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RESUMO 

Os problemas das ciências da vida remetem inúmeras vezes para a caracterização da estrutura e 

função das moléculas biológicas, nomeadamente, as proteínas. A caracterização estrutural de 

proteínas solúveis, proteínas membranares e complexos proteicos diversos tem vindo a beneficiar 

largamente de contribuições da área computacional. Particularmente no caso das proteínas 

membranares, pela sua quase ubiquidade de funções e pela dificuldade do seu estudo de forma 

experimental, a aplicação de métodos computacionais de previsão de estrutura e caracterização de 

interface permite o seu estudo de forma alargada e detalhada, sempre que possível apoiando-se em 

dados experimentais. 

Nesta tese de mestrado dividimos o trabalho em 2 vertentes: i) a compreensão de um exemplo típico 

de proteína membranar – complexos acoplados a proteína G (GPCR) e ii) o desenvolvimento de 

metodologias para caracterização de interações proteicas.  São assim expostos resultados de 

modelação de complexos entre GPCRs, arrestinas e proteínas G, progredindo para a caracterização de 

área de superfície, proximidade de resíduos, conservação de resíduos, ligações de hidrogénio, entre 

outras características. Desta forma, identificam-se subestruturas, regiões, padrões de resíduos e 

resíduos específicos determinantes para a formação de complexos entre os GPCRs e outras proteínas. 

A informação foi sintetizada sob a forma gráfica e disponibilizada online (http://45.32.153.74/gpcr/). 

Na segunda parte dedicamo-nos à aplicação de algoritmos de Machine-Learning de forma a 

corretamente classificarmos os resíduos da interface como cruciais a nível estrutural e funcional da 

proteína, os Hot-Spots. Com base em dados experimentais e recolha de descritores destes resíduos, 

foi construído um modelo de previsão de Hot-spots, implementado num portal de acesso livre 

(http://milou.science.uu.nl/cgi/services/SPOTON/spoton/). Procuramos também perceber como a 

inclusão de descritores coevolutivos das proteínas influencia a performance das metodologias 

desenvolvidas. 

 

PALAVRAS-CHAVE 

Proteínas membranares; Interfaces proteína-proteína; hot-spots; modelação computacional; 

machine-learning, portais de web; GPCRs; coevolução 
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ABSTRACT 

In Life science’s it is crucial to characterize the structure and function of biological molecules, in 

particular, proteins. The structural characterization of soluble proteins, membrane proteins and 

diverse protein complexes, as of late, has benefitted from computational approaches’ contributions. 

These would be essential in the case of membrane proteins. Due to their near functional ubiquity and 

the difficulty of their experimental study, the employment of structure prediction and interface 

characterization computational methods allows for broad and in-depth comprehension, which 

fundamental if we realize membrane proteins are key targets in the pharmaceutical industry. 

In this master thesis, the works was divided in two different but interconnect tasks: i) the 

understanding of a typical example of membrane protein: G-coupled protein receptor complexes 

(GPCR) and ii) the methodological development for protein interaction characterization. As a results 

of the first task we list all conclusions retrieved from the modelling of complexes between GPCRs, 

arrestins and G-proteins with the full assessment of the surface area inter-residual distance, residue 

conservation, hydrogen bonds, among other characteristics. Subsequently, we proceed to identify 

substructures, regions, residue patterns and specific residues’ relevant for complex formation 

between GPCRs and other proteins. The data was summarized under graphical display and made 

available online (http://45.32.153.74/gpcr/).  In the second part, we focused on Machine-Learning 

algorithms’ deployment in order to correctly classify protein interfacial residues, which are crucial at 

a structural and functional level: Hot-Spots. Based on experimental data and residue feature 

collection, a Hot-Spot prediction model was built, available at a free-access portal 

(http://milou.science.uu.nl/cgi/services/SPOTON/spoton/). We also sought to understand how the 

inclusion of coevolutionary features influences the performance of the developed methodologies. 

 

KEYWORDS 

Membrane proteins; protein-protein interfaces; hot-spots; computational modeling; machine-

learning, web-portals; GPCRs, coevolution  
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1. INTRODUCTION

Proteins are biomolecules essential for life, performing a broad array of tasks essential for organism 

maintenance. Proteins can interact with other proteins, molecules and, in some cases, smaller 

particles. In order to understand this process, it is necessary to clarify their building blocks – amino 

acids – as well as the way these occupy space under different conditions: protein structure, which is 

highly related to their function. 

Proteins’ structures are flexible, and in fact, their mobility is an essential characteristic that allows 

them to be so important in the tasks they complete [1]. Protein conformations, acquired through 

folding processes, are essential for their function [2], for this reason, deep understanding on 

proteins’ structure under different states and conformations is essential in order to intervene in their 

functional behaviors, which is a desirable outcome either for disease treatment or cell enhancement. 

1.1 Protein interface and Hot-spots 

Protein-based coupling occurs by specific interfacial residues with chemical-physical properties 

different from the remaining of their surface. As such, interfaces, protein core and non-interface 

surfaces have different amino acid composition, physicochemical properties, secondary structure 

which, ultimately, different solvent accessibility [3]. The establishment of key interactions 

fundamental from a  structural and functional point of view makes them a prime study target, since 

they tend to mediate the proteins’ biological activity [4]. Protein interfaces are also commonly 

participants on PPIs of different types such as the formation of homodimeric, heterotrimeric, enzyme-

inhibitor complexes, among many other [5]. To perform these tasks, protein interfaces require certain 

characteristics, as a minimum accessible surface area, hydrophobic profile, solvation potential and 

protrusion [6]. Protein interface characterization requires several metrics, which motivates the use of 

ML approaches for their recognition. Nevertheless, some such as evolutionary conservation and 

occlusion from the solvent seem to be particularly relevant [4]. 

Although PPI can vary in size, there are particular residues that seems to be mainly responsible for the 

actual coupling: the so-called HS. Therefore, HS are highly conserved residues that tend to be 

particularly relevant for the establishment of interactions, contributing more significantly to binding 

affinity than other residues [7]. Overall, a HS is defined as a residue whose mutation to alanine 

decreases binding free energy (ΔΔGbinding) in at least 2.0 kcal mol -1 [8], if this criteria is not met, the 

residue is designated as a Null-Spot. Several approaches for HS prediction have been proposed, and 

more recently ML-based methods seem to have a higher degree of sucess [9, 10] [11-13]. 
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1.2 Membrane proteins 

Membrane proteins (MP) are proteins embedded in lipid environments, frequently lipid bilayers, that 

perform a large number of tasks [14]. These proteins act frequently as messengers between the 

intracellular and the extracellular environment, which makes them indispensable for cell life function 

and, consequently, for organism maintenance [15]. Assuming an indispensable role on the 

communication between cells and organs, they also feature important functions such as cell cycle life 

regulation (conversely, also apoptosis) [16], ion and molecule transport, immune system molecule 

recognition and energy transduction [17-19]. Ultimately, these and other functions give rise to many 

biological functions, such as sugar blood regulation through insulin identification by tyrosine kinases 

[20] and neuronal communication, necessary and constituent for brain functioning [21] . Having in 

common the association with the lipid environment, not all MPs do so in the same way. While some 

permeate the membrane (intrinsic/transmembrane - TM), others are peripherally membrane-bound 

proteins (PMP) [22-24]. In both cases, the lipid environment can have significant structural changes 

and greatly determine MPs mobility along the membrane [25]. 

The same MP can have its substructures differently characterized; those that occupy space on the 

outer side of the membrane are called extracellular while the ones inside the cell are intracellular. The 

residues spanning inside the membrane define intramembrane structures. All these structures can 

vary among MPs and perform different functions [26]. The residue content of the MPs’ structures 

varies depending on their membrane relative location, particularly due to the electronegativity 

profiles of the environment; sections of the protein inside of the membrane tend to be rich in 

hydrophobic residues, matching the lipid chemical profile, while those outside of the membrane tend 

to have more hydrophilic residues, since they are in closest contact with water molecules. Thus, TM 

proteins are usually referred to as being amphipathic, which describes their irregularity of chemical 

profiles along their structures [27]. 

Furthermore, although the primary structure of the protein is highly determinant, the structure and 

function of many TM proteins depend also on PTM,  which are modifications that introduce changes 

non-dependent on the residue content alone, hence, after the translation process is concluded, 

examples are phosphorylation and glycosylation, both acting by adding groups to certain residues of 

the protein [28]. Regarding the secondary structure, the two major recurrent protein structure motifs 

in MPs are TM α-helices [29], repeatedly crossing the membranes in α-helical bundles and β-strands 

arranged into super-secondary structures known as β -barrels [30]. 
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The most functionally relevant intrinsic MPs are typically split into ion channels, membrane receptors 

and transporters [17, 31]. Ion channels generate a connection between the extracellular and 

intracellular space that is susceptible to the passage of ions, and crosses both a physical barrier and 

the electrochemical gradient inbound to the separation by the membrane. Their structure can be 

modulated by the TM electrochemical potential, the binding of ligands, and mechanical stress and/or 

changes in the local lipid environment [32]. Transporters can move molecules or ions across the 

membrane, however differently than channels, usually working through conformational changes, 

being very important in the transport of ligands against electrochemical gradient, by using ATP 

breakage energy [33]. Membrane receptors comprise a vast amount of proteins, among which the 

superfamily of GPCRs [26], these, due the scope of this work, will further be individually explored. 

1.1.1 G-protein coupled receptors 

GPCRs are membrane receptors responsible for many different functions, belonging to one of the 

largest superfamilies of membrane associated proteins [34]. GPCRs share a typical pattern consisting 

of seven TM helixes (TM1-7) connected by three ICLs in the cytoplasm and three ECLs on the outer 

side of the lipid membrane. GPCRs terminate with an helix that spans parallelly to the membrane 

(HX8) [35], which has been shown to participate in modulating the interaction between the receptor 

and its intracellular partners such as Postsynaptic density protein, Drosophila disc large tumor 

suppressor, and Zonula occludens-1 protein (PDZ) domain-containinG-proteins [36, 37]. The amino 

and the carboxyl termini of class A GPCRs reside in the extracellular and intracellular part of the cell, 

respectively [38, 39]. 

An example of a GPCR structure can be seen in Figure 1, produced with PyMOL [40] from the PDB 

entry 3SN6 [41]. Three High Variability Regions (HVR) have been identified: between TM5 and TM6 

(ICL3) and at the N- and C-terminal regions [39] [42]. Even though GPCRs share high structural 

similarity, their ligands can range from a photon to a protein [38]. GPCRs can receive distinct stimuli, 

having roles on metabolic, neuronal, hormonal and immunological functions, as well as in cell growth 

and cell death [43].  
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Figure 1: GPCR model example 

 

GPCRs are commonly divided in five families, regarding their sequence similarity on the TM (most 

conserved regions), these families are: rhodopsin (class A), secretin (B1), adhesion (B2), glutamate (C) 

and frizzled/taste (F) [35]. A large number of GPCRs are olfactory receptors. GPCRdb [44] is a database 

that amasses a great amount of updated information on GPCRs, namely among the referred families, 

also providing several tools useful on the understanding of such receptors as well as their interactions 

with both orthosteric and allosteric ligands. 

GPCRs play a central role in a large variety of cellular mechanisms in human physiology and disease 

and are the targets of 40% of all commercialized drug targets. As such, they are the subject of major 

efforts towards understanding their function and signaling selectivity [45]. New insights have been 

provided by recent GPCR structures in selected conformations, stabilized by a variety of ligands with 

pharmacologically distinct properties (agonists, inverse agonists, etc.), by nanobodies mimicking signal 

transducers [46], and in some cases by full heterotrimeric G-proteins (GTP-bindinG-protein) [47, 48]. 

GPCRs have similar intracellular binding partners such as G-proteins, arrestins and GPCR-interacting 

G-proteins (GIPs), membrane-inserted GPCR-binding G-proteins [49]. These play an important part on 
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the structural rearrangement of the GPCR structure, and, consequently, their activation state and 

function. Arrestins, for instance, are responsible for the desensitization of GPCRs [50]. The binding of 

these proteins greatly increases the difficulty of G-protein binding to GPCRs and provokes the 

internalization of the complexes [51]. G-proteins, on the other hand, are the heterotrimeric proteins 

(constituted by three subunits) that, through the coupling with GPCRs, allow the triggering of signaling 

cascades that propagate into the cell [52]. The lipid membrane environment also has an active role in 

modulating GPCR structure and function. For example, interaction with cholesterol significantly 

changes GPCRs conformational flexibility [53] and modulates their interactions. As such, it was 

suggested that rather than “binding sites” GPCRs, many times, have “high occupancy sites”, when 

associated to these cholesterol “hot-spots” in the membrane. Constitutive internalization of GPCRs, a 

crucial cellular function responsible for receptor regulation, is regulated by GPCR interactions and can 

be clathrin-dependent or clathrin-independent, stressing the large array of interactions and the 

versatility of GPCRs [54]. Trafficking of GPCRs, which can be agonist dependent or independent, 

commonly displays an important role on the signaling routes these receptors are involved in [54]. 

Dopamine receptors are class A GPCRs present in many neurons in the central nervous system (CNS), 

reason why their understanding is commonly important for the comprehension and treatment of 

several neurological disorders. These receptors are highly specific for dopamine also interacting with 

other related ligands that exert their physiological and pharmacological effects through the activation 

of five distinct but closely related subtypes of DR complexes, which are divided into two major 

subclasses (D1-like receptors: D1R and D5R; D2-like receptors: D2R, D3R, and D4R), based on their 

ligand and G-protein-subtype specificity, anatomical distribution and physiological effects [55-57]. 

When considering drug design against GPCRs, studying the differences between the active and 

inactive state [58] is important, as is the case for Dopamine receptors 2 and 4 (D2R and D4R, 

respectively) [59], as these changes can be determinant in drug/receptor interactions, and therefore 

crucial for the design of new drugs [60, 61]. 

 1.1.2 Lipid environment 

When considering MPs, the lipid environment is essential in defining their structure and function, 

often significantly changing the proteins’ properties [62]. MPs’ association with the membrane is what 

makes the task to study them harder than soluble proteins. Having that in mind, although most MP 

structures are not easily determined, it is useful to note that some MPs can retain their structure and 

function while in soluble form. The construction of fusion proteins [63], and other strategies are 

employed to overcome the difficulties of their study. When this is not possible, detergents can be used 

to solubilize the expressed proteins [64] by extracting them from the membrane, ideally without 

affecting their structure. 
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Membrane domains, such as lipid rafts, can change significantly the structure and function of some 

proteins as these domains have different properties (namely high glycosphingolipids content) [65, 66]. 

In lipid rafts, solvent extraction can be less effective, since these are more effective at retaining MPs 

than other lipid membrane domains. This works either by surrounding the protein with a tighter and 

more ordered lipid packing, or by other mechanisms, such as anchoring [67]. Furthermore, even when 

not considering lipid rafts or lipid raft-like domains, other lipid structures and molecular organizations 

(depending on factors such as temperature, pressure, lipid composition and other proteins) can 

influence the membrane structure, which, in turn, can affect membrane-inserted proteins. This is 

usually referred to as lipid polymorphism, to which distinct lipid phases are associated, and which has 

been observed to play a role in G-protein structure and function [68]. Some intrinsic protein properties 

such as hydrophobicity, van der Waals interactions, prosthetic groups, among others, can play a major 

role in the interaction between the protein and the membrane. Hydrophobic mismatch, for instance, 

occurs when the thickness of the bilayer’s hydrophobic section does not correlate with the length of 

the hydrophobic residues of the membrane, generating a mismatch, as characterized for example by 

calorimetry [69], NMR [70] and fluorimetry techniques [62, 71-73]. 

Further changes in the membrane can occur upon insertion and formation of dimers or even high-

order oligomers, for example, which contributes towards the complexity of MP-membrane 

interactions. Other relevant changes are the insertion of peripheral groups (adding a step to the usual 

two step model considered for MPs’ inclusion and dimerization/oligomerization) such as prosthetic 

groups, more elaborate protein folding, generation of new binding surfaces or portioning of space 

away from the lipid. This can be studied through a combination of kinetic analysis and NMR  [62, 72, 

74]. 

 

1.3 Experimental membrane protein structure determination 

The study of MPs is highly reliant on the available structures, which, due to the influence of the 

membrane, are difficult to attain [75, 76]. Such influence is expressed through various specific factors, 

such as cholesterol content [77, 78] and hydrophobic thickness of the lipid bilayer [62, 65, 67, 68, 79-

82]. The membrane-embedded sections of the protein are hard to determine since the membrane 

induces changes on the structure, which diminish drastically the accessibility to the methods 

commonly used to experimentally determine protein structures on soluble proteins. Another difficulty 

is the expression of MPs in laboratory systems in such a way that the structure is similar to that of the 

actual proteins. An indicator of the relevance of this problem is that only 4.193 structures of 

membrane proteins (or rather mainly of extracellular sub-domains) can be found among the 131.485 



23 
 

determined protein structures deposited at the PDB [83], which adds up to around 1% of the total 

protein structures available. 

Adding up to the problems referred, new difficulties arise when considering each of the three main 

methods used for protein structure experimental determination: X-ray crystallography, NMR and Cryo 

– EM. X-ray crystallography solved structures amount to the larger number of protein structures 

determined by the same method. These experiments require a large amount of time to prepare and 

optimize. Establishing proper crystallization conditions is the main challenge, particularly regarding 

membrane proteins and, when such is achieved, further optimization is required [84]. 

Considering the protein to be expressed as a soluble protein, detergent/solvent can be added to 

induce lipid-like transformations on the MP, preferably with the use of different 3D continuous lipid 

phases (allowing the protein to freely flow) [85]. Distinct detergents, with different hydrophobicity 

properties, can be used depending on the protein’s properties [86]. The choice of the detergents can 

be time and resource consuming, with no guaranteed results [86, 87]. The use of detergents leads to 

micelle-like structure formation, which is not an accurate representation of the bilayer environment 

and can result in deformations in structure. Some approaches to overcome these problems include 

the inclusion of MPs in nanodiscs – detergent free membrane-like structures stabilized by polymers 

or proteins, which allow for liquid-state NMR studies [88] – and the lipid cubic phase method [89]. The 

latter works by isolating a biological membrane with the target protein and solubilizing it with 

detergent. The resulting micelle is purified and homogenized with monoacylglycerol, and contains a 

bilayer with the target protein [90]. 

Another approach is the use of antibody fragments to stabilize the protein structure [91]. The latter 

often results in more stable crystals, but the MP conformation might differ from its native state due 

to the additional interactions with the antibody fragments. The previous approaches, although closing 

the gap from the difference in the expressed protein to the native structure, do not prevent data 

collection and analysis from being difficult, as the variability of crystals and their conditions 

(hydrophobic protein regions camouflaged by hydrophobic solvent, making it difficult to assess the 

transmembrane MP structure) might prevent automated and stable data acquisition and processing 

[84]. 

Differently from X-ray crystallography, NMR spectroscopy does not rely on the incidence and 

measurement of X-rays, but rather nuclear spin derived positional calculations. The difference of 

approach makes it possible to measure more accurately the membrane-embedded part of the protein, 

due to the possibility of adjusting the measurements to the spins of characteristically MP associated 

residue atoms, as well as previously marking the proteins with radioactive isotopes. However, this 
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approach has low sensitivity, size limitation and does not measure the intrinsic motions of the system 

under investigation as accurately as would be preferable. 

Soluble NMR, performed with similar sample preparation as in X-ray crystallography, faces sample 

preparation issues, as well as spectral crowding, which arises from the large amount of atoms emitting  

signals that can interfere with each other [92]. Nonetheless, NMR has proven useful to study the 

dynamics (relative population and conformation of different states, exchange rates, internal motions) 

of MPs undergoing conformational changes [93]. Recently, new techniques such as solid state NMR 

(ssNMR) have provided much better results when compared to liquid phase NMR, as there is no 

molecular weight cap, allowing for the study of biological systems in which the protein is much closer 

to its native conditions [94]. However, this does not prevent spectral crowding, since a lot more 

undesirable signals are bound to be amassed in the measurement. Compared to X-ray crystallography, 

NMR, and in particular ssNMR, has the great advantage of allowing the study of MP in an actual 

membrane environment and not in a “detergent simulation” of a membrane [95-97]. 

MP structure determination has also been conducted using paramagnetic tags, a technique focused 

on labelling MPs with atoms which’s spectral signal is known, so that they can later be analyzed with 

NMR [98] and/or Electron Paramagnetic resonance (EPR) [99]. Recently, it has even been 

demonstrated that MPs can be studied by ssNMR in their native cellular environment [100]. The two 

previous approaches, particularly X-ray crystallography, already have a large amount of determined 

structures to account for. Cryo-electron microscopy (Cryo-EM) is a more recent approach that employs 

the imaging of radiation-sensitive entities – cells, viruses and macromolecules – under cryogenic 

conditions using a transmission electron microscope, hence having a much broader sample size limit 

than both NMR and X-ray crystallography [101]. Unlike X-ray crystallography, it does not require 

crystallization. Its main drawback is the relatively low resolution for membrane proteins when 

compared to X-ray structures. 

 

1.4 Membrane protein structure computational prediction methods 

The difficulties arising in the experimental determination of MP structures result in large time and 

resources expenses, with, sometimes, no guarantees of result. Computational methods, also used for 

soluble protein structure prediction and having a large contribution on drug design and discovery 

[102], overall, are an approach to be considered for MP structure prediction. The application of these 

computational approaches to MP is still recent and based on the adaptation of known protocols for 

soluble proteins. For most cases, a simulation of the solvent must be employed, as such, this is one of 

the factors that must be greatly altered for MP structure prediction.  
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More than simply predicting the structure of MP, it is of great interest to predict complex formation 

between MP and soluble proteins and MP-MP, in these cases, it is again noted that, when soluble 

proteins are involved, the task is easier, whereas MP-MP complex formation, even when considering 

homodimers, is harder to conduct. Therefore, to predict MP structure, it can be helpful to consider 

cytosolic/extracellular partner interactions, since their interacting motifs are easier to study than 

those responsible for MP-MP interaction. By doing so, part of the cytosolic/extracellular regions of a 

protein can be determined, making it easier to identify membrane spans. Experimentally determined 

MP structures in different conformations may also help in achieving more accurate predictions, as 

some predictions might recreate only one conformation, while important interactions are also taking 

place in other possible conformations. Furthermore, membrane lipid composition should be 

considered when attempting to predict the structure of a MP as it affects, not only the conformation, 

but also often the activation state of membrane-embedded proteins [103]. 

MP tridimensional structure prediction is highly based on the availability of similar protein structures 

to the one that is to be predicted. If similar proteins exist, homology models are used. On the contrary, 

de novo methods are employed, in order to build models of the protein without template proteins 

associated [104]. Knowing both the sequence of the protein and the structure of a homologue, 

homology modeling provides the best results within a reasonable time-frame. Some methods have 

been developed specifically for MP modelling, namely MEMOIR (Membrane protein modelling 

pipeline), [105] which can model the 3D structure of a protein of known sequence provided there are 

available homologous MPs with determined 3D structures, and MEDELLER [106], taking the name 

from the previous and more general installment MODELLER [107] (non-specific to MPs), which has 

provided interesting results due to its tailor-made MP structure prediction – a sequential prediction 

of protein core and loops. MEDELLER will not generate 3D coordinates for regions for which the 

prediction is uncertain, thus rendering the models more accurate but also slightly more incomplete. 

Structural homology modeling (threading) can overcome the lack of homologues for given sequences. 

However, as already mentioned, the small number of experimentally available MP structures can lead 

to insufficient sampling. An example of a pipeline using threading is TMFoldWeb [108], a web 

implementation of TMFoldRec [109]. Upon topology prediction, systematic sequence to structure 

alignment is performed, resulting in the selection of several templates that are ordered according to 

energy and reliability. Rosetta has also been widely applied to MP prediction [110]. The main 

improvement over soluble protein prediction was the implementation of a new membrane-specific 

version of the original Rosetta energy function, which considers the membrane environment as an 

additional variable next to amino acid identity, inter-residue distances and density [110]. De novo 

methods, on the other hand, are employed on the absence of structural homologues, and make use 



26 
 

of known determined features of the protein to be determined, such as secondary structure, topology 

information and substructure (helices and loops) information. Furthermore, approaches employing 

co-evolution information and ML have become increasingly more successful [111]. 

ML approaches work by training mathematical or logical models on a computer that, afterwards, can 

make use of the model to predict unknown instances of similar characteristics. The dataset is made 

up of instances, or samples, for which are known certain features. Regarding the instances, one or 

more target values (classes) are selected; the model is then trained to predict this classes for new, 

unknown instances. ML approaches can be supervised, if the dataset used for training has known 

output classes, or unsupervised, if there is no information regarding the classes. Usually, supervised 

learning methods tend to run faster and more accurately. Overall, ML can be defined as the automatic 

extraction of information from data by efficient algorithms, to discover patterns and correlations and 

build predictive models. ML involves the creation of algorithms that improve their own performance 

when undertaking a certain task based on their own experience [112]. These approaches aim to be 

statistically consistent, computationally efficient, and simple to implement and interpret. The choice 

of a ML algorithm for a specific problem should be made in light of its characteristics, deep familiarity 

with the theoretical foundations of the field, data source and prediction performance [113]. Dataset 

construction, comprising feature selection and extraction are major milestones and can condition the 

performance, otherwise, problems such as overfitting and underfitting can arise, although 

automatized approaches to avoid these issues exist and are currently being further researched. Also, 

the performance evaluation metrics also need to be attended to accordingly with the method and 

problem in question. 

Regarding G-proteins, some of the referred features can be derived from the sequence, others arise 

from different efforts. Several groups have made advances in the number and type of features 

available, for instance PsiPred [114] is a broadly utilized platform for secondary structure prediction 

that utilizes PSSMs as inputs to an ANN approach. However, this is hardly specific for MPs. Adding 

hydrophobicity scales to the prediction of secondary structures, that can also be used as features, and 

should yield better results [115]. Initially, the utilized scales were focused on ranking single amino 

acids or small peptides [116], more recent advances in hydrophobicity scales include the energy of 

amino acids in fully folded proteins, such as the hydrophobicity scale developed by White and von 

Heijne [117], which was shown to deliver the best results along with scales such as the Unified 

Hydrophobicity Scale [116]. Other possible features to take into account are the regions of the protein 

that actually face the membrane, cytosolic or extracellular sides, and which are the motifs responsible 

for interactions, whether they are membrane-protein interactions or secondary structure-secondary 

structure interactions [118]. 
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MP topology prediction by ML techniques can take into account the referred features. If such is done, 

it can then progress from predicting secondary structures to tertiary structures and even super-

secondary structures. They are also used to predict the TM protein segments, nowadays often making 

use of direct residue coevolution features, which are then translated into residue-residue contacts 

[119-121]. A few methods managed to combine various sources of information to predict TM α-helices 

and α-helical bundles, as well as β-barrels. OCTOPUS [122] may be one of the most complex ML 

approaches for TM α-helical spans, as it combines four different ANNs – membrane, interface, loops 

and globular residues – through a HMM. HMMs consist of a set of sequential states, whose progress 

is dependent on the confirmation of the current state [123]. TMs were also predicted using SVMs: 

Memsat-SVM [124-126]. BOCTOPUS [127], developed by the same group as OCTOPUS, allows to 

predict β-barrels. BOCTOPUS combines local predictions through SVMs and a HMM to combine all 

local SVM predictions.  

Evolutionary conservation of residues, and coevolution [128, 129] are also a growingly utilized feature 

in protein interface prediction [130-133]. Coevolution, concerning G-proteins, aims at assessing 

evolutionary conservation of protein sequences and functions. Computationally, this gives rise to 

coevolution-scores, regarding the proteins, its’ residues and sometimes inter-residue interactions, 

that can be of use structure prediction and refinement. These are based on the conservation of amino 

acids at the interfaces, as it relies on scoring residues or residues pairs, depending many times on MSA 

methods [119-121, 134-143]. 
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2. METHODOLOGY 

2.1 Homology Modelling 

Homology modelling comprehends a process in which experimental information of a protein is used 

to, as accurately as possible, determine the tridimensional (3D) structure of another protein from 

sequence, of which this information is unknown [144]. Homology modelling approaches can make use 

of experimental information usually retrieved from X-ray and NMR experiments. The main problem 

with implementing homology modelling techniques is the search and availability of templates. Most 

software approaches already implement a search method, usually based on sequence similarity, in 

order to find the most suitable candidates. However, it is also generally possible to provide user 

designated structures as templates. Other problems arise from the need to predict particular 

secondary substructures, either loops, helixes or alpha sheets with accuracy, since they might interact 

particularly, in which case their prediction as correct as possible is needed. For such, some approaches 

focus on predicting these structures in particular, while other approaches focus on protein structure 

refinement after initial assessment. MPs, in particular, due to their membrane associated parts, are 

difficult to predict, since there are fewer templates than in other cases and de novo prediction is also 

harder, since the solute is not only different, but also not homogeneous, which implicates major 

changes in the structure [145]. 

The prediction of complexes, in particular those involving one or more MP structures, adds complexity 

to the problem, since it is not enough to match the monomers together, even admitting their 

individual structure was correctly predicted, but their interaction patterns and structural 

modifications need to be taken into account. For such, structure refinement is a major resource [146]. 

 

2.2 Multiple Sequence Alignment 

MSA is an indispensable tool on protein structure computational biology. MSA relies in the alignment 

of sequences and matching of residues from different proteins’ sequences, while inserting gaps in 

order to maintain the most conserved areas. Global approaches can be used with an overall alignment 

of sequences but local optimization algorithms are more commonly utilized. These,  among an 

alignment of sequences, start with subalignments of smaller portions of the sequences and expand 

until the full sequences are portrayed [147]. To pair up the residues from the different sequences in 

the most optimized order possible, as well as introduce gaps in the sequences where there is no 

homologue residue, algorithms are employed that attribute likelihood scores to the residues, and 

between the sequences. From these scores the alignments can be built and/or progressively adjusted, 
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depending on the method. The method employed by Clustal Omega [148] follows this procedure with 

characteristics that make it both accurate but also able to consider larger sequences, a problem that 

is present in most exclusively progressive methods. 

Clustal Omega [148], as some of the most recent approaches, builds HMM to the alignments that 

allow the attribution of likelihood scores to each residue of each aligned sequence. HMMs is a 

statistical approach, frequently used as a ML device, that emerged from Bayesian approaches. HMMs 

work by building probability profiles of target classes, in this case, the residue at each position, these 

residues are then tested in ‘hidden layers’ and the final product is evaluated, the key factor is that the 

process can be repeated after one alignment is achieved, which allows for the inclusion of consistency 

in HMMs, granting higher accuracy rates as well as the possibility of aligning large sequences [149]. 

The online approach often stores the HMMs profiles in order to later save computational time without 

losing accuracy. 

2.3 Coevolution 

Coevolutionary information is associated with phylogenetic relations and refers to the evolution 

between pairs of organisms or biomolecules. Therefore, it is dependent on homology similarly 

between the assessed, in this case, protein sequences. Coevolutionary information, generally, is a 

measure of residue conservation. Conserved residues, on the other hand, are usually related to 

important structures elements that can be essential for protein function performance [150]. Sequence 

related coevolution information is usually derived after performing MSA on a set of homologues and 

becomes relevant often in interdependent amino acid frequencies, at similar spots of the alignment 

but also regarding similar patterns of amino acid substitutions. Some sequence coevolutionary 

measurement approaches available today are: 

- McLachlan-Based Substitution Correlation (McBASC) calculates similarity by linear correlation 

using the information of PSSMs; 

- Mutual Information (MI) measures dependency and covariance between variables by calculating 

the ratio between their joint occurrence probability and their independent occurrence probability 

[151], given in equation 1. In his equation, i and j stand for residue amino acids at different 

positions; x and y are, respectively to the query sequence positional numbers i and j, their 

similarity representatives. In some cases, this metric can be subjected to Average Product 

Correction (APC) as described in equation 2. APC averages (indicated by avg())the columns (a,b) 

and divides it by the average total MI as previously calculated by equation 1 [120]; 



31 
 

Equation 1: Mutual Information formula 

𝑀𝐼(𝑖, 𝑗) =  ∑ ∑ 𝑃𝑖𝑗(𝑥, 𝑦)log (
𝑃𝑖𝑗(𝑥,𝑦)

𝑃𝑖(𝑥)𝑃𝑗(𝑦)𝑦𝑥  )  

 

Equation 2: Average Product Correction formula 

𝐴𝑃𝐶(𝑎, 𝑏) =
𝑀𝐼(𝑎,𝑎𝑣𝑔(𝑥))𝑀𝐼(𝑏,𝑎𝑣𝑔(𝑥))

𝑎𝑣𝑔(𝑀𝐼)
   

- Chi-square, as MI, describes coupling probabilities. However, instead of using a logarithmical ratio, 

uses the mathematical square  [120], as described in equation 3. In the equation 3, i and j stand 

for residue amino acids at different positions; x and y are, respectively to the query sequence 

positional numbers i and j, their similarity representatives. 

Equation 3: Chi-square formula 

𝑥2(𝑖, 𝑗) =   ∑ ∑
(𝑃𝑖𝑗(𝑥,𝑦)−𝑃𝑖(𝑥)𝑃𝑗(𝑦))2

𝑃𝑖(𝑥)𝑃𝑗(𝑦)𝑦𝑥   

- Pearson correlation considers the effective sum of alignments where both positions are not gaps 

(Neff) and similarity scores (Sil, Sij, Si, Sj, originated from a PSSM matrix) for the possible positions 

(the different residues assessed, for the given position). It is also based on the weights derived of 

the division of different values depending on the frequency of states (states being indicated by W) 

per position and the standard deviation (𝜎) [120] of the amino acids at given positions (i, j), as 

described in equation 4, in which i and j stand for residue amino acids at different positions, the l 

indicator always refers to the amino acid at the aligned sequence. 

Equation 4: Pearson correlation formula 

𝑟(𝑖, 𝑗) =
1

𝑁𝑒𝑓𝑓
∑

𝑊𝑠𝑙(𝑆𝑖𝑙−𝑎𝑣𝑔(𝑆𝑙))(𝑆𝑗𝑙−𝑎𝑣𝑔(𝑆𝑗))

𝜎𝑖𝜎𝑗𝑙    

- Joint Shannon Entropy (equation 5), similar to MI and Chi-square, is used to define conservation 

[120]. In equation 5, i and j stand for amino acids at different positions; x and y are, respectively 

to the query sequence positional numbers i and j, their similarity representatives. 

Equation 5: Joint Shannon entropy formula 

𝑆(𝑖, 𝑗) =  − ∑ ∑ 𝑃𝑖𝑗(𝑥, 𝑦)log (𝑃𝑖𝑗(𝑥, 𝑦)𝑦𝑥  )   

- Direct-Coupling Analysis (DCA) calculates the frequencies of residue couplings by assessing the 

amount of times a pair of residues is present in each alignment (the designation “pair of residues” 

is used to describe two residues at specific locations) and by calculating the frequency of the 

individual residues in each location. From this information, a covariance matrix is calculated, 

reporting on residue coupling conservation [152]. In equation 6 [153] the couplings, DI(i,j), are 
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calculated considering probabilities of pairs of specific residues at specific positions, Pij(Ai,Aj), 

where i and j are the positions and Ai and Aj the specific residues at those positions. Additionally, 

it takes into consideration Ai and Aj’s relative frequencies to the positions (fi and fj). 

Equation 6: Direct-Coupling Analysis formula 

𝐷𝐼 (𝑖, 𝑗) =  ∑ 𝑃𝑖𝑗(𝐴𝑖, 𝐴𝑗)ln (
𝑃𝑖𝑗(𝐴𝑖,𝐴𝑗)

𝑓𝑖(𝐴𝑖)𝑓𝑗(𝐴𝑗)𝐴𝑖,𝐴𝑗  )  

- mean-field Direct-Coupling Analysis (mfDCA) uses an approach similar to the one used in DCA by 

combining the maximum entropy principle in order to minimize the biasing of the model [152]; 

- Protein Sparse Inverse COVariance (PSICOV) starts by building a covariance matrix in which 

directly coupled sites are inferred according and from which covariance scores are calculated, 

according to equation 7 [151]. S(a,b,i,j), the covariance score, depends on the amino acids type 

(represented by a and b) and the residue positions (represented by I and j) of a pair of residues. 

To calculate S, a sample matrix is built with a size of n residues, and the scores are calculated 

taking into account binary variables represented by x, that indicate the absence of presence of the 

amino acids of type a or b on the position I or j, respectively. 

Equation 7: Protein Sparse Inverse COVariance 

𝑆(𝑎, 𝑏, 𝑖, 𝑗) =  
1

𝑛
∑(𝑥(𝑖, 𝑎, 𝑘) − 𝑎𝑣𝑔(𝑥(𝑖, 𝑎))(𝑥(𝑖, 𝑏, 𝑘) − 𝑎𝑣𝑔(𝑥(𝑖, 𝑏))

𝑛

𝑘=1

 

 

Other metrics are available as well as adaptations of these metrics and more regular statistical models, 

such as chi-square adapted to the data under scope. 

 

2.4 Machine Learning 

ML stands as an entire field of computer science that makes use of tools from mathematics, 

information theory, statistics, informatics among many other areas. Its employment is spreading 

worldwide and makes its stance as a useful approach in many other fields of study. Regarding 

computational biology, in particular protein structure, it has given proof of being able to give an 

important contribution to the field in many different prisms [154-157]. ML has the purpose of enabling 

the machine to learn from data in order to later predict unknown outcomes or perform tasks. Its 

typical workflow consists of a set of steps as displayed in Figure 2. According to a recent 

comprehensive review [158] and demonstrated by a series of recent publications [159-161] to 

establish a really useful computational tool for a biological system, we need to consider the following 

procedures: (i) construct or select a valid benchmark dataset to train and test the model; (ii) formulate 
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the biological samples with an effective mathematical expression that can truly reflect their intrinsic 

correlation with the target to be analysed; (iii) introduce or develop a powerful algorithm (or engine) 

to operate the analysis; (iv) properly perform cross-validation tests to objectively evaluate the 

anticipated accuracy of the statistical method and (v) establish a user-friendly web-server for the 

method that is accessible to the public.  

 

 

Figure 2: Machine-Learning basic workflow 

 

ML is applied to a dataset comprised of instances, which are described by features. The number of 

instances is the number of samples available to feed to the ML model so that it can learn. The features 

that describe the instances are essential in this process, since they will help generate a model that can 

distinguish between new, unknown instances. ML models can be categorized into unsupervised, semi-

supervised and supervised learning. Supervised learning is employed on a dataset of which final 

classes are known and, usually, if the data is available, is the approach chosen. Unsupervised learning, 

on the other hand, is used on the absence of knowledge on the outcome, it can be useful to build 

artificial partitions for the available data, by employing clustering algorithms. Semi-supervised 

learning is the term sometimes used to refer models that can either accept data with or without 

known outcomes. In this thesis we focus mainly on supervised learning. Given a dataset, the model 

was trained by experimenting various predictive models. However, not all the instances of the dataset 

were used for this step (training step) and some are set aside for later testing (testing set). This 
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partitioning usually is randomized and a typical 70%-30% rule is followed. The performance of the 

different algorithms is assessed in the testing set. The final model can be used to predict the outcome 

of new instances. 

2.4.1 Data pre-processing 

A dataset should be comprised and described by features as independent and non-redundant as 

possible, guaranteeing they convey different and useful information. Several steps performed on the 

dataset, previously to the model training, aim to ensure this and are considered data pre-processing 

[162, 163]. So, data pre-processing steps aim at maximizing the value of the data in order to build the 

best predictive model possible while minimizing computational cost. These steps tend to prevent 

common issues such as underfitting and overfitting [164]. 

Underfitting happens when the dataset information is not enough for the model to capture the trend 

of the data and effectively categorize its’ instances accordingly. Underfitting usually happens due to 

small amounts of instances or features with low variance. This can lead to biasing and predictive 

models unable to properly work with unknown samples. In summary, these models are not 

generalized and are too simple for their purpose [165]. The generation of new independent non-

redundant features is a path to counter underfitting which can be achieved in several different ways, 

being highly dependent on the case. If possible, adding new instances is also a viable approach, but 

depends on the accessibility of some specifics types of data. 

Overfitting, on the other hand, usually occurs in the opposite sense: the model has excessive amounts 

of information and fits too much on the data, leading to a similar generalization problem. In both 

cases, poor predictions are usually generated from the models, although overfitting is usually both 

more common and harder to deal with than underfitting. Whereas, elimination of instances is not a 

viable option, feature selection is usually the approach considered to counter overfitting. Feature 

selection is a process in which the features are evaluated accordingly with their contribution to the 

model. If they are not correlated with the class, they should be eliminated. Similarly, if they are 

redundant among each other, the most redundant are eliminated [166]. Feature selection methods 

can vary greatly, some of the most simple are MI [167] and PCA [168]. PCA works by performing an 

orthogonal transformation on the data, forcing it into a set of linearly uncorrelated values whose 

dimensionality is equal or inferior to the number of features, thus excluding the components with less 

variance. This is one approach to face the so-called ‘curse of dimensionality’, which is a very common 

issue caused by a high number of data variables (features/dimensions) [169]. 

In order to maximize the use of the dataset and guarantee the best dataset possible, cross-validation 

is commonly performed. Cross-validation prevents biased models, by swapping and testing the 
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instances in different combinations. Cross-validation performs resampling so that the data can then 

fit and be evaluated on the model. Some of the data is used to train the model, the rest is used to test 

it. By doing this, it is decreased the risk of biasing of the data and increased the probability of picking 

the best performing model, out of one method [169, 170]. Other pre-processing steps can be added, 

for instance, the scaling/normalization of the data: the subtraction of the average to the value, divided 

by the standard deviation. This helps prevent the different features from drifting in variability too 

much [171, 172]. 

2.4.2 Models 

ML models can be, as stated before, of different types. They generally take different amounts of time 

to train and deliver different results with different performances. Table 1 points out a few basic ML 

models from which many others can be generated, as well as combined.  Although many prediction 

models do well on their own, there are several approaches that allow the combination of different 

models. However, it is not straightforward that the combination of different approaches leads to 

better performance. Bagging, or bootstrap aggregating, is one approach to combine several models, 

and it works by generating different versions of a single predictor and employ these on a combined 

predictor [173]. The several models are evaluated separately and ranked depending on their 

performance. The rank then determines their contribution to the combined model. The replicates are 

trained on the same dataset, however subjected to bootstrap (random sampling) [174], in order not 

to repeat the runs. The bootstrapping allows the extraction of more possible combinations of the 

dataset (not only regarding instances, but also features) to train the several models, which then can 

be combined. Costing more computational time than the single models, it is essential that these 

approaches do not perform worse than the individual models, for the same reason, they usually work 

better in models that can have higher variance in their predictions [175]. Dimensionality reduction is 

another factor to take into account, in order to improve the cost/performance ratio of bagging models. 

Boosting is another example of ensemble model and focuses on building a strong prediction model 

from several weaker ones. A boosting ensemble does not necessarily pick a set of the best prediction 

models and combines them, rather, it selects the models that, although might not be the ones to 

perform better individually, have high variance, as a set. Boosting considers the individual models as 

estimators and builds a function that attempts to minimize the loss of prediction value among them, 

by attributing different weights to each model [176]. The size of the datasets used on boosting 

matters, as it tends to be less effective for high dimensionality cases, however, it usually can still 

outperform the individual models [177]. Combined or ensemble models have evolved greatly since 

bagging and boosting final forms, overall, more recent approaches continue to become more used 

and reliable [178]. 
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Table 1: Machine Learning models’ examples 

ML model Type Model key information Reference 

Naïve Bayes 

(NB) 

Classification 
Equation 8: Bayes' Theorem 

𝑃(𝐴\𝐵) =
𝑃(𝐵\𝐴) ∗ 𝑃(𝐴)

𝑃(𝐵)
 

[179] 

Description: Based on Equation 1, a NB model calculates the likelihood of the instance belonging to class (A) conditionally 

to each feature B. In the equation only one feature is represented, however, the formula can be easily adapted for several 

features. 

k-Nearest 

Neighbours 

(kNN) 

Classification 

and regression 

Equation 9: Euclidean distance 

𝐷(𝑝, 𝑞) =  √(𝑝1 − 𝑞1)2 + ⋯ + (𝑝𝑛 − 𝑞𝑛)2 

[180] 

Description: A kNN model generates the classes based on the closest instances, the distance is measured with the formula 

presented in equation 2. New instances are labelled accordingly with their distances to the clusters. 

Support 

Vector 

Machines 

(SVM) 

Classifier 

 

Figure 3: SVM visual example 

[181] 

Description: A SVM model works by building a hyperplane that divides the instances (circles and triangles) according to 

proximity, the more the margins of the plane and the groupings, the more accurate the model. 

Artificial 

Neural 

Network 

(ANN) 

Classifier 

 

Figure 4: ANN visual representation 

[182] 
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Description: Based on their mammal brain homologues, ANNs imitate neuronal networks. On the simplest form, there 

are three types of layers: input (containing dataset information), hidden (derived from the input through calculated 

associations) and output (the probability of the instance belonging to each the classes. The nodes of one layer, 

represented by circles in the figure are connected by edges to the node of the next layer, in this case, each node from 

one layer is connected to all the nodes of the next layer. The connection is made through activation functions with a given 

threshold that, as in neurons when passed, will trigger a response on the next neuron. 

Random 

Forest (RF) 

Classification 

and regression 

 

Figure 5: RF visual example 

[183] 

Description: As depicted in the figure, a RF is an ensemble of decision trees (represented by the coloured boxes) through 

which an instance is subjected, only progressing in the decision if given parameters are met. Depending on the path taken, 

the instance will belong to different classes. 

Logistic 

regression 

(logit) 

Classification 

and 

Regression 

Equation 10: Logistic regression general formula 

ln (
𝑃𝑖

1 − 𝑃𝑖
 ) =  𝛽0 + ⋯ + 𝛽1𝑋1, 𝑖 + 𝛽𝑚𝑋𝑚, 𝑖 

 

[184] 

Description: Logistic regression is a regression model on a categorical variable (can only assume 0 or 1 as values). It 

considers several variables, weights them and returns a prediction based on the different contributions of each variable. 

This is shown on Equation 4, where β stipulates the contribution of the several variables X.  

 

2.4.3 Performance Evaluation 

Performance evaluation in ML is utterly important, in order to compare models and choose the best 

and, depending on the case, less time-consuming model. For this, it is usually considered a confusion 

matrix, as exemplified in table 2. This table enables the comparison between what is measured by the 

model and the actual values, regarding the testing instances put aside for this purpose. The different 

metrics on the cells of the matrix are True Negative (TN), False Positive (FP), False Negative (FN) and 

True Positive (TP). These metrics can be associated with rates to inform on the performance of the 

model, these rates are: accuracy, True Positive Rate (TPR or sensitivity), True Negative Rate (TNR or 

specificity), Positive Predictive Value (PPV or precision), Negative Predictive Value (NPV), False 

Discovery Rate (FDR), False Negative Rate (FNR) and F1-score (Equations 9 to 16). 
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Table 2: Confusion matrix 

Predicted 

Actual 

No Yes 

No True Negative (TN) False Positive (FP) 

Yes False Negative (FN) True Positive (TP) 

 

Equation 11: Accuracy formula 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁 + 𝑇𝑁
 

Equation 12: Sensitivity formula 

𝑇𝑃𝑅 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

Equation 13: Specificity formula 

𝑇𝑁𝑅 =  
𝑇𝑁

𝐹𝑃 + 𝑇𝑁
 

Equation 14: Precision formula 

𝑃𝑃𝑉 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

Equation 15: Negative Predictive Value Equation 

𝑁𝑃𝑉 =  
𝐹𝑃

𝐹𝑃 + 𝑇𝑁
 

Equation 16: False Discovery Rate Equation 

𝐹𝐷𝑅 =  
𝐹𝑃

𝐹𝑃 + 𝑇𝑃
= 1 − 𝑃𝑃𝑉 

Equation 17: False Negative Rate Equation 

𝐹𝑁𝑅 =  
𝐹𝑁

𝐹𝑁 + 𝑇𝑃
= 1 − 𝑇𝑃𝑅 

Equation 18: F1 - score 

𝐹1 − 𝑠𝑐𝑜𝑟𝑒 =  
2𝑇𝑃

2𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁
 

 

Apart from the metrics displayed, a very common metric is the Area Under Receiving Operating 

Characteristic (AUROC), which is the area under the curve described by the probability of the classifier 
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ranking a true instance (consider T, in equation 17) higher than a randomly chosen negative one. The 

area is calculated with the integral below, and is represented as the area below a curve marked by the 

different assessed data points, as in the example figure 6, plotted using pROC of the R package [185]. 

Equation 19: AUROC formula 

𝐴𝑈𝑅𝑂𝐶 =  ∫ 𝑇𝑃𝑅(𝑇)(−𝐹𝑃𝑅′(𝑇))𝑑𝑇
∞

−∞

 

 

Figure 6: Example AUROC graph 

 

2.4.4 Confounding variables 

Confounding variables are variables correlated both with the response (the class variable) and with 

the input features. Confounding variables can suggest a correlation or causality [186], and lead to 

decreasing model performance [187]. Two variables are confounders when it is hard to impossible to 

separate their effect from each other. Since they carry information that has no causal connection to 

the class variable, they simultaneously introduce predictive error and make themselves nearly 

impossible to identify, prior to experiment. Following this, the best way to exclude confounding 

variables is definitely to not include them at all, since feature selection models based on variance 

(which comprise most of the available feature selection approaches) will not be able to rule them out. 

However, this is not possible in all datasets or experiments. 
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3. METHODS AND MATERIALS 

In the next sections are described the methods and results for two different pipelines of this thesis 

work. The first, in which are included the subsections from 3.1 to 3.4, focus on application of a variety 

of computational techniques for the building of complexes involving MP in general and GPCR in 

particular as well as their respective analysis. The purpose of this pipeline was to identify GPCR (in 

particular dopamine receptors from 1 to 5) patterns when in interaction with arrestins and G-proteins. 

These patterns should allow the discrimination of the most relevant substructures and residues as 

well as a more comprehensive understanding of all the protein-protein interfaces involved. In this 

study, we used several software programs and packages, and web platforms, namely MODELLER 

[188], High Ambiguity Driven protein-protein DOCKing (HADDOCK) [189], bio3d [190], InterProSurf 

[191], BioCOmplexes COntact MAPS (COCOMAPS) [192], Conservation Surface mapping (ConSurf) 

[193, 194], and EVolutionary Fold (EVFold) [153] and Elastic Network Modelling [195] for a thorough 

and comprehensive analysis of protein-protein interfaces in various DR-Arr complexes (D1R-Arr-2, D1R-

Arr-3, D2R-Arr-2, D2R-Arr-3, D3R-Arr-2, D3R-Arr-3, D4R-Arr-2, D4R-Arr-3, D5R-Arr-2, D5R-Arr-3) as well as 

DR-G-protein complexes (D1R-Gi1, D1R-Gi2, D1R-Go, D1R-GsL, D1R-GsS, D2R-Gi1, D2R-Gi2, D2R-Gi3, D2R-Go, 

D2R-Gz, D3R-Gi1, D3R-Gi2, D3R-Gi3, D3R-Gq, D3R-GsL, D3R-GsS, D3R-Gz, D4R-GoB, D4R-Gt2, D4R-Gz, D5R-GsL, 

D5R-GsS, D5R-Gz). For all complexes, 3D homology models were used to assess a variety of evolutionary-

based (conservation and co-evolution), structure-based (intermolecular interactions, salt bridges, 

hydrogen bonds, solvent accessibility), and dynamic-based (fluctuations and cross-correlation) to 

understand the molecular determinants responsible for binding specificity of DR complexes to their 

cognate G-protein and Arr subtypes. 

The second pipeline, from subsection 3.5 to 3.8, describes the methods and materials used for the 

prediction of HS by ML approaches with and without the use of coevolutionary information. We have 

begun by applying ML to soluble proteins as these are not only essential systems but can be regarded 

as a proof of concept for further exploration of these algorithms to MP.  

 

3.1 Homology Modelling 

All proteins were constructed by homology modelling using the MODELLER package [188, 196], which 

allows the construction of 3D models from the amino acid sequence of a protein by means of the 

alignment with one or more known protein structure (template) that are likely to resemble the 

structure of the target sequence. The methodology helps to surpass the limits imposed by the scarcity 

of experimental structures of GPCRs available. The template PDB-ID: 3SN6 [197] was chosen for active-
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form of DR with UniProt sequence IDs P21728, P14416, P35462, P21917, and P21918 for D1R, D2R, 

D3R, D4R, and D5R, respectively. An ALAn linker was added to connect TM5 and TM6, which were 

modeled with extended helical segment (beyond the membrane) up to the linker, making the 

intracellular extension of TM5 and TM6 similar to that observed in the crystal structure of the β2AR-

Gs complex (PDB-ID: 3SN6 [197]). Clustal Omega program [198] was used for Multiple Sequence 

Alignment (MSA) of the five FASTA sequences of DR complexes. The crystal structure of the β2AR-Gs 

complex (PDB-ID: 3SN6) [41], and of human rhodopsin-visual Arrestin complex (PDB-ID: 4ZWJ) [199] 

were used as templates for the construction of the 3D models of G-proteins and Arrs, respectively, 

using the MODELLER package [188, 196]. The accession codes of query sequences of Gq, Gz, Gt2, Gi1, 

Gi2, Gi3, GsS, Go, GsL and GoB used for homology modeling were P50148, P19086, P50149, P63096, 

P04899, P08754, P63092, P04971, GI:20147687, and GI20147683, respectively. The accession codes 

of query sequences of Arr-2 and Arr-3 proteins used for homology modeling were P49407-1 and 

P49407-B, respectively. One hundred models were created for each query sequence and the G-protein 

and Arr models with the lowest Discreet Optimized Protein Energy (DOPE) score were selected out of 

the ten models with the highest score for the MODELLER objective function. As for the DR complexes, 

the model which featured the highest intramembrane domain-ICL3 distance was selected out of the 

ten models with the highest MODELLER objective function. 

  

3.2 Complex Building and Refinement 

Structure refinement was performed with HADDOCK [200], which is a web platform able to perform 

protein structure refinement in an explicit solvent representation. To construct 3D models of DR 

complexes-G-protein complexes, the models of DR complexes and G-proteins were aligned based on 

the crystal structure of the β2AR-Gs complex (PDB-ID: 3SN6) [41], and the models DR complexes and 

Arrestins were aligned based on the crystal structure of human rhodopsin-visual Arrestin complex 

(PDB-ID: 4ZWJ) [199]. These complexes were submitted to the HADDOCK server and the best model 

attained for each protein-protein complex was used in subsequent analyses.  The final structures are 

listed in table 3. 
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Table 3: Final complexes after modelling procedures 

GPCR Complexes 

D1R D1R-ARR2, D1R-ARR3, D1R-Gi1, D1R-Gi2, D1R-Go, D1R-

Gs(lo), D1R-Gs(sh) 

D2R D2R-ARR2, D2R-ARR3, D2R-Gi1, D2R-Gi2, D2R-Gi3, D2R-Go, 

D2R-Gz 

D3R D3R-ARR2, D3R-ARR3, D3R-Gi1, D3R-Gi2, D3R-Gi3, D3R-Gq, 

D3R-Gs(lo), D3R-Gs(sh), D3R-Gz 

D4R D4R-ARR2, D4R-ARR3, D4R-Gob, D4R-Gt2, D4R-Gz 

D5R D5R-ARR2, D5R-ARR3, D5R-Gs(lo), D5R-Gs(sh), D5R-Gz 

 

 

3.3 Sequence alignment 

Protein sequence alignment is needed for many of the steps involving both achieving and analyzing 

results. In this case, a first sequence alignment has already been described, when homology modelling 

was conducted. This was performed using the embedded functions the MODELLER [107] software 

provides. For the analysis steps to be displayed forward, the alignment performed was with EBI’s 

online available tool, Clustal Omega [148]. This is a MSA tool that allows for the alignment of protein 

amino acid sequences presuming a certain degree on evolutionary similarity between them. For this 

purpose, the alignments considered were made with the evaluated sequences as described in table 4. 

 

Table 4: Alignments made with the sequences, to be further used on upcoming steps 

Alignment Sequences aligned 

Arrestins ARR2, ARR3 

Dopamine Receptor D1R, D2R, D3R, D4R, D5R 

G-Protein Gq, Gz, Gt2, Gi1, Gi2, Gi3, Gs(sh), Gs(lo), Go, Gob 
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3.4 Structure analysis and interface characterization 

The structural analysis of the complexes obtained by the methods described in the previous steps was 

conducted by assessing characteristics such as interface characterization, HB, SB, RMSD, distance 

between residues and coevolutionary features. Amino acid content analysis is important for the 

understanding of the interfaces,.  In table 5 are listed the several amino acid groups, according to 

residue physicochemical properties (dependent on the amino acid side groups), as well as their triple 

and single letter codes, in respective order, relatively to the amino acid name presented on the ‘Amino 

Acids’ column. 

 

Table 5: Amino acids groups, by physicochemical properties 

Group Amino Acids Amino Acids (triple 

letter code) 

Amino Acids (single 

letter code) 

Nonpolar aliphatic Glycine, Alanine, Valine, 

Leucine, Methionine, 

Isoleucine 

GLY, ALA, VAL, LEU, 

MET, ILE 

G, A, V, L, M, I 

Polar uncharged Serine, Threonine, 

Cysteine, Proline, 

Asparagine, Glutamine 

SER, THR, CYS, PRO, 

ASN, GLN 

S, T, C, P, N, Q 

Positively charged Lysine, Arginine, Histidine LYS, ARG, HIS K, R, H 

Negatively charged Aspartate, Glutamate ASP, GLU D, E 

Aromatic Phenylalanine, Tyrosine, 

Tryptophan 

PHE, TYR, TRP F, Y, W 

 

 

3.4.1 Interface characterization, Hydrogen Bonds and Salt Bridges 

Interface characterization aims to assess whole complex characteristics as well as determine 

important interfacial residues. One of the tools used to make interface characterization was 

COCOMAPS [192].  This tool is free-available online that takes pdb files as input [192] and retrieves 

scores regarding each of the chains (the GPCR and the G-protein/arrestin) as well as the complex. The 
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different characteristics evaluated were: 

• Interacting residues: as those in a cut-off distance inferior to 8Å, as default by the website; 

• Buried and Surface Area: the buried and surface area of both the complex and the individual 

residues. For the complex they are also discriminated as polar or non-polar; 

• Interfacial residues: defined on the basis of the buried surface area upon complex formation; 

• HB: hydrogen bonds stablished between interacting residues; 

• Physicochemical nature of the interacting residues: hydrophobic-hydrophilic, hydrophobic- 

hydrophobic, hydrophilic-hydrophilic and hydrophilic-hydrophobic. 

Interface characterization was also performed with the aid of the Intersurf [201] webserver. This 

server is similar to COCOMAPS [192] in the input process. The definition of interface comes upon 

measuring the distances between complex geometrical points. Intersurf [201] also outputs the 

numbers of surface and buried atoms and polar (determined regarding their SASA, apolar and total 

energy per area; this information is available for both the chains and the complex). VMD [202], a 

software used for protein representation, was employed to assess the SB between the GPCRs and G-

proteins/Arrestins of the different complexes. 

 

3.4.2 Root-Mean-Square Deviation and Inter-residual distances 

RMSD calculations was performed on the substructures of the GPCRs using PyMOL [40] and the .pdb 

files representing the refined structures, against the templates of the corresponding GPCR: β-2 

adrenergic receptor for the dopamine receptors complexed with G proteins [203] and rhodopsin 

receptor for the complexes with the arrestins [204] . The RMSD was performed, not on the overall 

structure, but on each of the substructures: ICLs, TMs and HX8 (ECLs are on the outer part of the 

membrane whereas both arrestins and G-proteins interact with GPCRs through the inner side of the 

membrane). The RMSD was performed upon superimposition of the substructures of the models and 

their correspondents on the templates according to the numberings in table 6. 
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Table 6:  The starting and ending number residue for each dopamine receptor substructure 

 

All inter-residual distance were measured by in-house scripts and listed using the Weinstein-

Ballesteros numbering [205]. This numbering assigns a x.50 residue to each of the helixes and 

describes these as being the most conserved residues. The residues before are then counted from 50 

to 1, in a descent manner, while the ones after proceed from 50, in a crescent progression. The x 

stands by the number of the helix, for example, the most conserved residue at TM5 is called 5.50. This 

numbering allows for an easier analysis regarding the conserved interacting residues. The scores 

retrieved with the python script, using the Biopython [206] module, were then used, with R language 

and, particularly, circlize package [207], to build graphs for each of the complexes, displaying the 

interacting residues at a cut-off value of 8 Å, accordingly to each relevant substructure of the GPCR in 

study. 

 

  TM1 ICL1 TM2 ECL1 TM3 ICL2 TM4 ECL2 TM5 ICL3 TM6 ECL3 TM7 HX8 

D1R From 9 35 42 71 78 109 121 148 173 206 234 262 279 302 

To 34 41 70 77 108 120 147 172 205 233 261 278 301 314 

D2R From 6 34 41 70 77 110 119 146 160 191 219 249 257 281 

To 33 40 69 76 109 118 145 159 190 218 248 256 280 293 

D3R From 6 32 40 68 76 110 121 148 162 194 222 253 261 285 

To 31 39 67 75 109 120 147 161 193 221 252 260 284 297 

D4R From 5 32 39 67 74 110 117 144 158 194 219 251 257 283 

To 31 38 66 73 109 116 143 157 193 218 250 256 282 295 

D5R From 7 38 42 70 78 110 120 149 188 222 248 280 296 318 

To 37 41 69 77 109 119 148 187 221 247 279 295 317 332 

β-2 

adrenergic 

Receptor 

From 32 62 69 98 103 137 147 170 195 237 265 299 304 327 

To 61 68 97 102 136 146 169 194 236 264 298 303 326 341 

Rhodopsin 

Receptor 

From 34 66 71 101 106 141 149 169 199 237 241 279 284 307 

To 65 70 100 105 140 148 168 198 236 240 278 283 306 326 
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3.4.3 Evolutionary information 

The degree of positional conservation of specific amino acid residues has been linked to their 

importance in protein structure and function. Thus, the determination of the conserved amino acid 

positions among G-protein family members may uncover the relevance of each position to structure 

and function of the receptor. EVFold [153] and ConSurf-DataBase (ConSurf-DB) [193, 208] software 

programs were employed to probe evolutionarily conserved position-specific amino acids and to 

identify structurally and functionally important regions within the proteins.  

ConSurf-DB is an alternative web-based server which determines evolutionary conservation profiles 

for amino acids at a given protein sequence. The ConSurf -DB methodology is typically performed in 

three steps. The first step consists of skimming through the PDB Repository to search for and compile 

a list of protein sequences based on the PDB entry and chain ID and selection of the non-redundant 

protein sequences. using Protein Sequence Culling Server (PISCES) [209]. Afterwards. a Multiple 

Sequence Alignment (MSA) is constructed for each protein using Multiple Alignment using Fast Fourier 

Transform (MAFFT) [210]. initially by executing a Context Specific-Basic Local Alignment Search Tool 

(CS-BLAST) search on SWISSPROT database [211]. The list of collected protein homologues is then 

filtered according to the coverage with minimum of 80% and sequence identity ranging between 60% 

and 95%. The remaining sequence homologues are re-filtered by using Cluster Database with High 

Identity Tolerance (CD-HIT) by using 90% threshold for the sequence identity clustering. The search 

for sequence homologues is only carried out after each iteration if a maximum number of hit 

sequences has not been achieved. If the number of hit sequences detected after CS-BLAST running on 

SWISSPROT database is inferior to 50 hits. the Context Specific Iterated-Basic Local Alignment Search 

Tool (CSI-BLAST) is rerun with three iterations on the Uniref90 database of proteins. which is larger 

than SWISSPROT database. If the number of hit sequences remains lower than 50%. the minimal 

percentage of sequence identity is gradually reduced for homologous sequences. Finally. the selected 

hit sequences will be aligned using MAFFT. Subsequently. the resulting MSA is used to reconstruct a 

phylogenetic tree and to calculate position-specific conservation scores with Rate4Site [212]. which 

maps the rate of evolution among homologous proteins. The results of position-specific conservation 

scores are represented as a discrete scale of nine coloured Rate4Site grades depending on the degree 

of conservation of position-specific amino acids. The conservation scores are exhibited on the protein 

sequence or structure and on the MSA for visualization. 

EVfold makes use of EVCoupling information for predicting the 3D structure of the protein by taking 

into account differences and discriminates the residues with higher evolutionary conservation. In 

particular, by using the protein sequence. and comparing it to sequence of the other proteins in the 

same family whose structure is known. Evolutionary Couples. which are pairs of residues that 
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consistently interact with each other. are determined.  Subsequently. with this information. 3D 

structure of a given protein can be built depending on the rankings of these couplings (higher rankings 

are more determinant on the structuring of the protein Evolutionary Couplings (EC) are calculated 

using either mean-Field Direct Coupling Analysis (mfDCA) [213]. or Pseudo Likelihood Maximization 

(PLM) [214]. In the former. EC calculation is relatively rapid. whereas with PLM the process is much 

slower but more accurate. More than one protein sequence can be provided to enable the search of 

protein-protein interactions by EC information. Considering inter-protein residue interactions. 

sequence features also stand as a factor for the possibility of their interaction. The quality of the 

alignment must be assessed on this process. as well the number of EC’s to be used. The output files 

will inform on the predicted structure (as well as compare it to root-mean-square deviation – based 

structures) and the ECs. 

The amount of data generated in these analyses was too extensive to be clearly detailed and described 

in this thesis. We only restricted it to the main important conclusions and full information about the 

results can be found at (http://45.32.153.74/gpcr/). Static data visualization plots in this thesis were 

performed using ggplot2 [215] and website construction was performed using shiny application [216] 

from R package. 

 

3.5 Hot-Spot Dataset 

Our final HS dataset was constituted of observations of a known class, the class being either HS or NS. 

As mentioned, a residue is considered a Hs depending on if, upon alanine mutation, it generates a 

binding free energy difference (ΔΔGbinding) superior or equal to 2.0 kcal/mol; if ΔΔGbinding is inferior to 

2.0 kcal/mol, the residue is considered to be a NS  [217]. The ΔΔGbinding energy for 533 instances, each 

representing one residue, was collected from the existent four databases: ASEdb [8], BID [218], 

SKEMPI [219] and PINT [220]. For each of the residues of the dataset, we collected various structural 

and evolutionary-related features, in order to later subject them to ML algorithms. The features 

comprised a lot of different characteristics, some of them being relative to the residue in particular 

while others regarded the protein or substructure they were involved in. The features were split into 

non-coevolutionary features and coevolutionary features, and 2 different tasks were performed. First 

we have not used coevolution to train our model and in a second approach we have added these ones 

to access their role on the overall model performance. The main idea here was to access if the use of 

coevolution information, although more difficult to attain form an experimental point of view, could 

improve the performance of a HS detection method. 

 

http://45.32.153.74/gpcr/)
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3.5.1 Non-coevolutionary features 

Several different non-coevolutionary features were considered, ranging from sequence-based 

features to structure based ones, adding up do 868 non-coevolutionary features. It should be noted 

that these features can include evolutionary information, but not coevolutionary information. 

 

Table 7: Non-coevolutionary features 

Features Description Number Reference 

Solvent Accessible Surface 

Area (SASA) 

Measurement of water accessibility 

of the residue take into consideration 

also monomer and complex SASA 

(hence also a hydrophobicity 

measurement) 

10 [221] 

Interface size Total number of interface residues 

and SASA total variation 

2 

Number of interface 

residues 

Between the 20 amino acids, the 

counts of each at the protein’s 

interface 

20  

Number of protein-protein 

contacts 

Contacts within 2.5 Å and 4.0 Å 

distance cut-offs 

2 [222] 

Number of intermolecular 

hydrophobic interactions 

Number of HB and SD assessed with 

VMD  

2 

Position-Specific Scoring 

Matrix (PSSM) 

Residue frequency associated to full 

sequence or subsequence, by amino 

acids, using BLAST 

20 [223] 

Weighted observed 

percentages 

Amino acid weighted (disregarding 

alignment gaps for percentage 

calculation) percentage at the 

interface, using BLAST 

20 

Amino Acid Composition 

(AAC) 

Frequency of each amino acid on the 

protein, achieved with R package: 

792 [224] 
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protr 

Pseudo Amino Acid 

Composition (PAAC) 

AAC extended so that it includes 

ordered information on the amino 

acid content, achieved with R 

package: protr 

amphiphilic Pseudo Amino 

Acid Composition (aPAAC) 

PAAC annotated on the 

hydrophobicity/hydrophilicity 

characteristics of the protein, 

achieved with R package: protr 

BLOcks SUbstitution Matrix 

(BLOSUM) 

Scoring matrixes based on highly 

conserved regions from an observed 

alignment, in this case, of 62% 

similarity, achieved with R package: 

protr 

Protein Fingerprinting Calculates amino acids specific 

descriptors from Amino Acid index 

database (AAindex) [225], these can 

be narrowed with PCA, achieved with 

R package: protr 

ProteoChemoMetric (PCM) 

modelling 

2D and 3D modelling descriptors that 

can be narrowed with PCA, achieved 

with R package: protr 

 

3.5.2 Coevolutionary features 

ConSurf [226] results for residues were considered, as considered in subsection 3.4.3, for each of the 

instances of this dataset. Several coevolutionary features were considered, provided that we could 

retrieve scores for individual residues. In particular, we added results from the following 4 web-

servers: EVFold [227], EVComplex [228] CoeViz web-server [120], and InterEvScore [121]. 

EVFold [227] individual scores were considered, since the software retrieves conservation and 

coupling strength values for monomeric structures. We have also used EVComplex [228], a web-

package of the same authors, which gives scores for the final complex structure. Regarding the CoeViz 

web-server [120], coevolution scores were calculated by four different metrics: chi-square, mutual 
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information (with further average product correction), Pearson correlation and joint Shannon 

entropy. All these metrics were defined in previous chapter. The alignments were built by fetching 

sequences up to a defined percentage of sequence similarity (predefined as 90%), and aligned, with 

MSA, with the help of PSI-BLAST [229]. Thus, conservation was calculated for the protein upon 

comparison of residue conservation in similar sequences. However, more than simply calculate the 

conservation of residues, this web-server allowed the calculation of pairwise –residue conservation. 

The results retrieved are constituted of tables with an equal number of rows and columns, with the 

protein sequence's residues in both the vertical and the horizontal. These form a matrix with the 

number of columns and the number of rows equals to the length of the sequence, each cell being 

filled with the score regarding the conservation of the pair or, in the case of the diagonal, the residue 

itself.  

InterEvScore [121] was built with the purpose of predicting PPI with the use of multi-body interactions 

and coevolutionary information. This software attributes scores coevolution based on 2 and 3-body 

potentials that are determined by residue interaction propensity, derived from interaction frequency. 

Regarding evolutionary information, MSA couples were derived from the information of InterEvol 

database [230], retrieving interacting residue couples, these were then used to derive new scores, 

including the previous 2 and 3-body potentials, while adding a conservation factor using the Rate4Site 

program [231], which, using empirical Bayesian estimation, assesses evolutionary rates along the 

MSAs. 

These features were then added to the previous 868 features’ dataset and ran in different 

combinations in order to better assess their individual contribution to the final model. In some cases, 

due to missing values of some coevolutionary features (as the amount of genomic sequence available 

is not equally for all systems), the observations for which the coevolution values were missing were 

excluded, as described in table 8. 
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Table 8: Datasets to be used along the works 

Dataset 

name 

Number of 

observations 

Number of 

features 

Consurf 

(1) 

InterEV 

(13) 

CoeViz 

(8) 

EVFold 

(3) 

EVComplex 

(2) 

Original 533 868      

“Allrows” 533 890 X X X   

“Both” 55 895 X X X X X 

“Complex” 157 892 X X X  X 

“Fold” 264 893 X X X X  

“Fold*” 264 872 X   X  

*This dataset was built after all the other runs, in order to assess the possibility of InterEV and CoeViz features being 

confounding variables 

 

3.6 Dataset Pre-processing 

Dataset preprocessing was employed in order to prevent overfitting of the ML models over the 

dataset. Since the amount of features is larger than the amount of instances, this is likely to affect the 

training of the model. Also, the amount of HS is much lower than that of NS (an unbalanced dataset), 

which can raise important sensitivity issues. First, scaling of the data was performed, for each of the 

datasets, in order to normalize them (the subtraction of each value by its average value was split by 

the deviation).  We used different approaches to assess the influence of the unbalanced taste in the 

final results. In particular, we randomly increased the HS occurrences, by replicating the existing ones, 

to match the amount of NS (up sampling) or by decreasing the amount of NS to match that of HS, by 

eliminating NS (down sampling). Finally, all the datasets were duplicated and half of them were 

subjected to PCA. Also, at least half of the tested algorithms had in-build feature selections methods 

and we cannot forget that all algorithms were tested in an independent test set retrieved randomly 

of the original database. All these preprocessing steps were performed using R scripts that made use 

of caret package [232] The final dataset for the non-coevolution example can be found at Moreira el 

al. [13], whereas the dataset that comprises coevolution data is listed in table 9. 
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Table 9: Final Datasets involving coevolution before ML training 

Dataset Name Dataset PCA Sampling Scaling 

Scaled Allrows Allrows no Regular Yes 

Scaled Allrows up no Up Yes 

Scaled Allrows down no Down Yes 

PCA Allrows Yes Regular Yes 

PCA Allrows up Yes Up Yes 

PCA Allrows down yes Down Yes 

Scaled Both Both no Regular Yes 

Scaled Both up no Up Yes 

Scaled Both down no Down Yes 

PCA Both Yes Regular Yes 

PCA Both up Yes Up Yes 

PCA Both down yes Down Yes 

Scaled Complex Complex no Regular Yes 

Scaled Complex up no Up Yes 

Scaled Complex down no Down Yes 

PCA Complex Yes Regular Yes 

PCA Complex up Yes Up Yes 

PCA Complex down yes Down Yes 

Scaled Fold Fold no Regular Yes 

Scaled Fold up no Up Yes 

Scaled Fold down no Down Yes 

PCA Fold Yes Regular Yes 

PCA Fold up Yes Up Yes 

PCA Fold down yes Down Yes 

 

3.7 Machine Learning Models training, testing and evaluation 

The models were trained using R scripts that explored the functions and ML models of R package caret 

[232]. The models evaluated were (according to their names in the caret package documentation): 

Boruta, C5.0, C5.0Rules, C5.0Tree, LogitBoost, ORFlog, ORFpls, ORFridge, ORFsvm, RRF, RRFglobal, 

ada, adaboost, amdai, avNNet, bagEarth, bagEarthGCV, bagFDA, bagFDAGCV, ctree, ctree2, dwdPoly, 

dwdRadial, evtree, fda, gamboost, glm, glmboost, hdda, knn, lda, lda2, loclda, multinom, nb,  pda , plr 

, qda, ranger, rda, rf, stepLDA, stepQDA, svmLinear, svmLinear2, svmPoly, svmRadial, svmRadialCost, 
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svmRadialSigma, svmRadialWeights and wsrf. The evaluated models were previously subjected to a 

clustering process in order to separate them in five different clusters. To perform the hierarchical 

clustering, the information available on the model’s characteristics was used to calculate the JACCARD 

coefficient and the complete aggregation scheme. The resulting models were trained on the 

randomized 70% of the instances from the two cases: with and without evolution related features, 

while the remaining 30% were used for the testing. The performance of the models was evaluated 

with the metrics AUROC, accuracy, TPR, TNR, PPV, NPV, FDR and F1-score. (already described in 

previous sections). In particular, the best performing models of each cluster were considered, for each 

of the tested datasets. The purpose of the clustering was to create later on an ensemble model. In 

particular, we used logistic regression, to combine the best performance model of each cluster into a 

final ensemble classifier. Overall, the pipeline describing the implementation for HS prediction with 

ML, making use of coevolutionary features, is described in figure 7. 

 

Figure 7: Overall pipeline for HS prediction with coevolutionary features 

3.8 SPOTON web-site 

The predictor for HS without coevolutionary information was implemented in a new and user-friendly 

web-server, “SpotOn” (Hot SPOTs ON protein complexes), which is freely available at: 
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http://milou.science.uu.nl/services/SPOTON/ . This implementation was done in collaboration with 

researchers from Utrecht University (Netherlands), Mount Sinai (USA) and Oporto University [13].  

http://milou.science.uu.nl/services/SPOTON/
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4. RESULTS AND DISCUSSION 

The results attained were split into two different sections: i) the study of GPCR coupling and their 

structural characterization, and ii) HS identification without and with the involvement of coevolution 

features. 

 

4.1 GPCR  

GPCRs are practically ubiquitous proteins and drug targets, making them of high interest when dealing 

with a wide range of emerging diseases as Parkinson Disease (PD).  The design of receptor subtype 

ligands that interact with the orthosteric binding site of GPCRs has proven to be ineffective, specifically 

for muscarinic acetylcholine receptors and metabotropic glutamate receptors, because of the high 

homology across binding sites of different GPCR subtypes, leading to a decreased subtype selectivity 

and specificity and unfavourable side effect profiles. Taking this into account, allosteric modulators 

are preferable to target subtype specific GPCRs by interacting with a protein region that is both larger 

and more diverse. Experimentally, these structure-based drug design methologies have the advantage 

of understanding drug-GPCR interactions at a molecular level, which is vital for the development of 

new and reliable pharmacophore models. Nevertheless, the drug design of GPCR modulators based 

on orthosteric or allosteric binding site requires prior structural data information, something that it is 

scarce for the majority of GPCRs. In fact, future drugs acting on GPCRs are likely to rely on ligand-based 

computational methodologies to tackle missing structural data information. Overall, these in silico 

approaches have been extremely relevant in early stages of drug discovery, particularly in lead 

optimization of drug candidates, in order to determine the most favourable molecular modifications 

for the identification of more potent and subtype selective GPCR modulators targeting PD. Another 

aspect of extremely importance in drug discovery process of GPCR modulators resides in their 

pharmacokinetic and toxicological profile since usually drug candidates with a favourable 

pharmacodynamic profile fail to advance at late stages of drug discovery process due to their 

unfavourable pharmacokinetic properties and toxicity. A drug design strategy that perfectly combines 

favourable pharmacodynamic properties of small molecule GPCR modulators with encouraging 

pharmacokinetic properties (e.g. blood-brain barrier permeability, brain exposure, etc) is crucial for 

the development of promising anti-parkinsonian agents with potential clinical efficacy. Due to highly 

relevance of understanding the computational approaches applied to the study of GPCRs role in 

neurologic diseases I have also been involved in the research and write of a bibliographic review on 

the subject, which will be part of a special issue on the topic at the Current Neuropharmacology 

journal. In a parallel work, I tried to better understand and characterize the differential coupling of 
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dopamine receptors in particular. To better and more promptly display the most significant results, a 

fully dynamic webserver http://45.32.153.74/gpcr/ was constructed. Throughout the RESULTS 

section, references to the website contents will be made when appropriate. 

4.1.1 Alignments 

We started by performing the sequence alignments of all proteins involved in these pathways: DR, G-

proteins and Arrestins, which are available in the website under the ‘MONOMER’ tab. GPCR’s 

alignment, is particularly relevant due to elevated sequence similarly between crucial structural 

elements involved in activation and function. 

 

Figure 8: D1-5R sequence alignment 

 

Figure 8 illustrates the alignments of D1R to D5R used for further analysis. The x.50 residues of all TM 

are colored in black. As mentioned, the ICL1 was considered to include all the residues ranging 

between TM1 and TM2, ECL1 between TM2 and TM3, ICL2 between TM3 and TM4, ECL2 between 

TM4 and TM5, ICL3 between TM5 and TM6 and, finally, ECL3 between TM6 and TM7.  

4.1.2 Complex interface characterization 

Interface characterization was performed using the methods and materials presented. The results’ 

summary tables are presented on the annexed tables 1 to 6. The results on those tables were most of 

the used results for the graphical display on the website. Until the end of subsection 4.1.2 will be 

presented the some representative graphics, however, the full graphical display is available at the 

webserver. In this particular subsection, the information will the assessed regarding the whole 

http://45.32.153.74/gpcr/
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complex, in order to later infer on the important sub structural differences and similarities, between 

the complexes. 

4.1.2A Amino acid content 

Amino acid content was assessed with originally built Python scripts, in order to achieve a first overall 

look at possible patterns distinguishable between the complexes, either between the DR – Arrestin 

and DR-G-protein complexes, but also regarding the particular monomeric dopamine receptors, G-

proteins and arrestins involved.  The interacting residues at dopamine receptors and at the complexing 

partners were clearly different both considering particular residue, but also overall physicochemical 

properties. There is a peak on glutamate content for D2R’s interface with G-proteins, while histidine, 

methionine, proline and tryptophan residues are completely absent. 

The characterization by individual amino acid content at the D2R-G-protein complexes previously 

reffered concerned the GPCR interface. The same complexes are considered, however, now at the 

interface of the G-proteins. Can be noted that the highest content is of arginine residues, with 

considerable contents of proline and methionine. As happened at the GPCR interface, tryptophan and 

histidine residues are completely absent, as are aspartate, cysteine, glutamine, glutamate and glycine. 

The differences at the interface suggest that there are residues more relevant on the interfaces. 

Additionally, the differences at the peaking and lowest contents in both interfaces suggest 

complementarity, however, to understand this, it is clearer to look at the residue group percentages 

graphs present in the ‘DR COMPLEX STRUCTURE’ tab. The amino acid content at GPCR interface of 

D2R-G-proteins complexes has only two groups that have above average residue content percentage, 

these are acid negatively charged and nonpolar aliphatic residue groups. Regarding the same 

complexes, but at the G-proteins’ interface, the groups above average are nonpolar aliphatic, basic 

positively charged and polar uncharged, while acid negatively charged residues are completely absent. 

Overall, nonpolar aliphatic, polar uncharged and nonpolar aromatic percentages are similar between 

the interfaces at D2R and G-proteins. The percentages regarding acid negatively charged and basic 

positively charged residue contents, however, are drastically different. This tendency remains fairly 

unchanged for D1R, D3R and D5R. Considering D4R. However, is shown that the acid negatively 

charged residues at G-proteins’ interface add up to about 10% of the residues, matching this group 

with nonpolar aromatic, which does not happen for any other dopamine receptor. In the same 

complexes, at D4R’s interface, the acid negatively charged group is now below average. The 

information assayed can also suggest that there are relevant differences regarding the G-proteins’ 

interfaces, when interacting with dopamine receptors. 
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Considering the complexes involving D1R, D2R and D3R – G-proteins, the amino acid content by group 

at GPCR interface can also be analysed at the website. In comparison with what was previously said 

when referring the residue group percentages of all the D2R – G-protein complexes at GPCR interface 

(for all remaining dopamine receptors this happened similarly, apart from D4R), can be seen that, 

when in contact with Gi1, dopamine receptors’ acid negatively residue content at the interface is, not 

only above average, but the higher value, topping nonpolar aliphatic residues.  This happens when the 

complexes considered involve Gi1, Gi2 and Gi3. When considering the remaining G-proteins, as Gs(lo), 

is noticed that the acid negatively charged residues’ percentage at GPCR’s interface drops well below 

the average. 

Analysing the interface of interaction of DR-Arr complexes, it was found that the interface is mostly 

defined by nonpolar aliphatic residues. The ARG and LEU are the most predominant residues of DR 

and Arrs, respectively, observed in the interface of DR-Arrs complexes. In DR complexes, the ARG 

residues involved in the interaction are present in TM3 of DR complexes when complexed to ARR2 

and in ICL2 of all DR-Arrs, except for D3R-Arrs. Similarly to the case of DR-Arr complexes, the interface 

of DR-G-protein complexes is primarily defined by nonpolar aliphatic residues. For D1R-, D2R-, and 

D3R-G-protein complexes, the most predominant residue in the interface of protein-protein 

complexes is GLU of DR complexes, for D4R-G-protein complexes the most predominant residue is 

LEU of D4R, and for D5R-G-protein complexes the most predominant residue is ARG of D5R. 

Concerning D1R-G-protein complexes, the GLU residues involved in the interaction are present mainly 

in ICL2 (except for D1R-Gi2 complex) and in ICL3 (with the exception of D1R-Gs complexes). Also, the 

GLU residue can be observed in TM6 of D1R-Go complex. 

4.1.2B Energy by area and atom positioning 

Regarding the energy by area, as can be seen in the online server on the ‘DR COMPLEX STRUCTURE’ 

tab, selecting the ‘Area/Energy’ interfacial feature, there are no large variations between all the 

complexes considered. Should, nevertheless, be noted that Gs proteins (Gs(lo) and Gs(sh)) have higher 

values for both polar and apolar energy by area and, consequently, the total is also higher than in 

other complexes. The arrestins’ complexes, on the other hand, always stand below the average energy 

by area. Regarding the positioning of the atoms (surface or buried), the pattern is very similar to that 

of energy by area, with no large variances among all complexes. Gs proteins have more surfaced and 

buried atoms, while Arrs have less. 

4.1.2C Evolutionary conservation and structural features 

Evolutionary conservation values (Consurf and EVFold) were identified to be similar for the interfaces 

in all complexes, however, it is to note that its values were above average, regarding the whole 
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complexes. Consurf, with a per definition average value of 5 has, on the interface’s residues, a value 

of usually above 6 (see Figure 9). Similarly, EVFold values for interface residues are slightly above 

average for interface residues. As can be also seen in Figure 9, the amount of HB/SB is around 16. This 

value varies for all the complexes but, most importantly, varies among substructures, as will be seen 

further ahead. 

 

 

Figure 9: HB/SB, EVFold and Consurf values at the interface of GPCRs on D5R-G-protein complexes 

 

4.1.3 Complex substructures interface characterization 

In the previous subsection the whole complex interface relevant information was assessed. In the 

present subsection, information regarding the monomers is analysed. In particular, GPCRs’ 

substructures ICL1, ICL2, ICL3 and HX8 were considered, as previous studies indicated them as the 

more prone to interact sub structures, in the complexes formed. As before, highlights will be given, 

since the website can be consulted for full analysis information. 

4.1.3A Surface Area 

The evaluation of surface area with both Intersurf and Cocomaps stands as a preliminary important 

characteristic on complex assessment, since it indicates the amount of residues and, overall, the 

importance of the substructure for complex formation. 

In order to characterize the surface area of D3R-G-protein complexes, table 10 shows the range of 

values Intersurf and Cocomaps’ surface area measure for each substructure, the same ranges being 

similar to all complexes involving G proteins. Regarding ICL1, can be seen that surface area is usually 

the smallest of the substructures assessed (Table 10). Gi1, Gi2 and Gi3 have close to none surface area 
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at ICL1, while Go and Gob have absolutely none. Gs(lo), Gs(sh) and Gz, on the other hand, display 

higher values.  

 

Table 10: Surface area range by substructure, as evaluated for the dopamine receptor – G-protein complexes 

 Surface area metrics ICL1 ICL2 ICL3 HX8 

DR – G proteins 

complexes 

Intersurf 0-20 350-500 300-550 0-90 

Cocomaps 0-50 250-500 250-500 20-140 

 

ICL2 has less surface area on the complex involving Gq (D3R-Gq) than in any other of the complexes 

with D3R considered. Regarding ICL3, that for G-proteins has similar surface area values as those of 

ICL2, can be seen that in dopamine receptors in complex with Gs(lo) and Gs(sh) ICL2 tends to have 

higher values. Regarding Gi1, Gi2 and Gi3, D3R is the receptor that, when in complex, displays larger 

surface area. 

Considering the HX8 surfaces areas on DR-G protein complexes, they are the second lowest, however, 

they peak substantially for D5R-G-protein complexes. Complexes involving Go, Gob and Gq proteins 

have close to no surface area at dopamine receptors’ HX8, when interacting with the G-proteins. Gi1, 

Gi2 and Gi3 are the G proteins for which D2R’s HX8 surface area values are higher. D5R, on the other 

hand has higher surface area values for Gs(lo), Gs(sh) and Gz related complexes. When considering 

arrestins’ complexes, the surface area at ICL1 is always higher than for G proteins. At ICL2, ICL3 and 

HX8 arrestins’ complexes almost always have higher surface areas, however, exceptions arise, 

particularly da complexes with Gs proteins. The heatmap present in Figure 10 depicts the surface areas 

evaluated by Intersurf, by substructure, for all the complexes, and aims at giving an overall picture of 

all the cases, while also clustering the complexes based on their surface area similarity. The data used 

to build is present in the annexed tables, and the individual graphical display is available at the 

webserver. 
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Figure 10: Heatmap reporting the interface surface area for ICL1, ICL2, ICL3 and HX8, at all the complexes analysed 

 

4.1.3B Hydrogen Bonds and Salt Bridges 

Hydrogen and Salt Bridges are main intervenients on the quaternary structure of proteins, for such 

reason, their identification is of utmost importance for the identification of the most relevant 

substructures on monomer interaction, regarding complexes. 

HB/SB are present in all complexes, although they exhibit different patterns among the complexes’ 

substructures. Regarding the tables annexed, can be seen that it is rare the case in which HB/SB are 

not present at either ICL1, ICL2, ICL3 and HX8 in a percentage above 90%. For such, once again, these 

substructures were considered to pinpoint the HB/SB location. At ICL1, the substructure in which 

HB/SB appear less commonly, in many complexes these are completely absent, however, at the 

complexes involving arrestins they appear more commonly than in the complexes involving G-

proteins, still in very low amounts. Regarding ICL2, at D1R complexes there is a larger amount of HB/SB 

at Gi1, Gi2 and Go, however being lower at Gs(lo) and Gs(sh). Considering D2R complexes, the trend 

continues, appearing more HB/SB at the ICL2 of Gi1, Gi2 and Gi3. At D4R’s ICL2 the highest amount of 

HB/SB occurs for the complex with Gt2, and at D5R in both complexes involving arrestins. 

ICL3 has higher amounts of HB/SB in the complexes involving arrestins and D1R, however, the opposite 

occurs at D2R, where complexes with G proteins have more HB/SB. Regarding the G-proteins in 

complex with D1R, the amount of HB/SB at the ICL3 interfaces with Gi1, Gi2 and Go is lower than at 
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Gs(lo) and Gs(sh). In the complexes involving D2R, Go and Gz have the higher counts at ICL3. At D4R 

Gz, ICL3 has the higher amount of HB/SB, and arrestins have the lowest. T  D5R’s ICL3, arrestins have 

the lowest amounts of HB/SB and Gs(lo) and Gs(sh) have the highest amounts of HB/SB. Due to the 

overall low amounts of HB/SB at HX8, and, contrary to ICL1, not particularly favouring any kind of 

complex, at this substructure there does not seem to be any major tendency to point out. A summary 

of all that was said is presented in the heatmap on Figure 11. All the data used to build it is present at 

the tables in the annexes. D4R, overall, displays more SB/HB with G-proteins. ICL3 is the substructure 

with the most HB/SB, followed by ICL2. 

 

Figure 11: HB/SB heatmap displaying occurrence for ICL1, ICL2, ICL3, HX8, other locations and total, for all complexes 

 

4.1.3C Interacting residues 

Interacting residues can be assayed depending on their distance to other residues. The measurement 

of these pairs of residues was performed with the use of module biopython, via a python script, in 

which was included Weinstein numbering, at TMs. To visualize the interacting pairs of residues, the 

module circlize, by R software deploy, was used. All the graphs built are available on the webserver, 

on the tab ‘INTERPLOTS’. In the graphs produced, the residues were considered as interacting if they 

were standing at a distance below 8Å, as was considered at COCOMAPS to define interfacial residues. 

In the graphs, the bottom half of the circle is always considered to be the GPCR, whereas the upper 

half represents the residues of the G-protein or arrestin. The lines connecting the several sections 

indicate the residues pairing. GPCRs were showed as subdivided in their substructures, TMs, ICLs and 

HX8; the ECLs and the residues before TM1 were considered as ‘other’, since they are not expected to 
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interact, as in fact they never did. Here will be presented some of these interaction plots, the 

remaining can be found at the webserver. 

 

Figure 12: Interaction plot between ARR3 and D1R 

 

Figure 12 shows the interacting residues between ARR3 and D1R. Although some differences between 

ARR2 and ARR3 were shown, when interacting with GPCRs, it is overall important to notice particularly 

the differences towards GPCRs complexes with G-proteins. Interacting residues at ICL1, when 

interacting with arrestins, although scarce, are a lot more frequent than when considering complexes 

with G-proteins. Furthermore, ICL2 and ICL3 seem to, in both cases, be highly populated with 

interacting residues. Another substructure had consistently a motif of residues, which was TM7/HX8, 

in which the same set of 3 or 4 residues, or physicochemical similar residues, was always present. 

Regarding G-proteins’ interactions with GPCRs can be pointed out large amounts of interactions at 

both ICL2 and ICL3, as well as the motif at TM7/HX8. However, the most striking founding was to 

notice similar interacting residue patterns with similar G-proteins, that did not appear in G-proteins 

not so similar. This allows to pinpoint not only regions but also residue patterns or singular residues 
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as particularly important and selective for different G-proteins. The TM residues implicated on 

interactions, for all the complexes, are all close to the ICLs, which reinforces the importance of these 

substructures for the interaction with intracellular partners. 

The structural features concerning the interaction between ARR2 and ARR3 and each of the five 

subtypes of DR complexes exhibit a plethora of common characteristics, more than simply identifying 

interactions between with the substructures, patterns can be unveiled. As seen before, both ARR2 

and ARR3 interact with ICL2 and HX8 of all DR complexes. In ICL2 domain of DR complexes, Arrs bind 

to a four amino acid residue pattern composed of PRO, a nonpolar aromatic residue for D1-like 

receptors (PHE) or a nonpolar aliphatic residue for D2-like receptors (MET for D2R, VAL for D3R, and 

LEU for D4R), and two hydrophilic amino acid residues (GLU and ARG for D1R; ASN and THR for D2R; 

GLN and HIS for D3R; ASN and ARG for D4R; LYS and ARG for D5R). Regarding the HX8 domain of DR 

complexes, Arrs interact with TM7/HX8 through PHE, except for the ARR3-D5R complex, ASN, a 

nonpolar aliphatic residue (ALA for Arrs-D1R, Arrs-D4R, and Arrs-D5R; ILE for Arrs-D2R and Arrs-D3R), 

and an acid negatively charged residue (ASP for Arrs-D1-like receptors; GLU for Arrs-D2-like receptors). 

Moreover, Arrs interact with the ICL1 and ICL3 domains of D1-like receptors, with the TM7 domain of 

D1R, D2R, D3R, and D4R, with the TM3 domain of D2R, and with the TM5 domain of D4R. Analysing 

the residues involved in the interaction of Arrs with the respective domains, it was found that Arrs 

bind to SER and ALA residues of the ICL1 domain of D1R and D5R, respectively, and interact with PHE 

and ASN residues of the TM7 domain of D1R, D2R, D3R and D4R, for Arrs-D1R, Arrs-D2R, Arrs-D3R, 

and Arrs-D4R complexes. Concerning the ICL3 domain of D1-like receptors, Arrs bind to GLN residue 

of D1R and to LEU and GLU residues of D5R. In addition, Arrs interact with ALA of TM3 domain of D2R 

and with GLN residue of TM5 of D4R. 

A careful analysis of the structural features of Arrs with each DR subtype was performed. Regarding 

the Arrs-D1R complexes, it was observed that Arrs interact with ICL1, ICL2, ICL3, and TM7/HX8 of DR 

complexes. More specifically, Arrs bind to SER residue of ICL1 and to GLN residue of ICL3 of D1R. 

Common interaction patterns were detected by analysing the interaction of Arrs with ICL2 and with 

TM7/HX8. In fact, Arrs interact with PRO, PHE. GLU, and ARG residues of ICL2 and with PHE, ASN, ALA, 

and ASP residues of TM7/HX8 of D1R. Considering the Arrs-D2R complexes, Arrs interact with TM3, 

ICL2, and TM7/HX8. More specifically, Arrs bind to ALA residue of TM3 domain, with MET, PRO, MET, 

ASN, and THR residues of ICL2, and with PHE, ASN, ILE, and GLU residues of TM7/HX8 of D2R. 

Regarding the Arrs-D3R interaction, Arrs interact with ICL2 and TM7/HX8 domains of D3R. More 

specifically, Arrs bind to MET, PRO, VAL, GLN, and HIS residues of ICL2, and PHE, ASN, ILE, and GLU 

residues of TM7/HX8 of D3R. The ICL2, TM5 and TM7/HX8 motifs of D4R are involved in the interaction 

with Arrs. By analysing the amino acid residues of the interacting structural motifs on the interface, it 
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was observed that Arrs interact with PRO, LEU, ASN, and ARG residues of ICL2 domain, with a TRP 

residue of TM5 domain, and with PHE, ASN, ALA, and GLU residues of TM7/HX8 domain of D4R. The 

ICL1, ICL2, TM5, ICL3, and TM7/HX8 domains of D5R are involved in the interaction with Arrs. More 

specifically, Arrs bind to ALA of ICL1 domain, PRO, PHE, LYS, and ARG residues of ICL2 domain, and 

ASN, ALA, and ASP of TM7/HX8 domain of D5R.  

 Analysing the interaction of each Arr subtype with the five DR subtypes, allowed us to observe that 

ARR2 interacts with ICL1, TM3, ICL2, and TM7/HX8 of DR complexes, and with TM5 of D1-like receptors 

and D4R, and ARR3 interacts with ICL2 and TM7/HX8 of DR complexes, and with ICL1 and ICL3 of D1-

like receptors. 

Concerning the ARR2-DR complexes, it was observed that ARR2 interacts with THR residue of ICL1 of 

D2-like receptors. Additionally, ARR2 binds to ARG and a nonpolar aliphatic residue (ILE for D1-like 

receptors; ALA or VAL for D2-like receptors) of TM3 domain. Moreover, ARR2 interacts with PHE, ASN, 

a nonpolar aliphatic residue (ALA for D1-like receptors; ILE for D2-like receptors), and an acid 

negatively charged residue (ASP for D1-like receptors; GLU for D2-like receptors) of TM7/HX8 domain 

of DR complexes. Regarding the ICL2 domain, ARR2 interacts with PRO, a nonpolar aromatic residue 

for D1-like receptors (PHE) or a nonpolar aliphatic residue for D2-like receptors (MET for D2R, VAL for 

D3R, and LEU for D4R), and two hydrophilic residues (GLU and ARG for D1R; ASN and THR for D2R; 

GLN and HIS for D3R; ASN and ARG for D4R; LYS and ARG for D5R) of DR complexes. 

Analysing the ARR3-DR complexes, it was found that ARR3 interacts with PRO, a nonpolar aromatic 

residue for D1-like receptors (PHE) or a nonpolar aliphatic residue (MET for D2R, VAL for D3R, and LEU 

for D4R), and two hydrophilic residues (GLU and ARG for D1R; ASN and THR for D2R; GLN and HIS for 

D3R; ASN and ARG for D4R; LYS and ARG for D5R) of ICL2 domain of DR complexes. Additionally, ARR3 

binds to PHE, ASN, a nonpolar aliphatic residue (ALA for D1-like receptors and D4R; ILE for D2R and 

D3R), and a negatively charged residue (ASP for D1-like receptors and GLU for D2-like receptors) of 

TM7/HX8 of DR complexes. Moreover, ARR3 interacts with SER and ALA of ICL1 domain of D1R and 

D5R, respectively. In ICL3 of D1-like receptors, Arrs binds to GLN of D1R and to LEU and GLU of D5R. 

Similarly, to Arrs-DXR complexes, the interaction of the distinct G-protein isoforms with DR subtypes 

exhibits analogous structural features.  

Regarding the Gi1-DR complexes, it was found that Gi1 interacts with TM3, ICL2, ICL3, TM6, and 

TM7/HX8 domains of D1R, D2R, and D3R. More specifically, the interaction of Gi1 with TM3 domain 

of DR complexes involves ALA and a nonpolar aliphatic residue (ILE for D1R and VAL for D2R and D3R). 

Additionaly, Gi1 interacts with LYS, a nonpolar aliphatic residue (VAL and LEU for D1R, and ALA for 

D2R and D3R), and THR of TM6 of DR complexes. The interaction of Gi1 with ICL2 involves PRO, a 
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nonpolar aromatic residue for D1R (PHE) or a nonpolar aliphatic residue (MET for D2R; VAL for D3R), 

and two hydrophilic residues (GLU and ARG for D1R; ASN and THR for D2R; GLN and HIS for D3R). 

Considering the TM7/HX8 domains, Gi1 binds to PHE, ASN, and a nonpolar aliphatic residue (ALA for 

D1R; ILE for D2R), except for the Gi1-D3R complex. In addition, Gi1 interacts with LEU of TM5 of D2R 

and D3R. In ICL3 of DR complexes, a large amount of amino acid residues in the interface of Gi1-DR 

complexes are involved. Although ARG seems to be the common amino acid residue across all Gi1-DR 

complex interfaces in ICL3 domain, there is no clear residue pattern of interaction in this region. 

Concerning the interface of Gi2-DR complexes, the Gi2 can interact with TM3, ICL2, TM4, TM5, ICL3, 

TM6, and TM7 of D1R, D2R, and D3R. More specifically, Gi2 interacts with nonpolar aliphatic residues 

(ALA and VAL for D2R; ALA, VAL, and ALA for D3R) of TM3 domain, with ALA or LEU residues of TM5 

of D1R or D2R/D3R, respectively. Regarding TM7/HX8, it was found that Gi2 interacts with ASN residue 

present in the three DR complexes. In addition, Gi2 binds to PHE of D2R and D3R and to a nonpolar 

aliphatic residue of D1R (ALA) and D2R (ILE). Concerning the interaction of Gi2 with TM6 domain of 

DR complexes, it was detected a similar amino acid pattern of interaction when Gi2 binds to D2R and 

D3R, in which ALA and MET are the common residues. In addition, Gi2 interacts with LEU, VAL, and 

THR of TM6 of D1R. In ICL3 of DR complexes, a large amount of residues in the interface of Gi2-DR 

complexes are involved. Although ARG residue seems to be the common amino acid residue present 

in the interface of Gi2-DR complexes in ICL3 domain, there is no clear residue pattern of interaction in 

this region. 

By analysing the Gi3-DR complexes, it was found that Gi3 binds to TM3, ICL2, TM5, ICL3, TM6 and 

TM7/HX8 of D2R and D3R. More specifically, Gi3 interacts with ALA and VAL of TM3 and with LEU of 

TM5 of DR complexes. The interaction of Gi3 with TM6 and TM7/HX8 involves the LYS, ALA, and MET 

residues, and PHE, ALA, and ILE residues, respectively. Moreover, Gi3 binds to PHE, ASN, MET, a 

nonpolar aliphatic residue (MET for D2R; VAL for D3R), and two hydrophilic residues (ASN and THR for 

D2R; GLN and HIS for D3R) of ICL2 of DR complexes. Although there is a possible involvement of basic 

cationic residues in the interaction of Gi3 with ICL3 of D2R (LYS) and D3R (ARG), there is no common 

residue pattern of interaction in this region.  

Concerning the Go-DR complexes, it was observed that Go binds to TM3, ICL2, TM5, ICL3, TM6 and 

TM7/HX8 of D1R and D2R. More specifically, Go interacts with ALA and a nonpolar aliphatic residue 

(ILE for D1R; VAL for D2R) of TM3, with PRO, a nonpolar aromatic residue for D1R (PHE) or a nonpolar 

aliphatic residue for D2R (MET), and two hydrophilic residues (GLU and ARG for D1R; ASN and THR for 

D2R). Additionally, Go interacts with LYS and THR residues of TM6, and with ASN residue of TM7/HX8 

of D1R and D2R. Although there is no evident residue pattern of interaction of Go with TM5 and ICL3, 
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there is a possible involvement of nonpolar aliphatic residues and the ARG residue on the interaction 

with the TM5 and ICL3 motifs, respectively. 

Upon analysis of the Gz-DR complexes, it was found that Gz interacts with TM3, ICL2, TM5, ICL3, TM6 

and TM7/HX8 of D2R, D3R, D4R, and D5R. Regarding the TM3 motif, Gz binds to ALA and VAL of D2-

like receptors and ILE of D5R. Additionally, Gz interacts with PRO, a nonpolar aliphatic residue (MET 

for D2R; VAL for D3R; LEU for D4R), and two hydrophilic residues (ASN and THR for D2R; GLN and HIS 

for D3R; ARG and ASN for D4R) of ICL2 or only with PRO for D5R. Moreover, distinct interaction 

patterns were found in the interaction of Gz with TM5: Gz interacts with TYR and LEU of D2R and D3R, 

to TRP and GLU of D4R, and with ALA of D5R. Additionally, Gz binds to PHE and ASN of TM7/HX8 of 

D2-like receptors, and to ASN of TM7/HX8 of D5R. Although there are many residues and a possible 

involvement of basic positively charged residues (LYS and ARG) in the interaction of Gz proteins with 

ICL3 of DR complexes, there is no evident residue pattern of interaction in this region.  

Regarding the Gs(sh)-DR complexes, there is an involvement of TM3, ICL2, ICL3, TM6, and TM7/HX8 

in the interaction of Gs(sh) with D1R, D3R, and D5R. More specfically, the interaction of Gs(sh) to TM3 

is commanded by nonpolar aliphatic residues: ALA and ILE for D1R, ARG, ALA, VAL, and VAL for D3R, 

and ILE for D5R. In addition, Gs(sh) interacts with PRO, a nonpolar aromatic residue for D1-like 

receptors (PHE) or a nonpolar aliphatic residue for D3R (VAL), and two hydrophilic residues (GLU and 

ARG for D1R; GLN and HIS for D3R; LYS and ARG for D5R) of ICL2 of DR complexes. Moreover, the 

interaction of Gs(sh) with TM6 involves LYS and VAL for D1-like receptors, and ALA and MET for D3R. 

Regarding TM7/HX8, the Gs(sh) protein interacts with ASN residue. Additionally, the Gs(sh) proteins 

binds to PHE of TM7/HX8 of D1R and D3R. Although there are many residues and a possible 

involvement of ARG in the interaction of Gs(sh) proteins with the ICL3 domain of DR complexes, there 

is no evident residue pattern of interaction in this region.  

Concerning the Gs(lo)-DR complexes, it was found that Gs(lo) interacts with TM3, ICL2, ICL3, TM6 and 

TM7/HX8 of D1R, D3R, and D5R. More specifically, the interaction of Gs(lo) with TM3 is commanded 

by nonpolar aliphatic residues: ALA and ILE for D1R, ARG, ALA, VAL, and VAL for D3R, and ILE of D5R. 

In addition, Gs(lo) interacts with PRO, a nonpolar aromatic residue for D1-like receptors (PHE) or a 

nonpolar aliphatic residue (VAL) for D3R, and two hydrophilic residues (GLU and ARG for D1R; GLN 

and HIS for D3R; LYS and ARG for D5R), at ICL2. The interaction of Gs(lo) with TM6 involves LYS, VAL, 

and THR for D1-like receptors, and MET and VAL for D3R. Regarding the TM7/HX8 domain, Gs(lo) 

interacts with PHE, ASN, and a nonpolar aliphatic residue (ALA for D1-like receptors; ILE for D3R) of 

D1R and D3R. Although LEU and ALA are the common residues found in the interface of Gs(lo)-DR 

complexes in ICL3, there is no evident residue pattern of interaction in this region.  
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The interaction of G-proteins with each DR subtype was carefully analysed and several common 

structural features were uncovered. Regarding the interaction of D1R with their cognate G-proteins, 

it was found that G-proteins interact with TM3, ICL2, ICL3, TM6, and TM7/HX8 of D1R. More 

specifically, all cognate G-proteins bind to ALA and ILE residues, except for Gi2, which only interacts 

with ILE residue of TM3 of D1R. In addition, G-proteins interact with PRO, PHE, GLU, and ARG of ICL2 

of D1R, apart from Gi2, which only interacts with PRO, PHE, and ARG residues. Moreover, G-proteins 

bind to LYS, VAL, and THR of TM6, and to ASN and ALA of TM7/HX8 of D1R, except for Go, which only 

binds to ALA. Although there is no evident residue pattern of interaction concerning the ICL3 of D1R 

and their cognate G-proteins, a few recurring residues, particularly ALA and ARG, are observed in the 

interface of G-protein-D1R complexes.    

Through analysis of the interaction of G-proteins with D2R, it was found that G-proteins interact with 

TM3, ICL2, TM5, ICL3, TM6 and TM7/HX8. More specifically, G-proteins interact with ALA, VAL, and 

ALA of TM3 of D2R, except for Gi3, which only interacts with ALA and VAL. In addition, G-proteins bind 

to MET, PRO, MET, ASN, THR, and ARG of ICL2, to LEU of TM5, and to ARG, VAL, and LYS of ICL3 of 

D2R, with the exception of Gi3, which does not interact with ARG and VAL. Moreover, G-proteins bind 

to ALA, MET, and LEU residues of TM6, apart from Gi3, in which no interaction with LEU was observed, 

and to PHE, ASN, and ILE of TM7/HX8 of D2R, apart from Go, which only binds to PHE and ASN.  

Regarding the D3R-G-protein complexes, there is an involvement of TM3, ICL2, TM5, ICL3, TM6 and 

TM7/HX8 in the D3R-G-proteins interaction. More specifically, G-proteins interact with ALA and VAL 

of TM3, in addition Gs proteins (Gs(lo) and Gs(sh)) interact with ARG, ALA, VAL, and VAL of TM3 of 

D3R. Moreover, G-proteins bind to PRO, VAL, GLN, and HIS residues of ICL2, to LEU of TM5, and to PHE 

and ASN of TM7/HX8 of D1R, except for Gq, which only interacts with PHE. Regarding ICL3, many 

residues can be observed in the interface of D3R-G-proteins and the presence of many basic positively 

charged amino acid residues, in particular ARG, with the exception of GsL-D3R complex, in which no 

interaction with ARG was detected. No common residue pattern of interaction was uncovered in the 

ICL3. In TM6 of D3R, the interaction of G-proteins seems to be commanded by nonpolar aliphatic 

residues by ALA and MET, apart from GsL-D3R complex, which does not interact with ALA.   

Concerning the D4R-G-protein complexes, it was found that G-proteins interact with TM3, ICL2, TM5, 

ICL3, TM6 and TM7/HX8. More specifically, the interaction of G-proteins with D4R involves the ALA 

and VAL of TM3, the PRO, LEU, ASN and ARG of ICL2, and TRP and GLU of TM5 of D4R. Additionally, 

G-proteins bind to LYS, LEU, HIS, GLY, ARG, ALA, GLN and ARG of ICL3 domain, to GLU, LYS, ALA, MET, 

VAL and LEU of TM6, and to PHE, ASN and ALA of TM7/HX8 of D4R. Moreover, Gz and Gt2 proteins 

interact with GLY of TM4 of D4R.  
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Regarding the interactions of D5R-G-protein complexes, the structural domains TM3, ICL2, ICL3, TM6 

and TM7/HX8 are involved in the interaction of G-proteins with the receptor. More specifically, the G-

proteins interact with ILE residue of TM3, Gs proteins (Gs(lo) and Gs(sh)) interact with PRO, PHE, LYS 

and ARG residues of ICL2, and Gz only binds to PRO of ICL2 of D5R. In addition, G-proteins interact 

with LEU, GLU, ARG, ALA, ALA and LYS residues of ICL3, with LYS and VAL of TM6, and with ASN of 

TM7/HX8 of D5R. Moreover, Gz proteins interact with ALA of TM5 of D5R.   

4.1.4D Root-Mean-Square Deviation 

RMSD measurements were conducted in order to assess the most relevant changes between the 

templates and the modelled GPCR structures. These RMSD measurements target the substructures, 

in order to understand which ones are more highly affected by GPCR involvement in complex-related 

interactions. The results can be found in the web-server at the ‘STRUCTURAL RMSD’ subtab of the ‘DR 

COMPLEX STRUCTURE’ tab. 

 

 

Figure 13: ICL2 RMSD in comparison with the templates, for all the complexes 

 

Figure 13, above, highlights clearly that arrestins induce larger changes in ICL2 structure than G-

proteins, for which the RMSD values are not as relevant. Furthermore, particular substructures of 

some complexes show higher mobility. For instance, D4R, at ICL3, seems to be a lot more affected by 

G-protein coupling than the remaining complexes. Additionally, at ICL1, G-proteins seem to have a 

greater affect in the GPCR structure than in any other system. 
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4.2 Hot-Spot prediction  

The two datasets considered were subjected to all the six pre-processing approaches previously 

described and exposed in table 9: PCA, PCA Down, PCA Up, Scaled, Scaled Down and Scaled Up. We 

have used a 10 folded 10-cross-validation, using 70% of the instances for training and the remaining 

30% for testing. Apart from the simpler ML models enumerated before, some more should be 

mentioned, since they are highly recurrent in the upcoming results: ORFsvm, PDA, svmPoly, PLR and 

bagEarth. ORFsvm is an oblique RF, a RF composed of oblique decision trees, which differ from regular 

trees by taking as input linear combinations of features instead of a single feature. PDA is a penalized 

discriminant analysis – a form of discriminant analysis adapted to high-dimensionality datasets. 

SvmPoly is a polynomial kernel SVM – a form of SVM that represents the space with polynomials of 

the original variables instead of using the variables themselves. PLR is a regular logistic regression with 

both L1 and L2 regularization. Finally, the algorithms indicated as bagEarth are bagging algorithms that 

make use of MARS to perform regression analysis. 

4.2.1 Hot-Spot prediction from the original dataset – without coevolution 

Dataset selection and treatment as well as performance estimation are still major challenges in the 

application of ML to this field. To propose a general methodology, it is necessary to compare the 

performance of various algorithms and different data extraction techniques. Some classifiers (linear 

discriminant analysis or generalized linear models) come from statistics, others come from data 

mining (tree-based), and some are connectionist approaches (such as neural networks). All can behave 

differently when applied to different datasets. So, identifying the best classifier for a given problem is 

crucial, as the No-Free-Lunch Theorem from Wolpert [233] states: “The best classifier may not be the 

same for all the datasets”. In this work, structure- and sequence-based features were combined to 

evaluate 51 classifiers and compare their performance on six differently pre-processed datasets. 

These classifiers were subjected to hierarchical clustering and grouped into 5 different clusters. We 

have compared the algorithms’ performance in each cluster and chosen the best of each for a global 

comparison. Within Cluster I, the top performance methods were either based on neuronal networks 

(avNNet) or on random forests (rf, RRFglobal). While avNNet, a simple shallow neural network, and rf, 

a forest composed of decision trees, are somewhat simple methods, RRFglobal is a regularized version 

of a basic random forest, capable of selecting the best feature subset with higher accuracy. Within 

Cluster II, the best methods were either bagging (bagEarth and bagEarthSVM), support vector 

machines-based (ORFsvm) or additive logistic regression models (ada). Bagging (bootstrap 

aggregating) generates several training subsets out of the original training set and performs a majority 

vote of all models. ORFsvm uses oblique decision trees which can split the feature space obliquely 

instead of using solely axis-parallel feature space splitting enabling a finer tuning of the model, which 



73 
 

s explain their success. Ada uses boosting, creating an ensemble of logistic regression models, and 

therefore a stronger classification predictor. For Cluster III, the best results were achieved for 

regression models (glmboost and plr). Even though both are based on regression models, the key 

aspects of each is quite different as glmboost uses boosting to create an ensemble of generalized 

linear models, while plr uses L2 penalized regression models. L2 penalization is usually successful 

thanks to its ability to prevent overfitting by minimizing regression coefficients. Cluster IV was 

composed solely of SVM approaches. The most successful was svmPoly, which uses polynomial kernels 

of the original variables to construct a SVM, enabling it to act as a non-linear model. The other SVM, 

which was the best only in the PCA pre-sampling condition (with far worst F1-score, however), 

combines cost regularization that enables control over the smoothness of the fitted function, and a 

radial basis function that represents the input space as the distance between each vector. Cluster V 

features only discriminant analysis models (rda, amdai, pda and stepLDA) able to perform 

combinations of features for classification. Rda uses regularization to determine the best linear 

combination of features and fine tune their coefficients while amdai is essentially a regular 

discriminant predictor with slight alterations that render it capable of adapting to new classes in the 

testing set. Pda is a parametric discriminant classifier, which assumes a probability distribution for the 

population and stepLDA is a linear discriminant analysis featuring stepwise feature selection.  

The original dataset, without coevolutionary features, had 533 instances, of which 125 were HS, 

meaning around 24% of the instances were HS. The clustering of the various ML algorithms by their 

common characteristics allowed us to combine their results into a ML ensemble that uses rf, svmPoly 

and pda. Our predictor outperforms the currently available methods in the literature with an AUROC 

of 0.91, sensitivity of 0.98 and specificity of 0.94 on the test set. Up-sampling of the minor class was 

quite effective as it allowed us to work with a balanced dataset without losing any information on the 

major class. This novel approach for HS prediction can now be freely applied by researchers through 

the SpotOn webserver (http://milou.science.uu.nl/services/SPOTON/). Table 11 shows the individual 

best algorithms’ scores attained for the different experiments and the ensemble models for which 

they were used. For an overall comparison, only the individual methods will be considered. 

 

 

 

 

http://milou.science.uu.nl/services/SPOTON/
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Table 11: Best test results for the original dataset, achieved with the Scaled Up pre-processing 

Pre-

processing 

Metric Algorithms Ensemble models 

Scaled Up  Cluster I Cluster II Cluster III Cluster IV Cluster V Full Regression rf + svmPoly + pda 

C5,0 pda plr rf svmPoly 

AUROC 0.83 0.84 0.85 0.83 0.83 0.91 0.91 

Accuracy 0.91 0.88 0.85 0.90 0.90 0.95 0.95 

Sensitivity 0.68 0.76 0.84 0.71 0.68 0.98 0.98 

Specificity 0.98 0.91 0.85 0.96 0.97 0.85 0.85 

PPV 0.90 0.73 0.64 0.84 0.87 0.95 0.95 

NPV 0.91 0.93 0.95 0.91 0.91 0.94 0.94 

FDR 0.32 0.24 0.16 0.29 0.32 0.02 0.02 

F1-score 0.78 0.74 0.73 0.77 0.76 0.97 0.97 

 

4.2.2 Hot-Spot prediction with datasets with coevolutionary features 

After taking into consideration the results for the original dataset, the dataset “Allrows”, “Fold”, 

“Both” and “Complex” were subjected to the same computational approach. The best results per 

cluster are fully displayed in tables 7 to 9 (regarding the training results) and the tables 10 to 12 

(regarding the test results), in the annexes of this thesis. “Both” dataset results are not displayed as a 

large majority of the runs failed, likely due to the very small number of observations (55 instances). 

The top performance was attained for the “Fold” dataset as clearly stressed out by comparison with 

both “Allrows” and “Complex” datasets. The “Fold” dataset, with 65 HS (around 25% of the 264 

instances), yielded considerably higher AUROC values, up to 0.97, on the Scale Up pre-processing, 

considering the training instances, for which the correspondent test values yielded a AUROC of 0.90. 

Although the training values might be higher for some methods in “Allrows” and “Complex” datasets, 

the corresponding test results drop drastically, as can be seen on tables 12 and 13. 

However, the data must be taken into consideration by its particular characteristics, and, regarding 

HS detection, it is to note that, not only in the dataset used, but most likely also in any empirical 

protein experiment, the amount of HS will be low, usually by a large margin, in comparison to the 

amount of NS. This is a problem by itself, many ML models, given a much larger number of instances 

of one class than the others, tend to have misleading higher AUROC values. These models learn from 

experience and, with highly discrepantly populated classes, they do not have an amount of 

information adequate for their main purpose. Although the Up or Down pre-processing is useful to 
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deal with the unbalanced data, it is still limited to the information provided. Other methods such as 

SMOTE [234] could be used here and may be tested in the future. As AUROC is not able to capture the 

purpose of specifically predicting HS, we also gave attention to Sensitivity (TPR), as it is a metric that 

fits these requirements. However, the overall picture should not be overlooked, simply aiming at high 

TPR can also lead to high FPR. So, at the end our goal was to maximize AUROC, as well as TPR. 

 

Table 12: Metrics for the best training results 

 

 

 

 

 

 

Dataset “Fold” “Fold” “Allrows” “Allrows” “Complex” “Complex” 

Pre-processing PCA Up Scaled Up PCA Up Scaled Up PCA Up Scaled Up 

CLUSTER IV IV IV IV IV IV 

METHOD ORFlog ORFsvm ORFlog ORFsvm ORFlog ORFsvm 

AUROC 0.97 0.97 0.98 0.97 0.98 0.97 

Accuracy 1.00 1.00 1.00 1.00 1.00 0.99 

Sensitivity 1.00 1.00 1.00 1.00 1.00 1.00 

Specificity 1.00 1.00 1.00 1.00 1.00 0.99 

PPV 1.00 1.00 1.00 1.00 1.00 0.99 

NPV 1.00 1.00 1.00 1.00 1.00 1.00 

FDR 0.00 0.00 0.00 0.00 0.00 0.01 

F1-score 1.00 1.00 1.00 1.00 1.00 0.99 
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Table 13: Metrics for the test results corresponding to the best training results 

 

Tables 12 and 13 show, respectively, the best two results for the training runs for “Fold”, “Allrows” 

and “Complex” and the corresponding best test results. On a first notice, should be pointed out that 

the up-sampling pre-processing are the best training results, for all the datasets considered, which 

stresses out the importance of the size of the dataset, since up sampling allows the model to consider 

more instances than the other pre-processing approaches. Additionally, another overall point to stress 

is the dominance of cluster IV, which makes sense, since it is constituted by ORF approaches, that 

employ ensemble methods, which therefore tends to maximize the use of several models. 

Although the previous statements are straight forward in agreement with what was expected, both 

the value of having datasets with higher samplings and the value of ensemble models, the fact that 

the “Fold” dataset outperforms the “Allrows” dataset, even though it has only around half of the 

instances of “Allrows”, strikes as unusual. The “Allrows” performance, although not bad on the overall 

picture, is unexpected, since this dataset had the same number of observations as the SpotON dataset 

with a few additional features: Consurf, CoeViz and InterEV. By performing worse than most of the 

Dataset “Fold” “Fold” “Allrows” “Allrows” “Complex” “Complex” 

Pre-processing PCA Up Scaled Up PCA Up Scaled Up PCA Up Scaled Up 

CLUSTER IV IV IV IV IV IV 

METHOD ORFlog ORFsvm ORFlog ORFsvm ORFlog ORFsvm 

AUROC 0.82 0.90 0.70 0.72 0.71 0.66 

Accuracy 0.82 0.88 0.77 0.78 0.80 0.76 

Sensitivity 0.43 0.62 0.36 0.43 0.50 0.50 

Specificity 0.96 0.98 0.91 0.91 0.89 0.83 

PPV 0.82 0.93 0.60 0.62 0.56 0.45 

NPV 0.82 0.88 0.80 0.82 0.86 0.86 

FDR 0.80 0.07 0.56 0.38 0.44 0.55 

F1-score 0.20 0.74 0.56 0.51 0.53 0.48 
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five best methods assessed on the original dataset, it is suggested that the new features, included, 

caused the decrease in performance. 

The two examples regarding the “Fold” dataset listed in tables 12 and 13 showed relevantly better 

results in most metrics. This dataset was composed of 265 observations, and therefore was bigger 

than other datasets tested, with the exception of “Allrows”. ORFsvm displayed the higher AUROC, and 

performed well in almost every metric.  In the end, the best test scores, which are listed in table 14, 

were achieved on “Fold” dataset. 

 

Table 14: Best achieved scores by cluster at “Fold” dataset 

Pre-processing Metrics Algorithms Pre-processing 

 

CLUSTER 

 

PCA 

 

 

 

 

 

 

 

 

 

I II III IV V Scaled Up IV 

 

bagEarth lda glmboost ORFlog svmLinear ORFsvm 

AUROC 0.86 0.82 0.72 0.89 0.81 0.90 

Accuracy 0.86 0.83 0.76 0.87 0.78 0.88 

TPR 0.57 0.52 0.19 0.57 0.24 0.62 

TNR 0.96 0.95 0.96 0.98 0.98 0.98 

PPV 0.86 0.79 0.67 0.92 0.83 0.93 

NPV 0.86 0.84 0.76 0.86 0.78 0.88 

FDR 0.14 0.21 0.33 0.08 0.17 0.07 

F1-score 0.69 0.63 0.30 0.71 0.37 0.74 

 

Overall, the size of the sampling seems to have played a large role on the final outcoming. 

Nevertheless, this does not explain why the “Allrows” dataset performs worse than the “Fold” dataset, 

or, more importantly, than the original dataset without coevolution features. From this, we have to 

point out that the inclusion of these evolutionary-related information seems to be decreasing the 

performance of the methods. The explanation can be just the simple fact that the amount of genomic 

data used to calculated them was not enough to retrieve the overall mechanistic picture of the 

evolution at the binding interfaces. 



78 
 

4.2.3 Hot-Spot prediction with selected coevolutionary features 

The problem pointed at the end of the previous subsection suggests that CoeViz, InterEV and/or 

Consurf might be causing the drop of performance, since they are the only difference between 

“Allrows” and the original dataset. It seems that they might be lowering the overall performance of 

the models, suggesting that these features might be intervening as confounding variables. It seems 

that the EVFold features improve the overall method performance. For this reason, a new dataset was 

built, removing CoeViz and InterEV from the “Fold” dataset. Without changing the pre-processing 

approach, we run ML for this dataset (“Fold*”). Its testing results were then compared with the 

previous “Fold” dataset, since it had the best performing models and the best scores for the original 

dataset. The full test results are displayed in table 13 in the annexes section. 

Table 15 demonstrates that the overall AUROC for all methods increased in the new “Fold*” dataset. 

We observed that the overall sensitivity is greatly reduced. The cluster with the best AUROC was 

chosen, for both the “Fold”, “Fold*” datasets and the original dataset. The results are displayed in 

figures 14 and 15. The best AUROC for the dataset after removing the features was achieved with the 

scaled pre-processing (‘Fold* Scaled’, in the same Figures). The best AUROC for the dataset before the 

removal of the features occurred with PCA pre-processing (‘Fold PCA’). Finally, the best AUROC for the 

original dataset was achieved with the scaled up pre-processing (‘Original Scaled Up’). The later 

dataset displays the best AUROC results (Figure 14), whereas the sensitivity is greatly reduced in 

comparison. 

 

Table 15: Comparison of the scores attained before and after removing Coeviz and InterEV from “Fold” dataset 

 Fold Dataset with CoeViz and InterEV (“Fold”) Fold Dataset without CoeViz and InterEV 

(“Fold*”) 

 AUROC Sensitivity AUROC Sensitivity 

Average of all clusters and all 

pre-processing 

0.76 0.57 0.78 0.50 

Best of all clusters and all pre-

processing 

ORFsvm, Cluster IV, 

Scaled Up 

ORFpls, Cluster IV, 

Scaled Down 

Glmboost, Cluster III, 

Scaled 

svmRadial, Cluster IV, 

Scaled Up 

Value 0.90 0.86 0.92 0.84 

Best pre-processing PCA Scaled Down Scaled PCA Down 

Best average cluster value 0.82 0.73 0.88 0.71 
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Figure 14: Best AUROC for each of the experimental conditions 

 

Figure 15: Sensitivity correspondent to the best AUROC for each of the attempts 

The increase of AUROC displayed in the later attempt (in which they were absent), particularly in 

comparison with the first coevolution attempt, suggests that, as hypothesized, CoeViz and InterEV can 

be confounding variables. This, on the other hand, does not mean that all coevolutionary features are 
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confounding variables, since EVFold seems to improve the AUROC. The fact that, in comparison, 

“Allrows” performed worse than the original, even though the only difference were the CoeViz and 

InterEV features, supports this statement. The improvement with “Fold*” without CoeViz and InterEV, 

additionally, supports the statement that the lack of instances is critical on sensitivity scores, 

particularly when considering that the dataset was significantly smaller, with about half of the 

instances and HS. A further argument that supports the possibility of CoeViz and InterEV being 

confounding features is the fact that, in coevolutionary runs, the bagging algorithms performed 

particularly well. Since bagging algorithms work by performing bootstrap aggregating, they generate 

different conformations of the same dataset that order the instances differently, and select different 

features. The selection of features is not necessarily based on correlation, but rather simply blindly 

tries different approaches for the same model. For this reason, since confounding variables are 

independent and bagging algorithms can indiscriminately leave features out, the better than usual 

performance of these algorithms can be due to the fact that the best performing cases were leaving 

some of the confounding variables aside.  



81 
 

5. CONCLUSIONS AND FUTURE WORK 

This section will be split again in the two interconnected themes of the thesis. Regarding the GPCRs 

complexes, with the aim to understand and identify structural and interfacial patterns, it was noticed 

that the GPCRs and G-proteins present physicochemical complementarity, especially regarding 

residue content. Whereas most groups’ percentage stays unchanged between the two interfaces of 

the complexes, acid negatively charged and basic positively charged residue groups show more 

differences, suggesting the residues belonging to this groups are some of the most important for 

coupling. Glutamate’s high percentage at GPCR’s interface suggest its role as a major contributor to 

complex formation. However, the same pattern was not found in D4R-G-protein complexes. 

Dopamine receptors, when in complex with proteins Gi1, Gi2, Gi3 have abnormally high acid negatively 

charged residue percentages, suggesting these residues are important, not only at stablishing 

interface between G-proteins and dopamine receptors, but also at discriminating between the 

different G-proteins. In terms of evolutionary information, the residues at the interface were 

consistently more conserved than the remaining, which reports on the importance of these for the 

establishment of meaningful structural and functional motifs. Surface area is a good indicator of the 

substructures that are most involved in complex interactions. We saw that ICL1 was more related to 

GPCRs’ interaction with arrestins than with G-proteins, particularly when the complexes involve both 

arrestins and D2-like receptors. Both ICL2 and ICL3 were heavily involved in interactions with both 

arrestins and G-proteins. All the arrestins and, in particular, complexes involving D5R showed high 

surface areas associated to the interaction with TM7/HX8. HB/SB content was heavily concentrated 

at the ICLs, as can be seen on the Heatmap displayed in Figure 11, and should be noted that the few 

HB/SB classified as ‘Other’ are present on the residues at TMs very close to the ICLs, which supports 

the statement that ICLs play a major role in GPCRs’ interaction with G proteins and arrestins. ICL1 and 

HX8 have low amounts of HB/SB, although still significative. ICL3 is the substructure most heavily 

populated with HB/SB. G-protein and D4R complexes exhibit higher than most of others amounts of 

HB/SB. More than particular interacting residues, as can be seen on the circular plots, residue coupling 

motifs can be identified as recurring at GPCRs, when interacting with the different partners, while 

other motifs display a more selective role, only appearing for specific G protein types or the arrestins. 

This is identified for the arrestins, particular sets of G-proteins (Gs(sh) and Gs(lo); Gi1, Gi2 and Gi3; Go 

and Gob, Gz) and particular dopamine receptors, since, particularly between D1-like and D2-like, the 

differences in specific motifs arise, not only regarding the partner, but also the GPCR itself. In 

particular, D4R seems to adopt slightly different patterns, suggesting stronger interactions (as already 

did regarding HB/SB) and patterns were identified for D1-like and D2-like dopamine receptors. The 

patterns might not exactly concern particular amino acids, but rather physicochemical repeated 
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motifs, such as occurs at TM7/HX8, in which three or four residues appear insistently in all complexes, 

however not being exactly the same residues, they exhibit similar physicochemical profiles that 

translates into a well-defined physicochemical pattern on this region, for all the complexes. This region 

seems to be a competition site for complex formation due to the fact that it appears in all the 

complexes assessed. ICL2 and ICL3 motifs also seem to emerge as competition promoting motifs, 

although more specific, since they are not the same for all the complexes but rather different specific 

residues or physicochemical patterns that repeatedly appear at the interaction with specific G proteins 

groups (Gs(sh) and Gs(lo); Gi1, Gi2 and Gi3; Go and Gob, Gz) or arrestins, laying out the importance of 

these patterns on the formation of the specific complexes. The main conclusions of this work will be 

shared with experimental partners that will experimentally test the possibility of changing the 

coupling of the dopamine receptors towards different partners by performing simple amino acid 

mutations at the interface.  

Regarding the second part of the thesis, the detection of HS employing ML with and without 

coevolutionary features, the main aim was to surpass the previously best models, available in the 

literature. Here, we were able to establish a new method and a user-friendly web-server: SpotON. Due 

to the high relevance of coevolution in literature as a promising tool to better characterize protein-

based interfaces, we have also checked if the incorporation of this kind of information would increase 

the performance of the attained method. The performance of the various ML algorithms in the dataset 

with coevolutionary features constituted of the same observations of the original dataset (“Allrows”) 

performed was poor. This seems to indicate that, if the in-build feature selection at the different 

algorithms was performed correctly, the added variables, CoeViz, InterEV and ConSurf were all 

independent features that were leading to a decrease in performance. This suggests that, although 

independent, they have no causal relation to the class variable, thus not contributing in the 

performance of the model, but rather introducing noise in the dataset that cannot be excluded by 

common feature selection methods, usually based on variable independency. If these variables were 

indeed independent but still yield clearly worse results, they are most likely confounding variables. 

Considering the results of the datasets with coevolutionary features, and the hypothesis of 

confounding variables being present, there is another difficulty added: not all the datasets have the 

same amount of observations as the original dataset, due to unavailability from the external servers. 

In fact, the best performing dataset was the “Fold” dataset, even better than the “Allrows” dataset 

(the dataset with the original features and CoeViz, Consurf and InterEV), even tough it was constituted 

by only about one third of the samples of the original. This suggests that the EVFold features are 

contributing to increase the performance of the models. The “Fold” dataset, as was shown, yielded, 

for its best pre-processing – Scaled Up– overall better AUROC than that of the original dataset. 
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However, the sensitivity scores, relevant due to the final aim of predicting HS, were lower. Finally, was 

performed the same run, for the “Fold” dataset, upon removal of both CoeViz and InterEV (Fold*). 

Once again, the AUROC increased, whereas the sensitivity decreased. Overall, the two issues at hand, 

possibility of confounding variables and small sampling need to be tackled to properly understand the 

potential of coevolutionary features on HS prediction. Thus, future work will pass by looking in more 

details for the literature, maybe using text-mining algorithms to increase the biological sampling.  On 

the same time, it would be important that the amount of protein sequences necessary in all 

coevolution methods would increase. However, this fact depends on experimental sequence and it is 

out of our control as computational bioinformatics.  
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7. ANNEXES 

Table 1: D1-5R and ARR2 complexes' interface summary 

Complex D1R-

ARR2 

D2R- 

ARR2 

D3R- 

ARR2 

D4R- 

ARR2 

D5R-

ARR2 

POLAR area/energy 11562.14 11629.42 11443.62 11586.21 12226.51 

APOLAR area/energy 21608.76 22003.05 21862.27 21354.04 22920.89 

TOTAL area/energy 33170.90 33632.47 33305.89 32940.25 35147.40 

Number of surface atoms  3128.00 3185.00 3149.00 3154.00 3279.00 

Number of buried atoms 2151.00 1981.00 1979.00 1916.00 2145.00 

Protein DR D1R D2R D3R D4R D5R 

Number total interface aa 46.00 41.00 42.00 38.00 40.00 

Number  of amino   

acids in  the  interface  

(%) 

Nonpolar Aliphatic Glycine 0.00 0.00 7.14 7.89 0.00 

Alanine 6.52 7.32 7.14 5.26 7.50 

Valine 2.17 2.44 7.14 7.89 5.00 

Leucine 0.00 7.32 7.14 5.26 2.50 

Isoleucine 6.52 2.44 0.00 2.63 5.00 

Methionine 4.35 4.88 2.38 2.63 5.00 

Polar Uncharged Serine 13.04 12.2 2.38 5.26 12.50 

Threonine 2.17 12.20 11.90 10.53 2.50 

Cysteine 0.00 0.00 0.00 0.00 0.00 

Proline 4.35 2.44 9.52 7.89 2.50 

Asparagine 2.17 7.32 4.76 0.00 5.00 

Glutamine 6.52 7.32 7.14 2.63 10.00 

Basic Positively Charged Lysine 13.04 9.76 7.14 5.26 7.50 

Arginine 15.22 12.20 7.14 26.32 17.50 

Histidine 0.00 0.00 4.76 0.00 0.00 

Acidic Negatively 

Charged 

Aspartate 2.17 0.00 0.00 0.00 2.50 

Glutamate 4.34 2.44 4.76 2.63 2.50 

Nonpolar Aromatic Phenylalanin

e 

13.04 2.44 4.76 5.26 7.50 

Tyrosine 2.17 7.32 4.76 2.63 2.50 

Tryptophan 2.17 0.00 0.00 0.00 2.50 

Aliphatic Total 19.57 24.39 30.95 31.58 250 

Polar Total 28.26 41.46 35.71 26.32 32.50 
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Basic Total 28.26 21.95 19.05 31.58 25.00 

Acidic Total 6.52 2.44 4.76 2.63 5.00 

Aromatic Total 17.39 9.76 9.52 7.89 12.50 

Protein ARRX ARR2 ARR2 ARR2 ARR2 ARR2 

Number total interface aa 
 

42.00 37.00 41.00 38.00 43.00 

Number of interfacial 

amino   

acids (%) 

Nonpolar Aliphatic Glycine 7.14 5.41 9.76 5.26 9.30 

Alanine 9.52 8.11 9.76 7.89 6.98 

Valine 9.52 13.51 9.76 7.89 11.63 

Leucine 14.29 13.51 12.20 15.79 11.63 

Isoleucine 9.52 8.11 7.32 7.89 4.65 

Methionine 0.00 0.00 0.00 0.00 0.00 

Polar Uncharged Serine 0.00 0.00 0.00 0.00 0.00 

Threonine 4.76 8.11 4.88 5.26 6.98 

Cysteine 7.14 5.41 4.88 5.26 4.65 

Proline 7.14 2.70 7.32 5.26 4.65 

Asparagine 4.76 5.41 4.88 5.26 4.65 

Glutamine 0.00 0.00 2.44 2.63 2.33 

Basic Positively Charged Lysine 4.76 5.41 4.88 5.26 4.65 

Arginine 4.76 5.41 4.88 5.26 6.98 

Histidine 2.38 0.00 0.00 0.00 2.33 

Acidic Negatively 

Charged 

Aspartate 7.14 8.11 7.32 7.89 6.98 

Glutamate 2.38 2.70 2.44 2.63 2.33 

Nonpolar Aromatic Phenylalanin

e 

4.76 5.41 4.88 5.26 4.65 

Tyrosine 0.00 2.70 2.44 5.26 4.65 

Tryptophan 0.00 0.00 0.00 0.00 0.00 

Aliphatic Total 50.00 48.65 48.78 44.74 44.19 

Polar Total 23.81 21.62 24.39 23.68 23.26 

Basic Total 11.91 10.81 9.76 10.53 13.95 

Acidic Total 9.52 10.81 9.76 10.53 9.30 

Aromatic Total 4.76 8.11 7.32 10.53 9.30 

 
HB/SB Count 16.00 9.00 16.00 10.00 17.00 

Consurf Average 7.21 6.95 6.98 7.21 7.11 

EVFold Average 2.78 2.71 2.47 2.41 2.44 

ICL1 Intersurf 71.35 171.09 101.26 137.34 71.73 
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CocoMaps 182.03 212.33 145.52 231.24 195.14 

SB/HB 0.00 0.00 1.00 0.00 0.00 

ICL2 Intersurf 586.71 505.22 477.70 434.44 750.74 

CocoMaps 613.43 475.58 499.70 383.89 659.98 

SB/HB 5.00 1.00 3.00 3.00 11.00 

ICL3 Intersurf 738.99 595.54 598.68 627.86 403.08 

CocoMaps 893.33 667.67 924.77 665.79 497.02 

SB/HB 10.00 7.00 8.00 7.00 3.00 

HX8 Intersurf 104.04 109.02 157.95 86.23 88.99 

CocoMaps 191.50 129.84 183.47 106.21 193.62 

SB/HB 1.00 0.00 2.00 0.00 1.00 
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Table 2: D1-5R and ARR3 complexes' interface summary 

Complex D1R-

ARR3 

D2R- 

ARR3 

D3R- 

ARR3 

D4R- 

ARR3 

D5R-

ARR3 

POLAR area/energy 11245.21 11385.71 11249.77 11198.09 12111.13 

APOLAR area/energy 21772.86 22487.65 nan 22014.85 22943.53 

TOTAL area/energy 33018.07 33873.35 nan 33212.95 35054.67 

Number of surface atoms 3118.00 3209.00 3116.00 3165.00 3286.00 

Number of buried atoms 2099.00 1904.00 1950.00 1843.00 2076.00 

Protein DR D1R D2R D3R D4R D5R 

Number total interface aa 41.00 41.00 42.00 36.00 44.00 

Number  of 

 interfacial  

amino  acids (%) 

Nonpolar  

Aliphatic 

Glycine 0.00 0.00 7.14 8.33 0.00 

Alanine 9.76 7.32 9.52 8.33 11.36 

Valine 2.44 2.44 7.14 5.56 4.55 

Leucine 0.00 7.32 7.14 2.78 2.27 

Isoleucine 7.32 2.44 0.00 0.00 4.55 

Methionine 4.88 4.88 2.38 2.78 4.55 

Polar Uncharged Serine 12.20 9.76 2.38 5.56 11.36 

Threonine 4.88 12.20 14.29 8.33 2.27 

Cysteine 0.00 0.00 0.00 0.00 0.00 

Proline 4.88 2.44 9.52 8.33 2.27 

Asparagine 2.44 7.32 4.76 5.56 4.55 

Glutamine 4.88 4.88 9.52 2.78 9.09 

Basic Positively Charged Lysine 12.20 12.20 7.14 2.78 6.82 

Arginine 12.20 12.20 4.76 27.78 15.91 

Histidine 0.00 0.00 4.76 0.00 0.00 

Acidic Negatively 

Charged 

Aspartate 2.44 0.00 0.00 0.00 2.27 

Glutamate 4.88 4.88 2.38 2.78 2.27 

Nonpolar Aromatic Phenylalanin

e 

9.76 2.44 2.38 5.56 11.36 

Tyrosine 2.44 7.32 4.76 2.78 2.27 

Tryptophan 2.44 0.00 0.00 0.00 2.27 

Aliphatic Total 24.39 24.39 33.33 27.78 27.27 

Polar Total 29.27 36.59 40.48 30.56 29.55 

Basic Total 24.39 24.39 16.67 30.56 22.73 
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Acidic Total 7.32 4.88 2.38 2.78 4.55 

Aromatic Total 14.63 9.76 7.14 8.33 15.91 

Protein ARRX ARR3 ARR3 ARR3 ARR3 ARR3 

Number Total interface aa 
 

40.00 39.00 41.00 35.00 40.00 

Number  of  

amino  acids 

 in  the  interface  

(%) 

Nonpolar Aliphatic Glycine 7.50 5.13 9.76 5.71 10.00 

Alanine 10.00 10.26 9.76 8.57 7.50 

Valine 7.50 7.69 7.32 8.57 7.50 

Leucine 12.50 12.82 12.20 17.14 12.50 

Isoleucine 5.00 2.56 4.88 2.86 2.50 

Methionine 0.00 0.00 0.00 0.00 0.00 

Polar Uncharged Serine 7.50 7.69 7.32 8.57 7.50 

Threonine 7.50 7.69 4.88 5.71 7.50 

Cysteine 5.00 5.13 4.88 5.71 5.00 

Proline 7.50 2.56 7.32 5.71 5.00 

Asparagine 0.00 2.56 2.44 0.00 0.00 

Glutamine 0.00 2.56 2.44 2.86 2.50 

Basic Positively Charged Lysine 7.50 7.69 2.44 2.86 5.00 

Arginine 5.00 5.13 4.88 5.71 5.00 

Histidine 0.00 0.00 0.00 0.00 2.50 

Acidic Negatively 

Charged 

Aspartate 7.50 7.69 7.32 8.57 7.50 

Glutamate 2.50 5.13 4.88 2.86 2.50 

Nonpolar Aromatic Phenylalanin

e 

5.00 5.13 4.88 5.71 5.00 

Tyrosine 2.50 2.56 2.44 2.86 5.00 

Tryptophan 0.00 0.00 0.00 0.00 0.00 

Aliphatic Total 42.50 38.46 43.90 42.86 40.00 

Polar Total 27.50 28.21 29.27 28.57 27.50 

Basic Total 12.50 12.82 7.32 8.57 12.50 

Acidic Total 10.00 12.82 12.20 11.43 10.00 

Aromatic Total 7.50 7.69 7.32 8.57 10.00 

 
HB/SB Count 20.00 10.00 16.00 12.00 16.00 

Consurf Average 7.08 6.74 7.10 7.34 6.78 

EVFold Average 2.18 2.28 2.38 2.42 2.46 

ICL1 Intersurf 63.28 122.36 162.31 105.73 55.16 

CocoMaps 169.37 180.40 285.18 139.80 166.86 
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SB/HB 0.00 1.00 1.00 0.00 1.00 

ICL2 Intersurf 580.58 496.06 545.42 442.08 734.26 

CocoMaps 626.95 496.33 575.53 390.76 703.19 

SB/HB 7.00 3.00 6.00 2.00 7.00 

ICL3 Intersurf 759.74 553.67 600.16 551.16 373.53 

CocoMaps 829.64 689.65 839.10 560.88 424.29 

SB/HB 10.00 6.00 7.00 9.00 4.00 

HX8 Intersurf 95.54 106.02 162.71 87.17 114.55 

CocoMaps 122.31 103.71 169.9 105.42 220.88 

SB/HB 0.00 0.00 1.00 0.00 0.00 
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Table 3: D1R and G proteins complexes' interface summary 

Complex D1R-Gi1 D1R-Gi2 D1R-Go D1R-Gslo D1R-Gssh 

POLAR area/energy 12686.10 12534.40 11457.90 14010.30 13592.00 

APOLAR area/energy 23975.50 23420.30 23876.90 25353.90 24455.70 

TOTAL area/energy 36661.60 35954.70 35334.80 39364.10 38047.70 

Number of surface atoms 3249.00 3241.00 3129.00 3521.00 3430.00 

Number of buried atoms 2054.00 2068.00 2149.00 2164.00 2157.00 

Protein DR D1R D1R D1R D1R D1R 

Number total interface aa 22.00 31.00 28.00 29.00 36.00 

Number of  

amino  acids  

in  the  interface 

Nonpolar Aliphatic Glycine 4.50 3.20 7.10 0.00 0.00 

Alanine 0.00 6.50 3.60 6.90 5.60 

Valine 0.00 0.00 3.60 3.40 2.80 

Leucine 13.60 9.70 10.70 10.30 8.30 

Isoleucine 9.10 6.50 10.70 3.40 2.80 

Methionine 0.00 0.00 0.00 0.00 0.00 

Polar Uncharged Serine 0.00 3.20 0.00 0.00 0.00 

Threonine 4.50 3.20 7.10 6.90 8.30 

Cysteine 4.50 3.20 3.60 0.00 0.00 

Proline 0.00 0.00 7.10 6.90 11.10 

Asparagine 4.50 6.50 10.70 0.00 0.00 

Glutamine 4.50 3.20 3.60 13.80 11.10 

Basic Positively Charged Lysine 13.60 16.10 3.60 3.40 5.60 

Arginine 4.50 6.50 7.10 10.30 11.10 

Histidine 0.00 0.00 0.00 6.90 5.60 

Acidic Negatively Charged Aspartate 13.60 16.10 3.60 6.90 8.30 

Glutamate 18.20 12.90 10.70 6.90 5.60 

Nonpolar Aromatic Phenylalanine 4.50 3.20 3.60 3.40 2.80 

Tyrosine 0.00 0.00 3.60 10.30 11.10 

Tryptophan 0.00 0.00 0.00 0.00 0.00 

Aliphatic Total 27.30 25.80 35.70 24.10 19.40 

Polar Total 22.20 25.40 41.10 35.60 41.60 

Basic Total 18.20 22.60 10.70 20.70 22.20 

Acidic Total 31.80 29.00 14.30 13.80 13.90 

Aromatic Total 4.50 3.20 7.10 13.80 13.90 
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Protein Ga Gi1 Gi2 Go Gslo Gssh 

Number total interface aa 24.00 27.00 28.00 31.00 36.00 

Number  of 

 amino  acids 

 in  the  interface (%) 

Nonpolar Aliphatic Glycine 0.00 0.00 0.00 0.00 0.00 

Alanine 16.70 22.20 21.40 3.20 19.40 

Valine 4.20 3.70 3.60 6.50 5.60 

Leucine 8.30 3.70 3.60 9.70 2.80 

Isoleucine 8.30 7.40 14.30 3.20 8.30 

Methionine 0.00 0.00 0.00 0.00 0.00 

Polar Uncharged Serine 0.00 3.70 0.00 0.00 5.60 

Threonine 8.30 7.40 7.10 3.20 8.30 

Cysteine 0.00 0.00 0.00 0.00 0.00 

Proline 8.30 7.40 3.60 6.50 5.60 

Asparagine 4.20 3.70 3.60 0.00 2.80 

Glutamine 4.20 3.70 3.60 12.90 5.60 

Basic Positively Charged Lysine 8.30 11.10 10.70 6.50 11.10 

Arginine 12.50 11.10 14.30 12.90 8.30 

Histidine 0.00 0.00 0.00 9.70 0.00 

Acidic Negatively Charged Aspartate 0.00 0.00 0.00 9.70 0.00 

Glutamate 8.30 7.40 7.10 3.20 5.60 

Nonpolar Aromatic Phenylalanine 8.30 7.40 7.10 3.20 5.60 

Tyrosine 0.00 0.00 0.00 9.70 5.60 

Tryptophan 0.00 0.00 0.00 0.00 0.00 

Aliphatic Total 37.50 37.00 42.90 22.60 36.10 

Polar Total 31.00 32.9 22.90 29.60 37.80 

Basic Total 20.80 22.20 25.00 29.00 19.40 

Acidic Total 8.30 7.40 7.10 12.90 5.60 

Aromatic Total 8.30 7.40 7.10 12.90 11.10 

 
HB/SB Count 13.00 11.00 17.00 15.00 11.00 

Consurf Average 6.20 6.50 5.40 6.00 6.30 

EVFold Average 3.10 3.30 2.80 3.20 3.60 

ICL1 Intersurf 0.00 0.00 0.00 32.20 35.70 

CocoMaps 17.80 0.00 0.00 57.60 57.90 

SB/HB 0.00 0.00 0.00 0.00 0.00 

ICL2 Intersurf 442.40 478.80 505.60 542.10 542.60 
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CocoMaps 369.60 431.30 365.50 565.70 501.70 

SB/HB 7.00 7.00 7.00 3.00 1.00 

ICL3 Intersurf 250.90 321.68 460.65 425.52 693.92 

CocoMaps 266.49 351.78 501.10 522.78 727.82 

SB/HB 2.00 2.00 7.00 7.00 7.00 

HX8 Intersurf 17.10 22.3 0.00 36.80 0.00 

CocoMaps 26.8 25.21 0.00 34.20 68.40 

SB/HB 1.00 1.00 0.00 2.00 1.00 
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Table 4: D2R and G proteins complexes' interface summary 

Complex D2R-Gi1 D2R-Gi2 D2R-Gi3 D2R-Go D2R-Gz 

POLAR area/energy 12857.20 12503.30 12253.90 11407.50 12491.50 

APOLAR area/energy 23144.00 22856.50 23261.90 22584.00 23438.80 

TOTAL area/energy 36001.20 35359.80 35515.90 33991.40 35930.40 

Number of surface atoms 3234.00 3198.00 3192.00 3059.00 3282.00 

Number of buried atoms 1956.00 1998.00 2009.00 2106.00 1953.00 

Protein DR D2R D2R D2R D2R D2R 

Number total interface aa 23.00 25.00 25.00 27.00 26.00 

Number  of  

amino  acids  

in  the  interface  (%) 

Nonpolar Aliphatic Glycine 4.30 8.00 4.00 7.40 3.80 

Alanine 4.30 8.00 0.00 7.40 3.80 

Valine 0.00 0.00 0.00 3.70 0.00 

Leucine 13.00 12.00 12.00 11.10 11.50 

Isoleucine 8.70 8.00 8.00 11.10 11.50 

Methionine 0.00 0.00 0.00 0.00 0.00 

Polar Uncharged Serine 0.00 0.00 0.00 0.00 3.80 

Threonine 4.30 4.00 4.00 3.70 3.80 

Cysteine 4.30 4.00 4.00 3.70 0.00 

Proline 0.00 0.00 0.00 0.00 0.00 

Asparagine 4.30 4.00 4.00 7.40 3.80 

Glutamine 0.00 0.00 0.00 3.70 7.70 

Basic Positively Charged Lysine 13.00 12.00 8.00 7.40 0.00 

Arginine 8.70 8.00 12.00 7.40 15.40 

Histidine 0.00 0.00 0.00 0.00 0.00 

Acidic Negatively Charged Aspartate 13.00 12.00 8.00 3.70 3.80 

Glutamate 17.40 16.00 24.00 14.80 19.20 

Nonpolar Aromatic Phenylalanine 4.30 4.00 4.00 3.70 3.80 

Tyrosine 0.00 0.00 8.00 3.70 7.70 

Tryptophan 0.00 0.00 0.00 0.00 0.00 

Aliphatic Total 30.40 36.00 24.00 40.70 30.80 

Polar Total 16.00 15.00 15.00 23.50 24.20 

Basic Total 21.70 20.00 20.00 14.80 15.40 

Acidic Total 30.40 28.00 32.00 18.50 23.10 



105 
 

Aromatic Total 4.30 4.00 12.00 7.40 11.50 

Protein Ga 
 

Gi1 Gi2 Gi3 Go Gz 

Number total interface aa 
 

25.00 23.00 23.00 27.00 28.00 

Number  of 

 amino  acids  

in  the  interface  (%) 

Nonpolar Aliphatic Glycine 0.00 0.00 0.00 0.00 0.00 

Alanine 4.00 4.30 0.00 7.40 7.10 

Valine 8.00 4.30 8.70 11.10 7.10 

Leucine 8.00 8.70 4.30 7.40 7.10 

Isoleucine 8.00 4.30 8.70 3.70 7.10 

Methionine 8.00 8.70 8.70 11.10 7.10 

Polar Uncharged Serine 4.00 4.30 4.30 3.70 7.10 

Threonine 4.00 4.30 4.30 3.70 7.10 

Cysteine 0.00 0.00 0.00 0.00 0.00 

Proline 4.00 4.30 4.30 3.70 3.60 

Asparagine 8.00 8.70 8.70 3.70 7.10 

Glutamine 0.00 0.00 0.00 0.00 0.00 

Basic Positively Charged Lysine 12.00 13.00 13.00 11.10 10.70 

Arginine 24.00 26.10 26.10 25.90 21.40 

Histidine 0.00 0.00 0.00 0.00 0.00 

Acidic Negatively Charged Aspartate 0.00 0.00 0.00 0.00 0.00 

Glutamate 0.00 0.00 0.00 0.00 0.00 

Nonpolar Aromatic Phenylalanine 4.00 4.30 4.30 3.70 3.60 

Tyrosine 4.00 4.30 4.30 3.70 3.60 

Tryptophan 0.00 0.00 0.00 0.00 0.00 

Aliphatic Total 36.00 30.40 30.40 40.70 35.70 

Polar Total 25.00 26.70 26.70 18.80 32.00 

Basic Total 36.00 39.10 39.10 37.00 32.10 

Acidic Total 0.00 0.00 0.00 0.00 0.00 

Aromatic Total 8.00 8.70 8.70 7.40 7.10 

HB/SB Count 20.00 17.00 19.00 25.00 16.00 

Consurf Average 6.00 5.50 5.60 5.40 5.40 

EVFold Average 3.10 3.30 3.20 2.90 3.20 

 
ICL1 Intersurf 0.00 0.00 0.00 0.00 0.00 

CocoMaps 19.30 0.00 0.00 0.00 37.10 

SB/HB 0.00 0.00 0.00 0.00 0.00 
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ICL2 Intersurf 431.92 397.40 516.60 539.20 436.00 

CocoMaps 370.80 360.80 429.00 476.60 409.30 

SB/HB 7.00 6.00 8.00 4.00 4.00 

ICL3 Intersurf 332.03 263.93 314.95 409.14 330.54 

CocoMaps 275.12 230.26 256.40 383.59 328.28 

SB/HB 11.00 6.00 7.00 15.00 12.00 

HX8 Intersurf 46.70 42.60 52.40 0.00 46.20 

CocoMaps 29.10 29.20 42.90 3.80 30.30 

SB/HB 0.00 1.00 1.00 0.00 0.00 
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Table 5: D3R and G proteins complexes' interface summary 

Complex D3R-

Gi1 

D3R-

Gi2 

D3R-

Gi3 

D3R-

Gslo 

D3R-

Gssh 

D3R-

Gz 

D3R-

Gq 

POLAR area/energy 12739

.40 

12329

.50 

12380

.30 

14234

.40 

13903

.30 

12639

.00 

13285

.10 

APOLAR area/energy 23761

.30 

23419

.50 

23685

.20 

25037

.50 

24333

.20 

23977

.00 

24725

.50 

TOTAL area/energy 36500

.70 

35749

.10 

36065

.50 

39271

.90 

38236

.50 

36616

.00 

38010

.50 

Number of surface atoms 3186.

00 

3186.

00 

3193.

00 

3410.

00 

3350.

00 

3288.

00 

3299.

00 

Number of buried atoms 1966.

00 

1972.

00 

1970.

00 

2124.

00 

2086.

00 

1909.

00 

1986.

00 

Protein DR D3R D3R D3R D3R D3R D3R D3R 

Number total interface aa 25.00 23.00 23.00 26.00.

00 

26.00 24.00 25.00 

Number  of amino  acids in  the  

interface  (%) 

Nonpolar 

Aliphatic 

Glycine 4.00 4.30 4.30 7.70 0.00 4.20 0.00 

Alanine 0.00 4.30 0.00 3.80 3.80 4.20 0.00 

Valine 0.00 0.00 0.00 3.80 3.80 0.00 12.00 

Leucine 12.00 13.00 13.00 7.70 7.70 12.50 12.00 

Isoleucin

e 

12.00 8.70 13.00 3.80 3.80 12.50 8.00 

Methioni

ne 

0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Polar Uncharged Serine 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Threonin

e 

4.00 4.30 4.30 3.80 7.70 4.20 0.00 

Cysteine 4.00 4.30 4.30 0.00 3.80 0.00 0.00 

Proline 0.00 0.00 0.00 3.80 3.80 0.00 4.00 

Asparagi

ne 

4.00 4.30 0.00 0.00 0.00 4.20 8.00 

Glutamin

e 

0.00 0.00 0.00 15.40 15.40 8.30 8.00 

Basic Positively 

Charged 

Lysine 12.00 13.00 8.70 0.00 7.70 0.00 12.00 

Arginine 8.00 8.70 8.70 11.50 7.70 16.70 16.00 

Histidine 0.00 0.00 0.00 7.70 7.70 0.00 0.00 
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Acidic Negatively 

Charged 

Aspartat

e 

16.00 13.00 8.70 7.70 3.80 4.20 4.00 

Glutamat

e 

16.00 17.40 21.70 7.70 7.70 16.70 4.00 

Nonpolar 

Aromatic 

Phenylala

nine 

4.00 4.30 4.30 3.80 3.80 4.20 4.00 

Tyrosine 4.00 0.00 8.70 11.50 11.50 8.30 8.00 

Tryptoph

an 

0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Aliphatic Total 28.00 30.40 30.40 26.90 19.20 33.30 32.00 

Polar Total 15.00 16.00 10.70 29.10 38.80 20.70 25.00 

Basic Total 20.00 21.70 17.40 19.20 23.10 16.70 28.00 

Acidic Total 32.00 30.40 30.40 15.40 11.50 20.80 8.00 

Aromatic Total 8.00 4.30 13.00 15.40 15.40 12.50 12.00 

Protein Ga 
 

Gi1 Gi2 Gi3 Gslo Gssh Gz Gq 

Number total interface aa 
 

23.00 24.00 23.00 28.00 27.00 27.00 22.00 

Number  of amino  acids in  the  

interface  (%) 

Nonpolar 

Aliphatic 

Glycine 4.30 4.20 4.30 0.00 3.70 3.70 0.00 

Alanine 8.70 4.20 8.70 7.10 11.10 3.70 9.10 

Valine 8.70 8.30 8.70 14.30 7.40 14.80 9.10 

Leucine 13.00 4.20 8.70 14.30 11.10 7.40 13.60 

Isoleucin

e 

4.30 8.30 4.30 3.60 0.00 7.40 0.00 

Methioni

ne 

8.70 4.20 4.30 7.10 7.40 7.40 4.50 

Polar Uncharged Serine 4.30 4.20 4.30 0.00 3.70 3.70 4.50 

Threonin

e 

4.30 4.20 4.30 7.10 11.10 3.70 4.50 

Cysteine 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Proline 4.30 4.20 4.30 3.60 3.70 3.70 4.50 

Asparagi

ne 

0.00 4.20 4.30 3.60 3.70 0.00 4.50 

Glutamin

e 

4.30 8.30 8.70 7.10 7.40 7.40 9.10 

Basic Positively 

Charged 

Lysine 8.70 4.20 4.30 3.60 3.70 7.40 9.10 

Arginine 13.00 25.00 17.40 14.30 14.80 18.50 18.20 

Histidine 8.70 8.30 8.70 3.60 3.70 7.40 4.50 
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Acidic Negatively 

Charged 

Aspartat

e 

0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Glutamat

e 

0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Nonpolar 

Aromatic 

Phenylala

nine 

4.30 4.20 4.30 3.60 3.70 3.70 4.50 

Tyrosine 0.00 0.00 0.00 7.10 3.70 0.00 0.00 

Tryptoph

an 

0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Aliphatic Total 47.80 33.30 39.10 46.40 40.70 44.40 36.40 

Polar Total 21.40 31.00 32.10 27.40 37.60 23.50 33.30 

Basic Total 30.40 37.50 30.40 21.40 22.20 33.30 31.80 

Acidic Total 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

Aromatic Total 4.30 4.20 4.30 10.70 7.40 3.70 4.50 

HB/SB Count 12.00 14.00 12.00 10.00 5.00 11.00 11.00 

Consurf Average 5.80 5.80 5.80 6.30 7.50 5.70 5.00 

EVFold Average 3.00 3.00 3.00 3.00 3.40 3.10 3.50 

 
ICL1 Intersurf 0.00 0.00 0.00 16.8 39.2 0.00 0.00 

CocoMap

s 

0.00 0.00 0.00 15.1 27.4 0.00 0.00 

SB/HB 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

ICL2 Intersurf 427.7

0 

415.9

0 

421.6

0 

413.8

0 

393.8

0 

399.5

0 

330.1

0 

CocoMap

s 

392.1

0 

448.2

0 

393.4

0 

441.9

0 

498.9

0 

438.4

0 

303.5

0 

SB/HB 1.00 5.00 3.00 0.00 1.00 1.00 2.00 

ICL3 Intersurf 428.7

7 

398.6

9 

374.8

1 

482.9

8 

510.5

6 

403.4

3 

392.9

7 

CocoMap

s 

431.1

7 

354.7

4 

358.2

7 

421.0

1 

427.4

7 

398.8

6 

393.5

4 

SB/HB 11.00 8.00 8.00 7.00 4.00 10.00 8.00 

HX8 Intersurf 26.80 24.00 30.40 16.40 0.00 35.80 0.00 

CocoMap

s 

19.30 23.50 28.90 88.00 5.80 23.20 5.70 

SB/HB 0.00 1.00 1.00 0.00 0.00 0.00 0.00 
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Table 6: D4-5R and G proteins complexes' interface summary 

Complex D4R-

Gob 

D4R-Gt2 D4R-Gz D5R-

Gslo 

D5R-

Gssh 

D5R-Gz 

POLAR area/energy 12640.7

0 

12141.2

0 

12231.0

0 

14280.2

0 

14284.7

0 

11748.1

0 

APOLAR area/energy 23696.9

0 

23065.2

0 

23581.0

0 

26284.8

0 

25549.0

0 

24276.3

0 

TOTAL area/energy 36337.6

0 

35206.4

0 

35812.0

0 

40564.9

0 

39833.6

0 

36024.3

0 

Number of surface atoms 3205.00 3097.00 3248.00 3657.00 3548.00 3264.00 

Number of buried atoms 1871.00 1978.00 1891.00 2173.00 2184.00 2229.00 

Protein DR D4R D4R D4R D5R D5R D5R 

Number total interface aa 27.00 31.00 33.00 30.00 32.00 28.00 

Number of  

amino  

acids 

 in  the  

 interface 

  (%) 

Nonpolar  

Aliphatic 

Glycine 7.40 3.20 9.00 3.30 0.00 3.60 

Alanine 3.70 3.20 12.00 3.30 3.10 3.60 

Valine 0.00 0.00 6.00 3.30 6.30 0.00 

Leucine 11.10 12.9 9.00 10.00 9.40 10.70 

Isoleucine 11.10 9.70 3.00 3.30 3.10 14.30 

Methionine 0.00 3.20 0.00 0.00 0.00 0.00 

Polar  

Uncharged 

Serine 7.40 3.20 3.00 0.00 0.00 3.60 

Threonine 7.40 3.20 6.00 3.30 3.10 3.60 

Cysteine 3.70 3.20 0.00 0.00 3.10 0.00 

Proline 3.70 0.00 6.00 6.70 6.30 0.00 

Asparagine 7.40 9.70 6.00 0.00 0.00 3.60 

Glutamine 0.00 3.20 3.00 13.30 12.50 10.70 

Basic 

 Positively 

 Charged 

Lysine 7.40 12.90 3.00 6.70 6.30 3.60 

Arginine 0.00 0.00 21.00 13.30 12.50 10.70 

Histidine 0.00 0.00 3.00 6.70 6.30 3.60 

Acidic 

 Negatively  

Charged 

Aspartate 11.10 12.90 0.00 10.00 9.40 3.60 

Glutamate 11.10 9.70 3.00 3.30 6.30 14.30 
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Nonpolar 

 Aromatic 

Phenylalanin

e 

3.70 3.20 3.00 3.30 3.10 3.60 

Tyrosine 3.70 6.50 0.00 10.00 9.40 7.10 

Tryptophan 0.00 0.00 3.00 0.00 0.00 0.00 

Aliphatic Total 33.30 32.30 39.00 23.30 21.90 32.10 

Polar Total 37.60 29.60 24.00 30.30 33.00 27.40 

Basic Total 7.40 12.90 27.00 26.70 25.00 17.90 

Acidic Total 22.20 22.60 3.00 13.30 15.60 17.90 

Aromatic Total 7.40 9.70 6.00 13.30 12.50 10.70 

Protein Ga 
 

Gob Gt2 Gz Gslo Gssh Gz 

Number total interface aa 
 

24.00 32.00 31.00 31.00 34.00 30.00 

Number of  

amino  

acids 

 in  the   

interface  

(%) 

Nonpolar  

Aliphatic 

Glycine 4.20 3.10 3.00 0.00 0.00 0.00 

Alanine 8.30 15.60 3.00 12.90 17.60 13.30 

Valine 8.30 6.30 0.00 3.20 2.90 3.30 

Leucine 12.50 12.50 10.00 3.20 2.90 3.30 

Isoleucine 0.00 0.00 13.00 6.50 8.80 13.30 

Methionine 0.00 0.00 0.00 0.00 2.90 3.30 

Polar  

Uncharged 

Serine 4.20 0.00 3.00 3.20 2.90 0.00 

Threonine 0.00 6.30 6.00 9.70 8.80 6.70 

Cysteine 0.00 0.00 0.00 0.00 0.00 0.00 

Proline 4.20 3.10 0.00 3.20 2.90 3.30 

Asparagine 4.20 6.30 6.00 3.20 5.90 3.30 

Glutamine 8.30 3.10 13.00 6.50 5.90 6.70 

Basic 

 Positively 

 Charged 

Lysine 4.20 3.10 0.00 12.90 11.80 13.30 

Arginine 25.00 21.90 13.00 19.40 14.70 16.70 

Histidine 4.20 3.10 0.00 0.00 0.00 0.00 

Acidic 

 Negatively 

Charged 

Aspartate 0.00 0.00 6.00 3.20 0.00 3.30 

Glutamate 4.20 6.30 13.00 3.20 2.90 3.30 

Nonpolar 

Aromatic 

Phenylalanin

e 

4.20 3.10 3.00 6.50 5.90 6.70 

Tyrosine 0.00 3.10 6.00 3.20 2.90 0.00 
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Tryptophan 4.20 3.10 0.00 0.00 0.00 0.00 

Aliphatic Total 33.30 37.50 29.00 25.80 35.30 36.70 

Polar Total 25.80 24.80 29.00 33.80 35.50 26.00 

Basic Total 33.30 28.10 13.00 32.30 26.50 30.00 

Acidic Total 4.20 6.30 19.00 6.50 2.90 6.70 

Aromatic Total 8.30 9.40 10.00 9.70 8.80 6.70 

HB/SB Count 18.00 24.00 24.00 16.00 17.00 19.00 

Consurf Average 5.60 5.40 5.10 6.50 7.20 5.90 

EVFold Average 2.80 2.80 3.40 3.40 3.40 3.20 

 
ICL1 Intersurf 0.00 0.00 11.43 0.00 33.90 0.00 

CocoMaps 0.00 0.00 11.43 52.80 88.10 0.00 

SB/HB 0.00 0.00 0.00 0.00 0.00 0.00 

ICL2 Intersurf 358.10 392.80 602.20 510.00 523.80 457.30 

CocoMaps 300.30 322.80 288.80 417.70 514.00 483.80 

SB/HB 5.00 8.00 5.00 3.00 2.00 7.00 

ICL3 Intersurf 473.79 530.83 602.21 533.34 511.53 540.40 

CocoMaps 456.61 474.22 532.10 456.31 453.13 452.17 

SB/HB 12.00 13.00 17.00 10.00 10.00 8.00 

HX8 Intersurf 0.00 50.20 34.20 113.40 92.40 83.70 

CocoMaps 8.50 57.70 44.30 167.00 100.70 132.90 

SB/HB 0.00 0.00 0.00 0.00 1.00 0.00 
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Table 7: Best training results attained by cluster for the “Fold” dataset 

pre-processing metrics algorithms 

Cluster I Cluster II Cluster III Cluster IV Cluster V 

PCA bagEarth lda glmboost ORFlog svmLinear 

 
AUROC 0.75 0.76 0.76 0.76 0.78 

Accuracy 0.92 0.84 0.82 1.00 0.82 

Sensitivity 0.78 0.61 0.41 1.00 0.41 

Specificity 0.97 0.93 0.97 1.00 0.98 

PPV 0.91 0.76 0.84 1.00 0.87 

NPV 0.92 0.86 0.81 1.00 0.82 

FDR 0.09 0.24 0.16 0.00 0.13 

F1-score 0.84 0.67 0.55 1.00 0.56 

PCA_Up bagEarth qda Glm ORFlog svmLinear 

 
AUROC 0.93 0.89 0.84 0.97 0.84 

Accuracy 0.94 0.89 0.89 1.00 0.86 

Sensitivity 0.96 0.99 0.93 1.00 0.93 

Specificity 0.91 0.79 0.86 1.00 0.79 

PPV 0.92 0.82 0.87 1.00 0.81 

NPV 0.96 0.99 0.92 1.00 0.92 

FDR 0.08 0.18 0.13 0.00 0.19 

F1-score 0.94 0.90 0.90 1.00 0.87 

PCA_Down bagEarth lda avNNet ORFpls svmPoly 

 
AUROC 0.70 0.71 0.68 0.73 0.72 

Accuracy 0.98 0.80 0.92 1.00 0.84 

Sensitivity 0.98 0.82 0.92 1.00 0.82 

Specificity 0.98 0.78 0.92 1.00 0.86 

PPV 0.98 0.79 0.92 1.00 0.86 

NPV 0.98 0.82 0.92 1.00 0.83 

FDR 0.02 0.21 0.08 0.00 0.14 

F1-score 0.98 0.81 0.92 1.00 0.84 

Scaled bagEarth knn glmboost ORFsvm svmPoly 



114 
 

 

  

 
AUROC 0.77 0.66 0.73 0.76 0.74 

Accuracy 0.96 0.79 0.79 0.97 0.88 

Sensitivity 0.88 0.47 0.33 0.94 0.59 

Specificity 0.99 0.90 0.96 0.99 0.99 

PPV 0.96 0.65 0.74 0.96 0.94 

NPV 0.96 0.82 0.79 0.98 0.86 

FDR 0.04 0.35 0.26 0.04 0.06 

F1-score 0.92 0.55 0.46 0.95 0.72 

Scaled_Up bagEarth multinom avNNet ORFsvm svmLinear 

 
AUROC 0.94 0.83 0.83 0.97 0.86 

Accuracy 0.96 1.00 0.96 1.00 0.97 

Sensitivity 0.99 1.00 0.95 1.00 0.99 

Specificity 0.93 0.99 0.96 1.00 0.95 

PPV 0.94 0.99 0.96 1.00 0.95 

NPV 0.98 1.00 0.95 1.00 0.99 

FDR 0.06 0.01 0.04 0.00 0.05 

F1-score 0.96 1.00 0.96 1.00 0.97 

Scaled_Down bagEarth knn avNNet ORFpls svmRadial 

 
AUROC 0.72 0.67 0.68 0.72 0.69 

Accuracy 1.00 0.79 0.96 1.00 0.80 

Sensitivity 1.00 0.82 0.96 1.00 0.84 

Specificity 1.00 0.76 0.96 1.00 0.76 

PPV 1.00 0.78 0.96 1.00 0.78 

NPV 1.00 0.81 0.96 1.00 0.83 

FDR 0.00 0.22 0.04 0.00 0.22 

F1-score 1.00 0.80 0.96 1.00 0.81 
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Table 8: Best training results attained by cluster for the “Allrows” dataset 

pre-processing metrics algorithms 

Cluster I Cluster II Cluster III Cluster IV Cluster V 

PCA bagEarth lda gamboost ORFlog svmRadial 

 
AUROC 0.81 0.77 0.78 0.81 0.80 

Accuracy 0.87 0.82 0.81 0.99 0.83 

Sensitivity 0.63 0.56 0.400 0.98 0.49 

Specificity 0.96 0.91 0.96 1.00 0.96 

PPV 0.85 0.700 0.80 1.00 0.80 

NPV 0.88 0.85 0.81 0.99 0.83 

FDR 0.15 0.30 0.20 0.00 0.20 

F1-score 0.73 0.63 0.53 0.99 0.60 

PCA_Up C5.0Tree knn ctree ORFlog svmRadial 

 
AUROC 0.88 0.84 0.87 0.98 0.84 

Accuracy 0.99 0.83 0.88 1.00 0.81 

Sensitivity 1.00 0.92 0.90 1.00 0.85 

Specificity 0.97 0.74 0.86 1.00 0.77 

PPV 0.98 0.78 0.87 1.00 0.79 

NPV 1.00 0.90 0.90 1.00 0.83 

FDR 0.02 0.22 0.13 0.00 0.21 

F1-score 0.99 0.84 0.88 1.00 0.82 

PCA_Down ada lda avNNet ORFpls svmRadialCost 

 
AUROC 0.80 0.79 0.78 0.81 0.79 

Accuracy 0.92 0.83 0.89 0.99 0.83 

Sensitivity 0.91 0.800 0.90 0.99 0.81 

Specificity 0.93 0.85 0.88 0.98 0.84 

PPV 0.93 0.84 0.88 0.98 0.84 

NPV 0.91 0.81 0.90 0.99 0.82 

FDR 0.07 0.16 0.12 0.02 0.16 

F1-score 0.92 0.82 0.89 0.99 0.82 

Scaled bagEarth lda glmboost ORFsvm svmRadial 
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AUROC 0.82 0.73 0.80 0.82 0.80 

Accuracy 0.88 0.90 0.84 0.99 0.82 

Sensitivity 0.69 0.77 0.55 0.97 0.46 

Specificity 0.95 0.95 0.95 1.00 0.95 

PPV 0.82 0.86 0.79 0.99 0.77 

NPV 0.89 0.92 0.85 0.99 0.83 

FDR 0.18 0.14 0.21 0.01 0.23 

F1-score 0.75 0.81 0.65 0.98 0.57 

Scaled_Up bagEarth lda avNNet ORFsvm svmLinear 

 
AUROC 0.91 0.87 0.87 0.97 0.89 

Accuracy 0.91 0.92 0.95 1.00 0.94 

Sensitivity 0.93 0.96 0.96 1.00 0.97 

Specificity 0.88 0.89 0.95 1.00 0.92 

PPV 0.89 0.9 0.95 1.00 0.92 

NPV 0.93 0.95 0.96 1.00 0.97 

FDR 0.11 0.1 0.05 0.00 0.08 

F1-score 0.91 0.93 0.95 1.00 0.95 

Scaled_Down bagEarth knn glmboost ORFsvm svmRadial 

 
AUROC 0.79 0.76 0.79 0.81 0.77 

Accuracy 0.94 0.80 0.85 0.99 0.82 

Sensitivity 0.94 0.77 0.87 0.99 0.81 

Specificity 0.93 0.83 0.83 0.99 0.82 

PPV 0.93 0.82 0.84 0.99 0.82 

NPV 0.94 0.79 0.87 0.99 0.81 

FDR 0.07 0.18 0.16 0.01 0.18 

F1-score 0.94 0.80 0.85 0.99 0.82 
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Table 9: Best training results attained by cluster for the “Complex” dataset 

Pre-processing Metrics Algorithms 

Cluster I Cluster II Cluster III Cluster IV Cluster V 

PCA bagEarth knn glmboost ORFpls svmRadialCost 

 
AUROC 0.82 0.79 0.77 0.84 0.87 

Accuracy 0.99 0.86 0.81 0.98 0.90 

Sensitivity 0.96 0.64 0.24 0.92 0.64 

Specificity 1.00 0.93 0.98 1.00 0.98 

PPV 1.00 0.73 0.75 1.00 0.89 

NPV 0.99 0.900 0.82 0.98 0.9 

FDR 0.00 0.27 0.25 0.00 0.11 

F1-score 0.98 0.68 0.36 0.96 0.74 

PCA_Up bagEarth qda avNNet ORFlog svmRadial 

 
AUROC 0.98 0.94 0.91 0.98 0.94 

Accuracy 0.99 0.98 0.99 1.00 0.91 

Sensitivity 1.00 1.00 1.00 1.00 0.94 

Specificity 0.98 0.95 0.98 1.00 0.88 

PPV 0.98 0.96 0.98 1.00 0.89 

NPV 1.00 1.00 1.00 1.00 0.94 

FDR 0.02 0.04 0.02 0.00 0.11 

F1-score 0.99 0.98 0.99 1.00 0.92 

PCA_Down ada rda avNNet ORFpls svmRadialCost 

 
AUROC 0.87 0.84 0.83 0.88 0.87 

Accuracy 0.86 0.90 1.00 1.00 0.90 

Sensitivity 0.88 0.96 1.00 1.00 0.96 

Specificity 0.84 0.84 1.00 1.00 0.84 

PPV 0.85 0.86 1.00 1.00 0.86 

NPV 0.88 0.95 1.00 1.00 0.95 

FDR 0.15 0.14 0.00 0.00 0.14 

F1-score 0.86 0.91 1.00 1.00 0.91 

Scaled bagEarth knn ctree ORFsvm svmRadialCost 
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AUROC 0.81 0.77 0.8 0.84 0.85 

Accuracy 1.00 0.83 0.88 0.99 0.86 

Sensitivity 1.00 0.56 0.76 0.96 0.60 

Specificity 1.00 0.91 0.92 1.00 0.94 

PPV 1.00 0.64 0.73 1.00 0.75 

NPV 1.00 0.88 0.93 0.99 0.89 

FDR 0.00 0.36 0.27 0.00 0.25 

F1-score 1.00 0.60 0.75 0.98 0.67 

Scaled_Up bagEarth knn ctree ORFsvm svmRadial 

 
AUROC 0.98 0.91 0.93 0.97 0.94 

Accuracy 1.00 0.89 0.92 0.99 0.92 

Sensitivity 1.00 0.95 0.94 1.00 0.98 

Specificity 1.00 0.83 0.91 0.99 0.87 

PPV 1.00 0.85 0.91 0.99 0.88 

NPV 1.00 0.95 0.94 1.00 0.97 

FDR 0.00 0.15 0.09 0.01 0.12 

F1-score 1.00 0.90 0.93 0.99 0.93 

Scaled_Down bagEarth knn glmboost ORFpls svmRadial 

 
AUROC 0.82 0.78 0.83 0.87 0.86 

Accuracy 1.00 0.68 0.92 1.00 0.90 

Sensitivity 1.00 0.72 0.96 1.00 0.96 

Specificity 1.00 0.64 0.88 1.00 0.84 

PPV 1.00 0.67 0.89 1.00 0.86 

NPV 1.00 0.70 0.96 1.00 0.95 

FDR 0.00 0.33 0.11 0.00 0.14 

F1-score 1.00 0.69 0.92 1.00 0.91 
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Table 10: Best test results attained by cluster for the “Fold” dataset 

pre-processing metrics algorithms 

Cluster I Cluster II Cluster III Cluster IV Cluster V 

PCA bagEarth lda glmboost ORFlog svmLinear 

 
AUROC 0.86 0.81 0.72 0.89 0.81 

Accuracy 0.86 0.83 0.76 0.87 0.78 

Sensitivity 0.57 0.52 0.19 0.57 0.24 

Specificity 0.96 0.95 0.96 0.98 0.98 

PPV 0.86 0.79 0.67 0.92 0.83 

NPV 0.86 0.84 0.76 0.86 0.78 

FDR 0.14 0.21 0.33 0.08 0.17 

F1-score 0.69 0.63 0.30 0.71 0.37 

PCA_Up bagEarth qda glm ORFlog svmLinear 

 
AUROC 0.80 0.67 0.68 0.82 0.72 

Accuracy 0.83 0.73 0.74 0.82 0.77 

Sensitivity 0.57 0.57 0.62 0.43 0.71 

Specificity 0.93 0.79 0.79 0.96 0.79 

PPV 0.75 0.50 0.52 0.82 0.56 

NPV 0.85 0.83 0.85 0.82 0.88 

FDR 0.25 0.50 0.48 0.18 0.44 

F1-score 0.65 0.53 0.57 0.56 0.62 

PCA_Down bagEarth lda avNNet ORFpls svmPoly 

 
AUROC 0.71 0.73 0.74 0.77 0.77 

Accuracy 0.76 0.78 0.79 0.82 0.82 

Sensitivity 0.71 0.67 0.71 0.67 0.62 

Specificity 0.77 0.82 0.82 0.88 0.89 

PPV 0.54 0.58 0.60 0.67 0.68 

NPV 0.88 0.87 0.89 0.88 0.86 

FDR 0.46 0.42 0.40 0.33 0.32 

F1-score 0.61 0.62 0.65 0.67 0.65 

Scaled bagEarth knn glmboost ORFsvm svmPoly 
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AUROC 0.77 0.64 0.72 0.83 0.82 

Accuracy 0.82 0.73 0.77 0.85 0.79 

Sensitivity 0.62 0.29 0.29 0.57 0.29 

Specificity 0.89 0.89 0.95 0.95 0.98 

PPV 0.68 0.50 0.67 0.80 0.86 

NPV 0.86 0.77 0.78 0.86 0.79 

FDR 0.32 0.50 0.33 0.20 0.14 

F1-score 0.65 0.36 0.40 0.67 0.43 

Scaled_Up bagEarth multinom avNNet ORFsvm svmLinear 

 
AUROC 0.71 0.68 0.71 0.90 0.70 

Accuracy 0.77 0.74 0.77 0.88 0.76 

Sensitivity 0.62 0.57 0.62 0.62 0.62 

Specificity 0.82 0.81 0.82 0.98 0.81 

PPV 0.57 0.52 0.57 0.93 0.54 

NPV 0.85 0.84 0.85 0.88 0.85 

FDR 0.43 0.48 0.43 0.07 0.46 

F1-score 0.59 0.55 0.59 0.74 0.58 

Scaled_Down bagEarth knn avNNet ORFpls svmRadial 

 
AUROC 0.79 0.69 0.76 0.76 0.70 

Accuracy 0.83 0.73 0.81 0.81 0.76 

Sensitivity 0.86 0.71 0.76 0.67 0.67 

Specificity 0.82 0.74 0.82 0.86 0.79 

PPV 0.64 0.50 0.62 0.64 0.54 

NPV 0.94 0.88 0.90 0.88 0.87 

FDR 0.36 0.50 0.38 0.36 0.46 

F1-score 0.73 0.59 0.68 0.65 0.60 
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Table 11: Best test results attained by cluster for the “Allrows” dataset 

pre-processing metrics algorithms 

Cluster I Cluster II Cluster III Cluster IV Cluster V 

PCA bagEarth lda gamboost ORFlog svmRadial 

 
AUROC 0.75 0.71 0.70 0.73 0.68 

Accuracy 0.80 0.77 0.76 0.77 0.75 

Sensitivity 0.45 0.38 0.26 0.29 0.31 

Specificity 0.92 0.91 0.94 0.95 0.91 

PPV 0.68 0.62 0.61 0.67 0.57 

NPV 0.82 0.80 0.78 0.79 0.79 

FDR 0.32 0.38 0.39 0.33 0.43 

F1-score 0.54 0.47 0.37 0.40 0.40 

PCA_Up C5.0Tree knn ctree ORFlog svmRadial 

 
AUROC 0.63 0.67 0.61 0.70 0.61 

Accuracy 0.70 0.68 0.69 0.77 0.66 

Sensitivity 0.52 0.79 0.48 0.36 0.60 

Specificity 0.77 0.64 0.76 0.91 0.68 

PPV 0.45 0.44 0.42 0.60 0.40 

NPV 0.82 0.89 0.80 0.80 0.82 

FDR 0.55 0.56 0.58 0.40 0.60 

F1-score 0.48 0.56 0.44 0.45 0.48 

PCA_Down ada lda avNNet ORFpls svmRadialCost 

 
AUROC 0.63 0.61 0.61 0.63 0.60 

Accuracy 0.65 0.64 0.64 0.67 0.63 

Sensitivity 0.71 0.64 0.67 0.62 0.62 

Specificity 0.62 0.64 0.62 0.69 0.63 

PPV 0.41 0.39 0.39 0.42 0.38 

NPV 0.86 0.83 0.84 0.84 0.82 

FDR 0.59 0.61 0.61 0.58 0.62 

F1-score 0.52 0.49 0.49 0.50 0.47 

Scaled bagEarth lda glmboost ORFsvm svmRadial 
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AUROC 0.76 0.69 0.72 0.72 0.63 

Accuracy 0.81 0.76 0.77 0.78 0.73 

Sensitivity 0.45 0.5 0.33 0.38 0.29 

Specificity 0.93 0.85 0.93 0.92 0.89 

PPV 0.70 0.55 0.64 0.64 0.48 

NPV 0.83 0.83 0.80 0.81 0.78 

FDR 0.30 0.45 0.36 0.36 0.52 

F1-score 0.55 0.52 0.44 0.48 0.36 

Scaled_Up bagEarth lda avNNet ORFsvm svmLinear 

 
AUROC 0.76 0.65 0.72 0.72 0.72 

Accuracy 0.81 0.71 0.78 0.78 0.77 

Sensitivity 0.76 0.60 0.60 0.43 0.71 

Specificity 0.83 0.75 0.85 0.91 0.79 

PPV 0.62 0.46 0.58 0.62 0.55 

NPV 0.91 0.84 0.85 0.82 0.88 

FDR 0.38 0.54 0.42 0.38 0.45 

F1-score 0.68 0.52 0.59 0.51 0.62 

Scaled_Down bagEarth knn glmboost ORFsvm svmRadial 

 
AUROC 0.68 0.64 0.63 0.64 0.62 

Accuracy 0.70 0.65 0.65 0.64 0.63 

Sensitivity 0.79 0.74 0.69 0.76 0.69 

Specificity 0.67 0.62 0.64 0.59 0.61 

PPV 0.46 0.41 0.41 0.40 0.39 

NPV 0.90 0.87 0.85 0.87 0.85 

FDR 0.54 0.59 0.59 0.60 0.61 

F1-score 0.58 0.53 0.51 0.52 0.50 
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Table 12: Best test results attained by cluster for the “Complex” dataset 

Pre-processing Metrics Algorithms 

Cluster I Cluster II Cluster III Cluster IV Cluster V 

PCA bagEarth knn glmboost ORFpls svmRadialCost 

 
AUROC 0.68 0.71 0.74 0.71 0.71 

Accuracy 0.78 0.8 0.8 0.80 0.80 

Sensitivity 0.50 0.40 0.20 0.50 0.40 

Specificity 0.86 0.92 0.97 0.89 0.92 

PPV 0.50 0.57 0.67 0.56 0.57 

NPV 0.86 0.85 0.81 0.86 0.85 

FDR 0.50 0.43 0.33 0.44 0.43 

F1-score 0.50 0.47 0.31 0.53 0.47 

PCA_Up bagEarth qda avNNet ORFlog svmRadial 

 
AUROC 0.66 0.62 0.69 0.71 0.69 

Accuracy 0.76 0.74 0.78 0.80 0.78 

Sensitivity 0.50 0.40 0.60 0.50 0.60 

Specificity 0.83 0.83 0.83 0.89 0.83 

PPV 0.45 0.40 0.50 0.56 0.50 

NPV 0.86 0.83 0.88 0.86 0.88 

FDR 0.55 0.60 0.50 0.44 0.50 

F1-score 0.48 0.40 0.55 0.53 0.55 

PCA_Down ada rda avNNet ORFpls svmRadialCost 

 
AUROC 0.64 0.68 0.72 0.72 0.68 

Accuracy 0.70 0.76 0.80 0.80 0.76 

Sensitivity 0.70 0.70 0.70 0.70 0.70 

Specificity 0.69 0.78 0.83 0.83 0.78 

PPV 0.39 0.47 0.54 0.54 0.47 

NPV 0.89 0.90 0.91 0.91 0.90 

FDR 0.61 0.53 0.46 0.46 0.53 

F1-score 0.50 0.56 0.61 0.61 0.56 

Scaled bagEarth knn ctree ORFsvm svmRadialCost 
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AUROC 0.71 0.71 0.74 0.68 0.71 

Accuracy 0.80 0.80 0.83 0.78 0.80 

Sensitivity 0.50 0.40 0.60 0.50 0.40 

Specificity 0.89 0.92 0.89 0.86 0.92 

PPV 0.56 0.57 0.60 0.50 0.57 

NPV 0.86 0.85 0.89 0.86 0.85 

FDR 0.44 0.43 0.40 0.50 0.43 

F1-score 0.53 0.47 0.60 0.50 0.47 

Scaled_Up bagEarth knn ctree ORFsvm svmRadial 

 
AUROC 0.71 0.70 0.74 0.66 0.66 

Accuracy 0.80 0.78 0.83 0.76 0.76 

Sensitivity 0.50 0.70 0.60 0.50 0.50 

Specificity 0.89 0.81 0.89 0.83 0.83 

PPV 0.56 0.50 0.60 0.45 0.45 

NPV 0.86 0.91 0.89 0.86 0.86 

FDR 0.44 0.50 0.40 0.55 0.55 

F1-score 0.53 0.58 0.60 0.48 0.48 

Scaled_Down bagEarth knn glmboost ORFpls svmRadial 

 
AUROC 0.69 0.55 0.67 0.67 0.67 

Accuracy 0.78 0.61 0.74 0.76 0.74 

Sensitivity 0.60 0.50 0.70 0.60 0.70 

Specificity 0.83 0.64 0.75 0.81 0.75 

PPV 0.50 0.28 0.44 0.46 0.44 

NPV 0.88 0.82 0.90 0.88 0.90 

FDR 0.50 0.72 0.56 0.54 0.56 

F1-score 0.55 0.36 0.54 0.52 0.54 
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Table 13: Best test results attained by cluster for the “Fold*” dataset (after removing CoeViz and 

InterEV features) 

pre-processing metrics algorithms 

Cluster I Cluster II Cluster III Cluster IV Cluster V 

Scaled rf ORFpls glmboost svmRadialCost stepLDA 

 
AUROC 0.82 0.90 0.92 0.88 0.89 

Accuracy 0.81 0.81 0.85 0.77 0.78 

Sensitivity 0.26 0.21 0.37 0.05 0.11 

Specificity 0.98 1.00 1.00 1.00 1.00 

PPV 0.83 1.00 1.00 1.00 1.00 

NPV 0.81 0.80 0.83 0.77 0.78 

FDR 0.17 0.00 0.00 0.00 0.00 

F1-score 0.74 0.79 0.63 0.95 0.89 
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8. Papers that resulted from this thesis work 

Reference Abstract 

Almeida JG*, Preto AJ*, Koukos P, Bonvin AJJM, Moreira IS, 

Membrane proteins structures: a review on computational 

modeling tools, BBA Biomembranes 1859, 10, 2021-2039 (2017) 

(Review article) [14] 

• Equal contribution 

Background 

Membrane proteins (MPs) play diverse and important functions in 

living organisms. They constitute 20% to 30% of the known bacterial, 

archaean and eukaryotic organisms' genomes. In humans, their 

importance is emphasized as they represent 50% of all known drug 

targets. Nevertheless, experimental determination of their three-

dimensional (3D) structure has proven to be both time consuming 

and rather expensive, which has led to the development of 

computational algorithms to complement the available 

experimental methods and provide valuable insights. 

Scope of review 

This review highlights the importance of membrane proteins and 

how computational methods are capable of overcoming challenges 

associated with their experimental characterization. It covers 

various MP structural aspects, such as lipid interactions, allostery, 

and structure prediction, based on methods such as Molecular 

Dynamics (MD) and Machine-Learning (ML). 

Major conclusions 

Recent developments in algorithms, tools and hybrid approaches, 

together with the increase in both computational resources and the 

amount of available data have resulted in increasingly powerful and 

trustworthy approaches to model MPs. 

General significance 

Even though MPs are elementary and important in nature, the 

determination of their 3D structure has proven to be a challenging 

endeavor. Computational methods provide a reliable alternative to 

experimental methods. In this review, we focus on computational 

techniques to determine the 3D structure of MP and characterize 

their binding interfaces. We also summarize the most relevant 

databases and software programs available for the study of MPs. 

Moreira IS, Koukos P, Melo R, Almeida JG, Preto AJ, 

Schaarschmidt J, Trellet M, Gumus ZH, Costa J, Bonvin AMJJ, 

SpotOn: a web server for protein-protein binding hot-spots, 

Scientific Reports 7, 8007 (2017) (Scientific article) [13] 

We present SpotOn, a web server to identify and classify interfacial 

residues as Hot-Spots (HS) and Null-Spots (NS). SpotON implements 

a robust algorithm with a demonstrated accuracy of 0.95 and 

sensitivity of 0.98 on an independent test set. The predictor was 

developed using an ensemble machine learning approach with up-

sampling of the minor class. It was trained on 53 complexes using 

various features, based on both protein ͹D structure and sequence. 

The SpotOn web interface is freely available at: 

http://milou.science.uu.nl/services/SPOTON/. 
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Lemos A, Melo R, Preto AJ, Almeida JG, Moreira IS, Cordeiro 

MNDS, In silico studies targeting G-protein coupled receptors for 

drug research against Parkinson’s disease, Current 

Neuropharmacology, submitted (Book chapter)  

Parkinson’s Disease (PD) is a long-term neurodegenerative brain 

disorder that mainly affects the motor system. The causes are still 

unknown, and even though currently there is no cure, several 

therapeutic options are available to manage its symptoms. The 

development of novel anti-parkinsonian agents and an 

understanding of their proper and optimal use are, indeed, highly 

demanding. For the last decades, L-3,4-DihydrOxyPhenylAlanine or 

levodopa (L-DOPA) has been the gold-standard therapy for the 

symptomatic treatment of motor dysfunctions associated to PD. 

However, the development of dyskinesias and motor fluctuations 

(wearing-off and on-off phenomena) associated to long-term L-

DOPA replacement therapy have limited its antiparkinsonian 

efficacy. The investigation for non-dopaminergic therapies has been 

largely explored as an attempt to counteract the motor side effects 

associated to dopamine replacement therapy. Being one of the 

largest cell membrane protein families, G-Protein-Coupled 

Receptors (GPCRs) have become a relevant target for drug discovery 

focused in a wide range of therapeutic areas, including Central 

Nervous System (CNS) diseases. The modulation of specific GPCRs 

potentially implicated in PD, excluding dopamine receptors, may 

provide promising non-dopaminergic therapeutic alternatives for 

symptomatic treatment of PD. In this review, we focused on the 

impact of specific GPCR subclasses, including dopamine receptors, 

adenosine receptors, muscarinic acetylcholine receptors, 

metabotropic glutamate receptors, and 5-hydroxytryptamine 

receptors, on the pathophysiology of PD and the importance of 

structure- and ligand-based in silico approaches for the 

development of small molecules to target these receptors. 

Preto, A.J., Almeida J.G., Melo A., Kurkcuoglu Z., Melo R., Telle 

M., Melo A., Natalia M.N.D.S., Morra G. Sensoy O., Bonvin 

A.M.J.J., Moreira I.S. Understanding the BInding Selectivity of G-

protein Coupled Receptors Toward G Dopamine Receptor 

Family, 2017. 

(In preparation) 
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