Influência de “nanopartículas” resultantes da anodização de alumínio nas propriedades mecânicas de polipropileno isotático

Dissertação apresentada para a obtenção do grau de Mestre em Engenharia do Ambiente na Especialidade de Tecnologia e Gestão do Ambiente

Influence of “nanoparticles” resulting from aluminum anodization on the mechanical properties of isotactic polypropylene

Autor
Patrícia Cardoso Lopes
Orientadora
Professora Doutora Maria Teresa Freire Vieira

Júri
Presidente Professor Doutor Adélio Manuel Rodrigues Gaspar
Professor Auxiliar da Universidade de Coimbra
Vogais Doutora Ana Rita Torres dos Santos Farinha
Orientador Professora Doutora Maria Teresa Freire Vieira
Professora Catedrática da Universidade de Coimbra

Coimbra, setembro, 2017
Aos meus pais.
Agradecimentos

Nesta seção deixo um especial agradecimento às pessoas que deram um pouco do seu contributo, direta ou indiretamente, para a realização da minha dissertação.

À Professora Doutora Maria Teresa Vieira, Professora do Departamento de Engenharia Mecânica (DEM) da Faculdade de Ciências e Tecnologias da Universidade de Coimbra (FCTUC) agradeço os seus ensinamentos e a sua disponibilidade para esclarecer as minhas dúvidas ao longo de todo este período.

À Engª Sofia Malheiro da empresa Lacoviana pela sua disponibilidade na informação que solicitou acerca de dados relativos à empresa.

Aos meus pais que são a minha fonte de inspiração, as melhores pessoas do mundo, por todo o apoio incondicional, os aconselhamentos e força de vontade transmitida principalmente nos momentos menos bons. Agradeço principalmente todos os seus ensinamentos e sobretudo, por acreditarem sempre em mim.

Ao Tiago, um agradecimento especial por todo o carinho e apoio incondicional, pela força e confiança transmitida, em todos os momentos. Agradeço a sua preocupação e disponibilidade prestada, e por ter sido o meu grande pilar na minha formação académica.

Não esquecendo a minha família, agradeço todo o carinho que me foi dado, e sobretudo toda a confiança que depositaram em mim.

À minha colega de casa pela companhia prestada ao longo destes anos, amizade e sobretudo pelos momentos que partilhamos.

Aos meus amigos, pela confiança transmitida, por todos os momentos de partilha, pela cumplicidade, agradeço a vossa amizade e que perdure assim por muito mais tempo.

Aos colegas de laboratório quer do Instituto Pedro Nunes (IPN), quer do departamento de Engenharia Mecânica, obrigado por todos os conhecimentos partilhados.

A todos vocês, MUITO OBRIGADO!
Resumo

Este estudo descreve a influência da adição de “nanopartículas” resultantes da indústria de anodização de alumínio, transformadas parcialmente em alumina gama (lama calcinada), nas propriedades mecânicas de polipropileno isotático (iPP).

A distribuição granulométrica ao resíduo identificou a presença de aglomerados na ordem dos micrômetros. Visando a melhoria das propriedades mecânicas do polímero, o resíduo foi sujeito a processos de desagregação que tentaram conduzir a uma maior homogeneidade entre partículas.

Com o intuito de originar a formação de alumina gama, o resíduo foi sujeito a um processo de calcinação a 600 °C, temperatura aproximada de formação de alumina gama a partir de gibbsite/boemite. Foram realizadas misturas injetadas de iPP com diferentes percentagens mássicas de lama calcinada, variando entre um valor mínimo de 5 % (m/m) e um valor máximo de 10 % (m/m). Os ensaios realizados permitiram avaliar as propriedades mecânicas (à tração, à flexão e à dureza) do compósito. Os resultados permitiram concluir que existe um aumento significativo do módulo de elasticidade à tração para teores compreendidos entre 5% e 10 % (m/m), alcançando um aumento de até 60% quando comparado com o iPP. A dureza foi outra propriedade que apresentou melhorias, atingindo um incremento de cerca de 10%. No entanto, para outras propriedades mecânicas, tais como, com teores de lama calcinada superior 7,5 % (m/m) existiu uma deterioração nos valores alcançados.

Palavras-chave: Lama calcinada; Nanocompósitos Poliméricos; Polipropileno; Propriedades Mecânicas
Abstract

This study describes the influence of the addition of "nanoparticles" resulting from the aluminum anodizing industry, partially transformed into gamma alumina (calcined sludge), on the mechanical properties of isotopic polypropylene (iPP).

The granulometric distribution of the residue identified the presence of agglomerates in the order of micrometers. In order to improve the mechanical properties of the polymer, the residue was subjected to disintegration processes which attempted to lead to greater homogeneity between particles.

In order to give rise to the formation of gamma alumina, the residue was subjected to a calcination process at 600°C, representing the approximate mean temperature of formation of gamma alumina from gibbsite/bohemite. Injected mixtures of iPP with different mass percentages of calcined sludge were performed, varying between a minimum value of 5 %(m/m) and a maximum value of 10 %(m/m). The tests allowed to evaluate the mechanical properties (traction, bending and hardness) of the composite. The results allowed to conclude that there is a significant increase in tensile modulus of elasticity at levels between 5% and 10 %(m/m), reaching up to a 60% increase when compared to iPP. Hardness was another property that showed improvements, reaching an increase of about 10%. However, for other mechanical properties with higher calcined mud contents 7.5 %(m/m) there was a deterioration in the values reached.

Keywords: Calcined sludge; Polypropylene; Polymer Nanocomposites; Mechanical properties
Índice

Índice de Figuras .. vi
Índice de Tabelas .. viii

Simbologia e Siglas ..
 Simbologia ..
 Siglas ..

Introdução ... 1
 Importância e Motivação ... 1
 Objetivos .. 2
 Estrutura da dissertação .. 2

 1. Revisão Bibliográfica ... 3

 1.1. Resíduos Industriais ... 3

 1.2. Indústria de Tratamento de Superfícies de Alumínio ... 6

 1.3. Lamas de Anodização ... 6

 1.4. Valorização das Lamas ... 7

 1.5. Hidróxido de Alumínio - Boehmite .. 8

 1.5.1. Aglomeração e Desaglomeração das Partículas .. 11

 1.6. Polipropileno e Propriedades ... 11

 1.7. Materiais nanocompositos ... 12

 2. Procedimentos Experimentais ... 18

 2.1. Preparação da matéria-prima .. 18

 2.2. Preparação do pó .. 19

 2.3. Calcinação .. 20

 2.4. Caracterização do resíduo .. 20

 2.4.1. Análise granulométrica ... 21

 2.4.2. Análise da forma ... 21

 2.4.3. Análise Física ... 22

 2.4.4. Análise térmica .. 22

 2.5. Caracterização do Polipropileno ... 23

 2.6. Preparação dos provetes .. 24

 2.6.1. Misturas ... 24

 2.6.2. Granulação ... 26

 2.6.3. Injeção .. 26

 2.7. Propriedades Mecânicas .. 27

 2.7.1. Propriedades à tração ... 28

 2.7.2. Propriedades à flexão ... 30
Índice

2.7.3. Dureza..32

3. Apresentação e Discussão de resultados ..33
 3.1. Caracterização dos pós (resíduo) ...33
 3.1.1. Tamanho de partícula do pó tal e qual ...33
 3.1.2. Distribuição granulométrica ..33
 3.1.3. Forma da partícula ..36
 3.1.4. Distribuição das partículas na matriz no iPP ..37
 3.1.5. Estrutura Cristalina ..39
 3.2. Densidade real ..40
 3.3. Análise térmica ..41
 3.4. Propriedades Mecânicas ..42
 3.4.1. Módulo de elasticidade à tração ..43
 3.4.2. Módulo de elasticidade à flexão ...43
 3.4.3. Limite de resistência à tração (LRT) ...44
 3.4.4. Tensão de rotura à tração ..45
 3.4.5. Alongamento à rotura ...45
 3.4.6. Dureza Shore D ...45

Conclusões ...47
ÍNDICE DE FIGURAS

Figura 0.1 – Produção de resíduos gerados desde 1900 e projeção até 2100 [1]........... 1

Figura 1.1 - Gestão de resíduos da indústria Lacoviana referente aos anos de 2011 a
2016 [7].. 6

Figura 1.2 - Estrutura de boemite [15].. 8

Figura 1.3 - Estrutura do cristal de boemite [17].. 9

Figura 1.4 - Análise térmica (TG) do pó de boemite [18]...9

Figura 1.5 - Difratograma de raios X da boemite (\(\lambda_{Ko}(Cu)\)) [18].................................10

Figura 1.6 - Micrografia SEM das partículas de boemite [18]..10

Figura 1.7 - Diferença química entre agregados e aglomerados [20].................................11

Figura 1.8 - Representação da estrutura molecular (conformação zigzagüe planar)
do PP isotático [24]..12

Figura 1.9 - Formação de (nano?)boemite [29]..13

Figura 1.10 - Estrutura química de modificadores de superfície [30].................................14

Figura 1.11 - Módulo de elasticidade à tração dos nanocompósitos de PP/boemite
(10% m/m) [30]...15

Figura 1.12 – Tensão máxima de compósitos em função do teor de Al\(_2\)O\(_3\) [adap. [31]]
..15

Figura 1.13 - Módulo de elasticidade de compósitos em função do teor de Al\(_2\)O\(_3\)
[adap. [31]]..16

Figura 1.14 - Alongamento à rotura de compósitos em função do teor de Al\(_2\)O\(_3\)
[adap. [31]]..16

Figura 2.1 - Lamas de anodização..18

Figura 2.2 - Sequência da preparação das lamas: a) Equipamento de lavagem
(moinho sem bolas); b) Lama resultante do processo de lavagem; c) Forno
de secagem..19

Figura 2.3 - Lamas de anodização: a) tal e qual; b) moídas; c) calcinadas....................... 20

Figura 2.4 - Equipamento de análise térmica (Termogravimetria)...23

Figura 2.5 - PP utilizado na produção de nanocompósitos (Moplen HP500N)..............24

Figura 2.6 - Equipamento usado para realizar as misturas de PP/lama calcinada...25
Índice de figuras e tabelas

Figura 2.7 - Solução de isopropanol com diferentes percentagens de pó de lama calcinada. a) 5,0%; b) 7,5%; c) 10,0% .. 25

Figura 2.8 - Granuladora (Hellweg Maschinenbau) .. 26

Figura 2.9 - Equipamento usado para injeção dos provetes (Mariteste - Injeção e Produção de Plásticos Técnicos Lda) .. 26

Figura 2.10 - Zonas moldantes de provetes: a) tração; b) flexão... 27

Figura 2.11 - Curvas tensão-deformação características das diferentes classes de polímeros [37] .. 28

Figura 2.12 - Equipamento de ensaios de tração (DEM)... 29

Figura 2.13 - Esquema do ensaio a três pontos [39] .. 30

Figura 2.14 - Equipamento de ensaios de flexão (DEM/FCTUC).. 31

Figura 2.15 - Durómetro utilizado por avaliar a dureza Shore ... 32

Figura 3.1 - Distribuição granulométrica das partículas de pó tal qual................................. 34

Figura 3.2 - Distribuição granulométrica das partículas de lama calcinada............................ 34

Figura 3.3 - Distribuição granulométrica das partículas da lama calcinada em solução em isopropanol ... 35

Figura 3.4 - Micrografia (SEM) das partículas da lama (30000 x): a) pó tal e qual; b) pó calcinado; c) pó calcinado após solução em isopropanol 36

Figura 3.5 - Micrografia SEM de 5 %(m/m) de lama calcinada e polímero (iPP) ... 37

Figura 3.6 - Micrografia SEM de 10 %(m/m) de lama calcinada e polímero (iPP) .. 37

Figura 3.7 – Composição química do compósito com 5 %(m/m) de reforço obtida por EDS (z1- esquerda) e (z2-direita) ... 38

Figura 3.8 - Composição química do compósito com 10 %(m/m) de reforço obtida por EDS (z1- esquerda) e (z2-direita)... 38

Figura 3.9 - Difractograma de raios X do resíduo da lama tal e qual (cobalto) 39

Figura 3.10 - Difractograma de raios X do resíduo da lama calcinada a 600°C, onde estão indicados a vermelho os planos (400) e (440) da alumina gama (JCPDS, 01-1308, 2000) ... 40

Figura 3.11- TG da lama tal e qual .. 41

Figura 3.12 – TG/DSC ao iPP ... 42

Figura 3.13 - Impacto dos diferentes teores de lama calcinada no módulo de elasticidade à tração................................. 43
Índice de figuras e tabelas

Figura 3.14 - Influência dos teores de lama calcinada no módulo de elasticidade à flexão

Figura 3.15 - Influência do teor de lama calcinada no LRT

Figura 3.16 - Dureza do compósito em função do teor de lama calcinada

Figura 0.1 - Sequências de transformação da gibbsite até alumina alfa [14]

ÍNDICE DE TABELAS

Tabela 1.1 - Resíduos gerados na empresa Lacoviana [7]

Tabela 2.1 - Propriedades do PP isotático (Moplen HP500N)

Tabela 2.2 - Condições de injeção - temperatura, pressão

Tabela 2.3 - Condições de ensaio de tração

Tabela 2.4 - Condições de ensaio de flexão

Tabela 2.5 - Condições de ensaio de dureza Shore D

Tabela 3.1 - Medidões de densidade antes e após secagem

Tabela 0.1 - Descrição das várias etapas que integram o processo de anodização do alumínio [10]
SIMBOLOGIA E SIGLAS

Simbologia

T – Temperatura (°C)
ρ – Densidade (kg/m³)
F – Força aplicada (N)
k – Constante elástica (N/m)
Δl – Deslocamento (m)
σ – Tensão (MPa)
σ' – Tensão de rotação (MPa)
E – Módulo de Young/ Elásticidade (MPa)
ε – Alongamento (%)
L – Distância entre amarras/ apoios (mm)
d – Espessura (mm)
b – Largura (mm)

Siglas

CEMUC – Centro de Engenharia Mecânica da Universidade de Coimbra
DEM - Departamento de Engenharia Mecânica
EPDM – Ethylene-propylene-diene monomer rubber
ETAR – Estação de Tratamento de Águas Residuais
ETARI – Estação de Tratamento de Águas Residuais Industriais
FCTUC – Faculdade de Ciências e Tecnologias da Universidade de Coimbra
ICDD - International Center of Diffraction Data
iPP – Polipropileno isotático
LER - Lista Europeia de Resíduos
LRT – Limite de Resistência à Tração
PME – Pequenas Médias Empresas
PP – Polipropileno
SEM – Microscopia eletrônica de varrimento (Scanning Electron Microscope)
SSP - Shared Socioeconomic Pathway
TGA – Termogravimetria

Patrícia Cardoso Lopes
TPU – Termoplástico poliuretano (*Thermoplastic polyurethane*)
RIB – Resíduos Industriais Banaís
rpm – rotações por minuto
RSU - Resíduos Sólidos Urbanos
INTRODUÇÃO

Importância e Motivação

O crescente aumento populacional tem induzido a intensificação do consumismo. Como consequência, a quantidade de resíduos diversificados produzidos cresce a níveis quase descontrolados, tornando-se numa enorme e emergente preocupação ambiental global. A figura 0.1 apresenta três projeções referentes à produção de resíduos até 2100. No caso da projeção SSP1 (Shared Socioeconomic Pathway) a população de 7 mil milhões é 90% urbanizada, os objetivos de desenvolvimento foram atingidos, o consumo de recursos fósseis diminuiu e a população está mais consciencializada das preocupações ambientais. O SSP2 representa a previsão baseada no atual estado mundial, com população estimada de 9,5 mil milhões e 80% de urbanização. Por último, no SSP3 70% de uma população mundial, cerca de 13,5 mil milhões vive em cidades, existindo ocorrência de pobreza extrema e níveis de saúde moderados, com rápidos crescimentos populacionais, em vários países [1].

![Gráfico de produção de resíduos](image)

Figura 0.1 – Produção de resíduos gerados desde 1900 e projeção até 2100 [1]

A pesar das diferenças entre as projeções é inegável que ambas confirmam um grande crescimento no número de resíduos a nível mundial. Fruto desta tendência a valorização de resíduos contribui para a economia circular e é hoje um assunto de grande relevância, criando uma janela de oportunidade na criação de novos materiais, com melhores propriedades/menos peso/maior durabilidade.
Objetivos

Com enfoque na lama de anodização nanométrica (hidróxido de alumínio), o objetivo desta dissertação foi investigar o papel desta “nova” matéria-prima tratada termicamente, na qualidade de reforço nanométrico de polipropileno isotático. Neste contexto, foram misturados, por recurso a processos convencionais, o reforço e o polímero em quantidades compreendidas entre 5 e 10 % (m/m).

Estrutura da dissertação

Esta dissertação, após a introdução, está organizada em três capítulos. No primeiro capítulo, é apresentada a revisão bibliográfica, dando relevância aos resíduos industriais produzidos na indústria de anodização, sua caracterização e principais estudos onde as lamas tratadas termicamente foram aplicadas como reforço de polímeros, em particular do polipropileno. O capítulo dois, apresenta os materiais e as metodologias utilizados ao longo do trabalho e descreve os procedimentos e técnicas experimentais. No capítulo três são apresentados e discutidos os principais resultados da dissertação. Por último, são enunciadas as conclusões fundamentais do estudo e propostas para investigações futuras.
1. REVISÃO BIBLIOGRÁFICA

Os resíduos industriais são uma grande preocupação não só a nível ambiental, como económico. Deste modo é importante criar medidas que os valorizem adequando-os para uma nova funcionalidade, particularmente usando-os como uma NOVA matéria-prima. Esta dissertação tem como foco a valorização de resíduos dos banhos de anodização de alumínio, provenientes da indústria de tratamento de superfícies. Neste sentido, é testado nesta dissertação a possibilidade de utilizar o resíduo como reforço/aditivo de um plástico (matriz), em que se pretende melhorar as suas propriedades mecânicas.

Assim, a revisão bibliográfica abordará as diversas etapas de processamento do resíduo propriamente dito e terminará nos estudos já realizados em polipropileno (matriz) reforçado por outros materiais de composição química análoga, mas não provenientes de resíduos.

1.1. Resíduos Industriais

Ao longo das últimas décadas, a intensificação das atividades económicas tem gerado o esgotamento dos recursos naturais e a capacidade natural para a absorção de resíduos [2].

Em Portugal, no período entre 2011-2015, foram produzidos aproximadamente 52 milhões de toneladas de resíduos sectoriais. No ano de 2015, a Indústria Transformadora foi considerada como a segunda mais importante na geração de resíduos sectoriais, totalizando 30,5 % do total de resíduos. Nos últimos 3 anos (2013-2015) foram encaminhados em média 83,4 % de resíduos para valorização [3].

O Decreto-Lei nº73/2011 [4] define como resíduo industrial “o resíduo gerado em processos produtivos industriais, bem como o que resulte das atividades de produção e distribuição de eletricidade, gás e água”.

Os resíduos industriais podem ter diversas origens, desde escórias, óleos, plásticos, refugo de material, entre outros. Podem também ser classificados quanto às suas características físico-químicas, podendo ser divididos em três categorias: resíduo perigoso, não perigoso e inerte. Os resíduos industriais perigosos estão associados
especialmente à indústria extrativa e transformadora, e à indústria química. Os resíduos industriais não perigosos (resíduos de papel, plástico, vidro, metais, ...) são produzidos por todos os setores, embora se destaque o da indústria de transformação. Por fim, os resíduos industriais inertes estão associados à indústria de construção e demolição [5].

O presente estudo foi inserido na temática dos tratamentos de superfície utilizados em praticamente todos os setores da Indústria Transformadora que utilizam metais, nos seus processos. Deste modo, estes tratamentos têm especial destaque no setor da metalurgia e metalomecânica através da atividade desenvolvida nas seguintes áreas: pintura, metalização, plastificação, anodização e lacagem de alumínio, entre outros.

O setor de tratamento de superfícies gera grandes quantidades de resíduos e efluentes líquidos resultante dos seus processos produtivos. Os resíduos industriais no setor referido, podem ser classificados em: resíduos sólidos, resíduos líquidos e resíduos pastosos ou semissólidos. Os resíduos industriais sólidos resultam maioritariamente de operações de tratamento mecânico e são considerados resíduos não perigosos, pois a maior parte são poeiras constituídas por partículas metálicas, cerâmicas e orgânicas. Os resíduos líquidos são provenientes dos tratamentos químicos e eletroquímicos, como banhos concentrados e banhos de escorrimiento. Logo, o facto de serem constituídos por ácidos ou bases fortes, torna o resíduo mais agressivo. Por fim, os resíduos pastosos resultam, maioritariamente, das lamas formadas nas operações de tratamento de superfície como a de anodização e têm como destino final a deposição em aterro controlado ou a inclusão em materiais de construção [6].

Nesta dissertação os resíduos sólidos são as lamas de anodização provenientes de uma indústria de tratamento de superfície. A empresa onde foram recolhidos os resíduos (Lacoviana) pertence ao setor de tratamento de alumínio e produz vários tipos de resíduos entre eles, as lamas de anodização estudadas nesta dissertação. Na tabela 1.1 estão indicados os resíduos/ano produzidos na empresa Lacoviana, entre 2011 e 2016.
Revisão Bibliográfica

Tabela 1.1 - Resíduos gerados na empresa Lacoviana [7]

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Resíduos gerados (ton)</td>
<td>922 942</td>
<td>1 128 746</td>
<td>1 037 772</td>
<td>1 237 699</td>
<td>956 545</td>
</tr>
</tbody>
</table>

Os resíduos industriais resultantes de processos produtivos requerem especial atenção por parte das empresas e da sociedade por levarem ao desequilíbrio dos ecossistemas e a problemas na saúde pública. Desta forma, neste tipo de indústria existem elevados custos associados ao tratamento de resíduos [8].

Na década de 90, foram introduzidas medidas em Portugal que visavam procurar soluções que contribuissem para a adoção de novas políticas permitindo reduzir e desviar os resíduos para soluções de prevenção, reutilização e outras formas de valorização. Outrora os resíduos eram encaminhados para aterros e lixeiras. Atualmente, os resíduos passaram a fazer parte do ciclo socioeconómico dos materiais.

No setor industrial foi desenvolvido um plano - Plano Nacional de Prevenção de Resíduos Industriais (PNPRI) - de forma a dinamizar as estratégias de prevenção de resíduos industriais junto das empresas, dos setores da Metalurgia e Metalomecânica, Tratamentos de Superfície e dos Curtumes. A inserção destes 3 setores foram tema de destaque, quer pelo nível da poluição gerada, quer pela existência de numerosas medidas e tecnologias de prevenção aplicáveis [2].

A figura 1.1 apresenta os vários cenários de fim de vida dos resíduos da indústria Lacoviana, entre 2011 e 2016, que aborda uma nova metodologia de valorização deste tipo de resíduo (lamas de anodização), transformando-o numa matéria-prima. Pela análise do gráfico é possível concluir que a maior parte dos resíduos são valorizados, porém não se dá um aumento gradual ao longo dos anos. O tratamento dos resíduos é realizado aos designados de “perigosos” e posteriormente efetuada a sua eliminação. Para aterro são enviados os RSU/ RIB (Resíduos Sólidos Urbanos/ Resíduos Industriais Banais) e os resíduos de tinta, designados de “não perigosos”. O aumento da produção leva a um aumento de resíduos, mas a empresa Lacoviana tem o cuidado de efetuar reduções na quantidade de resíduos perigosos de forma a cumprir os objetivos propostos na DIA (Declaração de Impacte Ambiental).
1.2. Indústria de Tratamento de Superfícies de Alumínio

O alumínio anodizado\(^1\) antes de ser comercializado necessita de ser submetido a um processo de tratamento de superfície que lhe confere proteção contra agentes externos como a humidade ou o calor. Assim, o processo de anodização do alumínio é um processo eletroquímico, fundamental, pois modifica fisicamente a sua superfície e posteriormente protege o metal, adicionando assim propriedades como a resistência à corrosão, resistência à abrasão e isolamento elétrico [9, 10]. As diferentes etapas deste processo são descritas detalhadamente no Anexo A.

1.3. Lamas de Anodização

No tratamento do alumínio são geradas grandes quantidades de águas residuais ácidos e alcalinas. Desta forma, o efluente é enviado para ETAR para tratamento de onde resulta uma elevada quantidade de lamas que contêm principalmente hidróxidos de alumínio, como a gibbsite/boemite. As lamas secas são recicladas, tornando o resíduo de gibbsite/boemite uma matéria-prima para outras aplicações. Porém, este

\(^{1}\) Formação de uma camada de óxido através da imersão num banho químico.
resíduo exibe uma forte estrutura aglomerada dificultando uma boa mistura com outras matérias-primas.

A produção elevada de lamas leva a pressões regulamentares dos aterros com vista ao melhoramento das condições ambientais que causam um aumento do custo de eliminação difíceis de suportar pelas pequenas e médias empresas (PME) no setor da anodização [11].

Na ETARI (Estação de Tratamento de Águas Residuals Industriais) é realizado o tratamento ao efluentes rico em hidróxido de alumínio, que consiste na correção do pH das águas e remoção eficiente dos sólidos em suspensão, de modo a satisfazer os critérios ambientais do efluente final [10]. As lamas contêm 70 a 80% de água, sendo a sua secagem realizada de forma natural devido ao seu caráter coloidal e tixotrópico 2 no local de produção promovendo uma redução de custos de transporte e deposição. O alto teor em água presente na lama e a sua consistência gelificante dificulta a obtenção de misturas homogêneas com outras matérias-primas [11]. Estas lamas podem ser caracterizadas de não-tóxicas (exceto quando se usa crómio no processo) e são classificadas pela Lista Europeia de Resíduos (LER) através do código 11 01 10 referido a lamas e bolos de filtração não contendo substâncias perigosas. Segundo a norma DIN 38414-S4 relativamente à caracterização eco-toxicológica, realizada por lixiviação aquosa considera-se o resíduo como inerte [10]. O elevado teor de alumina nas lamas calcinadas 3 , torna este resíduo um grande aliado em processos de reciclagem, nomeadamente, no processamento de materiais à base de alumina [12].

1.4. Valorização das Lamas

As lamas de anodização são caracterizadas por apresentarem um elevado teor de hidróxidos de alumínio, que poderão apresentar um potencial para serem recicladas, em particular após tratamento térmico, para a eliminação dos hidróxidos e formação de óxidos de alumínio diferenciados função da temperatura de tratamento [10].

Uma das tentativas de valorização das lamas de anodização foi a criação de um tijolo técnico com elevada resistência térmica pela sua adição à matéria-prima

2 Fenómeno pelo qual o colóide muda a sua viscosidade.
3 Sujeitas a um tratamento térmico.
convencional. Quando comparado com um tijolo convencional, o “novo” tijolo apresenta um aumento na resistência térmica de 26%. Esta melhoria resulta da nanoporosidade induzida pela presença de nanopartículas de aditivo, aumentando a porosidade do “novo tijolo”, sem alterar a sua resistência à compressão [13].

1.5. Hidróxido de Alumínio - Boemite

A boemite é um hidróxido de alumínio (AlOOH), que contém grupos hidroxilo e possui uma estrutura ortorrômica (a=0,36936 nm, b=1,2214 nm, c=0,28679 nm) (figura 1.2). A boemite através de tratamento térmico evolui, com a temperatura, para → alumina γ→ alumina Δ→ alumina θ→ alumina α – esta fase é estável a partir de cerca de 1200° C. No anexo B é possível visualizar a figura relativa à sequência de transformação da Al(OH)_3 até alumina α [14].

![Figura 1.2 - Estrutura de boemite](image)

A estrutura da boemite consiste em folhas duplas de iões de alumínio no seu centro, compostas por cadeias octaédricas (figura 1.3) [15, 16].
Figura 1.3 - Estrutura do cristal de boemite [17]

O estudo da perda de massa da boemite, por análise térmica, (figura 1.4) ocorre em duas etapas, uma até aproximadamente os 100 °C, corresponde à perda de água adsorvida e a outra que se inicia a cerca de 250 °C e termina aproximadamente a 400 °C, corresponde à desidroxilação da boemite e à formação de alumina gama [18].

Figura 1.4 - Análise térmica (TG) do pó de boemite [18]
Na figura 1.5 está representado o difratograma da boemite [18].

![Difrataograma da boemite](image1)

Figura 1.5 - Difrataograma de raios X da boemite ($\lambda_{K\alpha}(Cu)$ [18])

Ao analisar por microscopia eletrônica de varrimento (figura 1.6), os mesmos autores concluíram que os agregados de partículas de boemite formavam partículas perfeitamente esféricas. Antes da secagem, as partículas de boemite nanocristalina ligaram-se entre si por meio de uma fase rica em água. O tamanho médio registado foi de 670 nanómetros [18].

![Micrografia SEM das partículas de boemite](image2)

Figura 1.6 - Micrografia SEM das partículas de boemite [18]
1.5.1. Aglomeração e Desaglomeração das Partículas

Em geral, as nanopartículas são sintetizadas para obter propriedades e funcionalidades físico-químicas únicas essenciais para a aplicação em produtos comerciais. As características da superfície afetam a aglomeração e por isso foram analisadas metodologias para determinar o estado de aglomeração/agregação de nanopartículas [19, 20, 21]. Materiais de elevada superfície específica, como é o caso das nanopartículas, têm tendência a aglomerar/agregar [22]. As nanopartículas estão ligadas entre si em função da sua interação ser forte ou fraca: aglomeração e agregação [20]. Na figura 1.7 estão representados quatro estados de interação entre partículas.

![Figura 1.7 - Diferença química entre agregados e aglomerados [20]](image)

No que respeita à aglomeração existem duas alternativas para minimizar as ligações entre partículas, físicas e químicas. Em geral, o método físico resulta do uso de sistemas dispersivos como é o caso de ultrasons, enquanto o método químico resulta da adição de dispersantes. Geralmente, são utilizados os ultrasons na dispersão de nanopartículas, apesar de poderem provocar danos na sua superfície. Em alguns casos, o efeito da sonicação não é permanente, podendo levar a nova aglomeração das partículas quando a suspensão fica em repouso [20].

Uma vez caracterizado o resíduo, procurar-se-á no subcapítulo seguinte, descrever sucintamente o polímero selecionado como matriz.

1.6. Polipropileno e Propriedades

Nas últimas décadas os polímeros têm sido amplamente utilizados em várias indústrias, tendo as suas aplicações em engenharia crescido mundialmente. O polipropileno (PP) estudado nesta dissertação é um dos polímeros mais utilizados na indústria, por possuir uma boa combinação de baixo custo com boas propriedades de
resistência à abrasão, isolamento térmico e elétrico. Porém, o baixo módulo de elasticidade gera limitações nas suas aplicações [23].

O polipropileno isotático (iPP) é um plástico semicristalino que apresenta uma cadeia formada por monômeros de propileno, \((\text{CH}_2-\text{CHCH}_3)\)\text{n}, em que todos os radicais de metilo (CH3) se encontram do mesmo lado (Figura 1.8) [24].

![Figura 1.8- Representação da estrutura molecular (conformação ziguezague planar) do PP isotático [24]](image)

Sobretudo para aplicações estruturais há necessidade de reforçar o PP, em particular para aplicações onde é crucial não só o módulo de elasticidade, como também a tensão limite de elasticidade, tensão de rotura e ductilidade. Uma das soluções será produzir um compósito, em que o reforço possa ser um material cerâmico, se possível resultante um resíduo rico em óxido de alumínio.

1.7. Materiais nanocompósitos

Os materiais compósitos sempre estiveram presentes à nossa volta e nos dias de hoje continuam a desempenhar uma vasta gama de funções. Um compósito é um material resultante da combinação de dois ou mais materiais e deve apresentar vantagens em relação a um material por si só [25]. Quando se concebe um material compósito deve-se ter em consideração alguns fatores, como o tipo de reforço, a sua distribuição e fração na matriz, tendo em conta os esforços mecânicos e térmicos a que vai estar sujeito e o meio onde vai operar [26].

A matriz do compósito (PP) tem a função de acolher todo o material de reforço com a distribuição desejada e impedindo que o reforço seja degradado. Um dos desafios deste século é explorar/otimizar o efeito de novos reforços em particular nanométricos. Os nanocompósitos poliméricos são materiais formados pela combinação entre uma
matriz polimérica e reforços nanométricos [27, 28]. As propriedades mecânicas de um polímero reforçado com nanopartículas são determinadas por um lado pelas propriedades da matriz polimérica, por outro pelas propriedades do nanoreforço e pela natureza e força da ligação na interface polímero/reforço, que está diretamente relacionada com a sua superfície específica [27, 28]. No entanto, há que ter em consideração, como já referido, que há uma tendência para a agregação das nanopartículas, que pode ser diminuída por vários processos. A figura 1.9, demonstra que a adição de água ao hidróxido de alumínio (boemite) pode conduzir à sua desagregação, mas de notar que as partículas mais reduzidas são ainda submicrométricas e não nanométricas [29]. Neste caso, não foram utilizados agentes dispersantes adicionais, pois as tensões de corte foram suficientes para conseguir uma desaglomeração eficiente e a uma dispersão uniforme [29].

Nos últimos anos foram realizados alguns estudos sobre nanocompósitos poliméricos, utilizando a boemite. Strellet et al. (2008) [29] estudaram a influência do teor e tamanho de nanopartículas de boemite, mas ainda aglomeradas (20 μm), apesar do uso de água como sistema desagregador e mistura no iPP por extrusão duplo fuso, no comportamento à cristalização de PP isotático. Estes autores demonstraram ocorrer uma diminuição do tamanho das esferulites do iPP com o aumento do teor de boemite. No que concerne ao módulo de elasticidade a variação foi de 30% para teores de reforço de 10 %(m/m), para teores menos elevados pode apenas aumentar cerca de 9%. Para o mesmo teor de reforço o alongamento diminui até cerca de 82%.

Figura 1.9 -Formação de (nano?)boemite [29]

Vários autores estudaram um tratamento superficial para as nanopartículas de boemite, de forma a melhorarem a sua dispersão no iPP. O nanoreforço inorgânico tem como já referido tendência para agregar/aglomerar devido à sua pobre
miscibilidade\(^4\) em polímeros não polares, como o PP. Por este motivo, os autores investigaram o efeito na estrutura da boemite de diferentes tipos de modificadores de superfície, com cadeias de alquila\(^5\) (figura 1.10). Este estudo analisou a morfologia, a estabilidade térmica e as propriedades mecânicas dos compósitos iPP/boemite [30].

![Diagrama de estrutura química de modificadores de superfície](image)

Figura 1.10 - Estrutura química de modificadores de superfície [30]

A boemite tratada com modificador de superfície (cadeias curtas de alquila) induz no nanocompósito um módulo de elasticidade à tração mais elevado 20 % (m/m), superior ao conseguido sem tratamento da superfície da boemite 10 % (m/m) para um teor de reforço de 10 % (m/m) (figura 1.11). No que diz respeito ao alongamento, ele sofreu um decréscimo de 98% (sem tratamento) e de 3% (com tratamento de superfície da boemite). Em contrapartida, quando são utilizados modificadores de superfície com cadeia longa, as propriedades mecânicas do nanocompósito são dificilmente alteradas, devido às interações polímero reforço serem fracas [30].

\(^4\) Formação de uma mistura homogénea.
\(^5\) Radical orgânico monovalente de fórmula geral \((C_nH_{2n+1})\).
Figura 1.11 - Módulo de elasticidade à tração dos nanocompósitos de PP/boemite (10% m/m) [30]

Ainda em 2009, Mirjalili et al. [31] estudaram o efeito de partículas nanométricas não de boemite, mas de alumina α (produto da boemite por tratamento térmico a elevada temperatura (1000°C)) nas propriedades do polipropileno. O teor de alumina variou entre 1 e 5 %(m/m). Deste estudo, os autores concluíram que o reforço não contribuía para uma melhoria significativa das propriedades mecânicas [31]. A tensão máxima e o alongamento à rotação, diminuíam até 2 %(m/m) de Al2O3 (figuras 1.12 e 1.14), a partir deste valor havia uma tendência para aumentar apenas o valor da tensão máxima, superando a do polímero, para teores da ordem dos 4 %(m/m), mas para teores de 5 %(m/m) voltava a decrescer.

Figura 1.12 – Tensão máxima de compósitos em função do teor de Al2O3 [adap. [31]]
Figura 1.13 - Módulo de elasticidade de compósitos em função do teor de Al_2O_3 [adap. [31]]

No que diz respeito ao módulo de elasticidade, como é patente na figura 1.13, ele não sofre com a presença de reforço alterações significativas.

Figura 1.14 - Alongamento à rotação de compósitos em função do teor de Al_2O_3 [adap. [31]]

As justificações apresentadas pelos autores do comportamento observado foram as seguintes:

- As nanopartículas estavam aglomeradas.
- A superfície das partículas de Al_2O_3 é polar e a de PP é apolar, logo as suas interfaces são incompatíveis, como já foi referido anteriormente no caso da boemite.

De notar que a boemite, sendo a fase primária da alumina alfa conduz, mesmo sem tratamento de superfície adequado, a boas propriedades mecânicas de um compósito baseado em iPP.

Contudo, há uma transformação da boemite em alumina gama, antes da ocorrência da fase alfa (fase estável). No entanto, não foi possível encontrar referências, na bibliografia disponível, sobre a utilização de nanoalumina gama como reforço de
polipropileno. Assim, a adição de alumina gama nanométrica a outro tipo de polímeros (TPU-thermoplastic polyurethane/EPDM-Ethylene-propylene-diene monomer rubber) foi objeto de uma publicação em 2015. Neste caso, apenas a adição até cerca de 2 % (m/m) de nanoalumina gama ao polímero permitia melhorar as propriedades mecânicas, incluindo a resistência à abrasão; para teores mais elevados havia um decréscimo destas propriedades devido à aglomeração das nanopartículas de alumina gama [32].

Uma vez a presente dissertação se propõe contribuir para a utilização de um resíduo de base de alumínio primordial (lama), assume particular interesse usar um “novo” produto das lamas – a alumina gama. Assim, a calcinação da lama poderá ser realizada à temperatura para a qual a alumina gama esteja formada e estável, ou seja, antes de atingir a formação de alumina alfa.
2. PROCEDIMENTOS EXPERIMENTAIS

Neste capítulo, serão abordados em detalhe os materiais da matriz e do reforço, nas diversas etapas para a formação do (nano)compósito, desde a preparação do resíduo, formação de gibsite/boenite e de alumina gama (nano)cristalina, até à seleção de procedimentos que permitissem um (nano)compósito homogéneo. Com o objetivo de colocar em evidência o papel do reforço, o compósito foi injetado, em condições otimizadas, tendo como referência o polímero tal qual. Diferentes características e propriedades mecânicas foram avaliadas e estabelecidos os limites de reforço, de modo a otimizar o desempenho do (nano)compósito.

2.1. Preparação da matéria-prima

Neste estudo, foi utilizada uma lama (figura 2.1), proveniente dos banhos de anodização (empresa Lacoviana).

A adição de água permitiu realizar a lavagem do resíduo constituído por hidróxido de alumínio, resultando numa lama. Este processo recorreu a um moinho de esferas\(^6\); Fritsch Pulverisette 6 (figura 2.2 a)) que permitiu a desagregação das lamas. Como a matéria-prima de base é de tamanho nanométrico, a utilização de esferas na moagem não é recomendada.

\(^6\) Um moinho de esferas funciona como um cilindro rotativo com esferas de aço, sendo considerado uma ferramenta eficiente de moagem, capaz de moer diversos tipos de material. [44]
A lavagem teve a duração de 35 minutos (2 ciclos de 15 minutos, com uma pausa de 5 minutos, sendo o sentido de rotação alternado entre cada ciclo), e foi realizada a uma velocidade de 250 rotações por minuto (rpm). Posteriormente, as lamas foram secas num forno a cerca de 100°C, durante 2 horas (figura 2.2 c)) e foi adicionado isopropanol\(^7\), de forma a acelerar o processo de evaporação.

Figura 2.2 - Sequência da preparação das lamas: a) Equipamento de lavagem (moinho sem bolas); b) Lama resultante do processo de lavagem; c) Forno de secagem

2.2. Preparação do pó

Tal como explicado anteriormente, a lama foi sujeita a um processo de secagem, que levou à formação de aglomerados. Existem diferentes métodos para efetuar a desaglomeração. O método escolhido, moagem com almofariz e pilão, permitiu dispersar o pó que se encontrava aglomerado após a secagem [33]. As partículas de pó resultante apresentavam ainda um elevado índice de água. Desta forma, foi novamente realizada a secagem em estufa durante 24 horas, a uma temperatura de 70 °C. Esta configuração permitiu realizar uma secagem uniforme, eliminando totalmente a água inicialmente existente.

Um dos fatores consideravelmente importante no processo de moagem é o tamanho das partículas, pois a possibilidade de ocorrência de aglomeração aumenta com o seu decréscimo, provocando a diminuição da taxa de moagem [10].

\(^7\) O isopropanol é um álcool que pode favorecer uma evaporação mais rápida.
Segundo Steller et al. (2008), a quantidade de pó de boemite (nanométrica) geralmente utilizada em (nano)compósitos, com sucesso garantido, no que diz respeito ao incremento das propriedades mecânicas, era até 10,0 (µg/m) [29]. Desta forma, embora se tenha usado no presente estudo, não boemite, mas um seu produto - alumina gama, foram testados (nano)compósitos com teores de 5,0 %, 7,5 % e 10,0 (µg/m). De notar que o único estudo com (nano)alumina gama, como reforço de um polímero diferente do iPP apontava, como referido, apenas 2 (µg/m) como valor ótimo.

2.3. Calcinação

A calcinação é um processo de tratamento térmico de eliminação de substâncias voláteis, com ou sem ocorrência de alguma transformação de fase. Esta técnica foi utilizada com o intuito por um lado, de eliminar possíveis focos de contaminação do resíduo, que tivessem ocorrido em ambiente industrial. Por outro, induzir a transformação da gibsita/boemite em alumina gama. Assim, a calcinação ocorreu à temperatura de 600°C, durante uma hora, a uma taxa de aquecimento de 10°C/min. A cor inicial do pó era branca, (figura 2.3 a) e b)), porém, após calcinação apresenta uma cor acinzentada (figura 2.3 c)).

![Figura 2.3- Lamas de anodização a) tal e qual; b) moídas; c) calcinadas](image)

2.4. Caracterização do resíduo

A lama residual (gibsita/boemite) foi caracterizada através do tamanho e distribuição da partícula de pó, fases presentes, comportamento com a temperatura e densidade real.
2.4.1. **Análise granulométrica**

A análise granulométrica é usada para determinar o tamanho e a distribuição de partículas. Para tal, foi utilizada a técnica de espectrometria de difração laser que consiste na incidência de um feixe de laser, capaz de medir a variação angular na intensidade da luz difundida à medida que interage com as partículas dispersas [34]. A distribuição granulométrica das lamas anodizadas tal e qual, calcinadas e em solução de isopropanol foram caracterizadas num analisador de tamanho de partículas da marca *Malvern*, modelo *Mastersizer 3000*.

2.4.2. **Análise da forma**

A microscopia eletrônica de varrimento permite obter imagens da morfologia e microestrutura e a topografia de superfície de materiais (maciços e partículas) com elevada resolução e profundidade de campo, numa extensa gama de ampliações. Esta técnica consiste na incidência de um feixe de elétrons de pequeno diâmetro na superfície do material convertendo o sinal em imagem. Dos vários elétrons gerados, existem os de baixa energia ou secundários, que fornecem a análise morfológica e os elétrons de elevada energia ou retrofundidos, que fornecem informações qualitativas acerca da possível composição química do material [8, 35]. Quando esta técnica está associada a um espectrômetro de detecção de energia dispersiva (EDS) ou de comprimento de onda (WDS) é possível realizar uma rápida análise química respetivamente semi-quantitativa e quantitativa dos elementos químicos do material em estudo [8].

Os materiais analisados, como não eram eletricamente condutores, tiveram de ser revestidos com um filme fino condutor, de forma a evitar carregamento de elétrons na sua superfície que possam interferir com o feixe de elétrons.

Para além da caracterização dos pós, a microscopia eletrónica também permitiu analisar a distribuição dos reforços na matriz polimérica e avaliar qualitativamente a sua constituição por recurso a EDS. Para realizar a caracterização dos pós foi utilizado um microscópio eletrónico de varrimento de alta resolução (ZEISS (FEG-SEM)) equipado com sistema de análise química EDS e WDS (*Oxford Instruments*). Os pós dispersos no iPP após injeção, foram analisados no SEM (*FEI Quanta, modelo 400FEG ESEM*), com sistema EDS (*EDAX Gnesis X4M*) incorporado para microanálise.
2.4.3. **Análise Fásica**

A difração de raios X é uma técnica utilizada para a caracterização microestrutural de materiais cristalinos, que consiste na incidência de um feixe de raios X, de comprimento de onda conhecido, no material em análise. A intensidade dos raios X difratados é captada por um detetor que irá formar o difratograma, possibilitando o registo dos diversos planos que difratam de uma ou mais fases cristalinas existentes. Existe um fator que pode influenciar a indexação dos picos, nomeadamente, o tamanho do grão. Isto é, para tamanhos de grão pequenos (na ordem dos nanómetros) o alargamento do pico de difração é maior do que para materiais com tamanho de grão convencional [8].

A difração de raios X obedece à Lei de Bragg (equação 3.1) que estabelece a relação entre o ângulo de difração e a distância entre os planos que a originam, permitindo determinar as fases cristalinas presentes.

\[n\lambda = 2d \times \sin \theta \]

(3.1)

Sendo \(n \) o número inteiro que define a ordem de reflexão, \(\lambda \) comprimento de onda da radiação incidente, \(d \) a distância interplanar entre os planos cristalinos e \(\theta \) o ângulo de difração.

A análise da composição fásica da lama calcinada foi realizado por recurso à difração de raios X e a indexação dos picos difratados foi efetuada com o auxílio de fichas de ICDD (*International Center of Diffraction Data*). De notar que a lama tal e qual parecia não apresentar à primeira vista picos de difração de planos cristalográficos nítidos, podendo ser considerada nanocristalina ou mesmo amorfa. Os ensaios foram realizados no difratômetro *X’Pert* da *Philips*, o anticátodo utilizado foi de cobalto com comprimento de onda \(\lambda_{K\alpha} = 0,178897 \) nm. Os parâmetros de análise foram os seguintes: ângulo de incidência \(2\theta \) compreendido entre 0 e 100º, passo de 0,025º e tempo de aquisição por passo de 1 segundo.

2.4.4. **Análise térmica**

A termogravimetria (TG) é uma técnica que mede a variação de massa da amostra com a temperatura e tempo por meio de uma termobalança, em câmara
fechada com atmosfera controlada. Esta técnica possibilita conhecer o intervalo de temperatura no qual o material adquire uma composição química fixa, a temperatura a que se decompõe e a cinética de reações de desidratação, oxidação, combustão, decomposição, etc. [10]. As análises termogravimétricas podem ter três tipos: TG isotérmica, TG quasi-isotérmica e TG dinâmica.

Na análise TG dinâmica foi utilizado um equipamento SETARAM Setsys (figura 2.4), a velocidade de aquecimento foi de 1°C/min, até à temperatura de 300°C, em atmosfera de ar. O objetivo foi avaliar a quantidade de água perdida por secagem das lamas. A escolha desta temperatura máxima revelou-se ser demasiado baixa, pois não permitiu a desidroxilação total (Cap. 3).

![Figura 2.4 - Equipamento de análise térmica (Termogravimetria)](image)

2.5. Caracterização do Polipropileno

Na produção dos nanocompósitos foi utilizado como matriz um polipropileno isotático (*Moplen HP500N*) (figura 2.5), com baixo índice de fluidez (12 g/10 min). Esta classe de polímeros (polipropileno isotático) é, geralmente, apresentada em granulos e é caracterizada por uma boa capacidade de processamento, permitindo o enchimento rápido dos moldes [24].
Figura 2.5 - PP utilizado na produção de nanocompósitos (Moplen HP500N)

Na tabela seguinte são apresentadas algumas propriedades do PP isotático (*Moplen HP500N*) (tabela 2.1).

<table>
<thead>
<tr>
<th>Tabela 2.1 - Propriedades do PP isotático (Moplen HP500N)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Densidade</td>
</tr>
<tr>
<td>Índice de fluidez (230 ºC/2,16 kg)</td>
</tr>
<tr>
<td>Módulo de elasticidade à flexão</td>
</tr>
</tbody>
</table>

2.6. Preparação dos provetes

Neste subcapítulo, são abordadas as técnicas utilizadas, na preparação dos provetes necessários aos diferentes ensaios de caracterização (mistura, granulação e injeção).

2.6.1. Misturas

As misturas a partir da matriz de iPP com um teor do nanorreforço cerâmico (lama calcinada) de 5,0; 7,5 e 10,0 (%m/m), foram realizadas numa misturadora de medição (*Brabender Plastograph*, com o auxílio do software *WinMix*) (figura 2.6), que operou com 30 rpm, a uma temperatura de 190°C durante 30 minutos.
Procedimentos Experimentais

Figura 2.6 - Equipamento usado para realizar as misturas de PP/lama calcinada

Numa primeira mistura foi possível detetar que as partículas de pó estavam aglomeradas. Na tentativa de contrariar esta ocorrência, para cada uma das frações mássicas foi feita uma solução de isopropanol com o pó da lama calcinada (figura 2.7).

Figura 2.7 - Solução de isopropanol com diferentes percentagens de pó de lama calcinada. a) 5,0%; b) 7,5%; c) 10,0%

A solução foi mantida dentro de um tanque com agitação por ultrassons (*Bandelin Sonorex RQ 106 S*), com o intuito de evitar a deposição rápida das partículas, criando condições para que permanecessem em constante agitação. Este processo melhorou ligeiramente a dispersão, mas, mesmo assim, não foi possível obter uma solução totalmente homogénea.
2.6.2. **Granulação**

De modo a homogeneizar o tamanho do material resultante do processo de mistura, foi utilizada uma granuladora (figura 2.8). Este processo é necessário para facilitar a etapa seguinte, a injeção [24].

![Granuladora](image)

Figura 2.8 - Granuladora (Hellweg Maschinenbau)

2.6.3. **Injeção**

Após realizada a granulação, as misturas prosseguiram para a injeção. Nesta fase, a mistura nanocompósita de iPP/lama calcinada foi injetada em zonas moldantes com forma dos provetes necessários para a realização dos ensaios mecânicos convencionais. A injeção foi realizada numa injetora (*Arburg Allrounder 270C Golden*) com diâmetro do fuso 18 mm e comprimento efetivo L/D de 24,5; pressão de injeção 250 MPa (figura 2.9). Os parâmetros utilizados estão compilados na tabela 2.2.

![Equipamento de injeção](image)

Figura 2.9 - Equipamento usado para injeção dos provetes (Maritest - Injecção e Produção de Plásticos Técnicos Lda)
Procedimentos Experimentais

Tabela 2.2 - Condições de injeção - temperatura, pressão.

<table>
<thead>
<tr>
<th>Secagem pré injeção</th>
<th>Injeção</th>
</tr>
</thead>
<tbody>
<tr>
<td>Misturas</td>
<td></td>
</tr>
<tr>
<td>T = 180°C</td>
<td>P = 40 MPa</td>
</tr>
<tr>
<td>T = 70°C; t = 19 h</td>
<td>P_{injeção} = 20 MPa</td>
</tr>
</tbody>
</table>

Na injeção foram usadas duas zonas moldantes, ou seja, foi usado um molde para os ensaios de tração (figura 2.10 a)) e outro para os ensaios de flexão (figura 2.10 b)). O molde possuía capacidade para escape de gases. [24].

![Figura 2.10 - Zonas moldantes de provetes: a) tração; b) flexão](image)

Na primeira fase de injeção foram injetados provetes de iPP puro a duas diferentes temperaturas, 180°C e 200°C de modo a avaliar o comportamento do iPP sem qualquer aditivo. Em seguida, foram injetadas também as misturas (PP+reforço) a 180°C, temperatura considerada mais adequada para injetar as misturas de iPP e reforço.

2.7. Propriedades Mecânicas

Neste subcapítulo são descritas as técnicas e equipamentos utilizados para a caracterização mecânica dos materiais em estudo.
2.7.1. Propriedades à tração

O ensaio designado por tração é usado para estudar o comportamento de um material, colocado entre duas amarras, quando é submetido à ação de uma carga uniaxial, aplicada a uma velocidade de deformação reduzida permitindo avaliar para uma determinada seção, a relação tensão-deformação até à rotura. Materiais que possuem comportamento elástico-plástico, durante o primeiro estágio obedecem à lei de Hooke (equação 3.2), em que a deformação é proporcional à força aplicada. Para avaliar a deformação é usado um extensómetro.

O ensaio relaciona a força \(F \) (N) com o deslocamento \(\Delta l \) (m) em que \(k \) é uma constante elástica (N/m).

\[
F = k \times \Delta l
\] \hspace{1cm} (3.2)

Desta forma, é possível obter um gráfico de tensão – deformação, (figura 2.11) a tensão é proporcional ao alongamento, até um certo ponto para o caso em estudo (termoplásticos) (equação 3.3).

\[
\sigma = E \times \varepsilon
\] \hspace{1cm} (3.3)

![Diagrama de tensão-deformação](image)

Figura 2.11 - Curvas tensão-deformação características das diferentes classes de polímeros [37]

Através deste ensaio é possível obter:

- Módulo de elasticidade (módulo de Young) - \(E \) (MPa);
- Limite de resistência à tração (tensão máxima) - LRT (MPa);
- Tensão de rotura - \(\sigma_{\text{f}} \) (MPa);
- Alongamento - \(\varepsilon \) (%).
Os ensaios foram realizados de acordo com a norma EN ISO 527 [38]. É importante salientar que as dimensões dos provetes de tração não eram iguais às dimensões que a norma indica, uma vez que foram utilizados moldes previamente existentes. O ensaio foi realizado com o auxílio de uma máquina de tração (*Shimadzu*, programa *Trapezium*) (figura 2.12). Na tabela 2.3 estão apresentadas as condições de ensaio à tração utilizadas.

Figura 2.12 - Equipamento de ensaios de tração (DEM)

<table>
<thead>
<tr>
<th>Área da seção transversal do provete</th>
<th>Condições do ensaio</th>
</tr>
</thead>
<tbody>
<tr>
<td>31,5 mm²</td>
<td>F = 1 kN</td>
</tr>
<tr>
<td></td>
<td>V = 5 mm/min</td>
</tr>
<tr>
<td></td>
<td>L = 14 mm</td>
</tr>
</tbody>
</table>
2.7.2. Propriedades à flexão

Os ensaios de flexão também permitem caracterizar mecanicamente os materiais, mas para esforços diferentes, ou seja quando os materiais estão sujeitos a uma força perpendicular. Deste ensaio é possível inferir as seguintes propriedades:

- Módulo de elasticidade à flexão \(E_f (\text{MPa}) \);
- Limite de resistência à flexão (tensão máxima) ou LRT - \(\sigma_r \) (MPa);
- Alongamento à flexão \(\varepsilon \) (%).

O ensaio de flexão realizado consiste na aplicação de uma carga ao provete, a meia distância dos seus apoios, designado de ensaio de flexão a três pontos (figura 2.13).

![Figura 2.13 - Esquema do ensaio a três pontos [39]](image)

Durante o ensaio são aplicadas forças normais\(^{10}\) e tangenciais na seção transversal do corpo de prova, gerando tensões no seu interior. Este ensaio também permite relacionar a força \([F(N)]\) com o deslocamento \([\Delta l \ (\text{mm})]\) e foi realizado segundo a norma EN ISO 178 [40], para dimensões diferentes das indicadas pela norma, pelas mesmas razões indicadas anteriormente. No entanto, como o objetivo do estudo é comparar comportamentos, não foi considerado em ambos os ensaios, uma não conformidade.

Tal como nos ensaios de tração foi utilizado um extensómetro (figura 2.14). Na tabela 2.4 são visíveis as condições de ensaio da flexão.

\(^{10}\) Forças que atuam na direção perpendicular à seção transversal do provete.
Procedimentos Experimentais

Figura 2.14 - Equipamento de ensaios de flexão (DEM/FCTUC)

O módulo de elasticidade à flexão \(E_f \) foi avaliado utilizando a equação 3.4 onde \(L \) é o comprimento entre apoios, \(F \) a força aplicada, \(b \) a largura, \(d \) a espessura e \(l \) é a flexão [41].

\[
E_f = \frac{L^3F}{4bd^3l}
\]

(3.4)

A tensão à rotura \(\sigma_r \) está indicada na equação 3.5.

\[
\sigma_r = \frac{3FL}{2bd^2}
\]

(3.5)

O alongamento à rotura foi avaliado através da equação 3.6, sendo que \(D \) representa a deflexão máxima no centro do provete (mm).

\[
\epsilon = \frac{6Dd}{L^2}
\]

(3.6)

Tabela 2.4 - Condições de ensaio de flexão

<table>
<thead>
<tr>
<th>Medidas dos provetes</th>
<th>Condições de ensaio</th>
</tr>
</thead>
<tbody>
<tr>
<td>(L = 14) mm</td>
<td>(F = 5) KN</td>
</tr>
<tr>
<td>(d = 2.36) mm</td>
<td>(V = 5) mm/min</td>
</tr>
</tbody>
</table>
2.7.3. **Dureza**

A dureza Shore D é um método que permite avaliar a dureza da superfície de um polímero ou de um elastómero, avaliando a resistência do material à indentação. O método consiste em medir a profundidade da impressão deixada no material com a aplicação de uma carga normal à superfície do material e é dependente de outros fatores além da dureza, como das propriedades viscoelásticas e da duração do ensaio.

Na realização deste ensaio foi utilizado o equipamento *CV Instruments Limited* (figura 2.15). As condições de ensaio são apresentadas na tabela 2.5. O procedimento foi baseado na norma ASTM D2240 [42], que estipula que as indentações devem ser feitas a 12 mm das arestas da amostra e 6 mm entre indentações, sendo que apenas o último parâmetro foi cumprido.

<table>
<thead>
<tr>
<th>Condições de ensaio</th>
<th>Temperatura (°C)</th>
<th>Humidade relativa (%)</th>
<th>Tempo (s)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>24</td>
<td>31</td>
<td>1</td>
</tr>
</tbody>
</table>

Para realizar o ensaio de dureza foi necessário selecionar provetes com superfície plana e espessura mínima de 6 mm. Uma vez que cada provete tinha uma espessura média de 2,36 mm, foram colocados 3 provetes sobrepostos de forma a aproximar o valor da espessura total ao valor mínimo do ensaio. Em cada provete foram realizadas cinco indentações.

Figura 2.15 - Durómetro utilizado por avaliar a dureza Shore
3. APRESENTAÇÃO E DISCUSSÃO DE RESULTADOS

Neste capítulo são descritos e discutidos os resultados dos compósitos estudados, evidenciando a influência do teor de resíduo no seu comportamento mecânico nomeadamente à tração, flexão e dureza.

3.1. Caracterização dos pós (resíduo)

A análise dos 4Ss (Particle Size, Particle Size Distribution, Shape, Structure) do pó é essencial pois estas características podem determinar o sucesso do produto final.

3.1.1. Tamanho de partícula do pó tal e qual

De acordo com os resultados da análise do tamanho da partícula por difração laser conclui-se que o \(d_{50} \) era da ordem de 33,3 \(\mu \)m. Este resultado, de acordo com outros estudos realizados, mostra que as partículas do resíduo se encontravam agregadas/aglomeradas [43]. Na verdade, era expectável que as partículas constituintes do resíduo fossem nanométricas (<100 nm). Contudo, podem ser nanocristalinas sem que as partículas de pó sejam nanométricas.

3.1.2. Distribuição granulométrica

A distribuição granulométrica avalia o tamanho médio das partículas e a distribuição de tamanhos (figura 3.1, figura 3.2, figura 3.3).
Apresentação e Discussão de Resultados

Figura 3.1 - Distribuição granulométrica das partículas de pó tal qual

A distribuição granulométrica é trimodal, constituída por partículas com dimensões muito significativas (100-800 µm) e as restantes compreendidas entre cerca 100 µm e 400 nm. Estes resultados demonstram, claramente, que há agregados/aglomerados que terão de ser, se possível, destruídos antes do processo de mistura com a matriz do compósito. Além disso, nenhum tamanho das partículas medido está incluído na definição de nanopartícula. Como já referido, há necessidade para a persecução do estudo encontrar metodologias eficientes para a desagregação das partículas.

Na figura 3.2 e 3.3 está representada a distribuição granulométrica das partículas de lama calcinada e da lama calcinada em solução de isopropanol, respectivamente.

Figura 3.2 - Distribuição granulométrica das partículas de lama calcinada
Apresentação e Discussão de Resultados

Figura 3.3 - Distribuição granulométrica das partículas da lama calcinada em solução em isopropanol

A análise da distribuição granulométrica (Figura 3.2 e 3.3) revelou que, a lama calcinada possui uma distribuição bimodal, constituída por partículas com dimensões compreendidas entre 500 nm e 30 μm e após solução em isopropanol, também possui uma distribuição bimodal, constituída por partículas com dimensões compreendidas entre 300 nm e 40 μm. Estes resultados demonstram, claramente, que existem aglomerados de dimensões variáveis, mas não se atinge a separação em partículas de pó com dimensões nanométricas.
3.1.3. Forma da partícula

Na figura 3.4 estão representadas as micrografias (SEM) do pó nas três fases distintas de preparação: pó tal e qual (a), pó da lama calcinada (b) e por fim o pó da lama calcinada após solução de isopropanol (c).

Figura 3.4 - Micrografia (SEM) das partículas da lama (30000 x): a) pó tal e qual; b) pó calcinado; c) pó calcinado após solução em isopropanol.

A morfologia entre as diversas fases não é muito diferenciada, são visíveis os aglomerados de forma arredondada, maioritariamente, constituídos por (nano)partículas.
3.1.4. Distribuição das partículas na matriz no iPP

Nas figuras 3.5 e 3.6 estão representadas duas micrografias (SEM) relativas aos compósitos estudados, em particular para teores de reforço de 5 e 10 % (m/m), respectivamente.

Figura 3.5 - Micrografia SEM de 5 % (m/m) de lama calcinada e polímero (iPP)

Figura 3.6 - Micrografia SEM de 10 % (m/m) de lama calcinada e polímero (iPP)

A análise química qualitativa dos constituintes do compósito (figura 3.7 e 3.8) evidencia duas diferentes zonas. Na zona 1 (zona clara) existem, majoritariamente, elementos de alumínio e carbono, enquanto na zona 2 (zona escura) o único elemento predominante é o carbono. Fazendo uma comparação entre ambas é possível concluir que na zona 2 a quantidade de alumínio representada é muito baixa, o que significa que nesta zona existe majoritariamente PP.
Apresentação e Discussão de Resultados

Figura 3.7 – Composição química do compósito com 5 % (m/m) de reforço obtida por EDS (z1-esquerda) e (z2-direita)

Esta análise permite identificar que: a amostra estava contaminada com zircónia; não foram observadas partículas de lama calcinada à superfície, evidenciando uma amostra não homogênea; e as partículas formaram grandes aglomerados, na ordem dos micrômetros.

Figura 3.8 – Composição química do compósito com 10 % (m/m) de reforço obtida por EDS (z1-esquerda) e (z2-direita)

No que respeita ao tamanho dos aglomerados, estes resultados foram comprovados através de um estudo efetuado por Farinha (2008) [43]. A autora, recorrendo a uma micrografia SEM, verificou que o pó de alumina α é constituído por aglomerados micrométricos de diferentes tamanhos constituídos por partículas nanométricas. Através de uma análise granulométrica concluiu que a presença de
aglomerados dificulta a individualização das partículas e, consequentemente, a medição correta das suas dimensões [43].

3.1.5. **Estrutura Cristalina**

A estrutura cristalina é determinada por difração de raios X. Nas figuras 3.9 e 3.10 estão evidenciados os difratrogramas da lama tal e qual e da lama calcinada.

![Difratograma de raios X do resíduo da lama tal e qual (cobalto)](image)

Figura 3.9 - Difratograma de raios X do resíduo da lama tal e qual (cobalto)

A presença de gibbsite e boemite é evidenciada no difratograma, onde é claro que estas fases ocorrem com um alargamento de pico, que poderá estar associado a um tamanho de cristalite nanométrico ou mesmo a amorfismo.

Também foi analisado o difratograma de raios X do resíduo da lama calcinada, onde foi possível detectar, para além de um pico alargado (boemite?), que significa uma temperatura de calcinação insuficiente para a sua total transformação da lama, e também alumina γ. Doravante, esta mistura será designada por “lama calcinada” (figura 3.10). O alargamento dos dois picos correspondentes à alumina gama evidencia, nanocrystalinidade.
3.2. Densidade real

A densidade real é definida através da relação entre a massa das partículas e o respetivo volume, desprezando os espaços vazios. Assim, esta grandeza é, geralmente, avaliada utilizando a picnometria de hélio12, partindo do pressuposto que as partículas não possuem poros fechados [10]. A densidade do pó tal e qual foi medida antes e após secagem em estufa (tabela 3.1).

Tabela 3.1 - Medidas de densidade antes e após secagem

<table>
<thead>
<tr>
<th>Material</th>
<th>Pó antes de secagem</th>
<th>Pó após secagem (70ºC, 24 h)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Densidade real (kg/m3)</td>
<td>1475,5</td>
<td>1797,2</td>
</tr>
</tbody>
</table>

Após a secagem, a densidade aumentou significativamente, devido à diminuição de volume por perda de água e de impurezas. Estes valores são ainda significativamente diferentes do valor de densidade teórica da boêmite (3080,0 kg/m3) [36].

12 Técnica que permite a determinação do volume ocupado numa dada quantidade de material, através da comparação entre a variação da pressão de hélio na câmara da amostra e a de uma câmara de volume calibrado [45].
3.3. Análise térmica

No seu estado inicial, o resíduo em estudo continha uma quantidade de água significativa, apresentando uma textura muito porosa, que levou a uma absorção de água suplementar durante o processo de lavagem, conduzindo no final a um maior teor de água. A análise termogravimétrica do resíduo revela a perda de água adsorvida e alguma desidroxilação com o incremento da temperatura (figura 3.11). Dos 100°C aos 150°C perde apenas alguma água 3 %(m/m), enquanto dos 150°C até aos 300°C há uma perda de massa mais acentuada, correspondendo a cerca de 28 %(m/m). No entanto, é visível na figura que a 300°C ainda não atingiu um estado estável. Da comparação com o estudo apresentado na revisão bibliográfica (sub-capítulo 1.5), a perda de massa deverá ocorrer até aos 400°C, estabilizando até cerca 600°C, altura em que ocorre transformação da boemite em alumina γ.

![Figura 3.11- TG da lama tal e qual](image)

Na figura 3.12 é evidenciado o comportamento com a temperatura do iPP (TG-DSC). Neste caso, para além da termogravimetria foi realizado o ensaio de calorimetria diferencial de varrimento (DSC) com o objetivo de se medir o fluxo de calor trocado entre a amostra e o meio ambiente.
Figura 3.12 – TG/DSC ao iPP

O ensaio de termogravimetria ao PP evidencia que não existe perda de massa até aos 250°C. Após os 250°C inicia-se o processo de decomposição do polimero por oxidação das cadeias C-H.

A análise detalhada da curva DSC permitiu inferir que o primeiro pico endotérmico, visível em DSC, ocorre próximo dos 154°C correspondendo à fusão da parte cristalina do PP. Porém, no pico exotérmico (cerca dos 300°C) corresponde ao intervalo de temperaturas onde ocorre a degradação do polimero.

3.4. Propriedades Mecânicas

Neste sub-capítulo são analisadas as propriedades mecânicas estudadas (tração, flexão e dureza). Na tração é analisado o módulo de elasticidade, o limite de resistência à tração, a tensão de rotura e o alongamento à rotura. Na flexão é analisado o módulo de elasticidade. Por fim, é analisada a dureza aos provetes do compósito.
3.4.1. Módulo de elasticidade à tração

Na figura 3.13 encontra-se apresentado o módulo de elasticidade à tração, ou módulo de Young (E) dos compósitos em estudo.

![Diagrama showing E (MPa) for different materials](image)

Figura 3.13 - Impacto dos diferentes teores de lama calcinada no módulo de elasticidade à tração

A partir do gráfico é possível concluir que não se conseguiu obter o módulo de elasticidade do iPP próximo do valor comercial (1550 MPa). Isto significa que estão associados alguns erros, nomeadamente nas condições de injeção, ou seja, os provetes podem apresentar algumas imperfeições/poros que contribuíam para o aparente decréscimo do módulo de elasticidade.

A adição de lama calcinada aumenta o módulo de elasticidade até atingir um máximo a 10 %/(m/m) (1655 MPa), em cerca de 60% do valor. A presença de lama calcinada nanocristalina reforça a ligação intercadaelas e consequentemente o módulo. Este aumento não tão significativo, apenas de 30%, para a mesma percentagem de reforço e igual matriz, neste caso boemite, foi observado por outros autores [29].

3.4.2. Módulo de elasticidade à flexão

No ensaio de flexão foi também medido o módulo de elasticidade à flexão. As percentagens de lama calcinada adicionadas ao iPP foram as mesmas que a dos ensaios de tração, ou seja 5,0%, 7,5% e 10,0 %/(m/m) (figura 3.14).
Figura 3.14 - Influência dos teores de lama calcinada no módulo de elasticidade à flexão

O valor do módulo de elasticidade à flexão do iPP foi de 965 MPa. A adição de 5\%(m/m) é suficiente para aumentar cerca de 20\% o valor do limite de elasticidade, mantendo-se praticamente constante até 10\% de reforço.

3.4.3. Limite de resistência à tração (LRT)

O limite de resistência à tração do material corresponde ao ponto máximo da curva tensão-deformação, em geral, irá ocorrer aquando a criação de um "pescoço" (necking). Na figura 3.15 é possível analisar a influência do teor de reforço os valores dos limites de resistência à tração, para as condições anteriormente referidas.

Figura 3.15 - Influência do teor de lama calcinada no LRT
A partir da análise do gráfico é possível concluir que os compósitos revelaram valores muito semelhantes de limite de resistência à tração à do iPP. Apenas quando a carga é de 10 % (m/m) é que se constata uma diminuição do valor, associada uma dispersão significativa, que poderá traduzir alguma heterogeneidade na mistura devido a condições de injeção serem constantes independentemente do teor de aditivo.

3.4.4. Tensão de rotura à tração

No ensaio de tração foram testados provetes, nas condições padrão e para as três percentagens mássicas de lama calcinada. Na adição de 5 % (m/m) e 7,5 % (m/m) não ocorreu rotura, nas condições de ensaio, mas com a adição de 10% todos os provetes sofreram fratura. Ao adicionar ao iPP 10 % (m/m) de reforço a tensão de rotura apresenta um valor de 25 MPa. O aumento da percentagem mássica de reforço conduziu possivelmente a um aumento de aglomerados, desencadeando a ocorrência de pontos frágeis.

3.4.5. Alongamento à rotura

O alongamento à rotura no ensaio de tração representa, em percentagem, o ponto máximo de alongamento que o material consegue atingir quando é sujeito a um ensaio de tração.

O alongamento à rotura só ocorreu para a percentagem mássica máxima de lama calcinada. Para a adição de 10 % (m/m) de reforço o valor médio do alongamento à rotura foi de 13% e o desvio padrão significativo. A redução do alongamento é algo esperado em compósitos poliméricos reforçados com nanocerâmicas, pelo facto de restringir o movimento das cadeias do polímero.

3.4.6. Dureza Shore D

Neste estudo todas as amostras apresentam superfície plana, sem defeitos, conduzindo a que o valor medido fosse o “real”. No entanto, a incerteza de qualquer ensaio está sempre associada a alguns fatores, nomeadamente o utilizador e equipamentos.

Neste caso, a norma considera que para valores de dureza inferiores a 20 (Shore D) e superiores a 90 (Shore D) não devem ser considerados, pois estão muito próximos dos limites da mola e os erros associados podem aumentar. A figura 3.16 expõe os
valores médios da dureza do compósito em estudo em função da percentagem de reforço utilizada.

![Diagrama de dureza]

Figura 3.16 - Dureza do compósito em função do teor de lama calcinada

Através desta análise é possível concluir que tendencialmente os valores da dureza não são influenciados pela adição de lama calcinada, até 7,5 %(m/m). Há um ligeiro aumento com o incremento de lama calcinada.
CONCLUSÕES

A presente dissertação teve como objetivo analisar a influência de “nanopartículas” ou partículas nanocristalinas resultantes da anodização de alumínio (resíduo) nas propriedades mecânicas de polipropileno isotático e avaliar a possibilidade de reciclagem deste resíduo, de modo incrementar as propriedades de um outro material, neste caso o iPP. Uma análise preliminar da distribuição granulométrica da lama (tal e qual, calcinada e em solução de isopropanol) permitiu concluir que as partículas constituíntes do resíduo não são nanométricas (<100 nm), mas nanocristalinas agregadas ou não. Na expectativa de as transformar em nanopartículas, recorreu-se a técnicas adequadas para a sua desagregação/desaglomeração.

Através da caracterização da nova matéria-prima, foi concluído que a lama é constituída, à temperatura ambiente, por gibbsite/boemite com tamanho de cristalite nanométrico quicã amorfo. A calcinação a 600°C, permitiu transformar parcialmente a gibsite/boemite em alumina γ nanocristalina.

Da análise detalhada, essencialmente as propriedades mecânicas de misturas injetadas de iPP com diferentes percentagens mássicas do pó, desde um valor mínimo de 5 % até ao máximo de 10 %/(m/m), pode ser concluído que há efetivamente um aumento significativo do módulo de elasticidade à tração para teores compreendidos entre 5 e 10 %/(m/m), atingindo neste último caso um aumento do módulo de elasticidade de cerca de 60%. No entanto, para as outras propriedades avaliadas, apenas a dureza acompanha este comportamento, neste caso aumentou cerca de 10% em relação ao iPP. Para as outras propriedades mecânicas mais de 7,5 %/(m/m) de lama calcinada é catastrófico. Este comportamento vai no mesmo sentido de outros estudos realizados apenas com boemite, mas a variação de propriedades para 10 %/(m/m) é menor do que a conseguida com as lamas calcinadas a 600 °C, onde há já presença também de alumina gama. De notar que os autores que utilizaram apenas alumina gama, se bem que noutra matriz polimérica, apenas conseguiram obter as melhores propriedades mecânicas com 2 %/(m/m).
A utilizar a lama calcinada no iPP dever-se-á não ultrapassar os 7,5 % (m/m). Em consequência, há que afirmar que o iPP pode incorporar com vantagens a lama calcinada proveniente de um resíduo.

Como trabalho futuro dever-se-á utilizar outras temperaturas de calcinação mais elevadas, onde apenas alumina gama esteja presente, e mais baixas, onde esteja presente a boemite de modo a avaliar o efeito destas duas fases nas propriedades mecânicas do compósito e justificar o consumo energético que daí advém. Outro elemento de relevo será a utilização de outras técnicas de dispersão de pós, que poderá contribuir para uma maior homogeneidade da solução em estudo, associado a condições de injeção específicas para cada mistura estudada.
REFERÊNCIAS BIBLIOGRÁFICAS

ICA%C3%87%C3%95ES_DE_LODOS_DE_ANODIZA%C3%87%C3%83O_DE_ALUM%C3%82NIO. [Accessed 31 05 2017].

Referências Bibliográficas

ANEXO A

Tabela 0.1 - Descrição das várias etapas que integram o processo de anodização do alumínio [10]

<table>
<thead>
<tr>
<th>Operação</th>
<th>Objetivo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tratamento mecânico</td>
<td>Eliminação de eventuais defeitos físicos superficiais.</td>
</tr>
<tr>
<td>Desengorduramento</td>
<td>Limpeza superficial do alumínio com vista à remoção de gorduras, óleos, óxidos e outros contaminantes.</td>
</tr>
<tr>
<td>Acetinagem</td>
<td>Promover um aspeto acetinado tornando a camada superficial homogênea, através da remoção de imperfeições.</td>
</tr>
<tr>
<td>Neutralização</td>
<td>As peças são neutralizadas, em meio ácido para eliminação dos hidróxidos insolúveis de metais libertados pelos tratamentos nas fases alcalinas anteriores.</td>
</tr>
<tr>
<td>Anodização</td>
<td>Formação de uma camada anódica e uniforme na superfície do alumínio com elevada dureza, resistência à corrosão e abrasão.</td>
</tr>
<tr>
<td>Colmatagem</td>
<td>Eliminação dos poros formados na superfície do alumínio de forma a aumentar a sua resistência à corrosão e durabilidade da cor.</td>
</tr>
</tbody>
</table>
Figura 0.1 - Sequências de transformação da gibbsite até alumina alfa [14]