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Resumo

Os pulsares são estrelas de neutrões magnetizadas que rodam a taxas exce-
cionalmente estáveis. No entanto, pulsares mais jovens sofrem eventos esporádi-
cos, conhecidos por glitches, em que a frequência de rotação aumenta de forma
súbita, para de seguida decrescer gradualmente. Acredita-se que os glitches
resultam de uma transferência de momento angular entre a crosta e superfluidos
no interior da estrela. No entanto, a crosta poderá não ser capaz de armazenar
a quantidade do momento de inércia necessária para validar este modelo.

Campos magnéticos fortes afectam significativamente as propriedades das
estrelas de neutrões, o que pode indicar terem um papel relevante no mecanismo
dos glitches. Contudo, são necessários campos excecionalmente elevados, da
ordem de 1018 G, para se observarem alterações na equação de estado da matéria
estelar. Como consequência, estes efeitos não são tidos em conta em cálculos da
magnetohidrodinâmica das estrelas. No entanto, verificou-se recentemente que
poderá existir um efeito na equação de estado da crosta que, na presença de um
campo magnético forte, se traduz num aumento da extensão da mesma.

O objetivo deste projeto é estudar os efeitos do campo magnético na equação
de estado da matéria estelar, em particular aqueles que afetem diretamente os
glitches de pulsares. São analisados dois problemas:

• Quão forte deve ser o campo magnético para que tenha um efeito signi-
ficativo nas dimensões da crosta?

• Como é que o campo magnético afeta o entrainment entre os neutrões
superfluidos e a crosta?

Para a primeira questão, usamos o método da spinodal dinâmica para de-
terminar o tamanho da crosta sob campos magnéticos fortes. Para a segunda
questão, estudamos o efeito do campo magnético na matriz de entrainment rel-
ativístico, para uma mistura de protões e neutrões, no contexto da teoria de
Landau-Fermi para líquidos relativistas, generalizada de modo a incluir super-
fluidez.
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Abstract

Pulsars are magnetized neutron stars that rotate at exceptionally stable
rates. Nevertheless, younger pulsars exhibit sporadic events called glitches, in
which the rotation frequency suddenly increases and then steadily decreases. It
is believed that the glitches are a consequence of angular momentum transfer
between the crust and superfluids in the star’s interior. The crust, however, may
not be able to store enough momentum of inertia to validate this model.

Magnetic fields of high intensity significantly affect the properties of neutron
stars, which may indicate they play a role in the glitch mechanism. However,
their intensity must be of the order of 1018 G to significantly alter the equation of
state of stellar matter. As a result, such effects are not usually considered when
performing magnetohydrodynamic calculations in stars. Recently, however, a
possible effect on the crust’s equation of state has been discovered which, under
a strong magnetic field, results in the increase of the crust’s extension.

The goal of this thesis is to study the effects of magnetic fields on the stellar
matter’s equation of state, particularly those that are most directly related to
pulsar glitches. We analyze two problems:

• How strong must a magnetic field be to significantly alter the crust’s
dimensions?

• How does the magnetic field affect the entrainment between superfluid
neutrons and the crust?

For the first problem, we use the dynamical spinodal method in order to
determine the crust’s size under strong magnetic fields. For the second, we
study the effect of the magnetic field on the relativistic entrainment matrix for a
mixture of protons and neutrons, using a relativistic Landau Fermi liquid theory,
generalized to include superfluidity.
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1. Introduction

In this thesis, we will study properties of the matter inside neutron stars,
one of the most extreme places in the universe, which, alongside white dwarfs
and black holes, are an end-point in the life of stars. Before presenting our
motivation and goals, we will briefly introduce these astrophysical objects.

1.1 Neutron stars
The existence of neutron stars was originally proposed by Baade and Zwicky

in 1934, a year after the discovery of the neutron itself. They were seeking an
explanation for the formation of supernovæ, and proposed that they were the
result of stars collapsing and releasing their gravitational binding energy, leaving
in their place a condensed object made of neutrons.

An ordinary, luminous star is in a state of constant collapse, due to its high
gravitational mass. The fusion reactions in its interior, facilitated by the high
densities, pressures and temperatures of the core, release an immense amount
of energy, enough to create a counter-balancing force to gravity; the star is then
said to be in a state of suspended collapse. The first reaction to occur is the
fusion of hydrogen to helium. As hydrogen runs out, helium accumulates in
the center of the star, and there comes a point when helium itself starts to fuse
together to produce carbon. All the reactions that take place inside a star are
more complicated than this simplified picture, but the overall trend is for lighter
nuclei to produce heavier elements, all the while releasing energy. If the star is
massive enough, there comes a point when nuclear fusion stops being exothermic.
This point is reached when the nucleus with the least binding energy per nucleon,
iron, starts to form.

When the center of the star starts accumulating iron, the core begins to lose
its ability to support the outer layers. Through a complex interplay between the
infalling material, the still-burning outer regions of the core and the dense center
of the star, a strong ejection of material happens – a supernova –, releasing a
significant part of the gravitational binding energy of the star. What is left of
this explosion is the solid core, of a few solar masses. If it is not too massive,
the core avoids becoming a black hole, becoming a neutron star instead.

A neutron star is a very compact object, being typically at least as massive
as the sun, all the while having a radius of around 10 km. It has a very thin
atmosphere of hot plasma, with a thickness of micrometers. Below the atmo-
sphere there is the crust, divided in outer and inner parts. The outer crust is
composed of a lattice of nuclei in a sea of electrons. The inner crust has nuclei
with a higher neutron content, and there comes a density, called the neutron
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2 1. Introduction

drip point, in which free neutrons start to appear rapidly. It is possible to find
superfluid neutrons in the inner crust. Below the crust, one finds the core, whose
composition is still being heavily investigated. For our purposes, it is important
to know that the outer core contains superfluid neutrons and superconducting
protons. The composition of the inner core is still uncertain.

In this work, we will study properties of the neutron star matter that con-
tribute for an interaction between the solid crust and the superfluid neutrons
and superconducting protons . In particular, these interactions may explain why
some rotating neutron stars, called pulsars, suddenly increase their angular ve-
locity, in events called glitches. One mechanism for explaining this phenomenon
involves vortices of superfluid neutrons. These are quanta of angular momentum
of the superfluid, and it is believed that they are pinned to the crust by fixing
themselves inside the solid lattice of nuclei. To contribute to the understanding
of this phenomenon, we will study how the superfluids in the outer core interact.
This may help in performing more realistic magnetohydrodynamic simulations
of neutrons stars, and eventually help to understand the glitch mechanism.

1.2 Motivation
Recent results show that some astrophysical objects, such as soft γ-ray re-

peaters (SGR) and some anomalous X-ray pulsars, are neutron stars with mag-
netic fields of up to 1014 G—1015 G on the surface [1] – the so-called magnetars.
The strongest magnetic field was detected in a specially young star, SGR 1806-
20, and was estimated as B = 2× 1015 G. The magnetic field strength inside a
magnetar is unknown but, using the virial theorem, it is estimated to reach up
to 1018 G. In general, the magnetic field on the surface of a neutron star may
vary between 109 and 1015 G.

A strong magnetic field affects neutron stars in different ways: by changing
the equations of state (EoS); by quantizing the charged particles’ orbits in the
so-called Landau levels [2], and by breaking the spherical symmetry of the star.
As such, strong magnetic fields may affect observable quantities, such as the
star’s maximum mass. Only fields above 1018 G affect the EoS in a significant
way [3]. Nevertheless, it is expected that fields weaker than 1018 G still have non-
negligible effects on low-density regions and, as a result, these effects must be felt
on the star’s crust [4]. Recently, it has been shown that strong magnetic fields, of
the order of 1015 G—1017 G, have a non-negligible effect on the extension of the
crust of magnetized neutron stars [5]. The extension of the crust was determined
by calculating the region of dynamic instability of neutron-proton-electron (npe)
matter, which occurs at densities below the nuclear saturation. Furthermore,
finding the mode with the highest growth rate has allowed the estimation of
the size of the aggregates and their electric charge content. It was possible
to conclude that a strong magnetic field increases the extension of the crust
and the charge content of the aggregates, but these effects seem to be highly
sensitive to the density dependence of the symmetry energy. These results must
be confirmed using realistic nuclear models.

Pulsars are considered to be magnetized neutron stars that rotate at excep-
tionally stable rates. There are, however, exceptions to this regularity, such
as the glitch events in younger pulsars. Glitches are sudden increases of the
frequency of rotation, followed by a period of steady decline called the spin-down.
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It is believed that glitches are a manifestation of the superfluids that exist on
the inside of neutron stars. In particular, the relaxation of the rotation and the
rate of the spin-down that occur after a glitch seem to indicate the lowering
of viscosity, associated with the superfluidity, weakens the coupling between
superfluid neutrons and the crust. It is believed that these events are sudden
releases of tensions built up in the crust, in which there is a transfer of angular
momentum between the superfluid neutrons and the rest of the star. According
to Link [6], glitches in the Vela star can be well-reproduced if the crust is able
to account for 1.4% of the star’s moment of inertia. However, it was recently
shown that the non-dissipative entrainment between the different superfluids
inside neutron stars reduced the coupling between superfluid neutrons and the
network of aggregates that constitutes the crust. The amount of moment of
inertia needed to store to explain the measured glitches would be greater than
what the crust can support [7, 8].

1.3 Goals
The main object of study of this thesis are the effects of magnetic fields on

the equation of state of the stellar matter, in particular those that can directly
affect pulsar glitches. We will analyze two problems:

• How strong must a magnetic field be to significantly alter the crust’s
dimensions?

• How does the magnetic field affect the entrainment between superfluid
neutrons and the crust?

Answering these questions may have implications to the glitch mechanism, in
particular if the inner crust is increased [9].

Determining the crust size

Several different methods may be used to determine the transition density
between the crust and the core of a neutron star. In Avancini et al. [10], the
dynamical spinodal method proposed by Providênca et al. [11], i.e. finding the
region in isospin space where nuclear matter is unstable to small perturbations
of nuclear density, predicts values which are in close agreement with a Thomas-
Fermi description of the inner crust. As such, we apply this method to determine
the size of a neutron’s star crust under a strong magnetic field. We will use a
nuclear model that satisfies the constraints imposed by laboratory experiences
and astrophysical observations (see [12]); we will also discuss uncertainties that
may affect the main conclusions. The dynamical spinodal method was recently
applied to magnetized nuclear matter [5], but there are still several problems that
warrant discussion. In particular, it is essential to consider realistic models, given
that the results obtained may be highly sensitive to the density dependence of the
symmetry energy. It is also necessary to understand the relevance of including
the protons’ and neutrons’ anomalous magnetic moment. This method also
allows us to predict the clusters’ size and the trend defined by the instabilities
with respect to the isospin asymmetry of the clusters. The magnetic field
induces the appearance of Landau levels for protons and electrons. The opening
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of new Landau levels in neutron-rich matter may originate instabilities that
would induce the appearance of clusterized matter at densities above the ones
predicted for a zero magnetic field, to which neutron superfluid vortices may
pin.

Calculating the entrainment

Inside neutron stars, densities are such that the pairing nuclear force gives
rise to superfluid neutrons in the crust and superfluid neutrons and supercon-
ducting protons in the core. The neutron superfluidity is essential to explain
the vortex-mediated glitches, since they constitute a component that can move
independently from the rest of the star. Is is, however, necessary to understand
the mechanism that allows for the transfer of angular momentum between the
rotation-decoupled components.

Since the neutron star is composed by a mixture of fluids, namely normal
and superfluid protons and neutrons, relativistic hydrodynamics of superfluid
mixtures including entrainment must be considered [13]. This formalism is both
applied to the description of the glitch mechanism and the pulsations of cold
neutron matter. The possible detection of gravitational waves from neutron
stars opens a completely new opportunity of constraining dense, neutron-rich
nuclear matter.

A relativistic formalism is essential to probe the regions deep inside the
neutron star. As such, we will study the effect of the magnetic field on the
relativistic entrainment matrix for a proton-neutron mixture, in the framework of
the relativistic Landau–Fermi liquid theory, generalized to include superfluidity
[14, 15]. It turns out that the superfluidity of neutrons not only contributes to
the neutron mass current density, but also to that of the proton, and vice-versa.
At finite temperature, three independent motions will occur inside a mixture
of two superfluids: the two superfluid motions and the motion of the thermal
excitations. In a zero temperature calculation, as the one that will be carried
out in this project, the last component does not exist. The sensitivity of the
entrainment matrix to the nuclear model within which it is evaluated will be
discussed.

1.4 Units and dimensions
In this work, we use a system of units that is convenient in nuclear physics.

The preferred unit of length is the the femtometer, or fermi, fm = 1× 10−15m,
and energies will be measured in MeV. In our equations, we will set ~ = c = 1,
which amounts to saying we measure our quantities as multiples of ~ and c. We
used the value ~c = 197.32 MeV fm in our computations.

We will also use magnetic fields B of very high intensity, so we will write
them usually as B∗, a multiple of a critical field,

B∗ = B

Bcrit
with Bcrit = m2

ec

e~
≈ 4.4× 1013 G. (1.1)



2. Modelling the stellar matter

In order to study the properties of matter inside a neutron star, we will
use an effective relativistic quantum field model, originally proposed by Teller
[16], Duerr [17] and Walecka [18], an introduction to which may be found in
Glendenning [19]. Our model is an extended version, called NL3ωρ , and was
constructed to better fit experimental data of atomic nuclei, in particular those
properties that are determined by the density dependence of the symmetry
energy [20, 21, 22]. The meaning of this statement will be better understood in
the Results section, when we study some properties of NL3ωρ . The fundamental
features of this field theory is that it includes neutrons, protons and electrons
interacting via the scalar σ meson, the vector ω meson and the isovector ~ρ =
(ρ1, ρ2, ρ3) mesons. Additionally, we will include a static magnetic field via the
electromagnetic potential A.

2.1 The NL3ωρ model Lagrangian
We begin by introducing the Lagrangian of the NL3ωρ model in its compact,

component form:

L = Lb + Le + Lσ + Lω + Lρ + Lωρ. (2.1)

The baryonic part of the Lagrangian, Lb, accounts for the motions of protons
and neutrons, as well as their interactions with the force fields. Using

Ψ =
(

Ψp

Ψn

)
(2.2)

as the baryon field, with Ψp and Ψn respectively standing for the proton and
neutron fields, this Lagrangian has the form

Lb = Ψ[γµiDµ −m∗]Ψ. (2.3)

The symbol iDµ is the covariant derivative

iDµ = i∂µ − gωωµ −
gρ
2 ~τ ·~ρ

µ − eAµ 1 + τ3
2 , (2.4)

As usual, e stands for the elementary charge (the coupling constant of the
electromagnetic potential field), and gω and gρ are the coupling constants for
the ω and ~ρ fields, respectively. The symbol ~τ = (τ1, τ2, τ3) stands for the Pauli
matrices

τ1 =
(

0 1
1 0

)
τ2 =

(
0 −i
i 0

)
τ3 =

(
1 0
0 −1

)
.

5



6 2. Modelling the stellar matter

Finally, m∗ should be read as

m∗ = m− gσσ =
(
mp 0
0 mn

)
− gσσ, (2.5)

with mp and mn being the proton and neutron masses.
The electron part of the Lagrangian is given by

Le = Ψe[γµ(i∂µ + eAµ)−me]Ψe. (2.6)

The Lagrangians for the interaction fields are given by

Lσ = 1
2
(
∂µσ∂

µσ −m2
σσ

2)− κ

3!σ
3 − λ

4!σ
4

Lω = −1
4ΩµνΩµν + 1

2m
2
ωωµω

µ + ξ

4!g
4
ω(ωµωµ)2

Lρ = −1
4
~Bµν · ~Bµν + 1

2m
2
ρ~ρµ ·~ρµ

where we define the tensors{
Ωµν = ∂µων − ∂νωµ

~Bµν = ∂µ~ρν − ∂ν~ρµ − gρ(~ρµ ×~ρν).

The masses of the σ, ω and ~ρ fields are, respectively, mσ, mω and mρ, and the
constants κ, λ and ξ determine the strengths of the self-interactions. It should be
noted that we do not include the Lagrangian − 1

4F
µνFµν which accounts for the

dynamics of the electromagnetic field A. In the following sections, we will impose
a constant magnetic field, so we will have no need for the respective equations
of motion. The electromagnetic field thus appears only by interacting with the
proton and electron fields. By ignoring this contribution to the Lagrangian, we
also avoid adding the electromagnetic energy to the total energy, which would
have the effect of shifting the latter by a constant amount.

Finally, there is an additional term coupling the ω and the ~ρ fields,

Lωρ = Λωρ g2
ω g

2
ρ

(
~ρλ ·~ρλ

)
(ωµωµ),

with Λωρ defining the intensity of this coupling. The existence of this coupling
is reflected in the name NL3ωρ.

2.1.1 Parameterizations
Our model would not be complete without specifying the masses of the

particles and the coupling constants. We present these values in the following
tables. We will be using different parameterizations of the NL3ωρ model. They
mainly differ on the way the symmetry energy varies with density. In fact, we
will name these models after a number, L, which is the slope of the symmetry
energy at the nuclear saturation density. We will see precisely how to calculate
this value in the results; its meaning can be seen in Figure 4.4. We also use the
experimental masses of the protons, neutrons and electrons.
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Table 2.1: Masses of the particles

mp (MeV) mn (MeV) me (MeV)
938.272 939.565 0.511

Table 2.2: Common parameters of the NL3ωρ models

mσ mω mρ gσ gω κ λ ξ
(MeV) (MeV) (MeV) (fm−1)
508.194 782.501 763 10.217 12.868 8.948 2 · 10.431 −6 · 28.885

Table 2.3: Coupling constants for the different NL3ωρ models

L (MeV) 118 88 68 61 55
gω 12.868 9.9536 10.297 10.753 11.276

Λωρ 0 0.01 0.02 0.025 0.03

2.2 Equations of motion
To obtain the equations of motion for the fields, we apply the Euler–Lagrange

equations
∂L
∂φ

= ∂

∂xµ

(
∂L

∂(∂µφ)

)
to each of the fields defined before.

Applying the Euler–Lagrange equations to Ψ gives us the equations of motion
for the nucleons[

γµ

(
i∂µ − gωωµ −

gρ
2 ~τ ·~ρ

µ − eAµ 1 + τ3
2

)
−m∗

]
Ψ = 0. (2.7)

Similarly, the equations of motion for electrons obey a Dirac equation of the
form [

γµ(i∂µ + eAµ)−me

]
Ψe = 0. (2.8)

The remaining equations for the fields are

(
�σ +m2

σσ
)

+ κσ2

2 + λσ3

6 = gσΨΨ (2.9)(
�ωµ +m2

ωω
µ
)
− ∂µ

(
∂λω

λ
)

+ ξ

3!
(
ωλω

λ
)
ωµ + 2Λωρ g2

ω g
2
ρ

(
~ρλ ·~ρλ

)
ωµ

= gωΨγµΨ
(2.10)(

∂λ ~B
λµ +m2

ρ~ρ
µ
)

+ gρ~ρλ × ~Bµλ + g2
ρ

(
(~ρλ ·~ρµ)~ρλ −

(
~ρλ ·~ρλ

)
~ρµ
)

+ 2Λωρ g2
ω g

2
ρ

(
ωλω

λ
)
~ρµ = gρ

2
(
Ψγµ~τΨ

)
(2.11)
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Solving these equations is, in general, a difficult problem, so in the next
sections we are going to explain how they are usually evaluated, using a technique
called relativistic mean-field approximation.

2.3 Mean-field approximation
The starting point for the mean-field approximation are the assumptions

that our system 1) extends indefinitely; 2) is composed of stationary, uniform
matter; and that 3) matter is in its ground state. The second point means
that any observable quantity, such as densities and currents, take the same value
everywhere and do not change with time. However, it is worthwhile to emphasize
that only the observable quantities are assumed to be stationary; other quantities,
such as wavefunctions, may be time-dependent. An example is the plane wave
Ψ0e

−ik·r, which has a time-independent density
(
Ψ∗0eik·r

)(
Ψ0e

−ik·r) = |Ψ0|2.
The second part of our approximation consists of setting the meson fields σ,

ω, ~ρ to their expectation values in the ground state,

σ → 〈σ〉 ω → 〈ω〉 ~ρ→ 〈~ρ〉 .

We do this by taking the mean values of equations 2.9, 2.10 and 2.11, and
evaluating the mean source densities and currents (the right-hand sides) at the
ground-state of matter. The fields σ, ω and ~ρ become classical, and the protons,
neutrons and electrons move in an environment defined by them. We will also
keep using the symbols σ, ω, ~ρ, while remembering that they stand for mean
values.

2.3.1 Force field equations
Since we assume that matter is uniform, the mean values of the densities

and currents are independent of the position. This, in turn, implies that the
meson fields are constant. As such, derivatives of the meson fields vanish, and
the previous equations become

m2
σσ + κσ2

2 + λσ3

6 = gσ
〈
ΨΨ
〉

(2.12)

m2
ωω

µ + ξ

3!
(
ωλω

λ
)
ωµ + 2Λωρ g2

ω g
2
ρ

(
~ρλ ·~ρλ

)
ωµ = gω

〈
ΨγµΨ

〉
(2.13)

m2
ρ~ρ
µ + g2

ρ

(
(~ρλ ·~ρµ)~ρλ −

(
~ρλ ·~ρλ

)
~ρµ
)

+ 2Λωρ g2
ω g

2
ρ

(
ωλω

λ
)
~ρµ

= gρ
2
〈
Ψγµ~τΨ

〉
.

(2.14)

Let us now focus on the term Ψγµ~τΨ of the third equation, which acts as
the source of the ~ρµ fields. Explicitly, its components are

Ψγµτ1Ψ = Ψpγ
µΨn + Ψnγ

µΨp

Ψγµτ2Ψ = −i
(
Ψpγ

µΨn −Ψnγ
µΨp

)
Ψγµτ3Ψ = Ψpγ

µΨp −Ψnγ
µΨn.

The first and second components have cross terms mixing the proton and neutron
fields, which means that the ρ1 and ρ2 fields mediate an exchange of isospin. We
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are going to assume that the ground-state is composed of particles with definite
isospin (we want to know exactly how many protons and neutrons there are), so
these two fields become unnecessary. However, even unnecessary fields come at
the cost of increasing the total energy, so we will set the values of ρ1 and ρ2 to
zero. By removing their contribution from the previous equations, we are left
with

m2
σσ + κσ2

2 + λσ3

6 = gσ
〈
ΨΨ
〉

(2.15)

m2
ωω

µ + ξ

3!
(
ωλω

λ
)
ωµ + 2Λωρ g2

ω g
2
ρ

(
ρ3λρ

λ
3
)
ωµ = gω

〈
ΨγµΨ

〉
(2.16)

m2
ρρ
µ
3 + 2Λωρ g2

ω g
2
ρ

(
ωλω

λ
)
ρµ3 = gρ

2
〈
Ψγµτ3Ψ

〉
. (2.17)

Notice that we can factor σ, ωµ and ρµ3 from the left-hand sides of these equations.
We are then lead to define the effective masses

m∗σ
2 = m2

σ + κσ

2 + λσ2

6 (2.18)

m∗ω
2 = m2

ω + ξ

3!g
4
ω(ωλωλ) + 2Λωρ g2

ω g
2
ρ(ρλ3ρ3λ) (2.19)

m∗ρ
2 = m2

ρ + 2Λωρ g2
ω g

2
ρ (ωλωλ), (2.20)

which leads us to the simplified form of the previous equations:

m∗σ
2σ = gσ

〈
ΨΨ
〉

(2.21)
m∗ω

2ωµ = gω
〈
ΨγµΨ

〉
(2.22)

m∗ρ
2ρµ3 = gρ

2
〈
Ψγµτ3Ψ

〉
. (2.23)

We still need to evaluate the currents on the right-hand sides. In order to do so,
we need to solve equations of motion for the protons, neutrons and electrons.

2.3.2 Matter field equations
In the relativistic mean-field approximation, the nucleons and electron equa-

tions maintain the form of Equations 2.7 and 2.8, the difference being that the
fields σ, ω and ρ3 now take their mean-values and can thus be treated as classical
fields. We can separate the proton and neutron equations, which leaves us with
the three equations[

γµ

(
i∂µ − gωωµ −

gρ
2 ρ

µ
3 − eAµ

)
−m∗p

]
Ψp = 0 (2.24)[

γµ

(
i∂µ − gωωµ + gρ

2 ρ
µ
3

)
−m∗n

]
Ψn = 0 (2.25)[

γµ(i∂µ + eAµ)−me

]
Ψe = 0. (2.26)

Since the force fields are classical, these equations describe particles moving
through external, imposed potentials, without changing them (although the
actual values of the potentials will be found later to depend on the solutions of
these equations, when we impose self-consistency). We can then define single-
particle states, which will be the basic building blocks of our system.
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We will begin by finding the single-particle states of the neutrons. Being a
modified version of the free Dirac equation, it is the easiest equation to solve.
For convenience, we leave the actual calculations for Appendix A. The main
results we are interested in is that the solutions are plane waves of definite
four-momentum pµ = (En,p) obeying

En(p) = gωω
0 − gρ

2 ρ
0
3 +

√(
p− gωω + gρ

2 ρ3

)2
+ (mn − gσσ)2. (2.27)

It is convenient to define effective energies and momenta by subtracting the
constant potentials

p̄µ = pµ −
(
gωω

µ − gρ
2 ρ

µ
3

)
⇔


Ēn = En −

(
gωω

0 − gρ
2 ρ

0
3

)
p̄ = p−

(
gωω −

gρ
2 ρ3

)
,

(2.28)

so we can write the previous relationship more compactly as

Ēn(p̄) =
√
p̄2 +m∗n

2. (2.29)

The equations for protons and electrons have more involved calculations
because, unlike the neutrons, they are subject to the position-dependent elec-
tromagnetic potential. The details of these calculations can also be found in
Appendix A. The main results are that, under a constant magnetic field, these
charged particles behave like quantum harmonic oscillators and their energy
levels are quantized in the so-called Landau levels. For the proton, the total
energy is given by

Ep(pz, ν) = gωω
0 + gρ

2 ρ
0
3

+
√(

pz − gωω −
gρ
2 ρ3

)2
+ (mp − gσσ)2 + 2νeB. (2.30)

The variable ν is a natural number that can be 0, 1, 2, . . . , which labels the
Landau levels. The momentum in the z direction, pz, has no restriction and can
take any value. For ν 6= 0, the Landau levels are doubly degenerate, accounting
for both spin projections. The ν = 0 level occurs only for the spin-up projection.
Defining the effective energy and momentum as before

Ēp = Ep −
(
gωω

0 + gρ
2 ρ

0
)

p̄z = pz −
(
gωω

z + gρ
2 ρ

z
) (2.31)

simplifies the energy expression to

Ēp(p̄z, ν) =
√
p̄2
z +m∗p

2 + 2νeB. (2.32)

Finally, the electron energy levels are similar to that of the protons, and are
given by

Ee(pz, ν) =
√
p2
z +m2

e + 2νeB, (2.33)
again for ν = 0, 1, 2, . . . , with every level except ν = 0 being doubly degenerate.
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2.3.3 Evaluating the source currents
We now turn to the question of calculating the source currents

ρs =
〈
ΨΨ
〉
, jµ =

〈
ΨγµΨ

〉
and jµ3 =

〈
Ψγµτ3Ψ

〉
,

which are, respectively, the scalar density, baryon current and isospin current.
Since we are going to consider single-particle states with definite numbers of
protons and neutrons, we can expand this in the Ψp and Ψn components

ρs =
〈
ΨpΨp

〉
+
〈
ΨnΨn

〉
= ρs,p + ρs,n

jµ =
〈
Ψpγ

µΨp

〉
+
〈
Ψnγ

µΨn

〉
= jµp + jµn

jµ3 =
〈
Ψpγ

µΨp

〉
−
〈
Ψnγ

µΨn

〉
= jµp − jµn .

(2.34)

Our general goal is then to calculate quantities of the form
〈
ΨiΓΨi

〉
(the index i

standing for n and p) in the ground-state. We write (ΨiΓΨi)S as the expectation
value of Γ for the single-particle state with quantum numbers S = (s1, s2, . . .).
It is clear that

〈
ΨiΓΨi

〉
is a sum of all these contributions, that is,〈

ΨiΓΨi

〉
=
∑
{S}

(ΨiΓΨi)S . (2.35)

We use S to label a state instead of the explicit quantum numbers because the
neutrons and protons are characterized by very different numbers. A neutron
state may be completely identified by the pair (p, s) of its momentum and
spin projection, while a proton may be characterized by the triple (pz, ν, s) of
its z-momentum, Landau level and spin projection. The sum itself is just a
convenient notation: it may partly be an integral, since both p and pz are
continuous variables.

We could calculate the expectation values (ΨiΓΨi)S by performing the ac-
tual multiplication of the spinor solutions we have obtained for protons and
neutrons. Instead, we will follow a simple strategy, which will allow us to do
these calculations faster (see Glendenning [19]).

Neutron currents

The method is more easily illustrated in the neutron case. The first step is
to calculate the Hamiltonian operator from the Lagrangian part of our model
that describes the motion of neutrons:

Ln = Ψn

[
γµ(i∂µ − Vµ)−m∗n

]
Ψn. (2.36)

The potential with which the neutrons interact is

V µ = gωω
µ − gρ

2 ρ
µ
3 . (2.37)

We find the Hamiltonian density via the Legendre transformation

H = ∂L
∂(∂0Ψn)∂0Ψn − L (2.38)

= Ψnγ0

[
− iγ ·∇ + γµVµ +m∗n

]
Ψn. (2.39)
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Now, we will let Ψn be a state of definite momentum p and spin s, that is, a
plane wave. We can then partially evaluate the Hamiltonian density:

H = Ψnγ0

[
γ · p+ γµVµ +m∗n

]
Ψn. (2.40)

From this we can extract the (partially evaluated) Hamiltonian operator:

H = γ0

[
γ · p+ γµVµ +m∗n

]
. (2.41)

It is obvious that the expectation value (Ψ†nHΨn)(p,s) is the energy of this
state, which we obtained in Equation 2.27, that is

(Ψ†nHΨn)(p,s) = En(p). (2.42)

Let us now take the derivative of this quantity with respect to some variable
ξ that appears in H (which could be, for instance, pz or mn). Applying the
product rule, we obtain

∂

∂ξ

(
Ψ†nHΨn

)
(p,s) =

(
∂Ψ†n
∂ξ

HΨn

)
(p,s)

+
(

Ψ†n
∂H

∂ξ
Ψn

)
(p,s)

+
(

Ψ†nH
∂Ψn

∂ξ

)
(p,s)

(2.43)
By using HΨn = EnΨn, the first and last terms on the right-hand side can be
brought together again with the product rule

∂

∂ξ

(
Ψ†nHΨn

)
(p,s) = En

∂

∂ξ

(
Ψ†nΨn

)
(p,s) +

(
Ψ†n

∂H

∂ξ
Ψn

)
(p,s)

Of course,
(
Ψ†nΨn

)
(p,s) = 1, so its derivative vanishes and we are left with

∂

∂ξ

(
Ψ†nHΨn

)
(p,s) =

(
Ψ†n

∂H

∂ξ
Ψn

)
(p,s)

(2.44)

or, in a more expressive way,(
Ψ†n

∂H

∂ξ
Ψn

)
(p,s)

= ∂En
∂ξ

. (2.45)

Calculating the expectation value can then be achieved by simply taking a
derivative of the energy. Remember that we want to evaluate quantities of
the form (ΨnΓΨn) = (Ψ†nγ0ΓΨn), so we only need to find a variable ξ in
Equation 2.41 such that

∂H

∂ξ
= γ0Γ.

Our choices for the variables ξ are presented in the following table.

Quantity Exp. value γ0Γ ξ

ρs,n 〈ΨnΨn〉 γ0 mn

nn 〈Ψ†nΨn〉 1 = γ0γ0 V0
jn 〈Ψ†nγΨn〉 γ0γ p
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Notice, for instance, that for nn we obtain the normalization condition

(Ψ†nΨn) = ∂En
∂V0

= 1. (2.46)

All we have left to do, after finding out how to calculate the expectation
values, is to sum over all states. In the neutron case, we perform an integral over
the momenta p and a sum over the spins s. Since the energy does not depend
on the spin projection, we only need to multiply by two. We then have

ρs,n = 2
∫ d3p

(2π)3
∂En
∂mn

(2.47)

nn = 2
∫ d3p

(2π)3 (2.48)

jn = 2
∫ d3p

(2π)3 ∇pEn. (2.49)

The actual computation of the integrals will depend on the distribution of
momenta, which we will present later.

Proton currents

The proton part of the Lagrangian is similar in form to that of the neutrons
(Equation 2.36). However, the potential V µ now includes the electromagnetic
field:

V µ = gωω
µ + gρ

2 ρ
µ
3 + eAµ = V µ0 + eAµ, (2.50)

with V µ0 standing for the constant part.
The Hamiltonian density is still given by Equation 2.40. The most involved

part is the calculation of the term −iγ ·∇, which we will skip, and leave only
the resulting Hamiltonian operator

H = γ0

[
γ1
(
i
(
(py − V 2

0 )− eBx
)
− V 1

0

)
+ γ2py + γ3pz

+ γµV
µ
0 + γµA

µ +m∗p

]
(2.51)

The strategy is still to choose the appropriate ξ, which we do in table below

Quantity Exp. value γ0Γ ξ

ρs,p 〈ΨpΨp〉 γ0 mn

np 〈Ψ†pΨp〉 1 = γ0γ0 V 0
0

j3
p = jp 〈Ψ†pγ3Ψp〉 γ0γ3 pz

Notice that we left out the x and y components of the proton current in this
table. The reason for this is that they vanish. By letting ξ = ρ1

3, for instance, we
can calculate the expectation of the operator γ0γ1 (ρ1

3 is hidden in V 1
0 , in the last

equation). However, the proton energy does not depend on ρ1
3 (Equation 2.30),

so this current must be zero:
∂Ep
∂ρ1

3
= 0⇒

(
Ψpγ

1Ψp

)
= 0⇒ j1

p = 0. (2.52)
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If we choose ξ = ρ2
3, we actually obtain the expectation value of the operator

Γ = (γ2 + iγ1), and not just γ2. But, again, the energy does not depend on ρ2
3.

We then conclude that
∂Ep
∂ρ2

3
= 0⇒

(
Ψpγ

2Ψp

)
+ i
(
Ψpγ

1Ψp

)
= 0. (2.53)

Since
(
Ψpγ

1Ψp

)
was already found to be zero, it must be that

(
Ψpγ

2Ψp

)
is also

zero. Therefore, j2
3 vanishes as well.

Finally, we find the quantities we want by summing over all states. In the
proton case, this is achieved by integrating over all momenta pz, and summing
over the Landau levels ν and spins s:

ρs,p = eB

2π

νpmax∑
ν=0

gν

∫ dpz
2π

∂Ep
∂mp

(2.54)

np = eB

2π

νpmax∑
ν=0

gν

∫ dpz
2π (2.55)

jp = eB

2π

νpmax∑
ν=0

gν

∫ dpz
2π

∂Ep
∂pz

. (2.56)

The coefficient (eB/2π) is the density of states of a Landau level. The factor gν
is the spin degeneracy

gν =
{

1, ν = 0
2, ν > 0.

(2.57)

To evaluate these currents, we need only define what the ground state actually
is, which is what we will do next.

2.4 Ground-state at zero temperature

2.4.1 The ground state
In neutron stars, it is a good approximation to set the temperature to T = 0

(see Glendenning [19]). In this limit, the protons, neutrons and electrons occupy
the lowest energy states up to a maximum energy, called the Fermi energy. We
will denote the Fermi energies by µn, µp and µe.

The occupied neutron states are those with momenta p such that the energy

En(p) = gωω
0 − gρ

2 ρ
0
3 +

√(
p− gωω + gρ

2 ρ3

)2
+m∗n

2

is at most µn. These states are occupied twice, once for each spin projection
±1/2. If we define the effective Fermi energy

µ̄n = µn −
(
gωω

0 − gρ
2 ρ

0
3

)
, (2.58)

then the previous condition is equivalent to saying that the neutron states are
those for which p̄ = p−

(
gωω − gρ

2 ρ3
)
is such that

p̄2 ≤ µ̄2
n −m∗n

2 = p̄2
Fn, (2.59)
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which makes it evident that the Fermi surface is, in essence, a translated sphere
whose radius is the effective Fermi momentum p̄Fn.

Proceeding still with effective quantities, the condition for protons is that√
p̄2
z +m∗p

2 + 2νeB ≤ µ̄p

= µp −
(
gωω

0 + gρ
2 ρ

0
3

)
(2.60)

and p̄z is defined as before, in Equation 2.31. We can see that there is a maximum
possible value for ν. We will call this level νpmax and we can calculate it from
the previous condition by setting p̄z to zero:

νpmax =
⌊
µ̄2
p −m∗p

2

2eB

⌋
. (2.61)

The function bxc, called the floor function, returns the greatest integer that is
at most x. For each ν between 0 and νpmax, there is a maximum p̄z that can be
achieved. We will call this momentum p̄Fp, for proton Fermi momentum, and
its value depends on ν:

p̄Fp(ν) =
√
µ̄2
p −m∗p2 − 2νeB. (2.62)

The distribution of electrons is similar to that of the protons. The occupied
states are those with momentum pz and Landau level ν such that√

p2
z +m2

e + 2νeB ≤ µe. (2.63)

The highest Landau level and Fermi momenta are, respectively,

νemax =
⌊
µ2
e −m2

e

2eB

⌋
and pFe(ν) =

√
µ2
p −m2

e − 2νeB. (2.64)

2.4.2 Source currents
We are now able to evaluate the source currents with the method we presented

before.

Proton and neutron currents

We are going to calculate the neutron current (Equation 2.49) by evaluating
its i-th component. We change variables to the reduced momentum, giving us

jin = 2
(2π)3

∫
dp̄i dp̄j dp̄k

∂Ēn
∂p̄i

= 2
(2π)3

∫
dp̄j dp̄k

[∫
dEn

]
. (2.65)

Notice that the endpoints of the integral are µ̄p, because the limits of the
momentum p̄i lie on the Fermi surface. Therefore the integral over the energy
evaluates to µ̄n − µ̄n = 0, telling us that

jn = 0. (2.66)
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We write the proton current using the effective momenta and energy:

jp = eB

2π
∑
ν

gν

∫ dp̄z
2π

∂Ēp
∂p̄z

= eB

4π2

∑
ν

gν

∫
dĒp. (2.67)

As for the neutron currents, the endpoints of the integral over dĒp are equal,
they are the Fermi energy µ̄p. As such, this current is also zero:

jp = 0. (2.68)

Notice now that, since both currents are zero, according to Equations 2.22
and 2.23, ω and ρ must also be zero. This means that the effective momenta
coincide with the normal momenta.

Neutron density or zero-field density

As we have seen, the neutron number density is

nn = 2
∫ dp3

(2π2) , (2.69)

Since this relationship must be valid for any particle at zero field, including
protons (the Dirac equation loses the eAµ term), we will write ni instead of
nn for generality. The integral must be the volume of the momentum sphere.
Since we have concluded that ω = ρ = 0, we do not need to use the effective
momentum. The density is then

ni = 1
4π3

∫
sin2(θ) p2 dp dθ dφ

= 1
4π3 4π

∫
p2 dp. (2.70)

Since the momentum magnitude ranges from 0 to pFi, integrating yields

ni = p3
Fi

3π2 . (2.71)

Proton and electron densities

We can rewrite the proton density equation to use the effective momentum:

np = eB

2π
∑
ν

gν

pFp(ν)∫
−pFp(ν)

dp
2π = eB

2π2

∑
ν

gνpFe(ν) (2.72)

Even though we did not derive the electron density explicitly, its value is
given by an expression similar to that of the protons. As such, it is given by

ne = eB

2π2

∑
ν

gνpFe(ν) (2.73)



2.4. Ground-state at zero temperature 17

Neutron scalar density

We now evaluate the neutron scalar density. Notice that, when B = 0, the
same expression will give us the proton scalar density.

ρs,n = 2
∫ d3p

(2π)3
∂En
∂mn

=

= 2
(2π)3

∫
d3p

 mn − gσσ√(
p− gωω +− gρ2 ρ3

)2 + (mn − gσσ)2

 (2.74)

The integral must now be performed over the ground-state we presented before.
Since ω = ρ = 0, our integral simplifies to

ρs,n = 2m∗n
(2π)3

∫ d3p√
p2 +m∗n

2
(2.75)

and the integral is over the sphere of momenta with magnitude smaller than pFn.
Switching to spherical coordinates and integrating over the angular variables,
we obtain

ρs,n = m∗n
π2

∫
p2 dp√
p2 +m∗n

2
(2.76)

This integral is an instance of∫
x2 dx√
x2 + a2

= 1
2

(
x
√
a2 + x2 − a2 ln

(√
a2 + x2 + x

))
+ C, (2.77)

with C being some constant. We are integrating from 0 to pFn, so we obtain

ρs,n = m∗n
2π2

pFn√p2
Fn +m∗n

2 −m∗n
2 ln


√
p2
Fn +m∗n

2 + pFn

m∗n

 =

= m∗n
2π2

[
pFnµ̄n −m∗n

2 ln
(
µ̄n + pFn

m∗n

)]
. (2.78)

Proton scalar density

When we have a finite magnetic field, we must calculate the proton scalar
current by summing over the Landau levels, instead of using an expression
similar to that of the neutrons. As such, we have

ρs,p = eB

2π

νpmax∑
ν=0

gν

∫ dpz
2π

∂Ep
∂pz

= eB

2π

νpmax∑
ν=0

gν

∫ dpz
2π

mp − gσσ√(
pz − gωωz − gρ

2 ρ
z
3
)2 + (mp − gσσ)2 + 2νeB

(2.79)

Again, ωz = ρz = 0, giving us

ρs,p = eB

(4π)2

νpmax∑
ν=0

gνm
∗
p

∫ dpz√
p2
z +m∗p

2 + 2νeB
. (2.80)
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This integral is an instance of∫ dx√
x2 + a2

= ln
(√

x2 + a2 + x
)

+ C, (2.81)

with C being an arbitrary constant. In this case, a2 would be m∗p2 + 2νeB. The
proton momentum for each Landau level ranges between −pFn(ν) and +pFn(ν),
so we can evaluate the integral to give the proton current

ρs,p =
eBm∗p
(4π)2

νpmax∑
ν=0

gν ln
(
µ̄p + pFp(ν)
µ̄p − pFp(ν)

)
. (2.82)

2.4.3 Energy and pressure relations
Two quantities we want to extract from our model are the energy density

and the pressure, which allow us to compute the equation of state. We do this
by evaluating the stress-energy tensor

Tµν =
∑
i

∂L
∂(∂µφi)

∂νφi − Lηµν , (2.83)

where φi are all the fields that appear in our Lagrangian. In the mean-field
approximation, we are interested in the expectation value of Tµν . The energy
density will correspond to the T 00 component, and the pressure will be the
average of the three diagonal space components:

ε =
〈
T 00〉 =

〈∑
i

∂L
∂(∂0φi)

∂0φi

〉
− 〈L〉 (2.84)

p = 1
3
〈
T jj
〉

=
〈∑

i

∂L
∂(∂jφi)

∂jφi

〉
+ 〈L〉 (2.85)

We will skip the routine calculations and give the final expressions, starting with
the energy density

ε = 1
2

[
m2
σσ

2 + κσ3

3! + λσ4

4!

]
−
[
m2
ωω

2

2 + ξ
g4
ω

4! (ω2)2
]

(2.86)

−
m2
ρρ

2
3

2 − Λωρ(gωgρ)2ω2ρ2
3

+ gω(np + nn)ω0 + gρ
2 (np − nn)ρ0

3 + ε̄n + ε̄p + εe.

Note that we use ω2 = ωµωµ and ρ2
3 = ρµ3ρ3µ. With a finite magnetic field, the

effective energies ε̄n, ε̄p, εe are given by

ε̄n = 1
8

[
6µ̄nnn +

(
µ̄npFn −

m∗n
2

2 ln
(
µ̄n + pFn
µ̄n − pFn

))]
(2.87)

ε̄p = µ̄pnp
2 + eB

4π2

νpmax∑
ν=0

gν

(
m∗p

2 + 2νeB
)

ln
(
µ̄p + pFp
µ̄p − pFp

) (2.88)

εe = µene
2 + eB

4π2

νemax∑
ν=0

gν
(
m2
e + 2νeB

)
ln
(
µe + pFe
µe − pFe

) (2.89)
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with pFp, pFe, νpmax and νemax defined as in the preceding section. When the
magnetic field is zero, the proton and electron effective energy densities are
similar to that of the neutrons:

ε̄p = 1
8

[
6µ̄pnp +

(
µ̄ppFp −

m∗p
2

2 ln
(
µ̄p + pFp
µ̄p − pFp

))]
(2.90)

εe = 1
8

[
6µene +

(
µepFe −

m2
e

2 ln
(
µe + pFe
µe − pFe

))]
. (2.91)

Not surprisingly, after computing the stress-energy tensor components, we
find the pressure is given by a Legendre transformation of the energy density:

p = −ε+ µn nn + µp np + µe ne (2.92)

or, using the effective Fermi momenta,

p = −ε+ µ̄n nn + µ̄p np + µe ne (2.93)

+ gω(np + nn)ω0 + gρ
2 (np − nn)ρ0

3.

2.5 Charge neutrality and beta-equilibrium
The equations we have obtained so far are not restrictive enough to uniquely

determine our system. We must answer the question: how do we set the values
of the Fermi energies µn, µp and µe? We will not prescribe these values directly,
but will instead impose physical conditions that our system must obey, and
which will define the Fermi energies implicitly.

The first restriction we impose is that matter must be locally neutral, so
naturally the number of protons and neutrons must be the same

np = ne. (2.94)

The second restriction comes from considering the evolution of the neutron
star. Neutrons and protons can be converted between themselves through beta
decay:

n←→ p+ e+ ν̄e. (2.95)

Reading from left to right, the process is the usual beta-decay. The inverse
process, protons transforming to neutrons, is usually called inverse beta decay.
Through this reaction, the number of particles of each species may change, so
the thermodynamic energy of the system must take this effect into account. The
first law of thermodynamics in this case reads

d
(
ε

nb

)
= −p d

(
1
nb

)
+ T ds+ µndYn + µpdYp + µedYe, (2.96)

where nb is the baryon number density (our natural variable), and we have
written the law in terms of the energy per nucleon. The values Yn and Yp are
the neutron and proton fractions (compared to the total number of baryons),
and Ye has a similar interpretation. The values µe, µp and µn are the chemical
potentials of each species and, since we have matter at zero temperature, they
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coincide with the respective Fermi energies, hence why we have chosen the same
symbols. We now assert that the matter we are considering is in equilibrium:
its volume does not change (d(1/nb) = 0) and there is no work done upon the
system (d(ε/nb) = 0). We also consider it to be thermally isolated, so there is
no net exchange of heat: δQ = T ds = 0. Therefore, the first law reduces to

0 = µndYn + µpdYp + µedYe. (2.97)
If we consider the changes in the numbers of protons, neutrons, electrons and
neutrinos in the beta decay reaction, we see that, if our system reached its
ground state while respecting this reaction, then

dYn = −dYp = −dYe = −dYν̄e . (2.98)
By replacing in the previous equation, we are left with

µn = µp + µe. (2.99)
This is the β-equilibrium condition we will be using. Note that we did not
consider the contribution of neutrinos in our model, because we assume that
they have largely been lost during the cooling period of the star.

With these two equations, there is only one variable to be determined among
µn, µp and µe. Since we are going to choose the baryonic density nb as our free
variable, the last Fermi energy will be obtained as function of this value.

2.6 Summary of the system of equations
For the sake of summarizing everything in a single place, we list here the

system of equations we are trying to solve. We have considered a mean-field
model based on the NL3ωρ Lagrangian. The equations for the averaged force
fields σ, ω and ρ are

m∗σ
2σ = gσ(ρs,p + ρs,n) (2.100)

m∗ω
2ω0 = gω(np + nn) (2.101)

m∗ρ
2ρ0

3 = gρ
2 (np − nn), (2.102)

with the effective masses defined as in Equations 2.18:

m∗σ
2 = m2

σ + κσ

2 + λσ2

6 (2.103)

m∗ω
2 = m2

ω + ξ

3!g
4
ω (ω0)2 + 2Λωρ g2

ω g
2
ρ (ρ0

3)2 (2.104)

m∗ρ
2 = m2

ρ + 2Λωρ g2
ω g

2
ρ (ω0)2

. (2.105)
The source currents must be computed in different ways, depending on

whether we impose a magnetic field.
Without a magnetic field, the densities are given by

nn = p2
Fn

3π2

np =
p2
Fp

3π2

ne = p2
Fe

3π2

with


pFn =

√
µ̄2
n −m∗n2

pFp =
√
µ̄2
p −m∗p2

pFe =
√
µ2
e −m2

e.

(2.106)
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Notice that we use the the effective Fermi energies for convenience. The scalar
currents are given by

ρs,n = m∗n
2π2

[
pFnµ̄n −m∗n

2 ln
(
µ̄n + pFn

m∗n

)]
(2.107)

ρs,p =
m∗p
2π2

[
pFpµ̄p −m∗p

2 ln
(
µ̄p + pFp
m∗p

)]
. (2.108)

With a magnetic field, the densities are instead given by

nn = p2
Fn

3π2

np = eB

2π2

νpmax∑
ν=0

gνpFp(ν)

ne = eB

2π2

νemax∑
ν=0

gνpFe(ν)

with


pFn =

√
µ̄2
n −m∗n2

pFp(ν) =
√
µ̄2
p −m∗p2 − 2νeB

pFe(ν) =
√
µ2
e −m2

e − 2νeB

(2.109)

The maximum Landau levels are given by

νpmax =
⌊
µ̄2
p −m∗p

2

2eB

⌋
and νemax =

⌊
µ2
e −m2

e

2eB

⌋
. (2.110)

The scalar currents are computed from

ρs,n = m∗n
2π2

[
pFnµ̄n −m∗n

2 ln
(
µ̄n + pFn

m∗n

)]
(2.111)

ρs,p =
eBm∗p
(4π)2

νpmax∑
ν=0

gν ln
(
µ̄p + pFp(ν)
µ̄p − pFp(ν)

)
. (2.112)

Besides these relationships, we also impose the charge neutrality and beta
equilibrium conditions: {

np = ne

µ̄n = µ̄p + µe + gρρ
0.

(2.113)

By choosing a particular value of nb, we can solve these equations. They pose
a self-consistency problem that is best solved with numerical methods, which
is the strategy we will adopt. We explain the method we used in the Results
section.





3. Crust size and entrainment

3.1 Crust size
To determine the crust size, we use the spinodal method described in Avancini

et al. [23] and Providência et al. [24]. We leave the details of the explanation for
the original sources and explain briefly the main idea. Our starting point is to
solve the equations of the NL3ωρ model by assuming that we are near a solution,
and the difference between the actual solution and our state is just a small
perturbation. As such the fields are written as σ = σ0 + δσ, ω0 = (ω0)0 + δω0

and ρ0
3 = (ρ0

3)0 + δρ0
3. We then replace these solutions in the Euler–Lagrange

equations and obtain equations for the perturbations.
As we usually do in oscillation problems, we consider small, periodic pertur-

bations of frequency ω called the normal modes. By substituting the ansatz, we
end up finding equations for ω. We exclude trivial solutions, and we find we end
up with equations not in ω, but in ω2. It turns out that some of the solutions are
negative, which implies that ω is imaginary. As such, the corresponding mode
is not an oscillation, but an exponential growth of rate |ω|. We then proceed to
find the maximum growth rate at each density we are interested in. If it is larger
than zero, then we can say that the matter is unstable under small perturbations,
in which case we conclude that the homogeneous approximation we used was
not a good guess. On the other hand, if the maximum growth rate is zero,
then matter is stable and homogeneity is a reasonable assumption. If, at low
densities, we find that matter is unstable, then the natural interpretation is that
it is aggregating to form nuclei. Therefore, this method may correctly predict
where the crust is localized and, especially, the region where the crust ends and
the core begins – the density above which matter starts being homogeneous.
This method predicts a crust-core transition at a density close to that obtained
via pasta-phase calculations [10, 25].

3.2 Superfluid entrainment
It is believed that, inside a neutron star, and especially below the crust,

there is a superfluid phase of neutrons and another of superconducting protons.
Such mixtures of superfluids have been found in the laboratory, in particular in
solutions of 3He in superfluid 4He. These solutions are peculiar, in that it may
be possible to define several different velocities at the same point in space, in
contrast with the single velocity field of classical fluid mechanics. In the case
of the Helium mixture, three velocities are defined: the normal (non-superfluid)

23
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velocity, and the 3He and 4He superfluid velocities. Andreev and Bashkin [26]
developed in 1975 a formalism to deal with such cases. After appropriately
defining the velocity of the superfluids, which we call v1 and v2, they proposed
to calculate the momentum of each species by expanding in small powers of the
relative velocities:

p1 = ρ1vn + ρ11(v1 − vn) + ρ12(v2 − vn) (3.1)
p2 = ρ2vn + ρ21(v1 − vn) + ρ22(v2 − vn). (3.2)

Here, vn is the normal fluid velocity, ρ1 and ρ2 are each particle’s densities,
and the coefficients ρij are the main dynamical quantities we are interested in;
they form the so-called entrainment matrix. If the helium particles were not
superfluid, then these coefficients would necessarily be zero. It is important to
note that particles of one species transport mass of the other, which is why we
include cross-terms ρ12 and ρ21. The physical mechanism behind this are the
weak interactions that hold the quasi-particles together; in the Helium case, the
3He quasi-particle has an effective mass 2.3 times greater than that of the helium
atom by itself, which shows that these effects are indeed important. In practice,
the superfluids drag each other, which is why we say they are entrained.

In this work, we are interested in a relativistic formulation, so we will employ
the relativistic treatment that is used in Gusakov et al. [15]. The previous
equations become

jn = nnu+ Ynn(Qn − µnu) + Ynp(Qp − µpu) (3.3)
jp = npu+ Ypn(Qn − µnu) + Ypp(Qp − µpu). (3.4)

Notice that we use the number currents instead of the momentum, but the
principle is the same. Here, we use u as the normal fluid velocity, and the Yij
are the relativistic analogues of the entrainment coefficients. Also, Qn and Qp

are the momenta per particle of the Cooper pairs of the superfluids. In the
non-relativistic limit, we have

u = vn and ρik = mimkYik. (3.5)

In the limit T → 0, the normal fluid component ceases to exist, so the coeffi-
cients that multiply u must be such that the corresponding contributions vanish.
Therefore, the previous equations reduce to

jn = YnnQn + YnpQp (3.6)
jp = YpnQn + YppQp. (3.7)

3.2.1 Ground-state with superfluid currents
In order to introduce the superfluid currents in our model, we need to change

the ground state of matter of Section 2.4, as was done by Gusakov et al. [15].
The neutron ground state will be the same as before, but the momenta will be
shifted by a small amount Qn, giving the new condition

|p−Qn| ≤
√
µ̄2
n −m∗n2. (3.8)

We will choose to shift only in the z direction, by defining

Qn = Qnẑ, (3.9)
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The proton ground-state will also be defined by shifting the momenta by a
small, constant amount Qp,

pz −Qp =
√
µ̄2
p −m∗p2 − 2νeB. (3.10)

The electron ground-state will remain unchanged.
It is important to notice that the fields ω and ρ are not necessarily zero

anymore because we apply Qn and Qp. As such, we could write them in
functional form as ω(Qn, Qp) and ρ(Qn, Qp) and note that, since ω(0, 0) =
ρ(0, 0) = 0, these functions must not have a constant term. On the other hand,
since Qp and Qn are small, we can neglect the higher powers Q2

n, Q
2
p, . . ., so ω

and ρ are effectively linear combinations of Qn and Qp.

Number densities and scalar densities

Having only shifted the ground-state, the integral over the allowed momenta
remains the same (it is, for instance, the volume inside the Fermi sphere for the
neutrons). As such, the densities of neutrons, protons and electrons remain the
same. The corrections to the scalar densities are of the order of Q2

n and Q2
p, so

they will be considered unchanged.

Neutron current

We will now evaluate the neutron current (Equation 2.49) in the new ground-
state, which is given by

jn = 2
∫ d3p

(2π)3 ∇pĒn(p+Qn), (3.11)

with the integral being performed over the old ground-state. The full expression
for the energy inside the integral is

Ēn =
√(

(p+Qn)− gωω + gρ
2 ρ
)2

+m∗n
2. (3.12)

Notice that the energy is given by a function of the form

f(x) =
√
x2 + a2, (3.13)

which can be expanded as a power series in x0 around the point x as

f(x+ x0) =
√
x2 + a2 + x · x0√

x2 + a2
+O(x2

0). (3.14)

In this case, we will let x = p and x0 =
(
Qn − gωω + gρ

2 ρ
)
. Since the value of

the fields ω and ρ are at most linear in Qn and Qp, we take x0 to be small. We
can then discard terms of order x2

0 and greater, writing

jn = 2
∫ d3p

(2π)3 ∇p

[√
p2 +m∗n

2 +
p · (Qn − gωω + gρ

2 ρ)√
p2 +m∗n

2

]
(3.15)

To simplify the following calculations, we will use an analogue of Gauss’s theorem
for gradients: ∫

V

d3x∇f(x) =
∫
S

dS f(x). (3.16)
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Here, S stands for the surface enclosing the volume of integration V . The vector
dS has the magnitude of a surface element dS and is perpendicular to S at x,
pointing in the outwards direction. To prove this result, it suffices to project
the integral onto a constant unit vector n̂

n̂ ·
∫
V

d3x∇f(x) =
∫
V

d3x n̂ ·∇f(x). (3.17)

We can replace the term n̂ ·∇f(x) using the product rule:

∇ · (n̂f(x)) = (∇ · n̂)f(x) + n̂ ·∇f(x) = n̂ ·∇f(x). (3.18)

Now we can use Gauss’s theorem to find∫
V

d3x∇ · (n̂f(x)) =
∫
S

dS · n̂f(x) = n̂ ·
∫
S

dS f(x). (3.19)

Since this is valid for any n̂, we prove the theorem we wanted.
The current is therefore given by

jn = 2
(2π)2

∫
S

dS

√p2
Fn +m∗n

2 +
pFn · (Qn − gωω + gρ

2 ρ)√
p2
Fn +m∗n

2

 (3.20)

On the surface of integration, there is a symmetrical element −dS for every dS .
Since the first term inside brackets is constant, this means that its contribution
to the integral must be zero. The second term can be calculated using spherical
coordinates and choosing the axial direction to coincide with (Qn− gωω+ gρ

2 ρ).
We skip the calculations to give the final result

jn = p3
Fn/3π2√
p2
Fn +m∗n

2
(Qn − gωω + gρ

2 ρ) = nn
µ̄n

(Qn − gωω + gρ
2 ρ). (3.21)

It should be noted that this result is applicable to protons when the magnetic
field is zero:

jp = np
µ̄p

(Qp − gωω −
gρ
2 ρ). (3.22)

Proton current at a finite magnetic field

For the new ground-state, the proton current (Equation 2.56) is given by

jp = eB

2π
∑
ν

gν

∫ dpz
2π

∂Ēp
∂pz

= eB

(2π)2

∑
ν

gν

∫
dĒp

Expanding the energy as we did for the neutrons, yields

jp ≈
eB

(2π)2

∑
ν

gν

∫
d

√p2
z +m∗p

2 + 2νeB +
pz
(
Qp − gωω − gρ

2 ρ3
)√

p2
z +m∗p

2 + 2νeB
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The first term inside the brackets vanishes, due to being evaluated in ±pFp(ν).
Finally, the expression for the current is

jp = eB

2π2

∑
ν

gν
pFp(ν)√

pFp(ν)2 +m∗p
2 + 2νeB

(
Qp − gωω −

gρ
2 ρ3

)
= np
µ̄p

(
Qp − gωω −

gρ
2 ρ3

)
.

Notice that we use ω and ρ3 for the z component of ω and ρ.

3.2.2 Summary of the system of equations
The system of equations we have to solve is similar to the one we presented

in the last chapter, but must now include the neutron and proton currents and
take into account the z direction of the ω and ρ fields. This section closely
mirrors Section 2.6. The equations for the σ, ω and ρ fields become

m∗σ
2σ = gσ(ρs,p + ρs,n) (3.23)

m∗ω
2ω0 = gω(np + nn) (3.24)

m∗ω
2ω = gω(jp + jn) (3.25)

m∗ρ
2ρ0

3 = gρ
2 (np − nn) (3.26)

m∗ρ
2ρ3 = gρ

2 (jp − jn), (3.27)

with the effective masses defined as in Equations 2.18:

m∗σ
2 = m2

σ + κσ

2 + λσ2

6 (3.28)

m∗ω
2 = m2

ω + ξ

3!g
4
ω ((ω0)2 − ω2) + 2Λωρ g2

ω g
2
ρ ((ρ0

3)2 − ρ2) (3.29)

m∗ρ
2 = m2

ρ + 2Λωρ g2
ω g

2
ρ ((ω0)2 − ω2). (3.30)

Again, the source currents must be computed in different ways, depending
on whether B = 0 or not.
Without a magnetic field, the densities are given by

nn = p2
Fn

3π2

np =
p2
Fp

3π2

ne = p2
Fe

3π2

with


pFn =

√
µ̄2
n −m∗n2

pFp =
√
µ̄2
p −m∗p2

pFe =
√
µ2
e −m2

e.

(3.31)

Notice that we use the the effective Fermi energies for convenience. The scalar
currents are given by

ρs,n = m∗n
2π2

[
pFnµ̄n −m∗n

2 ln
(
µ̄n + pFn

m∗n

)]
(3.32)

ρs,p =
m∗p
2π2

[
pFpµ̄p −m∗p

2 ln
(
µ̄p + pFp
m∗p

)]
. (3.33)
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Finally, the proton and neutron currents are given by

jn = nn
µ̄n

(Qn − gωω + gρ
2 ρ) (3.34)

jp = np
µ̄p

(Qp − gωω −
gρ
2 ρ). (3.35)

With a magnetic field, the densities are instead given by

nn = p2
Fn

3π2

np = eB

2π2

νpmax∑
ν=0

gνpFp(ν)

ne = eB

2π2

νemax∑
ν=0

gνpFe(ν)

with


pFn =

√
µ̄2
n −m∗n2

pFp(ν) =
√
µ̄2
p −m∗p2 − 2νeB

pFe(ν) =
√
µ2
e −m2

e − 2νeB

(3.36)

The maximum Landau levels are given by

νpmax =
⌊
µ̄2
p −m∗p

2

2eB

⌋
and νemax =

⌊
µ2
e −m2

e

2eB

⌋
. (3.37)

The scalar currents are computed from

ρs,n = m∗n
2π2

[
pFnµ̄n −m∗n

2 ln
(
µ̄n + pFn

m∗n

)]
(3.38)

ρs,p =
eBm∗p
(4π)2

νpmax∑
ν=0

gν ln
(
µ̄p + pFp(ν)
µ̄p − pFp(ν)

)
. (3.39)

The proton and neutron currents are given by

jn = nn
µ̄n

(Qn − gωω + gρ
2 ρ) (3.40)

jp = np
µ̄p

(Qp − gωω −
gρ
2 ρ). (3.41)

Besides these relationships, we also impose the charge neutrality and beta
equilibrium conditions: {

np = ne

µ̄n = µ̄p + µe + gρρ
0.

(3.42)

3.2.3 Calculating the entrainment matrix
We can manipulate Equations 3.40 and 3.41 with the aid of the remaining

ones to write, as we wanted (see Equations 3.6 and 3.7),

jn = YnnQn + YnpQp (3.43)
jp = YpnQn + YppQp, (3.44)



3.2. Superfluid entrainment 29

where we conclude that the entrainment matrix elements are given by

Ynn = ηn
1 + ηpΣ

(1 + ηpΣ)(1 + ηnΣ)− ηpηn∆ (3.45)

Ypp = ηp
1 + ηnΣ

(1 + ηpΣ)(1 + ηnΣ)− ηpηn∆ (3.46)

Ynp = Ypn = − ηpηn∆
(1 + ηpΣ)(1 + ηnΣ)− ηpηn∆ , (3.47)

with ηn = nn/µ̄n, ηp = np/µ̄p and

Σ =
(
gω
m∗ω

)2
+
(

gρ
2m∗ρ

)2
∆ =

(
gω
m∗ω

)2
−
(

gρ
2m∗ρ

)2
. (3.48)

It should be noted that the effective masses m∗ω and m∗ρ depend on Qn and Qp.
However, these corrections should be small and, if we expanded the coefficients
Yik in powers of these variables, the constant term would dominate. When
solving the equations numerically, we will choose small values for Qn and Qp,
so we can control the error if needed.





4. Results

4.1 Numerical methods
To solve the equations mentioned in the previous sections, we performed

numerical computations. We implemented the systems in C++ and used estab-
lished routines for finding the zeros of functions, in particular the multivariate
Newton–Raphson method. To this end, the systems to solve had to be written in
the form F (x) = 0. To solve the equations, we start by proposing a solution x0.
The algorithm then proceeds to find the zero by computing the Jacobian of F at
x0 and using it to compute a new step x1, much like how the one-dimensional
Newton’s method uses derivatives to find the zero of functions. The solution is
found when we reach an xn such that F (xn) is sufficiently close to zero (a notion
that is appropriately defined with a distance function; we used the maximum,
or ‖·‖∞, distance).

Some care had to be taken, because such algorithms are very sensitive to the
initial guess. First, we used a good initial point x0, so that it did not take long
for the method to find a solution. Second, we always computed nearby points
by using a previous solution, so we know that the guess was very reasonable.
If somehow a nearby point did not converge, we used a small perturbation of
the last known solution; if it still did not work, we used the first, original guess.
Finally, we “normalized” the equations to solve so that the equation with the
largest deviation from 0 did not consistently dominate all other equations in the
distance function.

All of the code used was written de novo. We chose C++ to make use of
modern, efficient linear algebra libraries, in particular the Eigen library [27].

4.2 Characterizing the ground state
In this section we present the results obtained from numerically integrating

the NL3ωρ equations. A general theme of this section will be to observe either
the effect induced by B, the magnetic field, or by L, the slope of the symmetry
energy at the saturation density. When varying B, we will set L = 118 MeV;
when varying L, we will impose B = 0.

We start by presenting the main thermodynamic quantities of interest. Since
we have fixed the baryon densities to solve the NL3ωρ equations, it is natural to
use its conjugate variable, the energy per nucleon, obtained from dividing the
energy density ε by the baryon density nb. In Figures 4.1 and 4.2 we show how
this energy changes with B and L, respectively, as a function of nb. To help
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understand our results, we subtract from from ε/nb the nucleon mass

mN = mp +mn

2 . (4.1)

We have used fields of intensities B∗ = 104—105, or 4.4×1017—4.4×1018 G.
We see that, for the 118 MeV model, the effect of B is significant, as it lowers
the energy consistently throughout the densities considered. For the highest
intensity field, the energy is brought close to zero around 0.05 fm−3, and around
the saturation density it is approximately 10 MeV lower than the energy at
B = 0.

Figure 4.2 shows us that, at B = 0, the curves for all models coincide near
0.1 fm−3. This is, by design, a feature of the different NL3ωρ parameterizations,
which we will comment on the following paragraph. Below this density, lower
values of L increase the energy, while above it the relationship is inverted.

To understand the differences between the NL3ωρ models, we plot the sym-
metry energy as a function of the density for each parametrization, in Figure 4.3.
This energy can be understood as a “penalty” for having nuclear matter that is
highly asymmetric, that is, for which the number of neutrons is significantly dif-
ferent from the proton number. This penalty can be seen in the semi-empirical
mass formula for atomic nuclei, or Bethe–Weizsäcker formula, in which the
binding energy per nucleon has an additive term of the form

εsym

(
N − Z
A

)2
, (4.2)

with N being the neutron number, Z the proton number, A = N + Z and εsym
being the constant coefficient we call symmetry energy. This term is minimal
when N = Z, and positive otherwise. It is clear that by defining

α = nn − np
nb

, (4.3)

which is equal to (N − Z)/A for nuclei, we can find εsym by computing

εsym = 1
2

[
∂2(ε/nb)
∂α2

]
α=0

. (4.4)

This was the procedure we followed to find εsym: we solved the NL3ωρ equations
imposing nn = np instead of β-equilibrium, and computed the second derivative
with the analytical expression

1
2

[
∂2(ε/nb)
∂α2

]
α=0

= p2
F

6εF
+

g2
ρ

8m∗ρ2nb, (4.5)

where the effective mass is defined as before

m∗ρ
2 = m2

ρ + 2Λωρ g2
ω g

2
ρ (ω0)2

, (4.6)

following Cavagnoli et al. [28]. The values pF and εF are the Fermi momentum
and energy of the nucleons (assuming, here, that the protons and neutrons are
different states of the same particle). As we can see from Figure 4.3, the NL3ωρ
models present different εsym profiles. The symmetry energy was fixed near
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0.1 fm−3, which is the density at the surface of nuclei, the density experiments
are sensitive to. In Figure 4.4 we plot L, a normalized derivative of εsym given
by

L = 3n0
∂εsym

∂nb
(4.7)

with n0 being the nuclear saturation density. The values of L at the nuclear
saturation density are what gives the name to the parameterizations. These
models were constructed to study how matter behaves when we consider different
preferences for asymmetry. At large densities, the smaller the L, the softer the
equations of state is, allowing for larger isospin asymmetries.

Another relationship of interest is the equation of state (pressure vs. energy
density), which is necessary for integrating the Tolman–Oppenheimer–Volkoff
equations and studying the global behaviour of stars. The equation of state
allows us to extract the mass-radius relationships for neutron stars. In Figure 4.5,
we present the equation of state for different magnetic fields, using the energy
and pressure relations obtained before. We also show in detail regions of low
and high densities. The low-density region was chosen to cover the densities
between 0.05 and 0.15 fm−3. Notice that at high-intensity fields, the changes are
relatively small. For higher densities, higher magnetic fields give rise to higher
pressures; for low densities, the strongest magnetic field lowers the pressure,
but weaker fields may occasionally increase it. It is difficult to establish a
relationship between the magnetic field and pressure at low densities, because
the appearance of new Landau levels cause sudden jumps in pressure. In some
regions, the equation of state changes only slightly with the magnetic field.
However, this does not mean that the magnetic field has no effect on stellar
matter; some effects will still be seen, especially those that depend on the slope
of p(ε), such as the adiabatic index and the speed of sound.

In Figure 4.6, we plot the equation of state curve for different values of L,
setting B = 0. The effect of L on the equation of state is moderate. We also
present in more detail the curve at lower and higher densities. At low densities,
the higher the L, the higher the pressure. This effect, however, is almost
completely inverted at higher densities, the exception being for L = 118 MeV,
which gives a higher pressure than all other models.

An interesting effect happens when we start lowering the baryon density
towards very low values (when ε < 1 MeV fm−3) – the pressure crosses zero and
becomes negative (Figure 4.7). In fact, it keeps on decreasing its value while
the energy density increases, and we end up with two values of p for the same
energy density. The negative pressures should be interpreted as the nucleons
starting to aggregate to form nuclei, which points to the limitation of using an
homogeneous description of matter. Below such densities, we need to use an
approach that considers non-homogeneous matter. In this case, the homogeneous
NL3ωρ equation of state would describe the background environment in which
the nuclei move.

The next step in characterizing our ground state of matter is Figure 4.8, in
which we plot the neutron and proton Fermi energies as a function of the baryon
density, and show how they change with B. It is clear that, at low densities, the
Fermi energies approach the mass of the respective nucleon. They then decrease
until they reach a minimum around nb = 0.4 fm−3. The magnetic field seems
to have a negligible effect on the Fermi energy.
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In Figure 4.9 we see that L has a noticeable effect for densities above
≈ 0.2 fm−3: the proton’s Fermi energy increases with greater values of L, while
the neutron’s decreases. This is due to the density dependence of the symme-
try energy: the smaller the value of L, the smaller the symmetry energy is
above 0.2 fm−3(as we have seen in Figure 4.3). Therefore, larger isospin asym-
metries are allowed, i.e., smaller proton fractions and higher neutron content,
corresponding to larger µp and smaller µn.

The effect of the density dependence of the symmetry energy we mentioned is
well seen in Figure 4.11, where the proton fraction np/nb is plotted as a function
of the baryon density: the higher the L, the more the proton fraction rises
with density to reach symmetry. The fractions coincide around 0.1 fm−3. As
we mentioned before, this is a property of the nuclear models, that the proton
fraction is the same at the nuclear saturation density, which is a region that
we can probe experimentally. At very low densities (Figure 4.12), the proton
fractions become indistinguishable.

In Figure 4.10a we see the effect that B has on the proton fraction. Starting
from high densities to low densities, it decreases monotonically, approaching zero
when nb → 0. If we pay attention to the lower densities (Figure 4.10b), it is true
that the proton fraction approaches zero, but it then suddenly starts to rise and
reaches 1, which means that the matter is then totally populated by protons,
and devoid of neutrons. The reason for this is that the protons’ mass is lower
than that of the neutrons and, as such, having more protons reduces the overall
energy. The effect of the magnetic field is to bring this proton saturation point
to higher densities. In Figure 4.10a, especially at densities below 0.15 fm−3, it
is possible to see that the curves with B 6= 0 seem to follow the B = 0 curve,
all the while having some discontinuities or “jumps”. Each such discontinuity
appears when the Fermi energy is high enough for the protons to populate a
new Landau level. For densities above 0.1 fm−3, the effect of the magnetic field,
with the intensities considered, is negligible.

In Figures 4.13 and 4.14, we show the effects of L and B on (the square of)
the speed of sound s, while in Figures 4.15 and 4.16, we do the same for the
adiabatic index γ, an important quantity in dynamical effects. The expressions
for these quantities are

s2 = ∂p

∂ε
and γ = p+ ε

p

∂p

∂ε
. (4.8)

The speed of sound is given in units of c. It is always smaller than 1, so we
do not encounter a violation of causality for the densities shown. This is to be
expected, since we have developed the whole calculations within a relativistic
approach. There is some variation due to L up to nb ≈ 0.3 fm−3. The most
noticeable effects, however, appear when we apply a magnetic field, especially of
high intensity. When the density increases, new Landau levels become available,
and the speed of sound suddenly decreases. It then increases rapidly, and the
curves seem to overall follow the values for B = 0.

A similar effect of B can be seen in the adiabatic index curves. The effect of
L, however, is much more pronounced for γ.
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4.3 Crust size

Following the spinodal analysis described before, we calculated normal modes
of matter by imposing small perturbations on matter in equilibrium. Some of
these modes are unstable and bring the system out of equilibrium at a certain
growth rate |ω|. We calculated the maximum of these growth rates, |ω|max for
every density nb. If |ω|max = 0, then we can say that the matter is stable;
otherwise, there is a tendency to form aggregates. Some of the results presented
here have been published [29, 30].

In Figure 4.20, we calculate these modes for L = 55 MeV and different values
of B. Instead of imposing β-equilibrium, we fixed the proton fraction at 0.035,
and we have included the anomalous magnetic moment. It is clear that, as we
lower B, we are approaching a limiting case where there are unstable modes
up to some density (slightly above 0.08 fm−3) and, above that point, matter
is stable. This situation is more clearly visible with B∗ = 100. The unstable
region corresponds to the crust, while the stable corresponds to the core. At
B = 0 we would observe a clear crust-core transition. In Figure 4.21 we show
the growth rates around this transition zone. What we observe is that, after
|ω|max reaches zero for the first time, even if it remains zero for some densities,
it eventually starts to rise, and some “peaks” begin to form. These peaks always
come in pairs, associated with the spin-up and spin-down configurations (for
B = 2.25× 103, the last peak looks isolated, but that is because the numerical
calculations did not have enough resolution). It is clear that the well-defined
crust-core transition is lost when we apply a magnetic field. To characterize the
crust-core transition zone, it would be interesting to answer two questions: 1)
how large are the individual peaks and how are they distributed?; 2) how large
is the crust-core transition zone? To answer these questions, we adapted the
growth-rate calculation program to find the densities of the beginning and the
end of each peak.

In Figure 4.22 (the top panel) we plot the width (measured in baryon density)
of each peak as a function of the density at which it first appears. We performed
these calculations for two fields: B∗ = 102 and 103. We see that the size of
the corresponding clusters decreases exponentially, which happens faster for
B∗ = 102. To provide the clusters with realistic information, we considered
the particular case of a star with 1.4 solar masses. By integrating the Tolman–
Oppenheimer–Volkoff equations, we can translate densities into distances. As
such, we determined the thickness ∆l of the instability regions (middle panel)
and the distance between the instabilities, ∆L (bottom panel). For B∗ = 102, the
spacing between the peaks increases with density, ranging between approximately
6 m and 9 m. Below those densities, the homogeneous core is reached. For
B∗ = 103, the spacings are one order of magnitude larger. The width of the
peaks decreases exponentially with density, ranging between 1 m and 5 mm for
B∗ = 102 and being one to two orders of magnitude larger for B∗ = 103. It
is interesting to note that the spacings between the clusters lie on two nearly
parallel lines.

In Figure 4.23 we present the results obtained for the extension of the tran-
sition region, defined as the region between two densities ρ1 and ρ2, which are
respectively the first time the growth rates reach zero and the last time they
differ from zero. We do this for different values of L. In this calculation, we
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also included the anomalous magnetic moment of neutrons, and we considered a
constant proton fraction up to the density ρ0

t (the crust-core transition density
at zero field) and β-equilibrium above that point. By fixing a neutron star mass
as before, we can integrate the Tolman–Oppenheimer–Volkoff equations to give
us a distance R(nb) for every density nb: the distance from the center of the
star. Of course, R(0) must be the radius of the star. As such, because of the the
crust-core transition region at finite B, we calculate two different sizes for the
crust: ∆R = R(0)−R(ρ2) and ∆R∗ = R(0)−R(ρ1). Whatever the real size of
the crust may be, it must lie between these two values, which we plot for different
values of L in the middle panel. Finally, we attribute to the crust two fractional
(compared with the size of the star) moment of inertia: one assuming that the
crust ends at the density ρ1 and another at ρ2. We use the approximation [31]

∆Icrust

I
≈ 28πPtR3

3M
(1− 1.67β − 0.6β2)

β

[
1 + 2Pt(1 + 5β − 14β2)

ρtmβ2

]−1

, (4.9)

and we will use as ρt and Pt the densities and pressures at the two transitions.
Here, ∆Icrust is the moment of inertia of the crust, while I is that of the whole
star, M and R are the mass and radius of the star, β = GM/R and m is the
nucleon mass.

In Figure 4.23, we only calculated the B = 102 case for L = 55 MeV (blue
stars in the graph). It is apparent that, the larger the L, the greater the effect
of B, that is, the larger the transition zone is. This is mainly due to the proton
fraction of each model (recall Figure 4.10a). If we compare with the B = 0 case,
the effect of the magnetic field can be as large as 100% for L = 118 MeV. It
should be noted, however, that experimental constraints [32, 33] and microscopic
nuclear matter calculations [34] indicate that models with L between 30 and
80 are more realistic. For the L = 55 MeV case, the increase is of the order of
20%. The lower limit of the crust-core transition zone is only slightly smaller
than the B = 0 crust-core transition. The effect of the magnetic field is to
create a complex transition region above this density. By taking L = 55 MeV
and decreasing the magnetic field an order of magnitude from B∗ = 103 to 102,
quantities such as the transition density, crust thickness and crust fraction of
moment of inertia, defined with the density ρ2, suffer a reduction of around
3—5%, but are still larger than the corresponding quantities at B = 0.

From this analysis, it is apparent that properties of magnetized neutron stars
that directly depend on the thickness of the crust may give us a way of imposing
strict constraints on the values of L.

4.4 Entrainment matrix
In the following results, the numeric values for the entrainment matrix ele-

ments will be normalized by the constant Y = 3.99× 10−4 MeV3 fm−1, as was
done by Gusakov et al. [15].

In Figure 4.17 we observe the effects of B on the entrainment matrix elements
Yik. It is clear that the element Ypp, measuring the proton-proton entrainment,
is the most affected by the magnetic field. The Landau level transitions are
clearly visible. The neutron-proton component is also affected, as is the neutron-
neutron, although this last effect is much more modest. The reason why Ynn
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still changes with the magnetic field, even when B has no effect on the neutron
wave functions, could be via the σ field in the effective mass m∗n = mn − gσσ.

In Figure 4.18, we see the the effect of L on the entrainment matrix elements.
It is clear that Ypp increases with greater values of L. This effect is a consequence
of the higher proton fraction achieved when L is increased, as we have seen in
Figure 4.11. The trend is reversed for Ynn for similar reasons. In the Ynp case,
the magnitude of the entrainment is greater for higher values of L.

In Figures 4.19a—4.19f we see the effects of B and L on the entrainment
matrix elements with more detail, at low densities. In the graphs where we
show the effects of B, we indicate with dashed lines the densities for which
the proton fraction saturates to 1. The matrix element Ynn (Figure 4.19a), for
instance, seems to asymptotically approach zero at these saturations, which is
the expected behaviour – at these densities, there are no more neutrons and,
therefore, no more neutron fluids for entrainment to occur. At higher densities,
the curves are almost indistinguishable. Varying the value of L seems to have a
negligible effect on Ynn (Figure 4.19b). This is because the neutron fraction is
above 95% (see Figure 4.11), and a small change on the neutron density will not
be noticeable, contrary to the effect on the proton fraction, where even small
deviations become large in comparison.

Going from higher to lower densities, the proton-proton elements Ypp stabi-
lize at different values depending on B (Figure 4.19c), before reaching proton
saturation, when the curves start to decline steadily. When this happens, all the
curves start to follow the same line (this can be seen from the explicit form of Ypp
given in Equation 3.45: at low densities, ηp ≈ np/mp → 0 and ηn ≈ nn/mn → 0,
which implies Ypp ≈ ηp; but if the proton fraction is 1, then np = nb and Ypp
is a line of slope 1/mp). In the other direction, when we increase nb and the
first Landau levels start appearing, the curves appear to follow the B = 0 be-
haviour. The value of L has a slight effect on the element Ypp at low densities
(Figure 4.19d).

Finally, in Figure 4.19e we see the effect of B on Ynp. Since the neutron
fraction goes to zero at the dotted lines, the matrix element also vanishes at
those densities, just as it did for the Ynn. In Figure 4.19f we see that L has a
slight effect on Ynp.

It is worth mentioning that the NL3ωρ model does not include hyperons.
However, if they were present, they would certainly decrease the proton and
neutron fractions. As such, they could have a significant effect on the entrainment
matrix elements, as was observed by Gusakov et al. [15].
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Figure 4.1: Energy per nucleon as a function of density for different magnetic
fields and L = 118 MeV. We have subtracted the nucleon mass.
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Figure 4.2: Energy per nucleon as a function of density, for different parametriza-
tions of the NL3ωρ model, for different values of L and B = 0. We have
subtracted the nucleon mass.



4.4. Entrainment matrix 39

0

20

40

60

80

100

120

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

Sy
m
m
et
ry

en
er
gy
,ε

sy
m

(M
eV

)

Baryon density, nb (fm−3)

L = 55 MeV
L = 61 MeV
L = 68 MeV
L = 88 MeV
L = 118 MeV

Figure 4.3: Symmetry energy as a function of density, for different parameteri-
zations of the NL3ωρ model. The value of the slope of each curve at the nuclear
saturation density is L.
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Figure 4.7: The equation of state for the NL3ωρ model at very low densities,
for different magnetic fields and L = 118 MeV, showing negative pressures and
non-uniqueness.
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Figure 4.10: Effect of the magnetic field on the proton fraction in the NL3ωρ
model, for L = 118 MeV. Notice that the graphs highlight different regions: (a)
goes from 0.001 to 0.4 fm−3; (b) goes from 5× 10−7 to 0.2 fm−3. Also notice
that the scale is different: in (a) the graph reaches 0.2 fm−3, while (b) reaches
unity.
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Figure 4.11: Effect of the magnetic field on the proton fraction in the NL3ωρ
model, for L = 118 MeV.
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Figure 4.12: Effect of L on the proton fraction in the NL3ωρ model at low
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5. Conclusions and future work

It is hypothesized that pulsar glitches happen because fast superfluid currents
inside the neutron stars suddenly transfer part of their angular momentum to
the crust. There are some issues with this model, one of them being that the
crust may not be able to store a large enough momentum of inertia. As such, we
proposed to study two ways in which strong magnetic fields may help support
this model: by increasing the size of the crust and by affecting the strength of
the entrainment of superfluids inside the neutron star. These effects respectively
address the issues with the storage of angular momentum and the ability for the
superfluids to interact with the crust.

As we have seen, imposing a magnetic field on the star creates a complex
transition region at the end of the crust, which may increase its size up to a
factor of 100% in the most extreme case of L = 118 MeV. The effect is more
modest for more realistic values of L. Also, because of this sensitivity to L,
we may find ways of imposing restrictions on the density dependence of the
symmetry energy by measuring quantities that depend on the size of the crust
of magnetized neutron stars.

To understand the pertinence of including the magnetic field when calculating
the entrainment matrix, we plot in Figure 5.1 the relative differences between
the values of the entrainment matrix elements obtained with finite magnetic
fields and with B = 0. It is immediately obvious that the magnetic field has
a significant effect on the entrainment matrix, especially for the elements Ypp
and Ynp. For densities above a certain threshold, (0.1 fm−3 for the weakest
field), the corrections oscillate around 0, with an amplitude of 10%—20%, for
all magnetic fields considered. However, at lower densities, the error made from
not considering the magnetic field goes beyond 100%. It is then clear that it
may be important for magnetohydrodynamic calculations to take the effect of
the magnetic field in the equation of state into account. These conclusions
apply not only to the parameterizations for which L = 118 MeV but also for
the more realistic value of L = 55 MeV. The corrections are naturally smaller
for Ynn, because it depends only indirectly on the magnetic field. However, for
B∗ = 105 the error is of the order of 10%, which is still a significant correction.
For B∗ = 5× 104 this correction drops to 5%.

The values obtained for the entrainment matrix will allow for more realistic
magnetohydrodynamic simulations of neutrons stars, which will ultimately show
whether this model of pulsar glitches is adequate. In the future, it will be
important to include the anomalous magnetic moment of neutrons and allow for
the presence of hyperons, in order to obtain a more realistic behaviour of the
stellar matter.
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A. Eigenstates of the Dirac equations

A.1 Particles without magnetic field
We are going to find the energy and momentum eigenstates of a particle that

does not feel the influence of a magnetic field, subject to the Dirac equation

[γµ(i∂µ − V µ)−m∗]Ψ = 0, (A.1)

with V µ = (V 0,V ) being a constant potential, and m∗ being the particle’s
effective mass. We are mostly interested in the case where m∗ = mn − gσσ, as
this equation describes the behaviour of neutrons in the NL3ωρ model.

Since neither V µ nor m∗ vary in spacetime, let us propose the plane wave
solution

Ψ(x) = Ψ0(p)e−ip
µxµ , (A.2)

for a constant vector pµ = (E,p), which means we are choosing a state with
definite energy E and momentum p. Replacing in the Dirac equation yields

[γµ(pµ − V µ)−m?]Ψ0 = 0 (A.3)

We define the effective momentum p̄µ = pµ−V µ. If we left multiply this equation
by (γν p̄ν +m∗), we obtain

[γν p̄ν +m?][γµp̄µ −m?]Ψ0 =
[
γνγµp̄

ν p̄µ −m∗2
]
Ψ0 = 0 (A.4)

The γ matrices obey the identity γαγβ + γαγβ = 2ηαβ , where ηαβ is the metric
tensor. Notice that since ν and µ are summation indices, they can be named
freely, so we can exchange them:

γνγµp̄
ν p̄µ = γνγµp̄

ν p̄µ + γµγν p̄
µp̄ν

2 = γνγµ + γµγν
2 p̄ν p̄µ = ηνµp̄

ν p̄µ = p̄µp̄µ.

Therefore, the last equation becomes[
p̄µp̄µ −m∗2

]
Ψ0 = 0⇔ p̄µp̄µ −m∗2 = 0. (A.5)

Solving for p̄0 gives us
p̄0 =

√
p̄2 +m∗2. (A.6)

Recalling that p̄µ = pµ − V µ finally gives us the energy

E = V 0 +
√

(p− V )2 +m∗2. (A.7)
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A.2 Particles under magnetic fields

A.2.1 The Quantum Harmonic Oscillator
Under a constant magnetic field, charged particles such as electrons and

protons behave like a quantum harmonic oscillator. We will strt by studying
the oscillator, in order to obtain its energy eigenstates. We analyze both the
one-dimensional case, relevant for the Landau gauge A = (0, By, 0), and the two-
dimensional case, relevant for the symmetrical gaugeA = 1

2 (−By,Bx, 0) = Br
2 ϕ̂.

Throughout this section, we will use the position representation of the wave-
function, instead of the more general bra-ket formalism, following the analytical
approach used, for example, in Griffiths [35]. A more elegant approach, based
on algebraic methods, may be found in Cohen-Tannoudji et al. [36].

For both the one-dimensional and two-dimensional oscillators, the single-
particle hamiltonian is

H = P 2

2m + V (r),

where m is the particle’s mass, P = −i~∇ is the momentum operator and V (r)
is the potential at position r, given by

V (r) =


mω2

2 x2 (1D oscillator)

mω2

2 (x2 + y2) = mω2

2 ρ2 (2D oscillator).

Here, ω stands for the oscillator frequency and we choose ρ for the radial
component of a cylindrical coordinate system. Notice that the second potential
has no preferential direction in the xy plane. The time-dependent Schrödinger
equation for the particle’s wavefunction Ψ is then

i~
∂Ψ

∂t
= HΨ =

[
− ~2

2m∇2 + V (r)
]
Ψ. (A.8)

Since the hamiltonian is time-independent in both cases, we separate the
time component of the wavefunction as Ψ = e−iEt/~Ψ. By substitution, we
obtain [

− ~2

2m∇2 + V (r)
]
Ψ = EΨ.

We will now consider both cases separately.

The one-dimensional oscillator

Since the potential is independent of the y and z coordinates, we factor the
stationary wavefunction using plane waves, as Ψ(x, y, z) = ei(pyy+pzz)/~f(x).
Therefore,

∇2Ψ =
[
∂2

∂x2 + ∂2

∂y2 + ∂2

∂z2

][
ei(pyy+pzz)/~f

]
=
[

d2

dx2 −
(py
~

)2
−
(pz
~

)2
][
ei(pyy+pzz)/~f

]
.

(A.9)
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By substituting in Equation A.8 with the appropriate potential, we obtain[
− ~2

2m

(
d2

dx2 −
(py
~

)2
−
(pz
~

)2
)

+ mω2

2 x2
]
f = Ef (A.10)

or, by rearranging, [
− ~2

2m
d2

dx2 + mω2

2 x2
]
f = Exf, (A.11)

where
Ex = E −

p2
y

2m −
p2
z

2m (A.12)

is the energy of the x component of the wavefunction. To keep the notation
simple, we introduce the new variable ξ =

√
mω
~ x, from which it follows that

d
dx =

√
mω

~
d
dξ and d2

dx2 = mω

~
d2

dξ2 .

By substitution and rearrangement, the Schrödinger equation becomes
d2f

dξ2 − ξ
2f + εxf = 0 (A.13)

where εx = 2Ex/~ω is the (unitless) energy of the x component of the particle.
The first step towards a solution is noticing that, as ξ → +∞ (or equivalently

x → +∞), the term ξ2f becomes significantly larger than εxf , and we obtain
the approximate equation

d2f

dξ2 ≈ ξ
2f. (A.14)

This equation has the approximate solution e±ξ2/2:
d2

dξ2

(
e±ξ

2/2
)

=
(
ξ2 ± 1

)
e±ξ

2/2 ≈ ξ2e±ξ
2/2.

Notice, however, that the positive exponential eξ2/2 grows exponentially to +∞
as ξ → +∞ and, therefore, is not a normalizable solution. Therefore, we will
try a solution of the form

f = e−ξ
2/2g. (A.15)

By replacing f , we obtain
d2g

dξ2 − 2ξdg
dξ + (εx − 1)g = 0. (A.16)

To find an expression for g, we will try a power series solution of the form

g =
∞∑
j=0

anξ
n. (A.17)

From this, it follows that

dg
dξ =

∞∑
j=0

jajξ
j−1 and

d2g

dξ2 =
∞∑
j=0

j(j − 1)ajξj−2 =
∞∑
j=0

aj+2(j + 2)(j + 1)ξj .



62 A. Eigenstates of the Dirac equations

Replacing in the last equation, and grouping the power of ξ, we obtain

∞∑
j=0

(
aj+2(j + 2)(j + 1)− aj(2j − (εx − 1))

)
ξj = 0. (A.18)

For this equation to be valid for every x, it must be the case that the coefficients
of the ξj are zero for every j, that is,

aj+2 = 2j + 1− ε
(j + 1)(j + 2)aj , j = 0, 1, 2, . . . . (A.19)

Since this relationship outputs the value of aj+2 by specifying aj , all we have
to do is set the values of a0 and a1 to obtain evey coefficient. We thus have
two arbitrary constants for a solution of a second-order ordinary differential
equation, which means that we have found all the solutions.

Notice that, as j → +∞, the relationship between aj+2 and aj is approxi-
mately

aj+2 ≈
2
j
aj .

If, for instance, we focus on the even coefficients we obtain the approximate
relationship

a2m ≈
2

2m ·
2

2(m− 1) ·
2

2(m− 2) · · · a0 = 1
m(m− 1)(m− 2) · · · a0 = a0

m!

Therefore, g has the asymptotic behaviour

g ∼
∞∑
m=0

a0

m!ξ
2m = a0 e

ξ2

and f will therefore be

f ∼ a0 e
ξ2
e−ξ

2/2 = a0 e
ξ2/2,

giving us the non-normalizable solution we discarded earlier. The only way to
avoid this behaviour is if, for some n, an is zero. If this happens, then, for every
n′ greater than n, an′ will also be zero. We should therefore impose that, for
some n,

an+2 = 2n− (εx − 1)
(n+ 1)(n+ 2)an = 0⇒ εx = 2n+ 1. (A.20)

By substituting the expression for the energy of the x component, we obtain

Ex = ~ω
(
n+ 1

2

)
, n = 0, 1, 2, . . . , (A.21)

and we have thus obtained the quantization of the energy of the quantum
harmonic oscillator. The full energy of the system is then

E = ~ω
(
n+ 1

2

)
+

p2
y

2m + p2
z

2m. (A.22)
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n 0 1 2 3 · · ·
g(ξ) 1 2ξ 4ξ2 − 2 8ξ3− 12ξ · · ·

The polynomials obtained with this method are called the Hermite polyno-
mials. With the usual normalization for the constants a0 and a1, the first few
polynomials are

In general, the Hermite polynomials Hn(ξ) can be obtained via the Rodrigues
formula:

Hn(ξ) = (−1)neξ
2
(

d
dξ

)n
e−ξ

2
. (A.23)

The two-dimensional oscillator

As in the section before, we will factor the wavefunction with a plane wave
in the z direction as Ψ(x, y, z) = eipzz/~f(x, y). The Laplacian is given by

∇2Ψ =
[
∂2

∂x2 + ∂2

∂y2 + ∂2

∂z2

][
eipzz/~f

]
=
[
∂2

∂x2 + ∂2

∂y2 −
(pz
~

)2
][
eipzz/~f

]
.

(A.24)

Therefore, the Schrödinger equation becomes[
− ~2

2m

(
∂2

∂x2 + ∂2

∂y2 −
(pz
~

)2
)

+ mω2

2
(
x2 + y2)]f = Ef (A.25)

which we can rearrange to obtain[
− ~2

2m
∂2

∂x2 + mω2

2 x2
]
f +

[
− ~2

2m
∂2

∂y2 + mω2

2 y2
]
f =

(
E − p2

z

2m

)
f. (A.26)

We will separate the solution as f(x, y) = fx(x)fy(y). By renaming the energy

E − p2
z

2m = Exy

and dividing both sides of the equation by f = fxfy, we obtain

1
fx

[
− ~2

2m
d2

dx2 + mω2

2 x2
]
fx + 1

fy

[
− ~2

2m
d2

dy2 + mω2

2 y2
]
fy = Exy. (A.27)

It is straightforward to see that the first term on the left-hand side of this
equation is a function of x alone, while the second term is a function of y. They
can therefore be varied independently. However, the right-hand side is constant,
which means that these two terms must also be constant, that is, we must have

1
fx

[
− ~2

2m
d2

dx2 + mω2

2 x2
]
fx = Ex, (A.28)

1
fy

[
− ~2

2m
d2

dy2 + mω2

2 y2
]
fy = Ey (A.29)
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and Ex +Ey = Exy. But both these equations share the form of Equation A.11,
which means that the solutions are the same, and the energies are given by

Ex =
(
nx + 1

2

)
~ω and Ey =

(
ny + 1

2

)
~ω (A.30)

for nx, ny = 0, 1, 2, . . .. The energy of the xy component of the wavefunction is
then

Exy = (nx + ny + 1)~ω = (n+ 1)~ω, n = 0, 1, 2, . . . (A.31)

with each level having degeneracy n+ 1:

n 0 1 2 · · ·
(nx, ny) (0, 0) (1, 0) (2, 0) · · ·

(0, 1) (1, 1)
(0, 2)

The total energy of the system is

E = (n+ 1)~ω + p2
z

2m. (A.32)

The wavefunctions for the two-dimensional oscillator are products of the x
and y Hermite polynomials, together with the factor

e−ξ
2
x/2e−ξ

2
y/2 = exp

(
−mω2~

(
x2 + y2)) = exp

(
−mω2~ ρ

2
)

and the z-axis wavefunction.

A.2.2 Landau Levels
In this section, we are going to analyze the motion of a charged particle in a

constant magnetic field. The particle will have charge q and we will choose the
electromagnetic potential

Aµ = (A0,A) = (0, 0, Bx, 0), (A.33)

so that ∇×A = Bẑ and ∇ ·A = 0. Other choices, such as Aµ = (0,−By, 0, 0)
or the rotationally invariant Aµ = (0,−By/2, Bx/2, 0), would be equally valid.

For the sake of generality, we are going to use the potential

V µ = V µ0 + qAµ, (A.34)

where V µ0 is some constant potential. This is to account for the case

V µ = gωω
µ + gρ

2 ρ
µ
3 + eAµ,

which appears in the NL3ωρ equation for the protons. Since V µ0 is constant, it
is still true that

∇× V = qBẑ and ∇ · V = 0. (A.35)



A.2. Particles under magnetic fields 65

The wavefunction Ψ of the charged, spin-1/2 particle is a 4-component spinor
which obeys the Dirac equation[

γµ(i∂µ − Vµ)−m
]
Ψ = 0, (A.36)

where γµ are the Dirac γ matrices. In this section, we will choose the Dirac
representation of the γ matrices:

γ0 =
(

1 0
0 −1

)
and γi =

(
0 σi

−σi 0

)
,

where the σi are also 2× 2 matrices, the Pauli matrices

σ1 =
(

0 1
1 0

)
σ2 =

(
0 −i
i 0

)
σ3 =

(
1 0
0 −1

)
,

and 1 is the 2 × 2 identity matrix. It is usual practice to write a vector of γ
matrices γ = (γ1, γ2, γ3).

We begin by isolating the time and space components of the Dirac equation[
γ0(i∂t − V0)−m

]
Ψ = −γ · (i∇ + V )Ψ.

We separate the time component by writing

Ψ = e−iEtΨ0 = e−iEt
(
φ
χ

)
,

where φ and χ are 2-component spinors. By replacing Ψ and cancelling out the
exponentials, the equation reads[

γ0(E − V0)−m
]
Ψ0 = −γ · (i∇ + V )Ψ0. (A.37)

We will set E−V0 = Ē. Writing this equation in terms of the 2× 2 components
reads(

Ē −m 0
0 −(Ē +m)

)(
φ
χ

)
=
(

0 −σ · (i∇ + V )
σ · (i∇ + V ) 0

)(
φ
χ

)
(A.38)

which can be written as a set of two coupled equations{(
Ē −m

)
φ = −σ · (i∇ + V )χ(

Ē +m
)
χ = −σ · (i∇ + V )φ.

(A.39)

We can use the second equation to replace χ in the first, obtaining, after some
rearrangement,

(Ē2 −m2)φ = [σ · (i∇ + V )]2φ. (A.40)
To evaluate the square term on the right-hand side, we write it out in

components: [
σ · (i∇ + V )

]2
φ =

[
σi(i∂i + V i)

][
σj(i∂j + V j)

]
φ

= σiσj
(
i∂i + V i

)(
i∂j + V j

)
φ.
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The product of two Pauli matrices is given by σiσj = 1δij + iεijkσ
k, where εijk

is the Levi-Civita symbol. Expanding the products on the right-hand side gives[
σ · (i∇ + V )

]2
φ =

=
(
1δij + iεijkσ

k
)(
−∂ijφ+ i

(
∂iV

j
)
φ+ i(V j∂i + V i∂j)φ+ V iV jφ

)
(A.41)

Notice that the terms (−∂ijφ), i(V j∂i + V i∂j)φ and V iV jφ are symmetric
under the exchange of i and j. Therefore, they vanish when multiplied by the
Levi-Civita symbol and perform the implied sum. The surviving terms are[

σ · (i∇ + V )
]2
φ = −∂iiφ+ i∂iV

iφ+ 2iV i∂iφ+ V iV iφ− εijk∂iV jσkφ
=
[
−∇2 + i(∇ · V ) + 2iV ·∇ + V 2 − (∇× V ) · σ

]
φ

(A.42)

Given that ∇ · V = 0 and ∇× V = qBẑ, the equation we are trying to solve
finally simplifies to(

Ē2 −m2)φ =
[
−∇2 + 2iV ·∇ + V 2 − qBσ3]φ. (A.43)

To proceed, we factor out the dependence on the y and z coordinates:

φ = ei(pyy+pzz)f(x) = eip·rf(x), (A.44)

where p = (0, py, pz) and r = (x, y, z) is the position vector. Therefore,
∇2φ = ∇ ·

[
∇
(
eip·rf

)]
= ∇

[
ipeip·rf + eip·r∇f

]
φ

= eip·r
[
−p2f + 2ip ·∇f +∇2f

]
V ·∇φ = V · (ipeip·rf + eip·r∇f)

Since f depends only on the x coordinate, it is clear that ∇f = df
dx x̂. Therefore,

p ·∇f = 0. The Dirac equation then becomes, after replacing φ and cancelling
out the exponentials,

(Ē −m2)f =
[
p2 − d2

dx2 − 2V · p+ 2iV · x̂ d
dx + V 2 − qBσ3

]
f. (A.45)

We now have to expand the dot products V ·p and V · x̂, and also the term V 2.
We omit these steps to give the rearranged result

−
(
i
df
dx + V x0

)2
− (qBx− p̄y)2

f +
(
Ē2 −m2 − p̄2

z + qBσ3)f = 0

where
p̄y = py − V y0 and p̄z = pz − V z0 . (A.46)

We can make the constant V x0 vanish by defining

f(x) = eiV
x

0 xg(x), (A.47)

giving us the equation

d2g

dx2 − (qBx− p̄y)2
g +

(
Ē2 −m2 − p̄2

z + qBσ3)g = 0 (A.48)
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Notice that this equation still has two components, given that σ3 is a 2 × 2
matrix. But we can write g as

g(x) =
(
g+(x)
g−(x)

)
, (A.49)

and the action of σ3 is

σ3g =
(

1 0
0 −1

)(
g+(x)
g−(x)

)
=
(

+g+(x)
−g−(x)

)
Therefore, the Dirac equation in terms of g± is

d2g±
dx2 − (qBx− p̄y)2

g± +
(
Ē2 −m2 − p̄2

z ± qB
)
g± = 0. (A.50)

We use the notation gs by letting s = ±1; the term ±eB becomes qBs.
We can simplify this equation by changing variables:

ξ = qBx− p̄y√
qB

(A.51)

and naming the factor

as =
(
Ē2 −m2 − p̄2

z + qBs
)

qB
, (A.52)

which yields
d2gs
dξ2 − ξ

2gs + asgs = 0. (A.53)

But notice that this is the reduced form of the harmonic oscillator equation,
Equation A.13 of the previous section. Therefore, the solutions are the same, and
we obtain the quantization condition as = 2n+ 1 for n = 0, 1, 2, . . ., analogous
to A.20. Here, we read

Ē2 −m2 − p̄2
z + qBs = (2n+ 1)qB, n = 0, 1, 2, . . .

which, solving for Ē, yields:

Ē =

√
p̄2
z +m2 + 2qB

(
n+ 1− s

2

)
. (A.54)

Since 1−s
2 is either 0 for s = 1 or 1 for s = −1, it is common to write the energy

as
Ē =

√
p̄2
z +m2 + 2νqB (A.55)

with ν = n+ δs,−1, for n = 0, 1, 2, . . . . All the energy levels are therefore doubly
degenerate, except for the case ν = 0, which appears only when s = 1.

Finally, we can write the energy in terms of E as

E = V0 +
√

(pz − Vz)2 +m2 + 2νqB. (A.56)
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