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“Every mammal on this planet instinctively develops a natural equi-

librium with the surrounding environment but you humans do not. You

move to an area and you multiply and multiply until every natural re-

source is consumed and the only way you can survive is to spread to

another area. There is another organism on this planet that follows the

same pattern. Do you know what it is? A virus. Human beings are a

disease, a cancer of this planet.”

Agent Smith, 1999 (The Matrix)
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Abstract

Airborne pollutants pose a constant danger to human health and severely affect

quality of life. Citizens breathe man-generated compounds such as carbon monoxide,

nitrogen dioxide, tropospheric ozone, sulfur dioxide and other small particles that

have adverse effects on their health.

Reducing the emissions of these compounds takes great effort and time, and while

doing so people continue to be exposed to them. Thus mitigating their effects

by reducing exposure time is a critical challenge that requires accurate forecasting

models capable of predicting the slightest variations in their concentrations.

This work made use of machine learning algorithms and techniques to construct

and refine linear models capable of making such predictions. In the end, there are

presented models with small errors for carbon monoxide and tropospheric ozone fore-

casting alongside more erratic, but consistent, particulate matter and sulfur dioxide

forecasting models. The one compound that the developed model was unable to

forecast accurately was nitrogen dioxide. Considerations the future of this research

and possible improvements are also supplied.
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Resumo

Os poluentes atmosféricos representam um perigo constante para a saúde humana

e afectam a qualidade de vida. Os cidadãos respiram compostos produzidos pelo

homem como dióxido de carbono, dióxido de azoto, ozono troposférico, dióxido de

enxofre e outras pequenas part́ıculas que têm efeitos adversos na sua saúde.

Reduzir as emissões destes compostos requer um grande esforço e tempo, e enquanto

isso as pessoas continuam expostas a eles. Assim, mitigar os seus effeitos reduzindo

o tempo de exposição é um desafio crucial que requer modelos de previsão capazes

de prever as variações mı́nimas nas suas concentrações.

Este trabalho fez uso de algoritmos e técnicas de ”machine learning” para construir

e refinar modelos capazes de fazer tais previsões. No fim, são apresentados modelos

com erros mı́nimos para prever monóxido de carbono e ozono troposférico bem como

modelos erráticos, mas consistentes, para realizar a previsão de matéria particular

e dióxido de enxofre. O único composto para o qual o modelo desenvolvido não

foi capaz de gerar previsões precisas foi o dióxido de azoto. Considerações sobre o

futuro desta pesquisa bem como posśıveis melhorias são também apresentadas.

ii
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Preface

Air pollution is one of the biggest environmental concerns in present days affecting

people all around the world, in developed and developing countries alike. The World

Health Organization (WHO) estimates that in 2012 up to 3.7 million premature

deaths all around the world could be blamed on air pollution [1–3]. It can be ranked

in one of two different categories depending on its emission sources: background or

anthropogenic pollution. The first of which occurs naturally from phenomena such

as radiological decomposition, forest fires and volcanic activity whereas the latter is

generated by human activity, mainly from fossil fuel burning. While anthropogenic

air pollution has existed for almost as long as humankind, it has seen an exponential

increase during past couple of centuries, due to the industrialization process [4, 5].

From the numerous components that build up air pollution as a whole, there

are six that stand out as the most dangerous to human health according to current

medical and scientific knowledge. These are carbon monoxide (CO), nitrogen diox-

ide (NO2), tropospheric ozone (O3), sulfur dioxide (SO2), and fine particles with

an aerodynamic diameter smaller than 10µm (PM10) and 2.5µm (PM2.5) [4, 6, 7].

Human physiology is adversely affected when exposed to any of these pollutants by

either inhalation or skin contact. Each pollutant has different effects on the human

body, that vary according to exposure time and severity, which will be discussed

later. However, regulatory agencies are in agreement that general effects of expo-

sure to air pollution range from irritation of the skin and mucous membranes to

development of chronic diseases such as asthma. The latest ”European environ-

ment - state and outlook 2015” report (SOER 2015) published little over two years

ago, by the European Environment Agency (EEA) makes notice of this problem

by stating that ”Air pollution is the top environmental issue for premature death

1



and with impact on productivity and health. Citizens often breathe air that does not

meet standards, with major sequels: asthma, chronic obstructive pulmonary disease,

and cancer. Other diseases are triggered by pollution: rhinitis, conjunctivitis and

dermatological disorders” [8].

Upon the realization of the dangers posed by anthropogenic air pollution, in

1979 the United Nations Economic Commission for Europe (UNECE) created the

Convention on Long-Range Transboundary Air Pollution (CLRTAP) which begun

to be enforced four years later in 1983 with the aim of reducing anthropogenic

air pollution [9]. Positive results from the guidelines set by this convention for air

pollution management and mitigation can be found in decision 2010/18 taken by the

UNECE in 2010 which states that ”The Convention on Long-range Transboundary

Air Pollution has delivered demonstrable improvements in reducing acidification of

the environment, in reducing the highest peak levels of ozone and photochemical

smog, and has begun to make improvements in atmospheric levels and deposition of

nitrogen”. Despite that, the air breathed by citizens is still bellow standards and

will most likely remain so for next few decades [8, 10].

Predicting the variations of atmospheric variables despite not being a perma-

nent solution for this problem could be a great tool for mitigating the effects of

anthropogenic air pollution in humans. In essence, it would enable citizens to take

a proactive stance when dealing with air pollution by avoiding the more polluted

areas or taking preventive medication. Tough the idea of forecasting variations in

the concentration of airborne contaminants is not a novel one, most models devel-

oped and used for this purpose are deterministic and thus are extremely limited

and flawed given the chaotic nature of Earth’s atmosphere. This work explores the

idea that locally trained machine learning data driven algorithms could be used as

a non-deterministic alternative for the same purpose.

The European Space Agency (ESA) under the Copernicus - The European Earth

Observation Programme [11] supplied one year worth of data collected over the city

of Coimbra, Portugal, to use to train the machine learning algorithms. Making

use of this data, a series of linear regression based algorithms were developed and

compared with each other for the purpose of integrating a moving sensor network

designed to warn people beforehand of local pollution spikes in the urban region of

the city of Coimbra. The only limitation of the algorithms lie in the underlying linear

character they share which is a trade-off between accuracy and model simplicity.
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Introduction

2.1 Airborne pollutants

An airborne substance is classified as an air pollutant if it causes some sort

of adverse effect in either the human species or the ecosystem. Its origin can be

either natural or anthropogenic, the latter being the most relevant. In addition,

air pollutants can also be classified as primary or secondary pollutants. The first

category refers to pollutants that are directly emitted from a process, like carbon

monoxide, nitrogen dioxide and sulfur dioxide. The second refers to pollutants that

are not directly emitted but instead are products of reactions involving primary

pollutants, such as tropospheric ozone and most particulate matter [4]. Throughout

the following sections the specifics of carbon monoxide (CO), nitrogen dioxide (NO2),

tropospheric ozone (O3), sulfur dioxide (SO2), and fine particles (PM10 and PM2.5)

will be presented regarding emission, dangers to human health and regulations.

2.1.1 Carbon monoxide

Carbon monoxide is a product of the incomplete combustion of organic matter

which occurs when oxygen is scarce, and it is mostly produced by the burning of

carbonaceous fuels inside car engines and power plants [12]. Equation 2.1 shows

an example of a complete combustion while equation 2.2 represents and incomplete

combustion where it lacks enough oxygen. Not only is carbon monoxide extremely

toxic to most animal species, including humans, but it is also colorless, odorless

and tasteless which makes it not only very dangerous but also very hard to detect.

Worldwide, carbon monoxide, is regarded as the leading cause for the most common

and fatal type of air poisoning: carbon monoxide poisoning [13] .
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Figure 2.1: Heme b (left) and biliverdin (right).

CH4 + 2 O2 → CO2 + 2 H2O + energy (2.1)

4 CH4 + 7 O2 → 2 CO + 2 CO2 + 8 H2O + energy (2.2)

Equation 2.3 shows that carbon monoxide is naturally produced in the human

body by the action of heme oxygenase 1 and 2 when breaking down the heme group

in hemoglobin to form biliverdin, both of which presented in figure 2.1. Despite

that, the concentration in which is formed is negligible, when compared with the

concentration breathed in, and it is easily ventilated under normal circumstances

where ambient levels are low [14, 15].

Heme b+3O2+
3

2
NADPH+

3

2
H+ → biliverdin+Fe2++CO+

3

2
NADP++3H2O (2.3)

However, when ambient levels are high enough it becomes harder for the hu-

man body to ventilate the amounts that enter the blood stream trough respiration.

This happens because the affinity between carbon monoxide and the heme group

in hemoglobin is very high due to a π-backbonding or backdonation effect. Carbon

monoxide has negative formal charge on the carbon atom, however since carbon is

a very electropositive atom it has a lot of stress when part of a carbon monoxide

molecule that can be relieved by backbonding with the iron atom in the heme group

of Hemoglobin (Hb) when forming carboxylhemoglobin (COHb). Looking at the

molecular orbital diagram for the carbon monoxide molecule shown in figure 2.2,
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Figure 2.2: Molecular orbital diagram for the carbon monoxide molecule.

one of the non-bonding electrons in the 5σ orbital will be promoted to the 2π non-

bonding orbital when near the iron atom to form the π-backbond which allows for

some negative charge to move away from the carbon atom stabilizing it [16].

The fact that carbon monoxide has an affinity with hemoglobin of about 210

to 230 times greater than that of oxygen means that it binds much more strongly

with hemoglobin which implies that its diffusion from the alveoli to the blood stream

happens at a much faster rate than that of oxygen which has no stabilizing backbond-

ing effect with hemoglobin and also that once binded to form carboxyhemoglobin it

wont be easily removed. This has a few very important biological implications when

considering that the function of Hb as an oxygen carrier is compromised when it be-

comes COHb. [12] Since COHb is not able to properly deliver oxygen, when at least

20 % of body Hb has been converted to COHb the oxygen delivery system in the

human body becomes heavily compromised causing cells in different types of tissues

throughout the body to enter a state of hypoxia and eventually suffer apoptosis.

Tissues from the cardiovascular and central nervous systems are the most affected

and lead to most symptoms [12, 13, 17–19].
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Table 2.1: Carbon monoxide concentrations, COHb levels, and associated symptoms. Data from
Goldstein et al. 2008

CO concentration
(ppm)

COHb level
(%)

Signs and symptoms

35 <10
Headache and dizziness within 6 to 8 h of constant
exposure

100 10 Slight headache in 2 to 3 h
200 20 Slight headache within 2 to 3 h; loss of judgment
400 25 Frontal headache within 1 to 2 h

800 30
Dizziness, nausea, and convulsions within 45 min;
insensible within 2

1600 40
Headache, tachycardia, dizziness, and nausea within 20
min; death in less than 2 h

3200 50
Headache, dizziness, and nausea in 5 to 10 min; death
within 30 min

6400 60
Headache and dizziness in 1 to 2 min; convulsions,
respiratory arrest, and death in less than 20 min

12800 70 Death in less than 3 min

Symptoms of carbon monoxide exposure, presented in table 2.1, are non-specific

and highly dependent on the amount of time and concentrations of the pollutant that

the organism is exposed. Prolonged exposure to low concentrations can cause per-

sistent headaches, lightheadedness, depression, confusion, memory loss, nausea and

vomiting and also increases the risk of developing and worsen cardiovascular symp-

toms. Beyond that, not only does acute exposure to high levels induces the same

symptoms in a much shorter time span as chronic exposure, but also leads to loss

of judgment, convulsions, increased heart rate, respiratory arrest, unconsciousness

and death. While it is possible to recover from acute carbon monoxide poisoning,

recurring to hyperbaric oxygen therapy which consists in giving patients 100 % oxy-

gen to breathe, the momentary deprivation of oxygen to the brain often leads to

the manifestation of delayed permanent and non-permanent neurological conditions

such as memory loss, dementia, amnesia, psychosis and depression [17, 18, 20].

Carbon monoxide measurements often express its concentration in parts per mil-

lion (ppm) and regulations imposed by the World Health Organization are set to

try and keep citizens with a percentage of COHb bellow 2.5 % to avoid most, if not

all, symptoms of CO exposure [4].
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2.1.2 Nitrogen dioxide

Nitrogen dioxide is a naturally occurring gas coming from bacterial respiration,

volcanoes and lightning. This makes it a trace gas in Earth’s atmosphere where plays

a role in absorbing sunlight and regulating the troposphere’s chemistry, specifically

serving as a catalyst for the ozone decomposition process shown by equations ??

trough 2.4 [21, 22]. However, it is also produced, in much greater amounts, by

man-made activities such as fossil fuel burning. This makes motor vehicle traffic the

major contributor to its emissions and presence in the lower atmosphere [4].

O3 → O2 + O

NO + O3 → NO2 + O2

NO2 + O→ NO + O2

2O3 → 2O3 (2.4)

Inhalation of nitrogen dioxide causes its diffuse into the epithelial lining fluid

(ELF) where it metabolizes into reactive nitrogen species (RNS) and reactive oxy-

gen species (ROS) [23]. These species cause severe damage to tissues by inducing

the lipid peroxidation of lipid molecules in cellular membranes and by interfering

with the biological availability of nitric oxide, the main endothelium-derived re-

laxing factor (EDRF) in the human body, inhibiting the proper vasodilating and

vasoconstricting of the endothelium leading to endothelial dysfunction [24–27].

In a lipid peroxidation process the free radicals capture electrons from the lipids

in cell membranes causing a chain reaction in which lipid peroxides (LOPs) are

formed. The reaction mechanism, shown in figure 2.3, begins with the initiation

step which consists in the reaction of a RNS or ROS with a reactive hydrogen from

a (poly)unsaturated lipid resulting in the production of a hydrogenated molecule

and a fatty acid radical. Subsequently, the unstable fatty acid radical reacts with

molecular oxygen producing peroxyl-fatty acid radical, another unstable specie, that

afterwards reacts with a fatty acid creating a different fatty acid radical and either

a lipid peroxide or a cyclic peroxide. This cycle continues indefinitely until ter-

mination is achieved by reaction of two radical species which only happens when
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Reactive nitrogen and oxygen species

Oxydative stress

Reduces NO vascular bioavaiability

Endothelial dysfunction

Loss of vasodilation Inflammation

Supressed immune response Infections Cardiovascular disease increase

Figure 2.3: Lipid peroxidation chain reaction mechanism (left) and endothelial dysfunction biolog-
ical pathway (right)

the concentration of radicals is high enough for there to be a high chance of colli-

sion between two of them. This process results in irritation of the bronchioles and

alveoli and destruction of epithelial cells which causes bronchoconstriction and air-

way hyperresponsivness, both of which aggravate asthma symptoms, and causes the

accumulation of fluids in the lungs that causes pulmonary edema [26].

Endothelial dysfunction, whose biological pathway is presented in figure 2.3, is at-

tributed to either impaired production of NO by the endothelium or to an increased

inactivation of NO by reactive nitrogen and oxygen species. The reaction of NO in

the epithelium with superoxide from the decomposition of inhaled nitrogen dioxide

produces peroxynitrite which is both a nitrating and oxidizing agent. Meaning that

not only does this reaction depletes the vascular bioavailable nitric oxide, induc-

ing epithelial dysfunction, but it also contributes to the lipid peroxidation process.

Symptoms from this reaction include inflammation of the affected areas and loss of

vasodilation which compromises immune response leading to further infections and

increased risk of cardiovascular diseases [27].

Besides the negative direct implications of nitrogen dioxide in human physiology,

it is also responsible for the formation of secondary pollutants such as tropospheric

ozone and nitrate aerosols. Under UV light it reacts forming nitric oxide and atomic

oxygen, which is extremely reactive, that in turn reacts with molecular oxygen

forming ozone, whose implications will be discussed in detail in the following section.

Nitrate aerosols are formed by the reaction of the nitrate ion, formed by the reaction

of nitrogen dioxide with ozone, with hydrocarbons and are classified as fine particles

which will also be discussed in detail further ahead [28–30].
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Like carbon monoxide, nitrogen dioxide concentrations are also expressed in ppm

and the World Health Organization has set a limit of exposure of a maximum of

one hour in areas where NO2 levels are equal or higher than 200 ppm and of 24

hours for levels equal or higher than 40 ppm to avoid acute symptoms. However,

prolonged exposure to concentrations as low as 5 ppm can induce chronic symptoms

which include the development of respiratory and cardiovascular diseases [4, 30].

2.1.3 Tropospheric ozone

Contrary to carbon monoxide and nitrogen dioxide discussed so far, ground level

ozone is a secondary pollutant since it is not produced directly by human activity but

instead it is formed by the reaction of compounds that are directly formed [4, 30].

It is an unstable allotrope of molecular oxygen, being constituted by three oxygen

atoms bonded in an angular geometry similar to a water molecule. This means that

ozone can be represented by a resonance hybrid, shown in the left side of figure 2.4,

in which both structures have the center oxygen forming a double and a single bond

which implies that it has a local positive charge in contrast to one of the side oxygen

atoms that has a local negative charge. That said, the ozone molecule has a dipole

moment and the locally positive oxygen accounts for its instability [31].

Ground level ozone should not be mistaken for stratospheric ozone responsible for

building up the ozone layer [32]. Instead, ground level ozone is produced mainly by

the photochemical reactions, presented in the right side of figure 2.4, of incomplete

combustion products such as nitrogen dioxide and carbon monoxide in the atmo-

sphere, earning the molecules the name of ozone precursors, and has many negative

implications in human health [4, 33, 34]. While the ozone in the ozone layer ab-

sorbs UV radiation shielding us from the harmful effects of direct sunlight exposure,

ground level ozone can harm lung function and irritate the respiratory system by

causing or aggravating conditions such as asthma and bronchitis and even inducing

hearth attacks [4, 35–37].

Being a reactive oxygen specie formed by nitrogen dioxide decomposition, it

shares with it many of its negative physiological effects when inhaled [34]. Ozone

reacts readily with organic double bonds inducing the lipid peroxidation of cells it

enters contact with, which leads to inflammations, derived from mass cellular death,

in the respiratory system with repercussions throughout the cardiovascular system.
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Being a reactive oxygen specie, it also affects the vascular dilation and contraction

mechanisms which causes hardening of arterial walls causing arteriosclerosis. Ex-

treme and prolonged exposure can cause mass oxidation of tissues leading to more

severe conditions such as the appearance of cancer and death [4, 38].

2.1.4 Sulfur dioxide

Sulfur dioxide has the molecular formula of SO2 and has an angular geometry.

It has a central sulfur atom double-bonded with two oxygen atoms with a slight

angle. The length of the bonds is of 143.1 pm and the angle is of 119o degrees. At

the standard atmosphere it is a toxic gas with a pungent and irritating smell [39].

Though volcanic activity naturally releases it into the Earth’s atmosphere in

trace amounts, man-made sources for sulfur dioxide emissions due so in far greater

quantities. The main man-made sources for this particular pollutant are fossil fuel

burning power-plants and industrial facilities. Smaller sources include industrial

processes, such as metal ore extraction, sulfuric acid manufacturing and vehicle

exhausts [4].

Short- and long-term exposure has adverse effects on human health. Chronic

exposure is linked systemic cell apoptosis caused by sulfur dioxide and its biologi-

cal derivatives while acute exposure directly affects the respiratory system causing

bronchoconstriction and inflammation of the airways causing coughing, wheezing

and shortness of breath which persist over time. All these acute symptoms are in-

duced by the rapid cellular damage that takes place due to the same DNA detriment

that causes the long-term symptoms [4].

In constrast with nitrogen dioxide and tropospheric ozone, sulfur dioxide is a

strong reducing agent and is also very soluble in water. When inhaled, it rapidly

Figure 2.4: Ozone resonance lewis forms (left) and tropospheric ozone formation process (right).
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reaches the alveoli in the lungs entering the blood stream where it gets hydrated [40]:

SO2 · nH2O (2.5)

And forms its biological derivatives, sulfite and disulfite [40]:

SO2 + 2H2O ⇀↽ HSO−3 + H3O
+ (2.6)

HSO−3 + H2O ⇀↽ SO2−
3 + H3O

+ (2.7)

which then, stand at an equilibrium of three molecules of sulfite per molecule of

disulfite in the blood stream. When inside the blood stream, both the hydrated

sulfur dioxide and its derivatives are able to reach and permeate cells throughout the

body and negatively affect DNA synthesis by impeding cell growth and mitosis and

inducing cell apoptosis: resulting in systemic tissue damage. The exact mechanisms

by which DNA synthesis is affected not not yet known, however there is evidence

provided by several recent epidemiological studies that support this claim [40–44].

Given the severity of the ailments caused by sulfur dioxide exposure, the World

Health Organization indicates that the maximum limit for a 24 hour exposure is of

125µg/m3 without even considering the dangers of other present particles [4].

2.1.5 Particulate matter

Particulate matter, made of fine particles from organic and inorganic sources with

aerodynamic diameters smaller than 10µm (PM10) and than 2.5µm (PM2.5), size

represented in figure 2.5 [45], are considered the most threatening airborne pollutants

to human health, affecting more people than any other [1, 3, 4, 46, 47].

The formation of such particles can be divided in two main sources [48]: primary

sources attributed in urban areas to road traffic, such as, carbonaceous compounds

from exhaust emissions [49], re-suspension of road dust [50], tire abrasion [51] and

other combustion processes; and secondary sources ascribed to the condensation of

vapors or chemical reactions such as the atmospheric oxidations of SO2 to H2SO4,

and NO2 to HNO3 [52]:
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2 SO2 + O2 + 2 H2O ⇀↽ 2 SO3 + 2 H2O→ 2 H2SO4 (2.8)

3 NO2 + H2O ⇀↽ 2 HNO3 + NO (2.9)

Due to their small size, when they are breathed in, fine particles are able to

penetrate deep into the lungs and even be absorbed into the blood stream causing

damage to the organism. The level of injury they can cause varies widely depending

on their concentration and type [1, 6, 53]. Given the nature of their absorption,

the damage they cause is mostly focused on the respiratory system, although the

cardiovascular and neurological systems can also be affected by proxy if the particles

are extremely small and hazardous [54–56]. Some of the less severe short-term

effects include irritation of the mucous areas like eyes, nose and throat, headaches

and nausea which disappear with time. However chronic exposure to high levels is

also linked to more serious conditions and can cause upper respiratory infections

like bronchitis and emphysema [1, 53]. Regarding long-term effects PM exposure

is also linked to chronic respiratory diseases such as asthma and lung cancer [54],

cardiovascular ailments [7, 55] and brain damage [56].

Current WHO regulations regarding air quality state that PM exposure does not

have a minimum limit in which no effects are noticeable. Hence, there are no strict

guidelines concerning individual exposure, however there are goals for reducing the

levels of ambient particles based on studies using PM2.5 and PM10 as indicators:

local 24 hour levels should be kept bellow 50µg/m3 not being permitted to exceed

it for more than seven times a year [4].

2.2 Data and programming

Data, alongside information, knowledge and wisdom, is an abstract concept that

makes part of the learning process. Data is comprised of sets of values of variables

about a specific subject that on their own have no particular meaning. However,

they can be measured, collected and analyzed in order to be visualized creating in-

formation about that subject. Such information can be studied and used in decision-

making creating knowledge on the subject. Lastly, application of this knowledge and

understanding when it can be useful or not is the definition of wisdom [57].
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Figure 2.5: Particulate matter size comparison.

The first time the word ”data” was used to define ”transmittable and storable

computer information” was in 1946 followed the term ”data processing” in 1954

to define ”the collection and manipulation of items of data to produce meaningful

information” before the dawn of the Digital Revolution which marked the beginning

of the Information Age. Before then, our ability to store data was confined to

using analog storage (paper, film, audiotape, vinyl and VHS tapes), however it has

grown exponentially since then due to the creation of digital storage means (servers,

mainframes, hard-drives, mini-disks, CD’s and DVD’s among others) as can be seen

in figure 2.6 [57].

This sudden and exponential increase in storage capacity enabled the rise of

bigger and more complex data sets that are far beyond the reach of traditional data

processing methods which are unable to retrieve any useful information from them

within a tolerable elapsed time. The term used to describe such data sets is Big

Data [58].

Big data is characterized based on three key aspects; being volume, variety and

velocity [59]. The first of which refers to the quantity of data that it is being

generated and stored, the second to its type and nature, and the last to speed at

which it is generated and processed. The sheer volume of big data is simultaneously

its biggest drawback and advantage. The bigger the data set, the more information

can be derived from it and the more insightful it can be, however it also makes

it difficult to manage and analyze properly. Variety and velocity are also intrinsic
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Figure 2.6: Info-graphic showing the growth of global storage capacity with the rise of digital storage.

characteristics of big data to differentiate it from pre-digital data that was mostly

comprised of text and log files generated at a slow and steady pace. Nowadays,

data comes in many different formats, ranging from videos to simulations and is

generated at a much faster pace due to the rise of smart technologies and sensor

networks [57].

The connection between big data and machine learning is an obvious one. The

later is designed to handle large volumes of data to discover patterns and infer

functions to retrieve information from it without an explicit need to understand the

former. The inner workings of machine learning techniques are going to be discussed

in the following section, however they can derive sense from large amounts of data,

independent of its typing, in near-real time making data mining and predictive

analytics easier than with traditional data-managing techniques [60].
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2.2.1 Time series

Time series are a special type of data set, that is characterized by having its data

points indexed in time order: a sequence of discrete-time data. Similarly to any

data set, depending on its volume it can be considered a big data set. It differs

from other data sets because of this natural temporal ordering, which means that

the same analysis techniques employed for cross-sectional studies, where it does

not exist any natural ordering, cannot be employed [61]. Traditionally the goal of

analyzing time series in the context if meteorology is for forecasting purposes and

it is comprised of two stages: stationarity verification and curve fitting.

A stationary process, by definition is one where its probability distribution does

not change when shifted in time, meaning that parameters such as variance and

mean remain constant. Most statistical procedures used during analysis assume the

stationarity of the times series, so it is necessary to verify that it is in fact stationary,

by using the Dickey-Fuller test [62], before the application of any statistical method

and if it is shown that it is not the series needs to be transformed in order to become

stationary [63].

Curve fitting consists in constructing a mathematical function that best fits the

data series while subjected to constraints. It can be either interpolation, when

an exact fit for the function is required, or smoothing, when only an approximate

function is needed. For the purposes of time series forecasting the later is usually

more commonly used and can be done by measuring the rolling statistics or by

applying a filter such as the Savitzky–Golay one [64].

Dickey-Fuller test A time series can be seen as an autoregressive (AR) model

since it is a representation of an apparent random process in which the output

variables depend linearly of its own previous values. As such, the Dickey-Fuller test

can be employed in order to verify if the null hypothesis, indicated by the presence

of a unit root, is present in the model [62].

A unit root, ρ, is a feature whose presence in some stochastic processes causes

problems when inferring statistical properties of a time series model. To check for

its presence in a time series, this test considers an AR(1) process in which only the
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previous term, yt−1, and the noise term, ut, contribute for the output, yt [63, 65]:

yt = ρyt−1 + ut (2.10)

And states that if ρ = 1 a unit root is present since that would make the model

non-stationary because the output term would be equal to the previous term plus

the noise. However, using this equation directly poses a problem: under the null

hypothesis both the previous and the output term as non-stationary. To address

this constraint, the last equation can be rewritten as:

yt − yt−1 = (ρ− 1)yt−1 + ut

∆yt = δyt−1 + ut (2.11)

Meaning that, under the null hypothesis, the yt−1 on the right-handed side of the

equation would disappear while leaving the same term on the left-handed side un-

changed and stationary.

For the actual testing, the Student’s t-test cannot be used, under the null hy-

pothesis being true, because yt−1 is itself non-stationary so the ordinary central limit

theorem (CLT)1 does not hold with the least squares estimators for δ [66]. However,

the asymptotic distribution for the least squares estimators for δ under the null hy-

pothesis have been calculated and tabulated by David Dickey and Wayne Fuller in

1979 (hence the name of the test) so they can be compared with the values of the

t-statistic [62]: if the test statistic value is less than the relevant critical value then

the null hypothesis is rejected meaning that the series is stationary and if it is not

then the null hypothesis cannot be rejected and the series is non-stationary which

means that it requires further pretreatment before it an be properly analyzed [62].

Moving average A moving average is calculated by dividing the data into fixed-

sized sequential subsets and measuring and plotting its averages, making it a reactive

quantity since it reacts to the data that is already established [61]. The shorter the

size of the subsets the more sensitive is the signal on contrast with larger subset

1The central limit theorem states that in common scenarios, when independent random vari-
ables, with well-defined expected values and variances, are added their sums will tend towards a
normal distribution regardless of the underlying distribution of the original samples.
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sizes. Assuming a window size of value n, the average, ȲSM , for a given subset is

given by [67]:

ȲSM =
Ym + YM−1 + · · ·+ YM−(M−1)

n
=

=
1

n

n−1∑

i=0

YM−i (2.12)

And for calculating new successive values, a new value,YM

n
, is added into the sum

and the last of the old values, YM−n

n
, is excluded:

ȲSM = ȲSM ,prev +
YM

n
− YM−n

n
(2.13)

This comprises the basis for a moving average, the simplest of all moving average

filters. It can be further improved upon by adding a weight factor according to the

distance of each data point. This can be done by applying a weighting factor that

exponentially decreases for older data: exponential moving average (or exponentially

weighted moving average). To create such a filter the weights are defined as [68]:

{w1 ,w2 , · · · ,wk} →
k∑

n=1

wn = 1 (2.14)

And then they are incorporated into the moving average formula, transforming

equation 2.12:

ȲSM =
1

n

k∑

n=1

wnYM−i (2.15)

In practice the weights are chosen to give more relevance to more recent data without

completely discarding older data points.

Moving average techniques smooth out short-term fluctuations and highlight

longer-term trends or cycles. They are only limited by the fact that they require

at least a certain number of observations being made, corresponding to the window

size, before being employed. Moreover they are a very easy and useful method for

smoothing time series prior to forecasting being capable of improving accuracy [61].
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Savitzky–Golay filter It is designed to be applied on a set of data points with

the intent of smoothing the data by increasing the signal-to-noise ratio2 without dis-

torting the original data signal. The smoothing is done by a process of convolution3

in which successive sub-sets of sequential data points are fitted with a low-degree

polynomial using the least squares method.

For equally spaced data points, such as those present in most time series, the least

squares approach yields an analytical solution in the form of a set of coefficients,

aptly named convolution coefficients. Considering a data set of n equally spaced

data points (xi, yi) a polynomial is fitted, via least-squares to a subset of m (odd-

numbered) sequential data points separated by an interval h [67]:

z =
x− x̄
h

(2.17)

in which a change of variable is performed, taking x̄ as the central point. By defini-

tion z can take the values of:

z →
{

1−m
2

, · · · , 0, · · · , m− 1

2

}
(2.18)

And the polynomial of degree k can be defined as:

P = c0 + c1z + c2z
2 + · · ·+ ckz

k (2.19)

Which can be used to construct and solve normal equations yielding the values of

the convolution coefficients:

2Abbreviated by SNR, it is a measure used for comparing the level of a signal with the level of
its background noise. Any ratio greater than 1:1 indicates that there is more signal information
contained in the data than noise.

3Integral transform using the product of two functions after one of them is reversed and
shifted [67]:

(f ? g)(t) =

∫ ∞

−∞
f(τ)g(t− τ)dτ

=

∫ ∞

−∞
f(t− τ)g(τ)dτ (2.16)
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c = (JTJ)−1JTy

C = (JTJ)−1JT (2.20)

So they can take the general form of:

Pi =

m−1
2∑

j=−m−1
2

Cjyi+j ;
m− 1

2
≤ i ≤ n− m− 1

2
(2.21)

Used for tabulating every convolution coefficient based on the degree of the polyno-

mial and the number of data points to be fitted. These are generalized and can be

utilized for every situation in which the application of the Savitzky–Golay filter is

required [67].

2.2.2 Python

Not a full and detailed explanation about the Python programming language,

but rather a note of context to the reader.

All programming and coding performed in this project, including the construction

of machine learning and visualization algorithms, was done using Python. It is a

general-purpose-high-level programming language and one of the most widely used

worldwide in current days. It was chosen because it is simple, it runs fast and it is

possible to incorporate it as modules in programs written in other, more common

languages such as C. Also, there are a number of useful tools already designed to

be used with python. Some of these are designed to handle large volumes of data

such as the NumPy package and the Pandas data analysis library. Others are more

specific for the projects purpose such as the Scikit-learn toolkit which was used

intensively.

2.3 Machine learning

Machine learning was defined in 1959 by Arthur Samuel, an american pioneer

in the field of artificial intelligence, as the ”field of study that gives computers the

ability to learn without being explicitly programmed” [69]. It is a multidisciplinary
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field of study and research that encompasses the principles of statistics, engineering

and computer science to explore the development of algorithms capable of learning

from and making predictions on data. It is particularly useful to address complex

problems which cannot be currently modeled deterministically, either by lack of

computational power or of knowledge about the problem, by making use of statis-

tical notions to derive an approximate solution. Unlike traditional algorithms, that

are confined to follow hard rules from static program instructions, those based on

machine learning, called learners, are able to learn from examples and experience to

make data-driven predictions, effectively turning data into information [70].

2.3.1 Terminology

Machine learning algorithms (MLA’s) are often created to address a task that

normally would be done by a human being [70]. A simple example would be related

with weather forecasting. By looking to the sky a person is able to guess if it is going

to rain or not depending on the temperature, humidity and cloud formations among

other factors. Nowadays, this task is mostly done by learners, that were trained to

analyze those same variables and patterns. The systems based on these learners are

called expert systems because they replace an expert: in this case a weatherman was

replaced by a computer.

Following up with the same example, the factors referred alongside the observa-

tion of the forecast (if it did rain or not) are called features and usually encompass

everything that is known about the system. A corresponding set of features earns

the name of instance. Learners use training examples, which are comprised of several

instances, to find patterns and relationships between different features, including the

target variable (which is the presence or absence of rain in this example) and use

these relationships to find the target variable in an unknown instance. If the target

variable is an object the learner is a classification algorithm and if it is a number

then the learner is a regression algorithm.

After training the learner needs to be validated, which is done by using it on a

test set. This set is similar to the training, however it was not used in the training

phase, hence it is unknown to the learner but the users have knowledge of all features

in every instance including the target variable. The learner will use the features to

determine the target variable which is then compared to the real one to account
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Table 2.2: Schematic representation of features and instances.

Features

Instances

A1 A2 A3 A4 Target variable A
B1 B2 B3 B4 Target variable B
C1 C2 C3 C4 Target variable C
D1 D2 D3 D4 Target variable D

for accuracy and model performance. If the results are accurate enough then the

learner is ready for real world use, if they are not then the learner requires tweaking

which may be as simple as supplying it with more training data or as complicated

as finding out if all used features are actually relevant or if there is a lack of known

features.

This example is the human equivalent to concept learning, it shows a case of

supervised leaning where the target variables are known and included in the training

set. However, there is also the case were the target variables are unknowns, in which

the correct approach to create a learner would be to use unsupervised learning that

infers a function to describe hidden structures in data. Both these concepts are

discussed in detail in the following section [70, 71].

2.3.2 Supervised learning methods

The overall concept of supervised learning, shown in figure 2.7, introduces upon

the learner the task of analyzing labeled training data, which includes an input

and an output part, the features and the target variable respectively, and using

that knowledge to map new examples [72–74]. When the learner is confronted with

the training data it tries to model it and find a function that loosely describes it by

means of function approximation [75]. That function is then generalized and applied

inductively to try and model similar systems that are previously unknown to the

learner [70, 73]. Supervised learning consists in building models that can be taught

from specific examples and generalize the knowledge they gain to model new data.

Figure 2.8 shows the hierarchy of supervised machine learning algorithms [73].

They can be divided into two different categories according to which type of response

they are designed to look for. Those that produce a nominal response are called clas-

sifiers while those that generate a numerical value as a response are called regression
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models [70]. Classifiers, as the name suggests, undergo the task of classifying new

instances into a set of categories according to the rules or functions derived from the

training set while regression models attempt to use approximate functions developed

in the training phase to forecast and relate unknown (target) variables belonging

to new instances. Examples of classification and regression problems respectively

are assigning a given email as either spam or not-spam and temperature forecasting

for a given location. While the two share the same principles, the algorithms used

for each case are fundamentally different not only regarding the response they give,

opposing labels to numbers [70, 73].

Classifiers can be further divided onto two sub-categories [76]. Probabilistic clas-

sifiers are highly based on statistical principles and are capable of assigning a prob-

ability distribution instead of a single label for a given instance which allows for the

classification process to be done with a degree of certainty [77]. On the other hand

structural classifiers take more into account the data structure to assign labels to

new instances [78]. The most common probabilist classifier in use is the Näıve Bayes

classifier and concerning structural classifiers the most widespread are decision trees

(also know as classification trees), the k-nearest neighbors (k-NN) algorithm and

support vector machines (SVM) [73].

Regression models work as an iterative process that models the relationship be-

tween variables and uses some error measuring criteria to improve after each iter-

ation until it reaches an optimal state [70, 73, 79]. Most of the more commonly

used regression algorithms are based in some form of linear [80], logistic [81] or local

regression [70] and can either be univariate or multivariate in nature. A sub-class

of regression algorithms includes regularization algorithms which penalize models

based on their complexity, favoring simpler models that are better at generaliz-

Figure 2.7: Concept of supervised learning.
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Figure 2.8: Most commonly used supervised learning algorithms.

ing [70, 82]. Though these models are regression based in essence, they are often

considered separate from the bulk of regression algorithms given their usefulness.

Examples are the ridge regression (RR) model and the least absolute shrinkage and

selection operator (LASSO) model [70].

Näıve Bayes classifier: The fundamental assumption in this type of classifiers

is that the value of any feature is independent from that of any other features,

including the label. Meaning that each feature contributes in the same way for the

target label value independently of the contributions of any other feature. This is a

very a naive assumption, given that most real situations there exists at least some

degrees of dependency between features, however, despite that the algorithm still

works exceptionally well as an efficient first approach.

In order to calculate probability the algorithm uses the Bayes’ theorem, written

as [83]:

P(A|B) =
P(B|A)P(A)

P(B)
(2.22)
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Where P(A) and P(B) are the probabilities of observing A and B without viewing

the other, P(B|A) is the probability of observing A given that B is true and P(A|B)

is the conditional probability of observing A given that B is true. If B is a vector of

features, B = x1, ..., xn then, by using the chain rule, it can be written as [84]:

P(A|x1, ..., xn) ∝ P(A, x1, ..., xn) =

= P(x1, ..., xn,A) =

= P(x1|x2, ..., xn,A) · ... · P(xn−1|xn,A) · P(xn|A)p(A) =

= p(A)
n∑

i=1

P(xi|A)⇒

P(A|x1, ..., xn) =
1

P(B)
p(A)

n∑

i=1

P(xi|A) (2.23)

Where the final expression can be used on new instances to calculate a probability

that, by comparison, can be converted into a label [70].

Decision trees: The original data set is broken down into smaller subsets while

an associated decision tree is incrementally developed. The features and labels are

arranged in hierarchical diagram, resembling a tree, where the leaves represent the

class labels and the branches (connections) show the relationships between features

that eventually lead up to a class label. An example of a decision tree is shown

in figure 2.9, where it is used for determining point group symmetry of a given

molecule [70, 85].

Support vector machines: Given a set of training examples, where each instance

belongs into one of two separate categories, new examples are mapped into one

of these two existent categories [87]. This is done by constructing a hyperplane

that separates the training examples in space. A better separation implies a better

classification for new examples and a good separation is achieved when the distance

from the hyperplane to the nearest points of each category is at its maximum. This

process is not limited to a 2D space, since it can be used on a high- or infinite-

dimensional space, the only difference resides in the fact that more hyperplanes
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Figure 2.9: Example of a decision tree for determining point group symmetry.

Figure 2.10: ”Transition state TS1, placed along an assumed reaction coordinate x, separates
reactant R and product P1 but fails to describe the transition to P2. TS2 is a surface which can
be determined by training a machine to distinguish a set of points as reactant or product.”Image
taken from reference [86].
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Figure 2.11: Example of kNN classification. For k=3 the assigned class would be a triangle and
for k=5 the assigned class would be a square. Image by By Antti Ajanki AnAj (Own work) [GFDL
(http://www.gnu.org/copyleft/fdl.html), CC-BY-SA-3.0 (http://creativecommons.org/licenses/by-
sa/3.0/) or CC BY-SA 2.5-2.0-1.0 (https://creativecommons.org/licenses/by-sa/2.5-2.0-1.0)], via
Wikimedia Commons

are necessary for separating the data points on higher dimensional spaces [88]. In

chemistry this method has been successfully used to optimize transition state theory

(TST) separation planes, as exemplified in figure 2.10 [86].

k-Nearest neighbors: It is used primarily for pattern recognition in cases where

the features are spatially positioned. The first step is to create a feature space, that

can have varied dimensions and assigning classes according to the proximity of the

feature data points [89]. To evaluate a new instance, vectors are plotted from the

new data point to the k-nearest neighbor points disregarding their class. The new

data point takes the class belonging the the majority of its neighbors [90, 91]. That

said, the parameter k can be called an hyper-parameter since it must be chosen

prior to model training. The impact of the choice of k can be seen in figure 2.11.

It cannot be a even number nor it can be a multiple of the number of existent

classes in order to prevent ties when classifying new instances. Also, the larger it

is the lesser the noise component will interfere with the classification, however it

also makes the boundaries between classes less distinct [92]. In the chemistry and

pharmaceutical industries kNN is used as a clustering method to find compounds

of identical structures and similar properties which speeds up the first stages of the

drug discovery project [93].
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Linear regression: Is based on modeling the relationship between a scalar de-

pendent variable, called y and one or more independent variables, called Xn =

{x1, x2, ..., xn}. When only a single independent variable is used, n = 1, the model

is called a simple linear regression and, on the other hand, when more than a single

independent variable is applied, n > 1, the model is called a multiple linear regres-

sion [81]. There is also the case when the dependent variable is not a scalar but

instead it is a vector which implies that the dependent variable is a matrix: Xn,m.

A linear regression based on this principle is called of multivariate linear regression

(or general linear model) [94].

The approach to build a linear regression model passes by gathering enough data

to create an overdetermined system comprised by a set of equations that largely

outnumbers the unknowns. Afterwards, an iterative process based on a least squares

approach takes place to find the optimal values for the unknowns that can be used

for creating the predictor [95].

Mathematically there are subtle differences regarding the least squares approach

for each type of linear regression:

� Simple linear regression: The simplest case of linear regression model. The

dependent and independent variables are placed in a two-dimensional space,

usually a Cartesian coordinate system, where they take the form of y and x

respectively and a linear function is fitted to the sample points [80]. That

function is a non-vertical straight line resembling [96]:

yi = α + βxi (2.24)

where α is the y-intercept and and β is the slope. This function can predict

the dependent variables as a function of the independent variables. By adding

and error term, εi, to the model function it can be further refined to capture

the deviation of the data from the model:

yi = α + βxi + εi (2.25)

The model is trained by finding values for the parameters α and β that provide

an optimal fit for the training data. This is done by means of a least-square

approach [97, 98]:
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∑
ε2i =

∑
(yi − y∗i )2 =

=
∑

[yi − (α∗ + β∗xi)]
2 (2.26)

The asterisk marked variables denote the predicted values of x and y by the

model. The values of the parameters are found by solving the minimization

problem of the squared sum of residuals in the form of
∑
ε2i which yield the

optimal values of [99]:

β∗ =
Cov[x, y]

S2
x

α∗ = ȳ − β∗x̄ (2.27)

The optimal value of β is given by the fraction of the covariance between the

dependent and independent variables and the square of the variance of the

explanatory variables. And α is given by the mean of y minus the product of

the mean of x by the optimal value of β calculated beforehand. These values

can be substituted in the original line function giving [100]:

yi = ȳ − Cov[x, y]

S2
x

x̄+
Cov[x, y]

S2
x

xi (2.28)

That can be simplified:

yi = ȳ − Cov[x, y]

S2
x

x̄+
Cov[x, y]

S2
x

xi⇔

yi = ȳ − rxy
Sy
Sx
x̄+ rxy

Sy
Sx
xi ⇔

ȳ − yi = rxy
Sy
Sx

(x̄− xi) ⇔
(yi − ȳ)

Sy
= rxy

(xi − x̄)

Sx
(2.29)

where rxy is the sample correlation coefficient between dependent and indepen-
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dent variables and Sx and Sy are the uncorrected sample standard deviations

of x and y respectively. This also shows that rxy is the slope of the regres-

sion line for the standardized data points. It can also be squared in order to

generate the value of the coefficient of determination, R2 [101]:

R2 = r2xy =

=

(
x̄y − x̄ȳ√

(x̄2 − x̄2)(ȳ2 − ȳ2)

)2

(2.30)

Giving a measure about the variance magnitude existent in the dependent

variable that is forecasted from the independent.

� Multiple linear regression: Consists on a complication of the simple linear

regression model where more than one predictor, independent variable, ex-

ists. Nearly all real-world problems involve more than a single predictor. The

regression equation can be written as [80]:

yi = α + β1xi1 + β2xi2 + · · ·+ βpxip =

= XT
i β ; i = 1, 2, · · · , p (2.31)

where XT
i is the transpose of the vector containing all predictors and β is the

vector containing all the coefficients (including the α). The predictors vector

is transposed in order for the final term to yield the inner product of the two

vectors. Similarly to what has been done for the simple linear regression an

error term can also be added to account for data deviation from the model:

yi = XT
i β + εi (2.32)

From this equation the least squares method can also be used to minimize the

error term, corresponding to the squared sum of residuals, in order to find

the parameters necessary to construct a good predictor equation. Assuming

that exist several dependent variables such as: Y= {y1, y2, ..., yn} the vector
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equation can be written as:

Y = Xβ + ε (2.33)

and in this equation all values are vectors except X which is a matrix. And

since the least squares approach works by minimizing the squared sum of

residuals, the quantity that needs to be minimized is:

ε′ε =
n∑

i=1

ε2i (2.34)

By definition it is known that the value of ε from equation 2.33, so it is possible

to expand equation 2.34 into:

ε′ε = (y −Xβ)′(y −Xβ) (2.35)

Which means that the minimization problem can be written as:

minβε
′ε = (y −Xβ)′(y −Xβ) =

= (y′ −X′β′)(y −Xβ) =

= y′y − β′X′y − y′Xβ + β′X′Xβ =

= y′y − 2β′X′y + β′X′Xβ (2.36)

Note, that in this deduction β′X ′y = y′Xβ since both terms are scalars, the

transposition of the term is equal to itself. The final expression is differentiated

respecting to β and set its derivative equal to zero:

∂(ε′ε)

∂,
¯
β

=
∂(y′y − 2β′X′y + β′X′Xβ)

∂,
¯
β

=

= −2X′y + 2X′Xβ = 0

X′Xβ = X′y (2.37)

Afterwards, this expression can be multiplied by (X′X)−1 to give the least
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squares estimator for the parameters [97, 98]:

β = (X′X)−1X′y (2.38)

Similarly to the simple linear regression model, after finding the parameters the

function can be used as an estimator for predicting new dependent variables

using known independent variables.

� General linear model: Contrary to the simple and multiple linear regres-

sion models discussed so far, general linear models make use of multivariate

measurements to construct models able to estimate several quantities at once

from a single set of estimators. In simpler terms, instead of considering a

single dependent variable, y, they take into consideration several in the form

a vector, Y = {y1, y2, ..., yi} which makes them multivariate linear regression

models.

The general equation for a multivariate regression model can be written as [102]:

Y = XB + U (2.39)

where Y is a matrix comprised of a series of multivariate measurements, X is

the model matrix built of the dependent variables, B is the coefficient matrix

which contains the parameters and U is the noise or error matrix. In the case

of Y, B and U being vectors, the above equation relates to that of a multiple

linear regression model discussed prior to this one.

The overall deduction for the least squares approach remains the same as the

one for multiple linear regression and the coefficients can be found by the

equation [97, 98]::

β = (X′X)−1X′Y (2.40)

After finding the coefficient values for the β matrix the prediction process

is carried out in a analogous way to that of both linear regression models

discussed prior to this one.

Logistic regression: When the dependent variable, y, is categorical instead of

numerical, a logistic regression models can be used as a tool for predicting such a
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variable. [81] Logistic regression can be easily applied when the dependent variable is

binary: can only take up to two different values, ”0” or ”1”, that refer to outcomes of

a true/false or win/lose situation. And although it is possible to model more complex

systems using this regression, a more common approach resides in simplifying a

particular problem until is has a binary solution [103, 104].

The basis for this regression type is a sigmoid (logistic) function. It resembles

and S-shaped curve that can take any real-valued number and map its output as a

value between 0 and 1 but never equal to any. It can be written as [105]:

y =
1

1 + e−(βx+α)
(2.41)

where e is the base of the natural logarithm, Euler’s number. Similar to the simple

linear regression, the values of α and β define the transformation from the indepen-

dent variable, x, to the dependent variable, y. These values are found by fitting the

sigmoid function to the training data using a least squares approach similarly to a

standard linear regression.

The y values outputted by a logistic regression model are not the class values

but instead they represent the probability distribution that gives the probability of

a given input belonging into the default class (y = 1):

P(x) = P(y = 1|x) (2.42)

However, to obtain a strict classification from these values it is necessary to transform

the probabilities into the class values of 0 or 1. This is done by splitting the sigmoid

function in half regarding the vertical axis and considering all dependent values

above the axis as belonging to one class and those bellow the axis a belonging to

the other, such as:

0 if P(x) < 0.5 (2.43)

1 if P(x) ≥ 0.5 (2.44)

Although the probabilities can be used directly, in order to get a straight answer for

a classification problem this last step is necessary.
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Figure 2.12: Effect of the hyper-parameter k on the normal probability distribution of a Gaussian
function.

Local regression: Also called of locally weighted linear regression model [70],

this class of regression models combines the simplicity and effectiveness of a simple

(or multiple) linear regression model with the more complex notions of a k-nearest-

neighbor styled algorithm [106, 107].

Linear regression models tend to underfit the non-linear data and even when

properly trained their intrinsic training error is substantially large. And non-linear

regression models (not discussed on this dissertation) are computationally very de-

manding and hard to implement despite yielding better results than their linear

counter-parts when modeling non-linear data [70].

Local regression models locally fit linear sub-sets of a larger non-linear dataset

based on a proximity criteria which is usually defined by a Gaussian function [108]:

w(x, xi) = exp

( |xi − x |2
−2k 2

)
(2.45)

where k is a hyper-parameter that determines how wide the base of the Gaussian

function is, shown in figure 2.12. For each local fit the data points nearest to the

central data point will weight more for the fit, and these values are defined by the

choice of k. This allows the model to have the flexibility of a non-linear approach

while still retaining the simplicity of a linear model [70].
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2.3.2.1 Regularization algorithms

To better understand the role and importance of regularization algorithms it is

necessary to address the bias-variance dilemma [109]. Both bias and variance are

sources of error: error due to bias is the difference between the expected prediction

of the model and the correct value which it is trying to predict while error due to

variance relates to the variability of a prediction for a given data point [110]. In

essence they are the opposite concepts of accuracy and precision respectively.

The mathematical definitions for bias and variance can be found trough the de-

composition of the error term [77]:

Err(x) = E[(f(x)− f ∗(x))2] =

= E[f(x)2 − 2f(x)∗f(x) + f ∗(x)2] =

= E[f(x)2]− E[2f(x)∗f(x)] + E[f ∗(x)2] =

= Var[f(x)] + E[f(x)]2 + Var[f ∗(x)] + E[f ∗(x)]2 − 2f(x)E[f ∗(x)] =

= Var[f(x)] + Var[f ∗(x)] + (f(x)2 − 2f(x)E[f ∗(x)] + E[f ∗(x)]2) =

= Var[f(x)] + Var[f ∗(x)] + (f(x)− E[f ∗(x)])2 =

= Var[f(x)] + Var[f ∗(x)] + E[f(x)− f ∗(x)] =

= σ2 + Var[f ∗(x)] + Bias[f ∗(x)]2 (2.46)

where the first therm is the noise term and cannot be reduced by any model. Hy-

pothetically, a true model with infinite data would be able to reduce both the bias

and variance terms to zero, however with imperfect models and finite data there is

a trade-off when minimizing both terms.

In practice the squared bias of any model can be infinitely decreased towards

zero by adding model complexity by using a more flexible function or increasing the

dimension of the input space. However this practice increases variance greatly which

results in overfitting the data. Despite that, models with little to no complexity tend

to underfit the data because they have high bias and low variance. The relationship

of bias and variance between model complexity is demonstrated in figure 2.13 [111]

and it exhibits an area where the bias and variance curves intersect, which represents

optimal model complexity balancing both types of errors [70].
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Figure 2.13: Graphical representation of the bias-variance dilemma. Image taken from refer-
ence [70]

Regularization algorithms such as ridge regression and LASSO, which are about

to be discussed, are designed to optimize model complexity, using these notions

about bias and variance related errors.

Ridge regression: Also known as weight decay, it is useful to address ill posed

problems where traditional regression methods fail to deliver a solution or, instead,

deliver more than one [112].

Imagining that there exists an independent variable matrix, X, and a dependent

variable vector, y, the traditional regression approach would be to find the values

of a vector coefficient, β=βi, β2, ..., βi, such as [70]:

Xβ = y (2.47)

However, for an ill posed problem no proper vector β would be given, so the end

result would be an overdetermined or underdetermined system of equations which

would imply that the model would either overfit or underfit new data respectively,

according to the bias-variance dilemma discussed earlier. This happens mainly when

the several dependent variables are highly correlated with each other which makes
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Figure 2.14: Ridge coefficients as a function of the regularization parameter α. Image taken from
reference [73]

it so that the values of βi are either all very large or very small which introduces a

large amount of variance into the model [73].

In order to give preference to a particular solution, to increase bias and reduce

variance, a regularization term can be added to the least squares minimization pro-

cess which constrains the size that each βi can have. This is done by adding an

L2-norm4 [113] vector term to the least squares minimization process:

||Xβ − y||22 + ||Γβ||22 = 0 (2.48)

where Γ represents the Tikhonov matrix; usually a multiple of the identity matrix

such as:

Γ = αI (2.49)

The addition of the regularization matrix, in the form of the hyper-parameter α,

forces the values of β during the least squares minimization to obey the constraint

4The length of a vector according to the L2-norm is given by: ||x||2 =
√
x21 + · · ·+ x2n
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of:

||β||22 ≥ c2 (2.50)

The geometry is demonstrated in figure 2.15 for an hypothetical 2D case and

where c is just a constant value imposed by the α parameter. The level of curves

of the function must intersect with the circle to get the respective β values. Hence,

the minimization for an ith-dimension problem becomes:

F (βo, β1, β2, ..., βi, α) = [
∑

n

(yn − β0 − β1xn − β2xi − ...− βixi)2

+α(β2
0 + β2

1 + β2
2 + ...+ β2

i − c2)] (2.51)

The analytical solution for this problem can be achieved by writing all the partial

derivatives of the minimization function and setting them to zero. Solving the

resulting system of equations would yield the optimal values for the parameters

including the α value. However, there is also a numerical solution which is obtained

by iterating the function for several tentative values of α. For each α the β values

are calculated along with the respective coefficient of determination. The process

continues until a satisfactory value for the coefficient of determination is found

by [70, 73]:

minβ = ||Xβ − y||22 + α||Iβ||22 (2.52)

and for the optimal α value the least squares solution can be written as:

β = (XT + αI)−1XTy (2.53)

Figure 2.14 shows the relationship between the size of α and the β parameters. As

its value increases towards a large number all parameter values tend towards zero

in order to solve the minimization problem, equation 2.52, causing overfitting. On

the other hand, if α decreases in direction of zero, the parameter values will close

in to their linear regression counterparts creating an underfitting situation [70, 73].
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beta_0

beta_1

Figure 2.15: Geometry behind the additional constraint imposed bu the ridge regression method.

Least absolute shrinkage and selection operator: Called of LASSO for sim-

plicity’s, this method is similar to the ridge regression approach as it is considered

a regularization technique, however it is also capable of performing variable selec-

tion. [70, 114]

The mathematical formulations of the LASSO regression are almost identical in

every way to those of the ridge regression, despite one small key difference: the

regularization term is an L1-norm5 [113] vector:

||Xβ − y||22 + ||Γβ||21 = 0 (2.54)

which changes the geometry of the optimization problem. Considering again, an

hypothetical 2D space, instead of a circle, the constraint takes the form of a diamond

like the one represented in figure 2.16. Implying that the minimization problem:

minβ = ||Xβ − y||22 + α||Iβ||12 (2.55)

yielding a much greater change of several coefficients having a zero value. The level

curves of the function are much more likely to intersect with the corners of the

diamond than with its edges.

One drawback of the LASSO is that there is no analytical solution for finding the

coefficients even if an α value is given, it has to be solved numerically [73]. However,

this is balanced by the fact that it can exclude unimportant features from the final

model. One final note about the LASSO is that all the considerations about the

5The length of a vector according to the L1-norm is given by: ||x||1 = |x1|+ · · ·+ |xn|
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Figure 2.16: Geometry behind the additional constraint imposed bu the LASSO regression method.

relationship between the α value and the parameters given for ridge regression still

hold with the exception of more of them being equal to zero.

2.3.2.2 Performance metrics

The last steps of any supervised learning problem include validating the model

and measure its performance. The validation step usually includes a cross-validation

process and the accuracy of the testing phase is evaluated by a measure of error,

such as the mean spared percentage error (MAPE) [73].

Cross-validation: A model validation technique used for assessing how a model

will perform when used on new data [115, 116]. In a machine learning scenario

using cross-validation consists in splitting the training set into several subsets and

using several combinations of them for training and validation [117]. The model is

validated if the performance metrics for each training iteration while using all subset

combinations are in agreement with each other.

There are several ways of performing the split in cross-validation, however they

can all be generalized into the two most common [117]:

� Leave-p-out cross-validation: and exhaustive form of cross-validation, it

uses p observations to build the validation set and assigns all other to the

training set. This process is repeated for every possible way of splitting the

original data into a validation set containing p observations and a training

set [73].
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Figure 2.17: Visual representation of a k-fold cross-validation with k = 4. Image by Fabian Flöck
- Own work, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=51562781

� k-fold cross-validation: A non-exhaustive approach to cross-validation, it

divides the original sample data into k equal sized subsets, visually presented

in figure 2.17. Out of these subsets a single one is placed aside for validation

and the remaining are used collectively as training data. For each iteration

the validation subset is switched [73, 118]

For both these cases, after all iterations are concluded and if the metrics of every

iteration are in agreement with each other, the model can be used for testing in one

of two ways [119]:

� Standard cross-validation: the results of each iteration are averaged and

used for building the final model prior to testing.

� Winner-takes-all cross-validation: The results of the best iteration are

directly used in the final model for testing.

While a leave-p-out cross-validation is more reliable and produces more accurate

models than the k-fold cross-validation it is also computationally much more de-

manding. The same applies for the standard and winner-takes all cross-validations,

since the standard is more time and resource demanding but in some cases it gen-

erates more precise models. However, as an approximation, the less demanding

combination (winner-takes-all k-fold cross-validation) is shown to be sufficient for

most cases which makes the more demanding combination (leave-p-out standard

cross-validation) excessive in most situations [73, 115, 116, 119].
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Mean absolute percentage error: Is the standardized approach to measure

prediction accuracy of forecasting methods in statistics and machine learning the-

ory [120]. It is defined by the formula [119]:

MAPE =
100

n

n∑

t=1

∣∣∣∣
At − Ft
At

∣∣∣∣ (2.56)

that translates MAPE as percentage based on the absolute difference between the

actual values, At, and the corresponding forecasted values, Ft.

For comparison using the same method with different data sets, MAPE provides

a simple and efficient way of measuring accuracy. However its limitations should be

know as it fails to compare different models since it turns biased towards models

that mostly forecast values lower than their real counterparts. Beyond that, it also

cannot be used for zero values, At = 0, and it has no upper limit for errors of

individual predictions that overestimate the real value [121].

2.3.3 Unsupervised learning methods

When dealing with unlabeled data, that does not have an explicit target variable

included in the observations, it is not possible to use any of the learning methods

discussed so far since they require a dependent variable to be given. However,

unsupervised machine learning methods are able to infer a function to describe

hidden patterns and structures in data without an explicit target variable which

makes them appealing since they can be used on data structures without requiring

the user to have any knowledge about them. Despite that, they are not without

limitations because since the training examples are unlabeled there are no means to

evaluate model accuracy and performance [70].

Traditionally, these methods are divided into two separate categories, as shown

in figure 2.18: clustering [122] and dimensionality reduction [123]. Clustering is

the unsupervised learning version of classification algorithms while dimensionality

reduction is used for feature extraction and data analysis, being equivalent regression

models, specifically to regularization algorithms.

Cluster analysis is tasked with grouping objects in the same groups (called clus-

ters) in a way that objects placed together are similar in at least some way. It at-

tributes a class, or label, to objects, that was hidden or unknown to the user. This
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Figure 2.18: Most commonly used unsupervised learning algorithms.

makes clustering highly effective as a data mining tool, being capable of executing

tasks such as pattern recognition, image analysis and information retrieval. There

are several algorithms for performing cluster analysis: those based on measuring dis-

tances between points, such as hierarchical clustering, centroid-based clustering and

density-based clustering; and those based on measuring distances between graphs,

like affinity propagation and spectral clustering [122].

Dimensionality reduction aims at reducing the number of random variables under

consideration by filtering out all the unnecessary variables while retaining all the

important ones improving model simplicity, efficiency, accuracy and performance.

Most algorithms belonging to this class are considered some type of factor analysis,

and include principal component analysis (PCA), independent component analy-

sis (ICA) and singular value decomposition (SVM) [124]. Spectral clustering can

also be considered a dimensionality reduction method even though it is primarily a

clustering method [125].

Centroid-based clustering: Called of k-means clustering, is a vector quantiza-

tion method and one of the most widely used clustering techniques for data mining.

It aims at splitting n data points into a k number of clusters, C, in a way that each
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group has equal variance, minimizing inertia [73]:

Inertia =
Intragroup sum of squares

Total sum of squares
(2.57)

However it requires the number of clusters, k, to be specified. Each cluster is

described by a mean, µj, of the samples in it, which is called a cluster centroid.

These centroids are not data points and are responsible for defining the inertia. For

a given number of clusters, k, finding the optimal centroids in order to minimize

inertia is the essence of the method [73, 126]:

Intragroup sum of squares =
n∑

i=0

minµj∈C(||xj − µj||2) (2.58)

Giving a measure of how internally coherent the clusters are. Despite that, it has

a few drawbacks: it assumes that clusters are convex and isotropic, so it fails to

properly describe elongated or oddly shaped clusters and it is not normalized, so

for very high dimension problems it is afflicted by the curse of dimensionality6 [73]

because the distances tend to become inflated.

Regardless, the inertia is always constricted by the number of clusters, mean-

ing that if a ”wrong” number of clusters is chosen model performance will fail.

A common methodology for finding the optimal number of clusters is the elbow

method [127]. It relies on running the k-means clustering algorithm for the same

problem using an increasingly number of clusters in each iteration and measuring

its inertia, as a measure of the explained variance.

Plotting the explained variance versus the number of clusters generates a graphic,

like the one in figure 2.19, where the increase in explained variance is very steep in

the begging but it reaches a point where it begins to stabilize, known as the ”elbow”.

Adding clusters beyond this point will not result in a significant increase of modeling

capability to justify the increase in complexity. Though this point is not always very

explicit, but is can be more easily found by plotting the second derivative of a fitting

function whose maximum identifies the ”elbow” [127].

6As the dimensionality increases, the volume of the space increases much more rapidly which
causes available data to become insufficient to describe it. This compromises the statistical signif-
icance of the results.
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Figure 2.19: Explained variance versus th number of clusters for a k-means clustering algorithm.
The circle at k = 10 indicates the ”elbow point”.

Hierarchical clustering: The main advantage of the models lies in the fact that

there is no need to specify a specific number of clusters beforehand. Also known as

connectivity-based clustering, they state that objects are more related with those

that are nearby than farther away but are still related via a proximity based hier-

archy [73].

Creating that hierarchy of clusters based on the proximity of the data points is

how these models work. And that can be built in one of two ways: using a divisive

approach or an agglomerative approach [128].

In the divisive approach, also known as the ”top down” approach, a k-mean

algorithm is used for an initial assessment creating a specified number of clusters,

ci : i = 1 · · · k, and for each cluster created the k-means algorithm is applied again

continuing to further divide the clusters. This process can run until it exists a cluster

per data point (singleton clusters) producing a hierarchy. This approach is very fast

and efficient and has low complexity; Each iteration operates on a slice [128]:

O(knd · logkn) (2.59)

and k is the specified number of clusters, n is the number of data points and d

is the dimensionality of the data. Assuming that each iteration splits the cluster
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into equal sized sub-clusters the level of computation remains the same along the

process. However it is also very greedy, meaning that once a data point is assigned to

a certain cluster it cannot be compared with data points belonging to other clusters

even if they are nearby in the original data.

The agglomerative approach, known as ”bottom up” approach, does the opposite

to try and ensure that nearby points end up in the same cluster. Instead of starting

with large clusters and splitting them, it starts with a collection of n singleton

clusters, C, where each cluster contains only one data point, ci = {xi}, and proceeds

to iteratively merge them together [128]:

1. Find a pair of clusters that is closest: mini,jD(ci, cj);

2. Merge the clusters ci, cj into a new cluster ci+j;

3. Remove ci, cj from the collection C and add ci,j to it;

4. Check if number of clusters is bigger than one:

(a) if C ≥ 1: repeat from step 1;

(b) if C = 1: terminate algorithm.

Although nearby data points have a greater chance of ending up in the same cluster

when compared with the divisive approach, making it less greedy, model complexity

is much greater [128]:

O(n2d + n3) (2.60)

Since the distance between every singleton has to be computed once at the begin-

ning, n2d, and in each iteration it has to be traversed in order to find the closest

pairs, n3. In chemistry hierarchical clustering is used for identifying the largest sub-

structures shared by several molecular structures helping scientists to quickly find

novel examples of active compound families, as presented in figure 2.20 [129, 130].

Density-based clustering: Areas of higher density in the data set are defined

as clusters and are separated by areas of lower density [131]. Objects in these lower

density areas are classified as either noise or outliers. This criteria makes it possible

to have clusters of any shape. Recently this method has been used in data mining and

analysis of high-dimensional images take by X-ray based spectro-microscopy [132].
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Figure 2.20: Example of a clustered distribution of drugs. Image taken from reference [130].

Scientifically, the most popular density-based clustering method is called DB-

SCAN (density-based spatial clustering of applications with noise) [133]. It classi-

fies data points into three different categories, as denoted in figure 2.21: core points,

reachable points and outliers ; according to two parameters: the minimum number

of neighboring samples, MinPts, and a distance value, eps. Based on these to

parameters, the data points classification is done as [133]:

� core point: within the distance of eps there exists and equal or bigger

number of data points than the minimum number of neighboring samples:

neighbors in eps ≥MinPts;

� reachable points: are neighbors of a core point but have insufficient neigh-

bors of their own to be considered as core points;

� outliers: are not neighbors of core points nor have sufficient neighbors of their

own to be considered core points;

All points within a cluster are mutually connected by density. By definition, both

core and reachable points are always part of a cluster while outliers are unassigned.

The algorithm starts by picking an arbitrary point from the data set, then re-

trieves and evaluates its neighborhood according to the chosen parameters. If it

passes, a cluster is started and the neighboring points are evaluated in the same
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Figure 2.21: DBSCAN clustering illustration. Red and green points are the core points of
two separate clusters, the blue point is a reachable point belonging to the red cluster and
the orange point is an outlier. Image retrieved from the ”Machine Lwearning notebook”
(https://sites.google.com/site/machinelearningnotebook2/) on May, 22nd of 2017.

way to expand it until only reachable points are detected in which case the cluster

is finished. On the other hand, if the starting point fails to meet the parameters it

is immediately deemed an outlier, however this does not exclude it from being part

of the neighborhood of another core or reachable point so it can still be made part

of a cluster. The algorithm ends after each data point has been assigned a specific

and permanent role as a core, reachable or outlier point [73, 133].

The advantages of density-based clustering lie in the fact that it does not require

a pre-specified number of clusters to be given, that it can find oddly-shaped clusters,

that it has a notion of noise and robustness and that it requires minimal parameter

input. However, since it starts by arbitrarily choosing a starting point it is not

deterministic because border points might end up in different clusters depending

on the starting order, its overall quality depends on the input distance, eps, so for

high-dimensional data it suffers from the curse of dimensionality and it cannot be

used on data sets with large differences in densities [73].

Affinity propagation: Based on ”massage passing” between data points, it ex-

plores the idea that data points have a bigger affinity with a few other points and

uses that concept to find exemplars : objects of the original data set that are repre-

sentative of clusters [134].
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Figure 2.22: Illustration of the message exchange procedure for an affinity propagation clustering
algorithm. Image taken from reference [134].

The input is a collection of the similarities between data points, s(i, k), that

translates how well the data point k is suited to be an exemplar for data point

i. For an optimization process, the similarity function is defined as the negative

squared error of the two indexes [134]:

s(i, k) = −||xi − xk||2 (2.61)

It does not require a specified number of clusters to be given, because the real-valued

(self-)preference functions, s(k, k), are specified in the input and larger preferences

values are more likely to become exemplars. The number of clusters is influenced

by these values but is refined by the message-passing procedure, illustrated in fig-

ure 2.22 [134], that takes place afterwards. Messages exchanged between data points

are of two types: responsibility, r(i, k),and availability, a(i, k). Both are in competi-

tion with each other and can be combined during any stage of the algorithm runtime

to decide which points are exemplars and, for all that aren’t, to which exemplar they

belong to [134].

Responsibility pertains to the messages that are sent from data point i to its

candidate exemplar k indicating how well-suited k is to serve as an exemplar to i

while still accounting for all other possible exemplars for it. Availability, on the

other hand, relates to the messages sent from the candidate exemplar k to point

i reflecting how appropriate it would be for point i to have point k as its exem-

plar while accounting for other points that are also considering k as its candidate

exemplar [134].
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The algorithm starts by creating the responsibility, R, and availability, A, ma-

trices and initializing them to all zeros. Then it proceeds to calculating the re-

sponsibility and availability functions iteratively. First starting with the responsi-

bility [73, 134]:

r(i, k) = s(i, k)−maxk′ s.t. k′ 6=k{a(i, k′) + s(i, k′)} =

= s(i, k)−maxk′ s.t. k′ 6=k{s(i, k′)} (2.62)

And using it to update the availability:

a(i, k) = mini 6=k


0, r(k, k) +

∑

i′ /∈{i,k}
max(0, r(i′, k))




=
∑

i′ 6=k
max(0, r(i′, k)) (2.63)

The calculation ends when the cluster boundaries remain the same for a pre-specified

number of iterations or until a pre-determined maximum number of iterations is

reached. The exemplars are then identified in the matrices as those whose cumulative

values of responsibility and availability are positive:

r(i, i) + a(i, i) ≥ 0 (2.64)

and then are extracted to determine the number, center and positions of the clusters.

Though it is a very reliable clustering algorithm and requires no initial number

of clusters to be given, it is very complex. Its time complexity is of order [73, 134]:

O(N2T) (2.65)

Given an N number of data points and a T number of iterations until convergence.

And its memory requirements are also very large:

O(N2) (2.66)

Due to the construction of the responsibility and availability matrices required to

perform the calculation. Given these constraints, it is a method best used on small
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to medium sized data sets. It finds its use in chemistry in the realm of computational

biology for modeling molecular systems in biological systems [73, 134].

Spectral clustering: Is an hybrid between clustering and dimensionality reduc-

tion techniques as it performs a low-dimension embedding of the affinity matrix

creating a reduced-dimension clustering problem that can be addressed by a con-

ventional clustering algorithm such as k-means [135].

The first step consists in building an affinity matrix to measure the similarities

between the several objects. Although there is no singular formal way to define such

a matrix, usually they are created using the inverse of some distance metric, such

as the Euclidean distance [135]:

s(x, y) = −||x− y||22 (2.67)

Meaning that similar objects are represented by large values while small values

indicate the presence of dissimilar objects.

The next step consists performing the eigendecomposition of the affinity matrix

to find its canonical form in terms of its eigenvalues and eigenvectors. Note that

the nature of the construction of the affinity matrix makes it diagonalizable. Con-

sidering an affinity matrix, A, a non-singular eigenvector matrix, P, and a diagonal

eigenvalue matrix, D [136]:

A = PDP−1 ⇒ (2.68)

A2 = (PDP−1)(PDP−1) =

= PD(P−1P)DP−1 =

= PD2P−1 (2.69)

Extrapolating for general positive powers, equation 2.69 becomes:

An = PDnP−1 (2.70)

Also, by calculating the inverse of A one can see that the same results hold for
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negative powers as well:

A−1 = (PDP−1)−1

= PD−1P−1 (2.71)

Given that equation 2.70 holds of positive and negative values of the power, and

that A is diagonalizable by definition, eigendecomposition of the affinity matrix is

always possible. After the decomposition, eigenvectors whose eigenvalue is small are

discarded as they are assumed to represent noise while vectors with large eigenvalues

are used to map the system to a new reduced-dimension space that can be dealt

with using conventional clustering methods. This also means that the new space has

a dimensionality equal to the number of large eigenvalues from the original affinity

matrix.

Principal component analysis: A dimensionality reduction method based on

a statistical operation that converts a given set of observable variables with an

unknown degree of correlation into a set of linearly uncorrelated variables by using

an orthogonal transformation [137].

The idea of principal component analysis (PCA) is to fit an n-dimensional el-

lipsoid (hyperellipsoid) to the data such that each of its axis represents a variable

of the data set. Small axis have small variance so they can be discarded from the

data representation since the amount of information that is lost in the process is

substantially small. Finding the axis and their variances is done by [138]:

1. Subtracting the mean of each variable from the data set to center the data;

2. Computing the covariance matrix of the data:

C = XTX (2.72)

And calculating its eigenvalues, D, and eigenvectors, P:

C = PDP−1 (2.73)

3. Orthonormalizing the eigenvectors. Considering the following projection op-

erator proju(v) = 〈v,u〉
〈u,u〉u, that projects vector v orthogonally into the line
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spanned by vector u, and 〈v,u〉 as the inner product of the vectors v and u,

the normalized eigenvectors, e, are calculated as:

uk = vk −
k−1∑

j=1

projuj(vk) so that ek =
uk
||uk||

(2.74)

4. Calculating the proportion of the variance for each orthonormal eigenvector

by diving their individual eigenvalues by the sum of all eigenvalues.

This procedure allows for an efficient way to reduce the dimensionality of high-

dimensional data without neglecting much of its original information, however it is

highly sensitive regarding data scaling and there is no formal agreement on how to

best do it in order to optimize results [139].

Independent component analysis: Contrary to PCA that tries to maximize

variance to reconstruct the feature space, independent component analysis (ICA) is

tasked with finding a linear transformation able to convert the feature space into one

where all variables are independent from each other. Assuming that the observables,

in the form of vector X, are caused by some linear combination of other hidden

variables, in the form o vector Y, this can be mathematically presented as [140]:

X =




x1

x2

x3

· · ·
xn



→




y1

y2

y3

· · ·
yn




= Y (2.75)

Hidden variables are independent from each other, meaning that they don’t share

any information with each other:

I(yi, yj) = 0 (2.76)

However, in an ideal case, their collective information should be the same as that

presented in the observables. For a non-ideal situation, their shared information,
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based on ICA, should be as high as possible:

I(yi, yj) =↑ (2.77)

ICA tries to balance these two aspects when transforming the feature space: the

overall shared information should be conserved to a maximum during the transfor-

mation, while information shared between hidden variables should be equal to zero.

This implies that each of the new dimensions is mutually exclusive but the feature

spaces are not [141].

In chemistry, independent component analysis, alongside PCA, is used in sig-

nal processing in the realm of analytical chemistry for treating data and analyzing

results. [142].

Single value decomposition: Given a real input matrix, Mm×n there exists a

factorization of M with the form:

Mm×n = Um×rΣr×r(Vn×r)
T (2.78)

In which, U and V are the left and right singular vector matrices and Σ is a diagonal

matrix containing the singular values of M as the diagonal entries in descending

order. This matrix is uniquely determined by the input matrix [143].

Assuming that the the input matrix relates two different variables (m and n)

trough its matrix value, the singular value decomposition is able to separate both

variables into concepts (r) by means of the left singular vector matrix U (variable

m-to-concept similarity matrix) and the right singular vector matrix V (variable

n-to-concept similarity matrix) and the singular values in the matrix Σ express the

strength of each concept in representing its chosen instances.

This method allows to find similar individuals in a population according to chosen

parameters and group them together to create a reduced dimensional space while

retaining information about the representation of the original population [144]. It

has several applications in natural sciences, excelling at genomic research [145].
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Experimental section

This study relies on official satellite data, taken over the city of Coimbra, Portugal.

Data was provided by the European Space Agency (ESA) under the Copernicus -

The European Earth Observation Programme, hence it is considered as empirically

correct. The central point for all measurements is the ”Instituto Pedro Nunes” (IPN)

located at 40.192169N -8.414162W. Because the data was retrieved via satellite and

directly supplied by ESA, no consideration was given to the geography and micro-

climate of the city itself. In addition, measurements were done on an hourly basis

from 01-10-2016 up until 30-09-2017. Which means that a total of 8760 data points

were retrieved for each of the six compounds of interest.

3.1 Method selection

Proper selection of a machine learning algorithm for developing the forecasting

model required knowledge about the data and a defined goal: collected data is com-

prised of time-stamped airborne pollutant concentrations over the city of Coimbra,

and the goal is to be able to forecast future concentrations. Since the target vari-

ables are part of the observations and are comprised of numerical values, supervised

regression methods are the proper choice for constructing the machine learning fore-

casting algorithm. This though process is demonstrated in figure 3.1 indicated by

the green line.

Out of all the available regression algorithms, the one used for constructing the

forecasting machine is based on multiple linear regression. This choice is a rather

subjective one and is based on a few considerations about the data and the end-goal

which is the creation of a forecasting network over the city.
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Figure 3.1: Algorithm choice flowchart with the choice process highlighted by the green path.

Firstly, linear regression was opted over non-linear regression because of its sim-

plicity. Since the end-goal is to have an algorithm capable of working near-real time,

the simpler it is the better since there is less lag between forecasts. And secondly,

because each data set is comprised of two columns (one denoting time and one

the respective concentration of a single pollutant), the data is two dimensional, so

there is no need to over-complicate by using multivariate or regularization models.

Because of this, the choice would be limited to either simple regression or multi-

ple regression, but because the desired forecasting horizon contains more than one

variable, it constrains the choice to multiple regression.

3.2 Procedure

The data preparation steps are presented in figure 3.2. Firstly, the data needed

to be cleaned and treated, which required sorting all measurements chronologically

and calculating properties such as the mean and standard deviation to provide some

statistical sense to it. Afterwards it was necessary to verify the existence of data

gaps, absent data points from failed measurements, and determine the percentage
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of the full data set that was missing. Upon verifying the existence of absent data,

the missing data points were inferred by using a simple linear regression estimator

and the statistical properties were measured again to make sure that the overall

behavior of the time-series did not change significantly.

The second step, after cleaning the data, was to verify if each time-series con-

structed was stationary, which was done by using the Dickey-Fuller test. And after

testing, three copies of each data set were created for filtering and signal smoothing

while the original was kept aside for serving as a control reference.

The third step involved applying the two moving average and the Savitzky-Golay

filters to the data set copies to smooth them. This resulted in the creation of three

new data sets for each compound, which needed to be tested for stationarity again,

a process that was performed with the Dickey-Fuller test, the same used on the

original data sets. The outcome of this process was a total of four data sets for each

pollutant: the original and three different smoothened signals. This amounted to

a total of different 24 data sets, meaning that a full 210240 data points existed for

training and testing the machine learning algorithms.

3.2.1 Training and testing

After cleaning, treating and smoothing the data sets (or signals) the last step

was to effectively train and test a machine learning algorithm. Since time-series are

sequential data sets, the first 80% were selected for training and validation and the

last 20% were reserved for testing the algorithm.

In order to train and validate each model, the 80% training set was further divided

into ten equally-sized sub-sets (called folds) for cross-validation. Afterwards, all

possible combinations of nine different folds were considered and used individually

for training while leaving the remaining fold in each iteration for testing. The

iteration that gave the best results was replicated to produce the final model which

was then tested on the remaining 20% of the data set.

In the testing phase, three test sets were created from the 20% test set using a

time lag of two days: from the first sub-set the last 48 data points were excluded,

from the second sub-set the first and last 24 data points were excluded and from the

third sub-set the first 48 data points were excluded. This was done in order to be

able to replicate each model three times to achieve statistical meaning and to make
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sure that the model was independent of the starting point of the test set.

On each iteration the mean absolute percentage error value was calculated and

outputted for model performance analysis. The MAPE values resulting from the

three testing iterations were compared against each other to assure that model

coherence existed and their mean value was used for comparison between models.

1. Clean the data:

(a) Check percentage of missing data;

(b) Measure mean and standard deviation;

(c) Infer missing data points using a linear regression estimator;

(d) Measure new mean and standard deviation for comparison;

2. Test for stationarity (Dickey-Fuller Test);

3. Filter the data:

(a) Using a seven days moving mean:

� Re-test for stationarity;

(b) Using a 28 days moving mean:

� Re-test for stationarity;

(c) Using a 3rd degree polynomial Savitzky-Golay filter:

� Re-test for stationarity;

4. Run the MLA on all data sets;

(a) Split the data set into a training set (80%) and test set (20%);

(b) Train the MLA:

i. Split the training set into ten equal-sized sub-sets;

ii. Train and validate the MLA using a ten-fold-winner-takes-all cross

validation approach;

(c) Test the MLA:

i. Differentiate the test set into three sub-sets;

ii. Calculate performance metrics for each test sub-set;

iii. Evaluate model performance.
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Figure 3.2: Data processing flowchart and algorithm application.
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Results and discussion

4.1 Carbon monoxide

Approximately 6.59 % of the carbon monoxide data set was comprised of missing

measurements. The remaining 93.41 % of the signal was averaged at 0.314 ngm−3

with a standard deviation of 0.114. After inference, the signal new mean and stan-

dard deviation was of 0.336 ngm−3 and 0.122 respectively indicating that signal

behavior remained constant after data inference. This meant that the signal could

be smoothened without any restraints.

Given the total of 8746 data points that made up the signal (including inferred

data) the critical values used for the Dickey-Fuller test were:

� Critical Value (10%) = −2.566946

� Critical Value (5%) = −2.861870

� Critical Value (1%) = −3.431097

Which resulted in the confirmation that every data set, the original and the smoothened

signals, were stationary with a confidence level of 99 %. This because the test val-

ues, shown in table 4.1, are all inferior to the critical values. In addition, since the

p-values for every signal were very close to zero, it indicated that the data con-

tained within each signal was enough to reject the null hypothesis according to the

Dickey-Fuller test outcome.

Carbon monoxide measurements came in parts per million which are relatively

small numerical values so they were scaled by converting them into ng/m3 prior to

algorithm training. Given that the four signals are stationary, they could be used

for model training.
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4.1.1 CO model performance

Using the original carbon monoxide signal for training, the machine learning

algorithm gave MAPE values of 7.748 %, 7.728 % and 7.680 % for the three testing

iterations. These are small and coherent with each other, as supported by the

standard deviation of 0.0349, which points towards an accurate model. Analysis of

the graphics in figure 4.1, shows that individual errors did not go over 14 % further

indicating a viable model. Moreover, the dispersion plot (on the right-handed side)

demonstrates that there was a good coherence between forecasted and real values.

All these factors indicate a viable model, with its overall performance being given

the the form of a mean MAPE of 7.719 %.

Applying the seven day moving average filter on the signal prior to using to train

the model yielded individual MAPE values of 9.531 %, 9.946 % and 11.427 % in the

testing phase. These values are higher than the previous model and more disperse

given the standard deviation of 0.996, however they are still relatively small enough

to consider the model viable. ALthough the las testing iteration MAPE seems to

be slightly offset-ed from the others. Graphical analysis of the results in figure 4.2,

shows that individual error values did not go over 16 % and that correlation between

real and forecasts is still fairly good. Model performance is evaluated by the mean

MAPE value of 10.301 %.

Changing the moving average window from seven to 28 days increased the mean

absolute relative errors obtained while testing to 12.658 %, 13.160 % and 13.861 %.

This places model performance at the mean MAPE of 13.227 % with a standard

deviation of 0.604. Both these values suggest an accurate and consistent model.

These assumptions are supported by the analysis of the plots generated by the

model, shown in figure 4.3, where it is visible that individual errors barely surpassed

the MAPE value and that coherence between forecasts and measurements is present.

Table 4.1: Dickey-Fuller test results for CO signals.

Observations Test value P-value Stationary

Original

8746

-5.148123 1.10E-05 Yes
7 day filter -12.91134 4.05E-24 Yes

28 day filter -9.216728 1.83E-15 Yes
Savitzky-Golay filter -4.859107 4.20E-05 Yes
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(a)

(b)

Figure 4.1: Un-smoothened 24 hour CO forecasting results for the third iteration. a) Individual
error plot alongside with the MAPE (gray dashed line). b) Correlation dispersion plot.
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(a)

(b)

Figure 4.2: Smoothened 24 hour CO forecasting results for the third iteration using a moving
average with a window of seven days. a) Individual error plot alongside with the MAPE (gray
dashed line). b) Correlation dispersion plot.
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Table 4.2: Machine learning CO forecasting results. NOTE: all values are in percentages except
for the standard deviation (Stdev).

CO

MAPE
Test 1 Test 2 Test 3 Mean Stdev

Original 7.748 7.728 7.680 7.719 0.035
7 day filter 9.531 9.946 11.427 10.302 0.996
28 day filter 12.658 13.160 13.861 13.227 0.604
Savitzky-Golay 7.475 7.455 7.407 7.446 0.035

Overall, this model seems to have sacrificed accuracy in order to improve consistency

from the previous model.

The final model tested for carbon monoxide forecasting, used a Savitzky-Golay

filter on the original signal and managed to produce the following MAPE values of

7.475 %, 7.455 % and 7.407 % during testing. These values are slightly lower than

those of the original model and significantly lower than the moving average based

ones. The consistency of the forecasts is verified by the standard deviation of 0.035

and the analysis of the right-sided plot in figure 4.4 that shows most data points

over the quadrant bisection indicating good correlation between measurements and

predictions. Good model accuracy is indicated by the mean MAPE value of 7.446 %

and by the fact that the highest individual error, shown in the left-sided plot of

figure 4.4, did not reach that values.

In table 4.2 are presented the performance metrics relative to all four models

trained for carbon monoxide forecasting. Both the first and last models had the

same very low results regarding consistency of forecasts, as viewed by their standard

deviations, indicating that their forecasting abilities do not depend on the input

shape. The second and third models had higher standard deviations, which means

that they are both less consistent, however the standard deviations are still relatively

low so their forecasts are still quite consistent. In terms of accuracy both models

based on the moving average filter had higher MAPEs indicating that they are less

accurate than the original and polynomial filter models. Between the two, the model

that used the Savitzky-Golay filter showed a slight improve in accuracy from the

original model.
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(a)

(b)

Figure 4.3: Smoothened 24 hour CO forecasting results for the third iteration using a moving
average with a window of 28 days. a) Individual error plot alongside with the MAPE (gray dashed
line). b) Correlation dispersion plot.
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(a)

(b)

Figure 4.4: Smoothened 24 hour CO forecasting results for the third iteration using 3rd degree
polynomial Savitzky-Golay filter. a) Individual error plot alongside with the MAPE (gray dashed
line). b) Correlation dispersion plot.
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4.2 Nitrogen dioxide

The nitrogen dioxide data set was 95.628 % complete with only the remaining

4.37 % being comprised of absent measurements. The mean value of the measure-

ments prior to data inference was of 0.000889 ngm−3 with a standard deviation of

0.000608 and were slightly increased to 0.000939 ngm−3 and 0.000640 respectively

which shows that signal behavior remained relatively the same after inferring missing

data points. The critical values used for the Dickey-Fuller test were:

� Critical Value (10%) = −2.566946

� Critical Value (5%) = −2.861870

� Critical Value (1%) = −3.431097

And the test confirmed that all four signals were stationary with a 99 % confidence

level meaning they are viable time-series for model training. Detailed results are

presented in table 4.3. On a first impression, the p-values obtained from testing all

signals are very close to zero which indicates that the data sets contained sufficient

information to draw a conclusion. However, the most important part is the fact

that all test values are inferior to the critical values, hence the null hypothesis can

be discarded confirming the necessary signal stationarity for further use.

4.2.1 NO2 model performance

Training the model with the original signal produced the results shown in fig-

ure 4.5. Individual mean absolute percentage errors for each testing iteration were

of 206.086 %, 189.127 % and 130.610 % that averaged at 175.274 % with a standard

deviation of 39.599. These results are indicative of a poor model that fails to give

Table 4.3: Dickey-Fuller test results for NO2 signals.

Observations Test value P-value Stationary

Original

8759

-11.42458 6.74E-21 Yes
7 day filter -13.31858 6.53E-25 Yes

28 day filter -12.32541 6.61E-23 Yes
Savitzky-Golay filter -10.32594 2.93E-18 Yes
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accurate or consistent predictions. Individual errors were very high and frequent,

as shown by the left-sided plot, and although they did not the reach the MAPE

value the fact they were consistently high contributed for the rise in that value.

The scatter plot in the right side of the figure shows poor correlation between real

and forecasted values since the core data points do not overlap with the quadrant

bisection.

Using a moving average filter with a seven day window managed to decrease

the testing MAPE values to 180.083 %, 163.994 % and 136.506 % with the mean

value being of 160.195 % with a standard deviation of 22.035. On the other hand,

using a 28 day window yielded individual MAPE values of 195.346 %, 178.858 %

and 123.223 % making the mean value equal to 165.809 % with a standard deviation

of 37.791. Although there is some improvement in both these situations, model

performance and accuracy still remains unsatisfactory. The plots from the first filter

are present in figure 4.6 where it is visible that no particular improvement has been

made, although the frequency of high individual is lower and the correlation plot

shows the core data points closer to the quadrant bisection. The ones in figure 4.7

are relative to the 28 day moving average filter and show even less improvement

than the previous filter, with the frequency of individual errors being high and the

core data points in the dispersion plot still failing to overlap the quadrant bisection.

Lastly, the Savitzky-Golay filter was used prior to algorithm training. This gen-

erated individual MAPE values of 201.177 %, 184.112 % and 126.937 % which seem

similar to the original model. The average value is of 170.743 % with a standard

deviation of 38.884 which seems to confirm this assumption. However, analysis of

the graphics in figure 4.8 indicates that the frequency and size of individual errors

has decreased and that coherence between forecasts and measurements has increased

suggesting a model improvement.

Performance metric obtained from the model built to forecast nitrogen dioxide

concentration are presented in table 4.4. Regarding model accuracy and consistency,

none of the models presented seems viable for prediction NO2 concentrations because

MAPE values are very high and standard deviation values indicate that the models

are very dependent on the shape of the input data series. Although, a graphical

analysis indicates that the model built upon applying the Savitzky-Golay filter seems

more efficient even if it tends to overestimate the real value in most situations.
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(a)

(b)

Figure 4.5: Un-smoothened 24 hour NO2 forecasting results for the third iteration. a) Individual
error plot alongside with the MAPE (gray dashed line). b) Correlation dispersion plot.
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(a)

(b)

Figure 4.6: Smoothened 24 hour NO2 forecasting results for the third iteration using a moving
average with a window of seven days. a) Individual error plot alongside with the MAPE (gray
dashed line). b) Correlation dispersion plot.
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(a)

(b)

Figure 4.7: Smoothened 24 hour NO2 forecasting results for the third iteration using a moving
average with a window of 28 days. a) Individual error plot alongside with the MAPE (gray dashed
line). b) Correlation dispersion plot.
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(a)

(b)

Figure 4.8: Smoothened 24 hour NO2 forecasting results for the third iteration using 3rd degree
polynomial Savitzky-Golay filter. a) Individual error plot alongside with the MAPE (gray dashed
line). b) Correlation dispersion plot.

73



Table 4.4: Machine learning NO2 forecasting results. NOTE: all values are in percentages except
for the standard deviation (Stdev).

NO2

MAPE

Test 1 Test 2 Test 3 Mean Stdev
Original 206.086 189.127 130.610 175.274 39.599
7 day filter 180.083 163.994 136.506 160.195 22.035
28 day filter 195.346 178.858 123.223 165.809 37.791
Savitzky-Golay 201.177 184.112 126.937 170.742 38.884

4.3 Tropospheric ozone

The tropospheric ozone signal had a completion of 93.112 % and its values av-

eraged at 0.0394 ngm−3 with a standard deviation of 0.00415. After inferring the

missing data points, these values changed to 0.0424 ngm−3 and 0.00446 respectively

indicating that its behavior did no changed significantly. Concerning stationarity,

the critical values used were:

� Critical Value (10%) = −2.566946

� Critical Value (5%) = −2.861870

� Critical Value (1%) = −3.431097

And the Dickey-Fuller test results indicated that all four signals were stationary

with a 99 % confidence level. Table 4.5 shows these results and it is visible that

p-values obtained from every signal are small and close to zero which means that

the data sets are informative enough for the conclusion of the test to hold under any

circumstances. With that being established, all test values and inferior to the 1 %

critical value confirming the stationarity of the time-series.

4.3.1 O3 model performance

The plots presented in figure 4.9 indicate how the model behaved when forecast-

ing tropospheric ozone concentrations using the original time-series in the training

phase. Individual MAPE values for each testing iteration were 7.748 %, 7.728 % and

7.680 % which are fairly small indicating a good model. The left-sided plot shows
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(a)

(b)

Figure 4.9: Un-smoothened 24 hour O3 forecasting results for the third iteration. a) Individual
error plot alongside with the MAPE (gray dashed line). b) Correlation dispersion plot.
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Table 4.5: Dickey-Fuller test results for O3 signals.

Observations Test value P-value Stationary

Original

8746

-5.148123 1.10E-05 Yes
7 day filter -12.91134 4.20E-05 Yes

28 day filter -9.216728 4.05E-24 Yes
Savitzky-Golay filter -4.859107 1.83E-15 Yes

good similarity between forecasts and real values and that individual errors did no

exceed 14 % while the right-sided plot further supports that coherence between fore-

casts and real values is indeed present. Model performance is evaluated based on

the mean MAPE value of 7.719 % with the standard deviation being equal to 0.035.

Applying the moving averages filter, first with the seven day window and second

with the 28 day window, produced models whose results are respectively presented

in figures 4.10 and 4.11a respectively.

Looking first at the results from the application of the first window, individual

MAPE values were of 9.531 %, 9.946 % and 11.427 % who averaged at 10.302 %

with a standard deviation of 0.996. These values indicate that both accuracy and

consistency measures for the forecasted values diminished relatively to the original

model. However, looking at the pots themselves, individual errors seem not much

higher and correlation between forecasted and real values is still adequate.

The application of the second window, had similar effects since it increased in-

dividual MAPE values obtained during testing to 12.658 %, 13.160 % and 13.861 %

placing model performance at the mean MAPE value of 13.227 % with a standard

deviation of 0.604. These values imply that there was no improvement from us-

ing these filter, however with this window size forecasts, while less accurate were

more consistent than with the previous window size. Plot analysis seems to cor-

roborate these assumptions showing that individual errors retained their values and

frequencies and that coherence between forecasts and measurements is consistent.

A fifth polynomial Savitzky-Golay filter managed to reduce the original individual

MAPE values to 7.475 %, 7.455 % and 7.407 %. Its average value is of 7.446 % with

the respective standard deviation of 0.035 revealing a slight improvement on the

original model in terms of accuracy and forecasting consistency. Its plots are shown

in figure 4.12 and it is possible to see that there was a significant reduction on both
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(a)

(b)

Figure 4.10: Smoothened 24 hour O3 forecasting results for the third iteration using a moving
average with a window of seven days. a) Individual error plot alongside with the MAPE (gray
dashed line). b) Correlation dispersion plot.
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Table 4.6: Machine learning O3 forecasting results. NOTE: all values are in percentages except for
the standard deviation (Stdev).

O3

MAPE

Test 1 Test 2 Test 3 Mean Stdev
Original 7.748 7.728 7.680 7.719 0.035
7 day filter 9.531 9.946 11.427 10.302 0.996
28 day filter 12.658 13.160 13.861 13.227 0.604
Savitzky-Golay 7.475 7.455 7.407 7.446 0.035

the size and frequency of the individual errors for each forecast. Also, the correlation

plot between real and predicted values places most data points over the quadrant

bisection meaning that model consistency was achieved.

Table 4.6 is a condensed form of all the results discussed for far in this section.

It is noticeable that both filters that used a moving averaged did not manage to

improve upon the original signal for constructing the machine learning algorithm

for tropospheric ozone forecasting. However, both these models still have adequate

accuracy and consistency. As for the Savitzky-Golay filter it managed to outperform

the original model in terms of accuracy while retaining the same level of consistency

because of its smaller MAPE and equal standard deviation.

4.4 Sulfur dioxide

About 9.0 % of the data regarding the sulfur dioxide signal was missing and prior

to data inference its mean value was of 0.00193 ngm−3 with the respective standard

deviation of 0.000307. After inferring the missing data points these values remained

consistent at 0.00196 ngm−3 and 0.000339 respectively meaning that signal behavior

did not change significantly. Which implies that the signal is good enough for

training a machine learning model.

The complete signal was submitted for stationarity verification via the Dickey-

Fuller method, using the following critical values:

� Critical Value (10%) = −2.566946

� Critical Value (5%) = −2.861870
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(a)

(b)

Figure 4.11: Smoothened 24 hour O3 forecasting results for the third iteration using a moving
average with a window of 28 days. a) Individual error plot alongside with the MAPE (gray dashed
line). b) Correlation dispersion plot.
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(a)

(b)

Figure 4.12: Smoothened 24 hour O3 forecasting results for the third iteration using 3rd degree
polynomial Savitzky-Golay filter. a) Individual error plot alongside with the MAPE (gray dashed
line). b) Correlation dispersion plot.
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Table 4.7: Dickey-Fuller test results for SO2 signals.

Observations Test value P-value Stationary

Original

8783

-93.7159 6.17E-25 Yes
7 day filter -13.3186 6.53E-25 Yes

28 day filter -14.0261 3.50E-26 Yes
Savitzky-Golay filter -14.7039 2.92E-27 Yes

� Critical Value (1%) = −3.431097

which confirmed that all sulfur dioxide data sets were stationary with a 99 % con-

fidence level. Results are presented in table 4.7 and indicate very low p-values for

every data set testing indicating that they contained enough information about the

system to make the test significant. Also, since all test values are inferior to the 1 %

critical value, signal stationary is confirmed for all cases.

4.4.1 SO2 model performance

Individual MAPE values obtained during the testing phase of the model using

the original signal were of 42.9015 %, 43.202 % and 43.194 %. This last iteration is

presented graphically by the plots in figure 4.13 where it is possible to notice that

there occurred a few sporadic very high individual errors while forecasting sulfur

dioxide values, one of which that surpassed the 160 % mark. The correlation plot

resembles a disperse blob and while the core points overlap the quadrant bisection

there are still many data points outside of it. These factors indicate a possible viable

model, however also very unstable regarding its predictions. The fact that there is

a larger absence of data than with the previous compounds may also have affected

model performance: a MAPE value of 43.099 % with a standard deviation of 0.1712.

The application of the moving average based filters yielded the results presented

in figures 4.14 and 4.15a for the seven and 28 day windows respectively. Given how

much they differ a separate analysis is necessary.

The seven moving average filter, MAPE values retrieved during testing were

180.083 %, 163.994 % and 136.506 % which places model performance at a mean

MAPE value of 160.195 % with the standard deviation of 22.035. These results

indicate a poor a unusable model. In a similar way, the model built upon the 28 day

moving average filter yielded individual MAPE values of 882.898 %, 886.269 % and
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Table 4.8: Machine learning SO2 forecasting results. NOTE: all values are in percentages except
for the standard deviation (Stdev).

SO2

MAPE

Test 1 Test 2 Test 3 Mean Stdev
Original 42.901 43.202 43.194 43.099 0.171
7 day filter 180.083 163.994 136.506 160.195 22.035
28 day filter 882.898 886.269 884.720 884.629 1.688
Savitzky-Golay 41.272 41.573 41.567 41.471 0.172

884.720 % which are much higher than even the previous values. The mean value is

used to describe this model performance at 884.629 % with the respective standard

deviation of 1.688, meaning that this model is even less usable than the previous

one.

Using the Savitzky-Golay filter while creating the model yielded individual MAPE

values of 41.273 %, 41.573 % and 41.567 % which are more similar to the values gen-

erated by the original model. By looking ate the plots in figure 4.16 it is noticeable

that the model performed well and improved upon the original by lowering the

frequency and size of the individual errors and increasing the consistency of the

forecasts as shown by the correlation plot. The mean MAPE of 41.471 % with the

standard deviation of 0.172 translates model performance.

Looking at the values in summary form presented in table 4.8 it is possible to

realize that both models based on the moving average filters for the prediction of

sulfur dioxide concentrations are unusable given their high performance metrics.

however, both the original model and the one based on the Savitzky-Golay filter

appear to be usable despite their MAPE values with the later being slightly better

in therms of accuracy and consistency given its better MAPE and standard deviation

values.

4.5 Particulate matter 10 (PM10)

The data set regarding PM10 concentrations was 92.77 % complete. Initial mean

and standard deviation values are of 14.7 ngm−3 and 3.57 respectively and after data

inference they became 15.8 ngm−3 and 3.85 also respectively. The change in both
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(a)

(b)

Figure 4.13: Un-smoothened 24 hour SO2 forecasting results for the third iteration. a) Individual
error plot alongside with the MAPE (gray dashed line). b) Correlation dispersion plot.
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(a)

(b)

Figure 4.14: Smoothened 24 hour SO2 forecasting results for the third iteration using a moving
average with a window of seven days. a) Individual error plot alongside with the MAPE (gray
dashed line). b) Correlation dispersion plot.
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(a)

(b)

Figure 4.15: Smoothened 24 hour SO2 forecasting results for the third iteration using a moving
average with a window of 28 days. a) Individual error plot alongside with the MAPE (gray dashed
line). b) Correlation dispersion plot.
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(a)

(b)

Figure 4.16: Smoothened 24 hour SO2 forecasting results for the third iteration using 3rd degree
polynomial Savitzky-Golay filter. a) Individual error plot alongside with the MAPE (gray dashed
line). b) Correlation dispersion plot.
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values is small enough to consider that signal behavior remains unchanged after

inferring the missing data, which meant that it is viable for algorithm construction.

The complete data set was comprised of 8760 observations and the critical values

used in the Dickey-Fuller test were:

� Critical Value (10%) = −2.566946

� Critical Value (5%) = −2.861870

� Critical Value (1%) = −3.431097

Table 4.9 shows the results of the Dickey-Fuller test on all signals. For the orig-

inal signal the test value was of −9.38595, for the seven days moving average of

−11.48578, for the 28 days moving average of −9.854643, and for the Savitzky-

Golay filter of −8.291375. All these values are inferior to the 1 % critical value

meaning that all signals are stationary with a 99 % confidence level. In addition,

the fact that the p-values for all four signals are very small indicates that the sam-

ple population used provides enough evidence to reject the null hypothesis in its

entirety. Hence, all signals can be used for machine learning model training, testing

and evaluation.

4.5.1 PM10 model performance

Considering the model based on the original signal, the mean squared absolute

percentage errors for the three testing iterations was of 27.667 %, 27.670 % and

27.281 % with the standard deviation of 0.224, which means that this model is co-

herent prediction-wise. The graphics in figure 4.17 pertain the third testing iteration

for this model. An analysis of the left-sized plot shows that the high individual er-

rors were few and scarce, with the highest individual error just surpassing the 80 %

Table 4.9: Dickey-Fuller test results for PM10 signals.

Observations Test value P-value Stationary

Original

8760

-9.38595 6.76E-16 Yes
7 day filter -11.48578 4.87E-21 Yes

28 day filter -9.854643 4.39E-17 Yes
Savitzky-Golay filter -8.291375 4.25E-13 Yes
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mark. The right-sized dispersion plot indicates that good correlation between the

real and the forecasted values is present. Model performance is evaluated by the

mean MAPE value of 27.539 %.

The model based on the seven day moving average resulted in very high mean

absolute percentage errors: 504.841 %, 488.351 % and 498.171 %. However, its stan-

dard deviation, considering how large the mean MAPE was (497.121 %) is relatively

small, 8.295, which means that despite lacking accuracy the model still retains co-

herence. The graphics in figure 4.18, further support this assumption since the in-

dividual errors shown are very high and the dispersion plot resembles a blob rather

than overlapping the quadrant bisection.

Using a 28 day moving average filter the individual MAPE values were of 27.315 %,

26.982 % and 27.974 %. Considering the standard deviation of 0.195, this model

shows coherent forecasts similarly to the first model. A graphical analysis of the

plots in figure 4.19 demonstrates a good correlation between real and forecasted

values and lower individual errors than any other model so far, with the highest

one not reaching the 80 % mark. The mean MAPE value used for model evaluation

is of 27.09 %, slightly higher than the first model. Overall, this particular model

improves both the coherence and the accuracy displayed by the original even if only

slightly.

lastly, the signal smoothened using a Savitzky-Golay filter was tested and gave

the mean absolute percentage errors of 26.563 %, 26.591 % and 26.200 %. On a first

look these are the best individual MAPE values given so far. The standard deviation

is of 0.218 which means that the model performs coherently. Analysis of the plots

in figure 4.20 shows that high individual errors are scarce with the highest barely

surpassing 25 % which is a significant improvement. Also, there exists a higher

correlation between real and forecasted. The mean MAPE of 26.452 % is the lowest

so far.

Table 4.10 suggests that the model using a seven day moving average filter is

inadequate for using in a real scenario since it produced the worse results. The

models that used the original signal and the signal decomposed using a 28 days

moving average filter generated similar results, with the latter being slightly better

in terms of accuracy and coherence. However, the model built on the Savitzky-Golay

filter produced the best results in terms of accuracy, despite having slightly worse

coherence than the model that used the 28 day moving average filter.
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(a)

(b)

Figure 4.17: Un-smoothened 24 hour PM10 forecasting results for the third iteration. a) Individual
error plot alongside with the MAPE (gray dashed line). b) Correlation dispersion plot.
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(a)

(b)

Figure 4.18: Smoothened 24 hour PM10 forecasting results for the third iteration using a moving
average with a window of seven days. a) Individual error plot alongside with the MAPE (gray
dashed line). b) Correlation dispersion plot.
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(a)

(b)

Figure 4.19: Smoothened 24 hour PM10 forecasting results for the third iteration using a moving
average with a window of 28 days. a) Individual error plot alongside with the MAPE (gray dashed
line). b) Correlation dispersion plot.
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(a)

(b)

Figure 4.20: Smoothened 24 hour PM10 forecasting results for the third iteration using 3rd degree
polynomial Savitzky-Golay filter. a) Individual error plot alongside with the MAPE (gray dashed
line). b) Correlation dispersion plot.
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4.6 Particulate matter 2.5 (PM2.5)

The data set containing PM2.5 measurements has a total of 8774 and only 6.83 %

of the data was absent. Prior to data inference the mean concentration was of

7.41 ngm−3 with a standard deviation of 2.54 that afterwards became 8.00 ngm−3

and 2.74 respectively. This indicates that signal behavior did not change greatly

after inferring the missing data. So, the complete data set is suitable for trainig a

MLA.

To verify if the data set was stationary, the critical values used in the Dickey-

Fuller test are:

� Critical Value (10%) = −2.566945

� Critical Value (5%) = −2.861869

� Critical Value (1%) = −3.431096

And its results are presented in table 4.11. The p-values for every test are very

close to zero indicating that the sample population was sufficient to reject or not

the null hypothesis. For the original, seven day moving, 28 day moving averages

and Savitzky-Golay filtered data sets the test values were of −10.69194, −11.35856,

−10.62376 and −9.05221 respectively. Since all these values are bellow the 1 %

critical value all series are stationary with a 99 % confidence interval.

Table 4.10: Machine learning PM10 forecasting results. NOTE: all values are in percentages except
for the standard deviation (Stdev).

PM10
MAPE

Test 1 Test 2 Test 3 Mean Stdev

Original 27.667 27.670 27.281 27.539 0.224
7 day filter 504.841 488.351 498.171 497.121 8.295
28 day filter 27.315 26.982 26.974 27.090 0.195
Savitzky-Golay 26.563 26.591 26.200 26.451 0.218
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4.6.1 PM2.5 model performance

The model built using the original signal had a mean absolute percentage errors

of 30.880 %, 30.649 % and 30.369 % resulting in a mean MAPE value of 30.632 %

with a standard deviation of 0.256. These values indicate adequate forecasting

accuracy and a coherent behavior regarding its input. Graphical analysis of the

results, presented in figure 4.21, shows that there is good accuracy, demonstrated

by the existence of many small individual errors with few high errors. Also, the

dispersion plot demonstrates that correlation between forecasted and real values is

high given that most data points tend to overlap the quadrant bisection.

By using a seven day moving average filter on the data set prior to model training.

the mean absolute percentage errors rose to 625.096 %, 612.060 % and 614.568 %

resulting in an average MAPE of 617.241 % with a standard deviation of 6.917 %.

These values are indicative of a very poor model that lacks accuracy while, however,

still retaining a decent coherence. The plots in figure 4.22 further indicate that

the model works poorly on forecasting PM2.5 values as indicated by the very high

individual errors and the spread of the data points in the dispersion plot.

The model built using a 28 day moving average filter yielded results on par

with those of the first model presented for PM2.5 forecasting. The mean absolute

percentage errors were 32.764 %, 31.552 % and 31.066 % with its mean value being of

31.794 % and the corresponding standard deviation of 0.874. Although these values

are not as good as the original model, their are still acceptable and indicate that

model coherence is maintained. The analysis of the plotted results, in figure 4.23a,

is in all aspects equal to the one performed for the first model.

The model using the Savitzky-Golay filter yielded mean absolute percentage er-

rors of 29.650 %, 29.443 % and 29.164 % with the mean value of 29.413 %. and the

standard deviation of 0.244 indicating and accurate and coherent model. An analy-

Table 4.11: Dickey-Fuller test results for PM2.5 signals.

Observations Test value P-value Stationary

Original

8774

-10.69194 3.71E-19 Yes
7 day filter -11.35856 9.60E-21 Yes

28 day filter -10.62376 5.43E-19 Yes
Savitzky-Golay filter -9.05221 4.81E-15 Yes
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(a)

(b)

Figure 4.21: Un-smoothened 24 hour PM2.5 forecasting results for the third iteration. a) Individual
error plot alongside with the MAPE (gray dashed line). b) Correlation dispersion plot.
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(a)

(b)

Figure 4.22: Smoothened 24 hour PM2.5 forecasting results for the third iteration using a moving
average with a window of seven days. a) Individual error plot alongside with the MAPE (gray
dashed line). b) Correlation dispersion plot.
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(a)

(b)

Figure 4.23: Smoothened 24 hour PM2.5 forecasting results for the third iteration using a moving
average with a window of 28 days. a) Individual error plot alongside with the MAPE (gray dashed
line). b) Correlation dispersion plot.
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Table 4.12: Machine learning PM2.5 forecasting results. NOTE: all values are in percentages
except for the standard deviation (Stdev).

PM2.5
MAPE

Test 1 Test 2 Test 3 Mean Stdev

Original 30.880 30.649 30.369 30.632 0.256
7 day filter 625.096 612.060 614.568 617.241 6.9168
28 day filter 32.764 31.552 31.066 31.794 0.874
Savitzky-Golay 29.650 29.443 29.164 29.420 0.244

sis of the plots, presented in figure 4.24, concludes that the highest individual error

barely surpassed the 50 % mark and that there is a very good overlapping of the

data points with the quadrant bisection indicating an accurate and coherent model.

A comparative analysis, presented in table 4.12, indicates readily that the model

based on the seven day moving average filter lacks accuracy and is not viable in any

way. Between the other three models, they produced very similar results with the

28 day moving average filter being the worst. The model based on the Savitzky-

Golay filter managed to improve the accuracy of the original model. In addition,

this model was able to reduce the highest individual error from both the original

and the 28 day moving average models by half.

98



(a)

(b)

Figure 4.24: Smoothened 24 hour PM2.5 forecasting results for the third iteration using 3rd degree
polynomial Savitzky-Golay filter. a) Individual error plot alongside with the MAPE (gray dashed
line). b) Correlation dispersion plot.
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Conclusions

One of the greatest problems the human population all around the world faces

today is the increasing danger posed by air pollution. Compounds such as carbon

monoxide, nitrogen dioxide, tropospheric ozone, sulfur dioxide and particulate mat-

ter can cause severe health effects and have always been present in our planet’s

atmosphere, although in low concentrations. However, starting with the dawn of

the industrial age, their airborne concentrations have drastically increased creating

an even greater threat to our health.

Airborne pollution levels cannot be easily decreased and require a long time to

do so and the collective cooperation of the people and nations alike. That said,

one possible way to mitigate the problem and reduce the negative impact caused

by atmospheric pollution in our societies lies in trying to find ways to accurately

and consistently forecast the airborne concentrations of hazardous compounds and

particles to pro-actively enable people to defend themselves from the dangers they

pose.

This is no easy task given the chaotic nature of the Earth’s atmosphere. The

complexity of the equations necessary to model only one of the interest compounds

stated before is immense and requires extremely powerful computers not only to

perform the calculations bu also to derive the equations themselves. And because

they are very sensitive to the starting conditions the final models are usually very

limited. Because of this difficulty, data driven approaches have been suggested as

a viable mean to accurately forecast these concentrations within a fraction of the

time and using much less processing power.

In this project a machine learning algorithm based on multiple linear regression

models was develop with the aim at forecasting individually each of the before
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mentioned pollutants. Also, three different filter types, two based on a moving

average and the other being the Savitzky-Golay filter, were applied to each data set

and each to account for the effect of signal smoothing on the forecasts. The resulting

models were evaluated using the mean absolute relative average as a measure of

performance. Table 5.1 depicts MAPE values obtained by the trained models using

differently filtered signals.

The first conclusion to be drawn is relative to the improvement, or lack there

of, that signal filtering created upon the original model. Overall, all models gained

a slight improve in accuracy when the Savitzky-Golay filter was applied prior to

training and testing the algorithm. And since the filter itself is not very complex,

its application on a dynamic-real-time forecasting system seems viable and necessary

since it also managed to severely decrease the size of individual errors, whose measure

is uncounted by the MAPE value.

Regarding the moving average based models, they yielded very different results

for each pollutant which indicates that the filter is highly dependent on the original

signal shape and requires a greater degree of fineness to implement and are less

forgiving. For carbon monoxide, tropospheric ozone, and sulfur dioxide both mov-

ing average filters yielded worse results than the application of the original signal,

meaning they are not necessary to implement in the final algorithm. For particulate

matter, the seven day filter severely decreased performance while the 28 day win-

dow slightly increased it for PM10 and equaled it for PM2.5 forecasting. Finally,

for nitrogen dioxide, the 28 day filter managed to produce a better model being

surpassed only by the seven day filter, however since MAPE values obtained while

forecasting this pollutant still remain very high all models can be discarded for using

in a real-scenario.

One important fact to take notice is that results for CO and NO2 forecasting

are equal up to the third decimal figure which, since the data sets used for training

the model were obviously different, means that the lower error limit imposed by

the bias-variance dilemma of the model while forecasting both these concentrations

was achieved. This implies that these pollutants can now be forecasted real-time

without the need for further model improvement.

With MAPE values under 30 %, the models built for forecasting both types of

particles are already very useful and capable of being placed in action while still

leaving room for further improvement. And although the same might be said for
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Table 5.1: Performance metrics summary.

MAPE
CO NO2 O3 SO2 PM10 PM2.5

Original 7.719 175.274 7.719 43.099 27.539 30.632
7 day filter 10.302 160.195 10.302 160.195 497.121 617.241
28 day filter 13.227 165.809 13.227 884.629 27.090 31.793
Savitzky-Golay 7.446 170.742 7.446 41.471 26.451 29.419

the sulfur dioxide model, its MAPE value of over 40 % still has a high enough margin

of error for the model to cause doubts if put into practice on real-time data.

To summarize, the application of Savitzky-Golay filter managed to consistently

improve forecasts for all compounds while the moving average filters proved to be

very erratic in doing so. Also, good models (MAPE <≈ 10 %) were developed

for carbon monoxide and tropospheric ozone forecasting while adequate models

(10 % <≈ MAPE <≈ 45 %) were produced for particulate matter and sulfur dioxide

forecasting and no model model produced was able to accurately forecast nitrogen

dioxide concentrations.
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Future remarks

This project focused only on numerical procedures and did not take into account

correlation between the several case variables and yet it was able to produce mod-

els to accurately forecast carbon monoxide and tropospheric ozone concentrations

without the need for much improvement.

The next step lies in trying to improve the other developed models by adding a

degree of correlation between other known variables. As such blind source separation

techniques such as principal and independent component analysis seem the logical

next step to try and find the existing correlations that the six studied pollutants have

with each other in order to manage to create indirect forecasting models based on

carbon monoxide and ozone direct predictions. Not only that, but also the inclusion

of variables such as temperature, humidity, wind direction and speed that are easier

to forecast might also facilitate the creation of indirect forecasting models.

Other than that, existent models (with the exception of the nitrogen dioxide

model) can already be placed in use in real scenarios to verify if they are able to

maintain the same level of performance that they had during tests in a real situation.

Also, withing their error margins, alerts could be issued to the general population

in case of a suspected rise in any of the pollutants airborne concentrations.
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[17] L. Kao and K. Nañagas. Toxicity Associated with Carbon Monoxide. Clin.

Lab. Med., 26(1):99–125, mar 2006.

[18] M. Goldstein, J. Raphael, J. Korach, M. Jars-Guincestre, C. Chastang, and

C. Harboun. Carbon monoxide poisoning. J. Emerg. Nurs., 34(6):538–42, dec

2008.

[19] G. Vásquez, X. Ji, C. Fronticelli, and G. Gilliland. Human Carboxyhemoglobin

at 2.2 A Resolution: Structure and Solvent Comparisons of R-State, R2-State

and T-State Hemoglobins. Acta Crystallogr. D., 54(3):355–366, 1998.

108

http://copernicus.eu/main/atmosphere-monitoring; Accessed: 2017-01-30
http://copernicus.eu/main/atmosphere-monitoring; Accessed: 2017-01-30


[20] N. Buckley, G. Isbister, B. Stokes, and D. Juurlink. Hyperbaric Oxygen for

Carbon Monoxide Poisoning. Toxicol. Rev., 24(2):75–92, 2005.

[21] World Health Organization. Chapter 7.1 Nitrogen dioxide General description.

In Air quality guidelines, chapter 7.1. Copenhagen, 2nd edition, 2000.

[22] P. Crutzen, M. Molina, and F. Rowland. The Nobel Prize in Chem-

istry 1995. URL http://www.nobelprize.org/nobel_prizes/chemistry/

laureates/1995/;Accessed:2017-03-20 .

[23] US EPA. Integrated ccience assessment for oxides of nitrogen – health criteria

(2016 final report). Technical report, U. S. EPA, Washington, DC, 2016.

[24] C. Weschler, J. Wells, D. Poppendieck, H. Hubbard, and T. Pearce. Workgroup

report: Indoor chemistry and health. Environ. Health Persp., 114(3):442–6,

2006.

[25] T. Devasagayam, J. Tilak, K. Boloor, Ke. Sane, S. Ghaskadbi, and R. Lele.

Free Radicals and Antioxidants in Human Health : Current Status and Future

Prospects. J. Assoc. Physicians India, 52(4):794–804, 2004.

[26] B. Halliwell and S. Chirico. Lipid peroxidation: its mechanism, measurement,

and significance. Am. J. Clin. Nutr., 57(5):715S–724S; discussion 724S–725S,

1993.

[27] H. Cai and D. Harrison. Endothelial Dysfunction in Cardiovascular Diseases:

The Role of Oxidant Stress. Circ. Res., 87(10):840–844, 2000.

[28] T. Berhanu, J. Savarino, S. Bhattacharya, and W. Vicars. 17O excess transfer

during the NO2 + O3 � NO3 + O2 reaction. J. Chem. Phys., 136(4):044311,

jan 2012.

[29] B. Ayres, H. Allen, D. Draper, S. Brown, R. Wild, J. Jimenez, D. Day,

P. Campuzano-Jost, W. Hu, J. de Gouw, A. Koss, R. Cohen, K. Duffey,

P. Romer, K. Baumann, E. Edgerton, S. Takahama, J. Thornton, B. Lee,

F. Lopez-Hilfiker, C. Mohr, P Wennberg, T. Nguyen, A. Teng, A. Goldstein,

K. Olson, and J. Fry. Organic nitrate aerosol formation via NO3 + biogenic

109

http://www.nobelprize.org/nobel_prizes/chemistry/laureates/1995/; Accessed: 2017-03-20
http://www.nobelprize.org/nobel_prizes/chemistry/laureates/1995/; Accessed: 2017-03-20


volatile organic compounds in the southeastern United States. Atmos. Chem.

Phys., 15:13377–13392, 2015.

[30] World Health Organization. Air quality guidelines for particulate matter,

ozone, nitrogen dioxide and sulfur dioxide. Technical report, World Health

Organization, 2005.

[31] M. Kirschner. Ozone. In Ullmann’s Encyclopedia of Industrial Chemistry.

Wiley-VCH Verlag GmbH and Co. KGaA, Weinheim, Germany, 2000.

[32] R. Ackermann, S. Aggarwal, J. Dixon, A. Fitzgerald, D. Hanrahan, Gordon A.

Hughes, Arundhati Kunte, Magda Lovei, Kseniya Lvovsky, and Anil H. So-

mani. Ground-Level Ozone. In Pollution prevention and abatement handbook,

chapter 10. World Bank Group, Washington, D.C., 1st edition, 1998.

[33] C. Reeves, S. Penkett, S. Bauguitte, K. Law, M. Evans, B. Bandy, P. Monks,

G. Edwards, G. Phillips, H. Barjat, J. Kent, K. Dewey, S. Schmitgen, and

D. Kley. Potential for photochemical ozone formation in the troposphere over

the North Atlantic as derived from aircraft observations during ACSOE. J.

Geophys. Res.-Atmos., 107(D23):ACH 14–1–ACH 14–14, 2002.

[34] B. Weinhold. Ozone nation: EPA Standard Panned by the People. Environ.

Health Persp., 116(7):302–305, 2008.

[35] M. Jenkin and K. Clemitshaw. Ozone and other secondary photochemical pol-

lutants: chemical processes governing their formation in the planetary bound-

ary layer. Atmos. Environ., 34(16):2499–2527, 2000.

[36] S. Chapman. A Theory of Upper-Atmospheric Ozone. Edward Stanford, 1930.

[37] B. Finlayson-Pitts and J. Pitts Jr. Chemistry of the upper and lower atmo-

sphere: theory, experiments, and applications. Academic press, 1999.

[38] L. Smith. Oxygen, oxysterols, ouabain, and ozone: a cautionary tale. Free

radical Bio. Med., 37(3):318–324, 2004.

[39] N. Schlager, D. Newton, and Jayne. Weisblatt. Encyclopedia of Chemical

Compounds. Thomson Gale, Farmington Hills, 1st edition, 2006.

110



[40] Z. Meng, G. Qin, and B. Zhang. DNA damage in mice treated with sulfur

dioxide by inhalation. Environ. Mol. Mutagen., 46(3):150–155, 2005.

[41] Z. Meng, G. Qin, B. Zhang, H. Geng, Q. Bai, W. Bai, and C. Liu. Oxidative

damage of sulfur dioxide inhalation on lungs and hearts of mice. Environ.

Res., 93(3):285–292, 2003.

[42] Z. Meng and L. Zhang. Chromosomal aberrations and sister-chromatid ex-

changes in lymphocytes of workers exposed to sulphur dioxide. Mutat. Res.-

Genet. Tox., 241(1):15–20, 1990.

[43] J. Yadav and V. Kaushik. Effect of sulphur dioxide exposure on human chro-

mosomes. Mutat. Res.-Envir. Tox., 359(1):25–29, 1996.

[44] R. Li, Z. Meng, and J. Xie. Effects of sulfur dioxide derivatives on four asthma-

related gene expressions in human bronchial epithelial cells. Tox. Lett., 175

(1-3):71–81, 2007.

[45] US EPA. Particulate Matter (PM) Basics. URL https://www.epa.gov/

pm-pollution/particulate-matter-pm-basics;Accessed:2017-06-05 .

[46] H. Macintyre, C. Heaviside, L. Neal, P. Agnew, J. Thornes, and S. Vardoulakis.

Mortality and emergency hospitalizations associated with atmospheric partic-

ulate matter episodes across the UK in spring 2014. Environ. Int., 97:108–116,

2016.

[47] R. Xie, C. Sabel, X. Lu, W. Zhu, H. Kan, C. Nielsen, and H. Wang. Long-term

trend and spatial pattern of PM2.5 induced premature mortality in China.

Environ. Int., 97:180–186, 2016.

[48] H. Taheri Shahraiyni and S. Sodoudi. Statistical Modeling Approaches for

PM10 Prediction in Urban Areas; A Review of 21st-Century Studies. Atmo-

sphere, 7(2):15, 2016.

[49] M. Matti Maricq. Chemical characterization of particulate emissions from

diesel engines: A review. J. Aerosol Sci., 38(11):1079–1118, 2007.

111

https://www.epa.gov/pm-pollution/particulate-matter-pm-basics; Accessed: 2017-06-05
https://www.epa.gov/pm-pollution/particulate-matter-pm-basics; Accessed: 2017-06-05


[50] F. Amato, M. Pandolfi, T. Moreno, M. Furger, J. Pey, A. Alastuey,

N. Bukowiecki, A. Prevot, U. Baltensperger, and X. Querol. Sources and

variability of inhalable road dust particles in three European cities. Atmos.

Environ., 45(37):6777–6787, 2011.

[51] P. Lenschow. Some ideas about the sources of PM10. Atmos. Environ., 35:

23–33, 2001.

[52] J. Keary, S. Jennings, T. O’Connor, B. McManus, and M. Lee. PM10 Con-

centration Measurements in Dublin City. In Urban Air Quality: Monitoring

and Modelling, pages 3–18. Springer Netherlands, Dordrecht, 1998.

[53] P. de Mattos Neto, G. Cavalcanti, F. Madeiro, and T. Ferreira. An Approach

to Improve the Performance of PM Forecasters. PLoS ONE, 10(9):138–507,

2015.

[54] L. Fajersztajn, M. Veras, L. Barrozo, and P. Saldiva. Air pollution: a poten-

tially modifiable risk factor for lung cancer. Nat. Rev. Cancer, 13(9):674–678,

2013.

[55] J. Feng and W. Yang. Effects of Particulate Air Pollution on Cardiovascular

Health: A Population Health Risk Assessment. PLoS ONE, 7(3):e33385, 2012.

[56] M. Kleinman. Central nervous system effects of ambient particulate matter:

the role of oxidative stress and inflammation final report. Technical report,

2014.

[57] M. Hilbert and P. Lopez. The World’s Technological Capacity to Store, Com-

municate, and Compute Information. Science, 332(6025):60–65, 2011.

[58] D. Boyd and K. Crawford. Six Provocations for Big Data. A decade in internet

time: Symposium on the dynamics of the internet and society, 21, 2011.

[59] M. Hilbert. Big Data for Development: A Review of Promises and Challenges.

Dev. Policy Rev., 34(1):135–174, 2016.

[60] J. Manyika, B. Brown, J. Bughin, A. Byers, M. Chui, R. Dobbs, and C. Rox-

burgh. Big Data: The next frontier for innovation, competition, and produc-

tivity. Technical report, 2011.

112



[61] M. Spiegel and L. Stephens. Analysis of Time Series. In Theory and Problems

of Statistics, chapter 18. McGraw-Hill, New York, 3rd edition, 1998.

[62] D. Dickey and W. Fuller. Distribution of the Estimators for Autoregressive

Time Series with a Unit Root. J. Am. Stat. Assoc., 74(366):427, 1979.

[63] W. Enders. Applied Econometric Time Series. Wiley, New York, third edition,

2010.

[64] M. Spiegel and L. Stephens. Curve Fitting and the Method of least Squares.

In Theory and Problems of Statistics, chapter 13. McGaw-Hill, New York, 3rd

edition, 1998.

[65] J. Hamilton. Time series analysis. Princeton University Press, Princeton,

New Jersey, 1st edition, 1994.

[66] M. Hatanaka. Time-series-based econometrics : unit roots and co-integrations.

Oxford University Press, Oxford, 1st edition, 1996.

[67] Ph. Guest. Numerical methods of curve fitting. Cambridge University Press,

Cambridge, 1st paperb edition, 2013.

[68] A. Oppenheim and R. Schafer. Digital signal processing. Prentice-Hall, 1st

edition, 1975.

[69] A. Samuel. Some Studies in Machine Learning Using the Game of Checkers.

IBM Journal of Research and Development, 3(3):210–229, 1959.

[70] P. Harrington. Machine Learning in Action. Manning Publications, New York,

1st edition, 2010.

[71] R. Kohavi and F. Provost. Glossary of Terms Journal of Machine Learn-

ing. URL http://robotics.stanford.edu/$\sim$ronnyk/glossary.html;

Accessed:2017-04-12 .

[72] M. Mohri, Af. Rostamizadeh, and A. Talwalkar. Foundations of machine

learning. MIT Press, Cambridge, 1st edition, 2012.

113

http://robotics.stanford.edu/$\sim $ronnyk/glossary.html; Accessed: 2017-04-12
http://robotics.stanford.edu/$\sim $ronnyk/glossary.html; Accessed: 2017-04-12


[73] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel,

M. Blondel, P. Prettenhofer, Ro. Weiss, V. Dubourg, J. Vanderplas, A. Pas-

sos, D. Cournapeau, M. Brucher, M. Perrot, and É. Duchesnay. Scikit-learn:
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Abstract

Air pollution is a serious environmental issue impacting negatively human produc-

tivity and heath and even causing premature death. "Citizens often breathe air that

does not meet standards, with major sequels".1 Being able to forecast accurately the

concentrations of pollutants such as particulate matter is of great importance to en-

able citizens to act preventive. In this work a machine learning algorithm based on

multivariate linear regression is developed and proposed as a method for forecasting

PM10 and PM2.5 concentrations. The presented algorithm is shown to able to forecast

particulate matter concentrations with a decent degree of accuracy and shows much

promise while still leaving room for further improvements.

Keywords: Environmental chemistry, multivariate linear regression, time series fore-

casting, PM10 forecasting, PM2.5 forecasting, environmental data analysis
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Introduction

Air pollution is one of the biggest environmental concerns in present days a�ecting people

all around the world, in developed and developing countries alike. The World Health Or-

ganization (WHO) estimates that in 2012 up to 3.7 million premature deaths all around

the world could be blamed on air pollution.2�4 Ambient air pollutants are diverse, but from

all the contaminants, a few stand out as the most dangerous to human health such as par-

ticulate matter (PM), ozone, nitrogen dioxide, sulfur dioxide and carbon monoxide. From

these, particulate matter, constituted of �ne particles from organic and inorganic sources

with aerodynamic diameters smaller than 10µm (PM10) and than 2.5µm (PM2.5), are con-

sidered the most aggressive and threatening to human health, a�ecting more people than

any other airborne pollutant.2,4�7

The formation of PM can be divided in two main sources8: primary sources attributed

in urban areas to road tra�c, such as, carbonaceous compounds from exhaust emissions9,

re-suspension of road dust10, and tyre abrasion11 and combustion processes; and secondary

sources ascribed to the condensation of vapours or chemical reactions such as atmospheric

oxidation of SO2 to H2SO4, and NO2 to HNO3.12

Due to their small size, when they are breathed in, �ne particles are able to penetrate

deep into the lungs and even be absorbed into the blood stream causing damage to the

organism. The level of injury they can cause varies widely depending on their concentration

and type.2,13,14 Given the nature of their absorption, the damage they cause is mostly focused

on the respiratory system, although the cardiovascular and neurological systems can also be

a�ected by proxy if the particles are extremely small and hazardous.15�17 Some of the less

severe short-term e�ects include irritation of the mucous areas like eyes, nose and throat,

headaches and nausea which disappear with time. However chronic exposure to high levels

is also linked to more serious conditions and can cause upper respiratory infections like

bronchitis and emphysema.2,13 Regarding long-term e�ects PM exposure is also linked to

chronic respiratory diseases such as asthma and lung cancer15, cardiovascular ailments16,18
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and brain damage.17

Considering the danger posed by particulate matter, it is necessary to survey and monitor

its ambient levels in the atmosphere.4,19 However, since particulate matter is an extremely

heterogeneous mixture it becomes very di�cult to measure and quantify. This task was made

easier by standardizing �ne particles with diameters equal or smaller to 10µm as the o�cial

measure of ambient particle pollution.20 Also, the increase in emissions and recognition of

the heightened dangers of �ne particles with an average diameter equal or smaller than

2.5µm made it necessary to also pay attention to these particles.4,21,22 Having these facts

into consideration, the ability to accurately predict and forecast PM10 and PM2.5 values is

of great interest for public health because it would give citizens a good measure of ambient

levels of pollutants and would enable the general population to take preventive actions.

The traditional approach to forecasting environmental variables implies the construction

of deterministic models which require extensive knowledge of parameters such as air cur-

rent �ows, particle di�usion and chemical reactions.23 The drawbacks of these approaches

lie in the data acquisition and model construction processes. Moreover, usable data for

all necessary parameters is hard to collect and even if the necessary data is available the

algorithm construction and re�nement process is lengthy, very demanding and often pro-

duces inaccurate models given to the chaotic nature of the atmosphere.24 In recent years,

the application of Machine Learning Algorithms (MLA) has surfaced and gained reputation

as a viable alternative for modeling and forecasting time series (TS) data such as PM10 and

PM2.5 concentrations.13,25�28 The advantage of these type of algorithms lies in the fact that

they are capable of capturing and �nding the underlying patterns hidden in data and use

them for forecasting without the need to make any prior assumptions. This means that not

only is the model building process less demanding than that of the traditional approach but

also that the model application to new data is very straightforward and extremely fast by

comparison.27,28

This work aims at �nding out if a simple forecasting methodology, like one based of

3

125



linear regression, has enough viability to accurately predict near-future PM10 and PM2.5

concentrations in the air. The need for a simple method derives from the fact that it is

intended for incorporation in a larger system which includes information dissemination.29

Experimental section

This study relies on o�cial satellite data, taken over the city of Coimbra, Portugal. Data was

provided by the European Space Agency (ESA) under the Copernicus - The European Earth

Observation Programme30, hence it is considered as empirically correct. The central point of

all the measurements is "Instituto Pedro Nunes" (IPN) located at 40.192169N -8.414162W.

Since the data was taken via satellite no consideration is given to the geography and climate

of the city itself. Also, measurements were done on an hourly basis from 01-10-2016 up until

30-09-2017.

Before training the MLA on the original data set, a few pretreatment steps were required

as seen in �gure 1. Firstly, the data set was incomplete and had a few data gaps that made

it impossible to properly use any time-series forecasting model based on machine learning

principles. However, since the gaps were few and short in size a placewise linear interpolation

model was hypothesised to be enough to �ll them. This simple model connects the two known

adjacent points, (x1, y1) and (x2, y2), with a straight line and allows to determine a set of i

values in-between them:

yi = y1 + (xi − x1)
y2 − y1
x2 − x1

(1)

Despite the gaps being few and small, time series properties cannot be changed drastically

by data inference without it compromising future results. To con�rm that the the data set

properties were maintained after the interpolation, the Dickey-Fuller test31 for stationarity

was applied on the original data set and on the continuous data set:
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Figure 1: Data processing �owchart and algorithm application.
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yt − yt−1 = (ρ− 1)yt−1 + ut (2)

where yt is the variable of interest, t is the time index, ut is the error term and ρ is the

test coe�cient. If ρ = 1 the series would be completely non-stationary. The greater the

di�erence between zero and ρ − 1 is, the greater the certainty with which the series can be

called stationary. This also allowed to check for the TS stationarity since any regression MLA

can only be applied on stationary data.32 If the time-series is not stationarity, a detrending

process has to be done before being able to train the MLA. Only after these steps can the

training process of the MLA take place.

The choice of a multiple-input multiple-output linear regression model is mostly based

on the fact that it does not have the drawbacks of multiple linear regression models such

as the accumulation of errors along the forecasting horizon in recursive models and the

conditional independence assumption in direct models26. These models are based of vector-

valued functions such as the one shown in equation 3.

Y(i)[yt+1, ..., yt+H ] = X(i)(yt, ..., yt−d+1) ·C(d+1)×i +wH×i (3)

In equation 3, Y and X are the output and input vectors, respectively, for a forecast

of H steps ahead using d input values where i represents the size of the training set, or in

other words the total number of equations for which the coe�cients matrix, C is going to

be minimized via a least squares approach. Finally, w is the noise matrix.26,33,34

The least square minimization process is done by minimizing the sum of the squares

elements on the diagonal of the residual sum of squares and cross products matrices35:

C = (X ′X)−1(X ′Y ) (4)

which gives the least possible trace for the coe�cients matrix as well as minimizes the

generalized variance of the system. The �nal coe�cients can be inputed in a simpli�ed
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vector equation similar to equation 3 alongside the input vector in order to produce the

forecasts:

Y[yt+1, ..., yt+H ] = X(yt, ..., yt−d+1) ·C (5)

In this work the methods and models were implemented in the Python programming

language36�38 and the aim was to forecast a total of 24 steps ahead, H = 24, using the

same number of input values, d = 24. The full set of data consisted on a total of 8784 data

points from which 80% were used for training and cross validation and the remaining 20%

for testing as suggested by Pareto's principle.39 From the 6980 data points used for training

a ten-fold winner takes all cross validation process was used. This was done by splitting

that portion of the data into ten equal parts, use nine of them to train the model and

the remaining one to validate it. This process was repeated ten times always changing the

validation segment. Afterwards, the iteration that yielded the best results was replicated and

tested on the remaining 1804 data points that comprised the test set. The testing process

was done three times on the same set but with di�erent start and ending points to account

for variations of the model and to add statistical meaning to the results.26

The performance of the model was evaluated using the mean average percentage error

(MAPE) which is the standardized approach to demonstrate the prediction accuracy of a

forecasting method in statistics and machine learning theory.28,40 It is given by:

MAPE =
100

n

n∑

t=1

∣∣∣∣
At − Ft

At

∣∣∣∣ (6)

where At is the actual value and Ft is the corresponding forecasted value for a data set of size

n. The multiplication by 100 is necessary to convert and present the value as a percentage.

Another aspect explored was that of seasonality extraction or seasonal decomposition

and its e�ects on model performance.26 This was done by smoothing the original data set

with the Savitzky-Golay �ler generating an extra data set which was submitted to the same
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testing process.

Results and discussion

Throughout this section all time series set, both original and deseasonalized, will be empiri-

cally considered as stationary based on the prior application of the Dickey-Fuller test. The

focus is on analyzing and interpreting the results of the MLA application on all time series.

Outcomes from the application on the undecomposed time series are the primary focus and

serve as a term of comparison for further results involving decomposed time series.

Original data

The results of the MLA application on the original data without any kind of seasonality

extraction are shown in the plots of �gure 2. Starting from sub-�gures 2a and 2b, which

pertain to the results of PM10 forecasting, the dispersion spread of the intersects between real

and forecasted values suggests a good model since most data points intersect very close, and

even on top, the quadrant bisector line. This assessment seems to be further supported by

the plot in sub-�gure 2b which shows the forecasted values (red line) alongside the real values

(blue line) on the same time scale. The two lines are very close together and individual errors,

represented bellow by the green line, are mostly very small only except in a few situations

which correspond to in�ection points of the original signal. In addition, the mean MAPE

value for all three testing iterations is of 27.53% and the dashed line in the lower error plot.

For PM2.5 forecasting a similar case is presented in sub-�gures 2c and 2d, which was

expected since bot PM2.5 and PM10 are highly correlated variables which share the same

sources. The spread of the intersects is slightly worst than that of PM10 forecasting but

it is still very acceptable and indicates a similar degree of consistency. the error plot in

sub-�gure 2c also shows that the forecasted values are in good proximity with the real values

along the same time axis and individual error measurements are mostly all below the MAPE
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Figure 2: Dispersion and error plots for the third test iteration of PM10 and PM2.5 fore-
casting without seasonality decomposition. a) PM10 3rd test iteration dispersion plot; b)
PM10 3rd test iteration error plot; c) PM2.5 3rd test iteration dispersion dispersion plot; d)
PM2.5 3rd test iteration error plot

value with a few exceptions, which, like in PM10 forecasting, correspond to the in�ection

points of the time series. The mean MAPE value is of 30.63% which is not as low as the

PM10 forecasting MAPE, of 27.53%, but it is still a good vale.

Seasonal decomposed data

In �gure 3 are presented the plots with the results from the application of the MLA on the

�ltered data (using a third degree polynomial Savitzky-Golay �lter). Sub-�gures 3a and 3b

show the PM10 forecasting results and on the left-sided plot it is noticeable that there exists

great prediction coherence given that the correlation between real and forecasted values is

very high given the overlap of the data points with the quadrant bisection. In the other
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plot, the upper part shows that the real (blue line) and forecasted (red line) values have the

same behavior and are very close with each other while in the lower plot individual errors are

shown to remain relatively constant with almost none being higher than the MAPE value.

The mean MAPE value is indicated by the dashed line in the lower right-sized plot and is

of 26.451%.

The case for PM2.5 forecasting is similar considering the use of the Savitzky-Golay �lter.

The analysis of sub-�gure 3c yields the same conclusions with most data points overlapping

the quadrant bisector line suggesting that great correlation and coherence exists between

real and forecasted values. In addition, the upper plot presented in sub-�gure 3d shows that

behavior of the forecasted values and real values is almost identical and the lower plot in

the same sub-�gure shows relatively constant individual errors with only a few exceptions

that seem to correspond to infection points in the original signal. The mean MAPE is of

29.420%. Analogous to the original signal based MLA, this value is not as low as its PM10

counterpart, but is still very decent.

Comparative analysis

In table 1 a summarized version of the results obtained by the application of the MLA both

data sets, �ltered and un�ltered, can be found. In this table also presented the standard

deviation generated while averaging every iteration MAPE value. These values are of great

importance because they can be used as a tie-breaker criteria for choosing the best model

outcome.

Beginning with PM10 forecasting, the application of the MLA on the original and the

�ltered data sets yielded similar results with the later out-performing the original by a slight

margin. Model performance obtained by using the original signal is evaluated by the mean

MAPE value of 27.539% while the same value using the �ltered signal was of 26.451%. This

improvement occurred not only in terms of accuracy but also regarding forecast coherence

given that the �ltered signal standard deviation was smaller than that of the original signal
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Figure 3: Dispersion and error plots for the third test iteration of PM10 and PM2.5 forecast-
ing with the application of the savitzky-Golay �lter. a) PM10 3rd test iteration dispersion
plot; b) PM10 3rd test iteration error plot; c) PM2.5 3rd test iteration dispersion dispersion
plot; d) PM2.5 3rd test iteration error plot
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Table 1: Summary of forecasting model results. Note: all values except for standard devia-
tions (Stdev) are expressed in percentages.

MAPE Original Savitzky-Golay

PM10

Test 1 27.667 26.563
Test 2 27.670 26.591
Test 3 27.281 26.200
Mean 27.539 26.451

Stdev 0.224 0.218

PM2.5

Test 1 30.880 29.650
Test 2 30.649 29.443
Test 3 30.369 29.164
Mean 30.632 29.420

Stdev 0.256 0.244

with the values of 0.218 and 0.224 respectively.

PM2.5 forecasting results are very similar, in interpretation, to those of PM10 forecasting.

The application of the MLA on the original signal yielded a mean MAPE value of 30.632%

with a standard deviation of 0.256 while the same application on the �ltered signal yielded

values of 29.420% and 0.244 for the mean MAPE and standard deviation respectively. This

implies using the Savitzky-Golay �lter seemed to improve both accuracy and coherence by a

small margin also for PM2.5 forecasting, however the original signal also generated a usable

model.

Conclusion

Multi-step ahead time series forecasting is a very hard task and severely limited by the

uncertainty of predictions for large forecasting horizons. Linear regression machine learning

algorithms are among the most widely used to address these problems given that they are

very versatile and easy to implement. Substantiated by the knowledge that approaches

based on multivariate regression have been shown to be regularly better than those based of

multiple regression an attempt at forecasting PM10 and PM2.5 variations in the atmosphere
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using a multi-output MLA was the end goal for this project.

The developed MLA featured in this work was able to predict PM10 and PM2.5 variations

coherently and replication of results was easily achieved to account for proper statistical

meaning. Although performance metrics are bellow initial expectations the �nal model can

be safely used in a real life situation even though it could bene�t from further improvements.

A comparative analysis regarding the seasonal decomposition of the data was also done

and the main conclusion is that applying a Savitzky-Golay �lter prior to traininga nd test-

ing the MLA managed to improve its performance slightly both in terms of accuracy and

coherence for PM10 and PM2.5 forecasting.

Overall, the development of a usable MLA was achieved but further improvements can

be made by training and testing using bigger and more variable data sets to account for vari-

ations and �uctuations which were not present in the original data. Also, the incorporation

of a non-linear function could almost certainly improve forecasting accuracy by compromis-

ing the low usage of computational time and resources. Lastly, �nding a way to introduce

variable correlation, via blind source separation techniques, could also improve the present

model.
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