
Master’s Degree in Informatics Engineering
Dissertation
Final Report

Analysis and detection of anomalies in
mobile devices

António Carlos Lagarto Cabral Bastos de Lima
aclima@student.dei.uc.pt

Supervisor:

Prof. Dr. Tiago Cruz

Co-Supervisor:

Prof. Dr. Paulo Simões

Date: September 1, 2017

Master’s Degree in Informatics Engineering
Dissertation
Final Report

Analysis and detection of anomalies in
mobile devices

António Carlos Lagarto Cabral Bastos de Lima
aclima@student.dei.uc.pt

Supervisor:

Prof. Dr. Tiago Cruz

Co-Supervisor:

Prof. Dr. Paulo Simões

Date: September 1, 2017

i

Acknowledgements

I strongly believe that both nature and nurture playing an equal part in shaping an in-
dividual, and that in the end, it is what you do with the gift of life that determines who you
are. However, in order to achieve great things motivation alone might just not cut it, and
that’s where surrounding yourself with people that want to watch you succeed and better
yourself comes in. It makes the trip easier and more enjoyable, and there is a plethora of
people that I want to acknowledge for coming this far.

First of all, I’d like to thank professor Tiago Cruz for giving me the support, motivation
and resources to work on this project. The idea itself started over one of our then semi-
regular morning coffee conversations and from there it developed into a full-fledged concept
quickly. But this acknowledgement doesn’t start there, it dates a few years back when I first
had the pleasure of having him as my teacher in one of the introductory courses. It didn’t
take long for all of us, his students, to notice that he was different from most other teachers
as he actively promoted self-work, complementary learning and didn’t condemn our then
limited work in a binary fashion. He encouraged and inspired us to be better programmers,
sure, but also better people. He didn’t look down on us from high above on his golden
pedestal; no, he joined us on the same level and helped with the nitty-gritty code, bugs and
logic flaws. Don’t get me wrong, there were other fine teachers during these past few years,
but in my most honest opinion, none compare to professor Tiago Cruz when it comes to
nurturing one’s desire to better themselves while still having fun.

The next person I’d like to thank is someone who has been with me through good and
bad, thick and thin, for almost 5 years. I’m talking of course of my girlfriend Inês Petron-
ilho, who also inspires me on a daily basis to be a better person, to always strive for higher
heights, and who unconditionally supports me. I love you.

Following up, my best mate Pedro Janeiro. We’ve coded, laughed, drinked, cooked, eaten,
pulled all-nighters, and we’ve even slept together! There were times when I think I spent
more time with you on a daily basis than with Inês, and I wouldn’t have had it any other way.

Speaking of noteworthy friendships, ever since our first semesters at DEI, I’ve had the
pleasure of having some of the most entertaining moments and the most pointlessly philo-
sophical debates with a very special group of friends. We motivated and picked each other
up, commuted long distances, helped each other out with the courses’ projects, had our
lunches together, and had the best LAN parties Coimbra has probably ever seen. A big

iii

thank you to the guys, it is wonderful that after all these years we still regularly reunite over
some tasty sushi and catch up on our lives.

For the past year I’ve spent a lot of time over at the Nest Collective here in Coimbra,
and they have become like a second family to me, particularly the people at Deemaze. I’ve
learnt a lot from all of the people over there and made friendships aplenty. You guys are
party animals, and every day and night spent with you lot is one to remember fondly, every
time.

Of course my family and relatives have also played a very big part in shaping the person
I am today, they are the nurture aspect of this story, and I wouldn’t have gotten here today
if it weren’t for them.

Lastly, and coming back to the initial portion of this section, I’d like to thank everyone
that I have encountered up to this point, part of what I am and will be is due to you.

iv

Abstract

Organizations are often faced with the need to manage large numbers of mobile device
assets, including tight control over aspects such as usage profiles, customization, applica-
tions and security. Moreover, the rise of the Bring Your Own Device (BYOD) paradigm
has further contributed to hamper these requirements, making it difficult to strike a balance
between corporate regulations and freedom of usage.

In this scope, security is one of the main requirements both for individual and corporate
usage. Device and information protection on mobile ecosystems is quite different from secur-
ing other assets such as laptops or desktops, due to specific characteristics and restrictions.
For instance, the resource consumption overhead of security mechanisms, which is less rel-
evant for desktop/laptop environments, is critical for mobile devices which frequently have
less computing power and must keep power consumption as low as possible.

Security mechanisms for mobile devices combine preventive tools (e.g. Trusted Execution
Environments and sandboxed applications), monitoring solutions and reactive and mitiga-
tion techniques. In this thesis we start by overviewing these security solutions, presenting a
survey on the technologies, frameworks and use cases for mobile device security monitoring
and management, with an emphasis on the associated open challenges and benefits, from
both the end-user and the corporate points-of-view.

Having analyzed the technological state of the art, we showcase our attempt at analyzing
and detecting anomalies in mobile devices on an enterprise scenario, the contemplated and
solved implementation ordeals, and the employed development details to achieve it. The
described system is comprised of: an Android application, intended to be installed on the
target devices; lightweight Message Brokers; a Central Aggregator, serving as the core of the
system, processing and managing the collected data from the mobile assets; a Monitoring
Dashboard, enabling the system to be altered at runtime by supervising humans.

Lastly, we evaluate the project, exhibiting the preliminary results obtained through the
developed system, examining the implications that the results warrant, assessing the current
state of the project’s proposed tasks and requirements, and proposing the course of action
for future work.

v

Keywords

Anomaly, detection, malware, management, mitigation, mobile devices, monitoring, preven-
tion, security

vii

Acronyms and Abbreviations

AM - Application Master
API - Application Programming Interface
BYOD - Bring Your Own Device
CPU - Central Processing Unit
DAG - Directed Acyclic Graph
GPS - Global Positioning System
HDFS - Hadoop Distributed File System
HTTP - Hypertext Transfer Protocol
IoT - Internet of Things
JSON - JavaScript Object Notation
M2M - Machine-to-Machine
MDM - Mobile Device Management
MQTT - Message Queue Telemetry Transport
NM - Node Manager
OODA - Observe, Orient, Decide, and Act
OS - Operating System
RAM - Random Access Memory
REST - Representational State Transfer
RM - Resource Manager
SSL - Secure Sockets Layer
TEA - Tiny/Trivial Encryption Algorithm
TLS - Transport Layer Security
UML - Unified Modeling Language
VPN - Virtual Private Network
YARN - Yet Another Resource Negotiator

ix

Contents

1 Introduction 1

2 State of the Art 7
2.1 Prevention and Monitoring . 7

2.1.1 Prevention . 7
2.1.2 Monitoring . 11

2.2 Mitigation . 13
2.3 Competitors and Motivation . 16

3 Objectives and Requirements 19
3.1 Scope and high-level approach . 19
3.2 Platform Requirements . 20

3.2.1 Architectural . 21
3.2.2 Behavioral . 22
3.2.3 Functional . 23
3.2.4 Non-functional . 24

4 Planning and Methodology 25
4.1 First Semester Planning . 25

4.1.1 Gantt Charts . 25
4.1.2 Meetings and Deliverables . 26
4.1.3 Publications . 26
4.1.4 Device Agent Application . 26

4.2 Second Semester Planning . 28
4.2.1 Gantt Charts . 28
4.2.2 Sampling . 28
4.2.3 Dataset Generation . 28
4.2.4 Synchronisation . 28
4.2.5 Message Broker . 29
4.2.6 Central Aggregator . 29
4.2.7 Dashboard . 29
4.2.8 Device Agent Management . 30
4.2.9 Testing and Verification . 30
4.2.10 Publication . 30

4.3 Second Semester Execution . 31

xi

4.4 Work Methodology . 32

5 Architecture 35
5.1 Overview . 35
5.2 Device Agent . 37
5.3 Device Agent Management . 44

6 Implementation Details 45
6.1 Device Agent . 45

6.1.1 Operating System . 45
6.1.2 Data Collection . 47
6.1.3 Event Management . 49
6.1.4 Data Management . 51
6.1.5 Data Aggregation . 51

6.2 Message Brokers . 53
6.2.1 MQTT and HTTPS . 53
6.2.2 Hadoop and Kafka . 55
6.2.3 MQTT and Kafka bridge . 56
6.2.4 Encryption and Security . 59
6.2.5 Device Agent configuration management within MQTT 60

6.3 Aggregator . 64
6.3.1 Hadoop and Spark . 64
6.3.2 Hadoop, Zookeeper, and YARN . 65
6.3.3 Sequential and Batch processing . 68

6.4 Machine Learning and Data Visualization 70
6.4.1 Machine Learning . 70
6.4.2 Oryx . 72
6.4.3 Data Visualization . 73

6.5 Dashboard . 77

7 Development and Deployment 79
7.1 Technologies, Tools and Frameworks . 79
7.2 Device Agent . 80
7.3 Central Aggregator . 83

7.3.1 Oryx Cluster Setup . 83
7.3.2 Deploying Hadoop . 84
7.3.3 Deploying Zookeeper . 87
7.3.4 Deploying Kafka . 87
7.3.5 Deploying Spark . 88
7.3.6 Deploying Oryx Server Layers . 89
7.3.7 Restarting Oryx Server Layers . 93

7.4 Message Exchange . 94
7.4.1 Deploying the MQTT Broker . 94
7.4.2 Deploying the Bridge between MQTT and Kafka 96

7.5 Oryx Application . 96

xii

7.6 Machine Learning . 98

8 Preliminary Results Analysis 101
8.1 Device Agent . 101
8.2 Network Traffic . 105

8.2.1 Individual Message Analysis . 105
8.2.2 Device-level network traffic overhead analysis 108
8.2.3 Aggregated network traffic overhead analysis 108

9 Project Analysis 111
9.1 Progress Assessment . 111

9.1.1 Requirements . 111
9.1.2 Features . 115
9.1.3 Assessment . 119

9.2 Future work and next developments . 120
9.2.1 Central Aggregator . 120
9.2.2 Dashboard . 120
9.2.3 Dataset Generation . 120
9.2.4 Device and Data Analysis . 120

10 Final Remarks and Conclusions 123

References 123

xiii

List of Figures

1.1 Enterprise mobility schemes . 3

2.1 Security lifecycle for mobile asset management 15
2.2 Simplified OODA loop . 15

3.1 High-level approach for the proposed solution 19

4.1 First Semester - Collapsed overview Gantt chart 25
4.2 First Semester - Expanded overview Gantt chart 27
4.3 Second Semester Predicted Effort - Collapsed overview Gantt chart 28
4.4 Second Semester Planned Effort - Expanded overview Gantt chart 29
4.5 Second Semester Executed Effort - Expanded overview Gantt chart 31
4.6 Waterfall Model . 32
4.7 V-Model . 32
4.8 Custom Model . 33

5.1 Overview of all the architectures . 35
5.2 Architecture of a device agent’s components 37
5.3 UML Diagram of Collector classes . 38
5.4 UML Diagram of the Aggregator classes . 39
5.5 UML Diagram of Database Manager . 40
5.6 UML Diagram of Database Table classes . 41
5.7 UML Diagram of Database Entry classes . 42
5.8 Entity relationship diagram . 43
5.9 Diagram for device agent management . 44

6.1 Mobile device operating systems market shares 46
6.2 Application event management . 50
6.3 MQTT Organization logo . 53
6.4 Mosquitto logo . 54
6.5 Kafka logo . 55
6.6 UML Diagram of Device Message class . 58
6.7 UML of the ConfigurationMessage class . 60
6.8 Update Management Flowchart . 63
6.9 Hadoop logo . 64
6.10 Hadoop components: MapReduce and HDFS 64

a HDFS logo . 64

xv

b MapReduce logo . 64
6.11 Spark logo . 65
6.12 Zookeeper logo . 65
6.13 YARN logo . 66
6.14 YARN Architecture . 67
6.15 Example of a Lambda Architecture . 69
6.16 MLib logo . 70
6.17 Oryx Architecture . 72
6.18 GraphX logo . 73
6.19 Device Message Graph Concept . 74
6.20 Device Message Graph Example . 75
6.21 Interaction between Human, Dashboard and Aggregator 77

7.1 MQTT: Configuration file structure . 95
7.2 Speed and Batch layer’s classification flowchart 99
7.3 K-Means Example . 100

8.1 Device Agent RAM usage over time . 102
8.2 Device Agent CPU usage over time . 102
8.3 System RAM usage over time . 103
8.4 System CPU usage over time . 103
8.5 Avaialble RAM over time . 104

xvi

List of Tables

1.1 Comparison of iconic mobile device (smartphone) specifications 2

2.1 Comparison of key moment of action for prevention methods 10
2.2 Comparison of prevented threats by monitoring method 12
2.3 Moment of mitigation comparison . 14
2.4 Comparison of existing mobile device monitoring services 17

3.1 MoSCoW prioritization of architectural requirements 21
3.2 MoSCoW prioritization of behavioural requirements 22
3.3 MoSCoW prioritization of functional requirements 23
3.4 MoSCoW prioritization of non-functional requirements 24

6.1 Number of search results for keywords and different search engines 47
6.2 Device Agent Configurations: Periodic Collection Actions 61
6.3 Device Agent Configurations: Other Actions 62
6.4 Device Agent Configurations: Messaging . 62

8.1 Device Agent test results analysis . 102
8.2 ADB "top" analysis . 104
8.3 Configuration Message Size Analysis . 106
8.4 Device Message Daily Frequency Analysis 107
8.5 Expected Daily Network Traffic Analysis . 109

9.1 Development Progress: Architectural Requirements 112
9.2 Development Progress: Behavioural Requirements 113
9.3 Development Progress: Functional Requirements 114
9.4 Development Progress: Non-functional Requirements 114
9.5 Development Progress: Device Agent Features 116
9.6 Development Progress: Central Aggregator Features 117
9.7 Development Progress: Dashboard Features 118
9.8 Development Progress: Totals . 119

xvii

Listings

6.1 MQTT: example topics . 56
6.2 MQTT: example of topics filtered by subscription 56
6.3 MQTT: example of topics filtered by "+" wildcard 57
6.4 MQTT: example of desired topic hierarchy 57
6.5 JSON representation of a simplified DeviceMessage object 58
6.6 JSON representation of a DeviceMessage’s payload content 58
6.7 JSON representation of a ConfigurationMessage’s content 61
7.1 Android Manifest: Permissions . 81
7.2 Android Manifest: Activity and BootUpReceiver 81
7.3 Android Manifest: Eventful Data Collector Service and Receiver 82
7.4 Android Manifest: MQTT Service . 83
7.5 Java: Installation . 84
7.6 Java: ∼/.bashrc path variables . 84
7.7 Scala: Installation . 84
7.8 Hadoop: Installation . 85
7.9 Hadoop: ∼/.bashrc path variables . 85
7.10 Hadoop: Content of core-site.xml . 85
7.11 Hadoop: Content of hdfs-site.xml . 85
7.12 Hadoop: Content of mapred-site.xml . 86
7.13 Hadoop: Content of yarn-site.xml . 86
7.14 Hadoop: start HDFS and Yarn servers . 86
7.15 Zookeeper: Installation and server start . 87
7.16 Kafka: Installation . 87
7.17 Kafka: Start a broker . 87
7.18 Kafka: Successfully started broker . 88
7.19 Kafka: Topic creation . 88
7.20 Kafka: Producer . 88
7.21 Kafka: Consumer . 88
7.22 Kafka: List existing topics . 88
7.23 Spark: Installation . 88
7.24 Spark: Assembly . 89
7.25 Spark: Launch a Spark shell . 89
7.26 Spark: Successful launch output . 89
7.27 Oryx: Content of lambda_app.conf . 90
7.28 Oryx: ∼/.bashrc path variables . 91

xix

7.29 Oryx: Start Zookeeper server . 92
7.30 Oryx: Start Kafka server . 92
7.31 Oryx: Automatic setup of Kafka topics . 92
7.32 Oryx: Kafka message tail . 92
7.33 Oryx: Batch layer . 92
7.34 Oryx: Speed layer . 93
7.35 Oryx: Serving layer . 93
7.36 Oryx: Restart Zookeeper server . 93
7.37 Oryx: Restart Hadoop’s HDFS and YARN 93
7.38 Oryx: Re-setup and restart Kafka brokers and topics 93
7.39 Oryx: Restart Batch layer . 93
7.40 Oryx: Restart Speed layer . 93
7.41 Oryx: Restart Serving layer . 93
7.42 Oryx: Restart the cluster . 93
7.43 Oryx: Content of restart-all.sh . 94
7.44 MQTT: Installing Mosquitto . 94
7.45 MQTT: Launching a broker . 94
7.46 MQTT: Launching a broker with a custom configuration 95
7.47 MQTT: Subscribe to a topic . 95
7.48 MQTT: Publish to a topic . 95
7.49 MQTT-Kafka bridge . 96
7.50 Oryx Lambda Application: Installation . 96
7.51 Oryx Lambda Application: Successful build output 96
7.52 Oryx Lambda Application: Deployment . 97
7.53 Oryx Lambda Application: Targeted rebuilding 97
7.54 Oryx Lambda Application: Successful targeted re-building output 97

xx

Chapter 1

Introduction

Although they are called “mobile”, many mobile devices themselves cannot move but
rather do not hinder the movement of the carrier or host, as opposed to what is are now
commonly known as stationary devices. Because of this distinction, mobile devices can be
characterized per several other traits: dimensions and weight, connectivity to other devices,
and when the mobility occurs.

Most mobile devices have an embedded display screen (or can be connected to one) and
receive input from either physical buttons and keyboards or from on-screen virtual buttons
and keyboards (if the display is touch-sensitive), some devices also support audio input,
namely voice recognition. Sensors such as accelerometers, compasses, magnetometers, or
gyroscopes, allowing for detection of orientation and motion, data capture devices such as
barcode, RFID, fingerprint and smart card readers can also be embedded or attached to
the mobile device. On top of all the already mentioned extras, the most prominently used
features are related to connectivity and usually fall under Wi-Fi, Bluetooth, NFC and GPS
capabilities.

The first mobile devices did not have much to offer, devices like the IBM Simon (released
in 1994, regarded as the first smartphone) were very “dumb” by today’s standards, having
very limited electronics and processing power. For the sake of context, the Table 1.1 com-
pares mobile devices (almost) equidistant in time: an iPhone 6, an iPhone 1st Generation
(commonly referred to as the first actual smartphone) and the IBM Simon.

1

Table 1.1: Comparison of iconic mobile device (smartphone) specifications

IBM Simon iPhone (1st Gen.) iPhone 6
Release Date August 16, 1994 June 29, 2007 September 19, 2014
Dimensions 200 x 64 x 38 mm 115 x 61 x 11.6 mm 138.1 x 67 x 6.9 mm

Weight 510 g 135 g 129 g

CPU 16-bit, 16 MHz, x86-
compatible

32-bit, 412 to 620 MHz,
ARM

64-bit, 1.4 GHz dual-core,
ARM

GPU None PowerVR MBX Lite 3D
GPU

PowerVR Series 6 GX6450
(quad-core)

Memory 1 MB 128 MB DRAM 1 GB LPDDR3 RAM
Storage 1 MB 4, 8, or 16 GB 16, 64, 128 GB

Battery 7.5V NiCad 3.7 V 1400 mA·h Lithium-
ion

3.82 V 6.91 W·h (1,810
mA·h) Lithium-ion

Data Inputs Microphone, Touchscreen
with stylus

Multi-touch touchscreen, 3-
axis accelerometer, Proxim-
ity sensor, Ambient light
sensor, Microphone

Multi-touch touchscreen,
Triple microphone, 3-
axis gyroscope, 3-axis
accelerometer, Digital
compass, iBeacon, Proxim-
ity sensor, Ambient light
sensor, Fingerprint reader,
Barometer

Display
4.5 in × 1.4 in, 160px x
293px monochrome backlit
LCD

3.5 in diagonal, 320x480 px
resolution at 163 ppi, 2:3 as-
pect ratio, 18-bit (262, 144-
color) LCD

4.7 in diagonal, 1334x750,
LED-backlit IPS LCD, 326
ppi (128 px/cm) pixel den-
sity 16:9 aspect ratio

Camera None Rear: 2 MP

Rear: 8 MP, 1080p HD
video recording, Slow-
motion video, Panorama
(up to 43 MP)
Front: 1.2 MP (1280×960
px max.), 720p video
recording

Connectivity

2400-bps Hayes-compatible
modem, 33-pin connec-
tor, 9600-bps Group 3
send-and-receive fax, I/O
connection port, PCMCIA
type 2

Quad-band GSM/G-
PRS/EDGE, Wi-Fi (802.11
b/g), Bluetooth 2.0

UMTS/HSPA+/DC-
HSDPA, CDMA EV-DO
Rev. A and Rev. B,
GSM/EDGE, Wi-Fi, Blue-
tooth 4.2, NFC, GPS &
GLONASS

2

As one can see from Table 1.1, mobile devices such as smartphones have come a long
way, having their computing power and capabilities increase exponentially. Because of the
plethora of possibilities these more modern mobile devices offer, it is no wonder that they
have spread to almost every job that is associated with mobility and have even begun to
substitute previously dominant (and often unportable) forms of computing devices such as
desktop computers.

The surge of more capable mobile devices has also created the need for what are now
known as Bring Your Own Device (BYOD) environments. There are several types of BYOD
schemes available for enterprise usage, with the key distinctive factor being Mobile Device
Management (MDM) policies, detailing which devices are admissible and what type of control
is held over them (accessible data, applications and functionalities). Figure 1.1 illustrates
the trade-off between control and number of devices in the environment

Figure 1.1: Enterprise mobility schemes

Recently, large scale companies have begun to move from the left most scheme (COCE)
in Figure 1.1 to more BYOD friendly alternatives, namely COPE and POCE.

Although under some circumstances one can be exchanged for the other, several defining
features separate stationary from mobile devices which in turn lead to cut corners when it
comes to device security. The most noteworthy distinction is the limited battery life inherent
to truly mobile devices as it is also the root of most of other differences. Since the battery
is finite (unless recharged) the devices computing power can only be pushed thus far, to
the point where its timed usage does not consume too much energy. Mobile devices’ com-

3

pactness also poses concerns when it comes to cooling or increasing storage space. Another,
often treated separately, concern is the risk of misplacement or theft of mobile devices which
grants a malicious user the freedom for a completely different suite of attacks or paths to the
data stored in the device. As it should be obvious, mobile devices also have their beneficial
qualities, namely their inherent eased mobility or transportation from one location to an-
other and, their simplified interfaces and minimal physical appendages for ease of use. With
such accentuated differences, it is only inevitable that security assurance in mobile devices
faces a different set of challenges from conventional computers’ security risks and defense
strategies, working with more limited resources.

During the course of this project, a paper (Lima 2016) was published for the ICCWS
(International Conference on Cyber Warfare) conference, surveying the state of the art on
security for mobile device assets, analyzing and comparing various security methods and tech-
niques from supported operating systems to the threats or attack vectors involved. Much of
the material in that paper was used for Chapter 2.

This project aims to develop an alternative method of analyzing and detecting anomalies
in mobile devices, not unlike what has already been done for stationary and laptop comput-
ers, but which still seems illusive or not well established in mobile device contexts.

This document focuses on surveying mobile device management solutions for security
problems, ranging from prevention, to monitoring and mitigation of threats at various points
in the system’s and its applications’ lifecycles, in hopes of identifying the best and worst prac-
tices for enterprise environments. Additionally, it presents a system with several components
designed for the analysis and detection of anomalies on mobile devices. It is organized in
the following manner. Chapter 2 delves into the aspects of Prevention and Monitoring in
mobile devices, overviewing the most common used methods of each strategy, their benefits
and shortcomings, and comparing them amongst themselves. It also examines mitigation
techniques employed in mobile devices. Chapter 3 focuses on the objectives and scope of
this project, detailing its requirements. Chapter 4 provides both an overview and a more
specific analysis of the work and work methodology planned for this project.

Starting at Chapter 5, a more technical analysis of the system is provided. This chap-
ter is dedicated to the system’s architecture, its components, their connections, relationships
and interactions. In Chapter 6 we describe implementation problems that arose during the
course of the project, how we confronted them as engineering tasks, and explain the solu-
tions we propose for them. Following up, and in order to leave no essential details out of this
document, Chapter 7 acts as a user guide explaining any noteworthy considerations that
were made during the development phases, how the system’s components can be managed
individually, and how they should be deployed.

Once the system has been presented from one end to the other, Chapter 8 overviews
the preliminary data results that have been collected, assessing the efficiency and promise
of the proposed solutions. Chapter 9 assesses the current completeness of the project, in
light of what was initially proposed, and lists what still is missing and should be done in

4

the future. Finally, Chapter 10 is dedicated to final remarks and conclusions related to the
project.

5

Chapter 2

State of the Art

This chapter details the list of current and historically relevant techniques used for ana-
lyzing and detecting anomalies in mobile devices, breaking them into three main categories:
prevention, monitoring, and mitigation. For each of these categories there is a plethora
of subcategories and techniques which we explain superficially and provide examples for.
Lastly, we analyze already existing competitor applications for some (if not all) of the same
goals as our proposed application, which we detail later on, and why they aren’t suitable for
the problem at hand.

2.1 Prevention and Monitoring

Currently there is a very apparent emphasis on mobile device data security through
preventive methods when compared with monitoring or detection approaches. The most
often cited cause for this existing discrepancy is the limited battery life of mobile device
assets, without a doubt, but it is also coupled with the more, and often forgotten, less
intrusive nature of prevention methods. The following sections detail the most common
prevention and monitoring methods found in mobile devices along with their respective
advantages and disadvantages. The takeaway message from this section is that albeit both
defensive strategies can be effective on their own, they are not mutually exclusive and in fact
may benefit vastly (in terms of effectiveness) from being combined.

2.1.1 Prevention

Several prevention methods have been adopted in mobile devices to minimize the amount
of potentially harmful malware applications that get into the device or that might exploit
known attack vectors as a precautionary measure. An attack vector is a method or exploited
security feature used to compromise the security of a system. Among the most commonly
used prevention methods are:

• Sandboxing – creating a separate virtual space for the untrusted application or code
to run with limited to no interaction with other apps and under tight restrictions in
the underlying host system, thus diminishing the possible attack vector. Most modern

7

mobile device Operating Systems (OSs) such as Android, iOS and Windows Phone run
their applications in sandboxed environments.

• Personalized Approval – detailed analysis of each application’s conformity to secu-
rity policies before being approved for distribution. The most common example of this
technique is that of Apple’s App Review system wherein each submitted application
goes through a series of meticulous review steps before being available for download on
the App Store. Microsoft has a similar system in place the Windows Phone App Store.
By contrast, Google does not have a similar policy for apps delivered to the Google
Play Store, relying on its users’ capacity to identify and report malicious applications
or on Trusted Party Management (which is covered later).

• Code and Assets Assessment – there are several well-known types of malware which
can be identified by distinct signatures. Most anti-virus protection mechanisms rely
on databases of such cases to identify potential threats to the system. Another way of
assessing an app is to check which system calls, frameworks and methods it uses and
for what reasons. Both iOS and Windows Phone enforce this behavior through their
respective official application stores, for which each submitted application undergoes
scrutinous inspection before being available for download.

• Compartmentalization – the basic premise is that of completely separating the user’s
personal space from the work space within the device, aiming to avoid unnecessary
compromise and encapsulate threats from the personal space. The work space is usually
subject to much stricter security and behavior restrictions and might even not allow
the installation or running of new scripts apart from the default assets. Since Android
API level 21, devices can have user accounts that are managed by the main account,
which can have a more limited set of permissions.

• Trusted Party Management – this method relies on the verification of trusted
certificates, keys and signatures to manage which entities can interact with the system
or which applications can be installed. For instance, only a single trusted computer
might be able to write to the mobile devices storage (aside from the device itself) or
only apps approved and properly signed by a company beforehand might be installed
on the device. Android, iOS and Windows Phone all have the capability to install
and manage custom trusted enterprise applications in the devices, be it through direct
installation or certified third party application stores.

• Permission Systems – one way of circumventing the ordeal of assessing an app’s
functionalities or used tools is to leave it to the user to either accept or reject a list
of granted permissions. Android and iPhone apps, for instance, must explicitly de-
tail which system features or hardware capabilities they (might) need access to. For
Android devices, this is a mandatory step performed before the app is installed unto
the device whilst for iPhone devices each individual permission will be asked during
runtime when needed for the first time. In both scenarios, this information can be
checked before installing the app and it is up to the user to gauge the risk granting
access to sensitive features such as access to the camera or SD storage.

8

• Authentication Schemes – comprised of heavy encryption standards, with the pos-
sibility of depending on the existence of an external super user, the idea is to lock
system management behind complex password/PIN mechanisms before any (or even
every) write or read action is performed on the system. Most modern mobile Operating
Systems such as Android, iOS and Windows Phone come with the option to encrypt
the phone regarding a locking mechanism, usually a PIN code or a fingerprint, without
which the contents of the phone cannot be accessed.

• Limited Time Access – ephemeral fixed length sessions are scheduled for the devices
usage, and all services are interrupted or aborted when the allocated time slot elapses.
Not available by default, this method is usually achieved at an application level by
using timed access tokens

These prevention strategies are not free of advantages and disadvantages. Most of them
try to delegate the risk assessment to a more powerful or infinite power-sourced entity (hu-
man or server) reducing the energy footprint on the target device. They benefit from vast
amounts of previous knowledge, be it through databases of well know signatures or attack
vectors, or even through sheer human suspicion of years of trial and error. However, as can
be seen, most of these methods are fallible for the exact same reasons. Previously unknown
attack vectors or methods could simply pass by these security precautions because they are
not suspicious when compared with the knowledge base. Leaving it up to end user to fig-
ure out if the list of permissions is unacceptable or a potential hazard relies too much on
common-sense and is subjective to everyone’s aptitudes and skills. Perhaps the most com-
mon subliminal pitfall of such methods is the intrusive steps required for the installation of
content.

Most of these preventive methods have been directly ported or adapted from already
well-established and tested stationary computers.

Table 2.1 analyses at which moment of an application’s lifecycle the already mentioned
prevention strategies act, and for which mobile Operating Systems they can be implemented
or are already available.

As we can see from Table 2.1, many prevention strategies occur at runtime. This is
the opposite of what is commonly done on stationary devices such as desktop computers,
mainly due to the fact that it can be harder to find suspicious applications solely based on
their appearance rather than on their behavior without the constant monitoring provided
by anti-viruses or similar tools, thus, mobile devices rely on runtime approaches.

9

Table 2.1: Comparison of key moment of action for prevention methods

Pre-Installation Installation Runtime OS Availability

Sandboxing • Android, iOS,
Windows Phone

Personalized Approval • iOS,
Windows Phone

Code and Assets
Assessment • iOS,

Windows Phone

Compartmentalization • Android

Trusted Party
Management • Android, iOS,

Windows Phone

Permission Systems • Android, iOS,
Windows Phone

Authentication Schemes • Android, iOS,
Windows Phone

Limited Time Access • Android, iOS,
Windows Phone

10

2.1.2 Monitoring

Monitoring faces a different set of challenges from the prevention mechanisms already
described as it is intended to facilitate detection and (if possible) gather additional infor-
mation to ease halting malicious activity within the system at runtime. The most common
approaches are:

• Behavior Analysis – focused on what is and isn’t expected of each type of application,
the app or code is scrutinized at runtime for any anomalous or suspicious activity with
the main purpose of detecting unwanted accesses or transfers of delicate or out of
scope information in the device. This process can be coupled with a training phase
or expected default behavior thresholds for known applications, or with Log Analysis,
the next monitoring method on this list. (Bose 2008, Burguera 2011)

• Log Analysis – the host system logs systematic information regarding memory and
battery usage, storage accesses, data transfers and services used (Bluetooth, Wi-Fi,
Mobile Data, etc.) in hopes of portraying the apps true nature. The logs are then
periodically sent to a trusted supervising server to delegate the heavier, more resource
intensive, analysis burden out of the mobile device, albeit some minor analysis can still
be performed on site. Log integrity measures should be considered on both endpoints
for this method to work properly. (Becher 2008, Mazumdar 2011, Halilovic 2012)

• System Call Hooking (SCH) – the act of altering the underlying host system for
more fine-grained logging of the system’s function calls and frameworks used (along
with other features) with the goal of easing the monitoring task (Willems 2007). This
can help detect unnecessary use of mobile device features such as the camera or mi-
crophone.

• Runtime Permission Checks – every hardware and software feature external to
the app requires that explicit permission for said action be granted at runtime at the
host system’s level. One common example would be requesting permission to use the
device’s camera every time to stop a malicious app from stealthily collecting unwanted
pictures of the user or his surroundings. Android and iOS have runtime permission
verifications, allowing for the user to toggle or opt out permissions after installing the
application.

The main advantages of monitoring security strategies are a better and more refined as-
sessment of the sensitive data and what actions or applications could be compromising it
(hopefully) in time for intervention. They also enable a stricter control of what are accept-
able behaviors through a more detailed logs and variable limitations. Given the more limited
computing power and battery life, some of these methods can easily become an overkill for
the device or rely too heavily on consistent and systematic connection with secure networks
and servers, which might not be a possibility all together depending on the use case scenario.
Another disadvantage is the risk margin for potential interventions in “real time” which, de-
pending on network status, system resources, cryptographic complexity and connectivity
issues might result in an unacceptable latency.

11

It is worth mentioning that some monitoring methods cannot be implemented out of the
box, the perfect example being System Call Hooking, which is very hard to perform or even
impossible on most mobile operating systems without rooting or running a custom modi-
fied version of the original OS. Android is the most commonly adopted OS for these kind
of barred monitoring techniques because it is based on the Android Open Source Project,
meaning that it can be altered at core level to accommodate the desired changes more easily,
and it can run on a variety of devices and hardware, unlike iOS and Windows Phone.

Table 2.2: Comparison of prevented threats by monitoring method

Privilege
Escalation

Worms,
Trojans,
Viruses

Resource or
Data Misuse Spyware Theft,

Device Cloning OS Availability

Behavior Analysis • • • • Android, iOS,
Windows Phone

Log Analysis • • • • Android, iOS,
Windows Phone

System Call Hooking • • • • Android

Runtime
Permission Checks • Android, iOS,

Windows Phone

Table 2.2 examined which threats each monitoring method can help prevent, and it can
clearly be seen that apart from Runtime Permission Checks, they all seems equally effective
against most threats. However, since SCH is usually not readily available on most mobile
devices, and Behavior Analysis requires a priori training, Log Analysis seems to be the most
effective technique that can be employed out-of-the-box.

Although prevention and monitoring can improve security immensely, there will always
be new malware or attack vectors against which they are ineffective. The best examples
of this kind of malware are zero day, undisclosed and undetectable exploits, ranging from
target specific applications such as Windows’ Stuxnet to global pandemics such as Android’s
Stagefright. For these threats, mitigation is a suitable countermeasure.

12

2.2 Mitigation

Since traditional Desktop devices are mostly immovable, they are far less susceptible to
physical attacks, and can be monitored much more easily, they can even be more reliant on
safe connections since they are susceptible to few changes. Mobile devices, however, are the
complete opposite and can commute through various different device ecosystems in a matter
of minutes, hence, additional care must be taken when it comes to their security.

Some of the preventive and monitoring techniques already described in Section 2 can be
considered attack vector or vulnerability mitigation techniques on their own, but there are
other means to try and repair a compromised device, or to at least minimize the damage it
can do:

• Security Policies – written documents that detail which devices can connect to an
infrastructure, what types of data they should contain, what constitutes as sensitive
data, a list of supported operating systems and applications, and terms of acceptable
use and penalties for misuse.

• Patch Support – the ability to submit updates or patches for an application or
system without having to physically access it can be sufficient to fix newly discovered
vulnerabilities or potential attack vectors.

• Long Term Support (LTS) – after distributing the system/application there is a
time frame for which the developer agrees to provide support for potential threats.

• Remote Control – if a device becomes compromised it can be wiped, reset, shut-
down or locked remotely, removing the possibility for an escalated compromise or
continued/recurrent access to sensitive data.

• Location Tracking – if a mobile device is stolen and ends up in a conspicuous location
it can be tracked down or simply located after the theft is reported.

• Full/Coordinated Disclosure – if a researcher/developer finds a vulnerability in an
application/system he should contact the developer about his findings and, if given
permission (in case of coordinated disclosure), make them available as soon as pos-
sible, or simply make them public as soon as he is certain of them (in case of full
disclosure). This mitigation strategy is controversial as disclosing vulnerabilities can
in fact potentiate the discovery of related but stealthier vulnerabilities.

• Recall for Analysis – the potentially targeted devices are periodically recalled for
a temporary system and application assessment. This method can be invasive to
personal data if the device is also used for personal purposes or outside of the enterprise
environment.

• User Feedback – a means for the user of the device to report any suspicious or
anomalous behavior, no matter how ridiculous it might seem. This must be enforced
with a sense of trust between the user and coordinators/feedback-receivers.

13

• Documentation – documents dedicated to scrutinize successful and unsuccessful as-
pects of a project, application or system, along with identified threats, how they were
handled and how they could have been avoided. Usually performed at the end or at
pre-defined iterative stages of the lifecycle, a Post Mortem document is a common
example of this strategy.

Table 2.3 analyses the moment at which each of the addressed mitigation strategies can
help handle a potential threat: before, during or after it is detected or does damage.

Table 2.3: Moment of mitigation comparison

Before During After
Security Policies •
Patch Support • •

Long Term Support • •
Remote Control • •

Location Tracking •
Full/Coordinated Disclosure •

Recall for Analysis • • •
User Feedback •
Documentation •

As was expected from the definition of the word “mitigation” itself, there is great empha-
sis mitigating a threat after it has done damage more than the preventive and monitoring
aspects that we have already discussed, which have more preemptive and persistent natures.

Good mitigation strategies are just as important in terms of informatics as they are when
accounting for human resources. The more detailed a mitigation strategy and security coun-
termeasures the easier it can become to overcome threats. Figure 2.1 exemplifies how all the
identified preventive, monitoring and mitigation methods can be combined into a sturdier
security lifecycle for mobile asset management, denouncing the three main phases at which
malware can be identified and, possibly, prevented.

Figure 2.1 is reminiscent of a simpler Observe-Orient-Decide-Act (OODA) loop (Boyd,
1995), a common strategic approach to military and commercial operations and learning
processes. It focuses on agility when dealing with a threat in order to mitigate its advances
and damage at any given point in time, learning from any form of input and feedback ob-
tained. Figure 2.2 portrays a simplified version of the Boyd’s OODA loop, representing all
of these aspects.

14

Figure 2.1: Security lifecycle for mobile asset management

Figure 2.2: Simplified OODA loop

15

2.3 Competitors and Motivation

With the growing availability of smartphones and reliable networks all across the world,
an increasing number of users are starting to perform their once usual web content browsing
and simple tasks such as e-mail checking (Mobile Marketshare 2017a) on their mobile de-
vices’ applications rather then on laptops or desktop computers (Mobile Marketshare 2017c).
Some reports (Mobile Marketshare 2017b) even go as far as stating that mobile web usage
has already overtaken their desktop counterpart.

Most mobile device analytics tools available are focused on the aspects of a particular
application’s performance, user retention, user experience, and centralized crash log man-
agement; they are not intended for monitoring the devices’ contents, user actions within
and outside a particular app, two way communication to remotely control what should be
reported, among other features that are indeed what interests us. In short, the ability to log
user/device specific/contextual data is not their main focus, even if they allow for it in some
limited form, nor is it to retro-actively allow for a roll in it that sense.

Some of the most widely used tools for such analyses as the one’s already described are
Firebase’s Google Analytics, Yahoo’s Flurry Analytics, Microsoft’s HockeyApp, and Fabric’s
tools such as Crashlytics and Answers. In Table 2.4 we compare these solutions regarding
their capabilities.

As we can see in Table 2.4, none of those tools provide us with the "simple" yet crucial
information that a device’s location (Device Location Reporting) or the list of other
installed applications (Other Apps Details Reporting) can provide. Another thing that
we can immediately realize is that these services are used for spectating and analyzing, not
interacting and reacting to the applications and devices that are being monitored (Actions
Over Reports and Remote App Customization). For these services, anomaly detec-
tion and analysis focuses heavily on monitoring crash logs, and monitoring user behaviour
within a particular app rather then monitoring the user or his behaviour with the system
and his environment.

Of course that certain anti-virus companies already do the type of monitoring we are
aiming for on mobile devices, much like they have done for regular computers throughout
the years, however, their tools and the data they collect are kept secret for security purposes.
The main takeaway from this section’s analysis should be that there truly are no products
that provide all the monitoring control we aim for with targets as limited as mobile devices.
Chapter 3 details the objectives and requirements of the system we intend to achieve.

16

Table 2.4: Comparison of existing mobile device monitoring services

Google
Analytics

Flurry
Analytics Fabric HockeyApp

Supported
Platforms

Android, iOS,
Others Android, iOS Android, iOS Android, iOS,

Others
Dashboard
& Graphs • • • •

Report
Customization • • • •

Actions Over
Reports Very limited

App Details
Reporting • • • •

Other Apps
Details Reporting

Remote App
Customization

Device
Specifications

Reporting
• • • •

Device Location
Reporting •

User Actions
Reporting • • • •

17

Chapter 3

Objectives and Requirements

3.1 Scope and high-level approach

The purpose of this project is to assess and develop an alternative anomaly analysis and
detection system for mobile devices. Anomalies can come under several guises, with the most
common kind for concern being malware applications. The main objective for this project is
to develop a solution capable of gathering meaningful information that can help determine
if and when a device has become compromised, a scenario that is both real and desirable for
users and corporations alike.

From a high-level perspective, the proposed solution will consist of three separate entities
that communicate with each other: data collection terminals, a central data aggregator and
processor, a controller dashboard interface. The terminals, owned by human assets, keep
track of various user and system actions, producing data that will be sent to the central
aggregator. The central aggregator receives the data from several mobile terminal devices
and performs some machine learning and statistical processing on the data, displaying its
findings on the dashboard. The dashboard can be operated by an user, altering the inner
workings of the central aggregator. All of this can be briefly visualized in 3.1.

Figure 3.1: High-level approach for the proposed solution

This platform we’re proposing will gather information from an ecosystem of devices that
can reach large proportions, and as we’ve seen from Table 2.4 in the previous Chapter, there
are already many companies investing money and resources into similar platforms, trying to
tap into this kind of problem but one a more restrictive scope. A platform such as the one
we’re describing could then be sold to large corporations wishing to more easily monitor and

19

manage their employees’ mobile devices, or it could be used for research purposes regarding
human and device demographics.

3.2 Platform Requirements

Having no specific client in mind and being a purely academic project, it is no easy task
to provide thorough and specific requirements for this project. As such, this section is an
example of an engineering thought experiment on creating sensible specifications for a set of
tools that can be adapted to distinct large-scale enterprise scenarios, without coming off as
too rigorous or focused on a single scenario. That said, some technologies had already been
pre-determined beforehand for the project (e.g. the use of Android for the device agents),
but fundamented reasons are given further on for them.

It should be noted that due to these consideration, many of the technological choices and
reasoning was performed on an ad hoc basis, and it becomes particularly clear in Chapters
6 and 7 which are dedicated to the Implementation, Development & Deployment nuances of
the project as it progressed.

The following sections provide deeper specifications of what should be done, how it should
be done, for what purpose, and how each specification should be assessed. Thus, we present
the architectural, behavioral, functional and non-functional requirements for this project,
given its aforementioned conditions.

However, since we’ll be presenting very distinct requirements for the project and, as with
any project, not all are equally as important or feasible. Thus, in order to not compromise the
projects development, we have decided to prioritize requirements according to theMoSCoW
method, assigning each requirement to one of four categories: "Must Have", "Should Have",
"Could Have" or "Won’t Have".

20

3.2.1 Architectural

The following constraints in Table 3.1 denote decisions and imposed limitations for the
architecture as a whole.

Table 3.1: MoSCoW prioritization of architectural requirements

Requirement Priority

1 Device Agent Operating System - the Device Agent
Application runs on Android devices. Must Have

2
Loose coupling between Device Agent and Central
Aggregator - changes to the data collected with the
terminals is transparent to the central aggregator.

Must Have

3 Central Aggregator - Uses Machine Learning tools
instead of hardcoded classification. Must Have

4
Dashboard-Aggregator control - The actions in the
Dashboard intended as modifications alter the behaviour of
the Central Aggregator.

Should Have 1

5 Dashboard Browser Support - The dashboard runs on
Mozilla’s Firefox browser. Should Have 2

6 Dashboard Browser Support - The dashboard runs on
browsers other than Mozilla’s Firefox. Could Have

7 User Anonymity - Secure connections are used by the
system Must Have

8
User Anonymity - Secure connections are used by the
system and uphold anonymity for the mobile terminal
users.

Should Have

É um bocadinho mau ter o Must Have nas partes do dashboard e depois não ter con-
seguido concretizar. A minha sugestão: reduzir a prioridade e colocar uma chamada de
atenção para um texto descritivo que explique, dadas as limitações de tempo, foi dada ên-
fase aos componentes de coleta e processamento de dados, que constituem o core da solução.
Do mesmo modo deverá ficar claro que o Dashboard fará parte dos next steps.

1Altered due to time constraints, previously graded as Must Have.
2See footnote 1.

21

3.2.2 Behavioral

The following specifications in Table 3.2 detail what has to be done by identifying the
necessary behavior of the system and its components:

Table 3.2: MoSCoW prioritization of behavioural requirements

Requirement Priority

9 The Device Agent Application collects data from the
mobile terminal it is installed in. Must Have

10 The Device Agent Application has a low impact on the
terminals battery, CPU and bandwidth. Should Have

11 The Device Agent Application periodically transfers
data to the central aggregator. Must Have

12 The Device Agent Application securely transfers data
to the central aggregator. Must Have

13 The Device Agent Application copes with connectivity
issues with the central aggregator. Should Have

14 The Central Aggregator employs Machine Learning on
the collected data for each user. Should Have

15 The Central Aggregator employs Data Analysis on the
collected data for each user. Could Have

16 The Central Aggregator employs Machine Learning on
the collected data between users. Must Have

17 The Central Aggregator employs Data Analysis on the
collected data between users. Could Have

18 The Dashboard displays metrics, findings and collected
data. Should Have 3

19 The Dashboard displays user activity. Could Have

3See footnote 1.

22

3.2.3 Functional

These requirements in Table 3.3 are what has to be done by identifying the necessary
task, action or activity that must be accomplished for that purpose:

Table 3.3: MoSCoW prioritization of functional requirements

Requirement Priority

20 The Device Agent Application handles the temporary
storage of the data in the mobile terminal. Must Have

21 The Device Agent Application handles the deletion of
unnecessary data stored in the mobile terminal. Should Have

22
The Device Agent Application handles the transfer of
data stored in the mobile terminal to the Central
Aggregator.

Must Have

23
The Device Agent Application only deletes stored data
from the mobile terminal that has already been transferred
to the Central Aggregator.

Must Have

24 The Device Agent Application requests updated data
collection configurations. Must Have

25 The Device Agent Application updates its data
collection configurations. Must Have

26 The Central Aggregator stores the collected data for
each user. Must Have

23

3.2.4 Non-functional

This section specifies in Table 3.4 criteria that can be used to judge the operation of the
system, rather than specific behaviors it should uphold:

Table 3.4: MoSCoW prioritization of non-functional requirements

Requirement Priority

27
The data collected with the Device Agent Application
does not occupy more than 100MB of the mobile terminal’s
storage space.

Should Have

28 The Central Aggregator scales for dozens of users. Must Have

29 The Central Aggregator scales for hundreds of users. Could Have

30 The Central Aggregator scales for thousands of users. Won’t Have

31 The Central Aggregator stores up to 3 months of
consecutive data for each user. Should Have

32 The Central Aggregator stores all the data ever received
for each user. Won’t Have

33 The Central Aggregator stores up to 3 months of
consecutive data for each user. Should Have

24

Chapter 4

Planning and Methodology

The following Chapter delineates the project’s expected time frame, split in two to ac-
commodate the first and second semesters, and how the work is arranged throughout it. For
each semester a detailed plan of its tasks is presented with the visual help of Gantt charts,
and each comprising task is given a brief explanation of what it entails. Lastly, the adopted
working methodology for the tasks is described.

4.1 First Semester Planning

4.1.1 Gantt Charts

The Gantt charts illustrated in Figures 4.1 and 4.2 detail the tasks, sub-tasks and mile-
stones carried out during the first semester of this project. Figure 4.1 is the condensed
visualization of the semester as a whole, emphasizing on the four main topics expanded
upon during this period: the writing of the ICCWS Conference paper, the development of
the Android Device Agent Application prototype, the regular project management meetings,
the writing of this report, and the co-authoring a book chapter proposal, which was accepted
(book chapter is due for September).

Figure 4.2 contrasts with Figure 4.1 by going into greater detail regarding the sub-tasks
(written chapters or sections, research and software features) and milestones (meetings and

Figure 4.1: First Semester - Collapsed overview Gantt chart

25

submissions) of each of the already mentioned main work topics thus far.

As one may notice, work on this thesis started before the academic school year so as
to accommodate the submission deadlines for the ICCWS conference. Nonetheless, we en-
countered still encountered a minor setback as the amount of time dedicated to the ICCWS
Conference paper, even though it served as the backbone for this document’s state of the art
research, was greater than expected, but thankfully it paid off by providing a fundamented
state of the art and opening up several other opportunities to expand on the subject.

Regarding the first semester of the project, once the planning phase was surmounted,
all of the proposed and established goals were met at the specified time frames, in fact, the
development of the Device Agent Android Application was moved ahead of schedule due to
this, freeing up a large portion of the already heavily time constrained second semester.

4.1.2 Meetings and Deliverables

In order to make the most of the available time and perform as many of this project’s
objectives whilst minimizing any setbacks, weekly meetings were scheduled with the intent
of planning the following week. A short meeting report was drafted at the end of each
meeting, detailing what was supposed to be researched or implemented up until the following
meeting. Moreover, during the course of each week, an additional weekly activity report
was written and it detailed all the solutions, questions, problems and references encountered.
Finally, at the end of each month amonthly activity report was put together, overviewing
the expected goals for the current month, if they were attained or why not, along with a
brief expectation of the following month’s objectives.

4.1.3 Publications

During the course of the first semester the opportunity arose to submit a paper for
the ICCWS conference to be held on march of 2017. The paper was entitled Security
Monitoring for Mobile Device Assets: A Survey and its main purpose was to analyze
the state of the art in mobile anomaly prevention, monitoring and mitigation, with special
focus on how these techniques have changed over time, with not only stationary computers
in mind but mobile devices as well. Much of that paper was re-used in the writing of this
document’s own state of the art. The paper was accepted for the conference and Professor
Paulo Simões was chosen as the designated speaker.

4.1.4 Device Agent Application

Initially, the plan was to dedicate the majority of the semester to writing documents
and performing research on the topic at hands, which might have meant that more technical
aspects would have been left out of this report, as such it was decided early on that the
development of the Android Device Agent Application would also be carried out in parallel.
This way, the following semester would have a more stable foundation to be built upon.

26

Figure 4.2: First Semester - Expanded overview Gantt chart
27

Figure 4.3: Second Semester Predicted Effort - Collapsed overview Gantt chart

4.2 Second Semester Planning

This section is to be interpreted as a compilation of work that is planned and will be
carried out during the second half of this project.

4.2.1 Gantt Charts

The Gantt charts illustrated in 4.3 and 4.4 detail the tasks, sub-tasks and milestones
carried that are intended to be carried out during the second semester of this project.

The following subsections summarize the tasks and milestone in 4.3 and 4.4.

4.2.2 Sampling

The sampling rate will depend on the impact that each created service has on the device.
The use of a profiler should help us analyse this impact, whilst performing several simulations
of the services running, we should be able to ascertain an average scan time and logging time,
providing us with enough information to determine appropriate sampling times.

4.2.3 Dataset Generation

We will also need to amass a dataset in order to train the Central Aggregator’s classifier.
The dataset needs to contain examples of both compromised and uncompromised behaviour,
as such, we will install the Device Agent Application on several non-compromised emulator
and real devices, make a sped up use of them for a prolonged period of time and, subsequently,
infect them with several of the most common and most widely spread known malware. This
way we will be able to gather data before and after the devices become infected.

4.2.4 Synchronisation

Synchronization should be attempted each hour, every 6 hours, or daily depending on
the targeted devices and security desired. Log each synchronization attempt and, in case of

28

Figure 4.4: Second Semester Planned Effort - Expanded overview Gantt chart

failure, pickup from the last successful synchronization.

4.2.5 Message Broker

In order to transfer the collected data from the Device Agents to the Central Aggregator
there must exist a secure connection, and we’ve opted for a message queue solution.

4.2.6 Central Aggregator

The Central Aggregator is the core section of the system and this project. It is meant
to process the gathered information and infer from it if a mobile terminal has become com-
promised. In order to do this we will make use of the Machine Learning classification tools
offered by Apache Spark.

4.2.7 Dashboard

In order to allow for easy control of the system without having to re-compile and re-factor
the Central Aggregator, a browser dashboard will serve as the medium between the human
analysts and the the core section of the system, with actions carried out by the user having
direct effect on the inner mechanics of the system. This section of the system will also
serve to display reports on the gathered information and its inferred results, and manage the
terminals’ user base.

29

4.2.8 Device Agent Management

The Dashboard should also allow us to control the data that each Device Agent is collect-
ing and how frequently, how it is aggregating its data and how frequently before publishing
it to the Central Aggregator. It is a feature with the intent of diminishing versioning issues
between Device Agents and re-deploys, going hand-in-hand with the previous subsection,
describing how the Dashboard could control the Central Aggregator.

4.2.9 Testing and Verification

We have dedicated a period of time near the end of the semester in which we will be
revising, testing, validating and improving the system, this is due to the work methodology
we have chosen, which will be explained further on.

4.2.10 Publication

Since our paper from the first semester was accepted for the ICCWS Conference, it was
presented by Prof. Paulo Simões in Dayton Ohio from the 2nd to the 3rd of March 2017.

A second paper was also drafted during the second semester, with it’s purpose being to
analyze our proposed architecture along with the impact that the Device Agent Android
application had on the host device’s resources, namely the CPU and RAM, but after missing
a couple of call-for-papers submission deadlines we ended up not publishing it. The obtained
results are however reused in Chapter 8, and it is our intent to submit this paper for the
ECCWS 2018: European Conference on Cyber-Warfare and Security.

Thanks to the first paper we published, we were contacted and invited to write a book
chapter proposal for CRC’s press book entitled Mobile Apps Engineering: Architecture,
Design, Development and Testing regarding mobile development best practices. Our book
chapter proposal was accepted by the editor, and the book chapter itself will be delivered
for revision sometime in September of this year. Our chapter focuses on security for mobile
devices and applications, and delves into several themes such as:

• Security risks and open challenges

• Consumer vs. corporate environments, niche application fields

• Mobile Device Management

• Security approaches: prevention, monitoring & detection, reaction

• Mobile device and application management

• Security hardening and prevention techniques

30

4.3 Second Semester Execution

Figure 4.5 is the updated version of Figure 4.4, detailing the offsets that ultimately
occurred in the second semester’s predicted plan.

Figure 4.5: Second Semester Executed Effort - Expanded overview Gantt chart

As can be seen Figure 4.5, this project’s deadline had to be postponed to September in
order to prioritize the development of the Central Aggregator, and in turn compromising the
Dashboard component of the platform.

Moving on to the second semester, we started by trying out and setting up several sys-
tems from scratch, namely Hortonworks’ and MapR’s sandboxes, and failing to customize
them to the project’s needs, even going so far as starting to completely build up the system
from the separate components and failing. After all of these experiments we finally tried
out Oryx, and even though it wasn’t as straight forward to configure as the documentation
suggested, we managed to eventually get it setup and working. We should have anticipated
that a system as complex as a fully fledged Lambda Architecture with Big Data scaling
properties would take more time and attempts to configure, ultimately mitigating or avoid-
ing the largest setback for this project.

31

4.4 Work Methodology

Several work methodologies can be applied to software projects, each with its own
strengths and weaknesses and distinct focuses. Some are more focused on the requirements
management whilst others ensure that more time is spent on implementation or testing.

Historically, the Waterfall Model has been used for all types of projects, not necessar-
ily related to software development, and because of it’s versatility, some defend that it is
not suitable for current software projects. It establishes a very straightforward approach to
management where one step of the project cannot begin before the previous one is signed
off as finished. It is also very relevant to notice that once a part of the model is closed it is
not supposed to be revisited.

Figure 4.6: Waterfall Model

Still within an historical aspect, the V-Model can be seen as an extension of the Waterfall
Model in the sense that, after the implementation phase each phase can send the project
increasingly backwards, denoting more serious and deep rooted problems in the project that
need to be revised or adapted.

Figure 4.7: V-Model

The work methodology for this project follows a similar reasoning to what propelled the
Waterfall Model to become the V-Model. It can be best illustrated with 4.8, where we can

32

see that there is much more emphasis on feedback loops between the Design, Implementa-
tion and Testing phases. The reasoning for this is that, due to the nature of the project’s
requirements and future maintenance not being very subjective to changes, the iterative im-
provements will be expressed either on design, code or data flaws.

Figure 4.8: Custom Model

33

Chapter 5

Architecture

This chapter is solely dedicated to present the detailed architecture of the project, from
interactions between the several components, to the components themselves and all of their
intricacies.

5.1 Overview

Figure 5.1: Overview of all the architectures

Perhaps the most appropriate diagram to start off this section is that of an overview of
the implemented components and how they are related. We can start analysing Figure 5.1
by following the flow of information from left to right:

• We define a cluster of Device Agents, Android mobile devices with our application
running. These mobile devices don’t need to coexist in the same physical ecosystem.

35

• Each device agent collects data throughout its stand-by and usage time.

• Each cluster is managed by a message broker, which receives the data collected by each
cluster’s device agent and relays it to the Central Aggregator.

• The Central Aggregator joins all the collected data in its own Database.

• The Central Aggregator performs some Machine Learning on the data stored in the
Database.

• The Central Aggregator creates visual representations of the collected data and the
findings from its Machine Learning component.

• The Central Aggregator sends data to be visualized in the Monitoring Dashboard.

• The Monitoring Dashboard can alter the Central Aggregator execution through user
actions.

This overview is already sufficient to address some of the Architectural Requirements
in Table 3.1, namely requirements #2 and #4, which state, respectfully, that the Central
Aggregator and Device Agents must be loosely coupled, and that the Dashboard can influence
the Central Aggregator’s behaviour. Requirements #1 and #3 are also contemplated, but
we delve into more detail about them in Chapter 6.

36

5.2 Device Agent

The first section to be analyzed is the Android Device Agent application, which can be
divided into three separate components: Collectors, Aggregators, and Data Publisher. Fig-
ure 5.2 illustrates this separation.

Figure 5.2: Architecture of a device agent’s components

As we can see in Figure 5.2, there are three distinct types of Collectors, dictating the
separations between the Aggregators further on. The Collectors are in charge of, as the
name implies, collecting data generated by the device, and depending on the nature of said
data, the method to obtain it varies and so does the way it is handled, processed and stored,
which is summarized in Figure 5.3. There are two types of Aggregators, one for the collected
Periodic Data and another for the Eventful Data, and their purpose is to join their respective
measurements and produce a smaller report of them, summarized in Figure 5.4. The Data
Publishing component reads the reports created by the Aggregators and publishes it to a
Message Broker.

Each Collector in Figure 5.3 is composed of an IntentService and a BroadcastReceiver.
The BroadcastReceiver is responsible for listening for events that will trigger a corresponding
action in the IntentService, responsible for handling the events themselves. Figure 5.4 is very
similar in structure to Figure 5.3 since the same type of event-driven scheduling mechanism
is used for both the Collectors and the Aggregators.

Since we use a database to store data before it is offloaded from the device, it should
come as no surprise that we have some utility classes that represent the database, its tables

37

Figure 5.3: UML Diagram of Collector classes used in the device agent application

and their entries, using them to abstract the actual management of the database. We detail
these classes in Figures 5.5, 5.6 and 5.7.

We can see in Figure 5.7 that all entries are subclasses of the Measurement object, and
they diversify based on their core purpose. We opted to keep the simple leaf classes in order
to preserve code readability and to minimize code refactoring should any differences arise
for the leaf sibling classes (EventfulMeasurement, PeriodicMeasurement and OneTimeMea-
surement, or EventfulAggregatedMeasurement and PeriodicAggregatedMeasurement).

Finally, Figure 5.8 details the tables that exist within the SQLite database. The atten-
tive reader might notice that this entity relationship diagram has no relationships between
its entities, but this is no mistake, the database is only used to store data in an easy and
structured fashion, and the complexity of the device agent component does not warrant more
complex relations.

38

Figure 5.4: UML Diagram of the Aggregator classes used in the device agent application

39

F
igure

5.5:
U
M
L
D
iagram

ofD
atabase

M
anager

and
it’s

relationship
w
ith

other
classes

used
in

the
device

agent
application

40

F
ig
ur
e
5.
6:

U
M
L
D
ia
gr
am

of
D
at
ab

as
e
Ta

bl
e
cl
as
se
s
us
ed

in
th
e
de
vi
ce

ag
en
t
ap

pl
ic
at
io
n

41

F
igure

5.7:
U
M
L
D
iagram

ofD
atabase

E
ntry

classes
used

in
the

device
agent

application

42

Figure 5.8: Entity relationship diagram for the device agent application’s SQLite database

43

5.3 Device Agent Management

An interesting concept that has gained increasing interest is that of Mobile Device
Management (MDM), already discussed in the State of the Art, especially for large net-
works or clusters of devices. It aims to allow for asynchronous customization of the devices
without having to physically or locally interact with them. In Figure 5.9 we explain our
intention as far as device management goes, namely:

• A device agent checks for changes to its configurations with the Device Management
Server.

• The Device Management Server can request the configurations for a specific Device
Agent.

• The Device Management Server can send the new configurations to a specific Device
Agent.

• The Dashboard can alter the configurations of a specific Device Agent via the Device
Management Server.

• The Dashboard can alter the configurations of all Device Agents via the Device Man-
agement Server.

Figure 5.9: Diagram for device agent management

44

Chapter 6

Implementation Details

The following sections detail every technology used for each part of this project, why they
were chosen over their possible counterparts/competitors, and how they influenced the course
of the project. These sections do not exclusively contain components that have already been
developed.

6.1 Device Agent

The agents are Android devices, each running an application that manages all of its data
collection, aggregation and communication tasks. The device agents’ main goal is to collect
data, which can be pre-processed, and send it to a more competent processing unit.

In order to achieve this, we need to establish some goals for our application:

• It must be small in size, in order to fit on reduced space devices.

• It must be device-agnostic, meaning that it can run on wide range of devices without
special considerations for the device’s hardware.

• It must collect data autonomously and periodically.

• It must collect data without hogging too may system resources.

• It must perform some pre-processing on the collected data without hogging too may
system resources.

Having all of these considerations in mind, we can now make a more conscious choice of
the Operating System as well as the tools and behaviour of the Data Collection, Event
Management, and Data Aggregation.

6.1.1 Operating System

There currently are three distinct prominent operating systems for mobile devices: Google’s
Android, Apple’s iOS and Microsoft’s Windows Phone. While there are other mobile plat-
forms, they are not as versatile, popular and widespread as these three. Even among these

45

top three operating systems there is one that dominates the others, be it in market shares
or in the amount of literature written for it: Android.

Figure 6.1 illustrates the sheer gap between Android’s market share and the remaining
competitors estimated user base. It should be noted that this figure does not account for
the distinction between enterprise and regular users.

Figure 6.1: Mobile device operating systems market shares
Source: (IDC 2016)

Moreover, we can see from Table 6.1 that there is a proportional expected difference in
the amount of literature, content and references to each of the operating systems. Searching
for the following keywords yields the following amount of results:

Not only is Android the most popular on both of the previous accounts, it is also the
only operating system which provides out-of-the-box the means to easily collect the most

46

Table 6.1: Number of search results for keywords and different search engines

Keywords
Google Android Apple iOS Microsoft Windows Phone

Google 553,000,000 345,000,000 94,000,000
Bing 50,500,000 27,300,000 49,100,000

Yahoo 8,490,000 13,700,000 2,600,000

amount of data from the device itself, as well as other applications installed in it.

All of these factors were considered, hailing Google’s Android platform as the most
suitable development tool for this project, meanwhile addressing one of the Architectural
Requirements in Table 3.1, namely #1, stating that the Device Agent Application runs
on Android devices.

6.1.2 Data Collection

As far as data acquisition goes, we can split the types of data collected between the
Application Level and the Device Level.

Application Level:

• Install/Update/Remove

• Permission List

• RAM

• CPU

Device Level:

• GPS (optional)

• Base station connection/disconnection

• CPU usage

• RAM usage

• Battery

• Charging State

• Connected Network (WiFi/3G)

• Open Ports

• Data Traffic (optional)

47

Although all of these different data sources will have varying sampling rates, they will
have to be fine tuned through experimentation. It should also be noted that optional pa-
rameters are the most likely battery drainers, and will have to be analysed more in depth
than others. It is also worth mentioning that Data Traffic analysis can only be achieved for
rooted devices in conjunction with tcpdump, which as of writing is still not a certainty as
far as this project’s objectives are concerned.

Another way of dividing the different types of data collected is their frequency and
triggering conditions, namely if it is a repeating scheduled event, triggered by an action
that can occur several times, or even triggered by an action that can only occur once.

Periodic:

• RAM

• CPU

• GPS

• CPU usage

• RAM usage

• Battery

• Open Ports

• Data Traffic

Eventful:

• Base station connection/disconnection

• Charging State

• Network (WiFi/3G) connection/disconnection

• Time and Timezone changes

• Power On/Off

One Time:

• application install/update/remove

• application permission list

48

Most of the collected data’s purpose is to identify any potential anomalous behaviour
such as unexplained power or processing spikes, excessive data transfer, and so on, but also
to be able to facilitate the construction of an event timeline for each device agent.

With that said, each and every piece of gathered data is timestamped, which is also
the reason for the collection of Time and Timezone changes: an attempt to sort out any
potential ambiguous time mismatches and corner cases. Of course that, in order for this to
happen we assume local time coherence.

6.1.3 Event Management

In Android there are several ways of performing tasks in the background of an application
and even the device, the main ones are:

• Service - used for short, single threaded tasks that need not interact with an activity.

• IntentService - used for tasks that require more resources (threads, time, etc.) than
regular Services, they also need not interact with an activity.

• Handler - objects that allow us to send and process Message and Runnable objects
associated with a thread’s MessageQueue, effectively allowing for background manage-
ment of UI components.

• AsyncTask - abstractions of Handler objects, tightly coupled with an Activity ’s UI
thread and the possibility of updating it before, during or after the task finishes run-
ning.

Most, if not all, of these methods are abstractions for Java Thread management, providing
easily overridden methods for thread management without all of the security and integrity
issues that they are usually associated with:

• Race Conditions

• Deadlocks

• Livelocks

The main differences between all of these threading abstractions are the appropriate task
length, if they can/should manage UI components, and how independent they are from an
Activity. We will be using IntentServices because they are the most versatile and decoupled
option.

Selecting the most appropriate medium to manage events is only part of the problem, the
other part is setting up the system to listen for and schedule the events. An IntentService
does not schedule itself, for that we need to setup several other helper classes, namely:

1. Register a BroadcastReceiver for that type of events.

49

2. Listen for events.

3. Handle the event occurrence with the appropriate IntentService and execute it.

Events can be system generated or customly generated by applications, in case of the
latter some additional precautions have to be accounted for:

• If the event is generated by our application:

1. Create a PendingIntent (the event) that will be triggered in the future and
picked up by the appropriate BroadcastReceiver.

2. Schedule an AlarmManager to execute the PendingIntent after an interval of
time has elapsed.

• If the event is system generated then the system handles the process of dispatching an
Intent for it to any BroadcastReceiver listening for events of its kind.

This flow of information can also be visualized in Figure 6.2.

Figure 6.2: Application event management - creating custom events, listening and handling
events

It should be noted that an AlarmManager will re-schedule automatically unless an ex-
ecution counter is added to it. We also opted for the Inexact time measurement mode of
AlarmManager to minimize the resources associated with the application while it is running

50

in the background.

This section addresses two of the Behavioural Requirements in Table 3.2, namely
#10 and #11, stating that the Device Agent Application has low impact of the device’s
battery, CPU and bandwidth, and that the Device Agent Application periodically transfers
data tot he Central Aggregator.

6.1.4 Data Management

There are two main ways of storing information outside of an application’s Shared Pref-
erences in Android, SQLite and logging. Although logging is a straightforward and fast
means of storing the collected data in files, it is not enough in our case as we wish to do
some preliminary work on the collected data, which raises the need for added complexity in
reading, modifying and writing again to the log files.

Additionally, we want to be able to restrict the amount of collected data by each device
to a maximum of 100 MB, which both Shared Preferences and standard logging don’t easily
allow for, and to be able to delete no longer necessary data after it is succesfully sent to the
Central Aggregator. Because of these restrictions, we opted for a local SQLite Database
to manage the collected data.

6.1.5 Data Aggregation

The purpose of the thes aggregation stage is to diminish the amount of data that needs
to be transmitted from the device agents to the central aggregator, mainly by condensing
the collected data into timeframe windows of value changes.

There are several measures of central tendency that can be calculated from the collected
data, and each can be used for different approaches:

• Median - provides the "most likely to be the correct" value in a series of observations.

• Geometric Mean - often used when comparing different items, where each item has
multiple properties that have different numeric ranges, by finding a single "figure of
merit" for them

• Arithmetic Mean - when the context is clear, is the sum of a collection of numbers
divided by the number of numbers in the collection.

• Harmonic Mean - the harmonic mean of a list of numbers tends strongly toward the
least elements of the list, it tends (compared to the arithmetic mean) to mitigate the
impact of large outliers and aggravate the impact of small ones.

• Generalised mean - also known as a power mean, it serves a non-linear moving
average which is shifted towards small signal values or big signal values according to
its parameter p.

51

Having the project’s data in mind, and not wanting to waste time and space on unused
or irrelevant calculations, we decided that it would be best to only use the median and
harmonic mean, mainly for their natural inclination of providing accurate summaries of data
containing outliers.

52

6.2 Message Brokers

Since base stations are black boxes with which we cannot meddle easily, the need for
a communication intermediary to manage the information gathered by the device agents
became a necessity. But it could not just use any means of communication, particularly on
the device’s side, it needed to be lightweight and fast, but also connect easily with the other
parts of the system. After some research, the best candidates seemed to be plain HTTPS
communications and MQTT.

6.2.1 MQTT and HTTPS

MQTT (Message Queue Telemetry Transport) is minimalistic a publish-subscribe service
based on message queues, designed for unreliable connections and very simple devices, which
in turn makes it perfect for the IoT (Internet of Things) and M2M (Machine-to-Machine)
scenarios as it attempts "to minimise network bandwidth and device resource requirements
whilst also attempting to ensure reliability and some degree of assurance of delivery." Despite
all of these desirable characteristics, MQTT does not provide any security to the messages
it manages, as this is often the most costly step of the communication. It should be noted
that MQTT is not incompatible with the actual inclusion of a security scheme around the
messages (such as SSL/TLS [Secure Sockets Layer/Transport Layer Security]), it just doesn’t
provide one out-of-the-box.

Figure 6.3: MQTT Organization logo

HTTPS (Hyper Text Transfer Protocol over SSL/TLS) is the most common way of
consuming and sending data over secure connections between device agents and a server.
Its security comes from a generated public key certificate, which is verified by a trusted
certificate authority and used to establish each connection. Communications between the
server and the client are usually established in the following manner:

1. The client asks server for public key, public key certificate, certification authority and
other metadata.

2. The server sends a X.509 certificate chain and a digital signature signed with its own
private key.

3. The client validates all the sent data.

4. The client generates a session key, encrypts it with the server’s public key, and sends
it to the server.

53

5. The server decrypts the message with its private key, obtaining the session key.

6. The session key is used by both sides to encrypt the following message exchanges.

As we can see, an asymmetric encryption scheme is added on top of a symmetrical en-
cryption scheme in order to secure the messages between two ends and avoid MITM (man-in-
the-middle) attacks. This form of attack is achieved by placing a malicious entity between
the two communicating entities on the edges, reading and relaying the messages between
both by impersonating them, and having the potential to alter the message’s payload.

A few considerations were had in order to choose between MQTT and HTTPS:

• HTTPS is widely used with REST (Representational State Transfer) in order to orga-
nize and strengthen interactions between independent systems (Fielding 2000)

• HTTPS/REST services might be excessive since it is usually used as a two way com-
munication service. The device agents will not consume information, only push it to
the server, and the aggregator will do the opposite by not sending data to the device
agents, only receiving it.

• IBM uses MQTT for Big Data analysis related projects with millions of devices, in
fact they invented it for that same purpose.

• MQTT is less resource intensive than an equivalent HTTPS service.

• The max payload size possible in MQTT is 256Mb, and 65Kb for the topic message.

Although all of them have their advantages and disadvantages, we ended up settling for
MQTT mainly for its out-of-the-box lightweight virtue. However, MQTT does not provide
encryption due to this very nature, as such, we plan on encasing the messages with the help
of an encryption scheme with less overhead than SSL/TLS, so as to avoid eavesdropping
or man-in-the-middle compromises but without increasing the overall battery drain on the
device agent.

Figure 6.4: Mosquitto logo

Thankfully, mosquitto, an open source message broker that implements the MQTT
protocol, keeps true to the philosophy of MQTT all the while providing SSL support for

54

encrypted network connections and authentication. By using this framework we can com-
bine the best of SSL and MQTT just as we had intended, all out-of-the-box and without
the additional overhead of implementing it ourselves, which could lead to unintentionally
compromising either MQTT’s lightweightness or SSL’s privacy in the process.

6.2.2 Hadoop and Kafka

Since we are going to use Hadoop to manage a large portion of the Central Aggregator,
and its ecosystem also has a messaging tool to answer messaging needs, one would think
that the whole debate over whether to use MQTT or HTTPS would be pointless but, as we
explain in the following paragraphs, that is not the case.

Figure 6.5: Kafka logo

Apache’s Hadoop provides its own alternative out-of-the-box. Apache Kafka is Hadoop’s
publish-subscribe messaging framework and is pretty similar to MQTT as it aims to pro-
vide fast, scalable and redundant messaging, along with streaming and storage capabilities.
An established Kafka broker will intermediate between producers and consumers, or, re-
spectively, publisher and subscriber clients. Producers can publish messages to topics on a
broker, which will then be forwarded to the consumers that have subscribed to them, very
much akin to MQTT.

Just like MQTT, Kafka was also made to satisfy overwhelming messaging needs, but in
this case it was for a particular company: Linkedin. Linkedin boasts that several million
messages circulate and need to be managed by their systems at any given time, always en-
suring that their causality and integrity is maintained across systems. This is the reason
they designed and open-sourced Kafka under the an Apache Foundation license, and as such
Kafka is deeply rooted in and supported by Apache’s own Hadoop, but because of this, it is
not as lightweight as MQTT, since there is no available mobile-friendly lightweight version of
this ecosystem for Android, making near impossible and suboptimal to establish an Hadoop
cluster on a mobile device due to its limited resources.

Ultimately, the reason we need both MQTT and Kafka is that we need to make the most
out of each one’s strengths. MQTT is a lightweight framework which we can embed in the
Android Application design for inconspicuous data collection, whilst we need to use Kafka
for its absurd throughput, which can only be achieved thanks to its tight-coupling with the
behemoth that is Hadoop.

55

6.2.3 MQTT and Kafka bridge

Thus far we’ve established that we are going to require the use of MQTT on the mo-
bile device’s android application, and Kafka on the Hadoop central aggregator, but now
we have another problem: translating and forwarding the messages from MQTT to Kafka.
Fortunately, messages in MQTT and Kafka are comprised of plain text and not serialized
proprietary objects, so no translation is required between the two technologies. However,
forwarding is the same messages between the two is not as trivial.

Although MQTT and Kafka both queue their messages according to topics, MQTT goes
a step further and allows for hierarchically nested subtopics, intended to progressively specify
the purpose and context of the message, without losing information as to how it is related
to other topics and messages. Topic names follow a couple of considerations:

• They are case sensitive

• They must be comprised of UTF-8 strings

• They must consist of at least one character to be valid

• The "/" character is reserved for delimiting topic sublevels

• The "+" character is reserved for specifying a single level wildcard

• The "#" character is reserved for specifying a multi level wildcard, and can only be
used as the last subtopic specifier

• A client can only publish to an individual topic, wildcards are not allowed

• A client can subscribe to and individual topic or multiple topics by using wildcards

Let us consider the following examples of topics to describe a house:
1 myhome/groundfloor/livingroom/temperature
2 myhome/groundfloor/livingroom/humidity
3 myhome/groundfloor/kitchen/temperature
4 myhome/1st floor/bedroom 1/temperature
5 myhome/1st floor/bedroom 1/humidity
6 myhome/1st floor/bedroom 2/temperature
7 myhome/1st floor/bedroom 2/humidity

Listing 6.1: MQTT: example topics

If a client were to subscribe to myhome/groundfloor/# he would only receive updates from
the following topics:

1 myhome/groundfloor/livingroom/temperature
2 myhome/groundfloor/livingroom/humidity
3 myhome/groundfloor/kitchen/temperature

Listing 6.2: MQTT: example of topics filtered by subscription

56

However, if the client were to subscribe to myhome/1st floor/+/temperature he would
receive updates from the following topics:

1 myhome/1st floor/bedroom 1/temperature
2 myhome/1st floor/bedroom 2/temperature

Listing 6.3: MQTT: example of topics filtered by "+" wildcard

Because of these features, we were immediately inclined to use a similar topic hierarchy
for our mobile device MQTT brokers. We would aggregate everything under a common
name, specify the type of measurement that the message contained, and which device had
made it, resulting in the following topics:

1 COLLECTED_DATA/PeriodicMeasurement/<device_id >
2 COLLECTED_DATA/OneTimeMeasurement/<device_id >
3 COLLECTED_DATA/PeriodicAggregatedMeasurement/<device_id >
4 COLLECTED_DATA/EventfulAggregatedMeasurement/<device_id >

Listing 6.4: MQTT: example of desired topic hierarchy

This way, if a client were to subscribe to COLLECTED_DATA/PeriodicMeasurement/# he would
receive updates from all devices for periodic measurements.
If he subscribed to COLLECTED_DATA/+/<device_id>/ he would receive updates from all types
of measurements for a particular device.
And if he subscribed to COLLECTED_DATA/PeriodicMeasurement/<device_id>/ he would receive
updates of all periodic measurements made by a particular device.

Kafka also has some limitations regarding the naming of topics, namely:

• The maximum length is 255 characters (or 249 as of Kafka 0.10)

• Only alphanumeric characters, dots ("."), underscores ("_"), and minuses ("-") are
allowed

The main constraint we face is that, for our solution which uses Oryx (described later
on in its own section), we need to setup two predefined Kafka topics for receiving input and
communicating model updates, "OryxInput" and "OryxUpdate" respectively. As such, in
order to simplify the bridging between the MQTT and Kafka brokers, MQTT will only use
the same two topics as Kafka.

However, this solution itself raises one more question: which device and under which
context, generated each message. To address this problem we need to re-utilize the same
logic we would have used for the MQTT broker’s subtopics and incorporate this information
into the message itself. In Figure 6.6 we can see the class that both the Device Agents and
the Cluster use to communicate with each other.

The following listing is a simplified JSON represenation of a DeviceMessage object sent
from an Android Device Agent to the MQTT broker, which itself redirects it to the Cluster
through the MQTT-Kafka bridge.

57

Figure 6.6: UML Diagram of Device Message class used to convey data between device agent
applications and the cluster

1 {
2 "deviceId":" - 000000000000000 - 89014103211118510720 - 8

c240a5bf3a293e5",
3 "payload":"[. . .]",
4 "subtopic":"EventfulMeasurement"
5 }

Listing 6.5: JSON representation of a simplified DeviceMessage object

The payload is a character-escaped string that contains a list of measurements for the
specified subtopic, serialized into a JSON string. The following text listing is an example
of what the payload might contain once it is converted back into a pure JSON string.

1 [
2 {
3 "timestamp":"Jul 22, 2017 11:38:47 PM",
4 "unitsOfMeasurement":"CID - LAC - PSC - NetworkType",
5 "value":"0 - 0 - 0 - GSM - ",
6 "id":1,
7 "name":"BaseStationChange - Current"
8 },
9 {

10 "timestamp":"Jul 22, 2017 11:38:47 PM",
11 "unitsOfMeasurement":"CID - LAC - PSC - Latitude - Longitude -

NetworkType - RSSI dBm",
12 "value":"0 - 0 - 2147483647 - GSM - -113",
13 "id":2,
14 "name":"BaseStationChange - Neighbours"
15 },
16 {
17 "timestamp":"Jul 22, 2017 11:38:47 PM",
18 "unitsOfMeasurement":"GSM SignalStrength",
19 "value":"12",
20 "id":3,
21 "name":"BaseStationChange - Current"
22 }
23]

Listing 6.6: JSON representation of a DeviceMessage’s payload content

58

6.2.4 Encryption and Security

In the previous section we’ve already mentioned SSL/TLS and how it adds a security
layer to HTTP. However, it isn’t the only way to achieve secure encrypted messages, one
other alternative to SSL/TLS is (Full) Homomorphic encryption, which is a form of
encryption that allows for operations to be carried out on the cyphertext just as they would
be on the plaintext, without loosing any meaning in the process. Although extremely useful,
it is still very slow: "In late-2014, a re-implementation of homomorphic evaluation of the
AES-encryption circuit using HElib, reported evaluation time of just over four minutes on
120 inputs, bringing the amortised per-input time to about 2 seconds" (Halevi 2014). Hence
it is not suitable for our fast generation/consumption idea.

As far as security is concerned, there are three different approaches we can have with
regards to this project:

• Network Level - Using a physically secure network or VPN as foundation for any
communication between clients and broker is one way to provide a secure and trustwor-
thy connection. This would be suitable for gateway applications, where the gateway is
connected to devices on the one hand and with the broker over VPN on the other side.

• Transport Level - When the goal is to provide confidentiality in most cases TLS/SSL
is being used for transport encryption. It provides a secure and proven way to make sure
nobody can read along and even authenticate both sides, when using client certification
authentication.

• Application Level - On the transport level it can be ensured that the communication
is encrypted and the identity is authenticated. The MQTT protocol provides a client
identifier and username/password credentials, which can also be used to authenticate
devices on the application level. These properties are provided by the protocol itself.
When it comes to authorisation or what each device is allowed to do, it lays in the hand
of the broker implementation, how to handle it. Another possibility is to use payload
encryption on the application level in order to make the transmitted information secure
even without having a full fledged transport encryption.

To this end, adding a hash signature to each message could certify its integrity, as the
aggregator would only have to check the signatures, which in conjunction with an SSL/TLS
connection would suffice to avoid tampering and eavesdropping.

However, the most common implementations of SSL, namely OpenSSL, are too resource
intensive for clients that aren’t standard computers, such as mobile devices or microcon-
trollers. In fact, this is an already widely regarded issue, and as such, faster and lighter
alternatives such as wolfSSL, bearSSL or matrixSSL were developed with these scenarios in
mind. As of writing, matrixSSL seems the most enticing candidate as it was specifically
made for IoT scenarios and is open source as well.

There is a common misconception surrounding the overhead that SSL/TLS brings to the
transport layer, when in reality great effort has been put into optimizing it in recent years,

59

further blurring the line between encrypted and unencrypted communication. Moreover,
with additional care upon setup for each case, SSL/TLS’s handshakes can become the only
apparent overhead if appropriate session and caching are customized.

Last, but certainly not least, there exist other alternatives to SSL-esque communication
such as pure encryption of the message. A somewhat know example are TEA (Tiny/Trivial
Encryption Algorithm) like mechanisms. While TEA is nowadays considered insecure, it’s
descendant XXTEA has been considered cryptographically-safe until the present day. The
TEA family of algorithms is intended for devices with very little code storage space and that
perform regular or constant data streaming, which could very well be a way to define this
project: a system of data streaming devices.

This section addresses one of the Behavioural Requirements in Table 3.2, namely
#12, which states that the Device Agent Application securely transfers data to the Central
Aggregator. It also addresses some of the Architectural Requirements in Table 3.1,
namely #7 and #8, stating that secure connections are used by the system and that user
anonymity is upheld.

6.2.5 Device Agent configuration management within MQTT

We’ve already analyzed how a Device Agent can send its collected data to the central ag-
gregator, but as we’ve already mentioned in this project’s objectives, the central aggregator
is also supposed to be able to alter the behaviour of the device agents to some extent.

In order to propagate configuration updates from the Central Aggregator to the De-
vice Agents we serialize ConfigurationMessage objects (Figure 6.7) and send them to the
MQTT broker, where each Device Agent can find their respective updated configurations
under the Configurations/<device_ID> topic.

Figure 6.7: UML of the ConfigurationMessage class

If we wanted to change the frequency by which a device agent should aggregate it’s pe-
riodic data, we could just send the following JSON-encoded ConfigurationMessage to its
update subtopic. In this example we are stating that instead of attempting to aggregate the
periodic data every 30 minutes (the default value), it should update and instead try every
45 minutes (45 ∗ 60 ∗ 1000 = 2700000ms).

60

1 {
2 "configurationName":"pt.uc.student.aclima.device_agent.Aggregators.

PeriodicAggregatorIntentService.action.AGGREGATE_PERIODIC_DATA",
3 "configurationValue":"2700000",
4 }

Listing 6.7: JSON representation of a ConfigurationMessage’s content

Tables 6.2, 6.3 and 6.4 list the existing configurations for Device Agents.

Table 6.2: Device Agent Configurations: Periodic Collection Actions

Configuration Name (ACTION_) Default Value (ms) Description

RAM 60 000 Inspect device’s RAM usage
every minute

CPU 60 000 Inspect device’s CPU usage
every minute

GPS 60 000 Inspect device’s GPS location
every minute

CPU_USAGE 10 000 Inspect application’s CPU us-
age every 10 seconds

RAM_USAGE 10 000 Inspect application’s RAM us-
age every 10 seconds

BATTERY 300 000 Inspect device’s battery level
every 5 minutes

OPEN_PORTS 60 000
Inspect which ports are open
for communications every
minute

OPEN_DATA_TRAFFIC 300 000
Inspect amount of bytes re-
ceived and sent by device ev-
ery 5 minutes

1Redacted for security purposes.
2See footnote 1.
3See footnote 1.

61

Table 6.3: Device Agent Configurations: Other Actions

Configuration Name (ACTION_) Default Value (ms) Description

AGGREGATE_PERIODIC_DATA 1 800 000 Aggregate the collected peri-
odic data every 30 minutes

AGGREGATE_EVENTFUL_DATA 1 800 000 Aggregate the collected event-
ful data every 30 minutes

PUBLISH_DATA 3 600 000
Attempt to send the collected
data to the MQTT server ev-
ery 60 minutes

UPDATE_CONFIGURATIONS 3 600 000
Check for updated configura-
tions sent from the MQTT
server every 60 minutes

Table 6.4: Device Agent Configurations: Messaging

Configuration Name (MESSAGING_) Default Value Description

MQTT_TIMEOUT 10 (s)

The maximum time interval
the client will wait for the net-
work connection to the MQTT
server to be established

MQTT_KEEP_ALIVE 10 (s)
The maximum time interval
between messages sent or re-
ceived for MQTT connections

SERVER_PROTOCOL tcp Protocol used to communicate
with the MQTT server

SERVER_URI 1 MQTT server’s URI or IP ad-
dress

SERVER_PORT 2 Port used for communications
with the MQTT server

SERVER_BASE_PUBLISH_TOPIC "OryxInput" MQTT topic used to publish
device’s collected data

SERVER_BASE_UPDATE_TOPIC "Configurations"
MQTT topic used device sub-
scribes to and listens for con-
figuration updates

SERVER_PASSWORD 3 MQTT server password

62

In order to update these configurations and their respective alarms we follow the flowchart
in Figure 6.8, which is tightly coupled with the flowchart already described for event man-
agement in Figure 6.2. At startup, the device agent fetches its alarm configurations and
schedules an alarm for each of them. One of these alarms is the Update Alarm, which is
responsible for triggering an attempt to connect to the MQTT server and check for config-
uration updates. If there are any, the device agents updates his configurations, and if an
updated configurations is related to an alarm, we must first cancel it and schedule a new
alarm with the updated configuration’s value.

Figure 6.8: Update Management Flowchart

63

6.3 Aggregator

6.3.1 Hadoop and Spark

Our aggregator needs to be able to manage data originating form multiple sources, per-
form operations on new and on previously collected data. What we are looking for is a Big
Data framework, and the most prominent contenders are Apache’s Hadoop and Apache’s
Spark.

Figure 6.9: Hadoop logo

Hadoop is almost synonymous with Big Data, as it was one of the first and most success-
ful frameworks to tackle its challenges. It is better know for its processing tool MapReduce
and its file manager HDFS (Hadoop Distributed File System). It operates in a very simple
fashion by processing data in batches, splitting it into smaller processing jobs spread across
a cluster, and later combines the results.

(a) HDFS logo (b) MapReduce logo

Figure 6.10: Hadoop components: MapReduce and HDFS

Spark is different from Hadoop in several ways, with the most obvious ones being that
it works in-memory, potentially speeding up processing times, and that it doesn’t have a
file manager out-of-the-box. Spark also circumvents the imposed linear data flow offered by
MapReduce, allowing for a more customizable pipeline.

Before one makes any rash decisions, it should be noted that Hadoop and Spark are
not incompatible (in fact, they are both part of the Apache Foundation), meaning that
many hybrid architectures can be created and tailored for each case. It is exactly because
of this that we have decided to employ a mix of Hadoop’s tools, namely HDFS, and Spark,
effectively having the best of both frameworks.

64

Figure 6.11: Spark logo

This section addresses one of the Architectural Requirements in Table 3.1, namely
#3, stating that the Central Aggregator runs Apache Spark.

6.3.2 Hadoop, Zookeeper, and YARN

Figure 6.12: Zookeeper logo

Zookeeper is a crucial part of any large scale Hadoop based system, as its job and
purpose, although often unnoticed, is to act as a centralized service for maintaining configu-
ration information, providing naming, distributed synchronization, leader election, message
queues, notifications, and group services between components. More specifically, it serves as
a standard linchpin to connect truly distributed systems with little or nothing in common
by reliably coordinating their processes, while also taking care of storing, managing and
propagating updates and data.

As is stated by the CAP theorem, “You can have at most two of these properties for any
shared data system” referring to the near impossibility of achieving all three of Consistency,
Availability and Partition Tolerance.

1. Consistency: Data is not discrepant across all parts of the system.

2. Availability: Each request is guaranteed to generate a response.

65

3. Partition Tolerance: When faced with broken or compromised communications between
some nodes the remaining nodes works as guaranteed.

Zookeeper is no exception to this theorem, and as such it addresses this problem by sac-
rificing Availability in order to ensure Consistency and Partition Tolerance.

Figure 6.13: YARN logo

As is explained in Figure 6.14, YARN attempts to separate resource management and
job scheduling/monitoring into two separate systems by having a global Resource Man-
ager (RM) and Application Master (AM) for each application. An application is either
a single job or a Directed Acyclic Graph (DAG) of jobs. while the Resource Manager and
the Node Manager form the data-computation framework, the Resource Manager (RM)
arbitrates resources among all the applications in the system. The Node Manager (NM)
is responsible for the containers on each machine and monitoring their resource usage (CPU,
memory, disk, network, etc.), which are reported to the Resource Manager/Scheduler. Each
application’s Application Master is tasked with negotiating resources from the Resource
Manager and working with the Node Managers to execute and monitor the scheduled tasks.

As one can see, Zookeeper and YARN aim to shoulder the burden of managing resources
across a very wide system, which is intended to be composed of several independent ap-
plications, each with it’s own resource needs and purposes; moreover, client’s task and job
requests must be balanced between applications and within each application’s containers.
By using this standardized and efficient resource manager, one can focus on the really inter-
esting and determining portions of large scale projects, rather than on guaranteeing that it
will scale seamlessly and efficiently.

66

Figure 6.14: YARN Architecture
Source: https://hadoop.apache.org/docs/current/hadoop-yarn/hadoop-yarn-site/
yarn_architecture.gif

67

https://hadoop.apache.org/docs/current/hadoop-yarn/hadoop-yarn-site/yarn_architecture.gif
https://hadoop.apache.org/docs/current/hadoop-yarn/hadoop-yarn-site/yarn_architecture.gif

6.3.3 Sequential and Batch processing

There are essentially two methods of processing Big Data, using Stream processing or
Batch processing.

Stream processing is used to analyze small chunks of transferred data, usually by using
sliding windows across data streams, and is especially useful for small, real-time computa-
tions. The analyzed data must contain timestamps for easy ordering and adjustment of the
sliding window, which might vary from minutes to days.

Batch processing is used to process large blocks of data in one go, with little to no
regard for the amount of time it takes, as some batch jobs might take hours or days to
compute. This processing methodology is mainly employed when most or all of the data
available for several entities is utilized for computation task.

Upon this analysis, we came to the conclusion that for this project it would benefit us
more to not restrict the Central Aggregator to either batch or stream processing, but rather
have both of these features. We will be using Stream processing mainly to have real-time
updated information in the Dashboard, maintaining a viable human-in-the-loop architec-
ture that provides enough feedback for a human supervisor to alter the Central Aggregator.
Moreover, we will be using Batch processing for the Machine Learning layer of the Central
Aggregator, analyzing the slew of collected data.

This decision to make due with the benefits of both processing methods is not novel, in
fact it is called a Lambda Architecture (Bijnens 2017). A Lambda Architecture is an ar-
chitecture that has two parallel layers of processing data, one for faster, real-time operations,
and another for larger tasks, both connected to a data source layer and a query management
layer. It tries to balance the latency and throughput of Big Data analysis with high demand
for updated results. Figure 6.15 is an illustration of this concept.

Due to its focus on low-latency reads and updates, various Lambda Architecture example
use cases have been proposed throughout the years, mainly for data analysis of IoT scenarios
(Nierbeck 2016) or messages from vast social networks such as Twitter (Bertran 2013). This
architecture has an almost endless number of applications because of the sheer number of
existing tools and frameworks, their unique benefits and how they can be combined, all of
this during a time where more data is generated than it can analyzed or consumed.

68

Figure 6.15: Example of a Lambda Architecture

69

6.4 Machine Learning and Data Visualization

6.4.1 Machine Learning

Figure 6.16: MLib logo

This project’s value resides in its ambition to identify potential anomalies using Machine
Learning. It is no coincidence that we have chosen to use Apache Spark in this project, as
it has MLlib, a set of machine learning tools, including:

• Dimensionality Reduction - singular value decomposition (SVD), and principal
component analysis (PCA), feature extraction and transformation functions

• Classification - logistic regression, naive Bayes, support vector machines (SVMs),
decision trees, random forests, and gradient-boosted trees

• Regression - generalized linear regression, survival regression

• Recommendation - collaborative filtering, alternating least squares (ALS)

• Clustering - K-means, Gaussian mixtures (GMMs), K Nearest Neighbours

• Topic Modeling - latent Dirichlet allocation (LDA)

• Statistics - summary statistics, correlations, stratified sampling, hypothesis testing,
random data generation

• Miscellaneous - Neural networks, frequent item sets, association rules, sequential
pattern mining, stochastic gradient descent, limited-memory BFGS, etc.

As one can see, MLlib provides a very heterogeneous and large set of tools from which to
pick and experiment with, leaving plenty of room for deciding and fine-tuning which is the
most effective and relevant subset of tools for this projects data and expected results.

Thus far we are inclined to allow for the usage of the following tools, in the following
order, and for the following purposes:

1. Pre-processing - Before any form of heavy processing or machine learning is used,
we might want to sanitize or alter the used data. Extra caution has to be taken in
this step because, since this is a binary classification problem (anomalous VS
normal) the uniqueness of certain measurements might be crucial for the classification
step.

70

• Outlier Removal

• Normalization

• Missing Value Interpolation

2. Feature Selection - Before any form of classification is done we want to be able to
select which features are relevant

• Summary statistics

• Correlation Matrix

• Average Values

3. Feature Reduction - Not all dimensions of the dataset have to be relevant for the
classification step and can just hinder the performance of the classifier, as such, we will
employ Principal component analysis (PCA) to reduce the number of considered fea-
tures, using the Kaiser Criteria and Scree Test to determine the number of considered
factors.

4. Classification - Because malware and other anomalies are constantly changing, we
would have to regard this as an Unsupervised Classification problem and use suit-
able Clustering methods such as K-means. However, after some data has been
collected we can label it with unsupervised classification and run the now labeled data
through Supervised Classification methods such as:

• SVM

• Decision Tree

• K Nearest Neighbours

• Neural Network

For this last part, we will employ Triple Modular Redundancy so that the final
classification is the rounded median value of three distinct classification techniques,
minimizing misclassification errors.

While training and/or developing a model classifier to fit and/or describe the data can
be a heavy ordeal, taking anywhere from minutes, to hours, to days, depending entirely on
the complexity of the chosen learning algorithm and the volume of data. It should be noted
that the obtained trained and validated model can then be used and re-used to test and
classify newer data in (near) real time.

These tools allow us to address some of the Behavioural Requirements in Table 3.2,
namely #14, #15, #16, and #17, which state that machine learning and data analysis is
employed on the collected data of each user and between users.

71

6.4.2 Oryx

Up until now we’ve already mentioned the need for tools or frameworks that are excep-
tional at certain tasks, namely: data transport, filesystem management, machine learning,
and the ability to extrenuous and light tasks alike. Fortunately, this is no novel idea, and
opensource projects such as Oryx exist (http://oryx.io/).

Oryx is a framework for building lambda architecture clusters written in Java, and uses
Apache Spark, Hadoop, Tomcat, Kafka, Zookeeper and many other frameworks. It is de-
signed to develop real-time large scale machine learning applications by providing out-of-the-
box mechanisms to deploy a data transport mechanism as well as batch, speed and serving
layers. Moreover, the variety of machine learning methods is provided by Apache Spark
MLib’s package.

Figure 6.17: Oryx Architecture
Image source: http://oryx.io/img/Architecture.png

Since Oryx is a very complex framework, the least that can be done is explain its overall
behaviour, as can be seen in Figure 6.17.

The data transport mechanism is comprised of Apache Kafka topics, used to communi-
cate data to the speed and batch layers. These topics are also used to publish both models
and model updates, for consumption by the speed and serving layers.

The batch layer is implemented as a Spark Streaming process on a Hadoop cluster, which
reads data from the input Kafka topic. The current window of data is saved to HDFS, and
is then combined with all previously stored data on HDFS. This data as a whole is then used
to build a new result, which is written to HDFS and published to the update topic.

72

http://oryx.io/
http://oryx.io/img/Architecture.png

The speed layer is similar to the batch layer, but it periodically loads a new model from
the update topic and continually produces model updates, instead of joining them with pre-
vious records before producing them, which results in much simpler models.

The serving layer listens for models and updates performed on them on the update topic,
and can query them for changes or particular features.

6.4.3 Data Visualization

Figure 6.18: GraphX logo

Luckily enough, Spark also provides us with another very useful tool named GraphX,
capable of generating immutable graphs for the existing data, which we intend to use after
each batch of Machine Learning processes is executed. This will enable the Dashboard Users
to analyze the system’s current state and the collected data visually.

There are three fundamental aspects to the system we are proposing:

1. Massive data collection of device measurements

2. Intensive upload of collected data

3. Identification of anomalies through the collected data

Since the collected data is common to all of these items, it becomes obvious that we
should be able to determine the relationship that each collected datum has with the device
agents. As we’ve explained for Figure 6.6, and Listings 6.5 and 6.6, each collected datum
is a Device Message Object which contains some measurements from a particular device
agent, so the two are connected, and this is also true for all unique measurements. But
we can go a step further, as each measurement falls into one of several types/categories of
measurements. So we can connect Devices to their uniquely collected measurements, which
in turn are connected to their more general type of measurement. Figure 6.19 is the visual
representation of said connections in an undirected weighed graph.

73

Figure 6.19: Device Message Graph Concept

Let’s breakdown Figure 6.19:

• There are three node groups, each comprised of a variable number of nodes

• Each node on the left node group represents a Device Agent through it’s unique
Device ID

• Each node on the middle node group represents a unique measurement

• Each node on the right node group represents a type of message

• A Device Agent from the left group is connected to each of the unique measurements
it produced in the middle group

• A unique measurement in the middle group is connected to each type it belongs to
in the right group

• Each edge between the left and middle node groups has weight equal the amount
of times the Device ID node has made that measurement

• Each edge between the middle and right node groups has weight equal the amount
of times the that measurement has been collected in the system

74

With the rules for creating a Device Message Graph established, we can now proceed and
interpret a hypothetical scenario such as the one in Figure 6.20.

Figure 6.20: Device Message Graph Example

We can see in Figure 6.20 that in this scenario there are two distinct devices. Device
1 has collected 5 measurements of Measurement 1 and 7 of Measurement 3 over time,
whilst Device 2 has collected 3 measurements of Measurement 2 and 13 of Measure-
ment 3. We can also verify that Measurements 1 and 3 are classified as belonging to the
Message Type 1 type, of which a collective 5 and 20 measurements have been collected
respectfully, and 3 measurements of Measurement 2 have been collected in total, belonging
to the Message Type 2 type.

The main benefit of this graph representation is that it lets us quickly identify many
aspects of the data by simply inspecting the connections between the node groups, namely:

• The amount of measurements

• The least common measurement

• The most common measurement

75

• The amount of measurements by type

• The least common type of measurement

• The most common type of measurement

• The amount of measurements collected by each device agent

• The device agent with the most amount of measurements collected

• The device agent with the least amount of measurements collected

This specific representation of such connections has the benefit of improving the readability
and, thus, the capability for an end-user to detect any anomalies with more ease.

76

6.5 Dashboard

Although nowadays machine learning algorithms can perform feats that would take hu-
mans far too long or that are just impossible, the opposite can also be observed. The purpose
of the dashboard is to apply the concepts held by human-in-the-loop simulation systems and
Humanistic Intelligence to the management and analysis of the system results, by enabling
human supervisors to interact with the system in real time, with hopes of improving the
feedback loop. This can be summarized in Figure 6.21.

Figure 6.21: Interaction between Human, Dashboard and Aggregator

Machine Learning is powerful, but sometimes direct data analysis can be just as effective
and less costly, both in terms of resources and time, depending mainly on the complexity of
the conclusions or indicators one is searching for. With this in mind, we intend to monitor
several aspects of the collected data for each user and for all users:

• Average entries

• Most common entries

• Least common entries

These metrics might help the user of the Dashboard to identify compromised devices that
the Central Aggregator’s Machine Learning component has missed, or simply help them ad-
just it. This approach is named Exploratory Data Analysis (EDA) and its purposes are
suggesting of hypotheses about the causes of observations, assessing assumptions for statis-
tical inference, supporting the selection of appropriate statistical tools and techniques, and
providing a basis for further data collection. EDA attempts to retrieve information from
data beyond the formal modeling or hypothesis testing task, usually with the help of visual
aids such as plots and graphs, easing the identification of outliers, trends and patterns in
data that might have otherwise gone unnoticed.

This section addresses some of the Behavioural Requirements in Table 3.2, namely
#18 and #19, which state that the Dashboard displays user activity, the collected data,
and the findings of the Central Aggregator.

77

Chapter 7

Development and Deployment

7.1 Technologies, Tools and Frameworks

This section is dedicated to describing the list of the significant technologies, tools, and
frameworks that we used to make this project along with their respective official sources:

1. Android - https://www.android.com/index.html

2. CentOS - https://www.centos.org/

3. Git version control - https://git-scm.com/

4. Github version control - https://github.com/

5. GraphX, Apache - https://spark.apache.org/graphx/

6. Hadoop, Apache - https://hadoop.apache.org/

7. Java - https://www.java.com

8. Kafka, Apache - https://kafka.apache.org/

9. Maven, Apache - https://maven.apache.org/

10. Mosquitto project - https://mosquitto.org/

11. MQTT organization - http://mqtt.org/

12. Oryx project - https://oryx.io/

13. Paho project - https://eclipse.org/paho/

14. Scala - https://www.scala-lang.org/

15. Spark MLib, Apache - https://spark.apache.org/mllib/

16. Spark, Apache - https://spark.apache.org/

79

https://www.android.com/index.html
https://www.centos.org/
https://git-scm.com/
https://github.com/
https://spark.apache.org/graphx/
https://hadoop.apache.org/
https://www.java.com
https://kafka.apache.org/
https://maven.apache.org/
https://mosquitto.org/
http://mqtt.org/
https://oryx.io/
https://eclipse.org/paho/
https://www.scala-lang.org/
https://spark.apache.org/mllib/
https://spark.apache.org/

17. YARN, Apache - https://hadoop.apache.org/docs/current/hadoop-yarn/hadoop-yarn-site/
YARN.html

18. Zookeeper, Apache - https://zookeeper.apache.org/

A great portion of this project could not be possible without the structure that version
control and project management systems provide, especially when several multi-version tools
need to be combined and maintained. For Version Control we used git and GitHub whilst
we used Maven to manage project dependencies.

As for the Android Application, its codebase is written in Java, as this is the officially
supported Android language, even though there are alternatives such as Kotlin. In order to
get the information produced by the device agents to the central aggregator, we use MQTT
through a framework called Paho.

As for the Central Aggregator, it is a cluster comprised of several tools. Firstly, it runs
on a Linux distribution of CentOS. In order to run the other tools it contains, it also has
Java and Scala installed. The cluster is a fork of Oryx, which is a collection of several
frameworks such as Spark, Hadoop, and Zookeeper, which having a crucial role. Re-
garding messaging, the cluster hosts two brokers, one for Kafka and another for MQTT
through a framework called Mosquitto.

7.2 Device Agent

The codebase for the Device Agent’s Android application can be found at https://
github.com/aclima93/Terminal.git. There are two ways of deploying the application
to an Android device, (all of which are detailed in the official documentation https://
developer.android.com/training/basics/firstapp/running-app.html) and they can
be applied to both real and emulated devices:

1. • Connecting the Android device to the computer.

• Using Android Studio, build the application.

• Using Android Studio, run the built application on the connected device by setting
it as the intended target.

• Wait for the aplpication to be installed.

2. • Connecting the Android device to the computer.

• Using Android Studio, build the application.

• Copy the generated Android Application Package (APK) file located at
Terminal/app/build/outputs/apk/app-debug.apk to the target device.

• Install the application by double tapping it on the target device.

80

https://hadoop.apache.org/docs/current/hadoop-yarn/hadoop-yarn-site/YARN.html
https://hadoop.apache.org/docs/current/hadoop-yarn/hadoop-yarn-site/YARN.html
https://zookeeper.apache.org/
https://github.com/aclima93/Terminal.git
https://github.com/aclima93/Terminal.git
https://developer.android.com/training/basics/firstapp/running-app.html
https://developer.android.com/training/basics/firstapp/running-app.html

Any Android application is supposed to be well summed up by its manifest, and ours
is no exception. This particular, single activity, application is quite greedy as it requires
the user to grant permission for several tasks (some of which are actually discouraged by
Google’s guidelines for regular applications):

• Internet access

• Automatic launch after device boot-up

• Storage read and write permissions

• Location services

• Detailed information regarding the device’s hardware

• Detailed information regarding other running applications

1 <!-- Application ’s Tasks Information -->
2 <uses-permission android:name="android.permission.GET_TASKS"/>
3

4 <!-- Internet permission for network communication -->
5 <uses-permission android:name="android.permission.ACCESS_NETWORK_STATE"/>
6

7 <!-- Boot Loading Completion -->
8 <uses-permission android:name="android.permission.RECEIVE_BOOT_COMPLETED"

/>
9

10 <!-- Storage access -->
11 <uses-permission android:name="android.permission.WRITE_EXTERNAL_STORAGE"

/>
12 <uses-permission android:name="android.permission.READ_EXTERNAL_STORAGE"/>
13

14 <!-- Device location services -->
15 <uses-permission android:name="android.permission.ACCESS_FINE_LOCATION"/>
16 <uses-permission android:name="android.permission.ACCESS_COARSE_LOCATION"

/>
17

18 <!-- Cellular network information -->
19 <uses-permission android:name="android.permission.READ_PHONE_STATE"/>

Listing 7.1: Android Manifest: Permissions

After the list of permissions, Since this application was design to gather data, it is not
surprising that it is comprised of a single Activity whose sole purpose is to launch the
provided services and initialize the local database; the scheduled event services are the core
functionality of this application.

1 <!-- Activities -->
2 <activity android:name="pt.uc.student.aclima.device_agent.

DeviceAgentActivity">
3 <intent-filter >
4 <action android:name="android.intent.action.MAIN"/>

81

5 <category android:name="android.intent.category.LAUNCHER"/>
6 </intent-filter >
7 </activity >
8

9 <receiver android:enabled="true" android:name="pt.uc.student.aclima.
device_agent.BootUpReceiver"

10 android:permission="android.permission.RECEIVE_BOOT_COMPLETED">
11 <intent-filter >
12 <action android:name="android.intent.action.BOOT_COMPLETED" />
13 <action android:name="android.intent.action.QUICKBOOT_POWERON" />
14 <category android:name="android.intent.category.DEFAULT" />
15 </intent-filter >
16 </receiver >

Listing 7.2: Android Manifest: Activity and BootUpReceiver

The list of services provided by the application is comprised of the periodical, eventful,
and one-time collector services; the periodical and eventful aggregation services; and finally
the MQTT publishing service. The Event Data Collector is a very complete example of
just how versatile the intent-filtering process can be, with this one listing for system time
changes, connectivity changes, charging and battery status, and all of these intent-actions
are broadcasted automatically by Android.

1 <!-- Eventful Data Collector -->
2 <service
3 android:name="pt.uc.student.aclima.device_agent.Collectors.

EventfulDataCollector.EventfulIntentService"
4 android:exported="false">
5 </service >
6 <receiver
7 android:name="pt.uc.student.aclima.device_agent.Collectors.

EventfulDataCollector.EventfulBroadcastReceiver"
8 android:enabled="true"
9 android:exported="true">

10 <intent-filter >
11 <!-- Time Changes -->
12 <action android:name="android.intent.action.TIME_SET"/>
13 <action android:name="android.intent.action.DATE_CHANGED"/>
14 <action android:name="android.intent.action.TIMEZONE_CHANGED"/>
15

16 <!-- Battery - Charging -->
17 <action android:name="android.intent.action.ACTION_POWER_CONNECTED

"/>
18 <action android:name="android.intent.action.

ACTION_POWER_DISCONNECTED"/>
19

20 <!-- Battery - Power -->
21 <action android:name="android.intent.action.BATTERY_LOW"/>
22 <action android:name="android.intent.action.BATTERY_OKAY"/>
23

24 <!-- Connectivity -->
25 <action android:name="android.net.conn.CONNECTIVITY_CHANGE" />
26

82

27 <!-- Power On/Off -->
28 <action android:name="android.intent.action.ACTION_SHUTDOWN" />
29

30 </intent-filter >
31 </receiver >

Listing 7.3: Android Manifest: Eventful Data Collector Service and Receiver

1 <!-- MQTT Service -->
2 <service android:name="org.eclipse.paho.android.service.MqttService">
3 </service >

Listing 7.4: Android Manifest: MQTT Service

7.3 Central Aggregator

Most of the tools we’ve already mentioned in Section 7.1 have very high systems require-
ments, namely Hadoop and Spark, which boast minimums of 8GB of RAM and enough disk
space to cope with the expected data. As a proof-of-concept, we decided to host the Central
Aggregator on a virtualized single node machine with the following specifications:

• Operating System: CentOS Linux release 7.2.1511 (Core)

• CPU: Intel(R) Xeon(R) CPU X5660 @ 2.80GHz

• CPU Cache size: 12MB

• # CPU Cores: 1 (single core)

• RAM: 16GB

• Swap Memory: 10GB

• Disk Space: 40GB

7.3.1 Oryx Cluster Setup

In order to setup the Oryx cluster properly we need to follow the official documentation.
Since this cluster is a conglomerate of several other complex frameworks and tools, the choice
of compatible versions between them is of paramount importance so as to guarantee that
the cluster doesn’t breakdown or behave unexpectedly.

For this cluster setup of Oryx 2.4.0 the following need to be configured:

• Java Runtime Environment (JRE) 8 or later

• Scala 2.11 or later

• A Hadoop cluster running the following components:

83

– Apache Hadoop 2.7.0 or later
– Apache Zookeeper 3.4.5 or later
– Apache Kafka 0.10 or later
– Apache Spark 2.1.0 or later

In order to install Java Runtime Environment 8 we can follow the instructions provided
by (Oryx Cluster Setup 2017a, 2017b). The first step is downloading from Oracle a package
containing Java .

1 $ wget --no-cookies --no -check -certificate --header "Cookie: gpw_e24=http
%3A%2F%2Fwww.oracle.com%2F; oraclelicense=accept -securebackup -cookie" "
http :// download.oracle.com/otn -pub/java/jdk/8u141 -b15 /336
fa29ff2bb4ef291e347e091f7f4a7/jdk -8u141 -linux -x64.tar.gz"

2 $ tar xzf jdk -8u141 -linux -x64.tar.gz

Listing 7.5: Java: Installation

Last but by no means least, we need to define the path variables associated with Java in
the ~/.bashrc file. If this step isn’t performed, some of the tools in the following sections
cannot determine where java has been installed.

1 $ export JAVA_HOME =/opt/jdk1 .8.0 _141
2 $ export JRE_HOME =/opt/jdk1 .8.0 _141/jre
3 $ export PATH=$PATH:/opt/jdk1 .8.0 _141/bin:/opt/jdk1 .8.0 _141/jre/bin

Listing 7.6: Java: ∼/.bashrc path variables

In order to apply these changes one can execute the following command: source ~/.bashrc .
Having installed JRE 8, we can proceed to install Scala 2.11. The reason we first needed

to install Java is that Scala code is meant to be compiled to Java bytecode and ran on the
Java Virtual Machine (JVM). Scala and Java can reference libraries from each other seam-
lessly, which is quite favorable to Java as Scala was created to make use of many functional
programming features such as type inference and lazy evaluation, more so than Java. As
such, Scala libraries make up for a lot of the heavy work that our cluster is meant to perform,
namely regarding the Spark framework.

In order to install Scala we can just fetch a package from a trusted source and installing
it on the server:

1 $ wget http :// downloads.lightbend.com/scala /2.11.8/ scala -2.11.8. rpm
2 $ sudo yum install -y scala -2.11.8. rpm

Listing 7.7: Scala: Installation

7.3.2 Deploying Hadoop

The first real portion of the Oryx cluster starts by deploying the base Hadoop cluster.
We have chosen to use Hadoop 2.8 and to follow the tutorial provided by (Deploying Hadoop
2017), in order to setup a simple single node example cluster which can later be expanded/s-
caled for more nodes.

84

The first step to configuring Hadoop is to get a copy of it and installing it on the host
machine.

1 $ wget http ://www -eu.apache.org/dist/hadoop/common/hadoop -2.8.0/ hadoop
-2.8.0. tar.gz

2 $ tar xzf hadoop -2.8.0. tar.gz
3 $ mv hadoop -2.8.0 hadoop

Listing 7.8: Hadoop: Installation

As with Java, we also need to define some path variables for Hadoop to properly function
across the machine.

1 export HADOOP_HOME =/home/hadoop/hadoop
2 export HADOOP_INSTALL=$HADOOP_HOME
3 export HADOOP_MAPRED_HOME=$HADOOP_HOME
4 export HADOOP_COMMON_HOME=$HADOOP_HOME
5 export HADOOP_HDFS_HOME=$HADOOP_HOME
6 export YARN_HOME=$HADOOP_HOME
7 export HADOOP_COMMON_LIB_NATIVE_DIR=$HADOOP_HOME/lib/native
8 export PATH=$PATH:$HADOOP_HOME/sbin:$HADOOP_HOME/bin

Listing 7.9: Hadoop: ∼/.bashrc path variables

Now that we have a fresh installation, we can start configuring the Hadoop cluster. For
that, we have to focus on three files located under $HADOOP_HOME/etc/hadoop :

• core-site.xml

• hdfs-site.xml

• mapred-site.xml

• yarn-site.xml

Since HDFS is literaly Hadoop’s File System, these files define where each
Starting with core-site.xml , we define the URL that can be accessed to check HDFS’s

status.
1 <configuration >
2 <property >
3 <name>fs.default.name</name>
4 <value >hdfs:// localhost:9000 </value>
5 </property >
6 </configuration >

Listing 7.10: Hadoop: Content of core-site.xml

In hdfs-site.xml we are stating that we want the filesystem to use replication, and
specifying the location of the name and data nodes.

1 <configuration >
2 <property >
3 <name>dfs.replication </name>
4 <value >1</value>
5 </property >
6

85

7 <property >
8 <name>dfs.name.dir</name>
9 <value >file: /// home/hadoop/hadoopdata/hdfs/namenode </value>

10 </property >
11

12 <property >
13 <name>dfs.data.dir</name>
14 <value >file: /// home/hadoop/hadoopdata/hdfs/datanode </value>
15 </property >
16 </configuration >

Listing 7.11: Hadoop: Content of hdfs-site.xml

The file mapred-site.xml specifies MapReduce formulas and parameters, specifically, we
are configuring MapReduce to use the frameworks provided by YARN.

1 <configuration >
2 <property >
3 <name>mapreduce.framework.name</name>
4 <value >yarn</value>
5 </property >
6 </configuration >

Listing 7.12: Hadoop: Content of mapred-site.xml

In yarn-site.xml we can find configuration information that overrides the default values
for YARN parameters, namely we’re interested in specifying the location of the resource
manager (localhost), and we are also disabling checks for virtual memory availability.

1 <!-- disabling the virtual memory check , so that the application master
does not get precariously terminated -->

2 <property >
3 <name>yarn.nodemanager.vmem -check -enabled </name>
4 <value >false</value>
5 </property >
6

7 <!-- Fixing ResourceManager connection issues -->
8 <property >
9 <name>yarn.resourcemanager.address </name>

10 <value >127.0.0.1 :8032</value >
11 </property >
12 <property >
13 <name>yarn.resourcemanager.scheduler.address </name>
14 <value >127.0.0.1 :8030</value >
15 </property >
16 <property >
17 <name>yarn.resourcemanager.resource -tracker.address </name>
18 <value >127.0.0.1 :8031</value >
19 </property >

Listing 7.13: Hadoop: Content of yarn-site.xml

Now that we have configured the bare minimum, we can start the cluster.
1 # hadoop ’s working command directory
2 $ cd $HADOOP_HOME/sbin/
3

86

4 # start the hadoop cluster file system
5 $./start -dfs.sh
6

7 # start yarn , the resource manager
8 $./start -yarn.sh

Listing 7.14: Hadoop: start HDFS and Yarn servers

7.3.3 Deploying Zookeeper

Next we install Zookeeper 3.4.10 by getting its package from a trusted source, such as
apache’s mirrorring server, unpackaging it, and starting the Zookeeper server.

1 # download the package and unpackage it
2 $ cd /opt
3 $ wget http ://apache -mirror.rbc.ru/pub/apache/zookeeper/zookeeper -3.4.10/

zookeeper -3.4.10. tar.gz
4 $ gunzip -c *gz | tar xvf -
5

6 # zookeeper directory
7 $ cd /opt/zookeeper -3.4.10/
8

9 # start zookeeper server
10 $ bin/zkServer.sh start

Listing 7.15: Zookeeper: Installation and server start

7.3.4 Deploying Kafka

Kafka also requires Java to already be installed, and Zookeeper must also bee installed.
We are going to use Kafka 10.2.1 and proceed by following similar steps to the ones mentioned
in (Deploying Kafka 2017a, 2017b). First, as usual, we download the Kafka package and
unpack it.

1 # download and unpack the package
2 $ wget http ://www -us.apache.org/dist/kafka /0.10.2.1/ kafka_2 .12 -0.10.2.1.

tgz
3 $ tar xvzf kafka_2 .12 -0.10.2.1. tgz --strip 1
4

5 # kafka directory
6 $ cd /opt/kafka_2 .12 -0.10.2.1/

Listing 7.16: Kafka: Installation

While having the Zookeeper server running, we can start a Kafka server with one SSH
session.

1 $ bin/kafka -server -start.sh config/server.properties

Listing 7.17: Kafka: Start a broker

If it is successful a similar output will appear on the console:

87

1 INFO [Kafka Server 0], started (kafka.server.KafkaServer)

Listing 7.18: Kafka: Successfully started broker

On another SSH session we can create a kafka topic named <TOPIC_NAME> .

1 $ cd /opt/kafka_2 .12 -0.10.2.1
2 $ bin/kafka -topics.sh --create --zookeeper localhost :2181 --replication -

factor 1 --partitions 1 --topic <TOPIC_NAME >

Listing 7.19: Kafka: Topic creation

We can immediately test our Kafka broker by creating another SSH session and producing
messages for the kafka topic named <TOPIC_NAME> .

1 $ bin/kafka -console -producer.sh --broker -list localhost :9092 --topic <
TOPIC_NAME >

Listing 7.20: Kafka: Producer

And on yet another SSH session we can list the messages that have been delivered for
the kafka topic named <TOPIC_NAME> .

1 $ cd /opt/kafka_2 .12 -0.10.2.1
2 $ bin/kafka -console -consumer.sh --zookeeper localhost :2181 --topic <

TOPIC_NAME > --from -beginning

Listing 7.21: Kafka: Consumer

We can also inspect the Kafka server’s list of existing topics.

1 $ bin/kafka -topics.sh --list --zookeeper localhost :2181

Listing 7.22: Kafka: List existing topics

7.3.5 Deploying Spark

In order to install Spark 2.1.1 we must already have Java and Scala installed on the target
machine, which by this point should be an issue. Next we can follow similar instructions to
those detailed in (Deploying Spark 2017).

1 # download package and unpack it
2 $ wget http :// d3kbcqa49mib13.cloudfront.net/spark -2.1.1. tgz
3 $ tar xf spark -2.1.1. tgz
4

5 # spark directory
6 $ mv spark -2.1.1 /opt/spark -2.1.1
7 $ cd /opt/spark -2.1.1/

Listing 7.23: Spark: Installation

Unlike the previous tools we’ve mentioned, we must now build Spark before we can use
it. Luckily, Spark comes bundled with a self-assembly file which we can run with the help
of sbt, Scala’s de facto build tool, and Maven, a project management tool.

88

1 $./opt/spark -2.1.1/ build/sbt assembly
2 $ cd /opt/spark -2.1.1/
3 $ build/mvn -Pyarn -Phadoop -2.8 -Dhadoop.version =2.8.0 -DskipTests clean

package

Listing 7.24: Spark: Assembly

After Spark is done assembling itself, we can finally run its shell
1 $./bin/spark -shell

Listing 7.25: Spark: Launch a Spark shell

and if no problems were met, one should expect a similar output to the following:
1 $./bin/spark -shell
2 Spark context Web UI available at http ://10.3.2.9:4040
3 Spark context available as ’sc’ (master = local [*], app id = local

-1501166979903).
4 Spark session available as ’spark ’.
5 Welcome to
6 ____ __
7 / __/__ ___ _____/ /__
8 _\ \/ _ \/ _ ‘/ __/ ’_/
9 /___/ .__/_,_/_/ /_/_\ version 2.1.1

10 /_/
11

12 Using Scala version 2.11.8 (Java HotSpot(TM) 64-Bit Server VM, Java 1.8.0
_121)

13 Type in expressions to have them evaluated.
14 Type :help for more information.
15

16 scala >

Listing 7.26: Spark: Successful launch output

If all of this is true, we have command line interface with which we can interact directly
with Spark’s components, namely access its Resilient Distributed Datasets (RDD) and
perform computations with them.

7.3.6 Deploying Oryx Server Layers

We can finally get back to the Oryx server installation now that all the necessary tools
and frameworks have been successfuly installed. The first real step is to edit lambda_app.conf
with our Oryx Server configurations, of which we have particular interest in specifying the
location of the Kafka brokers, the zookeeper servers, and the HDFS server.

This is also where we can deifne the codebase that Oryx should use, in our case it’s the
default "com.cloudera.oryx.app" We are going to use two Kafka brokers ("OryxInput" and
"OryxUpdate") to manage input data sent to the system, and updated data within the
system.

We can also change the specifications of the batch, speed and serving layers, namely,
which classes/codebase they should consider for their respective operations, where to store

89

data, and where to store the models produced by the system to describe the amassed data.

For this project, and following up on the previous deployment steps in this section, we
are only going to specify one Kafka broker and one Zookeeper server on the same machine
(localhost) as the Oryx cluster itself, but as one can see this can easily be scaled for more
and independent machines.

1 # Reusable values for the configurations #
2 hostname = "oryx.aclima.dei.uc.pt"
3 kafka-brokers = ${hostname}":9092"
4 zk-servers = ${hostname}":2181"
5 hdfs-base = "hdfs :/// user/lambda-app/Oryx"
6 base-package = "com.cloudera.oryx.app"
7

8 # Configuration of the app #
9 oryx {

10 id = "LambdaApp"
11

12 # Configuration for the Kafka input topic #
13 input-topic {
14 broker = ${kafka-brokers}
15 lock = {
16 master = ${zk-servers}
17 }
18 }
19

20 # Configuration for the Kafka update topic #
21 update-topic {
22 broker = ${kafka-brokers}
23 lock = {
24 master = ${zk-servers}
25 }
26 }
27

28 # Configuration for the Batch Layer #
29 batch {
30

31 # Streaming Configurations #
32 streaming {
33 generation-interval-sec = 300
34 num-executors = 4
35 executor-cores = 8
36 executor-memory = "4g"
37 }
38

39 # Configuration of the class used for updating the k-means model #
40 update-class = ${base-package}".batch.mllib.kmeans.KMeansUpdate"
41

42 # Storage Configurations for the Data and Models #
43 storage {
44 data-dir = ${hdfs-base}"/data/"
45 model-dir = ${hdfs-base}"/model/"
46 }

90

47

48 # UI Configurations #
49 ui {
50 port = 4040
51 }
52 }
53

54 # Configuration for the Speed Layer #
55 speed {
56

57 # Configuration of the class used for managing the k-means speed model
#

58 model-manager-class = ${base-package}".speed.kmeans.
KMeansSpeedModelManager"

59

60 # UI Configurations #
61 ui {
62 port = 4041
63 }
64 }
65

66 # Configuration for the Serving Layer #
67 serving {
68

69 # Configuration of the class used for managing the k-means serving
model #

70 model-manager-class = ${base-package}".serving.kmeans.model.
KMeansServingModelManager"

71

72 # Configuration of the packages used for managing the app ’s served
resources #

73 application-resources = ${base-package}".serving ,"${base-package}".
serving.kmeans"

74

75 # API Configurations #
76 api {
77 port = 8080
78 }
79 }
80 }

Listing 7.27: Oryx: Content of lambda_app.conf

As we’ve done before, it helps if we edit the ~/.bashrc file and add some path variables
before we proceed.

1 # User specific aliases and functions
2

3 # kafka
4 export KAFKA_HOME =/opt/kafka_2 .12 -0.10.2.1
5

6 # spark
7 export SPARK_HOME =/opt/spark -2.1.1
8

9 # oryx

91

10 export ORYX_HOME =/opt/oryx
11

12 # zookeeper
13 export ZOOKEEPER_HOME =/opt/zookeeper -3.4.10
14

15 # hadoop
16 export HADOOP_HOME =/home/hadoop/hadoop
17 export HADOOP_INSTALL=$HADOOP_HOME
18 export HADOOP_MAPRED_HOME=$HADOOP_HOME
19 export HADOOP_COMMON_HOME=$HADOOP_HOME
20 export HADOOP_HDFS_HOME=$HADOOP_HOME
21 export YARN_HOME=$HADOOP_HOME
22 export HADOOP_COMMON_LIB_NATIVE_DIR=$HADOOP_HOME/lib/native
23

24 # path env. variable
25 export PATH=$PATH:$KAFKA_HOME/bin:$SPARK_HOME/bin:$ORYX_HOME/bin:

$ZOOKEEPER_HOME/bin:$HADOOP_HOME/sbin:$HADOOP_HOME/bin

Listing 7.28: Oryx: ∼/.bashrc path variables

Now we are ready to run the Zookeeper Server and the Kafka Server, each on their own
SSH instance.

1 $ sudo bin/zkServer.sh start

Listing 7.29: Oryx: Start Zookeeper server

1 $ sudo bin/kafka -server -start.sh config/server.properties

Listing 7.30: Oryx: Start Kafka server

Next, we can let Oryx automatically setup the Kafka input and update topics we specified
earlier

1 $ bash oryx -run.sh kafka -setup

Listing 7.31: Oryx: Automatic setup of Kafka topics

which should result in an output similar to the following:
1 Input ZK <HOSTNAME >:2181
2 Kafka <HOSTNAME >:9092
3 topic OryxInput
4 Update ZK <HOSTNAME >t:2181
5 Kafka <HOSTNAME >:9092
6 topic OryxUpdate

We can even watch messages sent to these topics, and monitor the actions of the appli-
cation by listening to the Kafka’s message tail:

1 $ bash oryx -run.sh kafka -tail

Listing 7.32: Oryx: Kafka message tail

Finally, the core of this whole project’s endeavour, launching the Batch, Speed and
Serving layers of the application, each on their own SSH instance.

1 $ bash oryx -run.sh batch --app -jar lambda_app.jar

Listing 7.33: Oryx: Batch layer

92

1 $ bash oryx -run.sh speed --app -jar lambda_app.jar

Listing 7.34: Oryx: Speed layer

1 $ bash oryx -run.sh serving --app -jar lambda_app.jar

Listing 7.35: Oryx: Serving layer

7.3.7 Restarting Oryx Server Layers

Should something go wrong, or the need to roll-out an update arise it is our best interest
to properly stop the running services, so in order to do that, we can run the following
commands:

Restart the Zookeeper server.
1 $ cd /opt/zookeeper -3.4.10/
2 $ bin/zkServer.sh start
3 $ bin/zkServer.sh start

Listing 7.36: Oryx: Restart Zookeeper server

Restart Hadoop’s HDFS and YARN systems.
1 $ cd $HADOOP_HOME/sbin/
2 $./stop -all.sh
3 $./start -all.sh

Listing 7.37: Oryx: Restart Hadoop’s HDFS and YARN

Re-setup and restart Kafka brokers and topics.
1 $ cd /opt/oryx/
2 $ bash oryx -run.sh kafka -setup

Listing 7.38: Oryx: Re-setup and restart Kafka brokers and topics

Re-launch the Oryx cluster application layers.
1 $ bash oryx -run.sh batch --app -jar lambda_app.jar

Listing 7.39: Oryx: Restart Batch layer

1 $ bash oryx -run.sh speed --app -jar lambda_app.jar

Listing 7.40: Oryx: Restart Speed layer

1 $ bash oryx -run.sh serving --app -jar lambda_app.jar

Listing 7.41: Oryx: Restart Serving layer

For ease of use, we recommend using the included executable file restart-all.sh , which
promptly restarts all subsyetms of the cluster.

1 $./restart -all.sh

Listing 7.42: Oryx: Restart the cluster

93

1 # restart zookeeper
2 cd /opt/zookeeper -3.4.10/
3 bin/zkServer.sh stop
4 bin/zkServer.sh start
5

6 # restart hadoop cluster (HDFS and YARN)
7 cd $HADOOP_HOME/sbin/
8 ./stop -all.sh
9 ./start -all.sh

10

11 # re -setup kafka brokers and Topics
12 cd /opt/oryx/
13 bash oryx -run.sh kafka -setup

Listing 7.43: Oryx: Content of restart-all.sh

7.4 Message Exchange

Now that the Device Agents and the cluster have been deployed, we need to deploy the
means to connect one to the other. The device Agents use MQTT and the cluster uses Kafka
to exchange data around, so what we are missing are an MQTT broker, and the bridge be-
tween the MQTT broker and the Kafka broker.

7.4.1 Deploying the MQTT Broker

We are going to follow some of the steps specified in (Deploying the MQTT Broker 2017a)
in order to configure a Mosquitto MQTT broker. Mosquitto is an open source message bro-
ker that implements the MQTT protocol, is easy to deploy, and keeps true to the lightweight
aspect of MQTT.

We start by installing Mosquitto.

1 $ sudo yum -y install epel -release
2 $ sudo yum -y install mosquitto

Listing 7.44: MQTT: Installing Mosquitto

The next stop is launching a MQTT broker, which can be achieve by simply calling the
mosquitto command in the command-line.

1 $ mosquitto

Listing 7.45: MQTT: Launching a broker

However, this will start a broker with all of the default configurations as stated in the
official documentation (Deploying the MQTT Broker 2017b) and the the default configura-
tion file mosquitto.conf (Deploying the MQTT Broker 2017c). A broker can be started using
other configuration settings as such

94

1 $ mosquitto custom_mosquitto.conf

Listing 7.46: MQTT: Launching a broker with a custom configuration

The ability to customize the broker’s configuration settings is particularly useful to us
since we allow Device Agents to use other ports than the default mosquitto ports, com-
munication protocols and their intended purposes as evidenced by the official test server
(Deploying the MQTT Broker 2017d):

• 1883: MQTT, unencrypted

• 8883: MQTT, encrypted

• 8884: MQTT, encrypted, client certificate required

• 8080: MQTT over WebSockets, unencrypted

• 8081: MQTT over WebSockets, encrypted

The configuration file follows the structure depicted in Figure 7.1.

Figure 7.1: MQTT: Configuration file structure
Adapted from the original source: http://www.steves-internet-guide.com/
wp-content/uploads/Mosquitto-conf-Structure.jpg

If the broker is successfully launched, we can now subscribe to a topic named <TOPIC_NAME> .
1 mosquitto_sub -h localhost -t <TOPIC_NAME >

Listing 7.47: MQTT: Subscribe to a topic

Or we can publish the message <CONTENT_STRING> to a topic named <TOPIC_NAME> .
1 mosquitto_pub -h localhost -t <TOPIC_NAME > -m <CONTENT_STRING >

Listing 7.48: MQTT: Publish to a topic

95

http://www.steves-internet-guide.com/wp-content/uploads/Mosquitto-conf-Structure.jpg
http://www.steves-internet-guide.com/wp-content/uploads/Mosquitto-conf-Structure.jpg

7.4.2 Deploying the Bridge between MQTT and Kafka

Kafka is not easily available for Android, and is not lightweight enough, so we are sticking
with MQTT. But that means we have to bridge the MQTT and Kafka brokers to get the
best of both worlds. The source code for this bridge is available at https://github.com/
aclima93/mqttKafkaBridge, and it is a fork of the original opensource project but updated
enough to make it work at the time of writting, as the project was already several years old
and its dependencies were outdated.

1 # clone the repository
2 $ git clone https :// github.com/aclima93/mqttKafkaBridge
3 $ cd mqttKafkaBridge
4

5 # build the executable jar
6 $ mvn clean compile assembly:single
7 $ cd target
8 $ java -jar mqttKafkaBridge -0.1.0 -jar -with -dependencies.jar

Listing 7.49: MQTT-Kafka bridge

7.5 Oryx Application

The codebase for the Oryx application is available at https://github.com/aclima93/
oryx, which is a fork of the original open source project distributed by http://oryx.io/.
The original project has a bundled example for a recommendation system, which we have
refactored, adapted and expanded from in order to create our Lambda Architecture Appli-
cation using Oryx’s framework.

We can begin by downloading and compiling the codebase. Because Oryx is such a
complex tool, a full installation requires several dozen tests and licensing verifications to
be made, but this results in a building time that can take anywhere from a couple dozen
minutes, to a couple of hours, depending on the available hardware and internet connection.
As such, we recommend performing a clean installation without these cumbersome tests and
checks.

1 # clone the repository
2 $ git clone https :// github.com/aclima93/oryx
3 $ cd oryx/
4

5 # build the executable jars for the project , skip license checks , skip
tests

6 $ mvn clean install -Drat.skip=true -DskipTests=true package

Listing 7.50: Oryx Lambda Application: Installation

A successful installation should produce an output similar to the following:
1 [INFO] ---
2 [INFO] Reactor Summary:
3 [INFO]
4 [INFO] Oryx SUCCESS [2.430 s]

96

https://github.com/aclima93/mqttKafkaBridge
https://github.com/aclima93/mqttKafkaBridge
https://github.com/aclima93/oryx
https://github.com/aclima93/oryx
http://oryx.io/

5 [INFO] API SUCCESS [20.464 s]
6 [INFO] Common SUCCESS [5.708 s]
7 [INFO] Kafka Utilities SUCCESS [3.606 s]
8 [INFO] Lambda SUCCESS [4.323 s]
9 [INFO] Lambda Serving SUCCESS [3.899 s]

10 [INFO] ML SUCCESS [3.829 s]
11 [INFO] Apps: API SUCCESS [3.092 s]
12 [INFO] Apps: Common SUCCESS [6.532 s]
13 [INFO] Apps: Spark MLlib SUCCESS [5.740 s]
14 [INFO] Apps: Oryx SUCCESS [3.885 s]
15 [INFO] Apps: Oryx (Serving) SUCCESS [33.934 s]
16 [INFO] Example SUCCESS [10.306 s]
17 [INFO] Lambda App SUCCESS [6.543 s]
18 [INFO] Batch Layer SUCCESS [33.441 s]
19 [INFO] Speed Layer SUCCESS [23.876 s]
20 [INFO] Serving Layer SUCCESS [36.430 s]
21 [INFO] ---
22 [INFO] BUILD SUCCESS
23 [INFO] ---
24 [INFO] Total time: 03:28 min
25 [INFO] Finished at: 2017 -07 -23 T12 :28:53+01:00
26 [INFO] Final Memory: 148M/1515M
27 [INFO] ---

Listing 7.51: Oryx Lambda Application: Successful build output

We have successfully installed and built the whole Oryx system, all that remains is to
deploy it.

1 $ cd target
2 $ java -jar lambda -app -2.5.0 - SNAPSHOT.jar

Listing 7.52: Oryx Lambda Application: Deployment

If any changes are made to the codebase of the Lambda Application and we want to
re-deploy it we can merely rebuild this portion of the Oryx system and re-launch it, saving
us several minutes. This can be achieved with the following commands:

1 $ cd oryx/app/lamda -app
2

3 # build the executable jars for the project , skip license checks , skip
tests

4 $ mvn clean install -Drat.skip=true -DskipTests=true package

Listing 7.53: Oryx Lambda Application: Targeted rebuilding

If the building phase faces no issues, an output similar to the following will be produced:
1 [INFO] ---
2 [INFO] BUILD SUCCESS
3 [INFO] ---
4 [INFO] Total time: 11.409 s
5 [INFO] Finished at: 2017 -07 -23 T12 :30:38+01:00
6 [INFO] Final Memory: 56M/721M
7 [INFO] ---

Listing 7.54: Oryx Lambda Application: Successful targeted re-building output

97

7.6 Machine Learning

Oryx has 3 out-of-the-box machine learning model management options from which any
application can build from, each completely different and suitable for distict datasets and
objectives. The three methods provided are:

• ALS: a collaborative filtering/recommendation system

• KMeans: a k-means clustering system

• RDF: a random decision forest classification system

We can’t use the ALS system because it does not fit our problem’s description, that is,
we are querying the gathered data in order to assess if a given device should be classified as
compromised, we are not asking the system to recommend us devices, much like a movie or
book, based on our preferences. The RDF system is also inappropriate as it is a supervised
learning method, meaning that we would need to firstly amass a large enough dataset or
pre-classified samples, and only then train a model, which goes against this projects intent
to address fast "Big Data"-esque growth. This leaves us with K-Means, which fits all of our
criteria perfectly, being an unsupervised learning method, and having the number of clus-
ters (K) that we wish to obtain already fixed at 2, compromised and uncompromised devices.

Although we had previously devised in Chapter 6 for there to be a Triple Modular Re-
dundancy fault tolerant classification, it appears that Oryx’s architecture was not designed
with this in mind, as it keeps only one model in the Batch Layer, and this model is generated
solely through the singular input and update Kafka topics, so it is limited to performing only
one type of Batch & Speed computations on its model. However, this should not impede us
from performing a Triple Redundancy classification, where we can simply re-execute the
Speed Layer’s job 2 additional times, and assume the most consensual binary classification.

We can summarize the intended Machine Learning behaviour with Figure 7.2, illustrating
how the Triple Redundancy is integrated into the Speed Layer’s flowchart and is absent from
the Batch Layer.

So the machine learning portion of our system is going to use the K-Means clustering
algorithm, and its underlying behaviour is very straightforward:

1. Create K initial random points for the data, these will act as the mean centroids for
the first iteration

2. Create K clusters by assigning each data point to the nearest centroid

3. Calculate a new mean centroid for each of the K clusters

4. Repeat from step 2 until the calculated centroids/clusters converge

Since the algorithm is kickstarted from initially random centroids, it is entirely possible that
only local optimal solutions are achieved through this heuristic algorithm. As the algorithm

98

Figure 7.2: Speed and Batch layer’s classification flowchart

is usually very fast, running in smooth polynomial time, it is common to run it multi-
ple times with different starting conditions in order to determine the majority classification
for each point, thus minimizing the chance that bad initial centroids will lead to bad clusters.

Usually, the distance between data points and the centroids is calculated using the Eu-
clidean Distance or the Manhattan Distance, but other equally valid esoteric distance metrics
such as the Mahalanobis Distance can be used, depending on the meaning or information that
the distance should represent. Oryx uses the Euclidean Distance in its standard algorithm.

Figure 7.3 illustrates how the K-Means clustering algorithm separates samples into two
clusters over time, using the Euclidian Distance between the data points and the centroids.

99

Figure 7.3: K-Means Example

100

Chapter 8

Preliminary Results Analysis

The following chapter details the testing and validation aspects envisioned for the pro-
posed architecture. We have to keep in mind that the proposed architecture is intended to
always keep running, be it the Central Aggregator or the Device Agents, thus some restric-
tions have to be placed on it, and there is no better way to gauge these restrictions than by
testing each component.

8.1 Device Agent

Regarding the Device Agent, it is design and intended to constantly run in the back-
ground of the host mobile device, which by definition is expected to have limitations. Some
of those limitations are the available CPU, RAM, battery life, Free Memory and Connectiv-
ity, thus we propose that the CPU and RAM overhead should be analysed in depth, and the
rest could be analysed on a future iteration of this architecture, particularly because they
are not as easily monitored.

Analysing the Device Agent’s impact on the System’s RAM and CPU, as can be seen
in Table 8.1 and Figures 8.1, 8.2, 8.3, and 8.4, consisted of running our application on a
standard, factory reset, Nexus 5 emulator for an approximate total of 6 hours. During this
period of time, we record the application’s RAM usage every 10 seconds, and the system’s
available RAM and CPU every 60 seconds, culminating in an approximate total of 500
measurements for each attribute during that period of time. Since these measurements
were performed on a factory reset device, we had a greater control of the testing environment
thus, aside from our application only a select few other default stock Android applications
and utilities such as the clock, telephony, calendar, launcher were running simultaneously in
the device, reducing the amount of "noise" in the system that could otherwise be present in
a user’s device.

101

Table 8.1: Device Agent test results analysis

Measurements Minimum Average σ Maximum
Application RAM (MB) 467 17756 18773 544 23521
System RAM (MB) 493 1365270 1383270 6361 1395916
Application CPU (%) 473 0 17.7 41.3 200
System CPU (%) 476 0 0.8 1.6 22.6(6)

Figure 8.1: Device Agent RAM usage over time

Figure 8.2: Device Agent CPU usage over time

102

Figure 8.3: System RAM usage over time

Figure 8.4: System CPU usage over time

103

Regarding Figure 8.2, its content might seem erroneous or dubious at first due to the
over 100% y axis, but it is completely justified one we understand that the CPU % usage
in this context also conveys the number of cores being allocated by the Android system
to the application, where a 200% value indicates that 2 cores are being allocated, each at
100% usage capacity. Therefore, Figure 8.2 illustrates that only during a few brief moments
does our application require system resources, and in doing fully makes the most out of them.

We also decided to monitor the device externally using ADB (Android Debug Bridge)
and the top command, obtaining 5179 measurements summarized in Table 8.2 and Figure
8.5. Table 8.2 analyzes the application’s CPU percentile usage and the number of threads
used, whilst Figure 8.5 puts into perspective the RAM usage of the device and the application.

Table 8.2: ADB "top" analysis

Minimum Average σ Maximum
Application CPU (%) 0 0.007 0.368 26
Application Threads (#) 14 17.87 0.823 22

Figure 8.5: Avaialble RAM over time

As can be seen, our Android application has minimal impact on the device’s resources,
meaning that it can be used to monitor it without hindering it or interfering with other ap-
plications it is running. Our application’s RAM and CPU usage accounts for about
0-1% of the system’s, according to Figure 8.5, and Tables 8.1 and 8.2. It is noteworthy
that although our application constantly has a substantial number of worker threads, the
reduced RAM and CPU footprint can be attributed to the eventful and short lived nature
of each thread, existing only to record the current particular status of the the system.

104

8.2 Network Traffic

As Cisco has stated in their white paper (Cisco 2017), the traffic generated by smartphone
usage alone is well underway to surpass the once traditional portion of global network traffic.
In this Big Data era, a reduced network footprint should be a concern so as to diminish the
amount of data that has to be needlessly processed in a system. This has been one of this
project’s main concerns from the start and, as we’ve stated before, one of the driving forces
for our technological choices (e.g. MQTT).

Regarding our system’s network traffic, when connected to the Internet a device agent is
supposed to send the collected data to a message broker, but this connection can be done
either via WiFi or Mobile Networks such as GSM. Over time, data traffic plans for WiFi have
become more lenient and faster, especially in stationary environments, but Mobile Networks
are still very restrictive in all of these aspects. With all this in mind, we have to analyze and
determine the average and maximum expected data transfers (in bytes) per connection, per
device, and for the system as a whole.

There are several ways of tackling this problem, especially if the system were already
in use by a substantial amount of active users, namely, amassing and analyzing network
logs with software such as Wireshark, recording and analyzing every sent message within
the system, etc. However, since we don’t currently have a large number of active users,
we’ve decided to predict the expected impact on network traffic by analyzing the size and
occurrence frequency of the existing messages when sent from the device agents, giving us
theoretical limits.

All of the intermediate calculations for this section are available at the following spread-
sheet (Lima 2017a), which can be copied and edited to simulate other scenarios.

8.2.1 Individual Message Analysis

We have to take into consideration that the majority of the system is written in Java,
and as such, it’s primitive data types should to be accounted for. In the case of time config-
urations, all of them use Integers (int) for their respective value, and as such, they always
occupy 32 bits or 4 bytes in memory. But, we also have to remember that what is sent
through the network are not the 4 bytes representing these integers, but rather plain text
string representations of them, so the number 60 000 while capable of being stored in 4 bytes
in memory, will in fact occupy 5 bytes as "60000", where one byte is used to represent each
character (which is only true because the messages are writing using only ASCII characters).
So, we take from this, is that they will at most occupy 10 bytes (231− 1 = ”2147483647”),
and at minimum 1 byte ("0") while still being valid entries.

Tables 8.3 and 8.4 list the expected overhead for each of the ConfigurationMessage
andDeviceMessage types within the system, namely their sizes and occurrence frequencies
per day. Unlike with Table 8.3, the range of possible values for the messages in Table 8.4 is

105

substantially wider, thus we analyze only the size of the average message per message type,
based on our test observations. It is also worth mentioning that Table 8.3 does not take into
account the JSON overhead associated with the messages, only the attribute’s string size
overheads.

Table 8.3: Configuration Message Size Analysis

Aprox. Size (bytes)
Configuration Message Type Minimum Average Maximum

Data Generation
RAM 1 5 10
CPU 1 5 10
GPS 1 5 10
CPU_USAGE 1 5 10
RAM_USAGE 1 5 10
BATTERY 1 6 10
OPEN_PORTS 1 5 10
OPEN_DATA_TRAFFIC 1 6 10
AGGREGATE_PERIODIC_DATA 1 7 10
AGGREGATE_EVENTFUL_DATA 1 7 10

Message Management
PUBLISH_DATA 1 7 10
UPDATE_CONFIGURATIONS 1 7 10
MQTT_TIMEOUT 1 2 10
MQTT_KEEP_ALIVE 1 2 10
SERVER_PROTOCOL 3 3 4 1

SERVER_URI 1 15 2 23 3

SERVER_PORT 1 4 10
SERVER_BASE_PUBLISH_TOPIC 1 9 65 536 4

SERVER_BASE_UPDATE_TOPIC 1 14 65 536 5

SERVER_PASSWORD 0 16 65 535 6

Regarding Table 8.4, it should be noted that Eventful and One Time messages do not
have stable or predefined occurrence frequencies because they are dependant on certain trig-
gering events, which can happen at any time, and that depend on the user’s behaviour, so, in

1Possible values: "tcp", "mqtt", "ssl"
2IPv4 address
3IPv6 address
4Limit as per the official MQTT documentation for topic names (MQTT Documentation 2017a)
5See footnote 4
6Limit as per the official MQTT documentation for passwords (MQTT Documentation 2017b)
7A screen change can be either a "screen on" or "screen off" event, so every pair denotes one interaction.
8Source for this seemingly random value (Mail Online 2015)

106

Table 8.4: Device Message Daily Frequency Analysis

Message type (m) ANDM (#) ASDM (bytes)

Periodic
RAM 1 440 37
CPU 1 440 21
GPS 1 440 35
CPU Usage 8 640 44
RAM Usage 8 640 72
Battery 288 13
Open Ports 1 440 155
Data Traffic 288 84

Eventful
Time Change 0 65
Charging Change 1 70
Connection Change 1 63
Cell Location Change 1 100
Screen Change 50 7 8 70
Power Change 0 70

One Time
Package Change 0 150

Aggregated
Aggregated Periodic 2 880 120
Aggregated Eventful 2 880 90

Total 29 429 1 259

order to not discard them completely from this exercise, for our calculations we assume the
values that have been listed, using them as rough and optimistic estimations of what could
be a regular device’s behaviour throughout a day. This means that we are assuming that
the user will at least interact with his phone 25 times, and experience 1 cell tower handover
(Wikipedia 2017a). This user won’t however install/modify any new/existing applications,
nor will he experience a Timezone change, nor power off his phone. The values for the Peri-
odic and Aggregated are obtained through the default Device Agent Configurations listed
in Tables 6.2, 6.3, and 6.4.

Another assumption for these calculations is that no Device Agent Configuration changes
are made, thus, no Configuration Messages are exchanged in the network.

107

8.2.2 Device-level network traffic overhead analysis

Using the values provided by Tables 8.3, and 8.4, we can now infer the expected net-
work traffic generated by each device, which we will call the Average Device Network Traffic
(ADNT). We calculate it by multiplying the size overhead of a Device Message by the sum
of the expected impact of each type of message in the system, which itself is the product of
the Average Number of Device Messages of type m per day (ANDM(m)) and the Average
Size of Device Messages of type m (ASDM(m)). We also account for some of the JSON
representation’s size overhead (DMJSO and CJSO).

ADNT =
∑

DMJSO+ (ANDM(m) ∗ (ASDM(m) + CJSO))

• ADNT - Average Device Network Traffic

• DMJSO - Device Message JSON Size Overhead

• ANDM(m) - Average Number of Device Messages of type m per day

• ASDM(m) - Average Size of Content in Device Messages of type m

• CJSO - Content’s JSON string representation Size Overhead

• Message Type - m ∈ {PM | EM | OM | AM}

• Set of Periodic Messages - PM = { RAM, CPU, GPS, CPU Usage, RAM Usage,
Battery, Open Ports, Data Traffic }

• Set of Eventful Messages - EM = { Time Change, Charging Change, Connection
Change, Screen Change, Power Change }

• Set of One Time Messages - OM = { Package Change }

• Set of Aggregated Messages - AM = { Aggregated Periodic, Aggregated Eventful }

Accounting for an estimated CJSO of 73 bytes and a DMJSO of 124 bytes by using 6.5
and 6.6 as average message containers, we can calculate that the ADNT should be around
4 146 254 bytes, which means that each device should produce around 4.1 MB of data
every day, while using the default configurations and the subsequent values in Table 8.4.

8.2.3 Aggregated network traffic overhead analysis

Now that we have the ADNT, we can extrapolate the expected network traffic generated
for any number of similar devices by simply multiplying it.

ANT = ADNT ∗ NSDN

• ANT - Average Network Traffic

108

• ADNT - Average Device Network Traffic

• NSDN - Number of Similar Devices in Network

These formulas give us the expected Average Network Traffic, but the same logic
could be applied to the minimum and maximum Network Traffic, giving us boundaries to
assess the system’s Network Traffic. Since our system was designed with BYOD and MDM
environments in mind, we might as well extrapolate how this analysis scales up for and in-
creasingly higher number of users, going from a personal/testing environment (1 to 100), to
an enterprise environment (100 to 100 000), to an international environment (100 000 to 10
000 000) (Wikipedia 2017b)

Table 8.5: Expected Daily Network Traffic Analysis

NSDN (#) Aprox. ANT (bytes)
1 4 MB
10 40 MB
100 400 MB
1 K 4 GB
10 K 40 GB
100 K 400 GB
1 M 4 TB
10 M 40 TB

The numbers provided by Table 8.5 are hard to understand unless they are put into per-
spective, so let’s look at Google, the tech giant know for its Big Data managerial endeavours.
In 2008, almost a decade ago, it was estimated that Google was handling 20 PetaBytes (PB)
(Kennedy 2008) of data on a daily basis, and since Google provides services on a global scale,
let us consider the global population at the time as its user base, which in 2008 would be
around 6.7 billion (B) (Population Reference Bureau 2008). This means that in this sce-
nario each person would produce around 2 985 074 bytes or an approximate 3 MB of data
per day. The amount of data that Google processes on a daily basis has value has most
certainly increased dramatically with the advent and widespread usage of mobile devices in
recent years. In fact, if we apply Moore’s Law (computing power doubles every two years)
to Google’s processing power, we find that it should be currently handling 480 PB of data,
and with a current global population of around 7.5 billion (B) (Wikipedia 2017c), each of
Google’s users should be responsible for around 64 MB daily.

With these values as comparison guidelines, we can see that our system is fairly con-
servative, even when collecting data thousands of times per day per user, even by Google’s
speculated standards. Furthermore, even if this amount of data traffic is not sustainable,
there is plenty of space for improvement, be it by reducing the data collection frequen-
cies or by reducing the overhead of each message. The former should be trivial, thanks
to the Device Agent Management feature, the latter however is more challenging. Firstly,
instead of sending the messages in JSON plaintext, they can be compressed beforehand

109

and decompressed on the other end; this of courses raises the question of whether or not
this additional computing overhead is justified over many messages and it would require
testing. Secondly, a substantial part of the exchanged messages themselves is attributed to
the serialized variables’ names, so by simply having shorter but well-documented and
well-formed variable names, a couple of tens of bytes could potentially be saved for each
message. Lastly, the collected data content itself could cleaned up, even by just stripping
excessive whitespace. Given that for the default configurations there are approximately 30
000 messages sent daily per user, these humble alterations are sure to add up.

110

Chapter 9

Project Analysis

This chapter is dedicated to reviewing this project’s development up until this point,
assessing the state of the requirements and features, whether they have been completed or
not, and the overall state of completion of each of the system’s components. The purpose of
this analysis is that we hope to show that our initial predictions and estimations in Chapters
3 and 4 underestimated the sheer complexity of the final system and of the configuration and
development effort needed to bring it to fruition, and that nonetheless, we came really close
to achieving it, and laid out the work foundations for it to be possible, should the project
ever be picked up in the future.

9.1 Progress Assessment

In this section we first analyze the proposed requirements, followed by an analysis of
the features, tallying up the number of completed tasks and met expectations in the final
subsection.

9.1.1 Requirements

Looking back at Chapter 3, namely at the requirements section and Tables 3.1, 3.2, 3.3,
and 3.4, we had established the requirements for our system and its components. We revise
these lists and assess how this project stands on fulfilling them thus far with Tables 9.1, 9.2,
9.3, and 9.4.

111

Table 9.1: Development Progress: Architectural Requirements

Requirement Priority Status

Device Agent Operating System - the Device Agent Appli-
cation runs on Android devices. Must Have 3

Loose coupling between Device Agent and Central Ag-
gregator - changes to the data collected with the terminals is
transparent to the central aggregator.

Must Have 3

Central Aggregator - Uses Machine Learning tools instead of
hardcoded classification. Must Have 3

Dashboard-Aggregator control - The actions in the Dash-
board intended as modifications alter the behaviour of the Cen-
tral Aggregator.

Should Have 3

Dashboard Browser Support - The dashboard runs on
Mozilla’s Firefox browser. Should Have 7

Dashboard Browser Support - The dashboard runs on
browsers other than Mozilla’s Firefox. Could Have 7

User Anonymity - Secure connections are used by the system Must Have 3

User Anonymity - Secure connections are used by the system
and uphold anonymity for the mobile terminal users. Should Have 3

Total 6/8

112

Table 9.2: Development Progress: Behavioural Requirements

Requirement Priority Status

The Device Agent Application collects data from the mobile
terminal it is installed in. Must Have 3

The Device Agent Application has a low impact on the ter-
minals battery, CPU and bandwidth. Should Have 3

The Device Agent Application periodically transfers data to
the central aggregator. Must Have 3

The Device Agent Application securely transfers data to the
central aggregator. Must Have 3

The Device Agent Application copes with connectivity issues
with the central aggregator. Should Have 3

The Central Aggregator employs Machine Learning on the
collected data for each user. Should Have 7

The Central Aggregator employs Data Analysis on the col-
lected data for each user. Could Have 3

The Central Aggregator employs Machine Learning on the
collected data between users. Must Have 3

The Central Aggregator employs Data Analysis on the col-
lected data between users. Could Have 3

The Dashboard displays metrics, findings and collected data. Should Have 7

The Dashboard displays user activity. Could Have 7

Total 8/11

113

Table 9.3: Development Progress: Functional Requirements

Requirement Priority Status

TheDevice Agent Application handles the temporary storage
of the data in the mobile terminal. Must Have 3

The Device Agent Application handles the deletion of unnec-
essary data stored in the mobile terminal. Should Have 3

The Device Agent Application handles the transfer of data
stored in the mobile terminal to the Central Aggregator. Must Have 3

The Device Agent Application only deletes stored data from
the mobile terminal that has already been transferred to the Cen-
tral Aggregator.

Must Have 3

The Device Agent Application requests updated data collec-
tion configurations. Must Have 3

The Device Agent Application updates its data collection
configurations. Must Have 3

TheCentral Aggregator stores the collected data for each user. Must Have 3

Total 7/7

Table 9.4: Development Progress: Non-functional Requirements

Requirement Priority Status

The data collected with the Device Agent Application does
not occupy more than 100MB of the mobile terminal’s storage
space.

Should Have 3

The Central Aggregator scales for dozens of users. Must Have 3

The Central Aggregator scales for hundreds of users. Could Have 3

The Central Aggregator scales for thousands of users. Won’t Have 3

The Central Aggregator stores up to 3 months of consecutive
data for each user. Should Have 7

The Central Aggregator stores all the data ever received for
each user. Won’t Have 3

The Central Aggregator stores up to 3 months of consecutive
data for each user. Should Have 7

Total 5/7

114

9.1.2 Features

This project’s requirements have indubitably shaped it throughout the development pro-
cess, however they do not address the full extent of features that have been developed and
their subtle nuances, so we’ve decided to also include Tables 9.5, 9.6, and 9.7, which try
to include all planned, relevant, and unmentioned features, depicting their current develop-
ment state. Table 9.5 analyzes the Device Agent Android Application, Table 9.6 inspects
the Central Aggregator Cluster’s, and Table 9.7 focuses on the Dashboard subsystem.

115

Table 9.5: Development Progress: Device Agent Features

Feature Status

Scheduling
Schedule periodic data collection 3

Schedule eventful data collection 3

Schedule one time data collection 3

Schedule periodic data aggregation 3

Schedule eventful data aggregation 3

Schedule data upload 3

Schedule configuration updates 3

Data Collection
Collect periodic data 3

Collect eventful data 3

Collect one time data 3

Data Aggregation
Aggregate periodic data 3

Aggregate eventful data 3

Data Exchange
Upload collected data through MQTT 3

Upload aggregated data through MQTT 3

Retrieve updated configurations through MQTT 3

Delete uploaded data 3

Data Management
Store data in SQLite database 3

Read data from SQLite database 3

Update data in SQLite database 3

Delete data in SQLite database 3

Limit amount of data in SQLite database 3

Total 21/21

116

Table 9.6: Development Progress: Central Aggregator Features

Feature Status

Mosquitto Server
Receive data through mosquitto topic 3

Upload updated configurations through mosquitto topic 3

Kafka Server
Receive data through Kafka topic 3

Move input data through Kafka topic "OryxInput" 3

Move update data through Kafka topic "OryxUpdate" 3

Data Exchange
Upload updated configurations through mosquitto server 3

Receive data through mosquitto server 3

Bridge received data between the MQTT and Kafka servers 3

Receive data through Kafka server 3

Data Management
Store data in HDFS 3

Read data from HDFS 3

Update data in HDFS 3

Coordinate and manage HDFS with Zookeeper 3

Coordinate and manage HDFS with YARN 3

Lambda Architecture
Communicate with serving layer 3

Serving layer communicates with batch layer 3

Serving layer communicates with speed layer 3

Machine Learning
Classify data with K-Means Clustering 3

Perform Triple Modular Redundancy 7

Perform Triple Redundancy 3

Total 19/20

117

Table 9.7: Development Progress: Dashboard Features

Feature Status

Device Management
Display device configurations 7

Interact with device configurations 7

Data Visualization
Generate graph of relationships across all devices 7

Generate graph of relationships across all data 7

Generate graph of relationships across all devices and all data 7

Display relationships across all devices 7

Display relationships across all data 7

Display relationships across all devices and all data 7

Highlight anomalous devices 7

Highlight anomalous data 7

Total 0/10

118

9.1.3 Assessment

Looking at the totals in Tables 9.1, 9.2, 9.3, and 9.4 we are proud to conclude that the
developed system satisfies the majority of the architectural, behavioural, functional, and
non-functional requirements, respecting almost all of the Must Have and Should Have
priority requirements.

Following up with Tables 9.5, 9.6, and 9.7 and their respective totals, both the Android
Application and the Server Cluster correspond almost entirely to all of their feature expec-
tations, whilst the Dashboard doesn’t satisfy a single feature requirement.

We can condense the previous subsection’s status totals from Tables 9.1, 9.2, 9.3, and
9.4, and from Tables 9.5, 9.6, and 9.7 into Table 9.8. All of this information is also calculated
dynamically using the spreadsheet at (Lima 2017b).

Table 9.8: Development Progress: Totals

Requirements
Architectural 6/8
Behavioural 8/11
Functional 7/7
Non-functional 5/7

Features
Device Agent Application 21/21
Central Aggregator Cluster 19/20
Dashboard 0/10

Total 66/84

From Table 9.8 we can conclude that by looking exclusively at the total number of sat-
isfied requirements and developed features, the project is approximately 79% complete
with 66 out of 84 tasks. It is apparent that both the Device Agent Application and the
Central Aggregator Cluster are nearly complete, whilst the Dashboard, although started,
is essentially incomplete on all aspects. Having in mind that plenty of setbacks were en-
countered, that multiple initial features and requirements had to be revised and altered
for the Central Aggregator, and that both the Central Aggregator and Device Agent were
developed extensively, this assessment isn’t dissatisfying.

119

9.2 Future work and next developments

The following section overviews the tasks that haven’t been completed yet and details
the future work necessary to bring them to fruition.

9.2.1 Central Aggregator

Regarding the Central Aggregator, some technical considerations must also be taken
into account, namely the maximum delay per stream connection, the number of streaming
connections available, the number of concurrent batch processing jobs, the minimum number
of generated reports per day, database backup frequency, and expected uptime per year. All
of these considerations will have to be analyzed once data has been collected, in order to
fine tune the Central Aggregator and minimize unnecessary strain on the system.

9.2.2 Dashboard

As has been stated in the previous progress assessment section, the Dashboard is essen-
tially incomplete given that currently it does not allow for a user to manage Device Agent
Configurations, nor does it provide the means to analyze the collected or the classified data
in the Central Aggregator through a UI. As such, all of the development effort needs to be
put forward in order to finish this subsystem.

9.2.3 Dataset Generation

In order to validate our system we must gather data from various users on various devices,
broadening the range of what is to be accepted as normal behaviour, and ultimately train
the Central Aggregator. After that we will have to gather some recent, widespread, and well
known malware examples, infect some of the previous devices, let the same users use them
again, and ultimately check if our system can correctly detect anomalous behaviour.

9.2.4 Device and Data Analysis

Once the Dashboard is fully functional and the Dataset Generation step have been sur-
mounted, we need to use the GraphX generated graphs and graphics and perform a more
in depth analysis of the underlying data, namely the amount of messages, the average, least
common and most common values regarding messages, and how each device is classified by
the K-Means algorithm.

• Number, average, least common and most common

– Messages sent

– Messages sent by message type

– Messages sent by each device, by message type

• K-Means Classification

120

– Number of devices in each class

– Which devices are in each class

We believe that these are the most fundamental yet crucial metrics that should be pri-
oritized regarding the data analysis, and that they will ease the process of manual anomaly
detection.

121

Chapter 10

Final Remarks and Conclusions

Since mobile devices are far more resource constrained than stationary computers or lap-
tops and are not meant to be constantly or frequently connected to a charging outlet, any
attempt at performing additional computations needs to be extremely conservative. The
best alternative to performing any resource intensive task on such devices is to perform it on
another device that isn’t as limited. This also makes it more feasible to manage and analyze
data from other devices.

The purpose of this project is deeply intertwined with energy and resource consumption,
and how anomalies such as malware can become apparent due to the increase in consumption
they represent. As such, one cannot ignore the fact that any potential progress originated
by this project will probably not end the action-reaction cycle of malware development for
mobile devices, resulting in more subtle anomalies. Ultimately, this whole problematic might
become just another case study of a Jevons Paradox (Wikipedia 2017d), a scenario in which
technological progress increases the efficiency by which a resource is used, however, the rate
of its consumption increases due to rising demand.

Lastly, we would like to express our enthusiasm and satisfaction towards the obtained
intermediate results, which show much promise and lead us to believe that this is in fact a
effort-worthy approach to the problem. Unfortunately, almost a full year wasn’t enough to
bring this project to fruition, however close it might have gotten.

123

References

[1] Alfalqi, K., Alghamdi, R. and Waqdan, M. (2015) Android Platform Malware Analysis.,
6(1), pp.140–146.

[2] Android. Available at: https://www.android.com/index.html (last accessed Septem-
ber 1, 2017).

[3] Answers, Fabric. Available at: https://fabric.io/kits/android/answers (last ac-
cessed September 1, 2017).

[4] Apache Spark (2017a) Machine Learning Library (MLlib). Available at: https://spark.
apache.org/docs/1.0.1/mllib-guide.html (last accessed January 22, 2017).

[5] Apache Spark (2017b) Spark Overview. Available at: https://spark.apache.org/
docs/1.0.1/index.html (last accessed January 22, 2017).

[6] Apple App Center (2016a) App Store Review Guidelines. Available at:
https://developer.apple.com/app-store/review/guidelines/ (last accessed October
21, 2016).

[7] Apple Developers (2016b) About Info.plist Keys and Values. Available at:
https://developer.apple.com/library/content/documentation/General/
Reference/InfoPlistKeyReference/Introduction/Introduction.html (last ac-
cessed October 21, 2016).

[8] Armando, A. et al. (2012) Changing user attitudes to security in bring your own device
(BYOD) & the cloud. Network Security, 2012(3), pp.5–8.

[9] Bandugula, N. (2015) The 5-Minute Guide to Understanding the Sig-
nificance of Apache Spark. Available at: https://www.mapr.com/blog/
5-minute-guide-understanding-significance-apache-spark (last accessed Jan-
uary 22, 2017).

[10] Becher, M. and Freiling, F.C. (2008) Towards Dynamic Malware Analysis to In-
crease Mobile Device Security. In Proc. of SICHERHEIT, P-128, pp.423–433. Avail-
able at: https://www.scopus.com/inward/record.uri?eid=2-s2.0-84873743297&
partnerID=40&md5=568aa830f6fbf59ca90683d4c5c34d23.

125

https://www.android.com/index.html
https://fabric.io/kits/android/answers
https://spark.apache.org/docs/1.0.1/mllib-guide.html
https://spark.apache.org/docs/1.0.1/mllib-guide.html
https://spark.apache.org/docs/1.0.1/index.html
https://spark.apache.org/docs/1.0.1/index.html
https://developer.apple.com/library/content/documentation/General/Reference/InfoPlistKeyReference/Introduction/Introduction.html
https://developer.apple.com/library/content/documentation/General/Reference/InfoPlistKeyReference/Introduction/Introduction.html
https://www.mapr.com/blog/5-minute-guide-understanding-significance-apache-spark
https://www.mapr.com/blog/5-minute-guide-understanding-significance-apache-spark
https://www.scopus.com/inward/record.uri?eid=2-s2.0-84873743297&partnerID=40&md5=568aa830f6fbf59ca90683d4c5c34d23
https://www.scopus.com/inward/record.uri?eid=2-s2.0-84873743297&partnerID=40&md5=568aa830f6fbf59ca90683d4c5c34d23

[11] Bertran, P. F. (2013) An example "lambda architecture"
for real-time analysis of hashtags using Trident, Hadoop and
Splout SQL. Available at: http://www.datasalt.com/2013/01/
an-example-lambda-architecture-using-trident-hadoop-and-splout-sql/ (last
accessed January 20, 2017).

[12] Bertran, P. F. (2014) Lambda Architecture: A state-of-the-art. Available at: http:
//www.datasalt.com/2014/01/lambda-architecture-a-state-of-the-art/ (last ac-
cessed January 20, 2017).

[13] Bijnens, M. (2017), Lambda Architecture. Available at: http://
lambda-architecture.net/ (last accessed 1 Sep. 2017).

[14] Bijnens, N., Hausenblas, M. (2016) Lambda Architecture: A state-of-the-art. Available
at: http://lambda-architecture.net/ (last accessed January 20, 2017).

[15] Bornstein, Dan. "Presentation of Dalvik VM Internals" (PDF). Google.
https://sites.google.com/site/io/dalvik-vm-internals/2008-05-29-Presentation-Of-Dalvik-
VM-Internals.pdf (last accessed on November 11, 2016).

[16] Bose, A. et al. (2008) Behavioral detection of malware on mobile handsets. Proceeding
of the 6th international conference on Mobile systems, applications, and services - MobiSys
’08, p.225.

[17] Boyd, J. R. (1995) The Essence of Winning and Losing. A Discourse on Winning and
Losing.

[18] Boyd, J.R. (1976) Destruction and Creation. A Discourse on Winning and Losing,
(September), pp.3–9.

[19] Bradley, J., Meng, X. and Lee, D. (2016) Why you should use Spark for machine
learning. Available at: http://www.infoworld.com/article/3031690/analytics/
why-you-should-use-spark-for-machine-learning.html (last accessed January 22,
2017).

[20] Burguera, I., Zurutuza, U. and Nadjm-Tehrani, S. (2011) Crowdroid: Behavior-Based
Malware Detection System for Android. Proceedings of the 1st ACM workshop on Security
and privacy in smartphones and mobile devices - SPSM ’11, p.15.

[21] CentOS. Available at: https://www.centos.org/ (last accessed September 1, 2017).

[22] Cisco (June 207), The Zettabyte Era: Trends and Analysis. Available at:
https://www.cisco.com/c/en/us/solutions/collateral/service-provider/
visual-networking-index-vni/vni-hyperconnectivity-wp.html (last accessed
31 August, 2017)

[23] Crashlytics, Fabric. Available at: https://fabric.io/kits/android/crashlytics
(last accessed September 1, 2017).

126

http://www.datasalt.com/2013/01/an-example-lambda-architecture-using-trident-hadoop-and-splout-sql/
http://www.datasalt.com/2013/01/an-example-lambda-architecture-using-trident-hadoop-and-splout-sql/
http://www.datasalt.com/2014/01/lambda-architecture-a-state-of-the-art/
http://www.datasalt.com/2014/01/lambda-architecture-a-state-of-the-art/
http://lambda-architecture.net/
http://lambda-architecture.net/
http://lambda-architecture.net/
http://www.infoworld.com/article/3031690/analytics/why-you-should-use-spark-for-machine-learning.html
http://www.infoworld.com/article/3031690/analytics/why-you-should-use-spark-for-machine-learning.html
https://www.centos.org/
https://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/vni-hyperconnectivity-wp.html
https://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/vni-hyperconnectivity-wp.html
https://fabric.io/kits/android/crashlytics

[24] Deploying Hadoop (2017). Available at: https://tecadmin.net/
setup-hadoop-single-node-cluster-on-centos-redhat/ (last accessed Septem-
ber 1, 2017).

[25] Deploying Kafka (2017a). Available at: http://www.bogotobogo.com/Hadoop/
BigData_hadoop_Zookeeper_Kafka.php (last accessed September 1, 2017).

[26] Deploying Kafka (2017b). Available at: https://www.vultr.com/docs/
how-to-install-apache-kafka-on-centos-7 (last accessed September 1, 2017).

[27] Deploying Spark (2017). Available at: http://www.aodba.com/
how-to-install-apache-spark-in-centos-standalone/ (last accessed September 1,
2017).

[28] Deploying the MQTT Broker (2017a). Available at:
https://www.digitalocean.com/community/tutorials/
how-to-install-and-secure-the-mosquitto-mqtt-messaging-broker-on-centos-7 (last ac-
cessed September 1, 2017).

[29] Deploying the MQTT Broker (2017b). Available at: https://mosquitto.org/man/
mosquitto-conf-5.html (last accessed September 1, 2017).

[30] Deploying the MQTT Broker (2017c). Available at: https://github.com/eclipse/
mosquitto/blob/master/mosquitto.conf (last accessed September 1, 2017).

[31] Deploying the MQTT Broker (2017d). Available at: https://test.mosquitto.org/
(last accessed September 1, 2017).

[32] Distefano, A., et al. (2011) SecureMyDroid: Enforcing Security in the Mobile Devices
Lifecycle.

[33] Eslahi, M. et al. (2015) BYOD: Current state and security challenges. ISCAIE 2014
- 2014 IEEE Symposium on Computer Applications and Industrial Electronics, (April
2014), pp.189–192.

[34] Fielding, R. (2000). Architectural Styles and the Design of Network-based Software
Architectures. Dissertation. University of California, Irvine.

[35] FireEye (2015) Zero-Day Danger: A Survey of Zero-Day Attacks and What They Say
About the Traditional Security Model., p.16.

[36] Flurry Analytics, Yahoo. Available at: https://developer.yahoo.com/analytics/
(last accessed September 1, 2017).

[37] Frei, D. (2012) Conducting a Risk Assessment for Mobile Devices.

[38] Git version control. Available at: https://git-scm.com/ (last accessed September 1,
2017).

127

https://tecadmin.net/setup-hadoop-single-node-cluster-on-centos-redhat/
https://tecadmin.net/setup-hadoop-single-node-cluster-on-centos-redhat/
http://www.bogotobogo.com/Hadoop/BigData_hadoop_Zookeeper_Kafka.php
http://www.bogotobogo.com/Hadoop/BigData_hadoop_Zookeeper_Kafka.php
https://www.vultr.com/docs/how-to-install-apache-kafka-on-centos-7
https://www.vultr.com/docs/how-to-install-apache-kafka-on-centos-7
http://www.aodba.com/how-to-install-apache-spark-in-centos-standalone/
http://www.aodba.com/how-to-install-apache-spark-in-centos-standalone/
https://www.digitalocean.com/community/tutorials/how-to-install-and-secure-the-mosquitto-mqtt-messaging-broker-on-centos-7
https://www.digitalocean.com/community/tutorials/how-to-install-and-secure-the-mosquitto-mqtt-messaging-broker-on-centos-7
https://mosquitto.org/man/mosquitto-conf-5.html
https://mosquitto.org/man/mosquitto-conf-5.html
https://github.com/eclipse/mosquitto/blob/master/mosquitto.conf
https://github.com/eclipse/mosquitto/blob/master/mosquitto.conf
https://test.mosquitto.org/
https://developer.yahoo.com/analytics/
https://git-scm.com/

[39] Github version control. Available at: https://github.com/ (last accessed September
1, 2017).

[40] Google Analytics, Firebase. Available at: https://firebase.google.com/products/
analytics/ (last accessed September 1, 2017).

[41] Google Android Developers (2016a) App Manifest. Available at: https://developer.
android.com/guide/topics/manifest/manifest-intro.html (last accessed October
21, 2016).

[42] Google Android Developers (2016b) Launch Checklist. Available at: https:
//developer.android.com/distribute/tools/launch-checklist.html (last accessed
October 21, 2016).

[43] Google Android Developers (2016c) Requesting Permissions at Run Time. Available
at: https://developer.android.com/training/permissions/requesting.html (last
accessed October 21, 2016).

[44] GraphX, Apache. Available at: https://spark.apache.org/graphx/ (last accessed
September 1, 2017).

[45] Hadoop, Apache. Available at: https://hadoop.apache.org/ (last accessed September
1, 2017).

[46] Halevi, S., Shoup, V. "HElib: An Implementation of homomorphic encryption". Avail-
able at: https://github.com/shaih/HElib (last accessed December 31, 2014).

[47] Halilovic M., A. Subasi (2012) Intrusion Detection on Smartphones.

[48] Harris, M.A. and Patten, K.P. (2015) Mobile Device Security Issues Within the U.S.
Disadvantaged Business Enterprise Program. Journal of Information Technology Manage-
ment, XXVI(1), pp.46–57.

[49] HockeyApp, Microsoft. Available at: https://hockeyapp.net/ (last accessed Septem-
ber 1, 2017).

[50] Hortonworks’ Sandbox. Available at: https://hortonworks.com/products/sandbox/
(last accessed September 1, 2017).

[51] IDC (2016), "Smartphone OS Market Share" report for November 2016. Available at:
https://www.idc.com/promo/smartphone-market-share/os (last accessed September
1, 2017).

[52] Jaatun, M.G., Jaatun, E.A.A. and Moser, R. (2014) Security considerations for tablet-
based eHealth applications. CEUR Workshop Proceedings, 1251(Pahi 2014), pp.27–36.

[53] Jaramillo, D., B. Furht, and A. Agarwal (2014) Mobile Virtualization Technologies. In:
Virtualization Techniques for Mobile Systems, 14th ed., Vol 73, pp. 5-20.

128

https://github.com/
https://firebase.google.com/products/analytics/
https://firebase.google.com/products/analytics/
https://developer.android.com/guide/topics/manifest/manifest-intro.html
https://developer.android.com/guide/topics/manifest/manifest-intro.html
https://developer.android.com/distribute/tools/launch-checklist.html
https://developer.android.com/distribute/tools/launch-checklist.html
 https://developer.android.com/training/permissions/requesting.html
https://spark.apache.org/graphx/
https://hadoop.apache.org/
https://github.com/shaih/HElib
https://hockeyapp.net/
https://hortonworks.com/products/sandbox/
https://www.idc.com/promo/smartphone-market-share/os

[54] Java Datatypes. Available at: http://docs.oracle.com/javase/tutorial/java/
nutsandbolts/datatypes.html (last accessed 1 Sep. 2017).

[55] Java. Available at: https://www.java.com (last accessed September 1, 2017).

[56] Kafka, Apache. Available at: https://kafka.apache.org/ (last accessed September 1,
2017).

[57] Kennedy, M. (January 8, 2008), Google’s MapReduce Stats. Available at: https://www.
niallkennedy.com/blog/2008/01/google-mapreduce-stats.html (last accessed 1 Sep.
2017).

[58] Kocher, P. et al. (2004) Security as a new dimension in embedded system design. DAC
’04: Proceedings of the 41st annual Design Automation Conference, pp.753–760.

[59] Kotlin. Available at: https://developer.android.com/kotlin/index.html (last ac-
cessed September 1, 2017).

[60] Lebek, B., Degirmenci, K. and Breitner, M.H. (2013) Investigating the Influence of
Security, Privacy, and Legal Concerns on Employees’ Intention to Use BYOD Mobile
Devices. Amcis, (2008), pp.1–8.

[61] Lee, J., T. Kim, and J. Kim (2009) "Energy-efficient Run-time Detection of Malware-
infected Executables and Dynamic Libraries on Mobile Devices", Software Technologies
for Future Dependable Distributed Systems.

[62] Li, Q. and Clark, G. (2013) Mobile Security: A Look Ahead. IEEE Security & Privacy,
11(1), pp.78–81

[63] Lima, A. (2017a), Network Traffic Spreadsheet. Available at: https://goo.gl/BHn2oZ
(last accessed September 1, 2017).

[64] Lima, A. (2017b), Project Assessment Spreadsheet. Available at: https://goo.gl/
B48cGq (last accessed September 1, 2017).

[65] Lima, A., Sousa, B., Cruz, T., Simões, P. (2016) Security for Mobile Device Assets: a
Survey

[66] Luo, J., and m. Kang (2011) "Application Lockbox for Mobile Device Security", Eighth
International Conference on Information Technology: New Generations.

[67] Mail Online (October 29, 2015), We check our phones 85
TIMES a day - twice as often than we realise. Available
at: http://www.dailymail.co.uk/sciencetech/article-3294994/
How-check-phone-Average-user-picks-device-85-times-DAY-twice-realise.html
(last accessed September 1, 2017).

[68] MapR’s Hadoop Sandbox. Available at: https://mapr.com/products/
mapr-sandbox-hadoop/ (last accessed September 1, 2017).

129

http://docs.oracle.com/javase/tutorial/java/nutsandbolts/datatypes.html
http://docs.oracle.com/javase/tutorial/java/nutsandbolts/datatypes.html
https://www.java.com
https://kafka.apache.org/
https://www.niallkennedy.com/blog/2008/01/google-mapreduce-stats.html
https://www.niallkennedy.com/blog/2008/01/google-mapreduce-stats.html
https://developer.android.com/kotlin/index.html
https://goo.gl/BHn2oZ
https://goo.gl/B48cGq
https://goo.gl/B48cGq
http://www.dailymail.co.uk/sciencetech/article-3294994/How-check-phone-Average-user-picks-device-85-times-DAY-twice-realise.html
http://www.dailymail.co.uk/sciencetech/article-3294994/How-check-phone-Average-user-picks-device-85-times-DAY-twice-realise.html
https://mapr.com/products/mapr-sandbox-hadoop/
https://mapr.com/products/mapr-sandbox-hadoop/

[69] Maven, Apache. Available at: https://maven.apache.org/ (last accessed September
1, 2017).

[70] Mazumdar, S. and Paturi, A. (2011) Tamper-resistant database logging on mobile de-
vices. Internet Security (WorldCIS), 2011 World Congress on, pp.165–170.

[71] Microsoft Windows Dev Center (2016) The app certification pro-
cess. Available at: https://msdn.microsoft.com/windows/uwp/publish/
the-app-certification-process (last accessed October 21, 2016).

[72] Miettinen, M., and P. Halonen. (2006) "Host-Based Intrusion Detection for Advanced
Mobile Devices", 20th International Conference on Advanced Information Networking and
Applications (AINA’06), Vol 1.

[73] Mobile Marketshare (2017a), Email client marketshare. Available at: https://
emailclientmarketshare.com/ (last accessed August 4, 2017).

[74] Mobile Marketshare (2017b), Mobile web usage. Avail-
able at: http://www.telegraph.co.uk/technology/2016/11/01/
mobile-web-usage-overtakes-desktop-for-first-time/ (last accessed August
4, 2017).

[75] Mobile Marketshare (2017c), Mobile marketing analytics. Available at:
http://www.smartinsights.com/mobile-marketing/mobile-marketing-analytics/
mobile-marketing-statistics/ (last accessed August 4, 2017).

[76] Mosquitto project. Available at: https://mosquitto.org/ (last accessed September 1,
2017).

[77] MQTT Documentation (2017a). Available at: http://docs.oasis-open.org/mqtt/
mqtt/v3.1.1/os/mqtt-v3.1.1-os.html#_Toc398718109 (last accessed September 1,
2017).

[78] MQTT Documentation (2017b). Available at: http://docs.oasis-open.org/mqtt/
mqtt/v3.1.1/os/mqtt-v3.1.1-os.html#_Toc385349247 (last accessed September 1,
2017).

[79] MQTT Essentials Part 5: MQTT Topics & Best Practices. Available at: http://
www.hivemq.com/blog/mqtt-essentials-part-5-mqtt-topics-best-practices (last
accessed July 24, 2017).

[80] MQTT man page. Available at: https://mosquitto.org/man/mqtt-7.html (last ac-
cessed July 24, 2017).

[81] MQTT organization. Available at: http://mqtt.org/ (last accessed September 1,
2017).

130

https://maven.apache.org/
https://msdn.microsoft.com/windows/uwp/publish/the-app-certification-process
https://msdn.microsoft.com/windows/uwp/publish/the-app-certification-process
https://emailclientmarketshare.com/
https://emailclientmarketshare.com/
http://www.telegraph.co.uk/technology/2016/11/01/mobile-web-usage-overtakes-desktop-for-first-time/
http://www.telegraph.co.uk/technology/2016/11/01/mobile-web-usage-overtakes-desktop-for-first-time/
http://www.smartinsights.com/mobile-marketing/mobile-marketing-analytics/mobile-marketing-statistics/
http://www.smartinsights.com/mobile-marketing/mobile-marketing-analytics/mobile-marketing-statistics/
https://mosquitto.org/
http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/os/mqtt-v3.1.1-os.html#_Toc398718109
http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/os/mqtt-v3.1.1-os.html#_Toc398718109
http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/os/mqtt-v3.1.1-os.html#_Toc385349247
http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/os/mqtt-v3.1.1-os.html#_Toc385349247
http://www.hivemq.com/blog/mqtt-essentials-part-5-mqtt-topics-best-practices
http://www.hivemq.com/blog/mqtt-essentials-part-5-mqtt-topics-best-practices
https://mosquitto.org/man/mqtt-7.html
http://mqtt.org/

[82] Mulligan, B. (2014) The Right Way To Ask Users For iOS Permis-
sions, Techcrunch. Available at: https://techcrunch.com/2014/04/04/
the-right-way-to-ask-users-for-ios-permissions/ (last accessed October 21,
2016).

[83] Nabi, R.M. and Mohammed, R.A. (2015) Smartphones Platform Security a Comparison
Study., 5(11), pp.44–48.

[84] Nierbeck, A. (2016) IoT Analytics Platform. Available at: https://blog.
codecentric.de/en/2016/07/iot-analytics-platform/ (last accessed January 20,
2017).

[85] Official Documentation, Oryx. Available at: http://oryx.io/docs/admin.html (last
accessed September 1, 2017).

[86] Olalere, M., et al. (2015) "A Review of Bring Your Own Device on Security Issues",
SAGE Open Apr 2015, 5 (2) 2158244015580372; DOI: 10.1177/2158244015580372.

[87] Oryx Cluster Setup (2017a). Available at: https://tecadmin.net/
install-java-8-on-centos-rhel-and-fedora/ (last accessed September 1, 2017).

[88] Oryx Cluster Setup (2017b). Available at: https://www.digitalocean.com/
community/tutorials/how-to-install-java-on-centos-and-fedora (last accessed
September 1, 2017).

[89] Oryx project. Available at: https://oryx.io/ (last accessed September 1, 2017).

[90] O’Murchu, L., Falliere, N. (2011) "W32.Stuxnet dossier", Symantec White Paper,
February 2011.

[91] Paho project. Available at: https://eclipse.org/paho/ (last accessed September 1,
2017).

[92] Population Reference Bureau (Aug. 19, 2008), 2008 World Population Data Sheet. Avail-
able at: http://www.prb.org/Publications/Datasheets/2008/2008wpds.aspx (last
accessed 1 Sep. 2017).

[93] Rhee, K., Jeon, W. and Won, D. (2012) "Security requirements of a mobile device man-
agement system", International Journal of Security and its Applications, 6(2), pp.353–358.

[94] Scala. Available at: https://www.scala-lang.org/ (last accessed September 1, 2017).

[95] Scarfo, A. (2012) New security perspectives around BYOD. Proceedings - 2012 7th
International Conference on Broadband, Wireless Computing, Communication and Ap-
plications, BWCCA 2012, pp.446–451.

[96] Schmidt, A.-D., et al. (2009) "Static Analysis of Executables for Collaborative Mal-
ware Detection on Android.", 2009 IEEE International Conference on Communications,
doi:10.1109/icc.2009.5199486.

131

https://techcrunch.com/2014/04/04/the-right-way-to-ask-users-for-ios-permissions/
https://techcrunch.com/2014/04/04/the-right-way-to-ask-users-for-ios-permissions/
https://blog.codecentric.de/en/2016/07/iot-analytics-platform/
https://blog.codecentric.de/en/2016/07/iot-analytics-platform/
http://oryx.io/docs/admin.html
https://tecadmin.net/install-java-8-on-centos-rhel-and-fedora/
https://tecadmin.net/install-java-8-on-centos-rhel-and-fedora/
https://www.digitalocean.com/community/tutorials/how-to-install-java-on-centos-and-fedora
https://www.digitalocean.com/community/tutorials/how-to-install-java-on-centos-and-fedora
https://oryx.io/
https://eclipse.org/paho/
http://www.prb.org/Publications/Datasheets/2008/2008wpds.aspx
https://www.scala-lang.org/

[97] Shabtai, A. U. Kanonov, and Y. Elovici (2010) "Intrusion Detection for Mobile Devices
Using the Knowledge-Based, Temporal Abstraction Method", Journal of Systems and
Software, Vol 83, No. 8, pp. 1524–1537.

[98] Skovoroda, A. and Gamayunov, D. (2015) Securing mobile devices: Malware mitigation
methods. Journal of Wireless Mobile Networks, Ubiquitous Computing, and Dependable
Applications, 6(2), pp.78–97.

[99] Souppaya, M. and Scarfone, K. (2013) NIST Special Publication 800-124 Guidelines for
Managing the Security of Mobile Devices in the Enterprise., p.30.

[100] Spark MLib, Apache. Available at: https://spark.apache.org/mllib/ (last accessed
September 1, 2017).

[101] Spark, Apache. Available at: https://spark.apache.org/ (last accessed September
1, 2017).

[102] Team, U.-C.C.R. (2010) Technical Information Paper-TIP-10-105-01 Cyber Threats to
Mobile Devices. US-CERT Technical Information Paper, pp.1–16.

[103] Understanding MQTT Topics and Topic Naming Design. Available at: http://
www.steves-internet-guide.com/understanding-mqtt-topics/ (last accessed July
24, 2017).

[104] Venugopal, D., and G. Hu. (2008) "Efficient Signature Based Malware Detection on
Mobile Devices", Mobile Information Systems, Vol 4, No. 1, pp. 33–49.

[105] Väisänen, T. et al. (2015) Defending mobile devices for high level officials and decision-
makers, pp.1–107.

[106] Wassermann, G. (2015), "Vulnerability Note VU#924951 – Android Stagefright con-
tains multiple vulnerabilities". CERT. Available at: https://www.kb.cert.org/vuls/
id/924951 (last accessed November 2, 2016).

[107] Weiss, A. (2013) How to Deploy Enterprise Mobile Apps. Enterprise
Apps Today. Available at: http://www.enterpriseappstoday.com/crm/
how-to-deploy-enterprise-mobile-apps.html (last accessed October 21, 2016).

[108] Wikipedia, The Free Encyclopedia (2017a), Cell site. Available at: https://en.
wikipedia.org/wiki/Cell_site (last accessed September 1, 2017).

[109] Wikipedia, The Free Encyclopedia (2017b), List of the largest information technol-
ogy companies. Available at: https://en.wikipedia.org/wiki/List_of_the_largest_
information_technology_companies (last accessed September 1, 2017).

[110] Wikipedia, The Free Encyclopedia (2017c), World population. Available at: https:
//en.wikipedia.org/wiki/World_population (last accessed September 1, 2017).

[111] Wikipedia, The Free Encyclopedia (2017d), Jevons paradox. Available at: https:
//en.wikipedia.org/wiki/Jevon%27s_paradox (last accessed September 1, 2017).

132

https://spark.apache.org/mllib/
https://spark.apache.org/
http://www.steves-internet-guide.com/understanding-mqtt-topics/
http://www.steves-internet-guide.com/understanding-mqtt-topics/
https://www.kb.cert.org/vuls/id/924951
https://www.kb.cert.org/vuls/id/924951
http://www.enterpriseappstoday.com/crm/how-to-deploy-enterprise-mobile-apps.html
http://www.enterpriseappstoday.com/crm/how-to-deploy-enterprise-mobile-apps.html
https://en.wikipedia.org/wiki/Cell_site
https://en.wikipedia.org/wiki/Cell_site
https://en.wikipedia.org/wiki/List_of_the_largest_information_technology_companies
https://en.wikipedia.org/wiki/List_of_the_largest_information_technology_companies
https://en.wikipedia.org/wiki/World_population
https://en.wikipedia.org/wiki/World_population
https://en.wikipedia.org/wiki/Jevon%27s_paradox
https://en.wikipedia.org/wiki/Jevon%27s_paradox

[112] Willems, C., T. Holz, and F. Freiling (2007) "Toward Automated Dynamic Malware
Analysis Using CWSandbox", IEEE Security and Privacy, Vol 5, No. 2, pp. 32-39, March.

[113] Wu, F. and Chen, C., (2014) Sensitive Data Protection on Mobile Devices., 5(9),
pp.38–41.

[114] YARN, Apache. Available at: https://hadoop.apache.org/docs/current/
hadoop-yarn/hadoop-yarn-site/YARN.html (last accessed September 1, 2017).

[115] Zookeeper, Apache. Available at: https://zookeeper.apache.org/ (last accessed
September 1, 2017).

133

https://hadoop.apache.org/docs/current/hadoop-yarn/hadoop-yarn-site/YARN.html
https://hadoop.apache.org/docs/current/hadoop-yarn/hadoop-yarn-site/YARN.html
https://zookeeper.apache.org/

	Introduction
	State of the Art
	Prevention and Monitoring
	Prevention
	Monitoring

	Mitigation
	Competitors and Motivation

	Objectives and Requirements
	Scope and high-level approach
	Platform Requirements
	Architectural
	Behavioral
	Functional
	Non-functional

	Planning and Methodology
	First Semester Planning
	Gantt Charts
	Meetings and Deliverables
	Publications
	Device Agent Application

	Second Semester Planning
	Gantt Charts
	Sampling
	Dataset Generation
	Synchronisation
	Message Broker
	Central Aggregator
	Dashboard
	Device Agent Management
	Testing and Verification
	Publication

	Second Semester Execution
	Work Methodology

	Architecture
	Overview
	Device Agent
	Device Agent Management

	Implementation Details
	Device Agent
	Operating System
	Data Collection
	Event Management
	Data Management
	Data Aggregation

	Message Brokers
	MQTT and HTTPS
	Hadoop and Kafka
	MQTT and Kafka bridge
	Encryption and Security
	Device Agent configuration management within MQTT

	Aggregator
	Hadoop and Spark
	Hadoop, Zookeeper, and YARN
	Sequential and Batch processing

	Machine Learning and Data Visualization
	Machine Learning
	Oryx
	Data Visualization

	Dashboard

	Development and Deployment
	Technologies, Tools and Frameworks
	Device Agent
	Central Aggregator
	Oryx Cluster Setup
	Deploying Hadoop
	Deploying Zookeeper
	Deploying Kafka
	Deploying Spark
	Deploying Oryx Server Layers
	Restarting Oryx Server Layers

	Message Exchange
	Deploying the MQTT Broker
	Deploying the Bridge between MQTT and Kafka

	Oryx Application
	Machine Learning

	Preliminary Results Analysis
	Device Agent
	Network Traffic
	Individual Message Analysis
	Device-level network traffic overhead analysis
	Aggregated network traffic overhead analysis

	Project Analysis
	Progress Assessment
	Requirements
	Features
	Assessment

	Future work and next developments
	Central Aggregator
	Dashboard
	Dataset Generation
	Device and Data Analysis

	Final Remarks and Conclusions
	References

