
José Marcelo da Silva Lopes Fernandes

ISABELA

IoT Student Advisor and BEst
Lifestyle Analyzer

Thesis submitted to the

University of Coimbra for the degree of

Master in Biomedical Engineering

Supervisors:

Prof. Dr. Jorge Sá Silva (University of Coimbra)

Prof. Dr. Fernando Boavida (University of Coimbra)

Coimbra, 2017

This work was developed in collaboration with:

Center of Informatics and Systems

Department of Informatics Engineering

University of Coimbra

ii

Esta cópia da tese é fornecida na condição de que quem a consulta reconhece

que os direitos de autor são pertença do autor da tese e que nenhuma citação ou

informação obtida a partir dela pode ser publicada sem a referência apropriada.

This copy of the thesis has been supplied on condition that anyone who consults

it is understood to recognize that its copyright rests with its author and that no

quotation from the thesis and no information derived from it may be published

without proper acknowledgement.

iii

iv

Acknowledgments

This work was conducted under the guidance of Prof. Dr. Jorge Sá Silva and Prof.

Dr. Fernando Boavida, to whom I must express my gratitude for all the support

and constant presence, through out this project. I must also show my gratitude

toward my colleagues from the research group, for all the companionship, support

and work done in this project. Their presence everyday enriched this experience

and made all of this work possible.

I extend my gratitude to all my friends and colleagues, that toasted me over the

years with joy, happy moments and friendship.

I must also extend my deepest gratitude to my parents, my siblings and to Tatiana

Inácio for all the support and love in this 6 year of college. This was only possible

because they always made me believe in myself and never let me give up on my

dreams.

v

Acknowledgments

vi

Resumo

Os objetos e aparelhos do dia-a-dia estão cada vez mais inteligentes e interli-

gados. Conceitos como a Internet das Coisas (IoT) e sistemas ciber-f́ısicos (CPS)

estão a ser usados para dar a tecnologia, que usamos todos os dias, capacidades de

comunicação e sensoriais. Permitindo que estes dispositivos sejam utilizados como

sensores, que podem ser usados para obter informação sobre as atividades do dia-

a-dia das pessoas. Isto por sua vez, constitui uma grande oportunidade para se

fazer investigação nesta área e para criar tecnologias que possam ajudar as pes-

soas. Porém, estas tecnologias ainda não são muito centradas nos seres Humanos e

a maioria dos sistemas veem o ser Humano como um elemento externo ao sistema.

Contudo, ao utilizar o conceito de Human-in-the-loop Cyber-Physical System

(HITLCPS) podemos criar sistemas que são mais focados nas pessoas. Este conceito

consiste em integrar o Humano como parte dos CPS, isto é, fazer com que o sistema

reconheça o Humano: os seus parâmetros f́ısicos,as suas posśıveis ações, intenções e

estados emocionais. Ao adicionar o ser Humano como parte do sistema nós podemos

obter informações sobre ele, processar essa informação para prever estados futuros

e fechar o ciclo de controle ao devolver essa informação ao ser Humano.

O principal objetivo desta tese era implementar o conceito de HITLCPS num

sistema, capaz de monitorizar os estudantes e de os ajudar a melhorar o seu de-

sempenho académico. Este tese focou-se principalmente no desenvolvimento da

estrutura necessária para a obtenção e armazenamento da informação e no desen-

volvimento do front-end da plataforma (aplicação Android). Contudo, durante este

projeto nós também desenvolvemos alguns algoritmos e aplicamos técnicas de ma-

chine learning.

Este projeto incluiu o desenvolvimento de duas aplicações Android (uma aplicação

para Smartphone e uma aplicação para Smartwatch), a utilização da plataforma FI-

WARE e a utilização de dispositivos embebidos (Raspberry Pi e Arduino). Nós

utilizamos o Smartphone e o Smartwatch para obter informação sobre os estudantes

vii

Resumo

e o dispositivos embebidos para obter dados do ambiente. A partir desta informação

nós inferimos/classificamos a atividade, localização, sociabilidade e padrões de sono.

Nós também recolhemos informação de sensores virtuais/sociais, nomeadamente do

Facebook.

Tanto quanto sabemos, este projeto é uma das primeiras tentativas de juntar

HITLCPS, IoT e machine learning para criar aplicações centradas nas pessoas.

viii

Abstract

Everyday objects and devices are becoming, more and more, intelligent and

interconnected. Concepts like Internet of Things (IoT) and Cyber-Physical Systems

(CPS) are being used to empower the technology, we use everyday, with sensors and

communication capabilities. Allowing these devices to be used as sensors, that can

collect information about people’s day-to-day activities. This of course, constitutes

a great opportunity to perform research on this area and create new technologies to

help people. However, these technologies are still not very Human centric and the

majority of the systems sees the Human as an external factor to the system.

Although, by applying the concept of Human-in-the-Loop Cyber-Physical Sys-

tems (HITLCPS) we can create systems that are more centered on people . This

concept consists in integrating the Human as part of the CPS, that is, make the

system aware of the Human: his physical parameters, his possible actions, intents

and emotional states. By adding the Human as part of the system we can collect

information about him, process that information to infer future states and close the

loop by giving that information to the Human.

The main objective of this thesis was to implement the concept of HITLCPS

in a system capable of monitoring students and help them enhance their academic

performances. This thesis was mainly focus on developing the necessary structure

for collecting and storing data and on developing a front-end for the users (Android

application). However, during this project we also developed some algorithms and

applied machine learning techniques.

This project included the development of two Android applications (one Smart-

phone application and one Smartwatch application), the use of the FIWARE plat-

form and the use of embedded devices (Raspberry Pi and Arduino). We used the

Smartphone and the Smartwatch to collect the personal data from students and

the embedded devices to collect data about the environment. From the data, we

collected, we infer/classify the student’s Activity, Location, Sociability and Sleep.

ix

Abstract

We also collected data from social/virtual sensors, namely from the Facebook.

As far as we know, this is one of the first attempts to use HITLCPS, IoT and

machine learning together to create people centric applications.

x

List of Acronyms

AP Access Point.

API Application Programming Interface.

CISUC Center of Informatics and Systems from the University of Coimbra.

CPS Cypher-Physical System.

CPU Central Processing Unit.

DB Database.

dB Decibel.

DEI Department of Informatics Engineering.

FP7 Seventh Framework Programme.

GEs Generic Enablers.

GPS Global Positioning System.

HITLCPS Human-in-the-Loop Cypher-Physical Systems.

HTTP Hypertext Transfer Protocol.

ID IDentification.

IoT Internet of Things.

ISABELA IoT Student Advisor and BEst Lifestyle analyzer.

JDK Java Development Kit.

JSON JavaScript Object Notation.

JVM Java Virtual Machine.

LCT-group Laboratory of Communications and Telematics group.

lx Lux.

MAC Media Access Control.

Mb megabytes.

min minutes.

xi

Acronyms

NDK Native Development Kit.

NLP Natural Language Processing.

ORM Object-Relational Mapping.

OS Operating System.

PPG Photoplethysmogram.

REST Representational State Transfer.

RFID Radio Frequency Identification.

SDK Software Development Kit.

SSID Service Set IDentifier.

UI Users Interactions.

UL2.0 Ultra Light 2.0.

UX User experience.

VGS Version control systems.

XML eXtensible Markup Languague.

xii

List of Figures

1.1 Scheduling of the project in a Gantt diagram 4

1.2 GitLab project display . 6

1.3 GitLab issues window . 7

2.1 Number of connected devices installed base worldwide from 2015 to

2025 (in billions) [1]. 16

2.2 Control loop for a HITLCPS. [2] . 18

2.3 StudentLife Architeture [3] . 19

3.1 Project architecture . 23

3.2 ISABELA’s FIWARE architecture . 24

3.3 Mobile application architecture . 28

3.4 Wear application architecture . 30

3.5 IoT kit design . 31

3.6 Arduino and sensors architecture . 32

3.7 Rapsberry and Arduino connection 32

4.1 MainService flow diagram . 47

4.2 Example of the communication between 2 distinct services using Local

broadcast Manager and intents. 52

4.3 diagram of the operation of the Fiware communication service and

Fiware patch service services . 54

4.4 Flow of events when a user sends a message to the ChatBot 57

4.5 greenDAO working flow[4] . 59

4.6 Database entities/ORM classes . 60

4.7 Sleep Detection neural network structure 68

4.8 Mobile application flow . 70

4.9 Introduction screen . 71

4.10 Login screen (left) and New Account Registration screen (right) . . . 72

xiii

List of Figures

4.11 First configurations screen . 73

4.12 Activity screen before (left) and after an alarm is raised (right) 74

4.13 Location chart screen . 75

4.14 Sociability chart screen . 76

4.15 Navigation drawer (left) and Settings screen (right) 77

4.16 Events screen, with event details showing(right) 78

4.17 Historic screen . 79

4.18 Sleep form screen . 81

4.19 ChatBot screen . 82

4.20 Wear data on the Smartphone . 83

4.21 DB on the Smartwatch . 86

4.22 Smartwatch screen . 87

5.1 Battery consumption information on the 90

5.2 Network traffic reports . 91

5.3 Structure of the tested networks . 92

xiv

List of Tables

3.1 Requirements’ parameters . 35

4.1 Weight for the Sociability score (equation 4.6) 65

4.2 Sleep classification network performance 68

5.1 Results for network with 1 neurons on the hidden layers 93

5.2 Results for network with 2 neurons on the hidden layers 93

5.3 Results for network with 5 neurons on the hidden layers 94

5.4 Results for network with 10 neurons on the hidden layers 94

5.5 Results for network with 15 neurons on the hidden layers 95

5.6 Results for network with 20 neurons on the hidden layers 95

5.7 Results for different activation function on a network with a 20-20-20

structure . 96

5.8 Results training data vs validation data 97

xv

List of Tables

xvi

Contents

Acronyms xi

List of Figures xiii

List of Tables xv

1 Introduction 1

1.1 Context . 1

1.2 Objectives . 2

1.3 Thesis Structure . 3

1.4 Scheduling . 4

1.5 Methodology . 5

1.6 Technologies used . 8

1.6.1 Android . 8

1.6.2 FIWARE . 9

1.6.3 Git - Version Control System 10

1.6.4 Encog . 11

1.6.5 greenDao . 11

1.6.6 Raspberry Pi and Arduino . 11

1.6.7 api.ai . 12

2 State-Of-Art 15

2.1 Concepts . 15

2.1.1 Internet-of-Things . 15

2.1.2 Cyber-Physical-Systems . 16

2.1.3 Context Aware Computing . 17

2.1.4 Human in the Loop Cyber-Physical Systems 17

2.2 Similar projects . 18

2.2.1 StudentLife . 18

xvii

Contents

2.2.2 Smart GPA . 19

2.2.3 HealthyOffice . 20

2.2.4 BeWell . 21

2.2.5 ISABELA vs Similar projects 21

3 Overall System 23

3.1 Overall Architecture . 23

3.2 FIWARE architecture . 24

3.2.1 ORION . 25

3.2.2 IDAS . 25

3.2.3 CYGNUS . 26

3.2.4 KEYROCK . 26

3.2.5 COMET . 26

3.2.6 CKAN . 27

3.3 Mobile application architecture . 27

3.4 Wear application architecture . 29

3.5 IoT kits . 31

3.6 ISABELA application . 33

3.6.1 Context . 33

3.6.2 Description . 33

3.6.3 Requirements . 34

3.6.3.1 Functional Requirements 35

3.6.3.2 Non-functional requirements 42

4 Development 45

4.1 Smartphone application . 45

4.1.1 Data acquisition . 45

4.1.1.1 Physical sensors . 45

4.1.1.2 Context acquisition 49

4.1.2 Communication . 51

4.1.2.1 Internal Communication 51

4.1.2.2 FIWARE communication 53

4.1.2.3 Wear communication 55

4.1.2.4 ChatBot communication 57

4.1.3 Storage . 59

4.1.4 Processing . 61

4.1.4.1 Activity . 61

4.1.4.2 Location . 62

xviii

Contents

4.1.4.3 Sociability . 63

4.1.4.4 Sleep detection . 65

4.1.4.5 Alarms . 69

4.1.5 Application Flow and Design 69

4.2 SmartWatch application . 84

4.2.1 Data acquisition . 84

4.2.2 Communication . 85

4.2.3 Storage . 86

4.2.4 Display . 87

5 Tests and Results 89

5.1 Battery life . 89

5.2 Network traffic . 90

5.3 Sleep Classification tests . 92

6 Conclusions and Future work 99

6.1 Conclusions and Future work . 99

6.2 Open challenges . 100

Bibliography 103

Appendices 111

A Articles . 113

B List of permissions . 135

xix

Contents

xx

1

Introduction

1.1 Context

Nowadays the Internet of Things (IoT) is more than just a concept, we are

surrounded by ”Smart Things”, approximately 20.37 billions of devices, and an

expected growth of more 75 billions devices until 2025 [1]. Everyday devices are

now improved with sensors, connected to the Internet and can now communicate

between them, what allow them to share sensing data [5]. However this sensing

data needs to be understood, modeled and reasoned with [6], creating context aware

applications that can perceive everything around them.

On the other hand the Cypher-Physical System (CPS) relies on collaborative

computing to control physical systems [7]. Combining the unprecedented amount of

information that the IoT offers us and the functionalities of a CPS, we can now create

new systems that are aware and are able to control the physical world. Technology

is always created to improve Humans lives, and this kind of applications described

above are no different. If we can apply this technologies to Human centered appli-

cations we now enter the realm of Human-in-the-Loop Cypher-Physical Systems

(HITLCPS), where technology, accepts the Human as part of the system and takes

the Human intents, actions (present and future), emotions and psychological states

into consideration, creating systems that better care for Humans needs [8].

College’s dropout numbers keep increasing. In Portugal ten out of every hun-

dred students drop out of college in the second year[9]. The causes behind this can

be varied but one of the main causes is depression. Depression can come from a lot

of factors on the student life, from the lack of sleep and exercise to the pressure to

get good grades or financial worries [10]. With the help of the technologies presented

above, we can get a better scope of how students lives are and try to prevent this

factors.

1

1. Introduction

This dissertation describes the work carried out by some members of the Lab-

oratory of Communications and Telematics group (LCT-group), from the Center of

Informatics and Systems from the University of Coimbra (CISUC), in the Depart-

ment of Informatics Engineering (DEI). The members of this project were myself

José Marcelo Fernandes (Master’s student of Biomedical Engineering), Prof. Dr.

Jorge Sá Silva (DEI) and Duarte Raposo (Doctoral student of Sciences and Tech-

nologies of Information DEI).

1.2 Objectives

The aim of the IoT Student Advisor and BEst Lifestyle analyzer (ISABELA)

project, which development is described on this thesis, was to create an system

capable of understanding the user (students), processing his emotions, actions and

intents and help him to perform better on is academic life. Our main objective was

to be able to collect student data from various sensors and process it, so we could

infer the possible academic outcome and prevent negative ones.

With this in mind, we set the project first objective as the ”creation” of IoT

platform. This platform should be able to communicate with different devices, store

various data, implement security protocols to assure the data security and provide

a way to retrieve the data.

The second objective of this project was the development of an mobile applica-

tion that was able to retrieve the Smartphone sensors data, send it to the platform

described above, process the data to infer the emotional, and physical states on

the go. This mobile application is also the main front-end for the user and as such

should provide relevant and important information. And as the front-end of the plat-

form the Smartphone application is also the main actuator, where we can suggest

behavior changes or some advice related to is expected academic outcome.

As the third objective, we decided to focus on the heterogeneity of the system.

This point is important because even if we are moving towards an ”IoT society” we

can not expect the average student to have this devices in his household. And as

such we should assure the system heterogeneity ourselves. That is, we should create

various smart devices to be inserted in our system. For that to happen, those created

devices, should have sensors to collect data as well as the capabilities required to

connect with the platform described on the objective one.

As an complementary objective we choose to also implement an Smartwatch

2

1. Introduction

application. The implementation of a Smartwatch in our system, added the possi-

bility of getting biometric data such as the Heart-Rate and it also helped with the

third objective described, since this implementation of an SmartWatch application

gave our system the possibility of communicate with another type of device.

It should also be noted that this project does not aim to be an emotional, soci-

ological or health study. This is just a first approach towards creating the technology

to start such project. Also, towards the end of this project, we had 2 meetings with

a group of investigators from the Faculty of Psychology and Educational Sciences.

These meetings serve as starting point of a partnership between the 2 groups in

order to create a new project, based in the technology created in this project.

1.3 Thesis Structure

This master thesis is structured in six chapters, Introduction, State of the art,

Overall System, Development, Tests / Results and Conclusions / Future work.

The first chapter serves as introduction to the project, presenting the context in

which it is inserted and the main objectives it had. In this chapter it is also presented

a quick overview of the technologies used, the methodology and the scheduling for

the project. In the second chapter it is presented a subtle overview of the state of

the art, as well as a review of some similar projects and mobile applications.

The third chapter is focus on the Overall system developed, that is the system

architecture and its components, where it is given a general overview of all the system

components, the IoT platform, the Smartphone and Smartwatch applications and

the Embedded sensors. In this chapter it is also given a general presentation of

the mobile application ISABELA (Smartphone and Smartwatch version). And it is

made a general Requirements overview for the project.

In the fourth chapter is presented the development of the system and all of

its components as well as the several steps the project undertake. The fifth chapter

is focus on testing and validation of the system, namely on the mobile application.

The sixth chapter is dedicated to the conclusions taken from this project as well as

an overview of future work and open challenges.

3

1. Introduction

1.4 Scheduling

In this section we make a subtle presentation of the project scheduling that

was define prior to the project beginning date, with of course some adaptations as

the project was developed.

As we can see from figure 1.1, in the beginning of the project the first month

was reserved to do a state-of-the-art review of the existing solutions and projects

that resemble ours (more about this on the second chapter). Of course the first

two months were also a period of adaptation, because the technologies used in this

project are not taught as part of the University courses.

In November we started to develop the two version of the android application

(mobile and wear). This included the acquisition of the sensors data and the inte-

gration with the FIWARE [11] platform that was assemble at the same time. By the

end of January, the first version of the application, was concluded, and we deployed

a testing version of it to the members of the LCT-group, to starting collecting data.

Figure 1.1: Scheduling of the project in a Gantt diagram

The months of February and March, were reserved to start the redesign of

the application. This redesign consisted of changes in both the Smartphone ap-

plication and in the wear application making them a bit more user friendly. This

visual changes were accompanied by some functionalities, that were made in the next

months. The last months of this master’s thesis project were reserved for the imple-

mentation of Machine Learning algorithms on the Android application. Regarding

4

1. Introduction

as well the mobile and wear application. There was also a debugging process that

started when the first prototype was deployed and continued until the last month of

the project. As the project progressed we also needed new modules of the FIWARE,

and as such the platform development was treated as an continues process.

As we stated before in the objectives, we also had 2 meetings with an investiga-

tion group from the faculty of Psychology and Sciences of Education. This meetings

served as a starting point of new collaborative project, where hope to add their

scientific background and expertise to our already existing technology. On this new

project we will try to infer student’s emotions and sociability through continuous

monitoring with the Smartphone.

The writing of this thesis, was also taken into account and treat as an continues

process, starting in the earliest months of the project and ending in the last one.

1.5 Methodology

In this section we state how the project was planed and developed trough out

is duration. The requirements and planning of this project were done before the

project started, by Prof. Dr. Jorge Sá Silva and Prof. Dr. Fernando Boavida.

Although, with the advances in the project some points were raised and the plan

had to be adapted.

In this project we used the Scrum methodology [12]. This methodology consists

of doing several iterations in the project, in order to obtain a product that adapts

itself to the evolutions of the market. That is, instead of focusing only on planing in

the start and moving to the next phase of development only when the previous one

is finish, we work with Sprints. Sprints are iterations to the project, they usually

take from 2 to 3 weeks and follow the same phases as normal software development

: plan, build, test and review. A example of a potential Sprint can be for example

the redesign of the User Interface. At the start of every Sprint we plan only the

necessary requirements to make the small implementations of this Sprint, in the

build we develop those changes, then test them and in the end of the Sprint we

review those changes. At the end of every Sprint we should have a potentially

shippable product, that we can choose to deploy or not. At the end of one Sprint we

evaluate the project start a new iteration of the project (Sprint), if one is needed.

This methodology is very simple and makes the development of software more easy,

since sometimes is hard to have a full image of the final product right from the start.

5

1. Introduction

When the project started we were aiming to develop our own IoT platform, but

after we had done some research about the state of the art we decided to implement

an already existing platform, the FIWARE (explained further in the next section

1.6). Also new functionalities and capabilities were added to our solution as we

dimmed important, either in the mobile application or in the FIWARE.

Through out the development of the project every weak, on Fridays, we had

a meeting with all the LCT-group members to discuss the development of this

project, as well as other projects that the others members of the group were working

on. These meetings started always with an point of situation presentations, letting

all the members of the group know what the others were working on. Although

these reunions were not only informative they were also used to get the opinion of

all the members on the project’s next steps. In addiction every Monday we had

individual reunions that were used to plan the week work and to expose problems

and difficulties.

Figure 1.2: GitLab project display

6

1. Introduction

To further improve the working strategy, and the collaboration between ev-

eryone, we also use an instance of the GitLab [13] (further explained on the next

section 1.6) that worked not only as a version control system, but also as a team

management tool, this helped us implement a very Scrum[12] like system. As we

can see from figure 1.2 all the members had access to the different projects, that the

group was working on. This allowed us to expose the work done, making the other

members aware of our work, and create new issues on the projects. These issues

could be labeled (Fix, Developing, Completed, Closed, Fixed), assigned to specific

users and we could attribute them a deadline as can be seen in figure 1.3. This tool

helped to coordinate the work, but also in the debugging process, since a bug could

be reported as a new issue to be fixed.

Figure 1.3: GitLab issues window

Also as form of communication, we utilized Slack [14], that allow us to separate

the different projects in different channels. This way we were able to send and share

relevant information to the members of the each project, we could also create topics

for specific problems and find faster solutions this way. Skype [15] has also use as a

means of communication when some of the members couldn’t attend a meeting.

7

1. Introduction

1.6 Technologies used

In this last section of the chapter we address the technologies used during the

project and present a quick resume about them. As the main component of this

project is the Android application, the most used technology in this project was

Android Studio [16].

1.6.1 Android

The Android is an Operating System (OS) designed specially to mobile de-

vices. It is based on the Linux Kernel [17] and is designed by Google. This OS is

made to run in devices with touchscreen, like Smartphones, and the main interaction

with it is trough touch gestures and it also has a virtual keyboard for text inputs.

When the System started it was only designed for Smartphones and Tablets, but

over the years new versions of the OS appeared, such as the Android TV for Smart

TVs, the Android Auto for cars and the Android Wear [18] for Smartwatches. The

last one is used in this project and so it requires further explanation.

The Android Wear as the name indicates was meant to be used in items that

people wear, but until this day is only used in Smartwatches. This OS is for small

devices, with even smaller screens and was designed to be used without hands, that

is, almost all the features are available trough the use of voice command. We can

also interact with it trough gestures like swipes and clicks and the newer version of

this OS, Android Wear 2.0, comes with a virtual keyboard for text input (in this

project we only used Android Wear 1.5 version). Android Wear was made to work as

complement for the Smartphone, with it we can see notifications with a glance at the

wrist instead of having to drawn our phone from the pocket. But these devices are

also designed for fitness and sports purposes and are embedded with some sensors

that are not available for Smartphones, like the heart rate sensor and the pedometer

sensor.

The Android is the most used OS in mobile devices with more than 1.6 billions

devices in the world and with a 87.5% share of the mobile OS market [19]. Google

also has a store for mobile applications, Google Play Store, where the majority of

the Android applications and games can be acquired. The more recent numbers by

Google indicate that there are more than 2 millions applications available at the

Google Play store [20].

8

1. Introduction

The Android OS, as stated before is based on Linux Kernel but it also runs

a Java Virtual Machine (JVM) developed specially for these devices. The main

programming language used in the development of Android applications is Java, by

using the Java Development Kit (JDK), but some low-level programming can be

done in C++ or C with the Native Development Kit (NDK).

The Android OS is a open-source technology, and as stated above it is the

more used mobile platform in the world. These are the main reasons we choose this

platform for our application. In addition to it the Android platform has also a large

community of developers and many third party libraries with good documentation

that ease the development of applications.

1.6.2 FIWARE

The FIWARE is an IoT platform that was developed as part of the Seventh

Framework Programme (FP7) [21], and started in 2011. The FIWARE name stands

for Future Internet Ware. The main objective of this project was to advance the

process of harmonizing the European Technology platforms, in this case the IoT

platforms. FIWARE is also an public and open-source [22]. The process of creating

the FIWARE was divided into three phases. The first phase (from May 2011 to April

2014) was aimed at creating the technological core called FIWARE, while the second

phase (from April 2013 to March 2015) was mainly aimed at the implementation of

FIWARE nodes. Finally, the last phase covered from September 2014 to September

2016 and aimed primarily at creating a sustainable ecosystem for Small Medium

Enterprises, through the selection of sixteen business accelerators.

The FIWARE Foundation was created to assure the project success, and they

describe themselves as an legal independent body providing shared resources to help

achieving the FIWARE mission by promoting, augmenting, protecting, and validat-

ing the FIWARE technologies as well as the activities of the FIWARE community,

empowering its members including end users, developers and rest of stakeholders in

the entire ecosystem [23]. This foundation also manages semi-annual summits for

all members of the community.

FIWARE is based on a library of components called Generic Enablers (GEs)

that are meant to implement Application Programming Interface (API)s. GEs offer

reusable and commonly shared functions “as a Service”. Through APIs, GEs allow

developers to put into effect functionalities making programming much easier by

combining them. GEs are classified into seven technical chapters [24], namely:

9

1. Introduction

• Cloud Hosting. A set of components to provide computation, storage and

network resources on top of which services are provisioned and managed.

• Data/Context Management. A set of components to facilitate the access,

gathering, processing, publication and analysis of context information at large

scale.

• Architecture of Applications / Services Ecosystem and Delivery Framework.

A set of enablers to co-create, publish, cross-sell and consume applications or

services, addressing all business aspects.

• Interface to Networks and Devices. A set of components to make the most of

the network infrastructure capabilities, building communication-efficient dis-

tributed applications, exploiting advanced network capabilities and easily man-

aging robotic devices.

• Security. A set of components to provide mechanisms to make delivery and

usage of services trustworthy by meeting security and privacy requirements.

• Internet of Things Services Enablement. A set of components to leverage the

ubiquity of different devices, making connected things available, searchable,

accessible, and usable.

• Advanced Web-based User Interface. A set of components to facilitate the use

of 3D and Augmented Reality capabilities in web-based user interfaces.

Not all the GEs documented above are used during this project, but the im-

plementation of FIWARE can be found in chapter 3.

1.6.3 Git - Version Control System

The use of Version control systems (VGS) is one of the best practice for

software development. These systems allow us to store all the developed software

remotely to ensure the project continuation and prevent any drawbacks in case of

computers malfunction.

But this tool capabilities go beyond the repository functionalities. They also

allow us to keep track of all the changes on the project files, letting us know when

the files were change and by whom, and even what section of the file. This helps

prevent several errors and save time as it is very easy to make a rollback in the

project, when something undesirable happens [25]. Other functionalities also include

the merging and branching of projects allowing us to keep different versions of the

10

1. Introduction

same software, for instance we can keep a stable version on a branch while working

on new functionalities in a different branch of the project.

As explained on the previous section (1.5), the version control system used

during this project was a local instance of the GitLab. Using a local instance, with

authentication assured that all the applications and code were secured and private.

In our case the version Control system was as well the team management tool.

Allowing us to keep track of everyone work, as well as coordinate the work of the

different project members. Creating issues, be it for debugging or for new tasks,

allow us to keep track of the work that had to be done.

1.6.4 Encog

Encog is an machine learning framework that supports several algorithms, as

well as support classes to normalize and process data. When this framework was

first released it only supported Artificial Neural Networks, but now it also supports

different algorithms like Hidden Markov Models, Support Vector Machines[26].

This library has an Java implementation, what allow us to use it on the Android

platform. The fact that it supports multi-threading is also a plus, since it provides

us with better training performances.

1.6.5 greenDao

The greenDAO is an open source Android Object-Relational Mapping (ORM)

framework that allows us to create SQLite databases. Writing SQL and parsing

query results are sometimes difficult and time-consuming tasks. This framework

frees us from these tasks by mapping Java objects to database tables [4]. This way

we can create tables, store and update data or even delete it using object oriented

API.

This framework also allows for database encryption what is a plus for us, since

the security of the data we use is an important requirement of the project.

1.6.6 Raspberry Pi and Arduino

In this project we use two types of embedded circuits: the Arduino[27] and the

Raspberry Pi[28]. These boards at the first glance look the same, but are very differ-

11

1. Introduction

ent. While the Arduino is a microcontroller, the Raspberry Pi is a microprocessor,

that is, the Raspberry Pi is a small computer with an OS, in turn the Arduino has

no OS, has a less powerful Central Processing Unit (CPU) and lower memory.

While the points above make the Raspberry Pi look better than the Arduino,

the truth is that we first need to consider the task at hand before choosing between

them. The Raspberry Pi as stated is more powerful, multitasking and is able to

process large data. But the Arduino is more suitable for small controlling task

because it doesn’t need an analog to digital converter. So tasks like turning the air

conditioning on and off to maintain the temperature of a room are more easily done

with the Arduino. The Arduino however, as stated before, has no OS an as such

can only run a program at a time and repeatedly.

In our case we used both of them together. We used the Arduino to connect

all the sensors and convert the values of Voltage to real values such as Decibel (dB)s

and Lux (lx) and we used the Raspberry Pi to handle the communications. This

implementation is further detailed in chapter 4.

1.6.7 api.ai

The api.ai [29] is a framework from Google that allow us to create agents,

capable of doing Natural Language Processing (NLP).

In these agents, we can create entities that can represent physical objects or

even concepts. For example we can create the Entity sensor and add the Tempera-

ture attribute, Light attribute and Sound attribute to this entity. We can also define

synonyms that can be used to describe these entities, for example the sound sensor

could be called the microphone.

We can also create Intents that have associate to them actions. These intents

are the base to the NLP, in them we define possible phrases that the user may

”say” to the agent. These examples may contain specific entities, what facilitates

the classification. We can define one or more response message to which Intent. We

can also define the Action that this intent represents and for more complex actions

we can implement the business logic for that specific action on the user’s front-end

(in our case the mobile application).

By adding intents, and by making them as specific as possible, the agent can

process the received messages and classify them into those Intents. Whenever a

message is not recognized a Default Fallback Intent is triggered. There could also

12

1. Introduction

be misclassifications, and we can deal with them as well, the platform allow us to

review every call to the agent change it’s classification and retrain the agent.

The development of the ISABELA’s ChatBot is explained in more detail in

the fourth Chapter.

13

1. Introduction

14

2

State-Of-Art

In this section we will introduce some of the concepts used during the devel-

opment of this project, as well as some of the application and projects with similar

objectives. We make a slight comparison of the similarities and differences between

these projects and ours.

2.1 Concepts

In this section we address some of the concepts and paradigms used through

out the project. These concepts were fundamental for all phases of the development,

and as such we think that a brief summary of them should be made.

2.1.1 Internet-of-Things

The term ”Internet of Things” was proposed, in 1999, by Kevin Ashton. He

was then referring himself to Linking the new idea of Radio Frequency Identification

(RFID) with the supply chain of Procter & Gambler (a company for whom he was

making a presentation) [30]. He also referred to the concept as the possibility to

empower computers with means to gather information by themselves so they can

perceive the world without Human input.

Nowadays the concept evolved, and no longer refers to RFID, instead now we

have objects with embedded systems capable of communicate with each other, pro-

duce sensory information and with self-configuring capabilities based on standards

and interoperable communication protocols [5].

Today there are more than 20 billions of devices connected to the Internet

and it is estimated that the number triple by 2055 [1] as we can see in figure 2.1.

These devices are no longer only computers, tablets or smartphones, there are also

15

2. State-Of-Art

many everyday objects that are now empowered with processing and communication

capabilities (such as fridges and TVs).

Figure 2.1: Number of connected devices installed base worldwide from 2015 to
2025 (in billions) [1].

Some first approaches to IoT applications have been made in health-care, trans-

portations and more recently towards smart-cities, where connected devices with

sensor capabilities are able to share information. And in a near future these devices

will be even more common and in the grasp of everyone. But there are still much

work to be done to make this systems capable of interacting with Humans in a more

intuitive and meaningful way.

2.1.2 Cyber-Physical-Systems

As stated before CPS is the concept of using collaborative elements of a Cyber

system to control physical aspects of the world, CPSs are defined as systems that

offer integrations of computation, networking, and physical processes [7]. IoT and

CPS are different concepts, but apply some of the same principles, with IoT focusing

more on the networking and integration of different devices while the CPS focus more

on the applicability and modeling of physical systems [31].

16

2. State-Of-Art

Theses systems are then a junction of sensor, decision and actuation capabili-

ties. If we apply these capabilities to monitor Humans we are entering the Concept

of HITLCPS, CPS that take Human actions and emotions into consideration [8].

2.1.3 Context Aware Computing

As we mentioned previously, the IoT provides us we large amounts of sensor

data, that needs to be reason with and contextualized [6]. There are many ways to

contextualize and process data, but in this present case we used supervised machine

learning to process and data and acquire classifications.

As such the IoT paradigm needs to be supported by middleware solutions.

“Middleware is a software layer that stands between the networked operating system

and the application and provides well known reusable solutions to frequently encoun-

tered problems like heterogeneity, interoperability, security, dependability“ [32]. In

our case the solution is the FIWARE that supports data contextualization through

the ORION (Context Broker) model [33].

2.1.4 Human in the Loop Cyber-Physical Systems

As stated previously if we use the IoT and CPS paradigms together to make

Human centered applications we can we enter the realm of HITLCPS. Most of the

IoT applications nowadays don’t take the Human as an integrating part of the

system. And if we want to create technology that better serves Humans we need

to create systems capable of understanding Humans’ actions and intents as well as

their emotions [8].

In figure 2.2 we can see that in order to have a system with a close loop

we need four components: Data acquisition, inference (contextualization), future

inference and actuation. All of these phases are equally important and demanding,

and the concepts presented in this chapter can be linked to each of this phases. We

are applying the IoT concept to acquire data, with context-aware computations we

process it, be it in the present or the future, and we are applying the concept of

CPS by implementing behavior change interventions.

17

2. State-Of-Art

Figure 2.2: Control loop for a HITLCPS. [2]

2.2 Similar projects

In this section we present some projects that are similar to ours. We are only

considering project that are centered on smartphones applications and not on all

kinds of HITLCPS projects.

2.2.1 StudentLife

This study was developed by a research team in the Dartmouth College. They

developed a mobile application for the Android OS, that was used to monitor the

students and collect data from their day-to-day activities [3].

As can be seen in figure 2.3 they collect data from five sensors: accelerome-

ter, microphone, light sensor, the GPS and Bluetooth. They used these 5 sensors

to obtain context data about the user activity, conversation patterns, sleep periods

and location. They then combine that context data with some surveys and corre-

lated them with the students’ academic performances, mental health and with the

18

2. State-Of-Art

Dartmouth term life cycle .

Figure 2.3: StudentLife Architeture [3]

The study was conducted through a ten weeks period and they found some

correlations that were very interesting. For example they correlate the sleep patterns

with the duration of the study and found that the midterms were when the students

sleep less. They also found out that the stress tends to increase with the midterms,

and with the number of deadlines that the students have.

Although this study is the main inspiration to ours, they differ in various

points, namely we aim to develop a HITLCPS, that is, we intend to offer feedback

to the student and prevent bad academic performance while their study was mainly

statistical. There are also other differences, such as, the use of an IoT architecture

in our system, collecting data from more sources than just the smartphone, the

smartwatch application on our project, the use of ChatBot as means of interaction

with the students and the use of virtual/social sensors.

2.2.2 Smart GPA

The same researcher group from Dartmouth College, continuing his previous

work from StudentLife, created a new study with the aim of predicting the academic

19

2. State-Of-Art

outcome of students. For that they use a subset of the StudentLife dataset, that is

available online.

In this study they used activity, sociability, sleep, personality, class attendance

and studying as features for the classification. The personality features where taken

from the psychological surveys’ data and the other features where taken from the

Smartphone sensors data. They obtained good results with error in the predicted

GPA (Grade Point Average) of +-0.179 [34].

This study is a good starting point for systems that monitor students results,

but in their particular case they did not try to change the outcomes or even predict

it in real time. And so this work does not apply the concept of HITLCPS.

2.2.3 HealthyOffice

The HealthyOffice[35] was a study developed by a research team from the

Telecommunications Research Laboratory of Toshiba Research Europe in collabo-

ration with the University of Southampton and they developed a system to predict

and monitor the mood of office workers.

In this work they focus themselves on physiological data from wearable sen-

sors. They used the Toshiba SilmeeTM to obtain data of an Electrocardiogram, the

Photoplethysmogram (PPG) to obtain the heart rate and a sensor to measure skin

temperature. To obtain the ground truth for the mood they created an Android

application namely the HappyOffice application, where the users could give infor-

mation about how they feel. The application was also able to show information to

the user, in charts of text messages [35].

Although this study focus group is different from ours, they implement a very

HITLCPS like architecture, that resembles our proposed architecture. However they

lake a better mechanism to close the loop and give feedback. Their main method of

closing the loop is by giving aggregated information about the average state of the

mood in the office to the employers so they could do something about it. Our study

also differs by using the Smartphone as the main method of collecting data instead

of wearables.

20

2. State-Of-Art

2.2.4 BeWell

BeWell is an Android application developed by a team with researchers from

the Dartmouth University and the IT University of Copenhagen. In this project

they tried to access person well being through smartphones. They measured physical

activity, sociability and sleep throw smartphone sensor, namely GPS, accelerometer

and microphone.

In this study they make a close loop approach where they, monitor the people’s

day-to-day activities passively, infer their well being and inform them about the

assessment made. In their work they developed two ways to give informations to

the users, the first through a widget in the smartphone where they showed the users

their stats to the sleep, activity and sociability measures. And the second a web

portal where the user can see more information [36].

This work was done back in 2010 and as such, was just one of the first attempts

of monitor peoples well being. Our work differs from theirs because we use more

sensors in the smartphone, we used only the smartphone to present the information

to the user, our work is focus on students and we used an IoT architecture.

2.2.5 ISABELA vs Similar projects

As we stated before there are several differences between our project and the

previous projects in the are of mobile monitoring. In this section we make a overview

of those differences.

The main difference is, without doubt, the implementation of a HITLCPS

architecture where we give feedback. Apart from the BeWell project none of the

other gave feedback to the users and the BeWell only showed the data and did not

give any suggestions on how they could change their behaviors. Our system gives

feedback to the users trough ChatBot messages, and allows the user to engage in

a conversation with the ChatBot asking it what they can do to change a certain

behavior.

Another difference in our system, when compared to the other, is our ar-

chitecture. Our system’s architecture does not implement a simple server-mobile

application that is common in the majority of mobile application an in the similar

projects. We implemented an IoT architecture with an IoT middleware platform

that implements the communication protocols needed to communicate with all kind

21

2. State-Of-Art

of embedded devices. This in turn allows us to create new scenarios with more

devices as we please, in the future.

We also use virtual/social sensors on our project and intend to explore more

this area in the future. In comparison none of the project presented above explore

this possibility.

22

3

Overall System

In this chapter we present the system in a overall way. In the first section we

present the architecture of the system and of its components separately. In the last

section we present the ISABELA Application and its requirements.

3.1 Overall Architecture

The ISABELA application is a mobile application developed to promote good

academic results. The application context is explained in further detailed in section

3.2.

Figure 3.1: Project architecture

23

3. Overall System

As explained previously to create a system that implements HITLCPS we need

to implement four main capabilities: data acquisition, inference, future inference

and actuation. With that in mind we created the system architecture of figure 3.1.

Where the Smartphone, Smartwatch and embedded sensors are used to acquire data,

the FIWARE is our cloud based module that implements the storage capabilities

and allows the communication between all the devices. The Smartphone is also

where all states are inferred and where the actuation is made through notifications

and messages. The Smartwatch is the only device that doesn’t communicate directly

with the FIWARE, because of its architecture, but that implementation is explained

with further detail in chapter 4.

3.2 FIWARE architecture

As stated before the FIWARE is our back-end component that implements

the storage and communications capabilities normally seen in mobile applications

systems. In figure 3.2 we can see that the FIWARE itself is divided in several

modules, namely the ORION, the IDAS, the CYGNUS, the KEYROCK or IDM,

the COMET and the CKAN. There are more modules on the FIWARE but only

this six were used in this project, to this date.

Figure 3.2: ISABELA’s FIWARE architecture

24

3. Overall System

3.2.1 ORION

The ORION or context broken, as its name indicates, allows us to create

context. More precisely it allows us to create virtual entities to represent objects in

the real world or even people [33]. These entities are like classes they have a type,

a specific id and attributes. However unlike classes these entities can have different

attributes even if they are of the same type, for example in our case study some

entities of the type student can have the attribute heart rate while other may not

have it, depending if the student in case has a Smartwatch or not.

This is of course a must have capability on an IoT architecture where we want

to create a connection between the sensors and the applications that consume the

information. For this purpose this module implements a Representational State

Transfer (REST) API, that allow us to create, update and delete entities or at-

tributes.

Although, this module allow us to create entities and save their attributes, it

is only able to store the last instance of that data. That is if we update an attribute

value, the module only retains the last value. To save data for historic context we

need to implement other modules as the CYGNUS and the COMET.

3.2.2 IDAS

The IDAS module is the part of our system that handles the communication

with the embedded devices. Unlike the smartphone that communicates directly

with the ORION, the embedded systems communicate with the IDAS, that then

registers a new device and creates a subscription from that device to an entity

[37]. For example we can connect an Arduino with a light sensor to the IDAS and

subscribe that sensor to a entity type room in the ORION, and every time that the

sensor sends a new value that value is updated to the entity.

But as stated before the main task of this module is handling the communica-

tion with embedded devices that do not use Hypertext Transfer Protocol (HTTP)

protocols, allowing the use of constrained devices, which allows our system to inte-

grate more devices thus increasing the possible heterogeneity of the same. Although

in our specific case we only use Raspberry Pi 3 to communicate with FIWARE, and

this embedded system supports HTTP so we are using it as means of communica-

tion. The IDAS also suports Ultra Light 2.0 (UL2.0) a JavaScript Object Notation

(JSON) representative protocol that allow us to send shorter messages [37].

25

3. Overall System

3.2.3 CYGNUS

The CYGNUS module is responsible for coordinating the storage of the data.

That is, in this module we can create subscriptions from the entities to a specific

third party storage system, such as MongoDB[38] or MySQL[39], creating this way a

historic view of that data [40]. These subscriptions are made by type, and after the

subscription is made, for a specific type, whenever an entity of that type is created,

updated or altered the CYGNUS automatically saves those changes to the third

party database to which the subscription was made.

3.2.4 KEYROCK

The KEYROCK is an authentication module that manages all the other mod-

ules accesses, that is by creating accounts we can restrict the access of certain

information and functionalities to certain accounts. This allow us to solve a num-

ber of issues with users’ access to network, applications and services, also this way

we can secure the data and assure privacy[41]. This module implements a single

sign-on service, that is the users’ credentials (email and password) are the same to

all modules and are hosted inside of this module. When the user signs on he is

given an Access Token that is then used in the requests he makes to the remain

modules. Those modules query then the KEYROCK, to validate the user request,

before allowing the user to change or access any data.

This a very important module since the privacy of the data is one of the main

requirements to this project and with this module we can prevent personal data

from leaking to third parties, or even from being access by users which shouldn’t

have access to them.

3.2.5 COMET

This module is a short time historic, in charge of managing historical context

information, storing and retrieving it[42].This module implements REST APIs to

communicate with the ORION and with third parties (like the ISABELA applica-

tion). The API used to communicate with external applications was developed to

facilitate the retrieving of data with time context, that it this API allows us to ag-

gregate the data by time or even query specific time intervals. The API also allows

us to aggregate data with sums or by occurrence (to discrete values, like strings).

26

3. Overall System

This module is from where we get most of the data in the application, and

as such that makes it a very important component to keep the platform working.

This module also addresses the requirements for storing information in the project

as well as the requirements to have information contextualized in time.

3.2.6 CKAN

The FIWARE also offers support to initialize a CKAN dependency on our

architecture. However the CKAN is not a FIWARE module. The CKAN is the

world leading open-source data portal platform, that is a powerful data management

system that makes data accessible [43].

This platform much like COMET allows us to store and retrieve data, but this

module does not offer an API so ”powerful” as the one from the COMET to retrieve

data with historic context. However this platform has its advantages, for instance

this platform provides us with a Web interface that we can use to see the data.

Another big factor for the use of this platform is that this project is a case study

for the project SOCIALITE, and in this project the data that we collect is used by

another group of investigators, that try to create new models for data analytics and

artificial intelligence.

3.3 Mobile application architecture

This project’s mobile applications follows the design patterns of a common

mobile application, where we have a thread that handles the graphic display and

Users Interactions (UI) (UI thread) and an another group of threads that run in the

background to make everything work properly. This architecture allows us to have

a smooth application where the display is not affected by tasks that required a lot

of computation time.

The UI thread is in general responsible for small tasks like show a chart or

change the settings. This thread needs to be as free as possible to interact with the

user and this prevents malfunctions that otherwise occur. This thread is in charge

of displaying Activities and implementing interface function like sending data, or

changing a text when a button is pressed. Because of this, this thread is responsible

for starting the background threads and is also linked to the background threads

to exchange information. This communications is explained in further detail in the

27

3. Overall System

Figure 3.3: Mobile application architecture

fourth chapter.

The background treads or background services handle the more complicated

tasks like business logic, HTTP communication, data storage or even repetitive tasks

like sensor data retrieval. In our application there are two main background services

that are running continuously: the Main service and the FIWARE communication

service. The Main service as can be seen from figure 3.3 is responsible for obtaining

the sensors and context data, and the FIWARE communication Service is responsible

for sending data to the FIWARE.

In figure 3.3 the small services blocks represent a set of specific services that

were made to do some short-term tasks. These services are an extension of the

28

3. Overall System

IntentService Class [44], that class implements her own thread and request pool, and

execute the requests one at a time. These implementations are further explained in

detail in the fourth Chapter.

The Wear Service is responsible by the communication with the Smartwatch,

as well as sending the data that is received from the Smartwatch to the FIWARE.

This process is also explained in detailed in chapter 4.

The ChatBot framework is made to process the user messages, send them to

the API.AI, communicate with the FIWARE to fetch information that the user

request and to give Alarms. These implementations are explained in detailed in the

fourth chapter.

On figure 3.3 is also visible a Database (DB) that is used by the main services

as well as the UI Thread. Although all the data we collect is sent to the FIWARE

for safeguard, we dimmed necessary to have a DB in the mobile application to store

the data when no Internet connection is available.

3.4 Wear application architecture

The Smartwatch is not as powerful as a Smartphone, and as such the architec-

ture of the application on the Smartwatch has to be smaller. As can be seen from

figure 3.4, the wear application architecture like the mobile application, has an UI

Thread to handle the UI and background services to handle the more complex tasks.

From figure 3.4, we can see that the architecture of the Smartwatch’s applica-

tion is more minimal with just two background services. The Main service, like on

the Smartphone’s application, takes care of the sensors’ and context’s information

acquisition and the Wear Service handles the communication with the Smartphone.

Like in the Smartphone application, we also felt it was necessary to have a

DB on the Smartwatch to ensure that no data is lost before being sent to the

Smartphone. This architecture is explained in more detailed in Chapter four.

29

3. Overall System

Figure 3.4: Wear application architecture

30

3. Overall System

3.5 IoT kits

As was sated before we developed a kit composed by Arduino and Raspberry

Pi and some environmental sensors, namely a Temperature sensor, a Light sensor

and a Sound level sensor. The kit final aspect can be seen in the figure 3.5.The

position of the 3 sensor we used can also be seen from figure 3.5, the Light sensor is

on the top of the box, the sound (left) and temperature (right) sensors are on the

front side of the box.

Figure 3.5: IoT kit design

As it was explained before we used the Arduino to process the analog data from

the sensors. And the architecture can be seen in figure 3.6, where we can see how

the sensors are connect. All the sensor are connected to a power source represented

as the red wire, to the ground represented as the black wire and to each sensor as

a wire that is used to read the sensor values. The Sound sensor is an analog sensor

and as such need to be connected to the analog input pins (left side pins) on the

Arduino, the Light and Temperature sensors are digital and are connected to the

digital pins (right side pins).

As it was also stated the Arduino by itself is not able to handle the Internet

communication. It needed additional hardware or a Raspberry Pi like on our case.

31

3. Overall System

Figure 3.6: Arduino and sensors architecture

Figure 3.7: Rapsberry and Arduino connection

32

3. Overall System

We choose to use Raspberry Pi because it also gives more processing power and

memory, what may come in hand if we decide to make our project more distributed

in the future. As we can see from figure 3.7 the Arduino and the Raspberry Pi

work with different voltages values and as such we need to connect them through a

converter.

3.6 ISABELA application

In this section we present the overview of the mobile application, the context

in which it is inserted, the description of the application and its requirements.

3.6.1 Context

As was stated before this mobile application was developed to improve stu-

dents’ academic outcome. With this application we want to get a better scope of

the students’ day-to-day routine and try to prevent behaviors that can lead to poor

academic results or even academic dropout.

One of the leading causes for students to dropout of college is depression[10].

There are many factors that can lead to depression among college students, and

among those there some physical factors like the lack of sleep, not doing enough

exercise or social isolation [10]. If these behaviors could be monitor and prevented

we can promote better academic outcomes and reduce, even if slightly, the number

of students that drop out from college.

In this mobile application we also try to implement a HITLCPS architecture,

where we include the students in the process by making them the first actuators to

change their behaviors. Is important that the students are involved in the process

because in the majority of the cases they are the ones that have to change these

”bad” behaviors.

3.6.2 Description

ISABELA is a HITLCPS application that uses the Smartphone’s sensors, as

well as other sensors, to detect behaviors that can affect students’ academic out-

comes. The application is also part of a larger platform that implements an IoT

33

3. Overall System

architecture that allows it to collaborate data from different sources and contextu-

alize the environment.

This application main goal is to improve students’ outcomes, and as such is

meant to be used by college students, in particular the students of the University of

Coimbra. This application monitor the students continuously, twenty four hours a

day, to get Smartphone’s sensor data and analyses the student day-to-day activities.

The sensors data is retrieved and sent to the FIWARE in real-time or when a

connection to the Internet is available. The data is then retrieved from the FIWARE

with specific time intervals and is processed and showed to the User, so he can see

by himself how he is doing. When some irregular behavior is detected, for example

if the user needs to do more exercise, the application sends the user a notification

showing him he has a new message form ISABELA(the ChatBot). Those messages

are customized for the type of problem at hand and the user can ask following up

questions, like for example ”what type of activity can I do?” and get suggestions

from the ChatBot like going for a run or a bicycle ride. If the user implements

the behavioral changes suggested the application no longer will detect the specific

problem and the control loop is closed by the user implementing this way a HITLCPS

architecture.

In this application we use the students activity, sleep, social engagement and

location to infer the student behavior. The flow of the application is explained in

more detailed in chapter 4. As well as the processing of the information on the

mobile application, what data is retrieved form the Smartphone and how we made

the data acquisition.

3.6.3 Requirements

In this section we present the mobile application requirements, functional and

non-functional requirements.The parameters for every requirement are exposed in

table 3.1 and as can be seen the parameters used to describe the requirements are

priority, description, actors, pre-conditions, event flow and expected outcome.

34

3. Overall System

Table 3.1: Requirements’ parameters

Parameters Parameters’ Description

Priority

Must: requirement is essential to the project.
Should: requirement is important to the project, but the system should
work without it.
Could: not implemented requirements that wont affect the implementation
of the important requirements.
Will not: not implemented requirements for the project,
considered as future work.

Description Overall exposure of the requirement.
Actors Systems that intervene with the application.
Pre-conditions Conditions necessary to the requirement functionality

Events Flow
Description of the actions that an actor needs to fulfill in order
to get the expected outcome.

Expected outcome The expect result from the action.

In the next pages we present the application requirements. Starting for the

functional requirements that are presented in more detail and in the end we make a

subtle overview of the non-functional requirements.

3.6.3.1 Functional Requirements

Intro

• Priority: Should.

• Description: the application should present a intro with a reference to the

University of Coimbra.

• Actors: the user.

• Pre-conditions: None.

• Event-flow: The user clicks the application’s icon from the smartphone’s

menu, the application starts and shows a new screen.

• Expected outcome: The screen shows a new activity with the text ”Made

by University of Coimbra”. The screen then changes to the Login screen after

5 seconds.

Login

• Priority: Must.

35

3. Overall System

• Description: the application must have an authentication mechanism to en-

sure data security and privacy.

• Actors: the user.

• Pre-conditions: the user must be register in the system and the Smartphone

needs an Internet connection.

• Event-flow: The user must insert a valid username and password and press

the ”Sign in” button.

• Expected outcome: If the Login is successful the application grants the user

access to all functionalities. If the Login is unsuccessful the user needs to try

again and make sure he meets all the pre-conditions.

Log out

• Priority: Must.

• Description: the application must have a mechanism to Log out the user.

• Actors: the user.

• Pre-conditions: the user must be Logged in.

• Event-flow: The user presses the Logout button from the Navigation drawer.

The application changes to the Login activity.

• Expected outcome: If the Logout is successful the application cancels all

services and the screen changes to the Login activity.

Sign Up

• Priority: Must.

• Description: the application must allow the user to register a new account

in the system.

• Actors: the user.

• Pre-conditions: the Smartphone needs an Internet Connection.

• Event-flow: From the Login screen the user presses the ”don’t have an ac-

count button” and a new screen appears. The user must then insert a valid

username and password and press the Register button.

36

3. Overall System

• Expected outcome: If the Username and password are valid the registration

is successful and the app returns to the Login screen.If the registration fails

an error message appears and the user can try again.

First configuration

• Priority: Must.

• Description: the application must ask the user for some information at the

first login.

• Actors: the user.

• Pre-conditions: the Smartphone needs an Internet Connection.

• Event-flow: If it’s the first time that the user Logs in the application opens

the first configuration screen. The user must then indicate the configurations

and press the ”Finnish” button.

• Expected outcome: If the configurations are saved with success the appli-

cation goes to the Main screen.If the configurations cannot be saved a error

message is showed and the user must try again.

Settings

• Priority: Must.

• Description: the application must have an activity that allows the user to

change his configurations.

• Actors: the user.

• Pre-conditions: the Smartphone needs an Internet connection.

• Event-flow: If the user presses the Settings button from the Navigation

drawer. The application changes to the Settings screen. Where the User can

change the configurations made in the First Login and also Login to Facebook.

• Expected outcome: If the configurations are saved with success the appli-

cation gives a message ”saved with success”.If the configurations cannot be

saved a error message is showed and the user must try again.

Login with Facebook

37

3. Overall System

• Priority: Should.

• Description: the application should allow the user to Login to Facebook.

This Login is not used as authentication is just a mean to get more information.

• Actors: the user.

• Pre-conditions: the Smartphone needs an Internet Connection and the User

must have a Facebook account.

• Event-flow: From the Settings Screen the User must press the ”Login with

Facebook” button, a pop-up appear prompting the user for his credentials to

Facebook. After the Login the pop-up disappears and the text on the button

changes to ”Log out from Facebook”.

• Expected outcome: If the Login is successful the pop-up notificates the

user that the Login was successful and the button changes to ”Log out from

facebook”, that button can then be used to Log out.

History screen

• Priority: Should.

• Description: the application should allow the user to browse though his

information.

• Actors: the user.

• Pre-conditions: the Smartphone needs an Internet connection.

• Event-flow: from the navigation drawer the user presses the History button,

then he can see the information of his activity, location and sociability.

• Expected outcome: If the information is retrieved with success from the

Fiware a chart with bars or a line chart appear indicating the values of the

selected information in the picked time window.

ChatBot

• Priority: Should.

• Description: the application should have a ChatBot that can provide infor-

mation to the user.

• Actors: the user.

38

3. Overall System

• Pre-conditions: the Smartphone needs an Internet Connection.

• Event-flow: from the navigation drawer the user presses the ChatBot button,

then he can see the messages that he exchanged with ChatBot. The User can

then ask questions to the ChatBot.

• Expected outcome: If the smartphone has an Internet connection every

message sent receives a response in a few seconds.

Events

• Priority: Should.

• Description: the application should have an Activity where the User could

see his next events, for example classes or workouts.

• Actors: the user.

• Pre-conditions: the user must give permission to access his calendar.

• Event-flow: From the navigation drawer the user presses the Events button,

then he can see a list of that week’s events. If he presses any event he can see

more detailed information about the events.

• Expected outcome: When the button is pressed the screen changes and the

list should be populated with the events in a few seconds. If there are no

events a message us showed.

Charts with information

• Priority: Should.

• Description: the application should have a main activity that shows a resume

of the information.

• Actors: the user.

• Pre-conditions: the Smartphone must have Internet connection.

• Event-flow: from the navigation drawer the user presses the Home button,

then he can see a screen with 3 fragments that can be changed with horizontal

slide.

• Expected outcome: if the information is retrieved with success from the

Fiware the charts should refresh every few seconds.

39

3. Overall System

Activity, Location and Sociability features

• Priority: Must.

• Description: the application must collect all the information needed from

the sensors and process it to infer Activity, Location and Sociability.

• Actors: none.

• Pre-conditions: the user must give all the requested permissions.

• Event-flow: After the Login the application starts the services necessary to

collect data.

• Expected outcome: if all the permissions are granted the application can

gather the information necessary to infer Activity, Location and Sociability.

Store information

• Priority: Must.

• Description: the application must be able to store information until a Inter-

net connection is available.

• Actors: none.

• Pre-conditions: none.

• Event-flow: when the information is gathered from the sensors it is stored

on local database on the Smartphone, and remains there until it is sent to the

FIWARE.

• Expected outcome: if no Internet connection is available the application

stores the sensors information on a database in the Smartphone. When the

information is sent to the FIWARE the information is deleted from the Smart-

phone.

Send information to the FiWARE

• Priority: Must.

• Description: the application must be able to communicate with the FIWARE

to send all the data detected from the sensors.

40

3. Overall System

• Actors: none.

• Pre-conditions: the Smartphone must have an Internet connection.

• Event-flow: when the User Login the application starts a service, that sends

the information from the Smartphone to the FIWARE. The information is

deleted from the Smartphone after the confirmation is received.

• Expected outcome: if the information is sent with success to the FIWARE

a response code is received and the information is deleted from the local

database, if the request fails the service tries to send the information again

after a few seconds.

Detect behaviors that lead to bad performances

• Priority: Should.

• Description: the application should detect behaviors that can be bad to the

user’s academic performance.

• Actors: none.

• Pre-conditions: Internet connection.

• Event-flow: every time that the charts are refresh on the main screen the ap-

plication runs services that detect behaviors detrimental to the user’s academic

performance.

• Expected outcome: if a harmful behavior is detected the application should

change the chart colors to shades of red to indicate the problem. The ChatBot

should also send a new message indicating the problem and the application

should send a notification to that new message.

Give the user suggestions

• Priority: Should.

• Description: the application should give the user suggestion through new

messages from the ChatBot.

• Actors: the user.

• Pre-conditions: the Smartphone must have an Internet connection.

41

3. Overall System

• Event-flow: when a problem is detected a message indicating that problem

should be received from the ChatBot. The ChatBot should also be able to

answer the user’s questions regarding that problem.

• Expected outcome: when a new message indicating a problem appears the

user can ask for example ”what can i do about it?” and the ChatBot should

be able to answer that question with meaningful information.

3.6.3.2 Non-functional requirements

These requirements are common to the majority of the mobile application,

and most of them can be solved by implementing good design patterns. The non-

functional requirements are very important in the development of a mobile applica-

tion, because some times a failed to implement one of this requirements is enough

to make the user delete the application. The non- functional requirements for the

ISABELA mobile application are:

• Accessibility: determines if all users can utilize the application, the appli-

cation should not suffer from limitations to the number of connect users.

• Performance: the application should not affect the battery life too much,

the memory or performance of the Smartphone.

• Privacy: all data collected must remain private and secure.

• Support: the application should be supported by the majority of the An-

droids devices currently on the market.

• Usability: the application must have a pleasing UI and also features that are

important to the users.

The accessibility is a requirement of the system and not of the application. The

FIWARE itself handles the accessibility. The good design of the FIWARE ensures

that the system is always accessible independently of the number of connect users.

The Performance is handle by the use of background services to perform the

more complex tasks, like it was explained on section 3.3. By implementing back-

ground services we are freeing the UI thread and ensuring a more responsive appli-

cation.

The privacy of the data collect from the application is ensure by the authen-

tication and by encrypting the mobile database. Furthermore the data is only store

42

3. Overall System

on the mobile phone for short periods of time.

We define Support as the number of devices that support our application. Our

application is supported by all devices with an Android version greater than 4.0.3.

The current market share for versions lower than that is 1.8%, and as such we ensure

that our application runs on 98.2% of the devices currently on the market. To ensure

this compatibility is necessary to use some older API and classes that Android has

deprecated.

Usability of the application is also a big requirement now-a-days, because user

are becoming more demanding about the aesthetics of the applications. We took

that in account when we were developing the application and tried to implement an

interesting and usable UI. Some examples of that are the animations on the charts,

the navigation drawer and the theme of the application.

43

3. Overall System

44

4

Development

In this chapter we explain the development of the system. We start by ex-

plaining the Smartphone development followed by the Smartwatch application de-

velopment.

4.1 Smartphone application

In this section we explain in detail the development of the mobile application.

We can divide the development of the application on 4 sections the acquisition,

the communication, the storage and the processing and in the end we present the

application flow with screenshots of the application.

4.1.1 Data acquisition

The acquisition of data by the Smartphone is either made by direct acquisition

of the sensor values, or by context acquisition, that is we use on or more sensors

to acquire a virtual sensor value (for example class attendance) or we get context

information from the Smartphone’s SMS and calls.

4.1.1.1 Physical sensors

The physical sensors are sensors that are implemented in the Smartphone by

hardware. To obtain the values of the Smartphone’s sensor the Android OS provides

an API, the android.hardware API [45]. This API has classes dedicated to manage

the sensor acquisition, namely the SensorManager class [46]. This class allow us

to retrieve the values of all the sensors of the Smartphone. The steps to do this

acquisition are:

45

4. Development

1. Get the sensor manager instance from the application context.

2. Get the sensor from the sensor manger, for example the light sensor.

3. Create a listener that implements the code that needs to run when that sensor

value changes.

4. Register the listener to that sensor with the sensor manager instance.

These steps need to be replicated to every sensor we want to use, except for

step 3 where the listener can be the same. For 2 different sensors we only need to

implement a condition that verifies what sensor triggered the event and implement

a different code on the listener. As it was stated before these listeners are triggered

by events, namely a change on a sensor value. This event returns a object from

the SensorEvent class[47]. The SensorEvent objects have 4 attributes that can

be retrieved. These attributes are: the accuracy, the sensor type, the timestamp,

and the values from the sensor. Using these 4 attributes we can gather a lot of

information, for example the sensor type attribute lets us see what sensor triggered

the event and the accuracy allow us to disregard events that may not really happen.

But the values attribute is the more relevant attribute, because the value that the

sensor returns is in that array. Generally the value of the sensor is returned by the

value on the index zero of the array. But there are some sensors that return more

than one value like for example the Accelerometer.

In our case we implement the SensorEventListener interface[48] on our Main-

Service. As can be seen from figure 3.3 that service is responsible for the data

acquisition. In this service we created a variable for every sensor we read. Those

variables are then updated with the latest value of the sensor whenever an event

triggers the listener. This service runs as well some Timers that are responsible for

trigging the storage of the data. We set the timers to store the data every 5 sec-

onds, because we wanted to have the best resolution possible when we pos-process

the data. The architecture described can be seen on figure 4.1.

The physical sensors that we take values from in this project are indicated in

the list below:

• proximity sensor.

• light sensor.

46

4. Development

Figure 4.1: MainService flow diagram

Apart from these 2 values we also measure other parameters that rely on phys-

ical sensors, but are not taken directly from them. We measure the sound amplitude

and to measure it we need a different approach that uses Android MediaRecorder

API [49]. That API records the microphone response and stores it on a file or in

a buffer. In our case as we only need the amplitude in real time we opted for the

buffer approach. This approach also serves as a privacy measure since we are not

storing any microphone data on the phone. The flow of the data from this ”sensor”

is the same as the other physical sensors. We store the value of the amplitude on a

variable and that value is store when a timer ends.

Another parameter that we take from physical sensor is the Activity. To

measure the Activity we use the Google Activity Recognition API [50] that is part

of the Google location API. Although they don’t specify what sensors the API

uses to infer the Activity, they only say that it uses short busts of low power sensors

data[50]. We firmly believe that this API relies primarily on the Accelerometer data.

To implement this API we need to implement a listener and we set a minimum time

period in which we get updates from the API, in our case 1 second. This Listener is

implemented on another service that extends the IntentService class[44],and as such

run on its own thread. This service communicates with the MainService through

Local Broadcasts[51] (the use of Local broadcasts is explained in more detail in the

47

4. Development

communication section of this chapter). When the MainService receives a brodcast

from the Activity Recognition service it stores the value of the activity on a String.

The value of that variable is then stored when a timer ends. The API also returns

the value of confidence that it has on the result, and we can use that confidence to

pos-process the data.

The possibles results from the Activity Recognition API are:

• In vehicle

• On Bicycle

• On foot

• Running

• Walking

• Still

• Tilting

• Unknown

In our project we consider that there is no need to differentiate the types of

exercise and as such the On Bicycle, On foot and Running result were changed to

Exercise.

We also took the Location based on Global Positioning System (GPS) from the

Smartphone. This also required a different approach from the one explained before.

We implemented the Fused Location Provider API[52]. This API was developed by

Google specially to the Android OS. The Fused Location API is designed to improve

the precision and battery life, but none the less we have to take some measures to

improve battery life, like a bigger interval between data acquisition.

The method we used to get the precise Location consists of creating a Loca-

tion Listener[53] that implements a client to the Fused Location API, and receives

location updates from time to time. The rest of the architecture is equal to all the

other physical sensor. The value of a variable on the MainService is updated by

sending a Local Broadcast and that variable’s value is stored on the Database when

a timer ends.

It should also be noted that to obtain this precise Location in a accurate way

we need the user permission to obtain the course location and the fine location. A

48

4. Development

list of all the permissions used on the application and the reason they are used are

given in the appendix B.

4.1.1.2 Context acquisition

Some of the data we collect from the Smartphone does not depend on hardware

and as such we call it context data, because it gives us a better insight of the student’s

life. In this section we explore this kind of data and how we process its acquisition.

The data we obtain by context is:

• Calendar information.

• SMS information.

• Alarms information.

• Calls information.

• Discrete Location information.

• Facebook information.

By calendar information we are referring to the student’s academical calendar,

classes, exams, deadlines and events that are scheduled. To obtain this information

we need that the student register the Inforestudante[54] calendar on the Smartphone.

To do so the Inforestudante already provides the student’s with a link that they can

use to export their calendars to their Google account. We also need the user per-

mission to access the calendar information, as it is considered sensitive information

by the Android OS.

To detect the classes, exams or deadlines we created a service that checks all

the events on the Inforestudante’s calendar. The service check the description of the

event, if it’s a class, an exam or other, and check if they are set for the current time.

This service then updates a variable on the MainService through a Local Broadcast

and the MainService takes care of storing this info. This service unlike the other it’s

started by a timer, with time intervals of 30 seconds.

The SMS detection work the same way as the calendar detection, we created

a service that goes through the SMS. Although this service only checks the SMS

in the last 5 seconds, because we want to obtain a history of the SMS sent and

received. For privacy reasons we don’t see the content of the SMS. We only see the

timestamp to make sure the SMS was sent or received on the last 5 seconds. We

49

4. Development

check the type of SMS to separate the received SMS from the sent ones and we also

see the destination or source of the SMS.

We use the SMS destination and source to check the number of different people

that the user contacts. To keep the user privacy we encrypt the number by making

it a unique string without meaning. These strings are never decrypt and we only

used them to obtain the number of different person the user contacts. This service

works in the same way as the calendar check service, it is triggered by a timer and

when it ends it sends the result to the MainService through a LocalBroadcast.

The Alarms information is also obtained through a service that is triggered

periodically, in time intervals of 30 seconds. This service checks if there is any Alarm

set and how much time before the alarm goes off. It then returns these values to

the MainService that stores them.

The Calls information work in a different way: this service is not based on a

IntetService but on a BroadcastReceiver[55]. The broadcast Receiver class work in

a different way, the receiver must be declared on the android manifest, and we must

create a filter for the intent we want to detect. Tn this case we are setting a receiver

for a intent that is sent by the OS whenever the phone makes or receives a call. In

this service we check the type of call, made, received or missed, the duration of the

call and the destination or source (this one is encrypt in the same way as in the SMS

detection). These values are then sent to the MainService through Local Broadcast

and process in the same way as the other services.

The discrete Location information is obtained through the Wifi networks avail-

able. To be more concrete we consider 3 possible locations: Home, University and

Other. We scan the available networks through a Wifi scan that returns a list with

the Service Set IDentifier (SSID) and the strength of the signal for each network.

We then check if any network corresponds to the the network of the University

(Eduroam network) or to the User’s House network (the user picks this network

from the list of configured networks in the phone, when he does the first Login). If

none of the networks correspond to either the House’s or the University’s networks

we consider that the user is on Other location.

On Our mobile application we also interact with the Facebook, to get informa-

tion about the user social network. To do so we are working on a API that is being

developed by Helder Senna, a Master’s student of Informatics Engineering. Presently

the application only uses the number of likes in the last hour, and to get this infor-

mation we created a service that implements the Facebook’s Graph API[56]. The

50

4. Development

Graph API is an API developed by Facebook for developer and uses HTTP/REST

requests to get this information, and because of that the service also extends the

IntentService class, it needs to be a background service. When the request gets a

response this service sends the processed information through a broadcast intent to

the MainService. Since this service only runs once per hour, we stored the value on

a different entity of the DB(where the other Facebook values will be store in the

future as well), and only update the value to the Fiware once per hour as well.

4.1.2 Communication

The application has 3 external communication modules: Fiware’s communica-

tion module, the ChatBot communication module and the Facebook communication

module. Apart from these 3 external communication modules we also have the in-

ternal communication between activities and services. In this section we start by

explaining the internal communication and then we present the 3 external commu-

nication modules.

4.1.2.1 Internal Communication

When we refer to internal communication in this document we are referring to

communication between the elements (activities and services) of the mobile appli-

cation.

As it was already stated in other section of this document, the communication

between Activities and Services is made with the the use of Local Broadcasts. To

do so we use the LocalBroadcastManager class[51], that as the name indicates is

a class created to manage the local communications. This class allow us to send

broadcasts through intents[57]. These broadcasts can then be received by Broadcast

Receivers[55] with the specific intent filter[58].

The Intent class, like the name says, is taken by the Android OS as an intent

to do something. Intents normally are used to swhich between Activities or to

start services, but can also be used to communicate with Local Broadcasts. Intents

work like bundles of information. We can store values or even objects in them and

used them to send this information. To use a intent as a means of communication

we need first to give them a component name, that will work as an identifier to

this specific type of message. Then we use the LocalBroadcastManager class to

send this intent to any service or activity of the application’s process. And to

51

4. Development

receive this information, on the destination, we have to register a Broadcast Receiver.

Once again the LocalBroadcastManager manages this registration and besides the

Broadcast receiver we also need to create an instance of the IntentFilter class. This

IntentFilter accepts one argument that has to be a String equal to the component

name given to the Intent that was sent. This way we are filtering all the intent

until we find the one we want. Then we can define the action we want the system

to do on the Broadcast Receiver. A service can have multiple BroadcastReceivers

instances registered to different IntentFilter like for example the MainService that

receives information form multiple services. An diagram with an example of the

usage of this implementation is given on figure 4.2.

Figure 4.2: Example of the communication between 2 distinct services using Local
broadcast Manager and intents.

With the implementation we described above we can create ”channels” of

communication between the services or between a Activity and the services. These

”channels” are our main means of communication, for real time data sharing. Al-

though we also use the DB as a mean of sharing information between the services,

that is, we store the information in one service and retrieve it on other service by

querying the DB. This topic is explored in the next section.

52

4. Development

4.1.2.2 FIWARE communication

The FIWARE has multiple modules as it has been stated before, but we only

communicate with 4 of them: the ORION, the IDAS, the COMET and the IDM. All

of these communications are made using HTTP/REST requests, and to implement

them we use services that extend the IntentService class, because all the requests

need to be asynchronous. The communication with the ORION is made with 3

objectives: create entities, update or add attributes values and retrieve attribute

values.

If there isn’t any Access Token, object return from the Oauth 2.0 authenti-

cation, in the application the application asks the user for the Log in. When the

user Log in the application makes an POST request to the IDM, this post request

creates a new Access Token for the user. If the user chooses to create a new account

the application also stats a service that implements a POST request to create a new

user account. After a successful login, the FIWARE returns a Access Token that is

used in the requests to the other modules. Those modules then validate the Access

Token with the IDM before returning a response.

The first interaction that the application does with the ORION, is when the

user Logs in. The application needs to do a GET request (an REST request to

retrieve information) to checks if the entity with the user IDentification (ID) already

exists. If not the application does an POST request (an REST request to create an

entity) to create a new entity for the user.

Also if there isn’t a entity with the user ID on the ORION the application

considers this as the user first Login and ask for the first configurations. In these

first configurations the user needs to set the ID of the device (Kit with Rapsberry and

Arduino) that is on his room. To do this configuration the user chooses between

a drop-down list options. To get theses devices ID the user application needs to

make a GET Request to the IDAS (devices management module) to get all the

available devices on the system. Then the application filters the devices that aren’t

already associated to some entity. After the user finishes these configurations the

application needs to link the the user’s room entity to the selected device through a

PUT Request (HTTP request to replace an entity with the sent one). This request

replaces all the entity with a new one that is sent as the payload of the request.

And the application also sends the configuration information to the user’s entity

through a PATCH Request (HTTP Post Request where the payload id and type are

not included). Unlikely the PUT request this request only updates values for the

53

4. Development

sent attributes or creates a new attribute if there is no attribute with the specific

attribute name. This procedure repeats itself for the Settings activity where the

user can change this configurations.

Figure 4.3: diagram of the operation of the Fiware communication service and
Fiware patch service services

After these first steps (Login/Registration and Configuration) the application

starts the Fiware Communication Service service. Like the name indicates this ser-

54

4. Development

vice is responsible for coordinating the communication with the FIWARE. This

service executes its own thread and runs on the background so as not to affect

the UI thread. This service has 3 main functions: read the stored data from the

database, iterate the returned values one by one and start the services that execute

the PATCH Request services (as explained before this request updates the values

of the attributes of a entity). To make sure no data is lost the entity that repre-

sents the information sent on the database is only deleted when the PATCH service

receives the confirmation code from the FIWARE. This service sends the data of

three entities: the data from the Smartphone that corresponds to the user, the data

for the sleep classification and the data from the social sensors (Facebook data). A

diagram that represents this procedure can be seen in the figure 4.3.

The other module that the application communicates with is the COMET.

The COMET implements a REST API that allow us to make GET requests (make

queries for information). These requests allows us to configure what information we

want, in which time interval and how we want it aggregated. The communication

with this module is made in several parts of the application, but the majority of

these requests are made to get the display information for the main screen. The

application also request information from the COMET to make the historic screen

and for the sleep classification. These services that communicate with FIWARE,

unlike the previous ones, are started by the UI thread and return the values by local

broadcasts.

There are some other services that communicate with the FIWARE, like the

WearListener service and the ChatBot service. But those services and communica-

tions implement the same logic as the one described above. These communications

are also explained in the next subsections.

4.1.2.3 Wear communication

For the communication between the Smartphone and the Smartwatch we im-

plement the Android Wear Message API[59], an API developed by Google to facili-

tate the communication between these devices. This API allows us to set a listener

for incoming messages on the Smartphone by implementing the WearableListen-

erService interface on a class. For this class to work we also have to define it as a

Service on the Android Manifest and define the Intent-Filters that we want to detect

(this filters are also define by the API).

Also on the Smartphone we have to define a eXtensible Markup Languague

55

4. Development

(XML) file with the Capabilities of that Smartphone. As the name indicates Ca-

pabilities serves as an indication of what a device can or can’t do, and this is used

as way to find the available devices that have the desire capabilities. For example

we could define a capability for being able of sending SMS. In this specific case a

Smartphone would have this capability but a Tablet wouldn’t. It is easy to see how

this implementation can help us to develop applications that don’t waste resources.

But in our case we don’t need any specific capability and as such we define a simple

capability just for the implementation.

As we stated before we need to define capabilities for a device so we can find

them on the Smartwatch, and the Smartwatch does this through the Capabilities

API[60]. This API lets us find the Nodes[61], the devices on the Android wear

network. These nodes are represented by a opaque singular ID, and we can also see

if the Node is nearby (that is if it is available through the Bluetooth connection or

through the cloud API).

These APIs allow us to share information between the Smartwatch and the

Smartphone, and also delegate some tasks that require more computation power to

the Smartphone. But, in our case, we implement these APIs because it is a recom-

mendation by Google that we use the Message API when trying to send information

to the cloud. This recommendation is due to the fact that although Smartwatch

can connect to networks over Wifi when it is away from the Smarphone (to stay

connected to the Smartphone through a cloud system), this connection is not possi-

ble when the Smartphone is nearby once that the connection between the 2 is made

by Bluetooth and the Wifi is turned off to save battery. So the only way to ensure

reliability is by using the Message API.

On a overhaul we implement a listener, that waits for new messages from the

smartwatch. We make a search for available Nodes on the Smartwath and send the

information for the closest one. The information is received on the Listener and

processed. On the this Listener the information is stored on a DB, and this service

also tries to send the information to the FIWARE. The wear information is sent to

the FIWARE through a PATCH request. This request updates the values if they

already exist or create these attributes on the student’s entity in case they don’t

exist.

56

4. Development

4.1.2.4 ChatBot communication

The ISABELA’s ChatBot was created using the API.ai[29] as it was stated

before. To obtain responses from this platform we need to implement a Android

Software Development Kit (SDK) that the API.ai provides to developers. This

SDK implements an synchronous REST API and as such it needs to be called on a

background thread.

Figure 4.4: Flow of events when a user sends a message to the ChatBot

We created a service that uses this SDK, handles the responses and also inter-

57

4. Development

acts with the FIWARE when needed. Since this service doesn’t need to be always

running and the user’s messages have temporal context, that is the user wants the

responses in the same order as the messages he sent, the service we created extends

the IntentService class. As it was stated before many times this class runs on its

own thread and creates a queue for the instances that are called, that is, if the user

sends two messages the second message is going to wait for the service to process

the first one. This help us maintain the temporal context we previously refer.

As we can see from figure 4.4 every message that the user chooses to send starts

a new instance of the ChatBot service,.The SDK then processes the message and

waits for a response. When a response arrives the service processes it and executes

the intended action. If application needs additional information, it starts one or

more service that request that information from the FIWARE. The actions that are

currently implemented on the ChatBot are:

• Show alarm messages (Bad behavior notifications).

• Follow-up response to an alarm.

• Request info from the environmental sensors.

• Set an Alarm Clock.

The first 2 actions where the intended actions when the ChatBot was proposed

on this project, because we wanted to use a more user friendly approach to close the

loop (give user information about is behavior). The first action (show alarm mes-

sages) doesn’t require user interaction. The application sends a predefined Message

to get the ChatBot intended alarm. Then the user can ask questions about what we

can do about that particular behavior (follow-up questions about the alarm). For

example if an alarm is raised about the user exercise levels, a possible conversation

between the user and the ChatBot can be:

ChatBot: ” Hey we should do more exercise.”

User: ”Any suggestions?”

ChatBot: ”Let’s go for a run.”

The third action is used to obtain info from the FIWARE. That is information

from the IoT kit that the student has at home or from the devices at the University.

Like it is represented on figure 4.4 the ChatBot Service verifies if the response, taken

from Api.ai, needs FIWARE information and, if so, initiates a new service that deals

with the FIWARE communication and also delegates the UI update to that service.

58

4. Development

The last action is just an example of functionalities that the ChatBot can have

in the future that will make it more useful to the user. Right now it only has this

functionality to set alarms, but as future work it could be able to suggest user spots

to socialize, set events on the user agenda or even call someone for the user (More

about future implementations on chapter 6). Although this is a simple implemen-

tation, it already allows the ChatBot to create new follow-up answers to the alarm,

more specifically the alarm that it’s raised when the user needs to sleep more. For

example the dialogue can be:

ChatBot: ”You should sleep more if you want to be healthier.”

User: ”Ok, set up my alarm for tomorrow at 8.”

Chatbot: ”I set your alarm to 08:00:00 of 2017-06-29.”

We believe that the ChatBot should be intuitive and if it tells some informa-

tion to the user, it also should be able to give him the details and perform simple

action related to that information. Other example of a simple implementation is for

example: if the ChatBot is able to warn the user that he is about to be late to a

class, the user should also be able to ask where the class takes place. This way he

doesn’t have to switch between applications or search by information.

4.1.3 Storage

First it is important to note that we did not create the database on the Smart-

phone with the intention of having a set of structured data. Our only intention

was to have a mean to store data when there was no connection available to the

FIWARE. And as such the database on the Smartphone is used only to prevent data

loss. Nevertheless in this section we present the structure of the entities we used in

this database as well as the means we used to create and access the database.

Figure 4.5: greenDAO working flow[4]

59

4. Development

We used an Android ORM library, greenDAO[4], to create and access the

database. This means we also used the code first approach. The code first approach

means we write the code first, that is, classes that represent the database entities.

Then we create the database with those classes. And as we can see from figure 4.5

the greenDAO library works as an intermediary between the DB and those classes.

As was stated before this database works as safe storage to the acquire data

and as such our database entities represent that data. We tried to simplify the DB

architecture, and as such there are no relations between the data. The entities that

we used can be seen on figure 4.6.

Figure 4.6: Database entities/ORM classes

As can also be seen from figure 4.6 we also used the DB to save some config-

urations like the values of the graphs from the Home screen (Graph variables), the

Personal configurations for the application (Personal info) and the status for the

alarms from the user behavior (AlarmVariables). On these three entities we only

60

4. Development

save a instance at a time with the ID 0. When we want to change any attribute

we replace the existing entity for a new one. There was other approach that could

be used, but since we already were using the ORM architecture this was the easiest

way for us.

From figure 4.6 we can also see that the Social data only has two attributes.

It may look unnecessary to use a DB to hold such a small entity, but as we stated

before this module is under development by another student and we wanted to leave

the architecture ready for implementation of this Social information API.

The Smartphone data, Sleep data and Wear data are the entities that hold the

sensors information. The Smartphone data holds the majority of the information

gather in the Smartphone. The Sleep data entity keeps the data that is used for the

sleep classification. And the Wear data stores the information that is received from

the Smartwatch. All these entities have a Time stamp attribute, that represents

the time of acquisition of the data (in the Wear data the Time stamp is also send

from the SmartWatch). This attribute is important to maintain time series when

the data can’t be sent immediately to the FIWARE.

The Message entity stores the messages that are sent from the user to the

ChatBot, as well as the one the user receives. This information is only store in the

Smartphone for privacy proposes, and is only used to display a chat history to the

user.

4.1.4 Processing

As we stated before we obtain 3 main context information from our data the

Activity, the Location and the Sociability. But in this section we divide the data

processing in 4 sections: Activity, Sleep data, Location and Sociability. Although

we consider Sleeping as an activity the sleeping data classification is processed in an

different way from the activity classification and as such deserves a more detailed

explanation. We also describe the way the alarms are performed.

4.1.4.1 Activity

As it was already stated on section 4.1.1.1 we used the Google Activity Recog-

nition API[50] to infer the user Activity. Although this facilitate our work, it also

limits our processing options. But we still can make some operations over the results

of the API to make the classification more suitable to our needs.

61

4. Development

This API returns an list of possible activities and the confidence of each one of

them (the reliability of that result). We consider the most provable activity (activity

with the most confidence) as the current user’s activity. If none of the returned

activities has a confidence superior to 0.3 (the confidence goes from 0 to 1 and

indicates the percentage of confidence) we consider the user activity as ”Unknown”,

that is we couldn’t classify it. We can also verify all the activities on the list

returned from the classification. For example if the last activity was ”In vehicle”

and on the new classification we receive a list with ”Exercise” on the first position

of the classification and ”In vehicle” on the second position. If the confidence on the

first classification is not to high we can consider the second classification as more

accurate because of the previous classification.

We also aggregate some of the classifications that refer to user doing physical

activities, that is we discriminate the type of physical activity and replace it by

”Exercise”. The activities that are replaced by ”Exercise” are the ”On Bicycle”,

”On foot” and ”Running”.

4.1.4.2 Location

We used the available Wifi networks to define the User discrete location, if it is

at Home, University or Other. As was referred before on the main service we start

a new service that scan the available Wifi networks. This scan returns a list with

the networks information and with the strength of each signal.

The Network information, returned by the Wifi scan, includes the SSID and

the Media Access Control (MAC) Address (the Access point singular identifier).

The SSID allow us to identify the network and if we know in which location one

specific network is available we can pin point the user Location. However there are

networks that can be available in more than one location. The Eduroam network,

for example is available in all the University facilities, and this makes our task more

difficult. In this case study we only wanted to determine if the student was at the

university but in future implementations it can also be important to verify if he

is in the right class, and this can be achieved by mapping the MAC addresses of

every Access Point (AP) in the University. If in the future we map the AP and

the strength of the signal in every class room we can obtain a more precise location

and, of course, more context.

We also used the location to check class attendance. If the user has a class on

the schedule and he is at the University, then he is attending the class. This however

62

4. Development

is not 100% accurate since some student’s may prefer to stay at the bar or even

frequent the library instead of attending the class. By mapping the Access points of

the University we would eliminate this uncertainty. Consequently we consider this

task as an important future work and we explore this possibility on chapter 6.

4.1.4.3 Sociability

The StudentLife study[3], as we previously explore on the stat-of-the-art, also

took sociability in consideration to evaluate the student’s lifestyle. They did this

by recording the student’s Smartphone microphone audio and classifying it as con-

versation or not. However we consider this approach a bit intrusive to the students

and with a lot of privacy issues. And as such we searched for other approaches to

measure the student’s sociability. We found some other works and between them a

Master thesis developed in the University of Utrecht[62]: a student from the Master

in Business Informatics created a model that calculated the sociability. In this model

he used the SMS, calls, Social Networks activity and some other ”non-invasive” fac-

tors to infer the sociability with a mobile application. We aimed to developed a

similar model to infer the sociability.

However in this first approach we lacked the knowledge, to obtain the ground

truth about the student’s sociability. And as such we had several meetings with a

investigation group from the Faculty of Psychology and Education sciences, from

the University of Coimbra, lead by Professor Dr. Carlos Barreira. However,these

partnerships have a long adaptation period and as such we started to develop a more

simple model. This partnership and future work related with it is explore in more

detail in the Chapter 6.

The model we created is based on a simple formula, which makes a sum with

weights for each defined factors. We define the 5 factors to calculate the socia-

bility, the SMS’s frequency, the Calls’ frequency, the SMS’s ratio, the Calls’ ratio

and the diversity. These factors are defined by the formulas 4.1,4.2,4.3,4.2 and 4.5

respectively.

SMS frequency(SMSfreq) = (SMSreceived + SMSsent)/

(total time of acquisition inmin)
(4.1)

63

4. Development

Calls frequency(Callsfreq) = (Callsreceived + Callsmade)/

(total time of acquisition inmin)
(4.2)

SMS Ratio(SMSratio) = SMSreceived/SMSsent (4.3)

Calls Ratio(Callsratio) = Callsreceived/Callsmade (4.4)

Diversity = (number of different people contacted)/

(total number of people contacted)
(4.5)

Taking these features in consideration, we needed to remove the units from the

SMSfreq and from the Callsfreq and make them dimensionless. In order to do that we

search for statistics for the average number of SMS and Calls exchange by a regular

person each day.

We found a study[63] from 2014 that reported that the average of SMS ex-

change by a person between the ages of 18 and 24 where 128 SMS per day. We

found that number a bit to high and as such we consider 90 SMS a day (3/4 of

the number on that study). This decreasing is do to the fact that we believe that

using the phone to much is not healthy. And also because now-a-days there a lot of

other alternatives to the SMS and we need to take in account that if the users use

a different type of communication technology the number of SMS will decrease.

We also found some information dating 2010[64], that indicates that the num-

ber of average calls per day is 5. Although the study is a bit old is a good starting

point, and as we stated before this is just the first approach to the model.

We had to change the values for the average number of SMS and Calls per day

to SMS and Calls per minutes to use them on the equation.

It is important to refer that we don’t consider the overuse of the Smartphone

functionalities as a bad habit but we don’t endorse it. That is, we only consider

the maximum of the weight given to each feature. So in equation 4.6 if one of the

parcels of the sum is bigger than it is weight we consider the weight instead. This

way we ensure that the score is between 0 and 100 and that we don’t favor overusing

64

4. Development

behaviors.

Sociability Score =
SMSfreq ∗Weight

Average SMSmin

+
Callsfreq ∗Weight

AverageCallsmin

+ SMSRatio ∗Weight

+CallsRatio ∗Weight + Diversity ∗Weight

(4.6)

The last step of the model was to choose the weights for each one of the

features. As we stated before we only aimed to make the first approach to the final

model and as such we choose the values of the weight by our on perception of what

is more important in the sociability point of view. We prioritized the values for the

SMSfreq, Callsfreq and the diversity instead of the ratios. The weights we choose are

described in table 4.1. By replacing the values from table 4.1 in equation 4.6 we

obtain the final equation to the Sociability score (equation 4.7).

Table 4.1: Weight for the Sociability score (equation 4.6)

SMSfreq Callsfreq SMSratio Callsratio Diversity
30 30 10 10 20

Sociability Score =
SMSfreq ∗ 30

Average SMSmin

+
Callsfreq ∗ 30

AverageCallsmin

+ SMSRatio ∗ 10

+CallsRatio ∗ 10 + Diversity ∗ 20

(4.7)

Once again it is important to refer that this is just the first approach to the

final model, and that we are considering to use neural networks and more features

once we are able to obtain a ground truth.

4.1.4.4 Sleep detection

There are several works about sleep detection, through classification, over the

years like Chen Z et al[65] and Min J et al[66]. Although these studies have the

same goal, applying machine learning to perform sleep detection, they have different

approaches. The first one focus on non obstructive sleep detection, that is they

65

4. Development

don’t require any device on the user’s body, while the second study does. The use

of complementary devices, with accelerometers attached to the user’s body, can be

more accurate to perform sleep detection. But this kind of device requires that the

user changes his routines and performs bothersome tasks every night. So, in our

case, and as we were already focusing our efforts on detecting data through the

Smartphone, we decided to make an approach that resembles the one done by Chen

Z et al[65].

In the study done by Chen Z et al[65], they used 6 features to perform sleep

detection and they were:

• Light feature (amount of light in the environment) .

• Phone lock.

• Phone recharging.

• Phone off.

• Stationary feature (amount of time the phone is still).

• Silence feature (amount of sound/noise in the environment).

All of these features can be easily explained by the factors that normally are

attached to the sleeping activity. Commonly people tend to sleep in quiet environ-

ments and with less light intensity. The other 3 features focus on the Smartphone

usage patterns but can also correlate with sleep patterns, since commonly Smart-

phone’s users tend to charge the phone at night or even turn it off to don’t be

disturbed. The phone lock and the stationary features are self-explanatory since if

the user is sleeping he can not be using the phone and the phone remains still. Is

important to refer that these feature individually are weak indicators. In this study

by Chen Z et al[65] they got good results with ±42 minutes accuracy to the sleep

time [65].

In our study we used 7 features, some are equal to the study described above

but some are different. The features that we choose are:

• Light feature (amount of light in the environment) .

• Phone lock.

• Day of the week.

• Time to the next alarm.

• Pressure sensor value.

66

4. Development

• Activity.

• Sound amplitude taken from the microphone.

The light, sound amplitude and the phone lock features were chosen by the

same reasons that were described above. The Activity feature is equivalent to the

Stationary feature. We are taking the mobile phone motion into account to detect

if the Smartphone is being moved or not.

The pressure feature is included in our classifier because of the time that the

phone remains in the user’s pocket, that is in the pocket the Smartphone as no light

and the sound amplitude of the environment is decreased even on loud environments.

Because of that the values taken from the Smartphone while in the pocket might

look like values from a sleep pattern. Since most people carry theirs Smartphones

on their pockets, for long periods of time, without this feature we probably would

have a lot of misclassifications.

The phone now-a-days replaces our alarm clock, and as such people set the

alarm every day to the hour they intend to wake up and except some extraordinary

cases they do wake up when the alarm goes of. This makes the time to the next

alarm a good feature with a strong correlation to our sleep duration. When the

alarm is set in the phone we check the time to which the alarm is set and subtract

the current time to it (in epochs). If no alarm is set we define the value -1 to this

feature (is a value that can’t appear in this feature when the alarm is set). The

classifier then can be adjusted to these values.

We also used the week day because we believe that the user’s patterns are

highly influenced by this feature. For example normally people (not just students)

tend to sleep more in the week-ends than in the week days. And with this feature

the classifier can become more tailored to each user, that is it can adjust better

to the different user’s sleep patterns. For example if a student has no classes on

Wednesday he may wake up later that day or for example some user might not

even set an alarm clock on the week-end. These are just some examples of how this

feature can be useful to get a different scope of the user or even better adjust the

classifier to the other features.

Some of these features, day of the week and activity, were given by strings but

luckily they were already a discrete number of strings and we could easily normalize

those features to numbers. The phone lock was also a string, that represented a

boolean. But it was converted to 0 or 1, 0 when the phone is not locked and 1 when

the phone is. The other features were already numeric values and had only to be

67

4. Development

normalized.

Figure 4.7: Sleep Detection neural network structure

As we stated before we are using Encog[26], an Java machine learning frame-

work, to perform the sleep classification. We are using a Basic Neural Network[67]

with 1 input layer, 3 layers of neurons (each with 20 neurons) and 1 layer of outputs

as it can be seen from figure 4.7. Every Hidden layer has a Logarithmic activation

function and the same happens to the output layer.

Table 4.2: Sleep classification network performance

Sensibility Specificity Accuracy
87.99 94.06 92.71

Sensibility = TruePositives/(TruePositives + FalseNegatives) (4.8)

Specificity = TrueNegatives/(TrueNegatives + FalsePositives) (4.9)

Accuracy = (TrueNegatives + TruePositives)/(TrueNegatives + FalsePositives

+TruePositives + FalseNegatives)

(4.10)

The network sensibility, specificity and accuracy can be seen in table 4.2. The

formulas that we use to calculate these values for the network are on the formulas

4.8, 4.9 and 4.10. This is the best network we could get with only these 7 features,

but by implementing more features and increasing the number of samples we may

get a better result. Also by putting the network on the Smartphone application,

we can make the network adjust for each User, by performing additional training,

making it more precise for that specific user. We test some other structures to the

network and the information about those tests is on chapter 5.

68

4. Development

4.1.4.5 Alarms

We already implemented a system of alarms. As we can see from figure 4.12

when a alarm is raised we change the color from green to red indicating that some-

thing is wrong with that behavior. The ChatBot also sends a message and a notifi-

cation, if the user is not on the ChatBot screen. The Alarms, that the application

can currently trigger are:

• Too much time Still.

• Not enough Exercise.

• Should spend more time at the University.

• Too much time at Home.

• Need more sleep.

The alarms are trigged by simple conditions and we define these conditions

ourselves by using common sense. The conditions we defined are:

• Spend more that 12 hours per day still, triggers the ”Too much time Still” .

• Less than 8 hours of Exercise per week,triggers the ”Not enough Exercise”.

• Less than 4 hours per day at the University, Triggers ”Should spend more time

at the University”.

• Too much time at Home.

• Less than 6 hours of sleep per day, triggers the ”Need more sleep”.

4.1.5 Application Flow and Design

In this section we explore the application flow (the way the application in-

teracts with the user) and design choices, UI and User experience (UX). The ap-

plication was all designed with the same colors’ patterns of a dark blue, on the

Background, and a Light green for the main details. The graphics and charts that

we use on the application also use the same colors’ pallet.

69

4. Development

Figure 4.8: Mobile application flow

For the application to start the user has to click on the application’s icon from

the Smartphone’s menu, then the application follows the diagram represented on

the figure 4.8.

The Application starts with the Intro screen, figure 4.9, then after 5 seconds

(or less if the user taps the screen twice), it changes to the Login screen. In the

Login screen the application checks if there is any Access Token for the user stored

in the Smartphone. If there is one the application advances to the Home screen

without any User interaction needed. If there is not an Access Token the user is

70

4. Development

prompted for is Login information. If the user does not have an account we can

choose to go to the registration screen and create one.

After a successful login, the application starts the services and checks if this is

the user first Login, by checking the FIWARE existing entities for the user entity. If

this is the user first login the application changes to the First Configurations screen.

When the user finishes these configurations we can move to the the Home screen

and use the application functionalities. As it can also be seen from the diagram

on figure 4.8 the user can also choose to Log out at any moment, stopping all the

services and returning to the Login screen.

(a) Intro screen before the animation (b) Intro screen after the animation

Figure 4.9: Introduction screen

The Intro screen purpose, figure 4.9, is just to display the name of the appli-

cation and that this application is property of the University of Coimbra. As stated

before this screen is changed automatically after 5 seconds. We choose to made a

animation in this screen to improve UX. When the screen appears it only displays

the application name, after 2 seconds the phrase ”Made by University of Coimbra”

appears and after 3 seconds the screens changes automatically to the Login or the

Home screen. As stated before if the user wants he can also skip the animation by

71

4. Development

double tapping the screen.

The layout from the Login screen and from the Sign up screen are identical

as can be seen from figure 4.10. The only difference between the design of the two

screens is the existence of an extra text box on the Sign Up screen to confirm the

Password. The Login screen, figure 4.10 (left), has two buttons, one that does the

Login using the information on the text boxes and another button that changes to

the Sign up screen. The Sign up Screen,figure 4.10 (right), also has two buttons,

one that allows the creation of a new user account with the information that the

user inserts and a second button to return to the Login Screen. If the registration

is successful the application returns automatically to the Login Screen and asks the

user to insert is account.

It is important to refer, that do the nature of these actions, the Smartphone

needs a stable connection to the Internet in order to perform these actions.

(a) Login screen (b) Sign up screen

Figure 4.10: Login screen (left) and New Account Registration screen (right)

After the first successful Login the application starts the First Sign in screen,

and asks the user for some configurations that are essential to the application’s

72

4. Development

proper operation. That screen that is prompted to the user on the first Login can

be seen on figure 4.11.

On that screen the user must configure 3 options in order for the application to

work properly: the Wifi SSID from the user House, the ID from the IoT kit that the

user has at home, and if the user wants to only send data through Wifi connections.

The Wifi SSID configuration is used to define the user location at home. T¡he

user should choose between all the configured networks in the Smartphone, and

that network SSID will be saved and used as reference to define the user location.

The IoT kit ID serves to create the link between the device and the entity that

represents the room in the FIWARE. We also allow the user to choose if he only

wants to send data through Wifi connections, because some user may not want to

spend their mobile data plans. From figure 4.11 it is also visible that exists a fourth

configuration: the user can indicate the Department to which he belongs. But this

configuration isn’t used on the application for now (is intended to be used once we

map the AP and start using them to define location inside buildings).

Figure 4.11: First configurations screen

73

4. Development

On the Home screen we have a horizontal slide design, where the user can

navigate between the screens by swiping right or left. The first screen is the resume

of the user activity in a donut shape chart, with the amount of time the user spend

in each activity in percentage. The figure 4.12 shows the activity chart, as well as the

legend of the chart. We can also see that the display changes the chart colors when

a alarm is raised. In this case the user spends too much time sill, the application

changed the color of the chart and highlighted the slice of the chart that represented

the ”Still” activity.

(a) Activity screen (b) Activity screen with alarm

Figure 4.12: Activity screen before (left) and after an alarm is raised (right)

74

4. Development

The second home screen is the Location screen where we can see the distri-

bution of the user time between the 3 places (Home, University and Other).As can

be seen from figure 4.13 we also choose to create a different chart for each of the

three features, the Activity, the Location and the Sociability. This way we improve

the UX because the user can associate the Chart shape with the specific feature.

The inverted pyramid chart style was choose to represent the Location, because it

resembles the pins that the navigation applications (for example Google Maps) use

to represent specific positions. As can also be seen from figure 4.13 we use the same

color pallet, and we keep the style of the chart’s legend.

Figure 4.13: Location chart screen

75

4. Development

As we explained in section 4.1.4.3, the sociability is given by a score and as

such it can not be represented in a chart. So we opted to use a progress bar that

goes from 0 to 100 percent. We also opted to use a circular progress bar because we

find it more appealing than a regular progress bar and gives a feeling of interactivity.

In this chart legend we show the total number of SMS, Calls and other factors that

affect the sociability. These numbers are relative to a week. We believe that the

total number is a more pertinent information, for the user, than the frequency or

the ratio of SMS and Calls.

Figure 4.14: Sociability chart screen

76

4. Development

Also to improve the UX and the UI appearance we created a navigation drawer,

figure 4.15(a), that can be accessed through the button in the top left corner of the

application (figure 4.15(b)). This navigation drawer is used to navigate through

the activities or to Logout. The user can close this navigation drawer by pressing

the ”X” button on the top left corner or by sliding left over the navigation drawer.

On the bottom of the navigation drawer we can also see the current version of the

application.

(a) Navigation drawer (b) Settings screen

Figure 4.15: Navigation drawer (left) and Settings screen (right)

On figure 4.15(b) we can see the settings screen, where we can change the

configurations made on the first configuration screen. This screen is almost identical

to the First configurations screen (figure 4.11); the only difference between these

two screens is that this screen only possesses a button to save the changes and as

access to the navigation drawer. This screen allows us to change exactly the same 4

configurations: the Wifi SSID, the IoT kit ID, the option to choose how data is sent

and to choose the Department (although this configuration is not used as explained

before). Additionally on this screen is also the information on how to reach the

development team in case of any fails during the tests.

77

4. Development

By using the navigation drawer we can also navigate to the Events screen that

can be seen in figure 4.16. This screen is made exclusively to improve the UX; that

is if our application is going to warn the user about his classes the user should not

be forced to switch applications just to have more information. As can be seen from

figure 4.16, this screen also follows the same design as the previous ones. We used

the same color pallet and the screen also has the navigation drawer button and the

application name on the top of the screen. We show the events information with

little cards that have the title and an image that changes depending on the type of

event. As can be seen in figure 4.16(b) by pressing a card we can see the details

of that event, that is the starting time, the ending time and the description of that

event.

(a) Events Screen (b) showing event details

Figure 4.16: Events screen, with event details showing(right)

78

4. Development

Once again, by using the Navigation drawer we can navigate to the historic

screen, that can be seen in figure 4.17. As we can also see from figure 4.17 this screen

allows us to see the information from the Activity, Location and Sociability features.

We can change between these features by changing the selected radio button on the

top of the screen.

Bellow the radio buttons we can see, in case of the Activity feature, 4 progress

bars with an icon representing the four activities: exercise, still, sleep and in vehicle

(from top to bottom). These bars represent the amount of time spent doing each

activity, in percentage and each bar has a different color that is used to represent

that activity on the chart.

In figure 4.17(a) we can see the historic screen when only the activity is se-

lected. In this case the still activity (the bar for the still activity is bigger than the

others). When we only select one type of activity the application shows the infor-

mation in a line chart, with the x-axis representing the time in days and the y-axis

showing the amount of time that the user spent doing that activity in percentage.

(a) Historic Screen (b) Historic screen grouped bar style

Figure 4.17: Historic screen

In figure 4.17(b) there are two types of activities selected, Still and Exercise,

79

4. Development

and as we can see the display of the chart switches from a line chart to a grouped

bar chart. The grouped bar chart can show 2, 3 or 4 activities depending on how

many activities we select. This type of chart is better to compare the values of the

different activities. We can also see from figure 4.17 that the chart has an legend

with the type of activities and the color in which they are represented.

The representation of the Location and Sociability features in this screen is

the same as for the Activity. In the Location we can see the amount of time, in

percentage, that the user spend at Home, at the University or at Other place and in

the Sociability we can see the number of SMS received, the number of SMS sent, the

number of Calls received, number of Calls made and the duration of the Calls. It is

important to refer that for the Activity and for the Sociability we are not showing

all of the types of the data we collected because we believe that some of them may

not interest the user, like in the case of the Activity tilting or the number of calls

missed.

80

4. Development

We also created a screen that serves to collect the ground truth for the sleep

classifier, and we call it sleep form. The user can access it from the last option

of the navigation drawer as can be seen in figure 4.15(a). But the application is

also programmed to deploy a notification each morning between 10 am an 11 am,

remembering the user to fill the sleep form and by clicking that notification the user

is sent to the sleep form screen (figure 4.18). We can see from the figure the user

only needs to indicate what time we went to sleep and what time he waked up.

Figure 4.18: Sleep form screen

81

4. Development

The application has one more screen, the ChatBot screen that can be seen in

figure 4.19. As we stated before, in this document, the main purpose of the ChatBot

is to serve as a way to interact with the students and tell them what is wrong. But

the ChatBot has other functionalities, that can be seen in the figure 4.19.

(a) Conversation example 1 (b) Conversation example 2

Figure 4.19: ChatBot screen

On the figure 4.19(a) we can see the Small talk functionalities, where the user

can ask simple question like ”Who are you?” or ”where do you live?”. And on the

end of the figure 4.19(a) we can also see the ChatBot setting an alarm for the user.

On figure 4.19(b) we can see the functionalities that interact with the FIWARE,

that is the student can ask the values of the sensors from the IoT kit that in his

house or from the kit that is at the University. On that figure we can also see the

context awareness of the ChatBot when we ask ”It’s loud in here?” it queries the

FIWARE for the user location first, then queries it for the intended information in

this case the sound level at the University. In that same figure we also can see that

is also aware of the context of the conversation. By asking ”And at my place?” the

ChatBot can understand that we where previously talking about the sound level

and returns the response for the sound level at the students home. This of course

82

4. Development

is just the tip of the iceberg of what can be achieved by implementing a ChatBot

as mean of actuation. And some possible future implementations are addressed in

chapter 6.

Lastly we also show the information from the Smartwatch on the Smartphone.

As we can see in figure 4.20, that information is showed on the end of the Activity

Screen. We indicate the current step count for the day and the last heart rate value

available. We also receive the result of the Activity Recognition from the Smart-

Watch but that information overrides the Activity Recognition of the Smartphone

and as such it is already represented on the donut chart.

Figure 4.20: Wear data on the Smartphone

83

4. Development

4.2 SmartWatch application

The Smartwatch application serves as an companion for the mobile application

and as such is much simpler. In this section we explain in detail the development

of the wear application and we can divide the development of the application in

4 sections the acquisition, the communication, the storage and the display of the

application.

4.2.1 Data acquisition

The data acquisition on the Smartwatch application is much simpler than on

the Smartphone application. The Smartwatch application only makes the acquisi-

tion of the 3 values from the sensors:

• The Heart Rate.

• The Step Count.

• The Activity

To make this acquisition we created a service called MainService that runs

on the background at all times, after the user opens the application. This service

works in the same way as the MainService on the Smartphone. It implements the

SensorEventListener[48] interface that allows us to know when a value of a sensor is

changed. By using the SensorManager class[46] we can register this listener to the

desired sensors, in our case the heart rate sensor and the step count sensor.

The architecture of the MainService from the SmartWatch can also be repre-

sented by the figure 4.1 from section 4.1.1.1. We have a listener that is triggered

every time a registered sensor is changed. The listener saves the sensor’s updated

value on a variable and when a timer goes of that variable value is stored on a DB.

Although the architecture is the same we had to implement a second timer in the

MainService in the Smartwatch. That timer function is to unregister the heart rate

sensor after it runs for 10 seconds and register it again every 30 seconds. We do this

because the heart rate sensor consumes a lot of battery do to the hardware, this

of course is a big issue on a device with low battery power like the SmartWatch.

Just as we do on the Smartphone on the wear application we save the values every

5 seconds.

The Activity once again is taken from the Google Activity Recognition API

84

4. Development

and as such the acquisition process is the same as in the Smartphone application.

The information about how this acquisition is made can be found in sections 4.1.1.1

and 4.1.4.1.

4.2.2 Communication

As we stated before on section 4.1.2.3 the intended architecture for the android

wear doesn’t allow us to connect the device directly to the Internet. This happens

because the device manages the Wifi and the Bluetooth connections automatically,

to improve battery life. Once the device is connected to the Smartphone by Blue-

tooth the Smartwatch disconnects the Wifi to save battery. This of course would

not allow us to send data when the Smartwatch and the Smartphone are close to

each other (most of the time).

For this reason we have to use Android Wear Message API. We already ex-

plained how we implement this API on the Smartphone in section 4.1.2.3. To imple-

ment this API on the SmartWatch we use a timer on the MainService, that every 30

seconds reads the DB and try to send the data to an available device. To send the

data we start a new service, that extends the IntentService class[44]. This service

uses the Capabilities API[60] to make a scan for available Nodes (devices connected

to the SmartWatch) that have the desired capability. Once the API finds one, the

service starts sending the saved instances of data to the Smartphone. When a in-

stance of the data is sent to the Smartphone it is also deleted from the DB on

the Smartwatch. Once the data is received by the Smartphone it is processed as

explained on section 4.1.2.3.

85

4. Development

4.2.3 Storage

Since the android wear application is simpler than the Smartphone application,

the DB is also much simpler. The DB on the SmartWatch only has one entity that

works like a log for the sensed data. The entity structure can be seen in figure 4.21.

As can be seen from figure 4.21 we save the Activity, the heart rate and the

step count. We also save a time stamp, because the Smartwatch data can be saved

in the Smartwatch for a while and we would lost the time context of the data. This

way we ensure that we can relate the wear data with the Smartphone data. The

entity has also the device ID attribute so we can identify where the data came from

on the Smartphone. And as all the other DB entities this one has an ID attribute

that is a single identifier for each instance of saved data.

Figure 4.21: DB on the Smartwatch

86

4. Development

4.2.4 Display

The Display of the Smartwatch application, like the other parts of the applica-

tion, in comparison to the Smartphone application, is less elaborated. The display

on the Watch is small and as such we can’t show a lot of information at once. So

we opted for a simple layout where we can see the name of the application and the

3 sensors values in real time. As we can see from figure 4.22 the display of the heart

rate and step count is similar to the one on the Smartphone application UI, with a

symbol representing each of the two values and the actual value in front of it. The

Activity recognition value appears in simple text under the application name.

(a) wear screen (b) wear screen scroll down

Figure 4.22: Smartwatch screen

87

4. Development

88

5

Tests and Results

The majority of this work was focused on the construction of the system ar-

chitecture, but we have also done some tests on battery life, network traffic and on

the sleep classification. Those tests are explained in the next subsections.

5.1 Battery life

Low battery consumption is one of the biggest requirements in mobile appli-

cations, because if a application drains the battery life of the phone to quickly, no

matter at application it is the user is going to uninstall it. So since the beginning

of the project we toked that in account and tried to developed the application in a

way that did not affect the normal use of the phone.

On figure 5.1 we can see a battery consumption report for the Smartphone

application.On the delimited red area, of figure 5.1, we can read ”Energy consump-

tion level 8,35 mAh” and that means that the application consumes an average of

8,35 mA(miliAmperes) per hour. This value of course depends on how much the

user opens the application, because the display and the rendering of the visuals

consume energy as well. The value of 8,35 mAh is obtain for minimal use pattern,

that is the user doesn’t spend to much time with the application open and only

the background services run continuously. This value serves as an indication of the

background task consumption. Now-a-days Smartphones have become larger and

their batteries have increased as well. The regular Smartphone now-a-days has a

battery of 3000-4000 mAh, that means that the application, by itself consumes less

than 1% of the battery of the Smartphone.

89

5. Tests and Results

Figure 5.1: Battery consumption information on the

However there are other factors that affect battery consumption, like for ex-

ample the use of the Google Play Services[68] and the use of the Wifi. Although we

can see how these external components affect the Smartphone battery life we can

not track the actual contribution of the application on each external component. So

in order to test the application to see how it would affect a real device we installed

the application on an Xiami Redmi Note 3, that has a battery of 4050 mAh. The

Smartphone lasts in average 24 hours on a regular use, with GPS enabled, and after

we installed the application the battery life was decreased to roughly 23 hours. Al-

though testing with only one Smartphone does not guarantee viability of the results,

we can conclude that the application does not affect, significantly, the battery life

of the Smartphones.

5.2 Network traffic

Now-a-days we use our phones even more than the computers to access the

Internet[69]. People need to always be able to connect to the Internet and as such

they don’t want to spend enormous amounts of data from their mobile data plans

90

5. Tests and Results

on applications. So this creates a new requirement for all applications, including

ours, the management of network traffic. As we stated before the users can choose

to only sent data when they are connect to a Wifi network and that is the easiest

way to reduce traffic.

(a) Network traffic Wifi (b) Network traffic mobile data

Figure 5.2: Network traffic reports

Although we could prevent unwanted traffic, like we stated before, we wanted

to verify how much network traffic the application was generating. In order to do

so we installed the application on an Smartphone and leave it running for 4 days,

as can be seen from figure 5.2. On figure 5.2(a) we have a chart with the amount of

traffic generated by the application in Wifi connections and on figure 5.2(b) we have

the amount of traffic generated by the mobile data. We can also see from figure 5.2

that the average network traffic generated per day is 12,5 megabytes (Mb) (50Mb

in 4 days). The discrepancy between the days can be explain by the fact that some

days the test subject used the application more than others, that is by opening the

application’s UI we generate more traffic by requesting new data from the FIWARE.

Although if we consider these values as the regular scenario, that is students have

a Wifi connection at the University’s facilities, at home and in some public spaces

91

5. Tests and Results

(shoppings, etc), then only 10% of the data is sent via an mobile data connection

(roughly 5Mb out of 50Mb). If we consider the 5Mb per day at the end of the month

the application consumes 150Mb.

The numbers that we obtained in these tests show, that even if the user allows

the application to transfer data via the mobile network, the amount of traffic that

the application generates is small.

5.3 Sleep Classification tests

On this section we present the results obtain by using different structures of

networks.

Figure 5.3: Structure of the tested networks

The structure of the networks follow the patterns from figure 5.3. As we can

see from the figure we tried 3 structures of networks: the first with 1 hidden layer,

then 2 hidden layers and the last structure with 3 hidden layers. All the structures

have a input layer with 7 features, and as stated before the features are:

• the activity

• the day of the week

• the light intensity

• the sound amplitude

• the proximity

92

5. Tests and Results

• the time to the next alarm

• the phone lock status

The output layer of all structures has only one neuron that classifies the output

as sleeping or not at sleep. We also vary the number of neurons in the 3 structures

between 1, 2,5,10, 15 and 20 neurons and the results for the Sensibility, Specificity

and Accuracy can be seen in the tables 5.4, 5.5 and 5.6. We can also see from the

tables that we did 3 runs, for each configuration of the network, because we were

randomizing the initial states of the networks and just one run could be misleading

as can be seen by comparing the different runs for the same structure, on table 5.1

for example.

Table 5.1: Results for network with 1 neurons on the hidden layers

Structure Run Sensibility (%) Specificity(%) Accuracy (%)

1
1 0,00 100,00 63,65
2 88,54 83,66 86,03
3 78,85 95,89 89,71

1-1
1 0,00 100,00 63,71
2 80,33 95,78 90,18
3 80,18 96,04 90,29

1-1-1
1 81,66 94,41 89,79
2 75,84 96,57 89,04
3 0,00 100,00 63,71

Table 5.2: Results for network with 2 neurons on the hidden layers

Structure Run Sensibility (%) Specificity(%) Accuracy (%)

2
1 58,89 97,70 83,61
2 09,20 98,69 66,21
3 67,67 96,94 86,32

2-2
1 08,12 98,98 65,97
2 71,76 96,36 87,43
3 74,26 92,38 85,80

2-2-2
1 06,64 99,50 65,80
2 81,10 96,54 90,93
3 05,57 99,59 65,47

93

5. Tests and Results

Table 5.3: Results for network with 5 neurons on the hidden layers

Structure Run Sensibility (%) Specificity(%) Accuracy (%)

5
1 09,14 98,63 66,15
2 54,95 97,81 82,26
3 29,47 96,60 72,22

5-5
1 74,72 96,77 88,77
2 71,70 96,16 87,28
3 57,49 98,71 83,61

5-5-5
1 79,01 96,04 89,84
2 33,70 94,88 72,67
3 60,93 95,61 83,02

As can be seen from tables 5.1,5.2 and 5.3, we can obtain good results with

small networks and just a few neurons. However we can notice from tables 5.1

and 5.2 that these networks are very unstable, that is, they give good results but

depending on the initiations conditions they can also starting to diverge. From

table 5.1 to 5.2 we see a slight increase in stability, there no more networks with 0%

sensibility. In table 5.3 we can also see that the stability increased in comparison

to table 5.2. So to obtain a more stable network we decided to increase the neuron

count and do some additional testing. The results of those tests can be seen in tables

5.4, 5.5 and 5.6.

Table 5.4: Results for network with 10 neurons on the hidden layers

Structure Run Sensibility (%) Specificity(%) Accuracy (%)

10
1 61,61 98,35 85,38
2 29,98 96,70 73,15
3 63,64 97,50 85,55

10-10
1 53,59 99,13 83,50
2 70,81 95,85 87,01
3 69,27 96,75 87,01

10-10-10
1 29,13 96,58 72,76
2 80,06 94,86 89,63
3 66,40 96,72 86,01

94

5. Tests and Results

Table 5.5: Results for network with 15 neurons on the hidden layers

Structure Run Sensibility (%) Specificity(%) Accuracy (%)

15
1 52,68 97,68 81,79
2 33,06 95,21 73,27
3 62,31 98,11 85,47

15-15
1 60,23 98,40 84,93
2 69,90 96,23 86,93
3 70,00 95,50 86,50

15-15-15
1 60,55 92,97 81,53
2 74,64 94,51 87,50
3 47,69 98,72 80,70

Table 5.6: Results for network with 20 neurons on the hidden layers

Structure Run Sensibility (%) Specificity (%) Accuracy (%)

20
1 55,87 98,11 83,20
2 67,96 94,80 74,73
3 78,31 94,37 88,70

20-20
1 77,83 94,86 88,85
2 63,00 94,20 83,18
3 58,16 97,12 83,37

20-20-20
1 61,56 97,91 85,08
2 87,99 94,06 92,71
3 85,27 95,15 91,67

95

5. Tests and Results

All values from tables 5.1 to 5.6 were obtained for networks with an activation

function Log-Sigmoid on every hidden layer and as such we decided to compare

the results of the best structure with different activation functions. And from that

comparison we obtained the table 5.7. In this case we also decided to make 3 runs

for each configuration.

Table 5.7: Results for different activation function on a network with a 20-20-20
structure

Activation function Sensibility (%) Specificity (%) Accuracy (%)
Log-Sigmoid 81,42 95,31 90,29
Sigmoid 0,00 100,00 63,84
Linear 0,00 100,0 63,84
BiPolar 0,00 100,0 63,84
Gauss 0,00 100,0 63,84
TangH 05,75 99,91 66,54

From the table 5.7 we can see that the Log-Sigmoid Activation function is the

only one that gives viable results.

From these results we can conclude that the best network is the network with

3 hidden layers and 20 neurons in each layer and with an Log-Sigmoid Activation

function in each layer. However 3 layers networks take some time to train specially

on the Smartphone, and the use of the CPU can affect the battery life. But there are

ways to work around this problem like, for example by only training the network

when the Smartphone is charging. This way we will not drain the battery and

normally the user will not use the phone while it is charging. As such we don’t need

to worry about affecting the user experience by slowing the Smartphone (we can

also control when the phone is locked and pause the train when it is not).

96

5. Tests and Results

All the results in the tables above were made for a validation dataset that was

taken from the original dataset and not used on the training. So we decided to

also compare the results of the training dataset with the results from the validation

dataset. So we trained the best network (3 layers, 20 neurons and activation func-

tion Log-Sigmoid), then compute the results for the same training dataset and the

validation dataset. We obtained the results of table 5.8. As we can see the results

are very similar and with that we can conclude that the dataset is very homoge-

neous, as all of the examples are similar. This also tells us that we need a larger

dataset to obtain more reliable results.

Table 5.8: Results training data vs validation data

Dataset Sensibility (%) Specificity(%) Accuracy (%)
Training 83,58 95,43 93,03
Validation 83,34 93,40 91,12

97

5. Tests and Results

98

6

Conclusions and Future work

6.1 Conclusions and Future work

With this project we aimed to create an application, that could monitor and

improve the students’ performance and, in doing so, we wanted to also use the

concept of HITLCPS. With this in mind we explored the concepts of IoT, CPS and

mobile sensing. We also evaluated how we could use these concepts to create such

an application. And because of all of the concepts that this project encompasses, it

was a very ambitious project from the start.

By implementing all these concepts we were able to develop an IoT platform

using FIWARE, an Android application for both the Smartphone and SmartWatch

and also IoT kits with Raspberry Pi and Arduino. And although mobile motor-

ization is still a relatively new concept and with many drawbacks, such as privacy

concerns and lower computation power, we believe that this kind of project will be

very important in the near future.

We can conclude that at the end the main objectives of this project were all

accomplished, and we believe that we made some advances toward making people

centering applications more common. But we also believe that there is still a lot of

work to be done to improve the system. In the next section we explore some ideas

for future work.

We also concluded that the results we obtained from our classification/ infer-

ences are not very reliable. Because we needed to improve the techniques we use,

to classify/infer, and above all we need to the test the system in a real situation.

Using the application in real scenarios was also one of the objectives of the project

in the beginning. But real test were impossible to achieve during the first year of

the project due to the project nature. To infer the students’ performance we need

to collect data through out an entire semester and that requires a lot of previous

99

6. Conclusions and Future work

preparation. However we did small tests between the LCT-group members, that

proved to be promising.

This project was also of great importance to my personal development, since

it helped me to improve many of the skills I gained during my academic course,

acquire new ones and further my knowledge in software development. Apart from

this project I am also writing a scientific paper and I was also co-author in two other

publications.

6.2 Open challenges

Through out this thesis we mentioned some times the possibilities for further

improvement in the some features of the application. In this section we summarize

all of the open challenges we identified.

As we stated we define the discrete the Location of the student through the

SSID of the Wifi networks and this way we can detect if the student is at home or

in the University. But we lack the ability to know in which facility of the University

the student is. By mapping all the AP of the University we could locate the student

with more precision inside the buildings. This of course could be used to improve the

class attendance detection, by pin pointing the location of a student to a classroom

and by checking his schedule we can check if we is attending a class or not. Although

we have already done this to some level by checking the schedule and checking if the

student is at the University, this assumption can be wrong since the student can be

at the University and not at the intended classroom.

Also as future work we need to implement a different type of classification

on the Sociability. As we stated before we have already had a reunion with a

investigation group from the Psychology Faculty to create a partnership between

the two groups. This group is coordinated by professor Dr. Carlos Barreira and

their main investigation focus is students’ depression and learning assessment. We

believe that this partnership will give us a new insight on what steps to take next

in order to detect sociability and other emotional factors.

The sleep detection module also needs to be improved by adding new features

and increasing the dataset. We also need to perform more tests and use different

network architectures.

The ChatBot can also be improved in the future by adding new functionalities,

100

6. Conclusions and Future work

and extending its context awareness.

Another open challenge is the improvement of the alarm system. Now the

alarm system is only based on conditions, that verifies if the amount of time a

student performs a certain activity exceeds or is less than a desired amount. In

the future we would like to apply machine learning techniques to perform pattern

detection. This of course requires that we do a large study and collect data from

students through out an semester.

In conclusion the challenges described above represent some good opportunities

for new research work.

101

6. Conclusions and Future work

102

Bibliography

[1] https://www.statista.com/statistics/471264/

iot-number-of-connected-devices-worldwide/, “Internet of things

(iot) connected devices installed base worldwide from 2015 to 2025 (in

billions),” accessed in 30/05/2017.

[2] F. B. David Nunes, Jorge Sá Silva, A Practical Introduction to Human-in-the-

Loop Cyber-Physical Systems. Wiley-IEEE Press, December 2016.

[3] R. Wang, F. Chen, Z. Chen, T. Li, G. Harari, S. Tignor, X. Zhou, D. Ben-Zeev,

and A. T. Campbell, “StudentLife,” in Proceedings of the 2014 ACM Inter-

national Joint Conference on Pervasive and Ubiquitous Computing - UbiComp

’14 Adjunct, 2014.

[4] t. http://greenrobot.org/greendao/.

[5] S. Li, L. D. Xu, and S. Zhao, “The internet of things: a survey,” Information

Systems Frontiers, 2015.

[6] C. Perera, A. Zaslavsky, P. Christen, and D. Georgakopoulos, “Context aware

computing for the internet of things: A survey,” IEEE Communications Surveys

and Tutorials, 2014.

[7] S. K. Khaitan and J. D. McCalley, “Design techniques and applications of

cyberphysical systems: A survey,” IEEE Systems Journal, 2015.

[8] D. S. Sousa Nunes, P. Zhang, and J. Sa Silva, “A Survey on human-in-The-

loop applications towards an internet of all,” IEEE Communications Surveys

and Tutorials, 2015.

[9] http://www.jornaldenegocios.pt/economia/educacao/detalhe/taxas_

de_abandono_e_desemprego_por_cursos_podem_ajudar_indecisos, “En-

sino superior: taxas de abandono e desemprego por cursos.”

103

https://www.statista.com/statistics/471264/iot-number-of-connected-devices-worldwide/
https://www.statista.com/statistics/471264/iot-number-of-connected-devices-worldwide/
http://greenrobot.org/greendao/
http://www.jornaldenegocios.pt/economia/educacao/detalhe/taxas_de_abandono_e_desemprego_por_cursos_podem_ajudar_indecisos
http://www.jornaldenegocios.pt/economia/educacao/detalhe/taxas_de_abandono_e_desemprego_por_cursos_podem_ajudar_indecisos

Bibliography

[10] http://www.healthline.com/health/depression/college-students, “De-

pression and college students.”

[11] https://www.fiware.org/, “Fiware.”

[12] https://www.scrumalliance.org/why-scrum, “Scrum alliance.”

[13] https://about.gitlab.com/, “Gitlab.”

[14] https://slack.com/, “Slack.”

[15] https://www.skype.com/pt/, “Skype.”

[16] https://developer.android.com/studio/index.html, “Android studio.”

[17] https://www.linuxfoundation.org/, “The linux foundation.”

[18] https://www.android.com/wear/, “Android wear.”

[19] http://expandedramblings.com/index.php/android-statistics/, “70

amazing android statistics.”

[20] https://www.android.com/intl/pt_pt/, “Google android.”

[21] https://ec.europa.eu/research/fp7/index_en.cfm, “7th framework pro-

gramme.”

[22] N. Armando, D. Raposo, M. Fernandes, A. Rodrigues, J. Sá Silva, and

F. Boavida, “WSNs in FIWARE – Towards the Development of People-centric

Applications,”

[23] https://www.fiware.org/foundation/, “Fiware foundation.”

[24] https://catalogue.fiware.org/, “Fiware catalogue.”

[25] K. Hinsen, K. Läufer, and G. K. Thiruvathukal, “Essential tools: Version con-

trol systems,” Computing in Science and Engineering, 2009.

[26] t. http://www.heatonresearch.com/encog/.

[27] https://www.arduino.cc/, “Arduino.”

[28] https://www.raspberrypi.org/, “Raspberry pi.”

[29] https://api.ai/, “api.ai.”

[30] K. Ashton, “In the real world, things matter more than ideas,”

[31] R. Rajkumar, I. Lee, L. Sha, and J. Stankovic, “Cyber-Physical Systems: The

Next Computing Revolution,”

104

http://www.healthline.com/health/depression/college-students
https://www.fiware.org/
https://www.scrumalliance.org/why-scrum
https://about.gitlab.com/
https://slack.com/
https://www.skype.com/pt/
https://developer.android.com/studio/index.html
https://www.linuxfoundation.org/
https://www.android.com/wear/
http://expandedramblings.com/index.php/android-statistics/
https://www.android.com/intl/pt_pt/
https://ec.europa.eu/research/fp7/index_en.cfm
https://www.fiware.org/foundation/
https://catalogue.fiware.org/
http://www.heatonresearch.com/encog/
https://www.arduino.cc/
https://www.raspberrypi.org/
https://api.ai/

Bibliography

[32] V. Issarny, M. Caporuscio, and N. Georgantas, “A perspective on the future

of middleware-based software engineering,” Future of Software Engineering,

vol. 00, pp. 244–258, 2007.

[33] t. https://fiware-orion.readthedocs.io/en/master/.

[34] R. Wang, G. Harari, P. Hao, X. Zhou, and A. T. Campbell, “SmartGPA,” in

Proceedings of the 2015 ACM International Joint Conference on Pervasive and

Ubiquitous Computing - UbiComp ’15, 2015.

[35] A. Zenonos, A. Khan, G. Kalogridis, S. Vatsikas, T. Lewis, and M. Sooriya-

bandara, “HealthyOffice: Mood recognition at work using smartphones and

wearable sensors,” in 2016 IEEE International Conference on Pervasive Com-

puting and Communication Workshops, PerCom Workshops 2016, 2016.

[36] N. D. Lane, M. Mohammod, M. Lin, X. Yang, H. Lu, S. Ali, A. Doryab,

E. Berke, T. Choudhury, and A. T. Campbell, “BeWell: A Smartphone Appli-

cation to Monitor, Model and Promote Wellbeing,”

[37] https://catalogue.fiware.org/enablers/backend-device-management-idas,

“Backend device management - idas.”

[38] https://www.mongodb.com/, “Mongodb.”

[39] https://www.mysql.com/, “Mysql.”

[40] https://github.com/telefonicaid/fiware-cygnus, “Fiware- cygnus.”

[41] https://catalogue.fiware.org/enablers/identity-management-keyrock,

“Identity management keyrock- fiware.”

[42] https://github.com/telefonicaid/fiware-sth-comet, “Comet- short time

historic.”

[43] https://github.com/ckan/ckan, “Ckan.”

[44] https://developer.android.com/reference/android/app/

IntentService.html, “Intentservice class.”

[45] https://developer.android.com/reference/android/hardware/

package-summary.html, “android.hardware.”

[46] https://developer.android.com/reference/android/hardware/

SensorManager.html, “Sensormanager.”

105

https://fiware-orion.readthedocs.io/en/master/
https://catalogue.fiware.org/enablers/backend-device-management-idas
https://www.mongodb.com/
https://www.mysql.com/
https://github.com/telefonicaid/fiware-cygnus
https://catalogue.fiware.org/enablers/identity-management-keyrock
https://github.com/telefonicaid/fiware-sth-comet
https://github.com/ckan/ckan
https://developer.android.com/reference/android/app/IntentService.html
https://developer.android.com/reference/android/app/IntentService.html
https://developer.android.com/reference/android/hardware/package-summary.html
https://developer.android.com/reference/android/hardware/package-summary.html
https://developer.android.com/reference/android/hardware/SensorManager.html
https://developer.android.com/reference/android/hardware/SensorManager.html

Bibliography

[47] https://developer.android.com/reference/android/hardware/

SensorEvent.html, “Sensorevent.”

[48] https://developer.android.com/reference/android/hardware/

SensorEventListener.html, “Sensoreventlistener.”

[49] https://developer.android.com/reference/android/media/

MediaRecorder.html, “Mediarecorder api.”

[50] https://developers.google.com/android/reference/com/google/

android/gms/location/ActivityRecognitionApi, “Google activity recogni-

tion api.”

[51] https://developer.android.com/reference/android/support/v4/

content/LocalBroadcastManager.html, “Localbroadcastmanager.”

[52] https://developers.google.com/android/reference/com/google/

android/gms/location/FusedLocationProviderApi, “Google’s fused

location provider api.”

[53] https://developer.android.com/reference/android/location/

LocationListener.html, “Location listener.”

[54] https://inforestudante.uc.pt/nonio/security/login.do, “Inforestu-

dante.”

[55] https://developer.android.com/reference/android/content/

BroadcastReceiver.html, “Broadcastreceiver.”

[56] https://developers.facebook.com/docs/graph-api, “Facebook’s graph

api.”

[57] https://developer.android.com/reference/android/content/Intent.

html, “Intent class.”

[58] https://developer.android.com/reference/android/content/

IntentFilter.html, “Intentfilter class.”

[59] https://developers.google.com/android/reference/com/google/

android/gms/wearable/MessageApi, “Android wear message api.”

[60] https://developers.google.com/android/reference/com/google/

android/gms/wearable/CapabilityApi, “Android capabilities api.”

[61] https://developers.google.com/android/reference/com/google/

android/gms/wearable/Node, “Node android wear api.”

106

https://developer.android.com/reference/android/hardware/SensorEvent.html
https://developer.android.com/reference/android/hardware/SensorEvent.html
https://developer.android.com/reference/android/hardware/SensorEventListener.html
https://developer.android.com/reference/android/hardware/SensorEventListener.html
https://developer.android.com/reference/android/media/MediaRecorder.html
https://developer.android.com/reference/android/media/MediaRecorder.html
https://developers.google.com/android/reference/com/google/android/gms/location/ActivityRecognitionApi
https://developers.google.com/android/reference/com/google/android/gms/location/ActivityRecognitionApi
https://developer.android.com/reference/android/support/v4/content/LocalBroadcastManager.html
https://developer.android.com/reference/android/support/v4/content/LocalBroadcastManager.html
https://developers.google.com/android/reference/com/google/android/gms/location/FusedLocationProviderApi
https://developers.google.com/android/reference/com/google/android/gms/location/FusedLocationProviderApi
https://developer.android.com/reference/android/location/LocationListener.html
https://developer.android.com/reference/android/location/LocationListener.html
https://inforestudante.uc.pt/nonio/security/login.do
https://developer.android.com/reference/android/content/BroadcastReceiver.html
https://developer.android.com/reference/android/content/BroadcastReceiver.html
https://developers.facebook.com/docs/graph-api
https://developer.android.com/reference/android/content/Intent.html
https://developer.android.com/reference/android/content/Intent.html
https://developer.android.com/reference/android/content/IntentFilter.html
https://developer.android.com/reference/android/content/IntentFilter.html
https://developers.google.com/android/reference/com/google/android/gms/wearable/MessageApi
https://developers.google.com/android/reference/com/google/android/gms/wearable/MessageApi
https://developers.google.com/android/reference/com/google/android/gms/wearable/CapabilityApi
https://developers.google.com/android/reference/com/google/android/gms/wearable/CapabilityApi
https://developers.google.com/android/reference/com/google/android/gms/wearable/Node
https://developers.google.com/android/reference/com/google/android/gms/wearable/Node

Bibliography

[62] “THE SOCIABILITY SCORE: App-Based Social Profiling of Students from a

Health- care Perspective,” 2014.

[63] https://www.textrequest.com/blog/many-texts-people-send-per-day/,

“Average number of sms per day accessed in 04/07/17.”

[64] http://www.pewinternet.org/2010/09/02/cell-phones-and-american-adults/,

“Average number of calls per day usa adults in 04/07/17.”

[65] Z. Chen, M. Lin, F. Chen, N. Lane, G. Cardone, R. Wang, T. Li, Y. Chen,

T. Choudhury, and A. Cambell, “Unobtrusive Sleep Monitoring using Smart-

phones,” in Proceedings of the ICTs for improving Patients Rehabilitation Re-

search Techniques, 2013.

[66] J.-K. Min, A. Doryab, J. Wiese, S. Amini, J. Zimmerman, and J. I. Hong, “Toss

’n’ turn,” in Proceedings of the 32nd annual ACM conference on Human factors

in computing systems - CHI ’14, 2014.

[67] http://heatonresearch-site.s3-website-us-east-1.amazonaws.com/

javadoc/encog-3.3/org/encog/neural/networks/BasicNetwork.html,

“Encog basicnetwork class.”

[68] G. P. Services, “https://play.google.com/store/apps/details?id=com.

google.android.gms&hl=pt_PT.”

[69] M. web usage overtakes desktop for the first time,

“http://www.telegraph.co.uk/technology/2016/11/01/

mobile-web-usage-overtakes-desktop-for-first-time/.”

[70] “https://developer.android.com/guide/topics/permissions/

requesting.html.”

107

https://www.textrequest.com/blog/many-texts-people-send-per-day/
http://www.pewinternet.org/2010/09/02/cell-phones-and-american-adults/
http://heatonresearch-site.s3-website-us-east-1.amazonaws.com/javadoc/encog-3.3/org/encog/neural/networks/BasicNetwork.html
http://heatonresearch-site.s3-website-us-east-1.amazonaws.com/javadoc/encog-3.3/org/encog/neural/networks/BasicNetwork.html
https://play.google.com/store/apps/details?id=com.google.android.gms&hl=pt_PT
https://play.google.com/store/apps/details?id=com.google.android.gms&hl=pt_PT
http://www.telegraph.co.uk/technology/2016/11/01/mobile-web-usage-overtakes-desktop-for-first-time/
http://www.telegraph.co.uk/technology/2016/11/01/mobile-web-usage-overtakes-desktop-for-first-time/
https://developer.android.com/guide/topics/permissions/requesting.html
https://developer.android.com/guide/topics/permissions/requesting.html

Bibliography

108

Bibliography

109

Bibliography

110

Appendices

111

A

Articles

113

WSNs in FIWARE – Towards the Development of

People-centric Applications

Ngombo Armando1 3, Duarte Raposo1, Marcelo Fernandes1, André Rodrigues1 2,

Jorge Sá Silva1 and Fernando Boavida1

1 Centre for Informatics and Systems of the University of Coimbra (CISUC)

3030-290 Coimbra, Portugal
2 Polytechnic Institute of Coimbra, ISCAC

3040-316 Coimbra, Portugal
3 Universidade Kimpa Vita, Escola Superior Politécnica do Uíge,

Uíge, Angola

{narmando, sasilva, boavida}@dei.uc.pt, {draposo, jmfernandes}@student.dei.uc.pt,

andre@iscac.pt

Abstract. Wireless Sensors Networks (WSNs) form the founding block of the

Internet of Things (IoT) Sensing Layer. In IoT scenarios, programmers will make

the most of IoT if they focus on the development of context-aware applications

rather than managing low-level aspects of the network they run on. To this end,

providing harmonized data models eases the development of applications.

Focusing on crossbow-micaZ sensors, we present an approach to integrate a

heterogeneous WSN platform into FIWARE, towards the development of

people-centric applications.

Keywords: WSN, FIWARE, micaZ, Heterogeneity, People-IoT interactions,

Context-aware application.

1 Introduction

IoT is an extension of computer networks and the Internet to connected devices labeled

“things”[1]. Currently, there are more than 22 billion connected devices, and this figure

should reach over 50 billion by 20201. The exact definition of IoT is still evolving since

it was first proposed in 1999 [2]. However, the concept of IoT has rapidly grown to the

idea of Internet of All where users are humans, machines, and devices, and the network

conveys the sensed features of the physical world. In the end, the Internet will provide

a larger scale computing system to carry any measurable state of the physical world

like emotions, psychological states, physical states, and actions [1]. The neuronal

infrastructure enabling both the acquisition and raw processing of the environment’s

features is called WSN. For this reason, WSNs form the founding block of IoT/A

Sensing Layer, which the core functions are in fact sense the environment and actuate

on it [3].

1 statista.com, Accessed at December 4th, 2016

A typical WSN is a set of wirelessly connected devices called sensor nodes. In general,

sensor nodes are micro or nanosystems with power, storage, computational and

communication limitations. However, some sensor nodes are personal communication

devices with augmented hardware capabilities [4]. Sensor nodes form a network that

once deployed commence sensing the environment and report its features to a central

node called sink. The sink aggregates the values communicated by the sensor nodes

and forwards the packets to a management station. Once in management station, the

sensor data is processed to produce information about the state of the target

environment [5]. WSNs have application in both monitoring and tracking activities [6]–

[9].

The natural heterogeneity of hardware, software, and protocols technologies under is a

critical factor to enhance both resilience and lifetime of WSNs [3], [10]. To this end,

heterogeneity must be driven by common specifications so that sensor nodes will be

one computing platform at the disposal of smart applications developers. Indeed, there

is a diversity of solutions for designing and implementing a WSN which is not always

easy for stakeholders to choose and integrate them. These equations become more

complex in cases users are not in touch but need each other to mount a virtual common

infrastructure [3], [11]. Among the specifications providing standardized API

(Application Programming Interface) and harmonized data models there is a European

solution labeled FIWARE.

Our work aims at presenting the integration of WSNs in FIWARE, towards the

development of people-centric, smart applications. The rest of the article is organized

as follows. In next section, an in-depth presentation of FIWARE will be done. In

Section III we will discuss the main object of this work, which is the integration of a

heterogeneous WSN platform WSN in FIWARE, towards the development of people-

centric, smart applications. We will conclude our work in Section IV, by tackling some

open issues and challenges.

2 The FIWARE Platform

FIWARE or FI-Ware (where FI stands for Future Internet, and the prefix Ware stands

as analogy referring to a kind of software) is a European set of specifications to provide

APIs that ease the development of Smart Applications in multiple vertical sectors.

FIWARE is open, public and royalty-free2.

2.1. Background

The FIWARE project started in 2011 within the Seventh Framework Programme (FP7)

of the European Commission as part the Future Internet Public-Private Partnership

Programme (FI-PPP). On the one hand, the primary goal of FI-PPP was to advance a

process for a harmonized European technology platforms and their implementation. On

the other hand, the aim was to provide integration and harmonization of relevant

2 fiware.org, accessed on 12/12/2016

policies frameworks. The process was divided into three phases. The first phase (from

May 2011 to April 2014) was aimed at creating the technological core called FIWARE,

while the second phase (from April 2013 to March 2015) was mainly aimed at the

implementation of FIWARE nodes. Finally, the last phase covered from September

2014 to September 2016 and aimed primarily at creating a sustainable ecosystem for

Small Medium Enterprises, through the selection of sixteen business accelerators3. The

ecosystem of developers and entrepreneurs met for the first time at in Malaga, from

13th to 15th December 2016. This meeting was the first in a series of six-monthly

events that will be organized by the FIWARE Foundation to surround all those who

work to promote the adoption of the technology.

2.2. Architecture

FIWARE is based on a library of components called Generic Enablers (GEs) that are

meant to implement APIs. GEs offer reusable and commonly shared functions “as a

Service”. Through APIs, GEs allow developers to put into effect functionalities making

programming much easier by combining them. GEs are classified into seven technical

chapters4, namely:

• Cloud Hosting. A set of components to provide computation, storage and network
resources on top of which services are provisioned and managed.

• Data/Context Management. A set of components to facilitate the access, gathering,
processing, publication and analysis of context information at large scale. The
enablers here also transform the data into valuable knowledge available to
applications.

• Architecture of Applications / Services Ecosystem and Delivery Framework. A set
of enablers to co-create, publish, cross-sell and consume applications or services,
addressing all business aspects.)

• Interface to Networks and Devices. A set of components to make the most of the
network infrastructure capabilities, building communication-efficient distributed
applications, exploiting advanced network capabilities and easily managing
robotic devices.)

• Security. A set of components to provide mechanisms to make delivery and usage
of services trustworthy by meeting security and privacy requirements.

• Internet of Things Services Enablement. A set of components to leverage the
ubiquity of different devices, making connected things available, searchable,
accessible, and usable.

• Advanced Web-based User Interface. A set of components to facilitate the use of
3D and Augmented Reality capabilities in web-based user interfaces.

Based on the FIWARE for developers5 and [12], in Fig. 1 we display an instantiation

of FIWARE architecture6 tailored to approach a generic IoT platform.

3 https://www.fi-ppp.eu, accessed on 12/12/2016
4 https://catalogue.fiware.org/, accessed on March 18th, 2017
5 https://www.fiware.org/2015/03/27/build-your-own-iot-platform-with-fiware-enablers/, accessed on

December 17th, 2016.
6 https://forge.fiware.org/plugins/mediawiki/wiki/fiware/index.php/FIWARE_Architecture_R3, accessed

on December 17th, 2016.

Fig. 1. The FIWARE IoT Platform.7

City services/companies & organizations /Apps / 3rd Parties are stakeholders that

consume, transform and provide an end-utility to the data collected by the Devices.

The Devices refer mainly to the GE Chapter of Interface to Networks and Devices. They

represent the network of sensors and actuators. Devices are context producers as they

provide data to attributes and upload attributes for the entities. Here, a context

producers are seen in a broad context where data can be collected through stationary

sensors, mobile sensors, personal communication sensors, participatory sensing and

Open Data Management Platform like CKAN (Comprehensive Knowledge Archive

Network). Among the technical chapters, CKAN refers to Data/Context Management.

The IoT Agents refer to the GE Chapter of Internet of Things Services Enablement.

They are the platform backend to manage Devices. That is, IoT Agents are gateways

for the devices to communicate with the rest of the components in FIWARE. Further,

IoT Agents act as translators between the communication protocols used by devices,

and both a common language and data model across the FIWARE platform called NGSI

(for Next Generation Service Interfaces).

The Context broker refers to the GE Chapter of Data/Context Management. It is the

core and control piece of the platform, in charge of providing virtual representations of

devices by developing a data/context scenario.

The Short Term Historic refers to the GE Chapter of Cloud Hosting. It is a database to

manage the on-the-fly information and quick computational operations by third

applications. These operations are performed using a time series database without an

intermediate step to process the whole set of data to obtain the desired information. For

instance, calculate the minimum, maximum, mean, bias or deviation of a set of data.

The CEP (Complex Event Processing) refers to the GE Chapter of Data/Context

Management. It is intended to analyze and react to events, generating an immediate

response and triggering actions due to changing conditions. It makes possible instant

7 https://www.fiware.org/tag/iot/, accessed on March 20th, 2017

response or reaction to a series of events occurring within a time window (SMS delivery

and electronic mail notifications). CEP can be considered as the way to create new data

from the arriving data.

Both IdM (The Identity Manager) & Auth (for authentication) are related to the

mechanisms that enable privacy, security, and dependability in delivering services.

Security is specified to be a transversal chapter to other chapters. IdM and Auth refer

to the GE Chapter of Security in charge of carrying the information about users, roles,

profiles, sending and validating tokens, and authentication mechanisms. Enablers to

identity management and access control policies are complemented by two other

elements which are: A Policy Enforcement Point (PEP) and PAP/PDP (for Policy

Administration Point / Policy Decision Point).

Some FIWARE-based applications can be found in [13], and [14]. In the next Section,

we present an approach to integrate a heterogeneous WSN platform in FIWARE,

towards the development of people-centric smart applications.

3 The Integration of WSNs in FIWARE

3.1. The SOCIALITE Project

SOCIALITE 8 (for Social-Oriented Internet of Things Architecture, Solutions, and

Environment) is an ongoing project within the Centre for Informatics and Systems of

the University of Coimbra (CISUC). The main objectives of the project are:

• Define a first generic version of an IoT people-centric architecture by developing
and exploring a generic Cyber-Physical System / IoT architecture that can be used
to support both, People2People interaction and People2Thing interaction.

• Explore the developed middleware and services in people-centric context, with the
aim of demonstrating their use in enhancing the autonomy and quality of life of
citizens, by identifying the needs and means towards general monitoring, and
interaction with several user types.

Among the groups involved in SOCIALITE, the Laboratory of Communications and

Telematics (LCT) is responsible for the design and the implementation of the network

infrastructure on top of which, people-centric applications will be developed.

Concerning the developed middleware in people-centric context, the LCT chose to

align its solution to FIWARE specifications. To this end, the group has been developing

a pilot scenario to infer the academic success of the students by monitoring their

lifestyle. The application to be developed is called ISABELA9 (for Iot Student Advisor

& BEst Lifestyle Analyzer). Since the LCT group works on the infrastructure to feed

the database, the data processing, Machine Learning and Artificial Intelligence is out

of the scope of this paper.

8 https://www.cisuc.uc.pt/projects/show/215
9 Due to communication concern, the name ISABELA was recently adopted for the previous HappyStudent.

Based on FIWARE generic platform, the tailored IoT scenario developed by LCT is

depicted in Fig. 2.

Fig. 2. ISABELA IoT Scenario platform. (adapted from [15])

In FIWARE, the context information is represented by values assigned to attributes that

characterize entities in the application. Hence, for this pilot entities have been created

to describe the student’s lifestyle environment. Some of the entities are a Student, its

Rooms, the premises and entertainment facilities they use. Based on the inputs uploaded

by sensors, through Machine Learning and Artificial Intelligence algorithms, it would

be possible to infer the conditions that characterize the academic success of the

students.

Even though the aim is to deploy sensors in the student’s environments, the current

state of the pilot scenario is only performed in a testbed. We already provide real-time

sensed data from both mobile and stationary sensors, integrated by the FIWARE

runtime. All sensed data are stored in a MySQL and “CKAN”10 databases. These data

are exploited to feed the primary version of ISABELA application allowing to simulate

some aspects of the student’s environments. The setup for the current version of the

application can download here (link). The values displayed in the current version of the

application correspond to those uploaded by the remote sensors placed in the testbed

i.e. in LCT Laboratory. In the following Subsection, we will describe the general

architecture of the project and will better understand the limitations on the current

version to analyze one’s Lifestyle.

10 http://socialiteckan.dei.uc.pt/dataset/socialite

FIWARE

Cygnus

ORION Context

Broker

IDAS IoT Agent

External

Applications

MySQL

MongoDB

IoT Devices

Body and Premises

1/3 Party DB

CKAN

3.1.1. General Network Architecture

Fig. 3. LCT FIWARE Pilot network

The physical architecture of the network for the pilot integrated heterogeneous devices

for data acquisition. As illustrated in Fig. 3, the sensor devices are mainly divided into

two groups. The first group is set by mobile devices to ensure the student activities

monitoring. The mobile devices are also used for the IoT-Student interaction through

the smart application interface. The mobile devices form a mobile WSN composed by

smartphones accoupled to Motorola Moto 360 smartwatches. This WSN is deployed to

enable the acquisition of the student’s activities e.g.: heart rate, communications counts,

steps and location. Both smartphone and smartwatch run in Android environment.

Hence, the applications in this WSN are developed in Android Studio IDE and uploaded

to the watch via the smartphone. The immobile devices are intended to ensure the

monitoring of the premises where students are supposed to develop some activities or

rest such as classrooms or their personal rooms. Hence, the immobile devices form a

stationary WSN currently composed by Arduino Uno sensor nodes and soon micaZ

sensor nodes will integrate the stationary WSN. The Arduino’s set uses a Raspberry Pi

as gateway to the Internet and enables to acquire the temperature, the humidity and the

noise level of the premises. However, additional data can be acquired depending on the

nature of the transductors connected to the Arduino sensor node. The libraries on the

Arduino are developed in C language while the requests in the Raspberry Pi were are

made using command lines in Python. In Arduino, the application can be developed

using other programming languages such as Java and C. Even though micaZ nodes

offer expansion for a myriad of sensing activities11, here it is only intended to the

acquisition of both temperature and luminosity.

11 http://www.cmt-gmbh.de/Produkte/WirelessSensorNetworks/MPR2400.html

A

H

U/D

Reset

B1

B8

Load

Carry out

ENB

WIFI / Mobile Network

FIWARE

MySQL Server

BLUETOOTH /WIFI

A

H

U/D

Reset

B1

B8

Load

Carry out

ENB

CLOUD INTERNET

USB

ETHERNET / WIFI

PC - WSN Gateway

MICAZ

ETHERNET

ARDUINO

i2C
RASPBERRY pi

WSN Gateway

SMARTWATCH

SMARTPHONE

WSN Gateway

Sensors

Mobile Sensor nodes

Stationary Sensor nodes

The dataset from the current testbed can be accessed at

http://socialiteckan.dei.uc.pt/dataset/socialite (The student resources in the page

correspond to data uploaded by mobile sensors).

The development environment of micaZ nodes is nesC-TinyOS and in the next

subsection, we will be focusing its integration in the FIWARE within the scope of

SOCIALITE project. The general integration of the three WSN in FIWARE towards

the development of ISABELA is to be done according to the following steps [15]:

1. Creation IoT entities using Orion Context Broker;
2. Creation and registration of IoT devices in IDAS;
3. Sending of sensor data using the UltraLight IoT Agent;
4. Storage Persistent Data in a MySQL Database using Cygnus.

The broker enables to contextualize the information so that applications can interact

with “things” instead of sensors. IDAS is the module in charge of handling all IoT

devices, and Ultralight2.0 is the protocol used to provide IoT-Agents. To implement

the communication client–server, HTTP (HyperText Transfer Protocol) and RESTful

APIs are used for requests. It means, REST (Representational State Transfer)

architectural style operations are adopted to reach resources (entities and attributes).

JSON (JavaScript Object Notation) representation is the adopted format for the

Payload. The on-the-fly data is stored in MongoDB database while Persistent data

storage is done in a MySQL database through Cygnus Container. MongoDB is a

snapshot database for the case of an interruption /DOS happens to Orion Context

broker. The technical step-by-step guidelines can be found in [15], and all details

concerning the API structures, experiments, and hands-on work can be found in

fiware.org developers guide. As a case study, we will focus on the integration of micaZ

in the FIWARE by describing a simple setup to upload sensor data.

In the next subsection, we will present the step-by-step guide to create an entity and

send data directly to Orion context broker. Since the aim is only an introduction to some

tools to enable the integration of WSNs built in micaZ, we will not tackle the creation

of subscription to external description neither the store persistent data.

3.1.2. Focus on micaZ

The technical specification of micaZ sensor board is shown in Table 1 and the setup for

our case study is illustrated in Fig. 4.

Table 1. Specifications of the MicaZ - MPR2400 [16]

MCU Atmega 128L - Up to 16MIPS Throughput at 16MHz

RAM 4 KBytes

EPROM 4 KBytes

Flash memory 128 KBytes

Radio module CC2420 – 2.4 to 2.48 GHz IEEE 802.15.4, AES-128

Transmission rate 250 Kbps

Extensions Analog I, Digital I/0, I2C, SPI, UART

In the Laptop, we installed a turnkey Xubuntu OS via VM VirtualBox TM. The turnkey

solution includes a Linux Ubuntu distribution and the package TinyOS, libraries, and

nesC compiler. We used a second Virtual Machine player (VMware Workstation 12TM)

for the FIWARE runtime machine. Given some technical issues, we had to install and

run the Java playground in the OS of the Physical laptop (MS WindowsTM). Besides

having knowledge of programming languages used in the case study, the training in

[15] is a prerequisite to succeed the next instructions.

Fig. 4. The case study setup overview

The hands-on work to integrate MicaZ in FIWARE is done as follows:

Step 1 - In TinyOS, write a sensing application, then couple the MicaZ hardware to the
mda100 sensor board and the mib520 programming board. Finally, connect the
whole set to a USB port of the Physical laptop and install the application in the
sensor node using the command ~/Oscilloscope$ SENSORBOARD=basicsb make
micaZ install,1 mib510,/dev/ttyUSB0. Remark the specification of the sensor board
at the beginning of the installation command. This is due to TinyOS protocol
regarding the compilation of programs that run on the sensor nodes. As sensing
application, we used the generic Oscilloscope program from TinyOS libraries
(~apps/Oscilloscope). Disconnect the sensor node from the programming board
and connect the Sink node.

Step 2 - Staying in TinyOS, write the dispatcher program, then connect the Sink node
to the mib510 board. Finally, install the dispatcher in the Sink node using the
command make micaZ install,0 mib510,/dev/ttyUSB0. Do not disconnect the whole
set (sink and programming board) from the Laptop. Remark that we changed the
TOS_ID_NODE (node identification number) to 0. By convention, the number 0
is reserved to identify the Sink node in a WSN. As dispatcher program, we used
the generic BaseStation program from TinyOS libraries (~apps/BaseStation).

Step 3 - In TinyOS, write a program to fetch sensor data from the dispatcher and store
it in a text file. We used a modified seriallisten program from TinyOS libraries
(~support/sdk/c/sf). By default, seriallisten enables to displays the results on the
terminal screen. We edited the seriallisten.c file and inserted a function to store
on-the-fly, the last sensor data in a text file. To simplify, we only retrieved and

A

H

U/D

Reset

B1

B8

Load

Carry out

ENB

IEEE 802.11

FIWARE Runtime

Over Vmware Workstation player

INTERNET

USB 2.0

SENSOR NODE

/md100

FIWARE Remote Access (Virtual)

Via Putty-SSH on MS windows

A

H

U/D

Reset

B1

B8

Load

Carry out

ENB

IEEE 802.15.4

PHYSICAL LAPTOP

• x64, 4GO, i5-2520M CPU@2.5GHz*2

• MS windows10-64bit with VM VirtualBox Qt5.6.2

• Xubuntu 14.04 (Ubuntu 16.04 LTS 64bit +TinyOS 2.1) over Virtualbox

SINK NODE

/mib520

SENSOR DATA UPSTREAM (Virtual)

stored the last Byte of the sensed packets. In our case study, this Byte represents a
value of the sensor data.

Step 4 - Write a middleware program to upload to sensor data to FIWARE database,
from the text file created in the previous step. The program should enable to create
an entity, create a service, register the device and send the sensor data. Our solution
was developed in Java language.

Step 5 - Launch the FIWARE Virtual Machine, then run its containers.
Step 6 - Open a SSH session in puTTY and connect remotely to FIWARE.
Step 7 - Connect the Physical laptop to the Internet. This step serves to simulate the

uploading of the sensor data to FIWARE via the Internet backbone.
Step 8 - Start the sensor node. It will run the application to collect and report the sensor

data to the Sink. Using the generic application aforementioned, the green LED start
blinking in both nodes.

Step 9 - Return to TinyOS and run the program to fetch sensor data from the dispatcher.
Stop the application after retrieving at least one packet. If using the example in step
3, open a Terminal and run the modified seriallisten program with the command
~...c/sf$./seriallisten /dev/ttyUSB1 micaZ. Remark that now we use the USB Port
number 1. In fact, there are two ports associated with the mib520 programming
board namely: port USB0 for configuration of the sensor nodes, e.g. to install
applications in the nodes and port USB1 for the Application layer for instance to
retrieve data from the sensor nodes [16].

Step 10 - Run the middleware program. In our case, the IDE is installed in MS
Windows environment and the text file produced by seriallisten is a shared file to
both MS Windows and Ubuntu over VM. If both the entity and its last attribute
value have been uploaded to Orion context broker with success, a HTTP code is
received in the IDE workstation added to the sensor value. Typical a 201 means
the request has been fulfilled and the entity was created. A 20x code is a standard
response for successful request. For our case study, we will assume that any other
code translates an unsuccessful request.

Step 11 - Ultimately, return to the SSH session and verify the existence of the
entity created with the value uploaded.

The setup is subject to several optimizations in both hardware and software

environment. For the former, the Physical laptop can be replaced by a smaller

computing system like Arduino, to make the setting more practical in deployment

scenario. For the latter, one Virtual Machine is enough to run all the virtual systems in

the Physical laptop. Moreover, the WSN runtime can be simplified by developing both

the retrieving and the middleware program in only one language (Java or C). Indeed,

both languages enable to develop the mechanism to fetch the sensor data from the

dispatcher, then format it before uploading dynamically to the FIWARE.

4 Conclusion

Technological heterogeneity in WSNs enlarges the robustness for data acquisition and

provision towards IoT applications. Dealing with diversity in both hardware and

software solutions, as well as guaranteeing their transparency for the development of

people-centric smart applications is a permanent issue. Smart applications are context-

aware applications. To this end, FIWARE offers powerful tools for having standardized

API and harmonized data models for the development of applications, allowing People-

IoT interactions. One of the main challenges of FIWARE is its consolidation as the

open-source standard for IoT-enabled applications. Providing easy interoperability

APIs to other IoT architectures such as OpenIoT, CitySDK, and IES Cities [17], may

be an important step towards an international reference standard. On top of the services

provided by WSNs and FIWARE, the SOCIALITE project aims at developing a

people-centric, context-aware, cognitive framework that will ease the development of

applications and, at the same time, bridge the gap between technology and its users.

The SOCIALITE Project began in July 2016 and is planned to end by 2019. The current

paper focus on a technical aspect about how FIWARE can be leveraged to integrate an

old sensor technology in a larger IoT computing system, towards the development a

people-centric application. In future papers, more details describing the integration of

all sensors deployed in the project will be done, as well as the evolution of functions in

the smart application ISABELA.

5 Acknowledgments

The work presented in this paper was partly carried out in the scope of the SOCIALITE

Project (PTDC/EEI-SCR/2072/2014), co-financed by COMPETE 2020, Portugal 2020

- Operational Program for Competitiveness and Internationalization (POCI), European

Union’s ERDF (European Regional Development Fund), and the Portuguese

Foundation for Science and Technology (FCT).

References

[1] D. Nunes, P. Zhang, and J. Silva, “A survey on Human-in-the-Loop applications

towards an Internet of All,” IEEE Commun. Surv. Tutorials, vol. 17, no. 2, pp. 1–1,

2015.

[2] S. Li, L. Da Xu, and S. Zhao, “The internet of things: a survey,” Inf. Syst. Front., vol.

17, no. 2, pp. 243–259, 2015.

[3] S. M. A. Oteafy and H. Hassanein, “Resilient IoT Architectures over Dynamic Sensor

Networks with Adaptive Components,” IEEE Internet Things J., vol. XX, no. X, pp. 1–

1, 2016.

[4] G. Savithri, P. Sujathamma, S. Padmavati, and M. Visvavidyalayam, “Android in WSN

Applications – A Survey,” Int. J. Emerg. Technol. Comput. Appl. Sci. (IJETCAS), no.

1961, pp. 329–333, 2013.

[5] W. S. and Y. S. and E. C. I. F. Akyildiz, “Wireless Sensor Networks : A Survey,” Int. J.

Adv. Res. Comput. Sci. Softw. Eng., vol. 38, pp. 393–422, 2002.

[6] D. Wu, B. Yang, H. Wang, D. Wu, and R. Wang, “An Energy-efficient Data Forwarding

Strategy for Heterogeneous WBANs,” IEEE Access, vol. 4, pp. 1–1, 2016.

[7] M. Rawidean, M. Kassim, and A. N. Harun, “Applications of WSN in Agricultural

Environment Monitoring Systems,” 2016.

[8] T. O’donovan et al., “The GINSENG system for wireless monitoring and control:

Design and deployment experiences,” ACM Trans. Sens. Networks, vol. 10, no. 1, p. 4,

2013.

[9] M. A. Hussain, P. Khan, and Kwak kyung Sup, “WSN Research Activities for Military

Application,” Adv. Commun. Technol. 2009. ICACT 2009. 11th Int. Conf., vol. 1, pp.

271–274, 2009.

[10] A. Giorgetti et al., “A Robust Wireless Sensor Network for Landslide Risk Analysis :

System Design , Deployment , and Field Testing,” IEEE Sens. J., vol. 16, no. 16, pp.

6374–6386, 2016.

[11] H. A. A. Figueira, D. Nunes, R. Barbosa, A. Reis, C. H. S. Sinche, A. Rodrigues, V.

Pereira, H. Dias, and F. B. D. Raposo, J. Sá Silva, “WeDoCare: A Humanitarian People-

centric Cyber-Physical System for the benefit of Refugees,” in IEEE Global

Humanitarian Technology Conference (GHTC), 2016.

[12] K. Nájera, “Arquitectura básica para FIWARE,” Mooc INFOTEC, 2016. [Online].

Available: https://www.youtube.com/watch?v=j1XCjgeAW2c&t=62s. [Accessed: 12-

Dec-2016].

[13] M. Fazio, A. Celesti, F. G. Marquez, A. Glikson, and M. Villari, “Exploiting the

FIWARE cloud platform to develop a remote patient monitoring system,” Proc. - IEEE

Symp. Comput. Commun., vol. 2016–Febru, pp. 264–270, 2016.

[14] F. Ramparany, F. G. Marquez, J. Soriano, and T. Elsaleh, “Handling smart environment

devices, data and services at the semantic level with the FI-WARE core platform,” Proc.

- 2014 IEEE Int. Conf. Big Data, IEEE Big Data 2014, pp. 14–20, 2015.

[15] D. Raposo, “Fiware basic operations.” LCTSens, DEI-Universidade de Coimbra,

Coimbra, 2016.

[16] F. B. Jorge Sá Silva, Ricardo Mendão Silva, Redes de Sensores Sem Fios, 1st ed. Lisboa:

978-972-722-830-0, 2016.

[17] M. S. Stefanos Vatsikas, Georgios Kalogridis, Tim Lewis, “The Experience of Using

the IES Cities Citizen-centric IoT Platform,” IEEE Commun. Mag. Manuscr., 2016.

IEEE INTERNET OF THINGS JOURNAL

Abstract— Use of wireless sensor networks (WSNs) in

conjunction with mobile devices is growing day by day. Mobile
phones are not only personal devices that provide communication
services, but also versatile and resourceful elements in the
Internet of Things (IoT). Nevertheless, despite the referred
growth, one key aspect for real-world IoT deployments is still
largely overlooked: reliability. In this respect, there is a clear gap
between theoretical models and real implementations, as no
practical reliability mechanisms are in place for IoT. Proposing,
studying, and providing IoT reliability solutions is, thus,
fundamental for the massive deployment of IoT technology
across all sectors of society.

In this context, the main purpose of this paper is to propose,
explore, and assess reliability mechanisms for IoT scenarios,
based on the use of redundant routes and devices that take
advantage of mobile devices, as key elements of IoT. These
mechanisms were evaluated in a variety of failure scenarios
constructed with real, off-the-shelf equipment, showing their
good capability to maintain effective communication even in the
presence of link failures.

Index Terms— Mobile phone sensing, Wireless sensor
networks, Reliability, FogPhone, Internet of Things.

I. INTRODUCTION
HE number of mobile devices is growing at a rapid pace.
According to 4G Americas, in September 2016, there

were 7.5-billion mobile subscriptions in the world [1]. In the
near future, the number of connected mobile devices will be
greater than the number of people on Earth. In fact, mobile
devices, including mobile phones, are becoming an essential
part of the 21st century Internet, and this trend will continue
with the expected near-future roll-out of 5G.

Manuscript received April 29, 2017 This work was partially carried out in

the scope of SOCIALITE Project (PTDC/EEI-SCR/2072/2014), co-financed
by COMPETE 2020, Portugal 2020 - Operational Program for
Competitiveness and Internationalization (POCI), European Union’s ERDF
(European Regional Development Fund), and the Portuguese Foundation for
Science and Technology (FCT), as well by SENESCYT – Secretaría Nacional
de Educación Superior, Ciencia Tecnología e Innovación de Ecuador and by
the Escuela Politécnica Nacional de Ecuador

The authors are with the Centre of Informatics and Systems of the
University of Coimbra, 3000-214 Coimbra, Portugal, (e-mail:
smaita@dei.uc.pt, oswado@dei.uc.pt, draposo@student.dei.uc.pt,
marcelo14fernandes@hotmail.com, boavida@dei.uc.pt, arod@dei.uc.pt,
sasilva@dei.uc.pt). S. Sinche is also with the Department of Electronic,
Telecommunications and Networks, Escuela Politécnica Nacional, 170525
Quito, Ecuador (e-mail: soraya.sinche@epn.edu.ec) and A. Rodrigues is also
with Polytechnic Institute of Coimbra, ISCAC, Coimbra, Portugal (e-mail:
andre@iscac.pt).

Research and technology are now oriented to providing
connectivity to people, things, and applications through the
Internet. The Internet of Things (IoT) enables the development
of all kinds of intelligent applications and services, combining
both real-world and virtual world data. According to the
World Economic Forum (WEF), IoT devices will grow from
22.9-billion in 2016 to 50.1-billion by 20201.

The proliferation of connected smart things or devices
through the Internet for a variety of applications brings several
challenges. When a number of smart things are involved,
reliably sharing information and making collaborative
decisions in critical applications, such as e-healthcare, home
automation, or industrial automation, is crucial [2].

There are some pieces of work where the concept of
reliability in IoT is treated. Kempf et. al. [3] discuss the role of
reliability in the IoT, and provide some architectural
guidelines to address reliability issues. Prasad et. al [2] present
several approaches to reliability in IoT and discuss potential
energy efficiency and reliability (EER) issues. They concluded
that in the next generation of IoT, real-time monitoring
applications are required and EER must be satisfied.
Nevertheless, [2,3] just present requirements and make general
considerations that allow improving reliability in IoT
communications.

Maalel et. al [4] present a study of reliability for emergency
applications in IoT, where they define an Adaptive Joint
Protocol based on Implicit ACK (AJIA) for packet loss
recovery and route quality evaluation. However, the solution
is presented at the theoretical level only, without performing
an experimental validation.

Zhu Q. [5] implements an extended SCALE (Safe
Community Awareness and Alerting Network) platform as a
testbed, and presents the key challenges and approaches in
creating a reliable IoT community. SCALE is in an
experimental development stage and the author does not
provide an analysis of its reliability mechanisms.

On the other hand, there are already some pieces of work
about designing and modelling IoT reliability. For example,
Behera et. al. [6] propose a novel reliability-modeling scheme
for a service-oriented IoT setup. The article is focused on
service reliability of IoT, and defines a case study with two
subsystems. Each subsystem receives temperature and smoke
information in real time from several sensors, and when their

1 https://www.weforum.org/agenda/2015/11/is-this-future-of-the-
internet-of-things/

A Practical Assessment of Redundancy Models
for IoT Reliability

T

Soraya Sinche, Senior Member, IEEE, Oswaldo Polo, Duarte Raposo, Marcelo Fernandes, Fernando
Boavida, Senior Member, IEEE, André Rodrigues, and Jorge Sá Silva, Senior Member, IEEE

IEEE INTERNET OF THINGS JOURNAL

values are over a given threshold an actuator and alarm are
activated. However, the system is not studied in failure
scenarios.

Li et. al [7] present an IoT reliability evaluation model that
considers perception reliability, transmission reliability, and
processing reliability. Moreover, Ahmand et. al. [8] present a
methodology for estimating hardware and software reliability.
Nevertheless, these pieces of work are oriented to the
modeling, evaluation, and estimation of IoT reliability, not to
providing it. Despite this, they constitute a good basis for the
ideas proposed in the current paper.

Although there are several theoretical studies on IoT
reliability, like those presented in the previous paragraphs,
they do not provide IoT reliability tests in real scenarios, with
practical solutions. In the current paper, we propose and
assess, in practical settings, reliability mechanisms for IoT
systems, using mobile devices as key elements of the
reliability architecture. In our work, we took an experimental
approach, and considered the average Round Trip Time (RTT)
as metric. This is defined as the average period between
issuing a sensor data request and receiving the respective data.
In a communications network, the RTT is one of several
factors affecting latency. For this reason, RTT is important for
identifying the efficacy of recovery mechanisms during
failures.

The contributions of this paper are the following:
1) a model for reliability in IoT networks, based on

device and link redundancy;
2) implementation of the proposed model with off-the-

shelf equipment, thus proving its viability;
3) use of mobile devices, including mobile phones, as

elements of the reliability strategy, taking advantage
of the fog-of-things concept;

4) practical assessment of the proposed reliability
model, by performing a set of tests under a variety of
faults.

The remainder of the paper is structured as follows. In
section II we provide background concepts, firstly explain the
role of the Fog of Things in IoT, then describing the potential
of personal mobile devices, especially mobile phones, as fog-
enabling systems, and lastly addressing key concepts in IoT
reliability. In section III, we present the proposed model for
IoT reliability. This model will be subject to practical
evaluation in a set of case studies that are presented in section
IV. Section V presents and discusses the experimental
evaluation results. Conclusions and guidelines for further
work are provided in section VI.

II. BACKGROUND

A. Fog of Things
Cloud computing is responsible for the biggest change in the

way people work, live and, mainly, do business in recent
years. It involves changing the way technology is used from
an ownership paradigm to a subscription based and pay-per-
use methodology. Based on three main service levels –
infrastructure, platform, and software – it leverages the know-

how on clustering and virtualization to provide elastic
computing and storage services with high-availability
assurance. In fact, cloud computing is nowadays the preferable
platform for many business solutions. It requires low initial
investment, resources are elastic, and services are quickly
deployed and available. Organizations can focus on the
business model, leaving the management of infrastructures,
platforms, and software at the cloud provider’s side.

However, today’s devices, which make up IoT and Cyber-
Physical Systems (CPS), are becoming increasingly more
heterogeneous, mobile, and intelligent. In theory, everything
from lightbulbs to fridges, microwaves, and coffee machines
will soon be able to connect to the Internet. These devices
represent an untapped resource that is available on site. So, it
no longer makes sense to rely on distant, cloud-based service
providers when we wish to communicate with neighbors for
handling local tasks and information. Thus, an efficient cloud
should come down to the network edge and become diffused
among client devices, in both mobile and wired networks,
whenever necessary. This means that the traditional cloud
architectures are now migrating to the network edge and
becoming a Fog of Things (FoT).

To date, to the best of our knowledge, no study has delved
into investigating the integration of WSNs and mobile phone
systems within the fog, with the aim of exploring IoT
reliability, as this requires significant conceptual changes to
the traditional cloud architecture, endowing it with new
functionalities based on a fog paradigm. As far as extending
the cloud to IoT and CPSs is concerned, new advancements in
the state-of-the-art need to be considered. Most of the current
sensing techniques should be investigated and adapted to the
highly distributed and heterogenic environment of these
embedded systems. The outputs of these techniques also need
to “close the loop” and affect the way embedded systems
collaborate, in order to achieve dynamic levels of
security/privacy, reliability, and higher system performance.
All of these aspects are highly challenging and, as a
consequence, innovative solutions have to be found by
promoting the use of this new generation of cloud through
virtual environments that facilitate the construction of new
applications and products.

The goal of this distributed edge-based cloud is to quickly
assist local nodes by locally maintaining and using data,
avoiding the cost and latency of data transmission to a
centralized cloud. In this context, the integration of WSN and
mobile phone sensing leads to clear benefits, as processing
and data storage tasks are performed in local devices.

B. Mobile phone as a Fog system
Advances in sensor technologies have led not only to an

increase in WSN-based solutions, but also to a proliferation of
mobile phones with native sensors and, as a result, to a set of
new applications. This proliferation has profoundly changed
what we believe will be the future of IoT, where WSNs will
work together with mobile phones and other personal mobile
devices to offer reliable applications. These will provide the
research community with a massive flood of data that enables

IEEE INTERNET OF THINGS JOURNAL

systems to leverage sensed information on structures, humans,
environment, energy, and resources. The work presented in the
current paper represents a further step along this vision, by
combining WSNs, IoT, mobile devices, and the fog concept,
for providing IoT reliability.

There are several people-centric or environment-centric
sensing applications implemented in mobile phone systems. In
the work of Macias et. al. [9] several such applications are
presented. Research points towards a future of WSNs
increasingly integrated with mobile phone sensors. The next
generation of Mobile Phone Sensing (MPS) should enable us
to relate a person-centered application with the effects caused
by human behavior in the environment and, on the other hand,
to develop mobile applications that help improving quality of
life. Thus, there is the need for integrating more external
sensors that allow the monitoring of environments together
with MPSs. This converts the traditional mobile phone into a
fog-like device: The FogPhone.

Using the FogPhone approach, processing will be carried
out by edge devices, and only selected, processed information
will be sent to the cloud. In addition to improving efficiency
and effectiveness, this opens a whole range of new
applications that can be developed on mobile phones and that
interact directly with WSNs.

For instance, by using activity recognition algorithms (e.g.,
algorithms that can identify walking, cycling or driving), it is
possible to infer if a person uses public or private transport, or
if he/she prefers walking, when going to a specific destination.
Additionally, if information on the level of pollution on the
roads, it is possible to advise and raise awareness in users,
encouraging them to use environmentally-friendly
transportation.

In Fig. 1, a general structure of a Fog Network using
FogPhones is presented, where the data collected from a
network of wireless sensors, a smart watch, or from the mobile
phone sensors are processed in FogPhone systems. This
processing can include feature selection and algorithms for
activity recognition.

C. IoT reliability
In recent years, with the growth of IoT applications in many

areas, reliability has gained in importance due to the impact

that failures can have on the performance of IoT networks and
applications. In critical areas, the consequences could be
disastrous. Faults in an IoT network may originate in the
communication system, energy system, mechanical system,
etc.

IoT systems are made of several building blocks. Fig. 2

shows a general structure of an IoT system, in which there are
four main blocks: “Things”, Communication, Computing &
Storage, and Services &Applications. Our work is focused on
increasing the reliability of the Communication block.

The term reliability can be used amply, for example in the
case of application robustness, resistance to security problems,
adaptability, self-configuration, long-term usability, or overall
system reliability [3].

IoT network infrastructure reliability is crucial for the
reliability of the whole system. For example, emergency
applications require the reliable transmission of sensor data
with minimum delay. Failure in delivering sensor data in a
reliable and timely manner may end in high costs, user
dissatisfaction, and physical damage to people or things 2.
There are two techniques typically used to achieve WSN
reliability: retransmission and redundancy. Mahmood et al.
[11] propose a three-dimensional reference model for WSN
reliability (Fig. 3). In this reference model, reliability can be
based on retransmission and/or redundancy, using hop-by-hop
or end-to-end communication, and operating at packet level or
event level.

 On the other hand, [12] presents some important techniques
for improving network reliability, such as parts improvement
method, effective and creative design, use of overrated
components, and structural redundancy, in which the latter
provides reliability through alternative routes.

2 http://iot.ieee.org/newsletter/january-2015/relyonit-dependability-for-the-
internet-of-things.html

Fig. 1. Structure of Fog Network with a FogPhone

Fig. 2. General structure of IoT systems, based on [10]

Fig. 3. Reference model for research in WSN reliability [11]

IEEE INTERNET OF THINGS JOURNAL

The reliability model that we propose in the subsequent
section is based on structural redundancy.

In an IoT system, a thing is a smart object where the data is
collected through sensor nodes. The proper selection of
sensors is crucial and it must be a function of the type of
applications to be implemented. Furthermore, the system may
combine information from several sensors, which may
represent an opportunity to improve the reliability and
accuracy of the data.

Many IoT applications use low-cost sensors, so that it is
cheap to implement redundancy mechanisms. These
mechanisms, accompanied by efficient routing protocols,
allow us to improve data accuracy. Moreover, redundancy of
devices and communication links can be explored to improve
reliability of IoT systems.

After data acquisition, it is necessary to store the raw data
for further processing. Here, it is also possible to explore
redundancy with the objective of creating a reliable
architecture. To this end, in a fog-based architecture, databases
can exist both in fog systems (e.g., a FogPhone or set of
FogPhones) and cloud servers. FogPhones can provide
temporary data storage during network outages and, once
communication is reestablished, send all data to a cloud
server. Moreover, in addition to database redundancy and to
temporary storage, it is possible to optimize communications,
as not all data need to be stored centrally.

III. REDUNDANCY-BASED RELIABILITY MODELS FOR IOT
In this section, we propose several models for increasing

IoT network reliability, based on combinations of
communication links redundancy and devices redundancy.

The basic scenario we considered is composed by an IoT
network where each sensor (thing) is connected to the central
server using a gateway device and a network link. Fig. 4
shows a first reliability model that simply considers one
backup link for each main link connecting each gateway to the
server, i.e., a 1:1 redundancy.

Additionally, we also considered including redundancy at
the gateway level, because gateways are critical components
of IoT networks. In this scenario, each gateway will have a
backup gateway, working in a master - slave configuration.
This is depicted in Fig. 5.

The two previous schemes can be combined into the model
presented in Fig. 6, where reliability is improved by using
both communication links redundancy and gateway
redundancy.

The model presented in the Fig. 6 can be simplified in the
case where sensors are integrated in gateways, which is quite a
common case. The resulting model is shown in Fig. 7.
 In the next section, we evaluate the presented models using
several case studies. In the experiments, we assumed, without
loss of generality, that communication between the sensing
systems and the gateway uses a wired network interface, as
this is usually the case in industrial environments.

Fig. 4. Reliability model with alternative communication links

Fig. 5. Reliability model with redundancy in gateway devices

Fig. 6. IoT reliability model with dual redundancy (communications and

devices)

Fig. 7. Dual redundancy IoT reliability model with sensors integrated into

gateways

IEEE INTERNET OF THINGS JOURNAL

IV. CASE STUDIES

A. Experimental Setup
We worked with an IoT network testbed whose structure is

shown in the Fig. 8. Our system uses a personal computer as
http server and database. These services are mounted over the
FI-WARE3 platform. The Arduino Uno represents any
embedded system that performs data acquisition, using

sensors, but does not support wireless communications, thus
requiring a gateway for data communication with the server.
 In our tests, we worked with digital temperature and
humidity sensors (specifically, DHT11 sensors). The sensors
were connected to an Arduino Uno through digital inputs,
using the DHTLIB library for sending data. The data was
collected and transmitted to a Raspberry Pi 3, which worked
as a gateway device. For this communication, we used the I2C
bus protocol. Finally, the Raspberry Pi sent all the information
collected from the sensors to the server through an Ethernet or
Wi-Fi link.

For each sensor data reply received, a round trip time was
reported. This was measured by the local clock of the
computer, from the instant the request left the server to the
instant when the reply arrived. This request was implemented
with a Python program using TCP connections. We defined
one socket for the main connection and other socket for a
backup connection.

As the Raspberry Pi uses the Linux operating system, when
a sudden power outage happens this can generate problems
when restarting the system, thus leading to service
unavailability. On the other hand, if there are problems in
communication links these can also generate service
unavailability. In this context, we implemented mechanisms
that improved the reliability of the system, based on the
already mentioned concept of redundancy. Specifically, we
considered two approaches in our reliability case studies:
device redundancy and link redundancy.

B. Device Redundancy
In this approach, we implemented and tested a scenario

based on the model presented in Fig. 5. Two Raspberry Pi 3

3 FI-WARE is a project defined by an independent open community in the
European Union. This project develops a complete platform for Future
Internet and next generation services

worked as a cluster (Fig. 9). The cluster was implemented
through the Raspberry Pi LAN ports. One Raspberry node
worked as a master and the other worked as a slave.

 For implementing the scenario (a), the Arduino board

was connected to both Raspberry Pi nodes, as shown in Fig.
10. A voltage level converter (BSS138) from 5V (Arduino) to
3.3 Volts (Raspberry Pi) was necessary for this connection.
 In each Raspberry Pi, we installed the Pacemaker and
Corosync packages to have cluster functionalities. Next, a
Raspberry Pi was configured as master and the other as slave.
When these systems are working as a cluster, heartbeat signals
are exchanged to know the state of each cluster element
(active or passive). Using these signals, a failure on the
master during the transmission data process causes the
automatic switching to the slave.

On the other hand, we installed a server and client program
in Python between the PC and the Raspberry Pi cluster, and
configured two sockets: an "active" socket with the master and
a "standby" socket with the slave. In the client program, the
PC continually sent data requests to the cluster over the
"active" socket. When the master failed, this produced a TCP
disconnection and its port was closed. The client program

detected this problem and reconnected over the "standby"
socket. The round-trip time was continuously measured during
the data transmission process, both during normal operation
and during failures.

C. Link Redundancy
In what concerns link redundancy, we analyzed three

scenarios based on the model presented in Fig. 6 and using the

Fig. 8 Structure of the used IoT network testbed

Fig. 9 Scenario (a): Device redundancy with a Raspberry Pi cluster

Fig. 10 Connection between the Raspberry Pi cluster and the

Arduino & sensors.

IEEE INTERNET OF THINGS JOURNAL

cluster configuration of scenario (a).
Firstly, in scenario (b) the wired link of the master was

disconnected and the system switched to the wired link of the
slave (Fig. 11).

 Secondly, in scenario (c) the wired link of cluster was
disconnected and the system used a wireless link (IEEE
802.11) through a FogPhone to send sensor data to the server
(Fig. 12).

Finally, scenario (d) was similar to scenario (c), with the
difference that it used a wireless router as a backup link (Fig.
13).

In these scenarios, a cable failure causes a sudden
disconnection and the TCP port hangs, losing the connection
and locking the socket during the default timeout. It is
necessary to force its closure and to not wait for the expiration
of the default timeout. For this, in the client program a flag
was activated, after which the reconnection phase was started.

V. EXPERIMENTAL RESULTS
We measured the average RTT in normal conditions (i.e.,

no faults) and in each test scenario. The measurements were
performed within intervals of 4 minutes, and repeated 10
times. In each test round, we collected over 110 RTT
measurements, the exact number depending on the time it took
to re-establish communication via the backup link.

Then, the average RTT for each scenario was calculated
using a confidence level of 95%. Table I presents these results.
It is apparent that in most cases the average RTT values suffer
only a slight increase even though link or device failures exist,
thus showing the effectiveness of the proposed reliability
architecture.

Additionally, the last column in Table I presents the mean
of the maximum RTT during the test period, in normal
condition as in the four scenarios. We can see that link
redundancy (i.e., scenarios (b), (c), and (d)) leads to
considerable lower values of this parameter.

Moreover, as we can see in the Table II, the scenario with

the greatest increase in the average RTT when fault conditions
are applied is scenario (a) with an increment of 14.27 %, while
the scenario with the smallest average RTT was scenario (d),
again pointing to the relatively better performance of link
redundancy over device redundancy.

Fig. 11 Scenario (b): link redundancy using two wired links

Fig. 12 Scenario (c): link redundancy using a FogPhone as hot spot

Fig. 13 Scenario (d): link redundancy using a wireless

router

TABLE I
THE AVERAGE RTT IN NORMAL CONDITIONS AND THE SCENARIOS (A), (B),

(C) AND (D).

 Average

RTT (µs)
Confidence
Interval (µs)

Average of
max. RTT (µs)

Normal
conditions 394.518 104.8 1593.83

Scenario (a) 450.797 151.84 1669.59

Scenario (b) 401.643 94.02 639.16

Scenario (c) 410.894 91.43 584.80

Scenario (d) 399.610 89.19 800.25

TABLE I
DELAY INCREASE RESPECT TO NORMAL CONDITIONS.

 Average RTT increase

respect to normal
conditions (us)

% of average
RTT increase

Scenario (a) 56.28 14.27

Scenario (b) 7.12 1.58

Scenario (c) 16.38 4.08

Scenario (d) 5.09 1.24

IEEE INTERNET OF THINGS JOURNAL

The obtained results clearly point to some conclusions. On

one hand, IoT device redundancy and/or IoT link redundancy
for providing reliability are both feasible and effective. On the
other hand, the performance price to pay is quite small. Last
but not least, using devices such as FogPhones for providing
link reliability does not significantly penalize the performance
of the whole system, and can even pay-off if one realizes that
these devices can provide local processing and local storage
capabilities in addition to link redundancy

VI. CONCLUSIONS AND FUTURE WORK
In this paper, we proposed, implemented and assessed

several models for IoT reliability. In addition to proposing
these models, the paper presented their practical assessment,
whose importance lies in the following issues: i) it targeted
actual implementations of device and link redundancy
scenarios; ii) model implementations were done with off-the-
shelf equipment, thus proving their viability; iii) the fog-of-
things strategy was used and validated; iv) several types of
device and link faults were analyzed. The obtained results
prove the feasibility and effectiveness of the proposed models.

As future work, we plan to evaluate the advantages of
FogPhones used as backup for storage and processing of raw
data, thus improving the reliability of IoT applications.
Moreover, we also plan to explore the use of the Multipath
Transport Control Protocol (MPTCP) as another mechanism
for IoT reliability. Furthermore, we are also planning to
explore reliability mechanisms that use management agents
supported in IoT protocols (e.g., CoAP Management Interface
(CoMI) or RESTCONF).

The development of Fog Phone systems is still young. Thus,
there is a vast amount of unresolved issues and research
challenges related to processing and storage capacity. To solve
them, we also need to develop distributed algorithms that
enable low-power consumption, and provide security
mechanisms that avoid malicious attacks or theft of
information.

Several challenges also arise from this distributed fog
architecture that combines MPS and WSNs. Firstly, it is
fundamental to setup the virtual infrastructure, namely to
choose the distributed cloud supporting devices and to
implement the distributed cloud services over heterogeneous
devices, capable to transparently operate as one (building a
tiny-virtual cluster). Secondly, it is necessary to distinguish
and pre-process sensing data to determine which data will be
kept in the local-distributed cloud and which data will be also
sent to the centralized cloud. This pre-processing can be useful
either to facilitate big data processing, by avoiding
transmitting large amounts of raw data to a centralized data
center, or to deliver local data faster, with higher availability,
security and control, among other benefits.

ACKNOWLEDGMENT
The work presented in this paper was partially carried out in

the scope of SOCIALITE Project (PTDC/EEI-
SCR/2072/2014), co-financed by COMPETE 2020, Portugal
2020 - Operational Program for Competitiveness and

Internationalization (POCI), European Union’s ERDF
(European Regional Development Fund), and the Portuguese
Foundation for Science and Technology (FCT), as well by
SENESCYT – Secretaría Nacional de Educación Superior,
Ciencia Tecnología e Innovación de Ecuador and by the
Escuela Politécnica Nacional de Ecuador..

REFERENCES
[1] 4G Americas, “Cellular Technologies Enabling the Internet of Things”,

November 2015.
[2] S. Prasad, Ch. Kumar, “A Green and Reliable Internet of Things”,

Communications and Network, Scientific Research 2013, 5, pp 44-48.
[3] J. Kempf, J. Arkko, N. Beheshti, K. Yedavalli, “Thoughts on Reliability

in the Internet of Things”, www.iab.org, 2011.
[4] N. Maalel, E. Natalizio, A. Bouabdallah, P. Roux, M. Kellil, “Reliability

for emergency application in Internet of Things”, IEEE International
Conference on Distributed Computing in Sensor Systems, 2013.

[5] Q. Zhu, “Enhancing Reliability of Community Internet of Things
Deployments with Mobility”, 34th International Symposium on Reliable
Distributed System, September 18 – October 1, 2015, Montreal - Quebec,
Canada.

[6] B. Ranjit, K. Hermant, R. Diptendu, “Reliability Modelling of Service
Oriented Internet of Things”, Infocom Technologies and Optimization
(ICRITO) (Trends and Future Directions), 2015 4th International
Conference on Reliability.

[7] Y. Li, L. Tian, “Comprehensive Evaluation Method of Reliability of
Internet of Things”, IEEE 2014 Ninth International Conference on P2P,
Parallel, Grid, Cloud and Internet Computing, pp. 262 – 266.

[8] M. Ahamad, “Reliability Models for the Internet of Things: A Paradigm
Shift “, 2014 IEEE International Symposium on Software Reliability
Engineering Workshops.

[9] E. Macias, A. Suarez, J. Loret, “Mobile Sensing Systems, Open Access”,
Sensors 2013.

[10] A. Al-Fuqaha, M. Guizani, M. Mohammadi, M. Aledhari and M. Ayyash,
“Internet of Things: A Survey on Enabling Technologies, Protocols, and
Applications”, IEEE Communication Survey & Tutorials, Vol 17, pp.
2347-2376, IEEE 2015.

[11] M. Mahmood, W. Seah, I. Welch, “Reliability in wireless sensor
networks: A survey and challenges ahead”, Elsevier 2015.

[12] S. Chaturvedi, “Network Reliability: Measures and Evaluation”,
Scrivener Publishing, Wiley, 2016.

Soraya Sinche received the Engineer
degree in from the Escuela Politécnica
Nacional of Electronic and
Telecommunications, Ecuador, in 1999,
the master degree from Politecnico di
Torino of Wireless Systems and relative
Technologies, Turin, Italy, in 2004 and
the master degree from the Escuela
Politécnica Nacional of Connectivity in

Telecommunications Networks, Quito, Ecuador, in 2016. She
is currently pursuing the Ph.D. degree at the Department of
Informatics Engineering of the University of Coimbra,
Portugal. Her current research interests include Internet of
Things, wireless communications, wireless sensor networks
and mobile phone sensing. Since 2000, she has been Lecture
at the Department of Electronic, Telecommunications and
Networks of Escuela Politécnica Nacional, Quito, Ecuador.

Mrs. Sinche is a Member of IEEE since 2004 and Senior
Member of IEEE since 2015.

IEEE INTERNET OF THINGS JOURNAL

Oswaldo Polo received the degree in
Electronic and Telecommunications from
Escuela Politécnica Nacional, Quito,
Ecuador, in 1999. He worked as a
Platform Engineer in Telefonica
(Ecuador) and a Support Engineer of
Security Systems in Ebtel (Ecuador). He
is currently researching at the Department

of Informatics and Engineering of University of Coimbra,
Portugal. His current research interests include Networking
equipment (Cisco, Juniper, Huawei), Wireless sensor network,
and Embedded Systems.

	Duarte Raposo is an enthusiastic of
wireless technologies, specifically low-
power wireless sensor networks for
industrial environments and the future
Internet of Things. Duarte has received
his Master’s degree (2012) in computer
engineering from University of Coimbra,
Portugal. At present, he is a PHD student

of doctoral program in information science and technology at
University of Coimbra, Portugal and a research student of
Centre for Informatics and Systems (CISUC). He’s research
topics are: Industrial Wireless Sensor Networks, network
management and diagnostic tools for WSN (using machine
learning techniques with logging tools). At the same time,
Duarte has also been working in the industrial field,
participating in several national and international projects as
researcher, network advisor and designer, and software
developer.

Marcelo Fernandes, was born in a small
village near Viseu, Portugal. He is
currently finishing his Master’s thesis, to
obtain his master’s degree in Biomedical
Engineering from the University of
Coimbra, Portugal. In 2016, he become a
temporary member of the CISUC-LCT
group.

André Rodrigues has a B.Sc. in
Informatics Engineering from the
University of Coimbra (Portugal), an
M.Sc. in Finance from ISCTE Business
School, and a Ph.D. in Informatics
Engineering from the University of
Coimbra in 2013. He works as a teacher
at the Polytechnic Institute of Coimbra,
giving classes on networking. His main

research interests are Wireless Sensor Networks and Internet
of Things. He is the author of several papers in international
journals and conferences in those areas. He has been serving
as a reviewer in top conferences and participated in several
European initiatives and projects. He is a researcher for the
Laboratory of Communication and Telematics at the Centre of
Informatics and Systems of the University of Coimbra. The

publication list is available at:
www.researchgate.net/profile/Andre_Rodrigues9.

Fernando Boavida (www.uc.pt/go/boavi
da) received his PhD in Informatics
Engineering in 1990, and he currently is
Full Professor at the Department
of Informatics Engineering (DEI) of the
Faculty of Sciences and Technology of the
University of Coimbra. His main research
interests are people-centric Internet of
Things, wireless sensor networks,

mobility, and quality of service. He is author/co-author of
more than 170 international publications (books, book
chapters, refereed journals and conference proceedings) and
50 national publications. He was the chairman of the
Program Committee of QofIS’2001, IDMS-PROMS’2002,
NETWORKING 2006, WWIC 2007, FMN 2008, EWSN
2010, FMN 2012, IWQoS 2012, ACM SIGCOMM FhMN
2013, Mobiquitous 2015, and WoWMoM 2016 international
conferences/ workshops. He is a senior member of the IEEE
and a licensed Professional Engineer. He is a member of
the Editorial Advisory Board of the Computer
Communications journal.

 Jorge Sá Silva received his PhD in
Informatics Engineering in 2001
from the University of Coimbra, where
is a Tenured Assistant Professor with
Habilitation at the Department
of Informatics Engineering of
the Faculty of Sciences and Technology
of the University of Coimbra and a
Senior Researcher of Laboratory of

Communication and Telematics of Centre of Informatics
Engineering of University of Coimbra, Portugal. His main
research interests are Internet of Things, Network
Protocols, Machine to Machine, and Wireless Sensor
Networks. He has been serving as a reviewer and publishing in
top conferences and journals in his expertise areas. His
publications include 2 books, 5 book chapters and over 170
papers in refereed national and international conferences and
magazines. He participated in European initiatives and
projects such as FP5 E-NET, FP6 NoE E-NEXT, FP6
IP EuQoS, FP6 IP WEIRD and FP7 Ginseng (as Portuguese
Leader). He actively participated in the organization of
several international conferences and workshops, (e.g. he was
the Workshop Chair of IFIP Networking2006, Publicity Chair
of EWSN2009, General Co-Chair of EWSN2010, General Co-
Chair of Mobiquitous2015, General Vice-Chair of
WoWMoM2016) and he was also involved in program
committees of national and international conferences. He is a
senior member of IEEE, and he is a licensed
Professional Engineer. His homepage is at
http://www.dei.uc.pt/~sasilva.

A. Articles

134

B

List of permissions

On this appendix we present a list of all the permissions[70] used by the ap-

plication as well as the explanation to why we use each one of them. We are aware

that some of this permissions raise privacy issues and as such we believe that the

transparency of why and how we used them is very important.

• ACCESS WIFI STATE: To get the list of the configured network the Wifi

needs to be turned on. As such, when the user navigates to the Settings screen,

we need to check if the Wifi is turned on or off.

• CHANGE WIFI STATE: For the same reason as above, we need to turn

on the Wifi (if it is turn off) when the user navigates to Settings screen.

• INTERNET: This permission is necessary in order to access the Internet

from the application. We need this permission to communicate with the FI-

WARE, through HTTP/REST requests.

• ACCESS NETWORK STATE: This permission allow us to check if the

Smartphone is connected to any network. It also allows us to see the infor-

mation about that connection, namely if is a connection through mobile data

or through Wifi. This is necessary to see if we can make the requests to the

FIWARE.

• ACCESS FINE LOCATION: This permission allows us to receive the lo-

cation of the Smartphone, define by GPS or by the network.

• READ PHONE STATE: This permission allows us to set a listener of the

phone state, that can be: ringing, off-hook or no activity. We need this per-

mission in order to perform the call detection for incoming calls.

• PROCESS OUTGOING CALLS: This permission is necessary in order

to create a listener for outgoing calls. We use this listener in order to perform

135

B. List of permissions

call detection for outgoing calls.

• READ SMS: This permission gives access to the SMS log from the Smart-

phone. We only use this to detect the number of SMS and number of desti-

nation/origin. We do not check the content of the SMSs and the number is

encrypted before we store it.

• READ CALENDAR: This permission allows us to access the calendar log.

We use this permission to check the students academic schedule and events.

• ACTIVITY RECOGNITION: This permission is necessary in order to use

the Google Activity Recognition API.

• SET ALARM: This permission is used to set alarms on the Smartphone.

• RECEIVE BOOT COMPLETED: This permission allows us to imple-

ment a listener that lets us know when the Smartphone boot is completed.

We use this to auto-start the application when the Smartphone boots.

• RECORD AUDIO: This permission is necessary in order to use the mi-

crophone. We use this to measure the sound amplitude, to perform sleep

detection. We do not store any audio or process it in any other way.

• STORAGE: This permission is necessary in order to store data on the Smart-

phone. This allows us to create the DB on the Smartphone.

136

	Acronyms
	List of Figures
	List of Tables
	Introduction
	Context
	Objectives
	Thesis Structure
	Scheduling
	Methodology
	Technologies used

	State-Of-Art
	Concepts
	Similar projects

	Overall System
	Overall Architecture
	FIWARE architecture
	Mobile application architecture
	Wear application architecture
	IoT kits
	ISABELA application

	Development
	Smartphone application
	SmartWatch application

	Tests and Results
	Battery life
	Network traffic
	Sleep Classification tests

	Conclusions and Future work
	Conclusions and Future work
	Open challenges

	Bibliography
	Appendices
	Articles
	List of permissions

