.7999 0.8012 62
16 0.6113 0.8062 0.3850 0.6180 10
17 0.8184 0.8370 0.7266 0.8244 29
18 0.8286 0.7354 0.8035 0.7382 19
19 0.8179 0.7458 0.7776 0.7486 26
20 0.8849 0.8479 0.7995 0.8465 35
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Table C.6: The number of K-complex detected at each sleep stage using matched
filters for each subject of the MrOS dataset.

# of K-complex detections
Subject nREM1 nREM2 nREM3 nREM4 REM

1 136 1043 399 0 574
2 238 3412 313 0 684
3 51 229 17 0 66
4 31 255 19 0 60
5 31 91 8 0 93
6 103 3544 206 11 395
7 19 168 8 0 132
8 120 2130 21 0 641
9 34 160 17 3 137
10 232 1822 174 0 933
11 320 2335 1050 0 435
12 48 244 15 0 84
13 2 29 0 0 17
14 7 71 0 0 0
15 159 783 5 0 18
16 39 439 50 0 26
17 88 1078 21 0 516
18 4 121 24 0 39
19 261 319 1 0 273
20 12 85 5 0 6
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Table C.7: The number of K-complex detected at each sleep stage using matched
filters for each subject of the MESA dataset.

# of K-complex detections
Subject nREM1 nREM2 nREM3 nREM4 REM

1 986 4470 148 0 371
2 456 3110 648 0 1137
3 36 78 31 0 30
4 145 1127 695 0 0
5 359 2063 137 0 200
6 94 4077 2789 0 481
7 537 5160 477 0 753
8 35 162 64 0 0
9 640 5190 227 0 886
10 220 1315 648 0 405
11 386 1253 0 0 200
12 404 1979 405 0 527
13 171 1246 810 0 55
14 114 1477 868 0 339
15 770 3122 2075 0 916
16 112 754 254 0 146
17 85 2086 770 0 492
18 148 1871 39 0 260
19 504 3984 726 0 367
20 389 3456 700 0 638

94


	Agradecimentos
	Acknowledgments
	Resumo
	Abstract
	List of Figures
	List of Tables
	Acronyms

	Introduction
	Context
	Motivation
	Goals
	Thesis Outline

	Sleep Concepts and Definitions
	Macrostructure of sleep
	 Microstructure of Sleep
	PSG

	Automatic Methods for the detection of Transient Events on Sleep EEG
	Detection of Arousals
	Detection of K complexes

	Materials and Methods
	Materials
	Methods

	Results
	Artifact Detection
	Arousal Detection
	K-complex detection

	Discussion
	Conclusions and Future Work
	Bibliography
	Appendices
	Invalid Subjects
	MrOS
	MESA

	ROCs
	Statistical Results 
	Página em branco

