
Masters Degree in Informatics Engineering
Dissertation
Final Report

Branch-and-Bound for the
Hypervolume Subset Selection Problem

June, 2017

Ricardo Jorge Pires Gomes
rjgomes@student.dei.uc.pt

Adviser
Prof. Dr. Luís Paquete

Masters Degree in Informatics Engineering
Dissertation
Final Report

Branch-and-Bound for the
Hypervolume Subset Selection Problem

June, 2017

Ricardo Jorge Pires Gomes
rjgomes@student.dei.uc.pt

Adviser
Prof. Dr. Luís Paquete

Jury
Prof. Dr. Jorge Sá Silva
Prof. Dr. Nuno Lourenço

Abstract

The main focus of this thesis is the design and analysis of a branch-and-bound algorithm

for the hypervolume subset selection problem for an arbitrary number of objectives.

This problem arises in selection procedures of heuristic algorithms for multiobjective

optimisation, in which the goal is to select a small subset of good compromise solutions.

The branch-and-bound approach discussed in this thesis combines several notions of

bounds and a branching strategy. In particular, four bounding functions and a dynamic

variable ordering for the branching strategy are proposed. Moreover, a parallel version of

the branch-and-bound algorithm is presented, which integrates a thread pool to explore,

concurrently, the nodes of the search tree. The branch-and-bound algorithm is compared

with a state-of-the-art solution approach based on an integer programming formulation.

The experimental results indicate that our branch-and-bound approach performs faster

for a wide range of instances.

Keywords – Branch-and-Bound Algorithm, Hypervolume Subset Selection Problem,

Multiobjective Optimisation, Integer Programming

i

Resumo

O foco principal desta tese é a análise e síntese de um algoritmo de branch-and-bound
para o problema de seleção do subconjunto que maximiza o indicador de hipervolume

para um número arbitrário de objetivos. Este problema surge nos procedimentos de

seleção em heurísticas para otimização multiobjetivo, no qual se pretende selecionar um

pequeno subconjunto de soluções de compromisso. A abordagem de branch-and-bound
discutida nesta tese combina várias noções de limites e uma estratégia de branching.

Em particular, quatro funções de limite e um ordenamento dinâmico de variáveis para

a estratégia de branching são propostos. Uma versão paralela do algoritmo de branch-
and-bound é também apresentada, que integra uma pool de threads que explora os nós

da árvore de procura de forma concorrentemente. O algoritmo de branch-and-bound é

comparado com uma abordagem baseada na formulação de programação inteira. Os

resultados experimentais obtidos numa grande quantidade de instâncias deste problema

indicam que a nossa abordagem tem melhor desempenho.

Palavras Chave – Algoritmo de Branch-and-Bound, Problema de Seleção do Subconjunto

que maximiza o Indicador de Hipervolume, Otimização Multiobjectivo, Programação

Inteira

iii

Acknowledgements

First of all, I would like to thank my family, especially my parents, for their continued

support. I would like to thank my adviser, Prof. Luís Paquete, for all the guidance and

attention given to this thesis. I would like to thank Andreia Guerreiro for all the help and

assistance given throughout this thesis, in particular, for the integration of the calculation

of hypervolume contributions in linear time for the three-dimensional case. I thank

Tobias Kuhn for providing the code to generate the integer programming models. To my

friends, thank you for all the encouragement and motivation. Finally, I would like to

thank everyone who helped me directly or indirectly in achieving this goal.

v

Contents

1 Introduction 1

2 Preliminaries 5

2.1 Hypervolume Subset Selection Problem . 5

2.2 Branch-and-Bound . 7

3 State-of-the-art 11

3.1 Complexity of the Hypervolume Subset Selection Problem 11

3.2 Two-Dimensional Hypervolume Subset Selection Problem 12

3.3 Three-Dimensional Hypervolume Subset Selection Problem 12

3.3.1 Subset Enumeration . 12

3.3.2 Integer Programming Model . 13

3.3.3 Heuristics . 14

4 The Branch-and-Bound Algorithm 17

4.1 Overview . 17

4.2 Branching Strategy . 17

4.3 Bounding Functions . 19

4.3.1 Calculation of ub1 . 19

4.3.2 Calculation of ub2 . 22

4.3.3 Calculation of ub3 . 23

4.3.4 Calculation of ub4 . 23

4.4 Parallel Branch-and-Bound . 26

5 Experimental Analysis 31

5.1 Methodology . 31

5.2 Computational Results . 33

6 Conclusion 39

6.1 Future Work . 39

Bibliography 41

vii

Contents viii

Appendix A 45

A.1 Results . 45

List of Figures

1.1 Illustration of different aircraft designs . 2

2.1 (a) Two-dimensional example of the hypervolume indicator; (b) three-

dimensional example of the hypervolume indicator 6

2.2 (a) Two-dimensional example of the hypervolume contribution (grey

region); (b) two-dimensional example of all exclusive hypervolume contri-

butions (grey regions) . 7

2.3 Typical enumeration tree in a B&B algorithm 8

3.1 Two-dimensional example of the decomposition of the hypervolume in

rectangles . 14

4.1 Two-dimensional example for k = 3 of (a) the calculation of ub1 and (b)

with the exclusive hypervolume contributions of points b and e removed . 21

4.2 (a) Input points generated by Eq. (4.3) for n= 9; (b) subset that covers

the most rectangles for k = 3 . 25

5.1 Three-dimensional examples of nondominated points datasets: (a) Cliff,

(b) Concave, (c) Convex and (d) Linear fronts 32

5.2 Average running time in seconds taken by both approaches for three-

dimensional fronts with fixed n= 50 . 35

5.3 Average running time in seconds taken by both versions of the B&B

algorithm for three-dimensional fronts with fixed k = n/2 36

5.4 Average number of nodes taken by the B&B algorithm for three-dimensional

fronts with fixed k = n/2 . 37

5.5 Average running time taken by the parallel version of the B&B algorithm

with t = 2 for three-dimensional Cliff fronts with fixed n= 200 37

5.6 Average running time taken by the B&B algorithm for four-dimensional

fronts with fixed n= 50 . 38

ix

List of Tables

5.1 Machine specifications, compiler and solver flags 33

A.1 Average running time in seconds taken by both approaches for three-

dimensional Cliff fronts with fixed n= 50 and k = {5, 10, . . . , n− 5} 45

A.2 Average running time in seconds taken by both approaches for three-

dimensional Convex fronts with fixed n = 50 and k = {5,10, . . . , n − 5}
. 45

A.3 Average running time in seconds taken by both approaches for three-

dimensional Concave fronts with fixed n = 50 and k = {5,10, . . . , n− 5}
. 46

A.4 Average running time in seconds taken by both approaches for three-

dimensional Linear fronts with fixed n = 50 and k = {5,10, . . . , n − 5}
. 46

A.5 Average number of nodes and running time in seconds taken by the B&B

algorithm for three-dimensional Cliff fronts with fixed k = n/2 46

A.6 Average number of nodes and running time in seconds taken by the B&B

algorithm for three-dimensional Convex fronts with fixed k = n/2 47

A.7 Average number of nodes and running time in seconds taken by the B&B

algorithm for three-dimensional Concave fronts with fixed k = n/2 47

A.8 Average number of nodes and running time in seconds taken by the B&B

algorithm for three-dimensional Linear fronts with fixed k = n/2 47

A.9 Average number of nodes and running time in seconds taken by the

parallel version of the B&B algorithm with t = 2 for three-dimensional

Cliff fronts with fixed n= 200 and k ∈ {10,20, . . . , n− 10} 48

A.10 Average number of nodes and running time in seconds taken by the

B&B algorithm for four-dimensional Cliff fronts with fixed n = 50 and

k = {5,10, . . . , n− 5} . 48

A.11 Average number of nodes and running time in seconds taken by the

B&B algorithm for four-dimensional Convex fronts with fixed n= 50 and

k = {5,10, . . . , n− 5} . 49

x

List of Tables xi

A.12 Average number of nodes and running time in seconds taken by the B&B

algorithm for four-dimensional Concave fronts with fixed n = 50 and

k = {5,10, . . . , n− 5} . 49

A.13 Average number of nodes and running time in seconds taken by the

B&B algorithm for four-dimensional Linear fronts with fixed n= 50 and

k = {5,10, . . . , n− 5} . 49

A.14 Average number of nodes, running time in seconds, speedup and nodes

factor taken by the parallel version of the B&B algorithm with t = 2 for

three-dimensional Cliff fronts with fixed k = n/2 50

A.15 Average number of nodes, running time in seconds, speedup and nodes

factor taken by the parallel version of the B&B algorithm with t = 2 for

three-dimensional Convex fronts with fixed k = n/2 50

A.16 Average number of nodes, running time in seconds, speedup and nodes

factor taken by the parallel version of the B&B algorithm with t = 2 for

three-dimensional Concave fronts with fixed k = n/2 50

A.17 Average number of nodes, running time in seconds, speedup and nodes

factor taken by the parallel version of the B&B algorithm with t = 2 for

three-dimensional Linear fronts with fixed k = n/2 51

Acronyms

HSSP Hypervolume Subset Selection Problem

DP Dynamic Programming

B&B Branch-and-Bound

IP Integer Programming

MO Multiobjective Optimisation

LP Linear Programming

NP Nondeterministic Polynomial

OS Operating System

CPU Central Processing Unit

xiii

Chapter 1

Introduction

The goal of optimisation is to find the global optimum of a given problem from the set

of feasible solutions. Most real-life optimisation problems can be naturally formalized

with more than one objective. In such problems, there is usually no single solution that

simultaneously optimises all objectives due to their conflicting nature.

For example, in aircraft design optimisation problems, which involve many design

variables (e.g. aerodynamics, propulsion, controls), a large number of conflicting ob-

jectives need to be combined. Consider that we are interested in the design of fast

aircraft with large payload capacities. We might decide to maximize both the payload

capacity and the speed of the aircraft. However, in order for the aircraft to accommodate

larger payload capacities, it must be designed larger, which will increase its weight and

will, as a result, slow down the aircraft. Therefore, there is usually no best design that

simultaneously has the largest payload capacity and is the fastest, since the objectives

payload capacity and speed conflict with each other. This is usually a critical design

issue for the takeoff phase of aircraft, since the takeoff speed is highly dependent on the

aircraft weight in the sense that the heavier the weight, the greater the speed needed.

Still, we might be able to design aircraft with stronger propulsion engines, so that we can

maintain the speed for the larger designs. However, if we consider now a third objective,

for example, the fuel consumption or even the cost of the aircraft, the new design with

the stronger propulsion engines would be worse in these objectives.

Figure 1.1 illustrates the trade-off between the objectives top speed and maximum

payload capacity. We can choose the Boeing aircraft, which has the greatest payload

capacity but in contrast it is not very fast. We can also choose the Fighter Jet, which trades

payload capacity for maximum speed. We can even choose the Airbus and Concorde

aircraft that are also optimal designs but not the Private Jet since the Concorde has both

greater payload capacity and speed. Except for the Private Jet, all other aircraft are

optimal solutions, that is, no aircraft is better than the others both in terms of top speed

and maximum payload capacity.

1

Chapter 1. Introduction 2

Figure 1.1: Illustration of different aircraft designs

When dealing with optimisation problems with multiple objectives, such as the one

described above, the solution techniques should find the complete set of Pareto-optimal

solutions; a solution is Pareto-optimal if there is no other feasible solution that is at

least as good with respect to all objectives and strictly better with respect to at least

one objective. Finding the complete set of Pareto-optimal solutions may be intractable

(Figueira et al., 2017), and usually heuristic approaches are the methods of choice to

tackle problems with multiple objectives. Heuristic approaches often select a small

subset of solutions, based on a certain quality measure. This is known as the Subset

Selection problem and can be defined in several different manners, depending on the

quality measure that is chosen. Such measures are used to assess the quality of a set of

solutions in terms of their distribution and their closeness to the Pareto-optimal set in the

objective space, among other properties (Zitzler et al., 2003). One of these measures is

the Hypervolume Indicator, which maps the region dominated by an approximation set of

solutions into a scalar value. The hypervolume indicator is one of the most popular quality

measures, due to several interesting properties (Zitzler et al., 2007). Unfortunately, the

hypervolume indicator becomes computationally demanding for an arbitrary number of

objectives.

The problem of selecting a subset with a given cardinality from a larger set of candi-

date solutions that maximizes the hypervolume indicator is known as the Hypervolume

Subset Selection Problem (HSSP). This problem arises in selection procedures of heuristic

methods, in which the objective is to select a small representative subset of solutions.

For two objectives, the HSSP can be solved efficiently (in polynomial time), using the

principles of dynamic programming (DP) (Bader, 2009; Bringmann et al., 2014; Kuhn

et al., 2016). For more than two objectives, the HSSP is known to require exponential

amount of time (Bringmann et al., 2017). Approximation methods, such as greedy and

local search, have been largely applied to approximate the optimal value of the HSSP for

Chapter 1. Introduction 3

more than two objectives (Guerreiro et al., 2015; Basseur et al., 2016; Bringmann et al.,

2017).

The main contribution of this thesis is the design and analysis of a branch-and-bound

(B&B) algorithm to solve the HSSP for an arbitrary number of objectives. We devise

four upper bounds and introduce a dynamic variable ordering for the B&B algorithm.

Furthermore, we present a parallel version of the B&B algorithm. Finally, we conduct an

in-depth experimental analysis of our approach and compare it with a solution approach

based on the Integer Programming (IP) model proposed in the literature (Kuhn, 2015).

The thesis is structured as follows. In Chapter 2, the necessary definitions, notation

and principals of the B&B approach are introduced. In Chapter 3, the literature related

to the HSSP is reviewed. In Chapter 4, the proposed B&B algorithm is presented. In

Chapter 5, an analysis on the B&B algorithm is performed on a wide range of instances

of the problem. In Chapter 6, final conclusions are drawn. Additionally, some ideas for

future work are presented.

Chapter 2

Preliminaries

In this chapter, some relevant definitions for this thesis are introduced. In Section 2.1,

some concepts, definitions and notation used in this thesis are given and in Section 2.2,

the B&B paradigm is presented.

2.1 Hypervolume Subset Selection Problem

Multiobjective optimisation (MO) involves finding solutions that optimise multiple objec-

tive functions. Without loss of generality, it is assumed maximization for all objectives.

More formally, a MO problem can be defined as:

maximize (f1(x), . . . , fd(x))

subject to x ∈ X
(2.1)

where d > 1 is the number of objective functions and X is the set of feasible solutions.

Due to the conflicting nature of the objectives, there is usually no single optimal solution

to a MO problem, but multiple optimal solutions.

Definition 2.1.1. Dominance: Let p, q ∈ Rd be two points in objective space. Point p

dominates point q, denoted by p � q, if pi ≥ qi for all i = 1, . . . , d and p 6= q. If neither

point dominates the other (i.e. p 6� q and q 6� p), then p and q are nondominated points.

Definition 2.1.2. Pareto-optimality: A solution x ∈ X is Pareto-optimal if there is no

other solution x ′ ∈ X for which it holds that f (x ′)� f (x).

Definition 2.1.3. Hypervolume Indicator: Let S be a set of nondominated points in

objective space Rd . Without loss of generality, assuming that the reference point r is 0d ,

the hypervolume indicator of S is given as (Bringmann and Friedrich, 2010):

H(S) = VOL
�

⋃

(s1,...,sd)∈S

[0, s1]× . . .× [0, sd]
�

(2.2)

5

Chapter 2. Preliminaries 6

Figure 2.1: (a) Two-dimensional example of the hypervolume indicator; (b) three-
dimensional example of the hypervolume indicator

where VOL(·) is the Lebesgue measure. In the two-dimensional case, H(S) is the area

of the union of a set of boxes, each of which bounded from above by each point in

S and bounded below by the reference point. In the three-dimensional case, we take

the volume instead of the area. Figure 2.1 shows (a) the hypervolume indicator in the

two-dimensional case and (b) the hypervolume indicator in the three-dimensional case,

which are illustrated by the blue regions.

Definition 2.1.4. Hypervolume Contribution: Given a point p ∈ Rd and a point set

S ⊂ Rd , the hypervolume contribution of p to S is:

H(p,S) = H(S∪ {p})−H(S)

The hypervolume contribution of a point p with respect to a set S corresponds to the

increase of hypervolume, once point p is added to S. In Figure 2.2 (a), the hypervolume

contribution of point b to S= {c, d} is illustrated by the area of the grey region.

Definition 2.1.5. Exclusive Hypervolume Contribution: Given a point p ∈ Rd and a

point set S ⊂ Rd , in which p ⊆ S, the exclusive hypervolume contribution of p in S is:

Hx(p,S) = H(S)−H(S \ {p})

The exclusive hypervolume contribution of a point p in a set S corresponds to the

hypervolume that is not dominated by any other point of set S, except by the point p. In

Figure 2.2 (b), the exclusive hypervolume contributions of each point in S = {a, b, c, d, e}
are illustrated by the grey regions.

Chapter 2. Preliminaries 7

Figure 2.2: (a) Two-dimensional example of the hypervolume contribution (grey region);
(b) two-dimensional example of all exclusive hypervolume contributions (grey regions)

Definition 2.1.6. Hypervolume Subset Selection Problem: Given a set S ⊂ Rd of n

nondominated points and an integer k ∈ {1,2, . . . , n}, the HSSP is defined as finding a

subset A ⊆ S of size k that maximizes the hypervolume indicator among all subsets of

size k. Formally, it is stated as follows:

H(A) = max
B⊆S
|B|= k

H(B)

2.2 Branch-and-Bound

B&B is a generic algorithm paradigm that combines enumeration techniques and bound-

ing functions to solve optimisation problems (Clausen, 1999). In a B&B algorithm, a

large problem is divided recursively into a few smaller subproblems. This is known as the

branching strategy. Due to the exponentially increasing number of potential subproblems,

a pure enumeration strategy may be infeasible or too slow in practice. In order to improve

upon this inefficiency, bounds are estimated for each smaller subproblem, which may

allow some of them to be ignored.

The branching implicitly enumerates all feasible solutions, by successively partitioning

the feasible set into smaller sets. The branching is similar to an exhaustive search and may

be visualized as a construction of a search tree whose interior nodes are represented by

partial solutions and leaf nodes by complete solutions. Figure 2.3 illustrates an example of

such enumeration tree, in which x i is a decision variable of a given optimisation problem.

Each node of the search tree may be seen as a different optimisation subproblem, which

is based on the original problem (the problem at the root node), but with some of the

decision variables already fixed.

Chapter 2. Preliminaries 8

Figure 2.3: Typical enumeration tree in a B&B algorithm

Due to the exponential growth of the number of nodes of the tree, a mere exhaustive

search can quickly become computationally expensive. In order to improve the perfor-

mance of a B&B algorithm, bounding functions are used to discard or prune certain

branches of the search tree that do not lead to an optimum. This may be done by

estimating bounds on partial solutions to a problem, which can be of two types: lower

and upper bounds. In a maximization problem, the value of the best solution found

during the search process represents a lower bound and its solution is designated as the

incumbent. An upper bound on a partial solution is an optimistic value that must always

be greater than or equal to the value of the best solution that can be constructed using

the partial solution. Before the enumeration process takes place on a particular node, its

partial solution is checked against the lower and upper bounds. If the partial solution has

an upper bound that is less than or equal to the lower bound, the branching on that node

can be stopped. In such cases, regardless of the path that is chosen in the branching of

that node, it will never lead to a new optimal solution. In order to tighten the bounding

window, that is, the gap between the lower bound and the upper bound, the incumbent
and its objective value are updated every time a new best solution is found.

The B&B method is used in problems that are by nature very hard to solve. In

such problems, efficient polynomial algorithms are probably not available or are not

known and thus, an implicit enumeration of all the possible solutions is a possible way of

finding the best solution. The performance of a B&B algorithm, greatly depends on how

effectively the search tree is pruned by the bounds. Bounds that vastly prune the search

tree are sufficient for a B&B algorithm to perform well. However, since the upper bound

calculation is performed at each node of the search tree, any increase in the computation

time of the upper bound is reflected in the overall computation time of the algorithm. It

Chapter 2. Preliminaries 9

is advantageous that the bounds prune the search tree as early as possible so that large

portions of the tree do not require to be searched. Upper bound calculation efficiency

and pruning effectiveness plays a critical role in a B&B algorithm. However, since upper

bounds need to be checked against lower bounds, for the actual pruning to be verified,

good lower bounds are equally needed. Initial lower bounds can be obtained at the root

node of the search tree using heuristic methods. Heuristics are methods to find solutions

to a problem, typically in a short amount of time, when optimality is not a requirement.

These methods can take advantage of some properties of the problems to gain knowledge

on how to construct a good and sometimes even optimal solution.

Chapter 3

State-of-the-art

In this chapter, the literature related to the HSSP is reviewed. In Section 3.1, the

complexity of the HSSP is analysed. Moreover, a brief introduction to computational

complexity analysis based on the book of Garey and Johnson (1990) is presented. In

Section 3.2, three known HSSP algorithms for the two-dimensional case are discussed.

Finally, in Section 3.3, three different approaches that were proposed for the three-

dimensional HSSP are presented.

3.1 Complexity of the Hypervolume Subset Selection Problem

Computational complexity analysis is concerned with measuring and classifying problems

according to the resources (e.g. time, memory) they need to be solved. Computational

complexity theory describes complexity in terms of well-defined complexity classes.

Complexity classes group problems that require similar resources. The Polynomial class

is the set of all decision problems that are solvable in polynomial time, whereas the

Nondeterministic Polynomial (NP) class is the set of all decision problems that can be

verified in polynomial time but may not be solvable in polynomial time. The NP-hard class

is the set of all problems that are not solvable in polynomial time and the NP-complete

class is the set of all problems that are both in the NP and NP-hard classes. A NP problem

is said to be complete, if it is possible to reduce it to any other NP problem in polynomial

time. While decision problems only require a yes or no answer, counting problems need

to count answers and are at least as hard as the corresponding decision problems. For

counting problems the complexity class #P is the analog of the NP class.

It has been shown in Bringmann and Friedrich (2008) that the calculation of the

hypervolume indicator is #P-hard. In addition, the fastest known algorithm has a time

complexity of O(nd/3 polylog n) (Chan, 2013). Since the HSSP is at least as hard as the

calculation of the hypervolume indicator, both results suggest that the HSSP must be an

hard problem, for an arbitrary dimension. In fact, it has been conjectured that the HSSP

is NP-hard for three and more dimensions (Bader, 2009). Only very recently, Bringmann

11

Chapter 3. State-of-the-art 12

et al. (2017) have shown that in fact this is true. In the two-dimensional case the HSSP

can be solved efficiently, in polynomial time.

3.2 Two-Dimensional Hypervolume Subset Selection Problem

Three DP algorithms were proposed in the literature for the two-dimensional HSSP. Bader

(2009) introduced an algorithm with O(n2k) time complexity that is based on the idea

that the hypervolume contribution of a point to a set only depends on its two adjacent

neighbors. Later, Bringmann et al. (2014) proposed an algorithm with O(n(k+ log n))

time complexity. The algorithm calculates at each iteration `, the maximal hypervolume

indicator achievable with at most ` points by computing the upper envelope of n linear

functions in linear time using a convex hull trick. Very recently, Kuhn et al. (2016)

proposed a different approach with O(k(n− k) + n log n) time complexity, by reducing

the HSSP to a k-link shortest path formulation that can be solved with DP. To the best of

our knowledge, this is currently the fastest algorithm available for the two-dimensional

HSSP.

3.3 Three-Dimensional Hypervolume Subset Selection Problem

This thesis focus on improvements to the multidimensional HSSP (d ≥ 3), specially the

three-dimensional case, for which some new results have been obtained recently. In

particular, the first IP formulation of the HSSP and a new method to update hypervolume

contributions in linear time have been proposed. In the following sections, three different

approaches for the three-dimensional HSSP are presented. These include a subset

enumeration, the IP formulation and several heuristic methods.

3.3.1 Subset Enumeration

In order to solve the HSSP, it is sufficient to enumerate all subsets of size k and select

the subset that has the maximal hypervolume indicator. Clearly, this approach involves

computing the hypervolume indicator for each of the
�n

k

�

possible subsets, which is

considered to be computationally too expensive (Bader and Zitzler, 2011). However,

Bringmann and Friedrich (2010) showed that it is possible to avoid the calculation of
�n

k

�

conventional hypervolumes. The algorithm solves the equivalent problem of determining

a subset of n − k points with minimal hypervolume contribution with respect to the

original set in O(nd/2 log n+ nn−k) time complexity. The algorithm is based on the idea

that it is possible to maintain the contribution volumes of every set of n− k points during

the hypervolume calculation. This allows the direct computation of the contribution of

every set of n− k points, which gives an additive term of
�n

k

�

in the running time of the

algorithm instead of a multiplicative factor.

Chapter 3. State-of-the-art 13

Very recently, at the time of the writing of this thesis, Bringmann et al. (2017)

proposed a DP algorithm with nO(
p

k) time complexity, which improved upon the known

time complexity bound for the three-dimensional case.

3.3.2 Integer Programming Model

An IP model was proposed in Kuhn (2015) to solve the three-dimensional HSSP. The

model is a generalization of the two-dimensional IP formulation proposed in Kuhn

et al. (2016), which is based on the decomposition of the region dominated by the

hypervolume indicator into hyperrectangles or boxes. Figure 3.1 illustrates an example

of such decomposition, where Ai j is a rectangle. This decomposition process involves

a preprocessing step, which provides the hyperrectangles to generate the IP model. In

the two-dimensional case, this decomposition generates a set of rectangles and requires

O(n2) time. As for the three-dimensional case, the decomposition needs to generate a

set of three-dimensional boxes, which increases the time complexity by a multiplicative

factor of n. This may be a bottleneck of the model, both in terms of time and memory,

since an equal number of constraints need to be generated and inserted in the model.

The following IP formulation models the three-dimensional HSSP (Kuhn, 2015):

maximize
∑

Ai j`∈A
wi j` · x i j` (3.1)

subject to
n
∑

r=1

xh(y r) = k (3.2)

x i j` ≤
∑

y r∈N :
(i, j,`)Tµ h(y r)

xh(y r) ∀Ai j` ∈A \ {Ah(y s) : y s ∈ N} (3.3)

x i j` ∈ {0, 1} ∀Ai j` ∈A

where N = {y1, . . . , yn} is the initial set of points, A is a set of boxes of the dominated

region, the weight wi j` corresponds to the volume of the box Ai j` and h is a function

that maps a point to the indexes of a box A that is not dominated by any other point.

Constraint (3.3) ensures that the boxes covered by the chosen points are also selected.

Constraint (3.2) ensures that exactly k points are selected and the objective function (3.1)

calculates the hypervolume indicator of a current selection, which has to be maximized.

The model can be easily changed to work for a fixed dimension different than three.

In terms of time complexity, the IP problem is NP-hard (Garey and Johnson, 1990).

However, IP solvers often use a technique called Linear Programming (LP) relaxation

that transforms an IP problem into a related LP problem that can be solved in polynomial

time. This technique consists on relaxing the domain of the problem variables to gain

additional information about the solution of the original IP problem. Still, this solution

may not be optimal, and more importantly, it may not even be feasible, that is, it can

Chapter 3. State-of-the-art 14

Figure 3.1: Two-dimensional example of the decomposition of the hypervolume in
rectangles

violate some constraints of the original IP model. In order to take advantage of the

relaxation technique, IP solvers use the valid LP problems only to provide bounds of the

original IP problem. This allows the solvers to reduce the solution space without loosing

the optimal solution. In the experiments reported in Kuhn (2015), the CPLEX IP solver

was used as well as a B&B scheme that was adjusted specially for the structure of the

three-dimensional HSSP. The B&B scheme was able to solve problem instances up to 100

points, within 5 minutes for different values of k. However, it still required some seconds

even for instances with 50 points, due to the preprocessing step. Instances of 200 points

were also tested but the construction took two hours only for the initial CPLEX model

and had a size of 2 Gigabytes, which led to the tests being aborted. The B&B scheme

was also slightly faster than the CPLEX solver. Nonetheless, even though the results were

considered satisfactory, it was concluded that future research was needed to overcome

the huge amount of time required to generate the model.

3.3.3 Heuristics

Both approaches discussed in Section 3.3.1 and Section 3.3.2 rely on some kind of

exhaustive enumeration mechanism. These approaches, capable of finding the global

optimum are known as exact methods. Heuristic methods, on the other hand, might not

find the best solution but they usually have the advantage of being able to compute a

reasonable approximation in a short amount of time. Common heuristic approaches for

the HSSP often rely on the hypervolume contributions to make a choice, about what

point to select or eliminate next (Guerreiro et al., 2015; Basseur et al., 2016).

The approach proposed in Guerreiro et al. (2015) starts with an empty subset and

at each of the k iterations, the point that has the largest hypervolume contribution is

added to the subset, followed by an efficient update in linear time of all the hypervolume

contributions of the points that are not in the subset. The time complexity of this

Chapter 3. State-of-the-art 15

algorithm was shown to be O(n(k + log n)). Also, this algorithm is able to return at

least the guaranteed theoretical approximation of 1− 1/e ' 0.63, but empirically the

approximation quality was shown to stay within 0.89 of the optimal values.

Very recently, Basseur et al. (2016) explored the approximation quality and the

computational cost of four heuristic algorithms. The following three greedy procedures

and local search heuristics were tested: greedy forward selection, greedy backward

elimination, greedy sequential insertion and a first-improvement hill-climbing local

search. The greedy forward selection is the same algorithm proposed in Guerreiro et al.

(2015). The backward elimination algorithm starts with the original set of points as

the subset, and at each of the n − k iterations the point with the least hypervolume

contribution is removed. The greedy sequential insertion algorithm starts with a subset

of k elements randomly chosen from the original set. Iteratively, a remaining point from

the original set is selected at random and added to the subset, and the point with the

least hypervolume contribution is removed. The algorithm stops when all points from the

original set have been considered exactly once for integrating in the subset solution. The

first-improvement hill-climbing local search starts with a subset of k points chosen from

the original set, provided by some initialization process (e.g. greedy). At each step, the

algorithm searches for pairs of points to be swapped, one being selected while the other

not, in order to improve the hypervolume value of the obtained subset. The local search

procedure stops when no swap can increase the hypervolume indicator of the subset.

According to the experimental results described by the authors, the local search

returned the better approximations among all heuristics, especially when combined with

the greedy procedures. With regard to computational cost, the greedy sequential insertion

and the greedy forward selection were the less computationally demanding. Except for

the greedy forward selection, it is not known whether any of the other heuristics tested

is able to return a guaranteed approximation to the optimal. As such, the local search

heuristic combined with the greedy forward selection as the initialization technique

should be preferred over other heuristics. Alternatively, if faster running times are a

requirement, then the greedy forward selection alone is the most adequate heuristic.

Chapter 4

The Branch-and-Bound Algorithm

In this chapter, the main contributions of this thesis are introduced. In Section 4.1, an

overview of the B&B algorithm is provided. In Section 4.2, the branching strategy is

explained and in Section 4.3 the calculation of four bounding functions is presented.

Then, in Section 4.4 a parallel version of the B&B algorithm is discussed.

4.1 Overview

The following terminology describes two different sets of nondominated points that are

used to represent a node of the search tree:

Included point set – The set of points that were explicitly accepted in the branching.

This set represents a current subset solution.

Unassigned point set – The set of points that still need to be branched. This set keeps

the points of which a subset needs to be chosen in order to obtain a complete solution.

Algorithm 1 shows the pseudocode of our B&B approach for the HSSP, where S is the

included point set, P is the unassigned point set, k is the subset size of the HSSP, sbest is

the incumbent, ubi is an upper bound for i = 1, 2, 3 and l b is the hypervolume indicator of

the incumbent solution. The following sections of this chapter will explain Algorithm 1 in

more detail. Note that, the hypervolume contribution should be understood with respect

to a point p ∈ P to set S (see Definition 2.1.4) and the exclusive hypervolume contribution

should be understood with respect to a point p ∈ P in set S∪ P (see Definition 2.1.5).

4.2 Branching Strategy

Starting at the root node, the unassigned point set is the initial set of points, the included

point set is an empty subset and l b = −∞. The branching mechanism performs a

depth-first-search on the unassigned point set. Each node has two branching options:

17

Chapter 4. The Branch-and-Bound Algorithm 18

Algorithm 1 B&B algorithm for the HSSP

1: function branch-and-bound(S, P)
2: if |S|= k then
3: if H(S)> l b then
4: l b← H(S)
5: sbest ← S
6: return
7: if |P|= 0 then
8: return
9: if |P|+ |S|< k then

10: return
11: if min(ub1, ub2, ub3)≤ l b then
12: return
13: p← argmaxq∈P{H(q,S)}
14: branch-and-bound(S∪ {p}, P \ {p})
15: branch-and-bound(S, P \ {p})

accept (line 14, Algorithm 1) and ignore (line 15, Algorithm 1) a chosen point p of the

unassigned point set. Therefore, at each node the search develops at most two children

nodes, similar to the construction of a binary search tree. The branching is stopped for a

node, if one of the following four cases is satisfied:

1. The included point set is complete (line 2, Algorithm 1)

2. The unassigned point set is empty (line 7, Algorithm 1)

3. The unassigned point set has not enough points to reach a complete solution (line

9, Algorithm 1)

4. The node is pruned by the bounds (line 11, Algorithm 1)

In such cases, no nodes are developed and the search proceeds by backtracking the

current branch until a new node is found that still needs to be branched or no such

node exists. For the case when the included point set is complete, the best solution

and its hypervolume indicator are updated if it can improve the incumbent (lines 3 to 5,

Algorithm 1).

Whenever a point is accepted, the hypervolume indicator of the included point set

can be updated incrementally by adding the hypervolume contribution of the accepted

point. This allows the hypervolume indicator of the included point set to be retrieved in

constant time at any point in the algorithm. Whenever a point is ignored, the included

point set and its hypervolume indicator remain unchanged.

The hypervolume contributions of the points in unassigned point set with respect to

the included point set can be used as the variable ordering: choose the point from the

unassigned point set that has the largest hypervolume contribution (line 13, Algorithm

1). In other words, the search chooses at each node the point of the unassigned point

Chapter 4. The Branch-and-Bound Algorithm 19

set that can increase the most hypervolume in the included point set. This allows the

branching to be dynamic, by successively selecting a point from the unassigned point set

that is heuristically a good candidate for a current partial solution. This is an advantage

over choosing a random point or even using a fixed order point set, if the branching leads

to the good solutions earlier. As a consequence, it may allow better lower bounds to be

found earlier, which therefore increases the pruning effectiveness of upper bounds. In

terms of time complexity, the calculation of the hypervolume contributions can be done

for d = 3 in linear time on the total number of points of the unassigned point set using

the method proposed in Guerreiro et al. (2015). In higher dimensions, the equation given

in Definition 2.1.4 can be used, which calls the hypervolume indicator to calculate the

hypervolume contributions. In this case, using the fastest known algorithm to calculate

the hypervolume indicator leads to O(nd/3+1 log n) time complexity.

The depth-first-search traversal approach was chosen over a breath-first-search, in

order for the algorithm to arrive at complete solutions earlier. This combined with the

dynamic variable ordering allows the construction of an initial good lower bound at the

first branch of the algorithm. In addition, the first node to be branched is the one that

accepts the point of the unassigned point set, since it increases the hypervolume indicator

of the included point set.

4.3 Bounding Functions

As stated in Section 2.2, initial lower bounds can be obtained using heuristic methods.

However, this will not be the case for the proposed algorithm. The dynamic variable

ordering for the branching can quickly obtain an initial lower bound at the first complete

branch of the search tree without the need of extra initialization techniques or heuristics.

In fact, the first complete branch explored by the B&B algorithm corresponds to the

greedy algorithm proposed in Guerreiro et al. (2015). The dynamic variable ordering

allows not only a fast calculation of an initial lower bound, but also provides a flexible

mechanism for the algorithm to improve the incumbent much quicker during execution.

In the following subsections of this section, four upper bounds are proposed for the B&B

algorithm.

4.3.1 Calculation of ub1

The hypervolume indicator of the union of the included point set with the unassigned

point set represents an upper bound of a current partial solution. Formally, ub1 can be

defined as follows:

ub1 = H(S∪ P) (4.1)

The hypervolume indicator is strictly monotonic with respect to dominance (Bader,

Chapter 4. The Branch-and-Bound Algorithm 20

2009) and therefore by adding points from the unassigned point set to the included point

set, the value of the hypervolume indicator never decreases. Note that the input consists

only of nondominated points. Therefore, if all points of the unassigned point set are

accepted, this upper bound returns the maximum possible hypervolume that it is possible

to achieve in a current node.

Several improvements can be made to speedup the calculation and tighten the value

of ub1. A possible improvement is to cache the calculation of ub1 for the branch that

accepts points. This is possible because, when a point is accepted, it is moved from

the unassigned point set to the included point set and, therefore, the value of ub1

remains unchanged. Another improvement is to subtract the smallest |S∪P| − k exclusive

hypervolume contributions of the unassigned point set in the union of the included point

set with the unassigned point set, to the value of ub1. Let P = {q1, . . . , q|P|}. Assume

without loss of generality that

i ≤ j ⇔ Hx(qi ,S∪ P)≤ Hx(q j ,S∪ P)

The improved ub′1 is computed as follows

ub′1 = ub1 −
|S∪P|− k
∑

i=1

Hx(qi ,S∪ P) (4.2)

Due to line 9 of Algorithm 1, |S ∪ P| − k ≥ 0, that is, the total number of points

of S ∪ P is always greater than or equal to k. Therefore, we can subtract the smallest

|S∪ P| − k exclusive hypervolume contributions to the value of ub1, since the subset at

most will have k points. Figure 4.1 shows the effect of this improvement, where S= {a},
P = {b, c, e, f } and the exclusive hypervolume contributions of the points in P with respect

to S∪ P are {1, 4, 2, 3} respectively. Figure 4.1 (a) shows the calculation of ub1 using Eq.

(4.1) and (b) the calculation of ub′1 using Eq. (4.2), which are illustrated by the blue

region plus the grey region.

The calculation of the exclusive hypervolume contributions also provides means to

incrementally update the value of ub1. The objective is to reuse the computation of the

exclusive hypervolume contributions to update the value of ub1 for the new branching

nodes, without requiring to recalculate the full hypervolume indicator at each node. As it

was explained above, for the case when a point is accepted, the value of ub1 does not

change. As for the case when a point is rejected, the value of ub1 decreases exactly by the

value of the exclusive hypervolume contribution of the rejected point. In the following

we prove this fact.

Proposition 4.3.1.

H(S∪ P \ {p}) = ub1 −Hx(p,S∪ P)

Chapter 4. The Branch-and-Bound Algorithm 21

Figure 4.1: Two-dimensional example for k = 3 of (a) the calculation of ub1 and (b) with
the exclusive hypervolume contributions of points b and e removed

Proof. From Definition 2.1.5 and the definition of ub1 (see Eq. (4.1)) we obtain

H(S∪ P \ {p}) = ub1 −H(S∪ P) +H(S∪ P \ {p})

= H(S∪ P \ {p})

In order to incrementally update the value of ub1, we perform as follows: At the root

node set ub1 to the hypervolume indicator of the initial set of points; then, when a point

is rejected in the branch, subtract from ub1 the exclusive hypervolume contribution of the

rejected point. Note that for the branch that accepts points, nothing needs to be done.

The complexity of the calculation of ub1 is bounded by the computation of the hyper-

volume indicator. Currently, the fastest known algorithm for calculating the hypervolume

indicator has a time complexity of O(nd/3 polylog n). For example, in d = 3 the calcula-

tion of ub1 has linearithmic time complexity on the total number of points of S∪ P. For

the incremental version, the complexity of the calculation of ub′1 is bounded by the com-

putation of all exclusive hypervolume contributions and by the selection of the smallest

|S∪ P| − k exclusive hypervolume contributions. Computing all exclusive hypervolume

contributions for d ≤ 3 can be done in O(n) and for d = 4 in O(n2) (Guerreiro and

Fonseca, 2017). The similar problem of selecting the n-th largest or smallest element can

be solved in the worst-case in linear time using Selection Algorithms (Musser, 1997).

The problem of selecting the smallest |S∪ P| − k elements can also be solved on average

in linear time on the total number of elements using the same Selection Algorithms.

For d > 4 calculating all exclusive hypervolume contributions can be computationally

expensive and as a result, the algorithm falls back to the exclusive contributions at

the root node. This is possible because the exclusive hypervolume contributions at the

root node are always less than or equal to the exclusive hypervolume contributions for

Chapter 4. The Branch-and-Bound Algorithm 22

any other node of the search tree. This results in a less tightening of the upper bound

than that of the actual exclusive hypervolume contributions. Fortunately, the exclusive

hypervolume contributions at the root only need to be calculated once. However, and

as a consequence of falling back to the exclusive hypervolume contributions at the root

node, the incremental calculation of ub1 is disabled for d > 4 in our implementation.

4.3.2 Calculation of ub2

The hypervolume indicator of the included point set plus the largest k− |S| hypervolume

contributions of the unassigned point set with respect to the included point set represents

an upper bound of a partial solution. Let P = {q1, . . . , q|P|}. Assume without loss of

generality that

i ≤ j ⇔ H(qi ,S)≥ H(q j ,S)

The bound ub2 is computed as follows

ub2 = H(S) +
k−|S|
∑

i=1

H(qi ,S)

Let W be a set of n nondominated points, from which we want to choose k. Let

J= { j1, . . . , jk} be the set of k points in W that maximizes the hypervolume indicator. Let

Z = {z1, . . . , zk} be the set of k points in W, whose sum of the individual hypervolume

contributions of its elements is the largest possible. We want to prove that:

H(J)≤
k
∑

i=1

H({zi})

note that:

H(J)≤
k
∑

i=1

H({ ji})

Since Z was constructed so as to obtain the largest possible sum, we have that:

k
∑

i=1

H({ ji})≤
k
∑

i=1

H({zi})

Therefore,

H(J)≤
k
∑

i=1

H({ ji})≤
k
∑

i=1

H({zi})

Furthermore, if the volumes of the largest k − |S| contributions do not intersect

with each other there is no need to branch the current node, even if this upper bound

returns a value greater than the lower bound. Note also that if this happens an optimal

solution is found. This is known as the fathom node technique and, in this particular

case, by bounds. Sometimes, in addition to the computation of an upper bound, a

Chapter 4. The Branch-and-Bound Algorithm 23

feasible complete solution that is the best possible expansion of the current node is also

constructed. In such cases, the branching for the node can be stopped.

The complexity of the calculation of ub2 is bounded by the selection of the largest

k− |S| hypervolume contributions. Similarly to the selection of the smallest |S∪ P| − k

exclusive hypervolume contributions for ub′1, the selection of the largest k− |S| elements

can also be solved with Selection Algorithms in linear time on average on the total

number of elements (Musser, 1997). Note that the calculation of the hypervolume

contributions is performed by the branching part for the variable ordering, and thus, its

computation is not considered in the time complexity of the calculation of ub2. In order

to verify if the fathom node technique described above can be applied, the hypervolume

indicator of the union of the included point set with the points of the unassigned point

set that have the largest k− |S| hypervolume contributions must be equal to ub2. If it is

less than ub2, then there is certainly intersections between some of the contributions.

4.3.3 Calculation of ub3

As explained in Subsection 3.3.3, if the remaining points of the unassigned point set are

selected using the greedy algorithm proposed in Guerreiro et al. (2015), the hypervolume

indicator of the solution returned by it has a guaranteed approximation of 1 − 1/e.

Therefore, the multiplication of 1/(1− 1/e) by the hypervolume indicator of the solution

returned by the greedy algorithm represents an upper bound of a current partial solution.

More formally, ub3 can be defined as follows:

ub3 = greedy(P, S, k)×
1

1− 1/e

where greedy(P, S, k) is a procedure that returns the hypervolume indicator of S after

choosing k − |S| points from P for integrating in S, using the algorithm proposed in

Guerreiro et al. (2015).

This greedy algorithm is only available for d ≤ 3. For d = 3 the time complexity of this

upper bound function is bounded by the time complexity of the greedy algorithm, which

is O(n(k+ log n)). In higher dimensions, ub3 can be computed naïvely by calculating the

hypervolume contributions using the standard hypervolume indicator. However, at the

best-case, this leads to an algorithm with O(knd/3+1 polylog n) time complexity, which

can be computationally expensive.

4.3.4 Calculation of ub4

The following upper bound is only available in the two-dimensional case and for this

reason it was not implemented for Algorithm 1.

Consider the decomposition step described in Subsection 3.3.2 that partitions the

region dominated by the hypervolume indicator into hyperrectangles. Let h be the

Chapter 4. The Branch-and-Bound Algorithm 24

number of hyperrectangles already selected so far in the search and let hmax be the

maximum number of hyperrectangles needed to solve a particular HSSP for a given n

and k. The hypervolume indicator of the included point set plus the largest hmax − h

hypervolumes of the hyperrectangles of the unassigned point set represents an upper

bound of a current partial solution.

A lookup table can be built that has the maximum number of hyperrectangles that

are needed to solve the HSSP for any given n and k. In order to use the lookup table, the

maximum number of hyperrectangles for each value of n and k must be calculated and

stored in advance. For the two-dimensional case it is possible to obtain the exact number

of maximum rectangles by running any of the exact algorithms described in Section 3.2

for a given n and k with a prepared input in the form of:

{(x , y) : y =−x + n+ 1, x = 1, . . . , n} (4.3)

Eq. (4.3) generates a set of points in such a way that the area of each rectangle is

exactly 1. Doing so, ensures that the hypervolume indicator of the solution returned by

the exact algorithm is exactly equal to the number of rectangles that are dominated by

the points of the solution. Figure 4.2 (a) illustrates an example of an input of points

generated by Eq. (4.3), in which the rectangles generated by the decomposition of the

hypervolume indicator have exactly 1 of area. Figure 4.2 (b) shows the hypervolume

indicator (blue region) of the best subset, which is equal to the number of dominated

rectangles.

The process above generates a matrix with all the maximum numbers of rectangles

up to a given n for each value of k. The disadvantage of this method is that it is

computationally demanding to run the algorithm for each value of k up to a desired

n, even if the lookup table only needs to be filled once. For example, if n = 100, the

exact algorithm would need to be executed n(n + 1)/2 = 5050 times, which can be

computationally expensive.

For the two-dimensional case, our results suggest a new relation between the maxi-

mum number of rectangles and the maximum number of edges of any Turán Graph, a

complete multipartite graph whose partite sets differ by at most one vertex. A complete

graph is a graph in which every pair of graph vertices is connected by exactly one edge

and a multipartite or s-partite graph is a graph whose graph vertices can be partitioned

into s different independent sets, a subset of vertices of a graph G such that no two

vertices in the subset represent an edge of G. A r-clique in a graph G is a complete

subgraph of G with exactly r vertices. Turán’s theorem gives an upper bound on the

maximum number of edges of any Turán Graph with v vertices without a r-clique as

(Aigner, 1995):

T (v, r) =
(r − 2)v2

2(r − 1)
(4.4)

Chapter 4. The Branch-and-Bound Algorithm 25

Figure 4.2: (a) Input points generated by Eq. (4.3) for n= 9; (b) subset that covers the
most rectangles for k = 3

Based on simulations up to 100 points, the number of rectangles returned by Eq.

(4.4), where v = n+1 and r = k+2, is always greater than or equal to the exact maximum

number of rectangles. Thus, it can be used to obtain an upper bound on the maximum

number of rectangles, in constant time, up to n = 100. In fact it is able to correctly match

1545 table entries in 5050 total, up to n= 100 and approximates with an average error

of approximately 2.19 rectangles for all entries.

Since Eq. (4.4) gives an upper bound and not the exact maximum number of edges

of any Turán Graph, there is still a trade-off between the optimality achieved using

the exact algorithm to fill the lookup table, with the speed of using the constant time

approximation of Eq. (4.4). Also, it is not known whether the exact maximum number of

edges of any Turán Graph is exactly equal to the maximum number of rectangles needed

to solve the two-dimensional HSSP.

Another result in the two-dimensional case is that for k > n/2 the maximum number

of rectangles is:
n(n+ 1)

2
− n+ k (4.5)

since removing one point only involves removing at most one rectangle from the max-

imum possible number of rectangles when n = k. Therefore, Eq. (4.5) can be used to

obtain in constant time the maximum number of rectangles for a given n if k > n/2.

For three and more dimensions it is not possible to apply the same techniques

proposed for the two-dimensional case to calculate the maximum number of rectangles.

In two dimensions, regardless of the points configuration that is chosen for the input, the

number of the maximum rectangles will always be equal for the same values of n and k.

This does not happen for three and more dimensions and for this reason further research

is needed to find a way to obtain the maximum number of hyperrectangles.

Chapter 4. The Branch-and-Bound Algorithm 26

4.4 Parallel Branch-and-Bound

In a B&B algorithm, the order in which the nodes of the search tree are expanded in

the branching, as well as the computation of the bounds are independent of the final

result, that is, it will always terminate with the global optimal solution. This attribute

makes B&B methods the ideal algorithms for parallel computation. The goal of parallel

computation is to speed up the execution time of an algorithm. In a B&B algorithm this

may be done by exploring the nodes of the search tree concurrently, preferably in such a

way that the nodes are evenly distributed among processing units. This may allow the

global optimum to be found earlier, which consequently helps the bounding functions to

prune even more nodes in the search tree.

In order to take advantage of systems with multiple processing units, a thread pool

was implemented for the parallel version of the B&B algorithm. A thread pool maintains

a group of threads, each of which waits on tasks to be given. The main advantage

of a thread pool over creating a thread for each new task is that thread creation and

destruction overhead is negated. The benefits of a thread pool become more clear in a

B&B algorithm, as the tasks are essentially the nodes of the search tree, which can grow

exponentially. There is still a small overhead in the locking mechanism of the thread pool

that is required to synchronize the access to a queue of tasks.

Algorithms 2, 3 and 4 show the pseudocode of the parallel version of the B&B

algorithm, where:

• Q is the queue of tasks

• t is the number of pool threads

• workers is the current number of working threads

• stop is a boolean variable that triggers the termination of the threads

• m1 and m2 are mutexes

• lock(m) is a procedure that acquires a lock on a mutex m

• unlock(m) is a procedure that releases a lock on a mutex m

• wait(m) is a procedure that blocks a current thread on a condition variable until it

is notified by some other thread

• notify_one() is a procedure that unblocks one idle thread waiting on a conditional

variable

• notify_all() is a procedure that unblocks all idle threads waiting on a conditional

variable

A mutex is used to block multiple threads from entering critical sections simultane-

ously. For example, critical sections were added to prevent the invalidation of two or

Chapter 4. The Branch-and-Bound Algorithm 27

Algorithm 2 Parallel B&B algorithm for the HSSP

1: function branch-and-bound(S, P)
2: if |S|= k then
3: lock(m2)
4: if H(S)> l b then
5: l b← H(S)
6: sbest ← S
7: unlock(m2)
8: return
9: if |P|= 0 then

10: return
11: if |P|+ |S|< k then
12: return
13: if min(ub1, ub2, ub3)≤ l b then
14: return
15: p← argmaxq∈P{H(q,S)}
16: if workers < t then
17: schedule(S∪ {p}, P \ {p})
18: else
19: branch-and-bound(S∪ {p}, P \ {p})
20: if workers < t then
21: schedule(S, P \ {p})
22: else
23: branch-and-bound(S, P \ {p})

more best solutions found simultaneously (lines 3 to 7, Algorithm 2) and to synchronize

any access to the queue of tasks (lines 3 to 6, Algorithm 3) and (lines 5 to 22, Algorithm

4).

The parallel version of the B&B starts by setting workers = 0 and stop = false and

creates t worker threads, which run Algorithm 4. These threads will have both the roles

of producing and consuming tasks and immediately go into idle state by waiting on a

monitor (line 17, Algorithm 4). Then, the root node is scheduled and placed in the queue

of tasks. In order to schedule a task, a snapshot of the node is created (line 2, Algorithm

3). The snapshot procedure takes a full copy of the state of the node, which requires the

included point set and the unassigned point set to be copied. After scheduling a task,

we signal one of the threads (line 5, Algorithm 3). One thread will eventually wake

and will retrieve the task from the queue (line 21, Algorithm 4). The thread then starts

working on the task by calling Algorithm 2 (line 23, Algorithm 4) and it may decide if

it wants to schedule the node’s new branches. A thread decides to schedule a new task

only if the number of workers is less than the total number of pool threads (lines 16 and

20, Algorithm 2), that is, there exists an idle thread waiting in the pool. If the thread

decides to schedule the node for the branch that rejects a point, it still has to backtrack

the current node. Whenever worker threads completely finishes a task, they go again

Chapter 4. The Branch-and-Bound Algorithm 28

Algorithm 3

1: function schedule(S, P)
2: task← (S,P)
3: lock(m1)
4: Q.push(task)
5: notify_one()
6: unlock(m1)

Algorithm 4

1: function work()
2: dismiss← true
3: while true do
4: idle← true
5: lock(m1)
6: if dismiss then
7: dismiss← false
8: else
9: if Q.empty() = false then

10: idle← false
11: else
12: workers← workers− 1
13: if workers = 0 then
14: stop← true
15: notify_all()
16: while stop = false and Q.empty() do
17: wait(m1)
18: if stop then
19: return
20: workers← workers+ idle
21: task← Q.pop()
22: unlock(m1)
23: branch-and-bound(task.S, task.P)

into idle state. The termination of the algorithm is triggered by one of the worker threads

when it finishes a task, there are no other worker threads and the queue of tasks is empty

(lines 13 to 15, Algorithm 4).

Several features were added to the standard thread pool in order to stabilize and

improve it. We allow worker threads to schedule multiple tasks, and not just one, in

multiple occasions. No lock is acquired to check if the number of worker threads is less

than the total number of pool threads. Therefore, multiple worker threads may detect

simultaneously that there is an idle thread, and all can schedule tasks to the queue, due to

the monitor being released upon threads going into idle state (line 17, Algorithm 4). Also,

from the moment that one worker thread finishes a task to the moment that it is ready

to work, other worker threads may be fast enough to schedule both of their children

Chapter 4. The Branch-and-Bound Algorithm 29

nodes. Furthermore, backtracking the current node is a relatively fast operation, which

may allow even more tasks to be scheduled if nodes are found during the backtracking

process. The tasks can then be stored in a priority queue, so that when the thread is

ready to work, it can choose a task based on some priority. For the priority queue, a

max-heap structure is used, in which the hypervolume indicator of the included point set

is the compare method. A max-heap is a complete binary tree in which the value in each

internal node is greater than or equal to the values in the children of that node. The goal

of the priority queue is to not allow the threads to work first on branches that have small

chance of improving the incumbent solution. In a way, the pool threads are competing

to see which one can generate the best subsets. Furthermore, task scheduling is disabled

until batches of tasks are emptied from the priority queue. This can greatly reduce the

number of tasks scheduled and, consequently, the memory footprint, without penalizing

in the performance, since threads can still work. Still, the parallel version will need at

least t times more memory for the run time, in comparison with the sequential version of

the B&B (Algorithm 1).

Chapter 5

Experimental Analysis

In this chapter, an analysis on the B&B algorithms introduced in Chapter 4 is performed.

In Section 5.1, the methodology for the design of the experimental tests is explained and

in Section 5.2, the B&B algorithm is assessed and compared with a solver that solves the

IP model described in Section 3.3.2.

5.1 Methodology

Four different types of nondominated points instances were generated: Cliff, Concave,

Convex and Linear fronts (Emmerich and Fonseca, 2011; Lacour et al., 2017). Figure 5.1

illustrates examples of each front. The parameter n of the datasets varies between 10 and

100 points, depending on the type of the test. Three main tests were conducted. In the

first test, we compared the performance between the B&B algorithm and an IP solver. In

this test, we used three-dimensional instances with fixed n= 50 and k ∈ {1, 2, . . . , n}. We

were not able to test instances with n> 50, due to the excessive amount of time taken by

the IP solver. In the second test, we analysed how the running time of the B&B algorithm

grows by changing n= {10,20, . . . , 100} for a fixed k = n/2. The parameter k was fixed

to n/2, since the number of subset combinations is the maximum. In the third test we

replicated the second test, but using the parallel version of the B&B algorithm with t = 2.

We did not test an higher number of threads, since the machine used only had two cores.

In all tests, for each triple of front, n and k, we generated 10 different instances.

In the first test we recorded the running time required to solve each instance. Then,

we computed the average running time for each triple. Note that, for testing the IP

formulation, the running time used to generate the model was not considered. In the

second and the third tests, both running time and the number of nodes of the search tree

were recorded. We computed the average running time and number of nodes for each

pair of front type and n. In the third test, we also calculated the speedup and the nodes

factor of the parallel version of the B&B algorithm. The speedup is defined as the time

taken by parallel version divided by the time taken by the sequential version and the

31

Chapter 5. Experimental Analysis 32

x
0.0

0.2
0.4

0.6
0.8

1.0
y

0.0
0.2

0.4

0.6

0.8

1.0

z

0.0

0.2

0.4

0.6

0.8

1.0

(a)

x
0.0

0.2
0.4

0.6
0.8

1.0
y

0.0
0.2

0.4

0.6

0.8

1.0

z

0.0

0.2

0.4

0.6

0.8

1.0

(b)

x
0.0

0.2
0.4

0.6
0.8

1.0
y

0.0
0.2

0.4

0.6

0.8

1.0

z

0.0

0.2

0.4

0.6

0.8

1.0

(c)

x
0.0

0.2
0.4

0.6
0.8

1.0
y

0.0
0.2

0.4

0.6

0.8

1.0

z

0.0

0.2

0.4

0.6

0.8

1.0

(d)

Figure 5.1: Three-dimensional examples of nondominated points datasets: (a) Cliff, (b)
Concave, (c) Convex and (d) Linear fronts

nodes factor is defined as the number of nodes taken by sequential version divided by

the number of nodes taken by the parallel version.

All experiments were conducted on a machine with a Linux Operating System (OS),

equipped with an Intel i5-2410M processor, running at 2.30 GHz and 4GB RAM. The

source code for the B&B algorithm was written in C++ and compiled with GCC 5.4.0.

The IP models were executed using the GNU Linear Programming Kit (GLPK) 4.57 solver.

More information on the machine, compiler and solver can be viewed in Table 5.1.

Even though the tests were run in order to assess the performance of the B&B

algorithm, they were also used for testing the correctness of the code. Several datasets

were generated for the experimental tests and their best solutions were obtained using

the IP model, which were used to compare with the solutions returned by the B&B

algorithm. Furthermore, several regression tests were built during the implementation

of the algorithm, which helped validating its components and thereby reducing code

mistakes. In the regression tests we preferred the use of canonical methods, such as the

hypervolume indicator, to validate, for example, the incremental calculation of ub1.

C++ was chosen over C due to the various containers and multithreading support

provided by the Standard Template Library (STL). The problem of obtaining the smallest

Chapter 5. Experimental Analysis 33

OS Ubuntu 16.04, 64-bit
Memory 4 GB, 1333 MHz

CPU Intel i5-2410M Dual-Core, 2.30 GHz
Compiler -std=c++11 -O3 -flto -march=native -pthread

Solver --dual --tmlim 1000

Table 5.1: Machine specifications, compiler and solver flags

|S∪ P| − k exclusive hypervolume contributions, required for the calculation of ub′1 and

the problem of selecting the largest k − |S| hypervolume contributions, required for

the calculation of ub2, can both be solved using selection algorithms. The standard

library of C++ provides the nth_element selection algorithm, which solves the problem

of selecting the largest n-th element in linear time on average. Selecting the largest

k− |S| or the smallest |S∪ P| − k elements can also be solved using the same algorithm,

since it leaves all smaller elements before the n-th element and the larger ones after. For

the hypervolume calculation in d > 3 we used the algorithm proposed in Fonseca et al.

(2006), which is available at http://lopez-ibanez.eu/hypervolume. To calculate

the hypervolume contributions for d = 3 and to compute all exclusive contributions

for d ≤ 4 it is used the algorithms proposed in Guerreiro et al. (2015) and Guerreiro

and Fonseca (2017), respectively. The latest version of both these algorithms can be

obtained at http://github.com/apguerreiro/HVC. The B&B algorithm is available at

http://github.com/rgoomes/hssp.

5.2 Computational Results

In Figure 5.2, we present the results for the first test with the running time in a logarithmic

scale. The goal of this test was to compare both approaches and study the influence of k

in the B&B algorithm. The results show that the B&B algorithm outperformed the GLPK

solver in all tests. It is clear that the Cliff front is the easiest and the Linear front is the

hardest for both approaches. The GLPK solver required at least 40 seconds, whereas

the B&B algorithm was able to solve all instances under 1 second. The GLPK solver was

somewhat very unstable for smaller values of k and reached several times the time limit

of 1000 seconds. The B&B algorithm tends to spend more time when k is close to n/2 in

the harder fronts. The detailed results of this test for some values of k can be seen in

Appendix Tables A.1. A.2, A.3 and A.4.

In Figures 5.3 and 5.4, we present the results for the second and third tests with the

running time and number of nodes in a logarithmic scale. The purpose of these tests was

to study the influence of n in the B&B algorithm. Since for k = n/2 the number of possible

subset combinations is the maximum, we can see how far the algorithm is able solve

instances in reasonable time with the proposed machine configuration. In the results

we show that the algorithm can to solve Cliff instances up to n = 100 rather quickly.

http://lopez-ibanez.eu/hypervolume
http://github.com/apguerreiro/HVC
http://github.com/rgoomes/hssp

Chapter 5. Experimental Analysis 34

Regarding Convex fronts, the B&B algorithm was able solve instances up to n = 90, under

3 minutes on average. As for Concave and Linear fronts we were not able to test instances

for n > 80. The detailed results of these tests can be seen in Appendix Tables A.5. A.6,

A.7 and A.8. Since the number of nodes for the Cliff front with n = 100 was very low,

we tried to see how far the B&B algorithm was able to solve Cliff instances. In this test

we used the parallel version of the algorithm to achieve maximum performance. The

B&B algorithm was able to solve Cliff instances up to n= 200. Figure 5.5 illustrates the

average running time taken by the B&B algorithm for this test and the detailed results

for some values of k can be seen in Appendix Table A.9.

We also tested some four-dimensional instances. In Figure 5.6, we present these

results with the running time in a logarithmic scale. Clearly, the running times are an

order of magnitude higher in comparison to the three-dimensional results for the same n.

This is due to the increase of the time complexity in the calculation of the hypervolume

contributions and exclusive hypervolume contributions in four dimensions. The detailed

results of this test for some values of k can be seen in Appendix Tables A.10, A.11, A.12

and A.13.

Regarding the results obtained with the parallel version of the B&B algorithm, we can

observe that for the tests that completed under 1 millisecond in the sequential version,

worsened in the parallel version. This is expected in so small running times, due to

thread creation, destruction and locking overhead. As n increases the parallel version

starts to completely outperform the sequential version, reaching 1.8x speedup for large

values of n. In the parallel version of the algorithm, even though two threads are working

in parallel trying to find the best solution, the number of nodes remained fairly the same

for most cases. The detailed results of this test can be seen in Appendix Tables A.14,

A.15, A.16 and A.17.

Chapter 5. Experimental Analysis 35

0 5 10 15 20 25 30 35 40 45 50
k

0

10-3

10-2

10-1

100

101

102

103

T
im

e
 (

se
co

n
d
s)

Cliff

B&B

GLPK

0 5 10 15 20 25 30 35 40 45 50
k

0

10-3

10-2

10-1

100

101

102

103

T
im

e
 (

se
co

n
d
s)

Convex

B&B

GLPK

0 5 10 15 20 25 30 35 40 45 50
k

0

10-3

10-2

10-1

100

101

102

103

T
im

e
 (

se
co

n
d
s)

Concave

B&B

GLPK

0 5 10 15 20 25 30 35 40 45 50
k

0

10-3

10-2

10-1

100

101

102

103

T
im

e
 (

se
co

n
d
s)

Linear

B&B

GLPK

Figure 5.2: Average running time in seconds taken by both approaches for three-
dimensional fronts with fixed n= 50

Chapter 5. Experimental Analysis 36

10 20 30 40 50 60 70 80 90 100
n

0

10-4

10-3

10-2

10-1

100

101

102

103

T
im

e
 (

se
co

n
d
s)

Cliff

B&B
B&B (t = 2)

10 20 30 40 50 60 70 80 90
n

0

10-4

10-3

10-2

10-1

100

101

102

103

T
im

e
 (

se
co

n
d
s)

Convex

B&B
B&B (t = 2)

10 20 30 40 50 60 70 80
n

0

10-4

10-3

10-2

10-1

100

101

102

103

T
im

e
 (

se
co

n
d
s)

Concave

B&B
B&B (t = 2)

10 20 30 40 50 60 70 80
n

0

10-4

10-3

10-2

10-1

100

101

102

103

T
im

e
 (

se
co

n
d
s)

Linear

B&B
B&B (t = 2)

Figure 5.3: Average running time in seconds taken by both versions of the B&B algorithm
for three-dimensional fronts with fixed k = n/2

Chapter 5. Experimental Analysis 37

10 20 30 40 50 60 70 80 90 100
n

0

101

102

103

104

105

106

107

108

109
N

o
d
e
s

Cliff

10 20 30 40 50 60 70 80 90
n

0

101

102

103

104

105

106

107

108

109

N
o
d
e
s

Convex

10 20 30 40 50 60 70 80
n

0

101

102

103

104

105

106

107

108

109

N
o
d
e
s

Concave

10 20 30 40 50 60 70 80
n

0

101

102

103

104

105

106

107

108

109

N
o
d
e
s

Linear

Figure 5.4: Average number of nodes taken by the B&B algorithm for three-dimensional
fronts with fixed k = n/2

0 20 40 60 80 100 120 140 160 180 200
k

0

10-3

10-2

10-1

100

101

102

103

T
im

e
 (

se
co

n
d
s)

Cliff

Figure 5.5: Average running time taken by the parallel version of the B&B algorithm
with t = 2 for three-dimensional Cliff fronts with fixed n= 200

Chapter 5. Experimental Analysis 38

0 5 10 15 20 25 30 35 40 45 50
k

0

10-3

10-2

10-1

100

101

102

103

T
im

e
 (

se
co

n
d
s)

Cliff

0 5 10 15 20 25 30 35 40 45 50
k

0

10-3

10-2

10-1

100

101

102

103

T
im

e
 (

se
co

n
d
s)

Convex

0 5 10 15 20 25 30 35 40 45 50
k

0

10-3

10-2

10-1

100

101

102

103

T
im

e
 (

se
co

n
d
s)

Concave

0 5 10 15 20 25 30 35 40 45 50
k

0

10-3

10-2

10-1

100

101

102

103

T
im

e
 (

se
co

n
d
s)

Linear

Figure 5.6: Average running time taken by the B&B algorithm for four-dimensional
fronts with fixed n= 50

Chapter 6

Conclusion

In this thesis, we investigated how a B&B algorithm could be developed to solve the HSSP.

We introduced several notions of bounds and a dynamic variable ordering, which uses the

hypervolume contributions to heuristically choose points for the branching mechanism.

Moreover, a parallel version of the B&B was proposed in order to take advantage of

multiple processing units.

We performed an in-depth experimental analysis of our approach and compared with

an IP solver. The experimental results show that B&B algorithms have some potential to

solve the HSSP. One drawback of the IP approach is the inability of being able to solve

three-dimensional instances with n≥ 200, due to both memory and time constraints in

constructing the models. The B&B algorithm not only was able to solve some instances

with n= 200, but also outperformed the GLPK solver in all tests. The parallel version of

the B&B algorithm with t = 2 achieved an impressive speedup of 1.8x in some tests as

compared to the sequential version.

6.1 Future Work

As future research directions for this work, it would be interesting to investigate other

notions of upper bounds to further improve the performance of the B&B algorithm. A

good starting point would be to extend the calculation of ub4 for d > 2. Another possibility

could be tighten the proposed upper bounds, similar to the idea of subtracting the smallest

|S∪ P| − k exclusive hypervolume contributions to ub1. This can be accomplished in the

calculation of ub2: the idea is to find a set U of k− |S| points in the unassigned point set,

such that the hypervolume indicator of the union of included point set with the points of

set U is larger than the hypervolume indicator of the points considered in ub2. Then, the

goal is to use the hypervolume contributions of the points of set U in the calculation of

ub2, instead of the largest k− |S| hypervolume contributions of the unassigned point set.

This would come as an extension in the calculation of ub2. Still, there are two problems

in this idea: it is possible that there is another set U' such that the hypervolume indicator

39

Chapter 6. Conclusion 40

of the union of U' with the included point set is greater than the value of the incumbent,

that is, there exists a new best solution in the current branch. In such cases, if we pruned

with a valid set U, the new best solution would be lost. This can be fixed by generating

the c greatest sums combinations of size k− |S| of the hypervolume contributions. Then

we iterate over the c sets in decreasing order of their sums, and if a best solution is found

we stop. Larger values of c result in a more powerful extension, but on the other hand it

is much more computationally expensive. This takes us to the second problem: it is very

demanding to calculate c hypervolume indicators, let alone generating the c candidates.

It may be possible to improve the performance of the B&B algorithm, by exploring

other types of variable ordering, possibly using heuristics methods. In other tests, not

present in this thesis, it was observed that the dynamic variable ordering allowed the

upper bounds to prune much earlier.

It would also be interesting to evaluate how the parallel version of the B&B algorithm

scales with more CPU cores, since it supports t > 2.

Finally, it would be interesting to compare our approach to that of Bringmann et al.

(2017), which was proposed only in June, 2017. To the best of our knowledge there is

no code available at the time of the writing of this thesis.

Bibliography

Aigner, M. (1995). Turán’s Graph Theorem. The American Mathematical Monthly,

102:808–816.

Bader, J. and Zitzler, E. (2011). HypE: An Algorithm for Fast Hypervolume-Based

Many-Objective Optimization. Evolutionary Computation, 19(1):45–76.

Bader, J. M. (2009). Hypervolume-Based Search for Multiobjective Optimization: Theory

and Methods. PhD thesis, Computer Engineering and Networks Laboratory, Swiss

Federal Institute of Technology Zürich, Zürich, Switzerland.

Basseur, M., Derbel, B., Goëffon, A., and Liefooghe, A. (2016). Experiments on Greedy

and Local Search Heuristics for d–dimensional Hypervolume Subset Selection. In

Proceedings of the 2016 Genetic and Evolutionary Computation Conference (GECCO

2016), pages 541–548, Denver, Colorado, USA. ACM Press.

Bringmann, K., Cabello, S., and Emmerich, M. T. M. (2017). Maximum Volume Subset

Selection for Anchored Boxes. In 33rd International Symposium on Computational

Geometry (SoCG 2017), pages 22:1–22:15, Schloss Dagstuhl Leibniz-Zentrum für

Informatik, Germany. Dagstuhl Publishing.

Bringmann, K. and Friedrich, T. (2008). Approximating the volume of unions and

intersections of high-dimensional geometric objects. Computational Geometry-Theory

and Applications, 43(6-7):601–610.

Bringmann, K. and Friedrich, T. (2010). An efficient algorithm for computing hypervol-

ume contributions. Evolutionary Computation, 18(3):383–402.

Bringmann, K., Friedrich, T., and Klitzke, P. (2014). Two-dimensional Subset Selection for

Hypervolume and Epsilon-Indicator. In Proceedings of the 2014 Genetic and Evolutionary

Computation Conference (GECCO 2014), pages 589–596, Vancouver, Canada. ACM

Press.

Chan, T. M. (2013). Klee’s Measure Problem Made Easy. In Proc. 54th IEEE Symposium

41

Bibliography 42

on Foundations of Computer Science (FOCS), pages 410–419, Los Alamitos, CA, USA.

IEEE Computer Society.

Clausen, J. (1999). Branch and Bound Algorithms – Principles and Examples. Technical

report, University of Copenhagen.

Emmerich, M. T. M. and Fonseca, C. M. (2011). Computing Hypervolume Contributions

in Low Dimensions: Asymptotically Optimal Algorithm and Complexity Results. In Pro-

ceedings of the 6th International Conference on Evolutionary Multi-criterion Optimization,

EMO’11, pages 121–135, Berlin, Heidelberg.

Figueira, J., Fonseca, C., Halffmann, P., Klamroth, K., Paquete, L., Ruzika, S., Schulze, B.,

Stiglmayr, M., and Willems, D. (2017). Easy to say they’re hard, but hard to see they’re

easy - Toward a categorization of tractable multiobjective combinatorial optimization

problems. Journal of Multi-Criteria Decision Analysis, pages 82–98.

Fonseca, C. M., Paquete, L., and López-Ibáñez, M. (2006). An Improved Dimension-Sweep

Algorithm for the Hypervolume Indicator. In Congress on Evolutionary Computation

(CEC 2006), pages 1157–1163, Vancouver, BC, Canada. IEEE Press.

Garey, M. R. and Johnson, D. S. (1990). Computers and Intractability; A Guide to the

Theory of NP-Completeness. W. H. Freeman & Co., New York, NY, USA.

Guerreiro, A. P. and Fonseca, C. M. (2017). Computing and Updating Hypervolume Con-

tributions in Up to Four Dimensions. CISUC Technical Report TR-2017-001, University

of Coimbra.

Guerreiro, A. P., Fonseca, C. M., and Paquete, L. (2015). Greedy Hypervolume Subset Se-

lection in the Three-Objective Case. In Proceedings of the 2015 Genetic and Evolutionary

Computation Conference (GECCO 2015), pages 671–678, Madrid, Spain. ACM Press.

Kuhn, T. (2015). Representative Systems and Decision Support for Multicriteria Optimiza-

tion Problems. PhD thesis, University of Kaiserslautern, Germany.

Kuhn, T., Fonseca, C. M., Paquete, L., Ruzika, S., Duarte, M. M., and Figueira, J. R. (2016).

Hypervolume Subset Selection in Two Dimensions: Formulations and Algorithms.

Evolutionary Computation, 24(3):411–425.

Lacour, R., Klamroth, K., and Fonseca, C. M. (2017). A Box Decomposition Algorithm to

Compute the Hypervolume Indicator. Computers & Operations Research, 79:347–360.

Musser, D. R. (1997). Introspective Sorting and Selection Algorithms. Software–Practice

and Experience, 27(8):983–993.

Bibliography 43

Zitzler, E., Brockhoff, D., and Thiele, L. (2007). The Hypervolume Indicator Revisited:

On the Design of Pareto-compliant Indicator Via Weighted Integratio. In Evolutionary

Multi-Criterion Optimization (EMO 2007), volume 4403, pages 862–876, Japan.

Zitzler, E., Thiele, L., Laumanns, M., Fonseca, C. M., and da Fonseca, V. G. (2003).

Performance Assessment of Multiobjective Optimizers: An Analysis and Review. IEEE

Transactions on Evolutionary Computation, 7(2):117–132.

Appendix A

A.1 Results

k B&B time (s) GLPK time (s)
5 0.00069 94.33

10 0.00085 74.01
15 0.00080 69.12
20 0.00077 65.31
25 0.00074 63.43
30 0.00067 62.50
35 0.00065 61.61
40 0.00061 61.01
45 0.00049 60.47

Table A.1: Average running time in seconds taken by both approaches for three-
dimensional Cliff fronts with fixed n= 50 and k = {5,10, . . . , n− 5}

k B&B time (s) GLPK time (s)
5 0.00207 321.34

10 0.02082 284.32
15 0.04157 103.95
20 0.02437 79.23
25 0.00870 72.90
30 0.00339 67.49
35 0.00123 63.16
40 0.00068 59.78
45 0.00047 56.82

Table A.2: Average running time in seconds taken by both approaches for three-
dimensional Convex fronts with fixed n= 50 and k = {5, 10, . . . , n− 5}

45

Appendix A. 46

k B&B time (s) GLPK time (s)
5 0.00301 349.96

10 0.04612 293.56
15 0.18777 519.69
20 0.34609 226.12
25 0.30069 90.42
30 0.09152 65.48
35 0.01398 58.84
40 0.00281 53.62
45 0.00080 50.42

Table A.3: Average running time in seconds taken by both approaches for three-
dimensional Concave fronts with fixed n= 50 and k = {5,10, . . . , n− 5}

k B&B time (s) GLPK time (s)
5 0.01505 > 1000.0

10 0.24624 614.61
15 0.53242 945.26
20 0.69758 427.04
25 0.49434 716.76
30 0.20516 108.24
35 0.03294 96.09
40 0.00512 46.69
45 0.00088 42.21

Table A.4: Average running time in seconds taken by both approaches for three-
dimensional Linear fronts with fixed n= 50 and k = {5,10, . . . , n− 5}

n nodes time (s)
10 8 0.00007
20 17 0.00015
30 35 0.00029
40 59 0.00068
50 80 0.00081
60 111 0.00137
70 284 0.00269
80 349 0.00375
90 353 0.00446

100 994 0.01201

Table A.5: Average number of nodes and running time in seconds taken by the B&B
algorithm for three-dimensional Cliff fronts with fixed k = n/2

Appendix A. 47

n nodes time (s)
10 8 0.00007
20 45 0.00019
30 268 0.00082
40 1156 0.00368
50 2563 0.01005
60 86040 0.36744
70 387419 1.96258
80 2360963 13.9379
90 26847400 181.888

Table A.6: Average number of nodes and running time in seconds taken by the B&B
algorithm for three-dimensional Convex fronts with fixed k = n/2

n nodes time (s)
10 20 0.00008
20 89 0.00027
30 397 0.00114
40 3776 0.01283
50 94274 0.30057
60 293394 1.18611
70 5203940 24.5828
80 55707157 314.770

Table A.7: Average number of nodes and running time in seconds taken by the B&B
algorithm for three-dimensional Concave fronts with fixed k = n/2

n nodes time (s)
10 24 0.00009
20 258 0.00049
30 1473 0.00328
40 12086 0.03220
50 156484 0.50036
60 2189155 8.49631
70 14116063 64.9449
80 143227000 730.769

Table A.8: Average number of nodes and running time in seconds taken by the B&B
algorithm for three-dimensional Linear fronts with fixed k = n/2

Appendix A. 48

k nodes time (s)
10 104582 0.73983
20 3128224 26.2814
30 24175021 242.166
40 65490504 729.500
50 10104990 125.684
60 12152907 169.520
70 3631928 57.0669
80 10054723 177.803
90 6311427 113.053

100 705266 13.5499
110 86814 1.69998
120 23254 0.52865
130 8016 0.18734
140 2265 0.07376
150 889 0.04630
160 528 0.03323
170 332 0.04442
180 279 0.03595
190 234 0.02723

Table A.9: Average number of nodes and running time in seconds taken by the parallel
version of the B&B algorithm with t = 2 for three-dimensional Cliff fronts with fixed
n= 200 and k ∈ {10,20, . . . , n− 10}

k nodes time (s)
5 754 0.02007

10 16135 0.46389
15 65037 2.20299
20 146097 6.01635
25 119339 5.73123
30 42872 2.31995
35 5891 0.35415
40 876 0.05835
45 99 0.00825

Table A.10: Average number of nodes and running time in seconds taken by the B&B
algorithm for four-dimensional Cliff fronts with fixed n= 50 and k = {5,10, . . . , n− 5}

Appendix A. 49

k nodes time (s)
5 124 0.00421
10 628 0.01736
15 1583 0.04690
20 1545 0.05166
25 665 0.02377
30 388 0.01516
35 217 0.00921
40 89 0.00437
45 25 0.00179

Table A.11: Average number of nodes and running time in seconds taken by the B&B
algorithm for four-dimensional Convex fronts with fixed n = 50 and k = {5, 10, . . . , n− 5}

k nodes time (s)
5 658 0.01548

10 18586 0.46935
15 72488 2.24225
20 135327 4.95303
25 145804 6.12419
30 81215 3.78192
35 27360 1.39401
40 4508 0.24423
45 424 0.02560

Table A.12: Average number of nodes and running time in seconds taken by the B&B
algorithm for four-dimensional Concave fronts with fixed n = 50 and k = {5, 10, . . . , n−5}

k nodes time (s)
5 5524 0.07806

10 70727 1.46563
15 111302 3.07715
20 116191 3.84518
25 86786 3.34785
30 47716 2.09330
35 17794 0.87711
40 2297 0.12578
45 177 0.01094

Table A.13: Average number of nodes and running time in seconds taken by the B&B
algorithm for four-dimensional Linear fronts with fixed n= 50 and k = {5,10, . . . , n− 5}

Appendix A. 50

n nodes time (s) speedup nodes factor
10 8 0.00016 0.427 1.0
20 17 0.00030 0.503 1.0
30 35 0.00048 0.611 1.0
40 60 0.00094 0.73 0.983
50 80 0.00138 0.588 1.0
60 111 0.00137 1.002 1.0
70 286 0.00274 0.983 0.993
80 349 0.00370 1.013 1.0
90 353 0.00442 1.009 1.0

100 994 0.00913 1.315 1.0

Table A.14: Average number of nodes, running time in seconds, speedup and nodes
factor taken by the parallel version of the B&B algorithm with t = 2 for three-dimensional
Cliff fronts with fixed k = n/2

n nodes time (s) speedup nodes factor
10 8 0.00018 0.384 1.0
20 45 0.00045 0.422 1.0
30 268 0.00074 1.102 1.0
40 1155 0.00314 1.173 1.001
50 2547 0.00741 1.356 1.006
60 85920 0.20422 1.799 1.001
70 388647 1.11846 1.755 0.997
80 2370824 7.55555 1.845 0.996
90 27182815 101.299 1.796 0.988

Table A.15: Average number of nodes, running time in seconds, speedup and nodes
factor taken by the parallel version of the B&B algorithm with t = 2 for three-dimensional
Convex fronts with fixed k = n/2

n nodes time (s) speedup nodes factor
10 20 0.00016 0.489 1.0
20 89 0.00038 0.72 1.0
30 397 0.00115 0.992 1.0
40 3790 0.00886 1.449 0.996
50 93641 0.17470 1.72 1.007
60 297921 0.69490 1.707 0.985
70 5169548 13.5292 1.817 1.007
80 55817416 178.154 1.767 0.998

Table A.16: Average number of nodes, running time in seconds, speedup and nodes
factor taken by the parallel version of the B&B algorithm with t = 2 for three-dimensional
Concave fronts with fixed k = n/2

Appendix A. 51

n nodes time (s) speedup nodes factor
10 24 0.00019 0.485 1.0
20 257 0.00050 0.971 1.004
30 1475 0.00241 1.36 0.999
40 11817 0.01932 1.667 1.023
50 156151 0.30284 1.652 1.002
60 2160777 4.91369 1.729 1.013
70 14103181 35.5611 1.826 1.001
80 143009494 399.534 1.829 1.002

Table A.17: Average number of nodes, running time in seconds, speedup and nodes
factor taken by the parallel version of the B&B algorithm with t = 2 for three-dimensional
Linear fronts with fixed k = n/2

	Introduction
	Preliminaries
	Hypervolume Subset Selection Problem
	Branch-and-Bound

	State-of-the-art
	Complexity of the Hypervolume Subset Selection Problem
	Two-Dimensional Hypervolume Subset Selection Problem
	Three-Dimensional Hypervolume Subset Selection Problem
	Subset Enumeration
	Integer Programming Model
	Heuristics

	The Branch-and-Bound Algorithm
	Overview
	Branching Strategy
	Bounding Functions
	Calculation of ub1
	Calculation of ub2
	Calculation of ub3
	Calculation of ub4

	Parallel Branch-and-Bound

	Experimental Analysis
	Methodology
	Computational Results

	Conclusion
	Future Work

	Bibliography
	Appendix
	Results

