

Binder

Backend server and

frontend web client for
music collaboration

André Filipe Rocha Macedo
afmacedo@student.dei.uc.pt

Supervisors:

João Monteiro

Hugo Oliveira
September 5th, 2017

Masters in Informatics Engineering
Dissertation/Internship
Final Report

Binder – Backend server and frontend web client for music collaboration

 i

Abstract

Humans have the tendency to do activities together, and making music is no exception. To
produce music together, people needed to be in the same place and play instruments near each
other. Nowadays, it is possible for people around the world to work with each other in the
production of music. However, the means to do that are rather rudimentary, with only a few
tools available online to provide an effective service capable of facilitating the collaboration
between multiple people.

At the moment, the process to produce music in the amateur scene involves the use of tools
and services, such as Dropbox, Google Drive, and Whatsapp, that are not suited for music
collaboration. Although there are already some collaboration platforms oriented for
musicians, they are not widely used amongst them. This indicates that the former platforms
lack the capacity of attracting amateur musicians. On the other hand, amateur musicians also
have difficulty promoting themselves and finding new opportunities.

This project aims to solve both problems. The main focus is the development of an online
platform, where musicians can collaborate with each other and find new projects to work on.
The project’s second objective is the versioning of the projects, in which the musicians can
follow some of the software development principles and check the contents of the project at
any point in time and even revert changes.

It was done an analysis of services that provide a collaborative ecosystem to better understand
what already exists in the market that is capable of creating music, as well as to detect their
flaws to try and conceive a platform that is capable of fulfilling the needs of the collaborative
music creation.

The development process was Scrum, and a product backlog with the all the features to be
implemented was created. This phase also included the definition of technologies used, risks
of implementation and a plan for testing. Afterwards, a system architecture capable of
satisfying the problems stated above was created. The implementation phase that followed
consisted of developing a backend REST API server using Ruby on Rails and a frontend web
client using React Redux.

Keywords

Music, collaboration, version control, multitracking

Curricular Internship Final Report

ii

Binder – Backend server and frontend web client for music collaboration

 iii

Table of Contents

1. Introduction ... 1

1.1 Motivation ..1

1.2 Goals ...2

1.2.1 Internship .. 2

1.2.2 Project .. 2

1.3 Scope ...2

1.4 Document Structure ...3

2. State of the Art .. 4

2.1 Version Control ...4

2.1.1 Local Version Control Systems ... 4

2.1.2 Centralized Version Control Systems .. 4

2.1.3 Distributed Version Control Systems .. 5

2.2 Version Control Services ...5

2.2.1 Github .. 5

2.2.2 Bitbucket ... 5

2.2.3 Gitlab ... 5

2.2.4 SourceForge .. 6

2.3 Version Control Services Comparative Analysis ..6

2.4 Direct Competitors ...6

2.4.1 Blend.io .. 6

2.4.2 Gobbler .. 7

2.4.3 Kompoz ... 7

2.4.4 Splice .. 7

2.4.5 Soundtrap .. 7

2.5 Indirect Competitors ..8

2.5.1 Spire .. 8

2.5.2 Trackd .. 8

2.5.3 Speazie ... 8

2.5.4 Soundtrap .. 8

2.6 Direct Competitors Comparative Analysis ..9

3. Approach .. 11

3.1 Methodology ... 11

Curricular Internship Final Report

iv

3.1.1 Scrum .. 11

3.1.2 Roles .. 12

3.1.3 Planning .. 13

3.1.4 User Stories .. 13

3.1.5 Product Backlog .. 13

3.1.6 Estimation .. 16

3.1.7 Sprint ... 16

3.2 Tools and Technologies definition .. 16

3.2.1 Backend REST API server .. 16

3.2.2 Frontend Web client... 16

3.3 Risks ... 17

3.4 Testing.. 19

3.4.1 Unit testing ... 19

3.4.2 Fault Tolerance .. 20

3.4.3 Scalability .. 20

3.4.4 User Acceptance ... 21

3.4.5 Continuous Integration .. 21

4. Architecture.. 22

4.1 System Deployment View ... 22

4.2 Ruby on Rails .. 23

4.3 Gitlab .. 24

4.4 React-Redux .. 25

5. Implementation ... 26

5.1 REST API server.. 26

5.1.1 Authentication ... 26

5.1.2 Log in & Register .. 26

5.1.3 Projects ... 26

5.1.4 Tracks .. 27

5.1.5 Track Applications .. 27

5.1.6 Track Submissions .. 27

5.1.7 Track History ... 28

5.2 Frontend Client .. 28

5.2.1 Reducers ... 28

5.2.2 Actions .. 28

Binder – Backend server and frontend web client for music collaboration

 v

5.2.3 Containers and Components .. 28

6. Mockups ... 30

7. Conclusion ... 34

7.1 Future Work .. 34

6.2 Final Remarks ... 34

8. References .. 35

Curricular Internship Final Report

vi

Index of Figures

Figure 1 - Github logo .. 5

Figure 2 - Bitbucket logo .. 5

Figure 3 - GitLab logo .. 5

Figure 4 - SourceForge logo ... 6

Figure 5 - Blend.io logo .. 6

Figure 6 - Gobbler logo .. 7

Figure 7 - Kompoz logo ... 7

Figure 8 - Splice logo ... 7

Figure 9 - Soundtrap logo ... 7

Figure 10 - Spire logo .. 8

Figure 11 - Trackd logo .. 8

Figure 12 - Speazie logo .. 8

Figure 13 - Soundtrap logo ... 8

Figure 14 - Scrum methodology .. 11

Figure 15 - Trello flow .. 12

Figure 16 - System Deployment View .. 22

Figure 17 - Ruby on Rails Architecture .. 23

Figure 18 - Gitlab Architecture .. 24

Figure 19 - React-Redux Architecture .. 25

Figure 20 - Music project information .. 30

Figure 21 - Project track information ... 31

Figure 22 - Track application information ... 32

Figure 23 - Search project information ... 33

Binder – Backend server and frontend web client for music collaboration

 vii

Index of Tables

Table 1 - Version control systems comparative analysis .. 6

Table 2 - Comparative analysis of direct competitors .. 9

Table 3 - Main features regarding the epic User ... 14

Table 4 - Main features regarding the epic Project ... 14

Table 5 - Main features regarding the epic Tracks .. 14

Table 6 - Main features regarding the epic Collaboration ... 15

Table 7 - Main features regarding the epic Music Player ... 15

Table 8 - Main features regarding the epic Music Player ... 15

Table 9 - Limited project management experience ... 17

Table 10 - Service Failure ... 17

Table 11 - Inability to configure Gitlab .. 17

Table 12 - Third party libraries go down or become deprecated .. 18

Table 13 - Conflicts when committing changes .. 18

Table 14 - Inability to use a library to edit music .. 18

Table 15 - Model code coverage .. 19

Table 16 - Controller code coverage ... 20

Curricular Internship Final Report

viii

Glossary

Commit A commit is a snapshot of a file or files at a certain moment. In software
development, it is normally used to register the progress of the software being built.

Repository A repository is a place where software files are hosted. It can be located on a local
computer, or on a remote server.

Branch: A branch is an independent line of development. It is used to isolate the developers
work from each other.

REST API REST Stands for Representational State Transfer. It’s a stateless client-server
communications protocol. A REST API is an interface with several endpoints that allow
external applications to perform operations in the system.

Digital Audio Workstation (DAW): A Digital Audio Workstation is a software application
used for recording, editing and producing audio files, such as songs or sound effects [1].

Plug-ins: A plug-in can add or enhance audio-related functionality to a software application.
In this particular case, a plug-in can add extra functionality to a DAW [2].

Stems: A stem is a group of audio sources, grouped together, that can be in mono, stereo or
on multiple tracks.

Multitracking: Multitracking is a method that allows a set of different audio channels to play
together synchronously. The instruments and vocals can all be recorded individually.

Trim: Trimming is the process of cutting pieces of a track. It allows removing unwanted short
pieces of music from the track.

Loop: A loop is a repeating section of sound material. It is often used to create patterns.

Stereo panning: Is the distribution of a sound signal to a different channel. For instance, it
allows changing sounds from the right channel to the left channel.

Track volume: Individual track volume permits the user to set a specific track with a lower
or higher volume.

Equalizer: Is the process of adjusting the frequency response of an audio system, using linear
filters.

Compression: Reduces the volume of loud sounds and amplifies quiet sounds through signal
processing.

Metronome: Produces a sound at regular intervals. Often used by musicians to practice at a
regular pulse.

Track bouncing: Is the method of combining multiple tracks into one, allowing room for
more tracks.

Overdubbing: Is a technique in which the musician is capable of recording a new sound
over an existing track, without replacing it. That it, the final result is a combination of the
original track and the newly recorded sound.

Binder – Backend server and frontend web client for music collaboration

 ix

Acronyms

VCS Version Control System
RCS Revision Control System
CVCS Centralized Version Control System
DVCS Distributed Version Control System
CVS Concurrent Versions System
QA Quality Assurance

Curricular Internship Final Report

x

Binder – Backend server and frontend web client for music collaboration

 1

1. Introduction

The present document is the result of the work conducted within the scope of the internship
at Deemaze Software under the supervision of Hugo Oliveira, Ph.D. Professor at the
Department of Informatics Engineering of the University of Coimbra, and Engineer João
Monteiro, Co-Founder, and Software Engineer at Deemaze Software. The resulting work of
this project and internship is called Binder.

This introductory chapter is divided into four sections. The first section presents the
motivation of this work in the music collaboration area. The second section presents the
goals of this project and internship. The third section contextualizes the proposed work in
Deemaze Software. Finally, the fourth section describes the purpose of each chapter, as well
as all the documents that append this report.

In this work, the software engineering challenge of creating and developing a real world
product using the today’s industry standards in product development will be undertaken.

1.1 Motivation

In the Encyclopædia Britannica, music is defined as “art concerned with combining vocal or instrumental
sounds for beauty of form or emotional expression” [3]. Humans, as a social species, tend to do activities
together, and making music is not an exception. To produce music together, people needed
to be in the same place and play instruments near each other. Nowadays, with the
advancements in technology, it is possible for people around the world to work with each
other to produce music. However, the means to do that are rather rudimentary, with only a
few tools available online to provide a service capable of facilitating the collaboration between
multiple people, and very few can do it efficiently and for free.

After talking to several amateur and professional musicians, it became clear that most of them
collaborate with other musicians using services such as Whatsapp, Dropbox and Google Drive,
that do not have music collaboration as their primary goals. Very few used more specialized
services in music collaboration, due to being overly complicated or not fitting their needs.
Another issue noted was that it is very difficult for an amateur musician to show itself and to
find partners to work with, outside of their social group.

As stated before, most music collaboration is done in a rather rudimentary process of sharing
files in the cloud or sending them directly to each other. Although there are already some
services that aim to facilitate the creation of collaborative music, most users still use the most
rudimentary processes. This proves that a service that can truly solve this problem does not
exist at the moment. Since the process is not optimized for music collaboration, the time spent
producing and its quality can be greatly affected.

When comparing the process of creating music with professional development of software,
the latter is being optimized ever since the first computer program. At the moment, it is
unthinkable for a team of developers to develop software in the industry without version
control tools or specialized tools to make the coding process faster. That is called
collaboration. Open source projects are also an interesting topic to look at because they are
projects open to everyone where people from all over the world can find them, contribute to
and improve the final product.

Curricular Internship Final Report

2

Some of the principles used in software engineering can be useful to optimize the process of
producing music. After analyzing the process of creating music by both professional and
amateur musicians, we came to the conclusion that professionals already have a method for
music creation and collaboration with other parties, since they heavily prioritize having
complex music workstations, other than a more collaborative environment. Amateur
musicians, on the other hand, have a much bigger need for the collaborative environment,
because they did not assert their place in the industry yet.

1.2 Goals

The goals of this work can be split into two major parts:

 Internship, which focuses on experience and knowledge acquired by the intern.

 The project, which corresponds to the implementation of all the proposed features.

1.2.1 Internship

The goals for the internship are to consolidate knowledge about Software Engineering
processes, as well as designing and conceiving a product, master the Ruby on Rails framework
and React library, used in the development of web applications, and to gain experience in
developing software in a business environment where teamwork is essential to produce
software with quality.

1.2.2 Project

The main goal of the project is to produce an application capable of expediting the music
collaboration process and solving the problem of amateur musicians finding new projects to
work on. To accomplish this, the following features must be fully implemented and tested, to
minimize the number of bugs:

 Integration of music projects with version control: Allow users to check the
history of operations in their projects, as well as navigating back in time to check for
a previous version.

 Collaboration in music projects: Allow users to search for music projects and apply
for them, according to the user's skill set and the project needs.

1.3 Scope

The internship is taking place at Deemaze Software, a software company headquartered in
Coimbra, Portugal, that is specialized in the development of mobile and web applications.

The Scope of the project is to implement the backend of the application as a REST API, in
order to be usable by external applications (e.g. an Android application), and to implement a
frontend client, in order to use the application on a web browser.

This internship is being done with Pedro Batista, also an intern in this case, and is responsible
for developing an Android application for this problem.

Binder – Backend server and frontend web client for music collaboration

 3

1.4 Document Structure

The remainder of this document is divided into the following chapters:

 2. State of the Art: presents an analysis of the most popular direct and indirect
competitors, as well as their business models;

 3. Approach: describes the approach followed in this internship, from the
development methodology to the risks and testing plans

 4. Architecture: describes the architecture of each part of the system, as well as a
deployment view of the system and some of the technical decisions made.

 5. Implementation: details what was implemented and how the implemented features
work.

 6. Conclusion: summarizes the work that was done and the future work planned.

 7. Mockups: features mock-ups for the most important features of the project.

 8. References: list of references used in the document.

Curricular Internship Final Report

4

2. State of the Art

The main goal of this chapter is to analyze the current collaboration tools available in the
music scene that compete with the internship product. This analysis provides a better
understanding of where the product will fit, as well as to identify the most common business
models and attractive functionalities. This analysis is composed of the following sections:

 Version control concept in section 2.1

 Version control services in section 2.2

 Comparative analysis of version control systems in section 2.3

 Most popular direct competitors in section 2.4

 Most popular indirect competitors in section 2.5

 Comparative analysis of direct competitors in section 2.6

For each of these sections, a brief explanation of the competitors will be provided, as well as
some of their main features and ratings (for mobile applications).

Three aspects must be clarified before proceeding to the next sections:

 The internship product was developed as a web application platform.

 Services are considered to be direct competitors if they provide a music collaboration
tool as a web application.

 Services are considered to be indirect competitors if they provide a music
collaboration tool on a platform other than the web.

2.1 Version Control

Version Control, or Source Control, is the ability to register file changes over time, so that the
user may recall specific versions later. It allows to revert files back to a previous state, compare
changes over time and see who made modifications to the files. It gives the possibility to
recover from errors introduced by someone or something, by going back in time and tracing
its origin. There are three different types of Version Control Systems (VCS): local, centralized,
and distributed.

2.1.1 Local Version Control Systems

Local Version Control Systems are very simple to use. It usually consists of having several
versions of a file stored in a local database. RCS (Revision Control System), is one of the first
and most used local VCS. It is still used in some projects, but its usage is nowhere near the
more modern VCS, due to its natural barrier for multiple developers to work on the same
project, since it is bound to the local developer’s workstation.

2.1.2 Centralized Version Control Systems

Centralized Version Control Systems (CVCS) were developed to mitigate the need to work
with other developers on different systems. Developers would commit a change to a central
system, usually a single server containing all the versioned files. This creates a dangerous single
point of failure.

Binder – Backend server and frontend web client for music collaboration

 5

2.1.3 Distributed Version Control Systems

To avoid having a single point of failure, Distributed Version Control Systems (DVCS) were
created. With these Version Control Systems developers mirror the full repository, which
means that the repository can be copied backup in the case of a server failure. There are no
disadvantages in using a DVCS instead of a CVCS because a DVCS have the same features a
CVCS has, with the plus of being distributed and avoiding the single point of failure. In fact,
DVCS can work as a CVCS.

2.2 Version Control Services

This section presents some of the most common version control services available online.

2.2.1 Github

GithubI is a git repository hosting service, founded in 2008
by Tom Preston-Werner, Chris Wanstrath, and PJ Hyett and
originally written in RubyII, using the Ruby on RailsIII
framework. Github offers plans for private and free
repositories and it is the most well-known source of open
source projects.

2.2.2 Bitbucket

BitbucketIV offers the same service as Github. It was
founded in 2008 by Jesper Noehr and it is written in Python,
using the Django frameworkV.

2.2.3 Gitlab

GitlabVI is a repository hosting website, same as Github and
Bitbucket. The main difference from the latter is that Gitlab is open
source, and has a version operating under the MIT License, which
allows for commercial use. This means that it is possible to have
Gitlab running on a private server, for commercial purposes. It also
has a paid version, with extra features.

I https://github.com/
II https://www.ruby-lang.org/en/
III http://rubyonrails.org/
IV https://bitbucket.org/
V https://www.djangoproject.com/
VI https://about.gitlab.com/

Figure 1 - Github logo

Figure 2 - Bitbucket logo

Figure 3 - GitLab logo

Curricular Internship Final Report

6

2.2.4 SourceForge

SourceForgeVII is a web-based service that offers a centralized
location to host open source projects. It was founded in 1999 by
VA Software and the first to offer this service for free. SourceForge
allows the usage of several types of version control tools.

2.3 Version Control Services Comparative Analysis

Although SourceForge was the first service to offer free repositories to open source projects
and has an external API, it only allows for open source projects, and it has been involved in
controversy recently, as some applications were riddled with unwanted third party software.
Github and Bitbucket support private repositories and also have an external API. Gitlab has
the same perks as Github and Bitbucket, but because it is open source with a commercial
license, it can be hosted on private servers, which is a clear advantage over the other Version
Control Services, as shown in Table 1.

 Github Bitbucket Gitlab SourceForge

External API    

Open source with
commercial license    

Private Repositories    
Table 1 - Version control systems comparative analysis

2.4 Direct Competitors

This section presents some of the most popular direct competitors currently operating.

2.4.1 Blend.io

BlendVIII is a cloud-based music platform founded in 2013. It
integrates with the most popular Digital Audio Workstations
(Ableton Live, FL Studio, etc). Additionally, it enables the
distribution of music through some of the main known
channels (e.g. streaming services such as Spotify, Beatport,
Apple Music). Blend’s business model consists in a
marketplace, where artists can buy and sell stems at their own
price.

VII https://sourceforge.net/
VIII https://blend.io/

Figure 4 - SourceForge logo

Figure 5 - Blend.io logo

Binder – Backend server and frontend web client for music collaboration

 7

2.4.2 Gobbler

GobblerIX is a platform for music collaboration whose main goal is
to aid the process of media project management and all it entails
(backup, versioning, file transfers and collaboration) and supports
project files from popular Digital Audio Workstations. The project
versioning is saved in the users own Google Drive account. It makes
money by selling plug-ins in the marketplace. Gobbler has a web
application to manage the project and a desktop application to keep
project files synced in the cloud.

2.4.3 Kompoz

KompozX is an online collaboration tool that allows users to
contribute to existing projects by uploading tracks. The project
owner creates open positions for the project and then decides who
to incorporate or not. Their business model consists of subscription
plans, where users can pay to have more private projects.

2.4.4 Splice

SpliceXI is a cloud-based collaboration platform that
can integrate with the most popular Digital Audio
Workstations. It has a version control mechanism
where the user can check previous iterations of the
project. It assumes that the user has a Digital Audio
Workstation for music production. It also has a
marketplace as a business model, where the user can buy stems and plug-ins.

2.4.5 Soundtrap

SoundtrapXII is a music recording platform available
not only for the web but also for iOS and Android. It
enables artists to create, browse, record, edit and share
tracks with other users. It has built-in sampled music
instruments with a wide range of effects. It supports
multitracking and an invite system for users to collaborate together. It is a freemium platform,
where you can upgrade to premium to have access to more sound effects, as well as the ability
to have a greater number of projects and tracks.

IX https://www.gobbler.com/
X http://www.kompoz.com/music/home
XI https://splice.com/
XII https://www.soundtrap.com/

Figure 6 - Gobbler logo

Figure 7 - Kompoz logo

Figure 8 - Splice logo

Figure 9 - Soundtrap logo

Curricular Internship Final Report

8

2.5 Indirect Competitors

This section presents some of the most popular indirect competitors currently operating.

2.5.1 Spire

SpireXIII is a multitrack recorder application available for iOS that
automatically adds a professional finish to the recordings through
dynamic equalizer and compression. The multitracking supports 4
tracks and has a metronome to aid the user in the recording. For the
music edition, it can change the individual volume of each track and
do stereo panning. Spire’s collaboration mechanism consists of
sharing the music produced via email, Facebook or Twitter.

2.5.2 Trackd

TrackdXIV is a music collaboration application available
for iOS that supports multitracking and audio file
uploads, as well as music recording. It has the ability to
edit each individual track volume and control stereo
panning. The music social feed provides the ability to
team-up with other people.

2.5.3 Speazie

SpeazieXV is a music recording platform available for both Android
and iOS, that enables artists to create, browse, record, edit, and
share tracks. It allows file uploading, overdubbing, and has a beats
library. The produced music can then be shared in a social feed
within the app.

2.5.4 Soundtrap

Soundtrap can be considered both a direct
competitor and an indirect competitor, due to having
a mobile (Android and iOS) and web platform. The
mobile platform of Soundtrap is capable of doing
everything the web counterpart can.

XIII http://www.spire.live/
XIV https://trackdmusic.com/
XV https://www.speazie.com/

Figure 10 - Spire logo

Figure 11 - Trackd logo

Figure 12 - Speazie logo

Figure 13 - Soundtrap logo

Binder – Backend server and frontend web client for music collaboration

 9

2.6 Direct Competitors Comparative Analysis

This section compares the direct and indirect competitors regarding its most important
features and the application developed in this project - Binder. The comparison resulted in
Table 2, and the features being compared were chosen for being used in music collaboration,
editing and keeping track of different versions.

 Splice Soundtrap Blend Gobbler Kompoz Binder

Version Control      

Project Search      

Music Player      

Cloud Services
integration      

Social Media
integration      

Multitracking      

Audio upload      

Music feed      
*

DAW integration      

Has own studio      
+

Sample marketplace      

Music marketplace      

Music sharing/publish      
*

Desktop application      

Message system      
*

Audio recording      
+

Trim      
-

Loop      
-

Stereo panning      
+

Track volume      
+

Table 2 - Comparative analysis of direct competitors

* Features are planned and will be added in a future iteration
+ Features present in the Android platform
- Features are planned and will be added in a future iteration of the Android platform

Curricular Internship Final Report

10

Table 2 shows that all collaboration services offer some sort of messaging system (either by
direct messaging or by comments), as well as multi tracking. On the other hand, only
Soundtrap offers Audio recording and some sort of music edition. If we look at version
control, only Splice offers that. Most of them also do not offer integration with DAW and do
not have a built-in studio.
By analyzing this table, we can infer that multitracking and a form of communication are
essential features in a project of this scope. We can also conclude that since we want to direct
the project to a more amateur crowd, the built-in studio and integration with DAW are not
essential.
Going back to what was said in the introductory chapter, we can also establish that although
most services do not offer version control, it would be beneficial to the project to have that
feature, allowing project owners to have more control over their music projects.
This project aims to gather the best of every application and offer the user the ability to
collaborate and create music. In order to achieve this goal features like version control and
multitracking are highly prioritized, following basic music manipulation (stereo panning and
track volume), and a messaging system to be implemented in the future. The web application’s
main focus is the management of music projects and finding new projects and project
members. The Android counterpart is more focused in the music recording and basic music
edition.
Gitlab will be used as a version control service since it has all the perks of other Version
Control Services, is open source, has a commercial license, and an external API. The fact that
it can also be run under a private server is a big plus.

Binder – Backend server and frontend web client for music collaboration

 11

3. Approach

As stated earlier, Binder aims to provide a platform for music collaboration among musicians.
Being a software engineering project, different approaches can be followed in order to develop
a product that solves the problem.

This chapter presents the approach followed in the internship. Section 3.1 describes the
methodology used in the internship product development. Section 3.2 presents the tools and
technologies used in the application development. Section 3.3 details the risks identified and
its mitigation plans. Finally, section 3.4 describes testing of the application.

3.1 Methodology

This section describes the methodology used for the internship product development, Scrum.
This methodology was chosen since it is the methodology used in all projects at Deemaze
Software.

3.1.1 Scrum

As any other software development methodology, Scrum is a methodology for a team to work
together and develop a product. It has an interactive approach, where each new piece is built
upon previously developed pieces[4].

5As stated in Figure 14, scrum projects are split in cycles (usually between one and four weeks)
called Sprints. Each Sprint represents a set of tasks to be completed. The list of features to be
implemented is called the Product Backlog. At the beginning of each Sprint, the list of tasks
for the current Sprint is set by the Product Owner. The selected tasks are transferred from the
Product Backlog to the Sprint Backlog. During the Sprint period, the Scrum team has Daily
Meetings to discuss the work done in the previous day and to define the agenda for the day.
At the end of the Sprint, the Sprint Backlog must be fully implemented and reviewed and the
cycle is repeated.

In this internship, we adopted a slightly modified version of Scrum, in order to match the
company’s development process. We have Sprints with the duration of one week, and on the

Figure 14 - Scrum methodology[5]

Curricular Internship Final Report

12

last day of the Sprint, a showcase is made, with supervisor João Monteiro, to show the progress
of the week, talk about possible blockers and adjust the Sprint Backlog for the next week
accordingly.

The Scrum process is being managed in a tool called Trello, where we have 8 lanes:

 Backlog: Where all the user stories are originally put.

 To Do: Where the user stories from the Sprint Backlog are put.

 Waiting for Layout: for tasks that need a design layout.

 In Dev: For every task that is currently being developed.

 Code Review: Where tasks that need to be reviewed by someone from the company
are.

 Quality Assurance (QA): Where the task is manually tested by another member of
the company.

 Done: For tasks that pass this process.

 Deployed: For tasks that are deployed to the server.

Figure 15 describes the flow used in the development process. All the tasks are initially in the
Backlog lane, where they are refined and moved to the To Do lane. When a task is ready to start
being developed, it is moved to the In Dev lane. However, if it needs any type of design (usually
tasks regarding the front-end web client), it first goes to the Waiting for Layout, and after the
design is done, it is pushed to In Dev. After the development, the task goes under Code Review,
where it is reviewed by a member of the company. If there is something to be rectified it
returns to In Dev, otherwise it advances to QA. When in QA, the task is manually tested by
another member of the company. If it fails the QA, it goes back again to In Dev, otherwise, it
is moved to Done. At the end of the Sprint, all tasks that are placed in Done are deployed on
the server.

3.1.2 Roles

This section lists the Scrum roles[6] present in this project.

 Product Owner: The Product Owner is the person inside the project with the
responsibility to organize the tasks in the Product Backlog. The Product Owner is also
responsible for clarifying all Product Backlog tasks to the Scrum Team.

Figure 15 - Trello flow

Binder – Backend server and frontend web client for music collaboration

 13

 Scrum Master: The Scrum Master is responsible for keeping up the team
productivity. The Scrum Master does this by removing any impediment that can
obstruct the development process.

 Scrum Team: The Scrum Team is cross-functional - there are no roles within the
team. They cross-train each other so no one becomes a bottleneck in the delivery of
work.

Supervisor João Monteiro is the Product Owner, responsible for the prioritization of the
requirements. However, as it is important for the intern to learn the Scrum methodology
properly, some of the tasks are delegated to the Scrum Team. I and Pedro Batista constitute
the Scrum Team since we need to constantly communicate and synchronize our work. I
perform all the developer, testing and architect tasks, as well as any type of technical decisions.
The Scrum Master role is performed by João Monteiro.

3.1.3 Planning

The Scrum methodology uses User Stories to define a requirement, containing a description
of the action performed by the end-user. All user stories make up the Product Backlog. As
this project was proposed by Deemaze Software as a curricular internship, after getting the
details of the project from the Project Owner, talked to people that work in the music
business, and performed brainstorm sessions, the User Stories started to be written.

Although the project was proposed by Deemaze Software, Pedro and I had the freedom to
discuss and decide which were going to be the main features and which user stories were going
to be the main focus.

3.1.4 User Stories

A User Story is a way to describe a software feature from the end user's perspective in everyday
language. User Stories that include multiple features and can be subdivided in smaller User
Stories are called epics.

Following Mike Cohn’s template[7], a user story should contain the following information:

 Role: Describes who requires the story.

 Goal: Describes what is required.

 Benefit: Describes why this story is required.

A user story usually follows the following format:

 As a <role>, I want <goal>, in order to <benefit>.

In this project, the user stories fall into three categories:

 Backend Server: Implementation of features on the REST API server.

 Front-end Client: Implementation of features on the front-end web client.

 DevOps: Tasks that must be performed in order to configure servers or
environments.

3.1.5 Product Backlog

The Product Backlog is a list of all the User Stories that need to be implemented until the end
of the project. It contains 2 types of user stories:

Curricular Internship Final Report

14

 Must have: Features that must be implemented until the end of the project.

 Nice to have: Features that are not mandatory to be implemented until the end of
the project, but would be a good addition to the project.

The following list contains the main User Stories in the project, with a brief description of its
main tasks. The detailed full list of user stories can be consulted in Annex A.

Table 3 shows the main tasks regarding the user. They focus on the authentication process
and showing and updating a profile.

Epic #1 – User

Log in and register

Recover password

Show user profile

Update user profile
Table 3 - Main features regarding the epic User

Table 4 describes the main operations that can be performed on a music project. It is possible
to create, open, update and delete a music project, as well as downloading its music files.

Epic #2 – Project

Create a project

Open a project

Update a project

Delete a project

Download a project
Table 4 - Main features regarding the epic Project

Table 5 gives an overview of what can be done with a music track. A track belongs to a project
and the operations listed above can be performed over that resource

Epic #3 – Tracks

Create a track

Open a track

Update a track information

Update a track file

Delete a track

View track history

Open previous version of a track
Table 5 - Main features regarding the epic Tracks

Binder – Backend server and frontend web client for music collaboration

 15

The collaboration tasks described in table 6 are the core of the platform, being responsible to
allow the collaboration of different people in a single music project.

Epic #4 – Collaboration

Create a track application

Open a track application

Update a track application

Delete a track application

Search for open track applications

Submit a file to a track application (track submission)

Accept a track submission

Reject a track submission
Table 6 - Main features regarding the epic Collaboration

Table 7’s music player tasks are responsible to play music files on the platform, whether it is
a single track file or the set of track files present in the music project.

Epic #5 – Music Player

Play a project music

Play a track file

Play a previous version of a track file

Play a track submission
Table 7 - Main features regarding the epic Music Player

The epic 6, regarding server configuration and shown in table 8, incorporates tasks that mainly
do any type of configuration in the project.

Epic #6 – Server Configuration

Install Gitlab

Configure Gitlab

Configure React-Redux

Configure REST API server environments

Set up domain and SSL for REST API server
Table 8 - Main features regarding the epic Music Player

Curricular Internship Final Report

16

3.1.6 Estimation

The estimation of user stories was made using points following the Fibonacci sequence. The
points try to reflect the complexity of the task: tasks with a low amount points are easier to
complete in comparison with tasks with a higher point count. The Fibonacci sequence was used
because it helps to estimate larger tasks, where the uncertainty is greater[8]. The Product Owner
supervised the task estimation process and discussed each estimation value with the scrum
team and the rest of developers in the company.

3.1.7 Sprint

After the Product Backlog is defined, it is time to start defining the tasks to be performed in
each Sprint. A Sprint is made of short duration milestones that allow the Scrum team to
develop a small portion of the project and produce a demonstrable product increment, called
the deliverable.

In this project, the Sprint duration was set to one week, with daily meetings and a showcase
of the Sprint result in the last day, where the Sprint Backlog for the next week is also defined.
The Sprint duration was set by the Scrum Master. The short duration of the Sprint implies
that a reduced number of user stories are implemented in each increment, which also allows
being on top of every problem that may occur since the Scrum Team does not have much
experience.

3.2 Tools and Technologies definition

An important part of the project is the definition of what tools to use and why. Since the API
is going to be used by the Android client, a decision was made to also develop a web client
separate from the API server, in order to keep the system modularity and improve decoupling.
With this, the system will also be easier to develop and maintain. The backend REST API
server and the Frontend Web client development stack is described in the next subchapters.

3.2.1 Backend REST API server

Ruby on Rails was chosen as the backend stack, due to the company’s experience and ability to
give support. Ruby on Rails is a framework for web development that extends the Ruby
language. Testing was done using the RspecXVI, the standard framework for unit testing in Ruby
on Rails.

3.2.2 Frontend Web client

React-ReduxXVII stack is going to be used as the Frontend client. React is a javascript library for
building user interfaces. ReactXVIII is also part of the company’s development stack, but since
the project is going to need handling a great deal of data, and React is not really good at
handling much data9, we will use React with Redux. React-Redux is a stack that allows all the
perks of React, with the ability to handle data easily. For the testing part, a javascript testing
library created by Facebook named JestXIX will be used, because it is recommended by the React-
Redux documentation.

XVI http://rspec.info/
XVII http://redux.js.org/
XVIII https://facebook.github.io/react/
XIX https://facebook.github.io/jest/

Binder – Backend server and frontend web client for music collaboration

 17

3.3 Risks

Risks are uncertain events that may or may not occur, thus influencing the prospects of
achieving the project goal. Risk management is an important process that improves the
project’s probability of success.

The following tables contain the risks that may affect the project, its impact, the probability
of occurrence and its mitigation plans:

Table 9 shows that due to the limited experience in project management, I, the intern, might
have difficulty managing a project of this size.

Table 10 describes the risk of online servers being susceptible to failures. Having redundant
servers help mitigate this risk.

Due to the lack of experience, I, the intern might have trouble configuring the Gitlab server
and its API, as shown in Table 11.

ID 1

Title Limited project management experience

Description The intern has a limited experience in project management, and it is
possible to fail the estimations for the user stories

Impact High

Probability Medium

Mitigation Plan Discuss with the Product Owner/Scrum Master and other members of
the company that is familiar with the tools being used, the estimation
for the user stories

Status The mitigation plan was put to practice and some estimations were
revised

Table 9 - Limited project management experience

ID 2

Title Service Failure

Description The physical server where the product is hosted goes offline

Impact High

Probability Low

Mitigation Plan Set up a redundant server in a different physical server

Status The system architecture ensures server redundancy
Table 10 - Service Failure

ID 3

Title Inability to configure Gitlab

Description The Gitlab server may not be able to properly accommodate all the
project needs

Impact High

Probability Low

Mitigation Plan Use an alternative to version control in the project. Save a new version
of the music project every time a new track or subtract is changed

Status To date of writing, the risk did not happen
Table 11 - Inability to configure Gitlab

Curricular Internship Final Report

18

In table 12 describes how online libraries are always susceptible to being taken down or being
deprecated.

Since we are working with binary files, some conflicts might occur during commits. We may
need to force the latest version of the file into the repository as can be seen in table 13.

Although it is a nice to have feature, there might be issues with the libraries when
implementing music edition, as shown in Table 14.

ID 4

Title Third party libraries go down or become deprecated

Description Third party libraries used in both the front end web client and backend
API server may become deprecated or go down

Impact High

Probability Low

Mitigation Plan Use libraries with a big community of users behind it, as it is easier to
find alternatives when they become deprecated, or manually implement
the libraries’ functionality

Status To date of writing, the risk did not happen

Table 12 - Third party libraries go down or become deprecated

ID 5

Title Conflicts when committing changes

Description Upon making a new commit with a track edition in Gitlab, conflicts
may occur

Impact Low

Probability Low

Mitigation Plan Force the latest commit in the Gitlab repository

Status To date of writing, the risk did not happen
Table 13 - Conflicts when committing changes

ID 6

Title Inability to use a library to edit music

Description The available libraries may not be able to implement all the music
edition functionalities

Impact Medium

Probability Low

Mitigation Plan Manually implement the missing functionalities

Status To date of writing, music edition is not implemented and therefore, the
risk did not happen

Table 14 - Inability to use a library to edit music

Binder – Backend server and frontend web client for music collaboration

 19

3.4 Testing

Software testing consists of any action intended to evaluate how a system meets its required
results. It helps to keep the number of defects to a minimum while maintaining the code
quality[10].

This section presents the types of tests that are going to be implemented and a brief
description of how they are going to be implemented.

3.4.1 Unit testing

In software development, unit testing is the process of testing small parts of software
individually and independently. It ensures that the software works as the developer intended,
and continues to work as the developer continues to implement other features. It is usually an
automated task, but it can also be done manually.

In this internship, unit testing was done to the web client and the REST API server modules,
the two main components of the system, in order to guarantee that, given an input, the end
results are as expected. Every user story will have at least two test cases: one to ensure the
action in the user story can be executed, and one or more to check error conditions in the user
story. Jest will be used to test the React-Redux (by recommendation of the Redux
documentation) modules in the web client. Rspec will be used to test the Ruby on Rails API
modules on the server side.

To measure the amount of code tested it was used the code coverage metric, that shows the
percentage of lines of code covered by the unit tests made.

Since the development of the frontend client is not yet finished, the following code coverage
applies only to the REST API server modules.

Total code coverage: 97.27%

Model Code coverage %

User 100

Project 93.94

Track 85.37

Track application 90.91

Track submission 80.65

Instrument 100
Table 15 - Model code coverage

Curricular Internship Final Report

20

Controller Code coverage %

User 95.65

Project 88.89

Track 85.37

Track application 88.24

Track submission 87.18

Instrument 100

Files 96.55

Search 100

Track history 100

Authentication 100
Table 16 - Controller code coverage

As we can see from table 15 and table 16, code coverage of unit testing is averaging nearly
100% for the REST API server, which guarantees with a fairly high confidence that everything
works as intended

3.4.2 Fault Tolerance

The system must tolerate failures from the Ruby on Rails API server, Gitlab server and
Database failures. Since there are two points of failure, the REST API server, and Gitlab
server, a load balancer can be used to handle traffic distribution every time there is a failure in
one of the REST API servers. The Gitlab will have a master-slave configuration (in different
geographical locations), in which the slave has all the master repositories, and will be
transformed into the master if a failure occurs on the server.

For this project, and since all servers are being hosted in DigitalOcean data centers (each
server in a different location), the DigitalOcean’s load balancing service will be used to
guarantee that, if one of the REST API servers has a failure, the traffic is redirected to the
online server.

3.4.3 Scalability

Scalability testing tests the performance of a system, a network, or a process when the number
of requests changes in size or volume. To perform scalability tests, a tool named rails-perftest
will be used to measure response times, the number of requests per second. rails-perftest
simulates multiple requests to the API server and outputs the metrics and possible ways to
improve them.

Scalability tests are planned to be developed after the development phase of the project is
complete. Since that phase is not fully complete, scalability testing is going to be done in the
future.

Binder – Backend server and frontend web client for music collaboration

 21

3.4.4 User Acceptance

User acceptance testing is the process of verifying that the product is accepted by the end
user. It is usually performed by the owner or client of the product. However, in the scope of
this internship, the product will be tested by outside users, preferably by amateur or semi-
amateur musicians, to make sure that all requirements are met.

User acceptance tests are planned to be performed after the development phase of the project
is complete. Since that phase is not fully complete, these tests are going to be done in the
future.

3.4.5 Continuous Integration

Continuous integration is the practice of automatically running all automated tests every time
a new feature is implemented or a new pull request is made in the git repository. This type of
testing allows for errors to be detected more easily and earlier in the development process
since all unit tests are run in every iteration of the project.

There are several services that provide continuous integration, without any meaningful
difference between them. In this internship werckerXX will be used, because it is the one that I,
the intern, have more experience with.

In this project, every time a new commit was pushed to the remote repository, wercker started
a new build which consisted of executing the following:

 Rubocop – Ruby on Rails code analysis tool, to make sure the code is following the
standard rules of good practices

 Rspec – Unit testing framework used in Ruby on Rails to run all back-end tests

 Jest – Unit testing framework used in React-Redux to run all front-end tests

If any of these commands failed to execute correctly, the build failed and it was not possible
to merge the code with the master branch.

Every time code was merged into the master branch, wercker ran a slightly different build that
consisted of executing a deploy to the online server, in addition to the previous commands.
This way, when a new feature was developed and accepted, it would automatically be live after
a few minutes.

XX http://www.wercker.com/

Curricular Internship Final Report

22

4. Architecture

The architecture is a fundamental part of a software project. It comprises software elements,
the externally visible properties and the relationships among them[11].

This chapter is divided into the following three sections:

 System: presents the deployment view of the system.

 Ruby on Rails: describes the high-level overview and the workflow of the Ruby on
Rails framework.

 Gitlab: presents a high-level overview of the Gitlab architecture.

 React + Redux: shows the workflow of a react + redux application.

4.1 System Deployment View

The deployment diagram (Figure 16) of the system shows what components exist and to
whom they are connected. In this system, there are two types of clients – web client (React-
Redux application) and Android client (out of the scope of this internship). Both clients make
requests to the Ruby on Rails API server through a load balancer. The load balancer is a device
capable of distributing network traffic across multiple servers, thus improving overall
performance and availability. The load balancer will redirect network traffic to the appropriate
machine, based on their workloads. After the request is received, the Back-end API server will
process it and communicates with the Database and GitLab server’s API.

To minimize system downtimes and as a means to mitigate risk with ID 2, we chose to have
server redundancy on the Ruby on Rails API, a Database Master-Slave replication, as well as
a Master-Slave replication in the Gitlab server.

This system is capable of mitigating the problems of music collaboration by introducing a
control version system (Gitlab server) to store music files, and by creating a platform
(composed by the Ruby on Rails server and the Web and Android client) in which users can
create and cooperate with music projects.

Figure 16 - System Deployment View

Binder – Backend server and frontend web client for music collaboration

 23

4.2 Ruby on Rails

The Ruby on Rails framework (Figure 17) follows the MVC architectural pattern, in order to
improve the maintainability of the application.

The Model is used to handle the interaction with the corresponding elements in the database.
It contains the business logic and the rules to manipulate data. The View is the front-end of
the application. It communicates directly with the user, via the user interface. The Controller
processes the incoming requests and communicates with the View and the Model. It processes
the data that comes from the Model and passes it to the View.

Apart from the web server, Ruby on Rails modules fit in those three categories from the MVC
pattern:

 View: includes the Action View, Action WebServices, and Action Mailer.

 Controller: incorporates the controller and the dispatcher.

 Model: where the Active Record fits.

In this project, the Ruby on Rails server is used as a REST API server. The list of endpoints
and possible requests and responses are detailed in Annex B.

Figure 17 - Ruby on Rails Architecture[12]

Curricular Internship Final Report

24

4.3 Gitlab

Gitlab is a Ruby on Rails application and has two ways of communicating with each other:
HTTP/HTTPS and ssh. To understand Gitlab’s architecture, it is important to learn its
components (Figure 18):

 Nginx is the web server and load balancer of the Gitlab system.

 Gitlab workhorse works as a task distributor, as it directs the request to the
appropriate component.

 Gitlab Pages is a component that only serves static pages.

 Redis is a key-value store used to store information about tasks.

 Unicorn is a worker that handles quick tasks, such as checking user permissions or
sending tasks to Redis.

 Sidekiq is a worker that performs tasks asynchronously and gets the task information
from Redis.

 Gitlab shell is another worker, but it is only receiving requests from ssh.

 PostgreSQL is the database, where the repositories and information about users and
their permissions are persisted.

 Gitaly is responsible for all git operations in the system.

In this project, only the Gitlab API was used, meaning that only the communication flow via
HTTP/HTTPS was utilized.

Figure 18 - Gitlab Architecture[13]

Binder – Backend server and frontend web client for music collaboration

 25

4.4 React-Redux

React-Redux’s architecture (Figure 19) is straightforward. However, there is one big difference
when compared with using React.js only – the Store, which is the “global state” of the
application, where all the data is accessible in one place. With React.js, components had to fetch
data on their own, leading to a lot of components having to make API requests. With React-
Redux, all components can access the store.

In this architecture, when an action is triggered, it is forwarded to the dispatcher, which in
turn does an operation with the Store and, after that renders the view with the result.

Figure 19 - React-Redux Architecture[14]

Curricular Internship Final Report

26

5. Implementation

5.1 REST API server

The REST API server is the main server of this project. The front-end client communicates
only with the REST API server. However, the REST API server also communicates with the
Gitlab server, where the git repositories are created and the music files are stored. This server
is made up of the following major features:

5.1.1 Authentication

As stated before, a REST API is stateless by nature, which means that in each request the
server needs to verify who is making the request and whether it is authorized or not. To
mitigate this issue, JWT (JSON Web Token) was used. JWT is an open standard (RFC 7519)
that defines a self-contained secure way of transmitting information between parties as a
JSON object. The information can be verified and trusted because it is digitally signed. JWTs
can be signed using a secret (with the HMAC algorithm) or a public/private key pair using
RSA.XXI

In this project, the JWT contains an email and id to identify the user and is digitally signed by
the server with a secret random string.

For every request made to the REST API, a JWT is expected in the request’s header. The
REST API will receive and decode the token in order to identify who is making the request
and assert if it is authorized.

5.1.2 Log in & Register

Registrations are made with an email, password and a name. The username and password are
then used to log in the user’s account.

Every time an unauthenticated user logs in and/or registers an account, an authentication
token is generated using JWT’s. The authentication token is then used to make subsequent
requests, thus identifying the user.

5.1.3 Projects

Projects are the place where collaboration can happen. A user is able to create, open, edit and
delete a project.

The creation of a project is determined by two main operations: creating the project in the
REST API server, and creating the project in the Gitlab server. The REST API server will
contain information about the project name, description, its members, the number of tracks,
track applications and track submissions as well as a reference to the files in Gitlab. The Gitlab
server is the repository where the files are stored.

XXI https://jwt.io/

Binder – Backend server and frontend web client for music collaboration

 27

When a request is made to create a new project, the REST API server makes a request to the
Gitlab server, and if the response is positive, the project is also created in the REST API server
with a reference to the project repository.

To open or edit a project page, the requests are made only to the REST API server. On the
other hand, to delete a project, the REST API server makes a request to the Gitlab server, and
if the response is positive, the project is also eliminated in the REST API server.

The project page contains a music player to play the project music. When clicked, the files are
retrieved from the Gitlab server in base64 format.

5.1.4 Tracks

Tracks are the individual components of a music project. Each track contains a music file
made up of a single instrument.

Similar to the projects, tracks have information stored on both servers: the file is stored in the
Gitlab server and the information about the track is stored in the REST API server.

When a track is created, the REST API server sends the file to the corresponding project
repository in the Gitlab server and commits a message. If the response is positive, the REST
API server stores the track information (name, creator, instrument) alongside with the
reference to the repository file.

If a track file is updated (eg. a new version is uploaded), the Gitlab server receives the file
from the REST API server and commits a new message. The track file deletion is identical to
the project deletion, but removing only the file from the repository.

When opening a track page, the user can play the individual track file, by clicking on the play
button. That action causes the Gitlab server to return the track file in base64 format.

5.1.5 Track Applications

Track applications are the core of the music collaboration platform. It is through them that it
is possible for users to collaborate with other users in music projects. A track application
presents itself in two different ways, according to the type of user: for the project owner, it
will show a description and a list of track submissions, and for a normal user, it will show the
description and a button to upload a track submission. Only the project owner is capable of
creating, editing and deleting a track application. On the other hand, the project owner cannot
submit files to its own track application.

When a normal user opens a track application and submits a file, the REST API server sends
it to the project repository, where it is stored.

When the project owner opens a track application, a list of all track submissions is presented
and they are capable of listening to the file individually or alongside the rest of the project
tracks.

5.1.6 Track Submissions

Track submissions are the files submitted in track applications. After the user submits the file,
the REST API server stores it in the project repository. The project owner can accept or reject
the track submissions. If a track submission is rejected by the project owner, the file is deleted
from the project repository. In opposition, if a track submission is accepted, the file

Curricular Internship Final Report

28

immediately becomes a part of the project as a new track, and the track submission owner is
from then a member of the project. Any other submissions still pending are destroyed after
that.

5.1.7 Track History

The track history shows the different versions of a track file. It holds all its updates, using the
Gitlab server as its control version system. In addition to listing all the version of a file, it is
also possible to open a previous version and play it. When that happens, the REST API server
requests the different version of the file from the Gitlab server using its API.

5.2 Frontend Client

The front-end client is the Internet browser used to access the music platform online.

5.2.1 Reducers

Reducers are the components of what is called “the store”. The store is where all the
information regarding the web platform is at. For every operation performed, a certain reducer
is populated, and the information becomes available for all React components (without
reducers, react components need to fetch information individually or to be fed by other
components).

This project includes the following reducers:

 Auth reducer – stores information about the user authentication

 User reducer – stores information about a user profile

 Project reducer – stores information about a project

 Track reducer – stores information about a track

 Track application reducer – stores information about a track application

 Track submission reducer – stores information about a track submission

 Track history reducer – stores the list of file changes of a track

 File reducer – stores the files of a project

5.2.2 Actions

Actions are the mechanism responsible for populating reducers. They contain all the front-
end client business logic, thus separating the containers from the store. Data in the store can
only be modified by actions and accessed by containers. This enforces a specific flow of
communication between the multiple elements of the front-end client.

There are two types of actions: action creators and asynchronous actions. The first are simple
actions that are performed right away in a sequential manner (e.g. replacing the current data
in the project reducer when a new project page is opened). The former are actions that require
fetching data from external sources, in this case, the REST API server. Asynchronous actions
always contain action creators, in order to change data in the correspondent reducer.

5.2.3 Containers and Components

Containers are responsible for triggering actions and fetching data from reducers. Because of
that, they are usually called “smart components”. On the other hand, components are usually

Binder – Backend server and frontend web client for music collaboration

 29

called “dumb”, because they are only responsible for rendering information in the browser
and not having any type of conditional or logic operations that the containers usually have.
For that reason, containers usually contain multiple smaller components.

Curricular Internship Final Report

30

6. Mockups

Mockups are a very useful tool to understand what an application will look like how its features
will work. The following list shows some of the mockups for the most important features of
this project, namely music project management, collaboration and version control:

Figure 20 shows the project details and its possible operations: create, edit, delete, go to the
project track list and go to the track application list. It is also possible to see the project
description and its contributors.

Figure 20 - Music project information

Binder – Backend server and frontend web client for music collaboration

 31

Figure 21 shows the track history and the possible operations over a track: Upload a new
track, edit, delete, play the track and check the track history.

Figure 21 - Project track information

Curricular Internship Final Report

32

In Figure 22 it is possible to see the track application description and its possible operations:
edit and delete. There is also a list of all track submissions and the ability to listen, accept or
reject the submission.

Figure 22 - Track application information

Binder – Backend server and frontend web client for music collaboration

 33

Figure 23 shows the mockup for the search projects with open track applications.

Figure 23 - Search project information

Curricular Internship Final Report

34

7. Conclusion

To conclude the final report, the following chapters will detail what is left to implement, future
work and final remarks about the project.

7.1 Future Work

Some say that the development phase is never complete. This project is no exception, and
there is still much to be done in future work.

Development-wise a few features are planned to be developed, such as the ability to download
a music file with all the individual tracks combined and the ability to fully revert a track file to
a previous version (right now it is only possible to listen to a previous version). The next
iteration of the project will incorporate comments in music projects and its tracks.

After developing the above features, the next step is to write scalability and acceptance tests.
Despite being extremely important, it was not possible to perform these tests sooner, because
without completing the proposed features, the tests would not be very reliable.

6.2 Final Remarks

This internship started with the study of the market and its players. This study allowed me to
learn who were the players in the industry with collaborative tools or services.

In the second stage, a study of the state of the art was done. This stage allowed me to better
understand the music industry and the process of producing music by both amateur and
professional musicians, as well as how they collaborate together.

After this stage, we started to define the approach for this internship, gathering the system
requirements based on what we learned in the first two stages and defining the development
methodology, alongside with risk identification and the definition of tools and technologies
to be used. With the system requirements done, the next step was doing low-fidelity mockups
with the company’s designer, to better understand what this product would become. After
that, the architecture was defined, the first Sprint Backlog set and the development stage
began.

Right now, at the end of the development stage of the project and still with some features to
be developed and tests to be performed, it is possible to look back and identify a few errors.
Over optimistic estimations was one of the main errors, due to the inexperience in developing
a real world product. The second most predominant error was not splitting the tasks in the
backlog correctly and also having some smaller tasks not defined.

Overall, this project helped me to understand how a real world product is created and
developed. It vastly improved my understanding of the development process and my skills in
the languages and frameworks used.

Binder – Backend server and frontend web client for music collaboration

 35

8. References

1 Kefauver, Alan P.; Patschke, David (2007-01-01). Fundamentals of Digital Audio, New
Edition, A-R Editions
2 Collins, Mike A. (2003). Professional Guide to Audio Plug-ins and Virtual Instruments.
Burlington, MA: Focal Press
3 https://www.britannica.com/art/music
4 http://www.toolshero.com/project-management/scrum-agile-methodology/
5 http://www.toolshero.com/wp-content/uploads/SCRUM-overview-resize.png
6 https://www.atlassian.com/agile/scrum
7 https://www.mountaingoatsoftware.com/agile/user-stories
8 https://xbosoft.com/software-quality-blog/estimating-agile-story-points-using-fibonacci/
9 https://www.quora.com/Why-should-I-use-Redux-when-I-can-just-keep-my-state-in-the-
top-level-React-component/answer/Torsten-Engelbrecht
10 https://users.ece.cmu.edu/~koopman/des_s99/sw_testing/
11 Bass L.; Clements P.; Kazman R. Software Architecture in Practice 2nd Edition Reading,
MA: Addison-Wesley, 2003
12 http://adrianmejia.com/images/rails_arch.png
13 https://docs.gitlab.com/ce/development/gitlab_architecture_diagram.png
14 Based on https://github.com/markerikson/react-redux-links/blob/master/react-redux-
architecture.md#redux-architecture

Appendix A

Approach

André Filipe Rocha Macedo
afmacedo@student.dei.uc.pt

Supervisors:

João Monteiro

Hugo Oliveira
September 5th, 2017

Masters in Informatics Engineering
Dissertation/Internship
Final Report

Appendix A – Aproach

 i

Table of Contents

1. User Stories .. 2

1.1 Categories ...2

1.2 Types of User Stories ...2

1.3 Product Backlog ..3

1.3.1 Epic #1 – User ... 3

1.3.2 Epic #2 – Project... 4

1.3.3 Epic #3 – Tracks ... 5

1.3.4 Epic #4 – Collaboration ... 7

1.3.5 Epic #5 – Music Player .. 9

1.3.6 Epic #6 – Server Configuration ... 10

Binder – Backend server and frontend web client for music collaboration

ii

Appendix A – Aproach

 1

Document Scope

This appendix contains the user stories referenced in chapter 3 of the main document.

Chapter 1 contains all the user stories in the Product Backlog.

Binder – Backend server and frontend web client for music collaboration

2

1. User Stories

A user story is a way to describe a software feature from the end-user's perspective, in
everyday language. It can be an epic user story, that includes multiple smaller user stories.

1.1 Categories

In this project, the user stories fall into three categories:

 Backend: Refers to the implementation of features in the REST API server.

 Frontend: Refers to the implementation of features in the frontend web client.

 DevOps: Refers to any type of task that must be performed in order to configure
something (servers, production environments, etc).

1.2 Types of User Stories

The Product Backlog contains 2 types of user stories:

 Must have: Features that must be implemented until the end of the project.

 Nice to have: Features that are not mandatory to be implemented until the end of
the project, but would be a good addition to the project.

Appendix A – Aproach

 3

1.3 Product Backlog

The Product Backlog is a list of all the user stories that need to be implemented until the
end of the project. The following list contains all User Stories of the project. User Stories
that have two categories will have the estimation points for both.

1.3.1 Epic #1 – User

Story ID: 1
Description: As an unregistered user, I want to register using my email and password, so I
can create an account
Category: Backend server, frontend client
Type: Must have
Backend Estimation: 2
Frontend Estimation: 3

Story ID: 2
Description: As an unregistered user, I want to login using my email and password, so I can
enter the platform
Category: Backend server, frontend client
Type: Must have
Backend Estimation: 2
Frontend Estimation: 3

Story ID: 3
Description: As a registered user, I want to recover my password, in case I forgot it
Category: Backend server, frontend client
Type: Must have
Backend Estimation: 3
Frontend Estimation: 3

Story ID: 4
Description: As an authorized user, I want to edit my profile, so I can update my info
Category: Backend server, frontend client
Type: Must have
Backend Estimation: 2
Frontend Estimation: 3

Story ID: 5
Description: As an authorized user, I want to open a user profile, so I can check the user
info
Category: Backend server, frontend client
Type: Must have
Backend Estimation: 1
Frontend Estimation: 2

Binder – Backend server and frontend web client for music collaboration

4

1.3.2 Epic #2 – Project

Story ID: 6
Description: As an authorized user, I want to create a new project, so I can create music
Category: Backend server, frontend client
Type: Must have
Backend Estimation: 3
Frontend Estimation: 3

Story ID: 7
Description: As an authorized user, I want to open a project, in order to check its info
Category: Backend server, frontend client
Type: Must have
Backend Estimation: 1
Frontend Estimation: 3

Story ID: 8
Description: As a project owner, I want to edit my project description and name, in order
to update its info
Category: Backend server, frontend client
Type: Must have
Backend Estimation: 1
Frontend Estimation: 3

Story ID: 9
Description: As a project owner, I want to delete my project, because I no longer need it
Category: Backend server, frontend client
Type: Must have
Backend Estimation: 2
Frontend Estimation: 3

Story ID: 10
Description: As an authorized user, I want to download a project’s music file, in order to
play it on my computer
Category: Backend server, frontend client
Type: Nice to have
Backend Estimation: 5
Frontend Estimation: 3

Appendix A – Aproach

 5

1.3.3 Epic #3 – Tracks

Story ID: 10
Description: As a project owner, I want to create a track, in order to add music to the
project
Category: Backend server, frontend client
Type: Must have
Backend Estimation: 2
Frontend Estimation: 3

Story ID: 11
Description: As a project owner, I want to edit my track, in order to update its info
Category: Backend server, frontend client
Type: Must have
Backend Estimation: 2
Frontend Estimation: 3

Story ID: 12
Description: As a project owner, I want to delete a track, because I no longer need it
Category: Backend server, frontend client
Type: Must have
Backend Estimation: 1
Frontend Estimation: 3

Story ID: 13
Description: As an authorized user, I want to open a project track, in order to check its
info
Category: Backend server, frontend client
Type: Must have
Backend Estimation: 1
Frontend Estimation: 3

Story ID: 14
Description: As an authorized user, I want to update a track file, in order to update its
contents
Category: Backend server, frontend client
Type: Must have
Backend Estimation: 3
Frontend Estimation: 3

Story ID: 15
Description: As an authorized user, I want to view the track history, in order to check its
info
Category: Backend server, frontend client
Type: Must have
Backend Estimation: 3
Frontend Estimation: 2

Binder – Backend server and frontend web client for music collaboration

6

Story ID: 16
Description: As an authorized user, I want to check the contents of a track at a specific
point in time, in order to check its contents
Category: Backend server, frontend client
Type: Must have
Backend Estimation: 3
Frontend Estimation: 5

Story ID: 17
Description: As an authorized user, I want to edit a track’s file settings, in order to update
its player
Category: Backend server
Type: Must have
Backend Estimation: 2

Story ID: 18
Description: As an authorized user, I want to get a track’s file contents, in order to use it to
play the track
Category: Backend server
Type: Must have
Backend Estimation: 5

Appendix A – Aproach

 7

1.3.4 Epic #4 – Collaboration

Story ID: 19
Description: As a project owner, I want to create a track application, so that people can
send submissions to my project
Category: Backend server, frontend client
Type: Must have
Backend Estimation: 3
Frontend Estimation: 3

Story ID: 20
Description: As a project owner, I want to edit a track application, in order to update its
info
Category: Backend server, frontend client
Type: Must have
Backend Estimation: 2
Frontend Estimation: 3

Story ID: 21
Description: As a project owner, I want to delete a track application, because I no longer
need it
Category: Backend server, frontend client
Type: Must have
Backend Estimation: 1
Frontend Estimation: 3

Story ID: 22
Description: As an authorized user, I want to open a track application, in order to
contribute to the project
Category: Backend server, frontend client
Type: Must have
Backend Estimation: 1
Frontend Estimation: 3

Story ID: 23
Description: As an authorized user, I want to search for a project that has open track
application, in order to contribute to a project
Category: Backend server, frontend client
Type: Must have
Backend Estimation: 5
Frontend Estimation: 5

Binder – Backend server and frontend web client for music collaboration

8

Story ID: 24
Description: As an authorized user, I want to apply for a track application, in order to
contribute to the project
Category: Backend server, frontend client
Type: Must have
Backend Estimation: 5
Frontend Estimation: 5

Story ID: 25
Description: As a project owner, I want to accept a track submission in a track application,
in order to incorporate that submission in the project
Category: Backend server, frontend client
Type: Must have
Backend Estimation: 8
Frontend Estimation: 3

Story ID: 26
Description: As a project owner, I want to reject a track submission in a track application,
because I didn’t like the outcome
Category: Backend server, frontend client
Type: Must have
Backend Estimation: 8
Frontend Estimation: 3

Story ID: 28
Description: As an authorized user, I want to comment a track in a specific moment, so I
can give my input
Category: Backend server, frontend client
Type: Nice to have
Backend Estimation: 8
Frontend Estimation: 13

Story ID: 29
Description: As an authorized user, I want to see any track comments, so I can read other
people’s feedback
Category: Backend server, frontend client
Type: Nice to have
Backend Estimation: 5
Frontend Estimation: 13

Appendix A – Aproach

 9

1.3.5 Epic #5 – Music Player

Story ID: 30
Description: As an authorized user, I want to play a project’s tracks, in order to listen to the
project’s music
Category: Frontend client
Type: Must have
Frontend Estimation: 21

Story ID: 31
Description: As an authorized user, I want to play a single track of a project, in order to
listen to its music
Category: Frontend client
Type: Must have
Frontend Estimation: 21

Story ID: 32
Description: As a project owner, I want to play a track submission, in order to decide if I
accept or reject the submission
Category: Frontend client
Type: Must have
Frontend Estimation: 21

Binder – Backend server and frontend web client for music collaboration

10

1.3.6 Epic #6 – Server Configuration

Story ID: 33
Description: As a developer, I want to install GitLab on a remote server, so that I can use
version control in the project
Category: DevOps
Type: Must have
Estimation: 2

Story ID: 34
Description: As a developer, I want to configure GitLab on a remote server, so that I can
use version control in the project
Category: Backend server, frontend client
Type: Must have
Estimation: 3

Story ID: 35
Description: As a developer, I want to configure the React-Redux setup, in order to
develop the frontend web client
Category: DevOps
Type: Must have
Estimation: 5

Story ID: 36
Description: As a developer, I want to configure the backend server environments, in order
develop the backend API
Category: DevOps
Type: Must have
Estimation: 8

Story ID: 37
Description: As a developer, I want to setup continuous integration in the project, in order
to detect problems early
Category: DevOps
Type: Must have
Estimation: 8

Story ID: 38
Description: As a developer, I want to setup domain name and SSL in the server, in order
to have a secure online address
Category: DevOps
Type: Must have
Estimation: 3

Appendix B

Architecture

André Filipe Rocha Macedo
afmacedo@student.dei.uc.pt

Supervisors:

João Monteiro

Hugo Oliveira
September 5th, 2017

Masters in Informatics Engineering
Dissertation/Internship
Final Report

Appendix B - Architecture

 i

Table of Contents

Document Scope ... 1

1. REST API server endpoints .. 2

1.1 Authentication ...2

1.1.1 Register .. 2

1.1.2 Login .. 3

1.1.3 JWT authentication .. 3

1.2 Profile ..4

1.2.1 Get Profile ... 4

1.2.2 Update Profile .. 5

1.3 Project ...6

1.3.1 Get Project .. 6

1.3.2 Create Project ... 6

1.3.3 Update Project .. 7

1.3.4 Delete Project ... 7

1.3.5 Get Project track files.. 7

1.4 Track ...8

1.4.1 Get Track .. 8

1.4.2 Create Track .. 8

1.4.3 Update Track .. 9

1.4.4 Delete Track ... 9

1.4.5 Update Track Settings .. 10

1.5 Track Application ... 10

1.5.1 Get Track Application .. 10

1.5.2 Create track application .. 11

1.5.3 Update Track Application .. 11

1.5.4 Delete Track Application .. 12

1.6 Track Submission ... 12

1.6.1 Create Track submission .. 12

1.6.2 Delete Track Submission .. 12

1.6.3 Accept Track Submission ... 12

1.6.4 Reject Track Submission ... 13

1.6.5 Get Track Submission File .. 13

Binder – Backend server and frontend web client for music collaboration

ii

1.7 History ... 13

1.7.1 Get Track History List .. 13

1.7.2 Get Track File from History List .. 14

1.8 Search Projects.. 14

Appendix B - Architecture

 1

Document Scope

This appendix contains the REST API server’s endpoints documentation referenced in
chapter 4 of the main document.

Chapter 1 contains a list of all available endpoints.

Binder – Backend server and frontend web client for music collaboration

2

1. REST API server endpoints

URL prefix: <hostname>/api/v1

Possible response codes

200 Everything went OK
201 Resource successfully created
204 No content
401 Unauthorized (User does not have permission)
404 Not Found (Resource was not found)
422 Unprocessable Entity (Unable to process the contained instructions)
500 Something went wrong with the server

1.1 Authentication

1.1.1 Register

Endpoint /sign_up

Method POST

Request

name User name

email User email

password User password

Response

id User id

email User email

auth_token JWT

Appendix B - Architecture

 3

1.1.2 Login

Endpoint /sign_in

Method POST

Request

email User email

password User password

Response

id User id

email User email

auth_token JWT

1.1.3 JWT authentication

All subsequent requests after the user login and/or register must include a JSON Web
Token in the header, using the following format:
"Authorization: Bearer <auth_token>"

Binder – Backend server and frontend web client for music collaboration

4

1.2 Profile

1.2.1 Get Profile

Endpoint /users/<user_id>

Method GET

Response

id User id

email User email

name User name

bio Short user biography

avatar User avatar

instruments User instruments

Appendix B - Architecture

 5

1.2.2 Update Profile

Endpoint /users/<user_id>

Method PATCH

Request

name User name

bio User biography

avatar User avatar

instrument_ids Array of instrument id’s

Response

id User id

email User email

name User name

bio Short user biography

avatar User avatar

instruments User instruments

Binder – Backend server and frontend web client for music collaboration

6

1.3 Project

1.3.1 Get Project

Endpoint /projects/<project_id>

Method GET

Response

id Project id

name Project name

description Project description

owner Project creator

collaborators Array of users that contributed to the project

tracks Project tracks

applications Project track applications

1.3.2 Create Project

Endpoint /projects

Method POST

Request

name Project name

description Project biography

Response

id Project id

name Project name

description Project description

owner Project creator

collaborators Array of users that contributed to the project

Appendix B - Architecture

 7

1.3.3 Update Project

Endpoint /projects/<project_id>

Method PATCH

Request

name Project name

description Project description

Response

id Project id

name Project name

description Project description

owner Project creator

collaborators Array of users that contributed to the project

1.3.4 Delete Project

Endpoint /projects/<project_id>

Method DELETE

1.3.5 Get Project track files

Endpoint /projects/<project_id>/files?track_ids=[<array_of_track_ids>]

Method GET

Response

content Project file content

encoding Project files encoding (base 64)

gain Project files gain

panning Project files panning

Binder – Backend server and frontend web client for music collaboration

8

1.4 Track

1.4.1 Get Track

Endpoint /projects/<project_id>/tracks/<track_id>

Method GET

Response

id Track id

name Track name

instrument Track instrument

creator Track creator

project Track project

1.4.2 Create Track

Endpoint /projects/<project_id>/tracks

Method POST

Request

name Track name

instrument_id Instrument id

track_file Track file

Response

id Track id

name Track name

instrument Track instrument

creator Track creator

project Track project

Appendix B - Architecture

 9

1.4.3 Update Track

Endpoint /projects/<project_id>/tracks/<track_id>

Method PATCH

Request

name Track name

instrument_id Instrument id

track_file Track file

Response

id Track id

name Track name

instrument Track instrument

creator Track creator

project Track project

1.4.4 Delete Track

Endpoint /projects/<project_id>

Method DELETE

Binder – Backend server and frontend web client for music collaboration

10

1.4.5 Update Track Settings

Endpoint /projects/<project_id>/tracks/<track_id>/settings

Method PATCH

Request

panning Track panning

gain Track gain (volume)

Response

id Track id

name Track name

instrument Track instrument

creator Track creator

project Track project

1.5 Track Application

1.5.1 Get Track Application

Endpoint /projects/<project_id>/tracks_applications/<track_application_id>

Method GET

Response

id Track application id

name Track application name

instrument Track application instrument

description Track application description

project Track application project

submissions Track application submission list

Appendix B - Architecture

 11

1.5.2 Create track application

Endpoint /projects/<project_id>/track_applications

Method POST

Request

name Track application name

instrument_id Instrument id

description Track application description

Response

id Track application id

name Track application name

instrument Track application instrument

creator Track application description

project Track application project

1.5.3 Update Track Application

Endpoint /projects/<project_id>/track_applications/<track_application_id>

Method PATCH

Request

name Track application name

instrument_id Instrument id

description Track application description

Response

id Track application id

name Track application name

instrument Track application instrument

creator Track application description

project Track application project

Binder – Backend server and frontend web client for music collaboration

12

1.5.4 Delete Track Application

Endpoint /projects/<project_id>/track_applications/<track_application_id>

Method DELETE

1.6 Track Submission

1.6.1 Create Track submission

Endpoint /track_applications/<track_applications_id>/

track_submissions/<track_submissions_id>

Method POST

Request

track_file Track file

Response

id Track application id

name Track application name

instrument Track application instrument

creator Track application description

project Track application project

1.6.2 Delete Track Submission

Endpoint /track_applications/<track_applications_id>/

track_submissions/<track_submissions_id>

Method DELETE

1.6.3 Accept Track Submission

Endpoint /track_submissions/<track_submissions_id>/accept

Method PATCH

Appendix B - Architecture

 13

1.6.4 Reject Track Submission

Endpoint /track_submissions/<track_submissions_id>/reject

Method PATCH

1.6.5 Get Track Submission File

Endpoint /track_submissions/<track_submission_id>/files

Method GET

Response

content Track submission file content

encoding Track submission encoding (base64)

gain Track submission gain value

panning Track submission panning value

1.7 History

1.7.1 Get Track History List

Endpoint /projects/<project_id>/tracks/<track _id>/history

Method GET

Response

commits Track commit list with hash

Binder – Backend server and frontend web client for music collaboration

14

1.7.2 Get Track File from History List

Endpoint /tracks/<track _id>/history/<history_id>

Method GET

Response

content Track file content

encoding Track encoding (base64)

1.8 Search Projects

Endpoint /projects/search?by_name=<name>&by_instrument=<instrument_id>

Method GET

Response

id Project id

name Project name

description Project description

owner Project creator

collaborators Array of users that contributed to the project

tracks Project tracks

applications Project track applications

