
UNIVERSITY OF COIMBRA

MASTER THESIS

Automated Metrics System to Support
Software Development Process with

Natural Language Assistant

Author:
João Miguel dos Santos
CERVEIRA

Coordinators:
Marco VIEIRA,

Universidade de Coimbra

Rafael JEGUNDO,
Whitesmith

Final Report

Informatics Engineering Department
Faculty of Sciences and Technology

September 5, 2017

http://www.uc.pt/
https://eden.dei.uc.pt/~mvieira/
https://eden.dei.uc.pt/~mvieira/
https://www.whitesmith.co/
https://www.whitesmith.co/
http://www.uc.pt/fctuc/dei/
https://www.uc.pt/en/fctuc

ii

“It is never too late to be what you might have been”

George Eliot

iii

University of Coimbra

Abstract
Faculty of Sciences and Technology

Informatics Engineering Department

Masters Degree in Informatics Engineering

Automated Metrics System to Support Software Development Process with
Natural Language Assistant

João Miguel dos Santos CERVEIRA

Whitesmith is a software development and product consulting company that uses
a variety of monitoring tools to aid in its product development process. For this
method to be well implemented, it’s necessary to have several data repositories on
all development planning and monitoring. This information must be stored in tools
that are easy to reach and quick to understand. With this need for data, several tools
with the ability to store and manipulate information have started to appear in the
market in order to aid in the development of software.
Since the company is growing, a large amount of information is distributed between
this tools, so, to be able to make an analysis of a certain project development stage,
it’s necessary to look for information and to introduce it manually. Thus, the need
to create a solution to this problem arose, that not only can collected all the informa-
tion, but also perform an analysis of the development status of all its projects.
To not create friction in the development process, it will be necessary for the solution
to contain the minimum human-computational interaction, and the entire needs to
be processed is automatically.
The only interaction required by the company was the integration of a natural lan-
guage assistant in the communication platform used by all members, in order to im-
prove the usability of information collection.

Key Words: Bot, Project Management, Software Development Monitoring, Data
Analysis, Metric Development, Agile Methodology, Natural Language Processing,

http://www.uc.pt/
https://www.uc.pt/en/fctuc
http://www.uc.pt/fctuc/dei/

v

University of Coimbra

Abstract
Faculty of Sciences and Technology

Informatics Engineering Department

Masters Degree in Informatics Engineering

Automated Metrics System to Support Software Development Process with
Natural Language Assistant

João Miguel dos Santos CERVEIRA

A Whitesmith é uma empresa de produtos e consultoria de desenvolvimento de
software, que recorre a várias ferramentas de monitorização para auxiliar no seu pro-
cesso de desenvolvimento de produtos. Para que este método seja bem aplicado,
é necessário a existência de vários repositórios de dados sobre todo o planeamento
e monitorização de desenvolvimento. Esta informação tem de estar guardada em
ferramentas de fácil alcance e de rápida compreensão. Posto esta necessidade de
alojamento de dados, começaram a surgir, no mercado, várias ferramentas com a
capacidade de guardar e manipular informação, de modo a ajudar no desenvolvi-
mento de software.
Com o crescimento da empresa, seguiu-se uma grande quantidade de informação
distribuída em várias destas ferramentas. Para ser possível fazer uma análise ao
desenvolvimento de um determinado projeto, é necessário procurar informação e
introduzi-la manualmente. Assim, surgiu a necessidade de criar uma solução para
este problema que, não só consiga recolher toda a informação, mas que também ex-
ecute uma análise ao estado de desenvolvimento de todos os projetos.
Para não criar atrito no processo de desenvolvimento, vai ser necessário que a solução
contenha o minimo de interação humano-computacional, sendo que todo o seu pro-
cesso seja automatizado.
A unica interação requisitada pela empresa, foi a integração de um assistente de lin-
guagem natural na plataforma de comunicação usada por todos os membors, com a
finalidade de melhorar a usabilidade na recolha de informação.

Palavras-chave: Bot, Gestão de Projetos, Monitorização de Desenvolvimento de
Software, Analise de Dados, Desenvolvimento de Metricas, Metodologia Ágil, Lin-
guagem Natural

http://www.uc.pt/
https://www.uc.pt/en/fctuc
http://www.uc.pt/fctuc/dei/

vii

Acknowledgement
My sincere gratitude to Rafael Jegundo for giving me the opportunity to develop
such an interesting and challenging project. For all the time and patience to advise
me and clarify every doubt that I faced during this project. Thank you for your trust.

My acknowledgements to Marco Vieira, my DEI supervisor, for his ability to ad-
vise me on how to manage my development properly as well as how to write this
report.

Also, I would like to thank Pedro Costa, Alexandre Jesus, João Barbosa and all the
other members from Whitesmith team for the positive inputs and suggestions that
helped the production of this solution, and also for the good work atmosphere that
you provided.

On a more personal note, I dedicate this project to my family who have always
been by my side and supporting me throughout my long academic journey. That
you for being my role models, i owe everything that I am.

To my girlfriend, Sara, thank you being always by my side, no matter the dis-
tance between us. Thank you for always believing in me and giving me all the
strength I needed in the most stressful times.

Finaly, many thanks to my friends.

ix

Content

Abstract iii

Resumo v

Acknowledgement vii

1 Introduction 1
1.1 Problem and Motivation . 2
1.2 Objective . 2
1.3 Context . 2

1.3.1 Agile Methodology . 3
1.3.2 Natural Language Processing . 3

1.4 Solution . 4
1.5 Document Structure . 5

2 State of the Art 7
2.1 Agile Software Development . 7

2.1.1 Types of Agile Methodologies . 8
2.1.2 World Impact . 8

2.2 Whitesmith . 8
2.2.1 Communication Tools . 9
2.2.2 Project Management Tools . 10
2.2.3 Internal Tools . 11

2.3 Natural Language Processor . 11
2.3.1 NLP Applied Today . 12
2.3.2 Development Tools and APIs . 12
2.3.3 Comparative Analysis . 13

3 Project Management and Operations 15
3.1 Methodology . 15

3.1.1 Lean Software Development . 16
3.1.2 Kanban . 17

3.2 Plan . 18
3.2.1 First Semester . 19
3.2.2 Second Semester . 19

3.3 Risks . 20
3.4 Operations . 23

3.4.1 GitHub . 23
3.4.2 CircleCI . 24
3.4.3 Heroku . 25
3.4.4 Sentry . 27

x

4 Requisites 29
4.1 System’s Actors . 29
4.2 Requirements Collection . 31
4.3 Functional Requirements . 31
4.4 Non-Functional Requirements . 35

5 Architecture 37
5.1 System . 38
5.2 Context Diagram . 38
5.3 Modules . 39

5.3.1 Metrics Application . 40
5.3.2 Content Updater . 43
5.3.3 Chatbot . 45

6 Development 49
6.1 Communication Servers . 49

6.1.1 Data Collection . 50
6.1.2 Metrics Application . 53
6.1.3 ChatBot Application . 54

6.2 Applications Features . 55
6.2.1 Data Collector Application . 55
6.2.2 Metrics Application . 58
6.2.3 Chatbot . 65

7 Verification and Validation 69
7.1 Functional Testing . 69

7.1.1 Data Collector Tests . 70
7.1.2 Metrics Application Tests . 70
7.1.3 Chatbot Tests . 72

7.2 Non-Functional Tests . 73
7.2.1 Maintainability Tests . 73
7.2.2 Extensibility Tests . 73
7.2.3 Compatibility Tests . 74
7.2.4 Answer Time Tests . 74

7.3 Solution Validation . 74
7.3.1 Metrics Application . 74
7.3.2 ChatBot . 76

8 Conclusion 77
8.1 The Project . 77
8.2 Future Work . 77
8.3 Internship and Final Thoughts . 78

A Whitesmith Member Interview Form 79

B Gantt Diagrams 81
B.0.1 First Semester . 82

Final . 83
B.0.2 Second Semester . 84

Inicial . 84

xi

C Trello Usage Rules 85
C.1 Introdução . 85
C.2 Lanes . 85
C.3 Cartões . 86

D Activity Diagram 87
D.1 Login and Update Activity Diagram . 88

xiii

List of Figures

3.1 Trello Card Example . 17
3.2 Project’s Trello Board . 18
3.3 Risk Matrix . 22
3.4 Final Risk Matrix . 23
3.5 Github Diagram . 24
3.6 CircleCI Diagram . 25
3.7 Heroku Diagram . 26
3.8 Loggin Printscreen . 27

5.1 System’s Context Diagram . 39
5.2 Metrics Application Diagram . 41
5.3 Metrics Application DataBase Scheama 42
5.4 Content Updater Diagram . 44
5.5 Content Updater Structs . 45
5.6 Chatbot Diagram . 46

6.1 Full Trello Boards . 49
6.2 Base Service Client . 51
6.3 Bold Service Client . 51
6.4 Bold Service Client . 51
6.5 Http Service Handler Service . 52
6.6 Http User Service . 53
6.7 Communication Method . 54
6.8 Chatbot Server Code . 55
6.9 Chatbot Communication Method . 55
6.10 Trello API Schema . 57
6.11 Trello Raw Card Data . 58
6.12 Trello Filtered Card Data . 58
6.13 Fully Detailed Feature Trello Card . 59
6.14 Metrics Application Main Page . 60
6.15 Development Averages . 61
6.16 Prediction Burndown Chart . 61
6.17 Time Variation Chart . 62
6.18 Number of Cards Done . 62
6.19 Cycle Time Chart . 63
6.20 Time Distribution Chart . 63
6.21 Cards Status Board . 64
6.22 Warnings Table . 64
6.23 Work In Progress Table . 64
6.24 Live Table . 64
6.25 Oauth Tokens SlackAPI Dashboard . 65
6.26 Webhook Configuration SlackAPI Dashboard 66
6.27 Chatbot Session and Input Precessor Code 66

xiv

6.28 Wit.ai Story Maker DashBoard . 67
6.29 Chatbot Entity and Context Maker Code 68

7.1 Write and Wrong Project Association Test 71
7.2 Unauthorised User Test . 71
7.3 Average Bug Fix Value . 73

B.1 Planned Gantt Chart of the First Semester 82
B.2 Real Gantt Chart of the First Semester 83
B.3 Planned Gantt Chart of the First Semester 84

D.1 Registry and Data Sending Diagram . 88

xv

List of tables

2.1 NLP Tools Comparison . 14

3.1 Risk 01: Solution Complexity . 20
3.2 Risk 02: PLN System Development . 21
3.3 Risk 03: Golang Development . 21
3.4 Risk 04: Problem not Fixed . 22

4.1 Actor - Non-Registered User . 29
4.2 Actor - Registered User . 30
4.3 Actor - Programmer . 30
4.4 Actor - Project Manager . 31
4.5 User Story Mode . 32
4.6 User Stories Project Definition . 33
4.7 Account Creation and Login . 34
4.8 Project Monitorization . 34
4.9 APIs User Stories . 34
4.10 Development Weeks User Stories . 35
4.11 Slack User Stories . 35
4.12 Maintainability Table . 35
4.13 Extensibility Table . 36
4.14 Compatibility Table . 36
4.15 Answer Time Table . 36

xvii

Acronyms

IS Information SSistems
XP Xtream Programming
DSDM Dynamic Systems Development Method
LSD Lean Software Development
IRC Internet Relay Chat
PLN Processamente de Linguagem Natural
UNR Utilizador Não Registado
UR Utilizador Registado
API Application Programming Interface
CRUD Create, Read, Update and Delete
RoR Ruby on Rails
MVC Model View Controler
REST Representational State Transfer
RTM Real Time Messaging
JSON JavaScript Object Notation
ACID Atomicity, Consistency, Isolation, Durability
UX User eXperience
TDD Test Driven Development
WIP Work In Progress
PERT Program Evaluation Review Technique
TE Tempo Estimado
DP Desvio Padrão

1

Chapter 1

Introduction

Project management is a key part of a company whose main focus is software devel-
opment. With poor planning and management within a project, it can create serious
problems for a company and condemn a project without it to never being completed.
To mitigate this risk, there are many Information Systems (IS) whose purpose is to
assist software development. These can be incorporated into various areas of a com-
pany, from development to human resources. With an increase in demand for these
systems by small and medium-sized companies, the market has responded with
great abundance, and nowadays it is possible for a company to find and incorporate
in detail systems into its development practices and processes without the need of a
period of internal habituation and integration[1].
Following the implementation of these support systems, it is possible to increase a
company’s competitiveness by leveraging them, when properly inserted and used,
to diminish the total of problems mentioned above and to improve the development
process of a project, from its conception to its Implementation.

Headquartered at Instituto Pedro Nunes, Coimbra, work and development took
place at Whitesmith, that categorises itself has a multinational company that de-
velops software and hardware products. Being software consulting the main focus
of development, the company also produces its own products and services, being
Qold[2] and Unplugg[3] the most focused ones.
In the absence of any type of prototype or solution, by the company, the entire study
and work developed was carried out by the trainee. His main objective was to find
and develop a system that solves the identified problem and is accepted by the com-
pany.

Whitesmith also uses these information systems in its development process. Fo-
cusing on agile methodologies, the integration of IS in software development can
upgrade the level of development, as it allows teams to craft products at a faster rate,
improving development, communication within teams and with other stakeholders
and mitigate problems in the early stages of production, among other advantages
compared to more stringent methodologies.
Within the company, these tools are very important and always present in the de-
velopment of their products, making it impractical to develop without using them.
One of the greatest examples of the advantages these services bring is asynchronous
communication. Being a company that adopts the philosophy of remote-first, it is
necessary a constant communication between every member of each team without
the need of a shared workplace.

2 Chapter 1. Introduction

1.1 Problem and Motivation

As mentioned before, Whitesmith relies on a number of IS tools to aid in the devel-
opment of their software. These tools produce enough useful information to carry
out a study of the state of the project at a certain point in its development. Until this
date, the collection of this data, when done, is handled manually by the Project Man-
ager (PM), which is then entered into a Google Drive spreadsheet. After inserting
the data, it follows the generation of graphs and other metrics that corresponds to
the development’s current state.

This process, although functional, tends to consume a great deal of time to com-
plete and can be propitious to human error in data collection and insertion, poor
graph configuration and metric calculations. Most of this data collected is superfi-
cial and easy to find, but there still exists important information whose collection is
very complex and almost impossible to do manually.
Another problem, with direct impact on information gathering and metrics results,
is the lack of discipline, by members of development teams, when using there IS
tools, which leads to some data being incomplete and even incorrect.
Since communication among team members is one of the main points in agile method-
ologies, it is also important the existence of a channel where all contained informa-
tion, from these systems, is easily acquired.

1.2 Objective

In order to solve the problem exposed by Whitesmith, it’s expected to present the
company with a new system that will assist its members in their software develop-
ment continual monitoring. This system is not intended to replace any tool already
in use.

With this solution, it will be easier for all Whitesmith members to access their IS
information and to withdraw important metrics, throughout several channels, for
an improved retrospective on their current software development. Regarding the
design of the application UI, this will won’t take part of the internship’s scope, so
that work can be focused on its functionality and impact. Instead, its design will be
available to the company’s designers, who show any interest in developing it.
While designing this solution, it’s necessary to draw a flexible architecture so it may
be possible to introduce new functionalities and to facilitate all information trading
between the data collector system and de metrics one. Also, it must be compatible
with every tool’s application programming interface (API), used by the company.

1.3 Context

Since agile methodologies in software development processes will be supported by
the solution, next we will describe their fundamentals and how they influence the
workflow within a company.

1.3. Context 3

1.3.1 Agile Methodology

In the past, after the teams performed the requirements, they were frozen, in order
to be completely defined until the product was launched. The team’s main focus
was exclusively on development, making no changes into the requirements already
established. However, when the product was distributed, it could become obsolete
or uninteresting, since it no longer corresponded to the users’ needs.[4].
This created an uncontrollable problem for the companies and development teams
to handle, since many clients would change their opinions about the system require-
ments and the solutions drawn would not completely satisfy them. Another prob-
lem would be that requirements tended to change midway throughout product de-
velopment, and being essential for production, it would be difficult to make, apply
and see to what extent, these changes, did not compromise what has already been
developed.[4].
Faced with these problems, other development processes were created and imple-
mented so that they can adapt to any changes in requirements, not only from a de-
velopment point of view, but also from the customer, who tends to be inconsistent
in what he expects from the final product[5].

Over the years, several experts in the software development world have dedicated
themselves to solve this requirements instability problem and have focused on user-
centred practices and designed the following points, that needed to be achieved[6]:

• Customer satisfaction is more important than the original plan acceptance

• Changes will happen. The important thing is not to prevent them, but to get
used to this idea and reducing the cost that these changes will bring during the
development process. Freezing these changes at the beginning of the develop-
ment process will cause business failure.

• The market demands and expects innovation, good quality software that, quickly,
meets your needs

It was with this in mind that in 2001, a group of seventeen software engineers
gathered to define a methodology that encapsulate these points, as main objectives,
with the purpose to solve the problem of inconstant requirements and the distur-
bance that they bring in the development of software products. In This brainstorm-
ing led to a document called the "Manifesto for Agile Software Development"[7],
which consisted of twelve principles that focus on the four points previously men-
tioned.

1.3.2 Natural Language Processing

The area of Natural Language Processing (NLP), focus its study on developing tools
that can understand and analyse a comprehensive human language, in the way that
would be possible for them to read and write, creating a non-command conversa-
tion. One of the first pioneers, working with this subject, was Alan Turing[8], who
formulated a series of rules, in which they dictated when a machine would be ca-
pable to misguide a human, in a conversation, convincing him that it’s a another
human being.

Leaving behind the raw nature of Turin’s test, nowadays, NLP is used in many tech-
nological devices used on a day to day bases, especially for an on-site search, of a

4 Chapter 1. Introduction

determined subject.[9] After an input from an human user, the machine will proceed
with a lexical analysis so it can formulate the intention from the user inquire. Next,
after a successful analysis, the machine can withdraw the information from a data
source, required to answer to what the user wanted. This answer must be written
in a way that the end-user can understand, therefore, the machine must process it
in the same language as the user’s input. More advanced machines will be able to
have a long conversation with the user, instead of a query based communication. At
a language level, all of them are a set of symbols that will be used and arranged in
order to access information that will then go through a set of rules, in which it will
be possible for them to be understood by another entity.[10]

1.4 Solution

After analysing every subject described in this chapter, it will be possible to define
the solution that we expect to accomplish at the end of this internship.

This report describes all the work done in both semesters, that was divided into
four major parts. The first step focused on the problem presented by Whitesmith,
in which it required a study around all frameworks that incorporate this problem
and the drawing of a first sketch of a viable solution. After its initial approval and
acceptance, the requirements of the solution were collected and documented, a first
possible architecture was designed and its development was planned, which took
place during the second semester.

This internship was coordinated by Rafael Jegundo, Chief Executive Officer at White-
smith Lda. and Marco Vieira, Professor Phd of the Informatics Engineering Depart-
ment from the Faculty of Science and Technology from University of Coimbra.

The solution to the problem is divided into three areas:

• Web Platform - This represents a brand new website, where the entire busi-
ness logic developed will present all the components needed to allow every
member to register their personal work account, which will get all theirs ac-
tual work in progress (WIP) projects. In each one, the user can see the current
state of its development throughout metrics and charts that represent certain
important aspects of it

• Data Server - Since the web platform will be in charge of displaying all the
data through readable metrics, it will be necessary to have a base server, that
will be in charge of harvesting all the data from SIs that the company uses.
This server will also be in charge to organise all raw data, so it will be easy for
the Web Platform to read

• ChatBot - If a anyone within a team wants to know any particular metric or in-
formation about any of his project, there will be a channel integrated with the
main team communication tool. This channel, will be personified has a com-
munication bot with integrated NLP, so it can facilitate the conversation with
a person, seeing that, this way there won’t be the necessity of learn predefined
inputs for all action

1.5. Document Structure 5

Developing these three new systems and connect them into a unique solution,
will try to mitigate the problem exposed by Whitesmith. We can conclude the so-
lution’s success rate, by watching teams introducing it within their developing pro-
cess and if they have any kind of interest in adding more features, so it can help
even further then planned. From a project point of view, the solution’s metrics must
represent a trustworthy development status, so that it’s possible for teams to draw
good conclusions in their retrospective sessions.

1.5 Document Structure

• State of the Art: Exposes the theoretical concepts related to the topics that
will be worked out, the various types of agile methodologies used and White-
smiths’ IS tools used in their software development;

• Project Management: This section presents project management information
of the approach taken, such as the software development methodology, time
planning and risks;

• Requirements: Raised after a first draft study of the solution. Result of sev-
eral interviews with company’s members, questioning the current state of the
company, from their point of view;

• Architecture: The entire system implementation will be described in the Ar-
chitecture. It will be exposed and explained the architecture of the system to be
developed and all its internal modules. This system being composed of several
components, chapter will have a section for each of them;

• Development and Final Product: Retrospective of the entire system develop-
ment, analysing what went according to planning, the changes done during
development and what went wrong. Also, it will show the final product;

• Validation: To prove the solution effectiveness and quality, it must be evalu-
ated. This chapter shows which processes were designed and performed to
guarantee the final solution’s quality and if it fixed the problem presented by
the company;

• Conclusion and Future Work: As the final chapter, it is presented a retrospec-
tive of the past year and what could be done in the future.

7

Chapter 2

State of the Art

This chapter, intends to present an in-depth analysis of agile software development
methodologies, the tools used, their implementation and the impact they have in the
software development business world.
Since this internship is taking place at Whitesmith, this chapter also introduces a
description of its development processes, its products and how they are integrated
with an agile methodology. The entire communication and development tools used
by Whitesmith will be presented and described, with the inclusion of other tools in
the market that fit into the Agile methodology vision.
Finally, it unfolds a study around natural language processing technology, in which
is incorporated on the final solution to the problem exposed by the company.

This is of great importance, since it helps the reader to understand the whole process
around the study and research carried out by the intern in finding a solution that can
solve the problem presented by the company.

2.1 Agile Software Development

Agile methodologies aim to solve the problem of requirements instability, while at
the same time tries to reduce the development time of the whole process. In or-
der to achieve these objectives, this methodology brought production blocks called
sprints, which at the end of each iteration must have in its possession a part of the
product completely produced and ready for production. This way, the develop-
ment team is prepared for any type of change and quickly implement it in their re-
quirements. Communication is considered to be fundamental for this methodology,
since there’s a constant reassessment of all requirements and design decisions, in
pre-dated routine meetings. At these meetings it’s discussed among all team mem-
bers, what changes have to be made and possible problems that may arise. After all
the points are discussed, these are implemented in the requirements and architec-
ture, so that in production there is no unforeseen. With this plan, the solution to be
developed must overcome the sense of distance and undo the difficulties of commu-
nication between the various office teams and even make possible the existence of
remote teams.

In conclusion, if this development philosophy is being well implemented by a
company, it will be possible to see some changes in[11]:

• Reduced delivery dates

• Increased return on investment

• Ability to meet the requirements of the current client

8 Chapter 2. State of the Art

• Increased flexibility to respond to changes imposed by the customer

• Improving business processes

With these points achieved, it’s possible for all teams to develop software and
collect information from customers to make all necessary changes. This way, it’s
within reach for companies to grow alongside the market, always being in contact
with their stakeholders and absorbing new technologies and products that are in
great demand.

2.1.1 Types of Agile Methodologies

There are several strands that follow the principles of agile methodology, that al-
though they have much in common, these differentiate on their main focus and sur-
roundings within the company/project environment. The main ones are Scrum[15],
Extreme Programming (XP)[12], Lean Software Development (LSD)[40], Crystal Methods[16]
and Dynamic Systems Development Method (DSDM)[17].

2.1.2 World Impact

Nowadays customers are increasingly playing a designer role and many companies,
particularly in the startup world, in order to quickly launch a product that solves
an existing problem, try to maximize all the external stakeholders in the process of
development[18]. This has led to a strong client integration, with him being invited
to join the meetings that precede a development iteration, so that every stakeholder
agrees with the developing plan before it happens.
At a team level, there are companies that aren’t restricted to a physical workspace
and are comprised of remote teams working in conjunction with headquarters. This
has led to the creation of many work tools, which help in communication and stor-
age of code. With the increasing industrial globalization of the technology sector,
these factors are very important and agile methodologies are the main choice for
many companies. [19]
There are also some problems with the integration of agile methodologies, since
there’s a lack of detailed preliminary evaluation cost and the lack of understanding
and incorporation of new concepts. It is all based on a cultural problem, in which
many companies do not readily accept change and are very dependent on more tra-
ditional concepts.[20]
In addition to these integration problems, there are some weaknesses in the agile
philosophy, which, if not properly managed, can lead many projects and companies,
to their end. When there’s a strong collaboration between the company and the cus-
tomer, there will be a dependency between these two entities. Often the client does
not have time to strengthen to fulfill this commitment which will make the program-
mer not know what to do. This lack of long-term planning is another weakness of
agile methodologies.[21] Finally, the coordination with information and communica-
tion within the company is extremely important. If there’s no flow of all information
and tools to aid in its analysis, it is difficult for a company to grow internally, and
may even lead to its end.[22].

2.2 Whitesmith

Since the problem presented by Whitesmith aims to find a solution that will help
their software development process, it’s necessary to analyze and review the tools

2.2. Whitesmith 9

currently used by the company and its teams. With several projects in production
and with about thirty members, Whitesmith aims to: “Impact, connecting physical
and digital worlds.”
Being one of the most important aspects of agile methodologies, the company’s top
priorities in managing its teams is to ensure that the communication factor between
the teams and their members is so easy and natural that the barrier distance between
programmers is non-existent. This fact leads the company to be adherent to the phi-
losophy of Remote First, where the place where the person is working is indifferent.
In order to achieve a successful solution, it is necessary to study the current process
of software development, regarding the tools used and how they are integrated into
the production cycle. In terms of qualitative tools, these are divided into three types:
Communication, Monitoring and Internal Tools.

2.2.1 Communication Tools

As mentioned before, internal communication is one of the most important and crit-
ical aspects at Whitesmith, with constant rework and upgrade. All team members
must be able to communicate with each other, regardless of their location, without
having to leave their place. This communication can be on an individual level and
also within a team, in order to generate a discussion among its members in a clear
and organized way. It’s also necessary an straightforward method to exchange and
share information data, so that the whole team has access to its contents.
To achieve these goals, the Slack[23] and Google Hangouts[24] systems are used.

• Slack: It’s a cloud based technology, that offers Internet Relay Chat (IRC) tools,
such as:

– File Sharing

– Discussion Channels

– Private Groups

– Individual Messaging

Through a specific URL, you can invite people to join a private group. Being
one of the most used tools in the world for internal corporate communication[25],
it has adopted integration of many other tools and services to help software de-
velopment. Whitesmith has a private group, in which all team members have
access to. Work related channels are created, in which ideas and doubts are
discussed.

• Google Hangouts: It’s a communication tool developed by Google, that offers:

– Video Chat

– File Sharing

– Group Conference

– Voice over IP (VOIP)

– Messages SMS and Chat

This Google service enables the creation of video-call conversations for a large
number of people at the same time and can be accessed through various Google
services such as Gmail and Google+[26]. Also contains a mobile application

10 Chapter 2. State of the Art

version. During a chat session you can share files and all shared data between
users is saved to a specific file in their Google Drive.
At Whitesmith, Google Hangouts is used for daily sprint iterations meetings,
where members discuss their projects’ development status. Through this sys-
tem it’s possible to include remote members in meetings, giving the possi-
bility of a real time update with the entire production team. Since most of
their clients are from other countries, most of their meeting are also performed
through this application.

2.2.2 Project Management Tools

Throughout its production cycle, Whitesmith uses various tools that facilitate the
distribution of information of everything related to their development status and
its planning, with everyone within its rooster. Thus, at any time, no matter where
someone is located, a collaborator must have access to information about a particular
project’s task. Although they also serve to communicate, these tools are intended to
monitor and aid the entire development process, for both manager and programmer.

• Trello: Being a web project management tool that follows Kanbaab board de-
sign, Trello will provide users with a card management service, which repre-
sents a production element to be developed or executed. These will belong
to specific lists, in which they will catalog and separate collection of cards, to
create an organized view of everything that will happen during the produc-
tion cycle of a project. This card and list relationship, will represent the current
state of development of a certain task, belonging to the development cycle.
This way it’s possible to originate a task’s flow progress, from its conception,
until finished and approved. Each card will have the necessary information so
that, when viewing it, you will know everything that is necessary to execute
it[27]:

– Members: Persons responsible for developing this requirement

– Description: Usually contains a user story that describes the process to
develop

– Attachments: Extra information that is relevant to the development of
this card

– Checklist: Acceptance criteria of several points that constitute the user
story

– Comments: Questions and remarks made by any member with access to
this card. From the project manager, the programmer and even, in some
cases, the client.

At Whitesmith, this tool is used in every project, all of which contain their own
board. Everyone involved, in the development process, is assigned a card and
is placed on the list that best describes their current status. Every team mem-
bers have access to it and in many cases, the client also have access, so that he
can give an opinion on how the process is evolving.

• Github: It’s a Git web repository that, in addition to offering version control
and code management services, also has at its disposal other proprietary tools
that focus on the software development process. It is possible for any element

2.3. Natural Language Processor 11

to create repositories and decide whether they are public or private to the rest
of the community. At the same time it was planned to have a social network
aspect, in which a member can create a contact network to keep abreast of what
is developed by the community.[28] At enterprise level, GitHub offers a repos-
itory service for large-scale products for large enterprises.[29]

Whitesmith takes advantage of all its features and as the main repository of all
its products. Whenever something is produced, when inserted into the reposi-
tory, he must create a pull request, where another team member will have to do
code review. If this member agrees with what was done, he authorizes the pull
request and thus this code will be stored inside the repository’s main branch.

• Toggl: It’s an online time recording service. With the target audience, being
small businesses, Toggl, in addition to development timing, also allows to cre-
ate productivity and time charts of a development team.

With this in mind, Whitesmith makes use of this application whit financial
purposes, monitoring production time, so that it knows how much it should
charge its customers. It is also used to quantify payments to team members
who work hourly.

2.2.3 Internal Tools

Whitesmith has also developed some tools to aid in its business monitoring and
development process. These tools are important to keep relevant information about
its projects and members at a company level. These applications are:

• Quem: Meta service with information of all the projects developed by the com-
pany. Project level information (name, description, members), financial data
(fees, types of payment) and service data (Slack channel, Trello Table).

• Qompany: Also used for data from previously mentioned projects, but with
a financial forecast calculation purpose. It is also used for productivity docu-
mentation, rather than storage.

• Shrinq: An application for recording and producing graphical reports on the
environment and levels of happiness felt by the members of the company.
This data is collected by a bot that communicates with team members through
Slack.

• Piqa: System of investigation and registration of individual productivity by
the members of the company. Also using a bot, which works in Slack, where
it will ask the elements, which projects they have been working on during the
day.

2.3 Natural Language Processor

Considering that, at this stage, a solution was requested that had as main interface
with the members of the company, a natural language assistant, it was necessary to
do a study on the current state of Natural Language Processing (PLN). In this chap-
ter we will show the characteristics that involve and form this technology, as well as
some PLN robots that contain the same purposes as what will be developed during

12 Chapter 2. State of the Art

this stage.

Although there are several approaches to PLN, in all of them there are two indis-
pensable components to its development: Understanding and Generation[30]. In
the first component of understanding, it is necessary an input framework in which
it is possible to introduce data in text format so that they can be analyzed in the
language and trace possible logical patterns of what one wants to obtain. After the
Data Processing, the generation of a logical answer to the one requested is followed,
in the same natural language that the person who realized the input can understand.
In this response construction, it is necessary to have a planning of lexical structuring
and phasic construction. It is in these two components that all PLN will happen.[31]

2.3.1 NLP Applied Today

Today’s modern technological world, we can see NLP being applied in several types
of services through voice and text inputs.
In a world where data growth is moving away from human control, many compa-
nies are using this technology for information extraction and manipulation. From a
extraction point of view, it’s important to have access to knowledge that’s far away
from human reach and processing speed. A lot of this data is in a raw form, in a
way that’s incomprehensible for the human mind to comprehend, so NLP is used to
transform it in a way that’s readable from a user point of view.[10]

Chatbots can open new horizons in the way you work in the software development
world by bringing a channel for monitoring and planning. As Ben Brown says:

"Bots are creatures of almost pure API. It is the flesh and blood from which they are cre-
ated. They speak and listen through messaging APIs, and carry out actions via other APIs."

In recent years there has been an explosion in the NLP bot market[32]. Although the
technology already exists, in the main operating systems (Siri and Cortana), some
prototypes are starting to appear that are being developed with the purpose of being
integrated into chat applications. With this technological symbiosis, it is possible for
teams to create their own bots for interactive tools to aid the software development
process and improve productivity and monitoring.

2.3.2 Development Tools and APIs

With this increase of NLP systems integrated into modern day technology, there’s
a growth of online platforms that are dedicated to develop NLPs public services
for anyone to use and incorporate into other products.[33] Although anyone can
develop one of these services from scratch, not everyone have the knowledge in
fields of artificial intelligence and machine learning, so, most of these tools contain
a small learning curve and do not require extensive experience and knowledge in
these areas.
With the enormous amount of APIs that exist in the market, after a careful study and
considering the final solution we considered these main candidates:

• Wit.ai API: This is a PLN interface in which your applications can convert a
word input into structured data. This learning system revolves around use
cases, in which predefined intentions are described that will serve to integrate
a follow-up of interactions between the robot and the input. There is a public

2.3. Natural Language Processor 13

intent storage, from all users, that everyone can export and make changes for
their intention.[34]

• Howdy.ai Botkit: This API has a greater focus on learning the robot, making
it easily understand certain commands with a different lexical construction.
Supports conversations with multiple messages.[35]

• IBM Watson: It’s a series of text processing APIs differentiates itself from other,
on the fact that it doesn’t have an unique API that’s does intent and entity
recognition in a single call. To do this, we must use more than one API and
make several calls to them so that all information is processed.[36]

• Microsoft LUIS: This Language Understanding Intelligent Service (LUIS), can
do intention and entity recognition simultaneously, with them having a pre-
built list. After one of these aspects is recognized by the API, it warns the
system and the referenced event is executed. Microsoft also provides a frame-
work where it’s possible to design all scripts.[37]

• Api.ai: It’s a more organized API with an Agent system. These agents can
have pre determined intents that can insert a common role, from the web ser-
vice world, like authentication, booking and shopping. It’s possible to create
Dialogs in the framework platform, so it can be possible to collect pre-defined
data into an answer[38]

2.3.3 Comparative Analysis

After studying the properties and operation of these tools, it’s necessary to choose
one that gives more freedom to the user, without development and application costs
for the system. The development tools are equally important, since it must be possi-
ble to produce functionalities through a language the intern knows how to handle.
Regarding how the NLP process is done, it’s important that the user be allowed to
build events and that the entire process be done in a single API call.
With the following table it’s be possible to compare the chosen applications, taking
on order the presence of critical features and business model in which they work.

14 Chapter 2. State of the Art

Public
API

Manage
Events

Single
Call

Logic
Side

Talk Product
Pri-
vacy

SDKs Pricing

Wit.ai Yes Yes Yes API
and
User

Beta Public
Intents

Rails,
Node.js,
Python

Free

Howdi.aiYes Yes Yes User Beta Public
Intents

Rails,
Node.js,
Python

Free

IBM Yes No No User Yes Private Node.js,
Python,
Swift,
Java,
Unity,
.Net

Pay

LUIS Yes Yes Yes User Yes Private Node.js,
C

Pay

Api.ai Yes Yes Yes API
and
User

Yes Private JS,
.NET,
Unity,
C++,
Python,
Ruby,
Java

Free
API

TABLE 2.1: NLP Tools Comparison

15

Chapter 3

Project Management and
Operations

In order for the entire solution development to occur as expected, with few contin-
gencies and good mitigation strategy, it’s necessary to create a development plan. In
it, it’s important to prioritize all the features previously raised, so that its dependen-
cies are developed first and then be able to work more comfortable on what’s still to
be produced. This way, we will know that in the final phase of development, noth-
ing will remain unfinished and we’ll not come across anything that might prevent
its completion.
In every software engineering operation, it’s imperative to define a development life
cycle that will represent a structure sequence of development stages for the intended
product. We must had this decision to the previously mentioned analysis, so we can
conclude on which life cycle would the development process beneficiate more.
In order to reduce the operational complexity of managing a system and continue
to respect the project requirements, a study was made of technologies and tools that
the market has at its disposal.
This chapter will contain the analysis, its conclusions and the entire work plan that
will occur during this internship. Also, it will present these operation technologies
that have been chosen and applied in construction and how they interact with the
final application.

3.1 Methodology

As mentioned above, Whitesmith uses agile software development methodologies.
To choose this methodology, first it must be taken into account the phases that this
project would have along its entire development life cycle.

• Requirements: These would not undergo any major changes throughout pro-
duction. Although, since the solution aims to help the company’s development
production, if one of the system’s feature, could not fulfil this objective, it had
to be changed without the others being affected by it.

• Architecture: Is an important factor since it represents a map of the compo-
nents that the system would have internally. Therefore, it was necessary to take
into account the dependencies that these components would have amongst
each other and how possible changes would affect its requirements.

• Development Plan: Since this solution will not replace any existing system,
but rather unify the various tools already existing and used, the trainee should

16 Chapter 3. Project Management and Operations

perform incremental launches of various functionalities that the system pos-
sesses. This way, after they are tested and approved for deployment, the team
can start working immediately on the next developing stage.

• Deployment and Maintenance: Every time a functionality is approved for
deployment, it can be used by Whitesmith members so they can give their
opinion about it

With the development being performed by an one-man team and the end-user be-
ing the entire Whitesmiths rooster, it was important to maintain a certain proximity
with all teams, to get fast feedback about the solution’s impact on their develop-
ment process. Never forgetting about the remote first philosophy, the system must
be available to all members, independently of their physical location.
After this analyses, it was concluded that the methodology that best fit into the de-
velopment of this solution, would be a Lean Agile methodology with a two-week
sprint with Kanban[39] boards to plan and monitorize the entire production.

3.1.1 Lean Software Development

Although not considered a development methodology, but a process management
methodology, LSD, will aim to integrate the Agile philosophy into the working
method of companies, so that these can work well from top to bottom. This way,
it will be possible to achieve perfection in all manufactured products, minimizing
the whole process, until only the essentials are obtained. Following the twelve prin-
ciples for which LDS governs[40], one can understand that automation is an impor-
tant aspect in this methodology, which will reduce the tests and provide opinions of
all those involved in the production.

Monitorization

Although the Lead methodology chosen, was with a two week sprint, if necessary,
short meetings were held every day to discuss eminent problems of some urgency
and to arrange a quick solution so that production was not stagnant. Weekly meet-
ings were also held to outline a new development iteration and to get some feedback
on less urgent issues that were raised during the last production cycle. During the
solution’s development, special attention was given to these raised problems, so
their fix can be added to the production pipeline.

Implementation and Quality Control

At an implementation level, short and fast development tasks were defined so that,
when they pass the tests assigned to them, they would be integrated into the final
solution.This way we can always have a stable version of the system being devel-
oped available to Whitesmith members, for them to test its usability and UX. All
system code was stored in a GitHub repository, where whenever a task was being
developed, it would have its own branch. This way, if something happened that un-
dermined the system, it would always have a stable version in the master branch. To
ensure code quality and reliability, after a task passed all its tests, the intern would
create a pull request that would involve everything that belonged to that branch. In
order for this code to be accepted and merged with the rest of sable version, another
Whitesmith member would have to review it and finally approving it.

3.1. Methodology 17

Tests

Regarding testing, Test Driven Development (TDD) was used. Being associated with
Lean methodology, this process uses its short production cycles, which when they
are finished, the requirements that formed them will be transformed into test scenar-
ios. This tests were transformed into code and the feature would only be finished as
soon as it passed all its tests. After approval, if there were still tasks to be developed,
a new set of tests were written to start a new iteration. At a documentation level,
black-box testing was designed, which will have the requirements as the functional-
ities to be tested in each iteration.[41]

3.1.2 Kanban

Due to the environment in which the solution is located, the functionality to be de-
veloped needs to be organized by priority, since if it is necessary to change the re-
quirements, the impact on the already developed system is minimized. Soon, there
will be a facility to add new tasks or changes to meet recent changes imposed by the
business need.
For the provision of these tasks, one goes to the framework Kanban, which is a sys-
tem of cards that represent tasks that are located in Work in Progress (WIP) and that
through several sections, named by lists, will represent the entire flow of develop-
ment With an order of priorities mentioned in the previous paragraph.
These lists will represent all the stages of development that a task is from its incep-
tion until it is tested and released

FIGURE 3.1: Trello Card Example

This way, a team member would only be focused in cards that were in production
and that were integrated into the current development cycle. It was then possible
for the team to rearrange cards that were in the queue and even add more cards, as
long as their order maintains development priorities, following a descending order.
These cards and lists are distributed in a frame in which all members of a team have
access.
For the card monitorization, the Kanban tool used was Trello, that was already men-
tioned in Chapter 2 of this report. This system allowed the priority organization
mentioned in this section and carry a card to the state of development to which it

18 Chapter 3. Project Management and Operations

currently belongs.

FIGURE 3.2: Project’s Trello Board

3.2 Plan

This section describes the outlined plan for the two semesters, in which this project
occurred. This temporal plane was planned in two Gantt diagrams, one for each
semester. To define the working time that each task would cost, we used the three
point estimation technique[42]. To do this, it was necessary to define three different
times, which reflected the duration of development of a given iteration.

• a: Optimistic time, the best possible case

• m: Normal time, the most likely case

• b: Pessimistic time, the worst case possible

In Project Evaluation and Review Techniques (PERT), these three values were
used to calculate the estimated time (ET), along with a standard deviation (SD),
through these formulas[42]:

TE =
a + 4m + b

6
(3.1)

DP =
b− a

6
(3.2)

With this technique, it was possible to calculate an ET for each development it-
eration, by making a complexity study on each one of them and then arrange them
by priority. Finally, the Whitesmith advisor approved the plan and it was defined
that each development iteration cycle, would take two weeks. If the ET exceeded
this time, then it would be divided in two.
Through burndown charts[43], it was possible to keep track of the development sta-
tus at any time throughout the second semester. With this type of chart, it was pos-
sible to see the time taken to develop a certain task and compare it to the time it was

3.2. Plan 19

estimated to finish it. With this, we can see if a project is late or ahead of time, of
what was originally planned. Because of the short timed development cycles, this
time metrics were very important to monitorize the development status.

3.2.1 First Semester

After the introduction to the company was made, the first semester was divided into
3 main work milestones, that can be seen in figure 3.3. The first one, that lasted till
the middle of October, was focused on gathering the state of the art by studying the
state of agile development inside the company and worldwide so it could be pos-
sible to have a better understanding of the problem at hand. After this, a series of
questions were formulated, to inquire Whitesmith members. This way if anything
bad arises that fitted the problem, it would be noted so that the future solution could
fix it.
When all the information gathered sufficed, the second milestone started by elabo-
rating the first sketches of the solution with a large scope and main objectives. With
this, it was possible to start gathering the system’s requirements, analysing them
and finally drawing its minimum value product (MVP). This milestone ended with
the approval of the MVP by the Whitesmith coordinator.
The third and final milestone, began with the design of the system’s architecture
with all their modules and connector and technologies that would be used to de-
velop them. After its approval, the last step done in this semester, was the system’s
development planning and testing.

By the end of the semester, during the month of January, compared to the diagram
made in the beginning of the semester, we can see that were some unforeseen events
due to the intern still being enrolled in some Masters courses. This had a big impact
at the end of the semester, with a serious delay in writing the interim report that
began a few days later than originally planned.

3.2.2 Second Semester

Since the Kanban planning methodology was followed, it was possible to do con-
tinuous stable releases of the system being developed. This way, it was possible for
company’s members consult metrics and use features has they were being devel-
oped. Another Gantt chart was initially developed, but, like the one made for the
first semester, it suffered several iterations over the semester in order to cope with
changes in the system requirements and scope. Since a new technology was going
to be used to develop one of the system’s modules, the first thing to be done was to
learn how to use it and apply it in the module construction.
The development plan, started with the production of the system’s MVP that in-
corporated all its modules with a single input and expected output. After its de-
velopment, testing and release, the remaining features were developed one by one,
following the MVPs approval steps. This method was done till the completion of the
solution.
While developing the system and releasing new features, a continuous UX monitor-
ization was made, by watching Whitesmith development teams that were using this
system. This way, it was possible to conclude if the solution’s released features were
helping the company’s development processes and even get opinions of what else
could be made that wasn’t originally planned. The initial and final versions of the
Gantt chart can be seen in Appendix B

20 Chapter 3. Project Management and Operations

3.3 Risks

When the first solutions were being designed, a number of risks were identified that
could jeopardise the normal development of the system and even interrupt it. Once
identified, it was analysed and saw in which system attributes are associated with
its appearance. These attributes are:

• Impact: The level of impact that the risk will have on the project. If this hap-
pens it is necessary to quantify it to see how much the project will be compro-
mised (Minimum, Medium, Maximum).

• Probability: It will be the probability level of the risk to occur (Low, Medium
and High).

As soon as risks were properly identified and analysed, the part of outlining a
mitigation plan was followed. This plan is only viable if the risk is correctable and it
may change some of the requirements, but since agile methodology was being used,
the development was ready for such an event. When the mitigation plan was called
into action, it was necessary to be under constant observation to see if it was being re-
solved or getting worse as development progressed.

• Risk 01:

Solution Complexity (R01)
Description Due to an high number of system’s modules, the workload

can be to high for the intern to handle in its predicted time
Impact Maximum
Probability Medium
Fixable Yes
Mitigation Keep in mind the MVP solution and focus on its priority

features. Keep in contact with the development teams that
will use the final system so their feedback can keep the de-
velopment on their main needs.

TABLE 3.1: Risk 01: Solution Complexity

3.3. Risks 21

• Risk 02:

PLN System Development (R02)
Description The intern has no experience in developing a system with

PLN, since it’s not his area of expertise. This may cause a
simplified chatbot to be developed.

Impact Maximum
Probability High
Fixable Yes
Mitigation Keep in contact with Whitesmith members that have ex-

perience in the fields of Artificial Intelligence and Padron
Recognition. Also the intern will use a open source tool
that will take over the main PLN processing.

TABLE 3.2: Risk 02: PLN System Development

• Risk 03:

Golang Development (R03)
Description It will be used Golang to develop one of the system’s mod-

ule. Since the intern has no experience using this technol-
ogy, the time needed to learn it could be bigger than ex-
pected, putting the delivery time in risk

Impact Medium
Probability Medium
Fixable Sim
Mitigation If the learning time takes too long the intern can ask for

help to some of Whitesmith members that have experience
in this technologie. If the problem still persists, a new study
analyses will be made to choose another technology that is
more familiar to the intern

TABLE 3.3: Risk 03: Golang Development

22 Chapter 3. Project Management and Operations

• Risk 04:

Problem not Fixed (R04)
Description After the complete system has been deployed, there’s a risk

that it may not fulfill the company’s exposed problem.
Impact Maximum
Probability Medium
Fixable Sim
Mitigation During production, every time a feature is released the in-

tern will proceed to make a continuous UX evaluation. If
anything is not working has expected, the intern will fix
or add content to eliminate this problem. Meetings with
development teams will also be made to gather all the nec-
essary information before developing any feature

TABLE 3.4: Risk 04: Problem not Fixed
These identified risks are represented in the following matrix:

FIGURE 3.3: Risk Matrix

All risks contain a high degree of probability and impact. This is a great indicator of
how fragile the system is with the current state of the situation, so, it was necessary
to create a mitigation plan to deal with these risks and eliminate them or reduce their
probabilities and impacts. Along the solution development, these risks were dimin-
ished through mitigation plans that allowed reducing and even eliminating the risks
encountered.
Risk R03 was eliminated due to the study carried out by the intern in order to learn
how to work with the Golang language. Risk R01 and R04, throughout the devel-
opment, close contact was maintained with company members, so that there was a
flow of opinions and suggestions about the solution to be developed. This way, it
was possible to greatly mitigate the likelihood of the risks taking place. Finally, the
most critical risk, R02, was more difficult to mitigate due to the nature of the technol-
ogy in question, since it was unfamiliar to the intern. But as the system that would
contain this technology, lost importance within the solution, its impact has consid-
erably diminished in solving the problem exposed. Concluding, the risk monitoring
was successful as no risk jeopardised the project, since the mitigation plans were
proven successful.

3.4. Operations 23

FIGURE 3.4: Final Risk Matrix

3.4 Operations

With the integration of these tools it will be possible to give more independence to
the system and case of an internal fault, without this having to be constantly mon-
itored by a member of the development team. Through this freedom, the system
must be able to balance the resources that it uses, according to their need.
If in case of a failure it is not possible for the system to self regulate, it should fa-
cilitate its correction through login systems in which it records all the events that
occurred during its operation. Since one of the requirements of the system is its mod-
ifiability and scalability, it is necessary that your code is stored in a safe place and
accessible to all members of the company. In this way, they are able to implement
changes that improve system functionality and scale to their potential, introducing
new functionality.
Finally, it is necessary to have a platform in which it is possible to deposit the final
product, so that it is available to all users.

3.4.1 GitHub

As previously stated, Github is an online Git repository that contains versioning and
code management applications developed by its users. Although not considered
an application for Operations, GitHub allows the integration of several systems of
this nature to facilitate the development of applications. One of those tools that was
integrated for the development of the solution was Circe CI, which will be explained
below. This tool was used to store and manage the versions of the three systems
to be developed from the beginning. If there was always a master branch, it only
contained code that went through all steps of passing tests and quality control.

24 Chapter 3. Project Management and Operations

FIGURE 3.5: Github Diagram

3.4.2 CircleCI

The main objective of continuous integration is to assist in the practice of merging
all existing code versions into a team preventing integration problems. In agile de-
velopment teams, continuous integration is used together with unit tests that are
automatically processed through test driven development practices.
Since the solution to be developed will use this type of testing practices, the CircleCI
tool was used, which was integrated in GitHub.
Whenever a new block of code was transported from the local repository to the on-
line repository, it would activate CircleCI, which in turn would replicate the tests
drawn on the specific file and automatically replicate them one by one.
If the tests were all approved, this new block of code would be available for in-
tegration into the main code pipeline. Otherwise, this would warn the user that
something failed in the tests and until its correction, this block could not be added.

3.4. Operations 25

FIGURE 3.6: CircleCI Diagram

3.4.3 Heroku

To make the systems accessible to all users, Heroku was used as a deployment plat-
form for systems.
Since Heroku is a platform as a service (PaaS), it supports several programming
languages, including those used to develop systems. Whenever an application is
deployed on Heroku, it receives a random but unique domain so that it can be ac-
cessed by its users. For this to be possible an HTTP routing system is used that will
integrate with those of the integrated systems. The application is sent to Heroku
through GitHub and it will proceed to install all the necessary dependencies so that
all the modules of the system work.

• In RoR all the gems of the system are installed so that its functionality remains
operational

• In Golang all libraries and packages are inserted

26 Chapter 3. Project Management and Operations

FIGURE 3.7: Heroku Diagram

Heroku also offers a range of addons that will enhance the system’s capabilities
in terms of both functionality and monitoring. For our systems the following add-
ons were used:

• HerokuPostgres: This is a SQL service for applications that use Postgres as a
database. It is possible to access and manipulate data through this tool with
SQL commands after an application is already deployed

• Scheduler: is a service to perform tasks at predefined time intervals

• Loggin: Logs are a stream of event sets marked with runtimes that originated
in running applications, system components, and support services for each
application. With these registers it is possible to observe the operation of the
system in question helping in its monitoring. In addition to these predefined
records, it is also possible for a user to write and define one of these to their
liking.

3.4. Operations 27

FIGURE 3.8: Loggin Printscreen

3.4.4 Sentry

This tool will provide error tracking, that helps developing teams to monitor
and fix any system crash that happens after deployment. When it happens,
every team member, will receive an email with details needed to identify, re-
produce and fix the issue.

29

Chapter 4

Requisites

Before starting any kind of development, every team needs to collect the system’s
requisites since they are responsible for describing most of its functionalities. One of
the most common problems in software engineering lies in the requisites instability,
which can lead to severe development problems, putting the system at risk. In order
to mitigate this, it’s vital to reach a full understanding on how the system is going to
be produced and how every stakeholder will use it.
In this chapter it will be discussed the requirements that were defined for this project
and what processes were made to get them.

4.1 System’s Actors

Has a system stakeholder, its actors are directly involved in the development process
and in its usage, has soon has the system is deployed. Since they have a direct
influence in the system’s scope and are directly affected by it, it’s important that
they are described in a general way by mentioning their propose, what they give to
the system and what to they expect from it.
This system has the following actors:

• Non-Registered User

Non-Registered User (NRU)
Description Being a human entity, this user has not yet created a per-

sonal account in the system, giving it unique credentials.
Without this authenticated account, the User will not be
able to access the application. They are entities that at the
beginning do not contain a great knowledge of the system.

Provides While Authenticated Users can not, in their current state,
provide anything to the system except an account record in
the system. Registration can only occur if they belong to
the Whitesmith team.

Expects As the system’s target audience, this user is expected to log
on to the system through the Trello API.

TABLE 4.1: Actor - Non-Registered User

30 Chapter 4. Requisites

• Registered User

Registered User (RU)
Description Being the target user, this will be the main user of the sys-

tem and will have access to most of all the features it has
to offer. They are entities that initially do not have a great
knowledge of the system, but over time, they will feel fa-
miliar with all the mechanisms that the system has to offer

Provides As Authenticated Users, they will provide the system with
the connectivity to all the software development APIs it
uses and all the information they contain about the projects
that the user is integrated with. It will also provide constant
updates of work progress and development.

Expects Since these system actors have access to almost every fea-
ture of the system, they are expected to use this application
every day to record all the progress they have made on a
work day.

TABLE 4.2: Actor - Registered User

• Programmer

Programmer (Dev)
Description User who will maintain and ensure the maintenance of the

entire system. This will have control of all the informa-
tion that passes through the system. They are entities with
great knowledge of the functioning of the system, both at
the level of usability as well as of code.

Provides As a system programmer, this user can add new content
to the application through software updates. You can also
make changes and additions to all types of system features
and contents.

Expects With all the power that is assigned to this user, it is expected
that the system is under constant surveillance by a human
entity and that any problem that the system can not auto-
matically solve, the administrator will start to try to find a
solution.

TABLE 4.3: Actor - Programmer

4.2. Requirements Collection 31

• Project Manager

Project Manager (PM)
Description You will be the user with the role of Whitesmith Project

Manager. They are entities that make the planning and
monitoring of a system that is currently under develop-
ment.

Provides Through the Trello API, this user will be able to load
projects into the system, in which he is as a manager. It will
also provide development updates as the project is being
built.

Expects As a project management member, this user is expected
to make use of the monitoring functionality that the sys-
tem has to offer. In this way it is possible to make a study
about the state of development of all the projects that it is
in charge of managing.

TABLE 4.4: Actor - Project Manager

4.2 Requirements Collection

In order to perform a good collection of requirements for this solution, it was nec-
essary to conduct a series of interviews with Whitesmith members who represent
the system stakeholders described above. A study was also carried out on the large
number of project management and monitoring tools that the company uses, so that
the unifying solution was in accordance with the expectations of all team members.
In these interviews, the issues reached several important points and collected in-
formation on the various negative aspects of the development process made by the
company. Problems with tools that could be stagnating the production of software
and other important issues. The question guide can be seen in Appendix A
The intern also followed a consulting project, which was in the initial stages of de-
velopment, being possible to observe several pre and post development iterations
meetings and all the team members interaction with the project manager and client.
After these interviews, it was possible to raise all the following requirements for the
system to be developed.

4.3 Functional Requirements

The functional requirements were described through user stories and prioritised
through the MoSCoW analysis technique.
A user story follows a short, simple structure where non-technical language is used,
adding the interaction between stakeholders and the system to be developed and
what a functionality should do instead of explaining how the task should be devel-
oped. Due to the non-technical writing, these will be easy to understand and can be
reused for validation purposes when the development iteration passes into the test
phase.

32 Chapter 4. Requisites

As a I want to So that I can MoSCoW
<Actor> <Feature> <Benefit> <Classification>

TABLE 4.5: User Story Mode

MoSCoW analysis will individually classify the importance of each user story
and its priority in the system. This classification is divided into four types:

• Must Have: These are the essential and indispensable functionality for the
system operation and for its objectives to be achieved. Without them there is
no system or solution.

• Should Haves: They are equally essential features for the system, although it
is still possible to solve the problems for which it was intended.

• Could Have: These are features that are not essential to the final product, but
would be interesting and bring some value to its operation and usability. They
may be included in development if they do not have a major impact on devel-
opment time.

• Will not Have: These are features that are not included in the development
plan, but if there is an opportunity, they can be integrated into another phase
of system functionality expansion.

User Stories

The next tables refer to the user stories that were defined by the intern, after an
analysis of all the data collected both in the study of the tools and techniques of
development, defined in Chapter 2, as well as the interviews with the members of
Whitesmith.
In the course of development, some user stories were added or change due to a
better understanding of the solution.

4.3. Functional Requirements 33

• Project Definition

<Actor> <Functionality> <Benefit> <MoSCoW>
UR -
Admin

View the company projects
I’m associated with

Access to your options
and tools to monitor the
status of projects under
development

Must Have

UR -
Admin

View all project actual aver-
age developing speed, gath-
ered from the APIs associated
with it

Know the velocity in
with features are beeing
developed

Must Have

UR -
Admin

See a burn-down chart of past
developed features

Be aware of any gap in
the projects developing
process

Must Have

UR -
Admin

See a prediction of when the
project is going to completed

To see if in its current ve-
locity the deadlines are
going to be met

Must Have

UR -
Admin

See if developing time predic-
tions are consistent with the
real one

Know if i’m getting fa-
miliarised with projects
developing time

Must Have

Admin View the total hours of a
weeks life cycle

B able to monitor the
state of a project

Must Have

UR -
Admin

Filter tasks by type of devel-
opment

Whether a task is of de-
sign or logic

Must Have

UR -
Admin

See all the tasks of a particu-
lar project

Be aware of all the func-
tionality and tasks that
are necessary to develop

Must Have

UR -
Admin

View the hours needed to
complete a task, taken from
Trello

Be aware of the time set
for each task and the sys-
tem can analyse devel-
opment time metrics

Must Have

UR -
Admin

See where in the a card’s life
cycle phase takes more time
to complete

Be able to create a plan to
mitigate it

Must Have

UR -
Admin

View the total hours of a
weeks life cycle

B able to monitor the
state of a project

Must Have

UR -
Admin

View the Slack channel for a
project

Know that the system
knows the correct slack
channel

Nice to Have

TABLE 4.6: User Stories Project Definition

34 Chapter 4. Requisites

• Account Creation and Login

<Actor> <Functionality> <Benefit> <MoSCoW>
UNR I want to register in the sys-

tem with my Trello account
Access system Must Have

UR -
Admin

Login to the system through
the Trello account

Access System Features Must Have

TABLE 4.7: Account Creation and Login

• Project Monitorization

<Actor> <Functionality> <Benefit> <MoSCoW>
UR -
Admin

View dashboards for devel-
opment metrics.

Analyze its results Must Have

UR -
Admin

View metrics for a given de-
velopment iteration

Analyse the develop-
ment performance in
that particular time

Must Have

UR -
Admin

See cards that are not prop-
erly done with all informa-
tion

Know which ones and
correct them

Must Have

UR -
Admin

How long is a card beeing de-
veloped

Know what work is in
progress

Must Have

UR -
Admin

See each cards life cycle time How long it took to be
completed

Must Have

UR -
Admin

See if a card’s life cycle was
done correctly

Know if Trello board is
being well used for cor-
rect metric creation

Nice to Have

UR -
Admin

Use filter on dashboards Do a more detailed anal-
ysis of the results ob-
tained on dashboards

Nice to Have

UR -
Admin

Insert comments and obser-
vations into development it-
erations, members, and re-
sults

Add more information
to the produced metrics

Should Have

UR -
Admin

Generate project develop-
ment reports

Have information about
a project without being
connected to the system

Should Have

TABLE 4.8: Project Monitorization

• APIs

<Actor> <Functionality> <Benefit> <MoSCoW>
UR -
Admin

Associate any IT Tool API to
the system

System integrate its data
to use it for the monitor-
ing functionalities

Must Have

TABLE 4.9: APIs User Stories

4.4. Non-Functional Requirements 35

• Development Weeks

<Actor> <Functionality> <Benefit> <MoSCoW>
Admin Add a new week of develop-

ment
Create time intervals
for software develop-
ment, which identifies
an important block for
analysis

Must Have

TABLE 4.10: Development Weeks User Stories

• Slack

<Actor> <Functionality> <Benefit> <MoSCoW>
UR -
Admin

Receive information from the
system through the bot

To always be connected
to the system

Must Have

UR -
Admin

Request information from a
particular project that is in
the system

To update me quickly on
a subject

Must Have

UR -
Admin

Request a list of tasks to do,
in priority order

Understand what is
lacking and its urgency

Nice to Have

TABLE 4.11: Slack User Stories

4.4 Non-Functional Requirements

Quality attributes are properties that will ensure that the quality of a software system
remains at a high level when certain unexpected events occur during its operation.
It is necessary to maintain this quality from the beginning of development. In this
way we will ensure the quality of the final product that is developed. These proper-
ties can ensure the internal and external quality of the service and working together,
will compose the quality of the service developed. In this, the properties that not
only protect, but ensure the smooth operation of the most delicate processes, when
these are being used by system users.

• Maintainability

In case of errors the Developer should be able to deploy fix in less than
two days

TABLE 4.12: Maintainability Table

36 Chapter 4. Requisites

• Extensibility

The Developer should be able to implement new features without hav-
ing to change existing ones, nor disturb the flow of information
The Developer should be able to change existing system functionality
without losing existing information
The Administrator or Developer should be able to add new APIs from
other systems without changing the information flow of existing ones

TABLE 4.13: Extensibility Table

• Compatibility

The system should be able to connect to the company’s internal and
external APIs
The system must understand and deal with data collected from the
APIs with a data loss of less than 1%
Information exchanged between the systems shall be understood and
interpreted by both

TABLE 4.14: Compatibility Table

• Answer Time

The system should update the graphs in less than five seconds
The solution should trade data between systems in less then five sec-
onds

TABLE 4.15: Answer Time Table

To properly validate these requirements, performance testing was required
whenever a feature was directly associated with one of these requirements.
These tests were performed through temporal and functional analyses. The
validation of the extensibility requirements are present in the system archi-
tecture and explained in Chapter 7 - Verification and Validation. Finally, the
solution to be developed also contains metrics that can validate some of these
requirements, such as Maintainability.

37

Chapter 5

Architecture

This chapter covers the system’s architecture design, giving a general description of
the system and the modules that integrate them and how the communication be-
tween them is performed. It will also have a detailed analysis of each module, the
technologies that will be needed in developing and the database that will receive all
the information.
In any software project, before starting its development, a good description of its
architecture must be given, since it is this that will define all its structure and the
behavior of all the components. In addition, from this view of the system, it will also
serve as an "instruction book" for all development, therefore the architecture should
be very well structured and all its modules well studied.
This study phase of the system will be one of the most important points since, if
the architect is not able to represent and describe it correctly, it becomes difficult to
understand and each team member may have a different definition of what needs
to be done. This may result in the system being developed in a different way and
problems may arise, in which the correction may take a long time to be executed and
cause damage to the project and company.
While this is true, the most important thing to study, analyze and define in the ar-
chitecture is to ensure that it complies with its functional and nonfunctional require-
ments that were specified previously.

In order for the system to achieve this level of simplicity and understanding at a
architectural level, it was implemented the teachings proposed by Simon Brown’s
Software Architecture For Developers, in which communication is one of the most
important points in architecture. Like human language, it is necessary to use a set
of symbols and rules, so that all people understand exactly what they are trying to
communicate. These symbols can be from drawings, figures and boxes, but to make
the idea simple, it is necessary to use certain rules. Thus, in order to maintain this
organization, Simon Brown[44] mentioned that there should be levels of abstraction
that filter different levels of complexity of a computational system in relation to the
interaction that stakeholders have with the system. These levels are:

• Context Diagram

• Module Diagram

• Component Diagram

• Class Diagram

In all these diagrams, all the of the system elements will be represented in figures
and boxes. Being the figures, human elements will communicate with the interactive
and physical part of the system and its internal components.

38 Chapter 5. Architecture

These boxes will be properly identified and explained with text, describing what
they are and their purpose within the scheme. All interactions between boxes will
also be explained. The text will follow a simple language so that there is no ambigu-
ity in the definitions of each box.

5.1 System

After the requirements were surveyed, an analysis was done with the purpose of de-
signing the system architecture, so that it can contain the defined parameters. Since
the system’s main objective was the automated collection of data from the various
tools used by the company, the purpose of the solution was to elaborate analysis
dashboards that represented the state of development.
Since the system will accompany the company in the long run, it becomes critical,
that it be more flexible in the integration of other modules, if there is a need to add,
remove or change any of them. This way the system will be more compatible with
the needs of the company.
Finally, after collecting, processing and storing the data, these will be available on
the Slack platform, through an assistant, who will participate in collecting and send-
ing information requested by both the users and the system.
Thus, the final solution will be divided into three modules independent of each
other, but essential for the proper functioning of the system:

• Metrics Application

• Data Collection Application

• Natural Language Processing Chatbot

5.2 Context Diagram

The Context Diagram will be a top-level view of the system and will show its envi-
ronment with all the modules and actors that will interact with it, while describing
the role of each of them. It will be a very basic representation with a flow of actions
and communication, which highlights the relationship these elements will have with
each other and their responsibility within this environment.

5.3. Modules 39

FIGURE 5.1: System’s Context Diagram

In this diagram you can see a basic high-level representation of the system and
the interaction that the various modules have with each other. The Authenticated
User can interact directly with the Metrics Application to access the available mon-
itoring tools. This can also send and receive information through the exchange of
messages with the chatBot, through the Slack application. Sometimes the wizard
will start a conversation with the Registered User, asking for some kind of informa-
tion needed for the Main System.
In order for the system to contain all the necessary information and to do a good
monitoring, it was necessary to be always listening for some update by the Data
Collection App. This system only has the purpose of gathering information from
all the tools that the company uses during software development. This information
will be taken at intervals specified by the System Administrator and Programmer.

5.3 Modules

As demonstrated, the solution was divided into three modules. These modules are
the Metrics Application, the Data Collection, and the Chatbot. These modules are
not dependent on each other to perform their functions, but for the solution to solve
the problem presented, their operation must be synchronised.
In this section we will show you the module diagram that will individually demon-
strate the high-level choices regarding your technology. In each of them, it will also
explain all the decisions made about the technology that was used.

40 Chapter 5. Architecture

After each module, a description will be given of each component that integrates
it. These components are parts that are within a module and can represent various
types of services and layers.

5.3.1 Metrics Application

For the development of the Metriqs Application it was necessary to carry out a study
of the quality requirements and attributes raised in the previous chapter. By follow-
ing these standards, was possible to build a system that would remain stable from
the beginning of its development until the moment it was ready to be used.

Technology - Ruby on Rails

Without any technical restrictions on the part of the company, after a study of the
requirements, it was decided to use Ruby on Rails (RoR)[45], since it contains im-
portant resources with great processing power, maintaining simplicity in its devel-
opment. Following the MVC model[46], the technology contains the base structure
for the development of a web service that contains data integration and manipula-
tion, information visualisation and logical functionalities. Having said this, in this
case, RoR was better suited to the company profile, which would facilitate the devel-
opment and the follow-up of the internship. Thus, and according to the explanations
of the authors of this framework, the main advantages taken from the use of this tool
are:

• Optimisation

• Configuration Convention

• Idea set instead of a single logical paradigm

• Understanding code instead of compiling

• Integration of external systems

• Progress under stability

Another important point for choosing this framework is that it conforms to Agile
methodology. Since it is a framework in which you can add and change features, an
agile process must be prepared for changes in your requirements. Therefore, RoR
becomes a good choice to develop a system where requirements can be changed at
any time.[47]

Diagram

With all of the above, we have reached this next diagram, which represents all the
components and the flow of information between them:

5.3. Modules 41

FIGURE 5.2: Metrics Application Diagram

After viewing the diagram, one has to explain what each component does and
how they interact with each other:

• Application Front-end: Application level visible to the User. It processes his
requirements and make information available from the system. It also collects
data that is required by the system to trigger an operation.

• Routing Component: The purpose of the Rails routing system is to identify
the URLs coming from the Front-end and forward them to the action of the
controller responsible for the functionality requested by the User. It also drops
the responsibility of generating prefix paths, to facilitate their layout in the
view layer.

• Controller: The controller section contains a logical part of the application and
after receiving all the data sent by the User produces a result to be forwarded
back to him. Has a REST application[48] it’s also responsible for saving and
creating information of a model and making it available to the User.

• Database Manager: REST component that manages information requests to
the database. It also creates the queries to be made and proceed with the re-
quest.

42 Chapter 5. Architecture

• Database: Data storage system, which keeps all important information, for a
smooth system operation. The database will be PostgreSQL[49].

Data Structure

Although RoR contains, as a default, SQLite3 drivers / adaptors[50], this was not
going to be the most suitable for use, in our system, since this was not recommended
for:

• Multi-user system: Since SQLite does not contain any type of user manage-
ment, due to the lack of high levels of concurrency between clients, it is advis-
able not to use it in applications with many users needing access to the same
database.

• Simplicity: Due to its lack of complexity, it is not possible to use functional-
ity that requires high performance, so it is better to exclude applications that
require a large volume of writing operations.

Therefore, with this in mind, it was necessary to resort to another database ser-
vice. Since the system aimed to be extensible, it was necessary to have a database
that could keep pace with the system’s expansion. With this in check it was decided
that the database to be chosen would be PostgreSQL. PostgreSQL is an open-source
database that has as its main goal the extensibility and to be compliant with estab-
lished standards. Being able to support ACID transitions [54], this database has
control of competition, ensuring the accuracy of the results regardless of the number
of requests made simultaneously.

FIGURE 5.3: Metrics Application DataBase Scheama

5.3. Modules 43

5.3.2 Content Updater

Since the aim was to create a unifying solution of the tools used in Whitesmith devel-
opment process, a module was going to be developed that would collect data from
these tools and organize them in a logical and understandable way, to later send for
the metrics application. Before sending, there would be an information processing,
reducing the effort by the Metrics Application, so that it could mainly focus on the
monitoring tools.
It was with this in mind that the Content Updater was designed. To update its data,
a manual synchronization was performed with calls to the APIs or through a timer,
preconfigured by the administrator, called cron jobs.
In relation to the data obtained, the Trello API will contains information on all tasks
to be developed in a project. Since it is a Kanban board, Trello will provide all the
company’s projects and team members in charge of developing it. Also having ac-
cess to the expected development time, which comes from each card.

Technology - Golang

Since this module contains several interactive computations, which are executed si-
multaneously, this module was developed in Golang (Go). This module collects data
from the various APIs of the tools through GoRoutines[51]. These routines are com-
putations that, when activated, will send by a thread to its destination and will have
the information collected from it. These routines are managed by a runtime that
will plan its execution which, when reached, will send a worker to activate it[52].
In the allocated memory, instead of setting a fixed value, GoRoutine will have the
responsibility of deciding what memory it will need.[53]

Diagram

The rest of the system will also be programmed in Go language and will have the
following components:

• Timer: It will be the runtime component that will do all the timing of perform-
ing API data collection. With time intervals predefined by the Administrator,
as soon as an alarm goes off, it will communicate with the Worker Queue. A
cron job will be implemented, which will run the timer.

• Worker Queue: This Queue will wait for a Timer call to release a worker. Once
this is released, a job will be assigned so that it knows what to do. In this
case, the API will be provided to which it will fetch the information and acti-
vation order of the specific GoRoutine. After collecting the data this worker,
will finish his work, sending the information collected to the module that will
organize them.

• Date Fetcher: Will be a worker that will activate the GoRoutine of a given API.
Once the data transfer is complete, it will transmit the information to the Timer
worker.

• Data Organizer: Component in Go, which will receive data and organize it in
a Go Map[54] to be sent to the Main System.

• Data Sender: This will receive the Go Map and will send it to the Main System.

44 Chapter 5. Architecture

With all these points, the following container was drawn, containing the previ-
ously defined components:

FIGURE 5.4: Content Updater Diagram

Data Structure

For this system it was used a pure Go embedded Key/value database called BoltDB[55].
The Golang community heavily recommends a pure golang solution for persistent
data in Go applications. This one is an easy to use system that is similar to Lightning
Memory-Mapped Database (LMDB), in which makes key/value storage very fast
for CRUD operations and supportive of full ACID transactions[56].

5.3. Modules 45

Bolt safely storages data in a single memory-mapped file within the system’s file
system and doesn’t a journal, log or a thread for garbage collection. This will pro-
vides fast load and save operation.
Storage is divided by buckets, that are a collection of key/value pairs, they are all of
type []byte and they can contain other buckets.

This database was the perfection solution for this system, because of its safe and
fast data manipulation and storage. In it we are going to have two main buckets:
Users and APIs.
The first one will have all the information about the an user and his API’s bucket id.
The last one has all information from a single API, authentication tokens, that are
used for the API connection and all the organized data gathered from the APIs.
To create the organized gathered data, it was used four data structures that would
create a information tree for all the user’s projects.

• Data: Contains an array of all projects boards

• Boards: Has the project’s name and all it’s features development cycle stage

• List: Indicates the cycle stage name and the features that are on it

• Card: Will have all the processed information from a specific feature that will
be needed for analysing in the metriques application.

FIGURE 5.5: Content Updater Structs

5.3.3 Chatbot

VSince the Chatbot would interact with Whitesmith members through the external
Slack system, it was necessary to configure all necessary settings for this to be pos-
sible. To do this, we used the Real Time Message API (RTM.API)[57] to initiate a
session using an authentication token. After the session was created it could be pos-
sible to use the API to introduce all the bot’s features.
Messages entered into Slack by the user are going to be transformed into JavaScript

46 Chapter 5. Architecture

Object Notation (JSON) objects, which contain all the necessary information for lex-
ical analysis. When contacted by a user, in a private message, the bot does not need
identification, to know the sender of the message. However, for the bot to know that
it is being requested, in a public channel, the User needs to identify it in the input.
After receiving the messages, the analysis will begin with what was introduced.

Technology - Ruby

At first, it was decided that chatbot would be developed with Go technology, but
after a more intense study about developing tools it was decided that the Chatbot
would developed in Ruby, due to an existence of more stable resources and repos-
itories for NLP and Slack API integrations. Another reason why this decision was
made was that we chose Wit.ai as the tool that will deal with the chatbot natural
language processing. During the course of this internship this tool suffered a major
update and added many functionalities to its system, but only releases three official
APIs: Node.js, Python and Ruby. Since the intern has little or no experience in devel-
oping chatbots with the first two technologies, the last one was chose. From a Slack
integration point of view, is RTM.API contains a stable integration with Ruby and
offers an online dashboard where it’s possible to personalize many of the chatbot
functionalities.

Diagram

The Container will have the following components:

FIGURE 5.6: Chatbot Diagram

• Analyzer: After the bot receives the JSON object, through the websocket chan-
nel, the Analyzer will remove the text and start a lexical analysis to know what
the user really wants. In this way, it will be possible to obtain the same results

5.3. Modules 47

with different inputs. In case of bot, can not remove sense of what the User
intends, this will inform you of the situation and ask to repeat the desired.

• Logic Form: In this section, a logical form will be taken from what was ana-
lyzed previously. All symbols and patterns will be transformed into existing
content in the System so that it knows what to look for to respond to the User.
There will also be another component with the same name, which will func-
tion as the reverse. Upon receiving the data, this will turn them into symbols
and patterns to send to the next component.

• Content Manager: When receiving all the information at the computational
level of what is requested of the System, this component will formulate a query
that will send to the system to go to the database and remove all information
necessary to respond to the request of the User.

• Information Collector: This component will receive all information from the
system and will promptly organize it so that it is easily interpreted by the Log-
ical Form component

• Answer: Finally, the response in natural language will be formulated to be
transmitted in a JSON object through a websocket. This response will have all
the necessary information to respond to what the User requested of the system,
in a language that he understands.

49

Chapter 6

Development

As soon as all the important parts were well organized and configured, it was possi-
ble to start the development in order to have the least possible friction and with the
maximum of mitigation about possible problems that could be found in the devel-
opment of this solution.

Since the development of this solution would be studied by the system itself as it
was constructed, it was decided to first develop an MVP that involved the three sys-
tems that composed the solution. In this way it was possible to observe the complete
functioning of the first feature and to remove from the beginning of the develop-
ment, metrics that would aid in the decision making at the beginning of each sprint.

Trello was organized with all the features and user stories that were defined and
approved and configured so that its data, when filtered by the data collection sys-
tem, could give as much information as possible.

FIGURE 6.1: Full Trello Boards

6.1 Communication Servers

Before starting to develop any functionality it is necessary, firstly, to build the mod-
ular bases of the architecture of each system.

50 Chapter 6. Development

6.1.1 Data Collection

Following the models explained in the chapter on Architecture, we began to develop
the data collection system. This decision was due to the fact that the trainee was not
familiar with Go technology, as explained in R02 risk.

Model Domain Service

Following the models explained in the chapter on Architecture, we began to develop
the data collection system. This decision was due to the fact that the trainee As this
technology was explored, the model domain service with which the base model of
the system (qontent.SERVICE) was developed. These are data types and services
that will define the application language. These models are:

• User: An Authenticated System User

• Api: Represents a development tool used by each user.

These data structures will not have any kind of functionality other than tem-
porarily storing information. To be able to make information persistent and to imple-
ment CRUD operations it is necessary to develop their services. Using the BoldDB
database, the following services were developed:

• UserService:

– CreateUsers(): Authenticate and register a new User in the system

– User(): Gather a user through your ID

– GetUserData(): Gathers information from the APIs of a given user

– UpdateUser(): Updates user data

– DeleteUser(): Removes a user from the system

• ApiService:

– CreateApi(): Creates a new Api for a given user

– Api(): Gets an api through your ID

– UpdateApi(): Updates data from an App

– DeleteApi(): Removes a system api

– AuthenticateApi(): Service to authenticate the api of a given user through
their tokens and filter all the information that comes from it

– UpdateApiData(): Service update the filtered data of each Api

Since the user comes into contact with the system, it is already authenticated
by the metric system, it is not necessary to create another authentication system
with this application. More details on authentication will be explained later in this
chapter.
To be able to access these services it is necessary to create the concept of a client that
will create the connection.

6.1. Communication Servers 51

FIGURE 6.2: Base Service Client

This client represents a reference to the service provision. Its only function is to
create sections that represent the user’s connection to the references of the system
services.

Data Storage Service

It was necessary to create a service for the database so that it was possible to main-
tain a reference to the * storm.DB instance and create a connection to the services
mentioned above. In this way the connection between the functionalities of each
service and the database will be made. Since the database is just a file, it is necessary
to save the path where it is stored in the system.

FIGURE 6.3: Bold Service Client

It will be in the apiService and userService that all the methods belonging to the
database will be. To complete it is necessary to arrange a reference for the services
associated with the api of the system that contains the domain models. In this way it
is possible to ensure that the database and the system share the same functionalities
and interact with the same object whenever requested.

FIGURE 6.4: Bold Service Client

In addition to these features, the client still has the following methods:

• NewClient (): Creates a new database client

• Open (): Responsible for opening the system to the file where the entire database
is stored. This data will be stored in buckets that are key / value values that are
inside the database. The buckets are represented in the chapter of Architecture

52 Chapter 6. Development

• Close (): Responsible for closing the connection to the database file safely so as
not to lose any kind of information.

After the structure and database of the system were functional, it was possible to
implement the previously described methods, which are part of the services of each
model. This code incorporates the logical part of the system and will be described
in more detail later in this chapter.

HTTP Service

After the development of the model and data services of the system, it was necessary
to create another one to allow the communication between this system and the ap-
plication of metrics and to send, collect and manipulate data. This communication
was made in JSON through HTTP requests.
This API will contain the same methods as the Domain Model Service. The HTTP
service can not implement the methods that are requested in the communication, so
a client was created that implements the methods of the base service and is able to
translate the requests made in this API. This way it is possible for the package to
have a users service that will execute the base package methods simultaneously.
For this to be possible it was necessary to create:

• Server: The only responsibility of the server is to open the connection socket
and send all data received to the handler. Like the database client, this will
contain the Open () and Close () methods.

• Handler: Responsible for processing all requests to the server. A main Handler
was created that will contain all the services and their handlers. In the case of
this system, only one is required for the User. A URL path is defined so that all
requests are forwarded.

• Client: Just like in the package and in the bolt base, we created an http client to
have the same functionality as the previous ones, although it will also contain
the URL that this service will be connected to

FIGURE 6.5: Http Service Handler Service

After all these settings are enabled it was possible to develop the User Handler
that will be where the logical part of this service will be located. Since it is part of the
http layer, it processes the requests that are made to it and sends them to the user’s
base services layer. You then have the responsibility to send the response back to the
source.

6.1. Communication Servers 53

FIGURE 6.6: Http User Service

With these three packages (Base, BoldDB and Http) developed and communi-
cated between them, it was possible to start developing the logical layer of the sys-
tem. This section will be described in section 7.X of this chapter.

6.1.2 Metrics Application

Following the classic MVC architecture of rails, the entire logical process of com-
munication between this system and the data collection is carried out in a model
destined to the communications between these two systems.

54 Chapter 6. Development

FIGURE 6.7: Communication Method

In this method a POST Request is sent to the predefined address of the Data Col-
lector with all necessary data, so that it can carry out the requested request. The
Metrics App is waiting for the Data Collector to fabricate the response and send it
back. Both the sending and the response data are in the JSON format.
If the communication was successful, the method returns the response body to the
system controller so that it manipulates the received data. Otherwise a value flag ’0’
is returned.
For the communication between Chatbot and this system, an API has been devel-
oped that contains methods to collect all the information necessary for Chatbot to be
able to arrange a response for the user. Before processing the requests, authentica-
tion is done through private tokens.
The methods developed in the Metrics Application API are:

• index(): Gets the projects that belong to the user who requested through Slack

• search(): Gathers features of a particular project and all the information that
belongs to it. This project must belong to the user who requested the informa-
tion.

• show(): Gathers metrics for a particular project and all the information that
belongs to them. This project must belong to the user who requested the infor-
mation.

6.1.3 ChatBot Application

Using the web framework Sinatra, the bot server has been developed so that when
it is deployed in Heroku, it can be kept active on the server.

6.2. Applications Features 55

FIGURE 6.8: Chatbot Server Code

For communication with Metrics Application, the same HTTP Request method
that it uses for the Data Collector Application is used. Through HTTP requests, it
sends a POST Request to the API and waits for the response. Once you receive it, it
will transform the collected data into a message to send back to the user via Slack.

FIGURE 6.9: Chatbot Communication Method

6.2 Applications Features

After all the applications had their servers developed and the communications be-
tween them working, the construction of the databases was started as described in
the chapter on Architecture.
After its completion the first functionalities to be developed were those of the Data
Collector Application, since this is the application responsible for collecting and fil-
tering the data necessary for the rest of the applications to have something to work
on their functionality.

6.2.1 Data Collector Application

The main purpose of this application is to collect, manipulate and send data taken
from the Trello dashboards of each company project.

56 Chapter 6. Development

Registry and Data Sending

As soon as a user registers in the metrics application, it will send the user’s authen-
tication data and token to the data application in order to register the user and his
Trello account to promptly start the first data collection of All the projects that this
one is working in the company.
If a user is already registered, the project data of which it is associated is promptly
sent. Appendix D shows the sequence diagram of the log and data transmission of
this system.

Data Extraction

Regarding the extraction of data from Trello, a study was made of the operation of
its API in order to perceive the best method to remove them and maintain the perfor-
mance of the system. The API does not allow to take all the information of a project
in a single object of answer, therefore it is necessary to withdraw the projects that
each user and follow the same method with the lanes and cards, as it is verified in
the image 7.11
This method of loading data became quite complex which led to its implementation
taking a long time. Since the use of the Trello API was essential for data collection, a
method had to be found to circumvent this problem.
After a study of the collected data of each object, it was observed that each of them
contains an Array of objects of changes made in each of them. Therefore, whenever
the system is updating the data of the projects of each user, it will first check if there
has been any change in a certain object. Since the system classifies and records ev-
erything that has been changed from an object, it will only extract the information if
the change is vital to the operation of the solution.
These changes are:

• Name

• Predicted Development Time

• Real Time Development

• Lane Change

• Change of Label

• Being Deleted or Filed

In this way the system will not always go through all the objects that constitute
a project and will have a very reduced update time. The only time this can not be
done is when the user first loads a project on their system, since the system does not
yet have any type of project data associated with the user.

6.2. Applications Features 57

FIGURE 6.10: Trello API Schema

As regards the control of the updates, a cronJob was inserted into the server,
which automatically initialises the updating process of all the projects of each user.
Although it is also possible to have a forced update by the User through the Métrics
Application.

Data Manipulation

Whenever a card / feature is updated or entered for the first time in the system
it goes through the filtering process so that the information collected (Figure 7.12)
only contains the necessary information (Fig. 7.13) for the metric system. These final
data can be taken directly from the digital format or can be acquired through the
information it contains. At the end of this process, the user will have associated a
project that will contain all structured information in the same way as described in
of the Architecture chapter.

58 Chapter 6. Development

FIGURE 6.11: Trello Raw Card Data

FIGURE 6.12: Trello Filtered Card Data

These final data are essential to the logical process of Metrics Application which,
when receiving data with this level of filtering and processing, will have a very low
processing load which promotes a greater fluidity and speed in the creation of aid
metrics.

6.2.2 Metrics Application

This application will be the dashboard of the entire solution, where the company’s
development aid metrics are calculated and displayed in various formats.

Authentication and Main Page

In order to be able to access the system, you have to register with it through your
Trello account. This is due to the fact that many of the data used come from this
tool (Fig 7.14). To do this, it is necessary to use the Trello API in which it allows the
system to send the authentication data from the user’s personal account and create
a new token for the system.

6.2. Applications Features 59

FIGURE 6.13: Fully Detailed Feature Trello Card

Therefore, when registering with Trello in the application, the system sends the
authentication data to the Data Collection Application in order to register the user
there as well. If the user already has a registered account, a login and user token is
sent to the system to verify that it is not an external user trying to access someone
else data.
After registration or authentication in the system, the user is redirected to the main
page of the application where the projects of which he is associated is available (Fig
7.15).

60 Chapter 6. Development

FIGURE 6.14: Metrics Application Main Page

If this is the first time the user has used this system, no project will be shown and
this will have to select the "Refresh Projects" button.
Upon entering the system, it will update the data by placing a request to the Data
Collector Application. Once you receive the data, the system will not update the
metrics for all projects. This will only happen when a project is selected. In this
way it is possible to distribute the complexity and performance of the system by the
metrics that the user wants to see at that moment.

Métrics Calculations

Once a project is selected, the system starts the process of creating metrics, although
this only happens if there is any data that has been updated. Since the data is already
in the database, there is no need for any kind of communication with another system.
It will be an internal process with data that is stored in the system.
The metrics are calculated one by one, and all generated data will also be stored in
the database so that they are not lost and can be used for other metrics. They are:

• Development Averages: Important values that highlight general values about
the current state of development in relation to the life cycle of each Trello card.

6.2. Applications Features 61

FIGURE 6.15: Development Averages

– Development Speed: Contains the average hours (h) assigned to each card
(c) to the project in the last three weeks (w-3).

x̄ =

∑w
w−3

∑c
1(u)

3

– Development of Cards: Value that represents the average days (d) that a
card (c) takes to go through the development cycle

x̄ =

∑c
1(d)

c

– Bug resolution: Average time a bug encountered during development, it
takes time to resolve.

x̄ =

∑b
1(t)

b

• Prediction Burndown Chart: This first graph will have the total hours planned
for the development of the application in question. It will then represent the
hours that have already been spent and will make a prediction of when the
project will be completed. This forecast is made by calculating the remain-
ing development hours and the average development speed, calculated previ-
ously.

FIGURE 6.16: Prediction Burndown Chart

• Time Variation Chart: This graph will show the differences between the esti-
mated total development time (Tp) for all completed cards in a work week (c)

62 Chapter 6. Development

and the actual total development time (Tr). In this way it is possible to see the
evolution of the time estimates throughout the development of the project.

FIGURE 6.17: Time Variation Chart

wx =
c∑
1

(Tx) −
c∑
1

(Tr)

• Number of Cards Done: It is possible to do a study on the types of cards that
are treated throughout the development, when we observe this graph. The
types of cards that interest the company are development cards and bug fixes.
Only the cards whose features have been deployed are counted to the chart
and exposed in the week in which they occur.

FIGURE 6.18: Number of Cards Done

• Cycle Time Chart: In this graph you can see the average lifecycle of all the
cards that have ended their Trello lifecycle and whose functionality has been
approved for deployment. The lifecycle is calculated through the sum of the
time that all cards took while they were in development until they were ac-
cepted. The development phase consists of NextUp, In Progress and Review.

6.2. Applications Features 63

FIGURE 6.19: Cycle Time Chart

CTx =

c∑
1

(Tnu + Tprog + Tr)

• Time Distribution Chart: Finally, we have the graph that the total average
time that a card takes to be processed at each stage of the development cycle.
This way you can see at what stage of production the team is taking more time.
The averages are only calculated with the cards that passed through a certain
phase, the total of these being different from phase to phase.

FIGURE 6.20: Time Distribution Chart

Since one of the main goals of this solution is to improve the usage habits of
Trello, there needs to be something that sensitise and warn team members to respect
some rules when using Trello. In this way, a section of individual metrics for each
card was inserted in each page of metrics.
This section will contain three categories:

• Warnings: It contains all the cards with some anomaly in its description and
that can lead to calculations of metrics displaced from reality. These cards will
have a description of your anomaly.

• Work In Progress: Shows the cards that are in the development phase and
how long they are being developed

• Live: All cards that have completed their developed cycle, being deployed in
the final version of the system, are exposed in this column with development
times. To know if the card has completed all steps of the cycle and was not
created in the middle of the cycle, these are classified as shown in figure 7.24.

64 Chapter 6. Development

FIGURE 6.21: Cards Status Board

FIGURE 6.22: Warnings Table

FIGURE 6.23: Work In Progress Table

FIGURE 6.24: Live Table

6.2. Applications Features 65

6.2.3 Chatbot

Finally the Chatbot Application was developed that serves as an immediate aid
agent to the members of the development teams. As already mentioned, this agent
has incorporated the natural language process, which is executed with the help of
the Wit.ai tool and its API.

Configurations

After the server development of this application, it was necessary to implement the
Slack tools so that it was possible for the user to contact the bot and write requests
for information. For this, the Sack framework for the application control and its API
was used, Fig. 7.26.
In this dashboard, you can configure the bot and remove your token, so there is a
link between the developed code and the application. In addition to tokens, web-
hooks have also been configured so that it knows the URLs of the private project
channels and is able to send messages there, Fig 7.27.

FIGURE 6.25: Oauth Tokens SlackAPI Dashboard

66 Chapter 6. Development

FIGURE 6.26: Webhook Configuration SlackAPI Dashboard

After all the configurations were applied, by the Slack client, the development of
the bot and the connection to Slack began.
To do this, it was necessary to develop a Sessions object so that it creates a chatbot-
user communication session whenever a conversation starts. Whenever a message
is sent to the bot via Slack, the Chatbot will receive an object that contains all the
message data, from the text, the user and the location. After receiving, a private ses-
sion is created for the user and the text is filtered so that it is analyzed by the natural
language processing Wit.ai tool.

FIGURE 6.27: Chatbot Session and Input Precessor Code

6.2. Applications Features 67

Wit.ai NLP

Regarding natural language processing, it was mentioned in the chapter on Archi-
tecture that the tool that helped its development was Wit.ai.
Like Slack, this tool has to be configured and connected to our Chatbot through an
authentication token, which was made available in the tool’s online application.
After the creation and configuration are all done the natural language processing
has started. This must be done on the Wit.ai platform and code on Chatbot.
Wit.ai will provide an API that takes the text entered by the user and will return two
objects:

• Intention: It will be the intention that the user has when making your request

• Entities: These will be the variables that contain details of the user’s task.
These variables will compose the response by the bot, to the user’s question.
Wit.ai contains some predefined variables such as locations, numbers, and cur-
rencies, although it is possible to create other variables.

Through the creation of stories it was possible to create models and conversation
trees, in which each routing will depend on the flow of conversation and information
given by the user when he is talking to the bot.

FIGURE 6.28: Wit.ai Story Maker DashBoard

Within these conversations, we defined inputs from the user and identified the
intentions and entities. After their identification, these values, when identified, will
cause a certain action to be performed by Chatbot.
Finally, when the action is processed, the produced variables will be sent back to the
Wit.ai tool so that it can formulate a response to send to the user.

68 Chapter 6. Development

FIGURE 6.29: Chatbot Entity and Context Maker Code

69

Chapter 7

Verification and Validation

The verification and validation phase is important in assessing the success of the
project development and its impact. Through the tests it is possible to conclude that
the project was well developed and that the failure rate during its operation is the
smallest possible. With the validation it is used to make sure that the right project
was developed and that it reaches the objectives outlined at the beginning of its
study. Since the developed system was conceived by studying an exposed problem,
it is necessary to make an assessment of its impact on the environment for which it
was intended. In this way, it is possible to affirm if the system was able to solve or
to minimise the problem found.
Since this project is composed of three systems, which are in constant communica-
tion, it is necessary to keep in mind the critical points that make them dependent on
each other because if one of them fails, the others will lose their purpose. The met-
rics system, data collector, and Chatbot have to be tested, but each in its own way,
since they have a different role within the solution and each one with its purpose.
This chapter will demonstrate the process behind the verification and validation of
the system produced at the level of development and solution to the problem by the
company and its members.

7.1 Functional Testing

Since the solution contains three systems, individual tests have been carried out on
the functioning of each. These systems began with a definition of their objectives
that manifested themselves as requirements, hence they will be the starting point
for the beginning of development.
In order to promote the quality of a product, the functional tests will test a multilevel
system to ensure that its functionality do not fail when they are available to the user.
Although during the development was applied Test Driven Development, after com-
pletion of the solution, other tests were applied, to ensure that all results reflect its
ultimate goal. These tests will be Behaviour-Driven Development (BDD), which will
focus more on the behaviour of the system than what is expected of it, without much
knowledge of what happens at the level of code.
In TDD, the following tests were performed:

• Unit Tests: Will verify that features and certain methods run correctly

• Integration Tests: They will check how different components interact with
each other

70 Chapter 7. Verification and Validation

Regarding BDD, these tests were preformed:

• System Testing: Functionality testing around requirements raised prior to de-
velopment

• Acceptance Tests: They will validate the product regarding expectations by
the company, whether it solves the problem or not.

7.1.1 Data Collector Tests

Since the main purpose of this application is the collection and filtering of data to
be sent for the application of metrics, it was necessary to ensure that they contain all
the information correctly registered and without errors, so that the system where it
is intended has not been whether or not the data is correct.
But before testing this aspect of the system, it was necessary to test other important
points of the system. These were:

• Receive and interpret user data after registration in the metric system.

• Verify that the data is all correct and complete

• Register the user and the Trello account in the system database

• Verify that the registration was successful by mirroring the data that was re-
ceived

• Automatic updates were started within the time and called the correct methods

• Api data is correct and the system can connect to the user’s Trello account

After the first connection to the user’s Trello account, all the information belong-
ing to the projects, of which it is part, is collected.
There are several precautions when working with data that are intended to create
metrics, since at the minimum error, it may be impossible to create any type of met-
rics or that these are not true and do not transmit a correct image to the study that is
It’s doing.
Since Trello is prone to human error, it is possible that certain objects are incomplete.
We soon tested the system’s ability to detect these gaps and conveniently register
them, so that when they are read by the metric system, they identify them in the
project dashboard. We also tested the conversions of variables from time to string.
Finally, a study was done on the conversion of JSON objects that the Trello API sent
to system objects. Data correctly stored and if its value conveyed its meaning were
also tested, in order to ensure the veracity of the objects of the system.

7.1.2 Metrics Application Tests

Being the central application of the entire solution, with human interactivity it is
necessary to test both its internal functioning, as well as functional tests coming
from the user stories mentioned in the Requirements chapter.
Since the application was developed in RoR, it was possible to use TDD support
tools. These tools are:

7.1. Functional Testing 71

• FactoryGirl: It will make it easier for the developer to define prototypes of the
models that make up the system and will ask you to enter important properties
for the type of test that is intended. This way you can separate the tests of the
current models from the database and simultaneously keep up to date with the
latest models.

• Faker: Library that generates false data of a certain type of variable, such as
encrypted names, dates and passwords.

• RSpec: It is a built-in testing tool that supports request, controller, view, model,
and routing restructuring.

With these tools incorporated in the development of this system, it was possible
to ensure its proper functioning before developing a certain functionality. When cre-
ating multiple test scenarios, you can observe the behaviour of the system according
to the variables that are passed to it.

FIGURE 7.1: Write and Wrong Project Association Test

In addition to testing features, it was also possible to test system security, such
as simulating an entry by an unauthorised user.

FIGURE 7.2: Unauthorised User Test

72 Chapter 7. Verification and Validation

In addition to these tests, other functionalities were tested so that the smooth
operation of the system remained intact. As for the creation of metrics, the following
critical points were tested:

• Unable to access another user’s data

• Authentication via Trello, accesses the correct user account

• Communication with others system is done without authentication failures

• Correct creation of objects from the data collection application

• Identification of incomplete data cards due to human error

• Data generated in the application is mathematically correct

• Impossibility of dividing by zero

• When generating the graphs, they correctly represent the data generated and
stored in the database

• All changes made are saved correctly in the Database, keeping the information
persistent

• Behaviours in case of error or unexpected data

Since the system contains human interaction, it was necessary to be tested on
different platforms to observe its compatibility. For this, it was decided that the
functional tests were tested in three different browsers: Google Chrome, Mozilla
Firefox and Safari. This varied choice of browsers will lead to greater coverage of
functional behaviours. Note that these are the browsers used within the company.

7.1.3 Chatbot Tests

Due to its behavioural nature, TDD was not applied during its development, but
functional tests were performed after the development of an action. These tests
cover the functional part of the bot embedded in the code and the two applications
that help it in its operation: Slack and Wit.ai. With regard to functional tests, the
following tests were performed:

• Communication with Slack always active and waiting for inputs by the user

• Creation of sessions after communication by the user

• Communication with the Wit.ai tool

• Handling bot actions after identifying intent and entities

• Communication with the application of metrics

• Behaviours in case of error or unexpected data

7.2. Non-Functional Tests 73

7.2 Non-Functional Tests

After the functional tests of the solution, the non-functional ones were followed,
which will focus on expectations about the product and its general view.
At the usability level, no use cases were created to be tested with company members,
since the solution developed was developed in order to have its process completely
automated, requiring the least possible human interaction and introduction of new
data. Therefore, no formal study of human-computer interaction was made, and in
demonstrating the system, one easily understands how to interact with it.

7.2.1 Maintainability Tests

In order to be able to visualise the success of this nonfunctional requirement, a metric
calculated by the system was used during its development. Given that TDD tests
were used, many bugs were covered during system production, most of which only
appeared in the final phase. As soon as they were found, a Bug card was created on
Trello and the resolution time starts to count from the moment it starts to be solved
and goes to the "In Progress" section. Once resolved, the system calculates the time
it takes to be resolved and the final result can be seen in the project dashboard.

FIGURE 7.3: Average Bug Fix Value

This speed of bug resolution is due to the fact that the methods are most inde-
pendent of each other with certain intermediate calculations to be made outside of
the method of the metric to be calculated. This way you can isolate each phase and
facilitate troubleshooting.
To make it easier to find the source of a bug, whenever one happens while using the
system, the Sentry tool sends an email to Developer warning the line of code from
which it originated.

7.2.2 Extensibility Tests

Since a company’s development processes are constantly changing to suit markets
and customers, it will be necessary for the system to be able to adapt to these changes
through new metrics and changes to existing ones. Therefore, this system was de-
veloped to think of these same possibilities.
All methods of creating metrics have been isolated from each other and properly
documented. If a metric becomes obsolete, simply delete your method so there will
not be any kind of impact on the system. Intermediate calculations, whose results
are given to various metrics are identified and their names are understandable so as
to know what to expect from them.
All vital data for the proper functioning of the system shall be stored in the database
in such a way that any change does not put them into question.

74 Chapter 7. Verification and Validation

7.2.3 Compatibility Tests

To ensure that the system can communicate successfully with other platforms de-
veloped by the company, such as Qompany and Who, worked with the production
team to ensure the exchange of data in a secure and flawless way.
Regarding Trello data collection, this is done through requests made to Trello’s offi-
cial API whose tests are all done by your development team.
Finally, to ensure that the data exchanged between the three systems that comprise
the solution are understood by all, the same JSON format is used for all communica-
tions between them. In this way the readings and writes are processed in the same
way.

7.2.4 Answer Time Tests

Due to the nature of the Trello API, full uploads of all project data belonging to a
user can be time consuming. To circumvent these high times, an automatic update
system was used that run in a certain amount of time, so that when the user con-
nects to the metric system, just go fetch what is already stored in the database. data
collection system. In this way the connection will only be to collect information to
the database and not directly to the Trello API.
The only time this is not possible is when the user registers for the first time on both
systems and they do not have any saved content yet. It is therefore necessary to
make a first and only direct shipment to Trello.
For updating a project’s metrics, it is only done when a project is selected and not
when the user logs into their account. In this way it is possible to separate the com-
plexity and loading time according to the objectives of the user.

7.3 Solution Validation

At the level of acceptance of the solution developed by the development teams, con-
tinuous testing was performed whenever new functionality was developed. In this
way, it was possible to make a continuous integration of the solution, which allowed
to observe its effects in the exposed problem and to receive the great number of opin-
ions on its operation.
Since the data collection system does not contain any kind of human interaction, its
operation has been integrated with the integration tests made with the application
of metrics.

7.3.1 Metrics Application

After the introduction of the solution in the process of development of the company,
it was concluded that this was very well accepted by teams in which its members
showed interest and initiative in suggesting changes and new features that were not
initially planned.
Since Whitesmith is a product and consultancy company, greater integration into
projects in the latter category has been noted because of its more rigorous develop-
ment. There were some difficulties in integrating the system into projects whose de-
velopment was already well advanced, since they had already rooted the bad prac-
tices of Trello, which many members complained about. With this in mind, we have
written a suggestion document of good practices in using Trello, so that the system
metrics can mirror the state of development of the project in question. A copy of this

7.3. Solution Validation 75

document can be seen in Appendix C.
With this in mind, the instructions were applied in a consulting project whose de-
velopment process had begun shortly. This project became the main study case for
the implementation of the solution, since it was not only in the early stages of devel-
opment, but also a project whose characteristics are of great interest to the company.
After a few weeks of using the solution, an interview was made with the project
manager to find out what the usability experience was like and what impact it had
on the metrics during the pre and post development sprint discussions:

• Development Averages: Immediate values that are important to confirm de-
velopment speed.

• Prediction Burn-down Chart: Of the metrics with the greatest impact on the
process of planning and developing a project. Through it, it was possible for
the team to see that something was wrong with the project planning, since
the speed of development was expected but the forecast of completion was
far above the one agreed with the client. This led the members to make a
retrospective and reorganisation of the development plan. After the changes,
the forecast decreased considerably and there was also an increase in the speed
of development.

• Time Variation Chart: Since the team was not very interested in making com-
parisons between planned and actual development times, this metric was not
regularly consulted by the team.

• Number of Cards Done: Given that in this project each Trello card corresponds
to a User Story, it was possible to see the behaviour of the development in
terms of functionalities tested and introduced in the main system. It was also
possible to see at what time of development a greater number of bugs occurred.
In this way it was possible to do a study on what was failing at the test level,
to give rise to a greater percentage of bugs.

• Cycle Time Chart: Through this chart the development team was able to ob-
serve the total time card cards took to complete their development cycle. Al-
though it has not had a major impact on the development of this project, it was
a requirement requested by the company as it will serve future projects.

• Time Distribution Chart: Like forecast metrics, this has had a major impact
on the study of the current state of development, as it demonstrates in which
phase of the life cycle the cards are taking longer. In this way it was possible for
team members to know that the Reviews of functionality were taking a long
time to be evaluated.

• Live: With this data it was possible for the team to verify that the project’s
Trello board was being properly used by all members.

In general the success that the application had during the development of this
project, the solution developed will be integrated in more projects with share the
same characteristics as this project. New calculations of metrics were also suggested
to be added in order to increase the monitoring of the company’s development pro-
cess.

76 Chapter 7. Verification and Validation

7.3.2 ChatBot

As for Chatbot, it was not so well accepted by the development teams, since it did
not seem to bring anything new that could not be completed by visualising Trello’s
metrics and dashboards.
One of the biggest problems with the use of bots in the communication system is
that users have to decorate the right commands in order to use their functionality.
Although using natural language processing, this problem is overcome, it did not
encourage the use of bots to collect information. On the other hand, the teams’ most
valued abilities were the Chatbot’s proactive functionality in which the bot warns
users of changes made to boards of a particular project and warnings of incomplete
information by a particular card.
Still on the topic of natural language processing, the study that was done for the
development of this system was well received by the company, which hopes to reuse
it in future products of the company.

77

Chapter 8

Conclusion

As the stage comes to an end and the work done ends, it is time to start drawing the
conclusions that mirror the past year and present the future work that this project
still has before it. A more personal perspective will also be made on the part of the
author regarding the professional and personal impact that this project has brought
him.

8.1 The Project

The work developed during this academic year originated in a system that brought
a new vision to the company in what concerns the monitoring of its software de-
velopment processes, through a new fully automated tool and without relying on
human-computer interaction. Thus, it is not necessary for members of development
teams to learn to move with a new tool or to dedicate time to their operation.
This is due to the fact that this platform allows to automatically aggregate and filter
information from the Trello tool, which is the most important for planning and mon-
itoring a project in production. This data will be transformed into metrics that facil-
itate the process of decision and monitoring of consulting projects that the company
will have in its future and encourage the use of good practices in the organisation of
cards of the Trello board of a project.
In addition to the production of metrics, the system also allows this data to be made
available so that it can be collected by other applications in an easy and structured
way, without any kind of dependency between them, through its API.
The way this solution was developed allows the company to add new features that
improve the platform and make it more relevant to the management of software de-
velopment processes.
In general, the solution developed had a positive impact on the problem exposed by
the company and through its integration and continuous improvement, may end up
completely solving it.

8.2 Future Work

As already mentioned, the solution developed was designed so that it would con-
form to the company’s development practices and allow for the addition and alter-
ation of functionalities. Although the data collection application is only currently
using Trello, it is possible to develop modules that can be used to integrate new
tools used by the company, in order to have new data types for other metrics that
they wish to develop. As far as metrics are concerned, it is possible to increase their
complexity in order to allow greater flexibility in the definition of the metrics and
their objectives. Since the main purpose of this stage was to offer the company a tool

78 Chapter 8. Conclusion

that would have an impact on the exposed problem, all future work will involve the
addition of new features that refine the solution.

8.3 Internship and Final Thoughts

One of the reasons that led me to choose this theme as a project to complete the Mas-
ter of Computer Engineering in the field of Software Engineering was the fact that
this is a problem, still unresolved, in a work environment of a technological devel-
opment company.
This peculiar characteristic and the fact that the majority of the internship proposals
already contain the solution to the problem addressed, were the great motivation
for the choice of this project. In this internship I was able to work with my three
favourite subjects in the industry: Project Management, Data Analysis and Problem
Solving.With it I have increased my expertise in Rails development and learned to
new one: Golang.
While working with Whitesmith, I have had the opportunity to work closely with
development teams and absorb their methods of project development and manage-
ment. It was also possible for me to start a project from scratch without having an
initial idea of what would develop. I learned a lot about organising a product cy-
cle through research, prototyping, architecture, debating ideas, developing, testing,
and deploying the final product. It’s a huge challenge to get all that done and to
get positive results while learning new techniques, new architecture models, and a
programming language.
It has been an extremely positive year both professionally and personally and will
have a great impact on my future life.

79

Appendix A

Whitesmith Member Interview
Form

1. "Há quanto tempo está a trabalhar na Whitesmith"

2. "Qual é a sua função na empresa?"

3. "Em quantos projetos está a trabalhar neste momento?"

4. "Já alguma vez trabalhou em vários projetos ao mesmo tempo?"

5. "Que dificuldades existem, quando se trabalha em várias equipas diferentes?"

6. "Sugestão de melhorias, o que está bem e o que poderia melhorar."

7. "Qual a sua opinião do processo geral, no que toca ao desenvolvimento de
software?"

8. "Que acha que costuma correr mal? Que sugestão tem para ultrapassar esse
cenário?"

9. "Qual a sua opinião no que toca às ferramentas usadas? Que ferramentas fal-
tam?"

10. "Alguma parte do desenvolvimento que deveria recorrer a uma ferramente de
suporte de desenvolvimento?"

11. "Como é a monitorização e controlo de qualidade no que toca a automação de
testes, deployment e merging de software?"

12. "Happiness Survey. Considera importante?"

13. "Como consolidar o processo de desenvolvimento entre projetos?"

14. "O que poderia melhorar na formulação de user stories, diagramas, testes e
implementação?"

15. "Que novos processos deveriam ser introduzidos na metodologia de desen-
volvimento?"

16. "Que outros tipos de monitorização são efetuados?"

81

82 Appendix B. Gantt Diagrams

Appendix B

Gantt Diagrams

B.0.1 First Semester

FIGURE B.1: Planned Gantt Chart of the First Semester

Appendix B. Gantt Diagrams 83

Final

FIGURE B.2: Real Gantt Chart of the First Semester

84 Appendix B. Gantt Diagrams

B.0.2 Second Semester

Inicial

FIGURE B.3: Planned Gantt Chart of the First Semester

85

Appendix C

Trello Usage Rules

C.1 Introdução

Para um bom funcionamento e registo de métricas por parte da aplicação Metriqs,
é necessário que haja uma boa utilização do Trello, por parte da equipa de desen-
volvimento. Logo, vamos sugerir um simples conjunto de normas, que se forem
corretamente seguidas, fará com que as métricas recolhidas pelo Qontent e manip-
uladas pelo Metriqs, espelham o estado actual de um determinado projecto, com o
máximo de detalhe possível.

C.2 Lanes

Todos os cartões necessitam de estar contidos em lanes. Estas vão representar em
que ciclo de desenvolvimento o cartão vai estar inserido. Deste modo é possível
desenhar um fluxo de desenvolvimento em tempo real, que simula o crescimento
do projecto a ser desenvolvido. No que toca às lanes existentes é possível criar um
indeterminado número destas, para que o projecto se consiga projetar na board. Mas
para uma boa integração do Metriqs/Qontent é necessário a existência de 5 tipos de
lanes:

• Backlog: Esta Lane deve ser o local onde todos os cartões são criados, mesmo
que estes passem automaticamente para outra lanes, mesmo que o sistema
esteja preparado para o contrário. Todos os cartões devem ser guardados neste
lane até que eles passem para Next Up.

• Next: Quando numa reunião de planeamento do próximo ciclo de desenvolvi-
mento, vão-se escolher os cartões que vão ser trabalhados durante esse período
de tempo. Logo esta lane deverá conter esses cartões.

• Progress: Sempre que um membro da equipa começar a trabalhar num cartão,
este deve ser transferido para esta lane. Este estará presente nesta lane, en-
quanto estiver a ser desenvolvido e ter sido aprovado por todos os testes.

• Review: Após um cartão estar desenvolvido e testado, este irá passar para
esta lane de modo a ser revisto por um outro membro da empresa. Mesmo não
sendo aprovado, o cartão vai-se manter por esta lane até contrário.

• Live (Week <Day> <Month>): Quando, finalmente, um cartão for aprovado,
este irá ser transferido para a última lane do seu ciclo de vida. Visto que as
métricas apresentadas no Metriqs contêm uma granularidade temporal sem-
anal, deverá existir uma “Live Lane”, para cada semana de trabalho. Deste
modo é possível guardar um histórico de todo o desenvolvimento do projecto.
Ex: Live (Week 5 June); Live (Week 8 May); Live (Week 23 October)

86 Appendix C. Trello Usage Rules

De notar que tirando a Live Lane, as restantes não têm que se chamar exacta-
mente como descrito, apenas é necessário que estas contenham essa palavra chave.
Ex:
Review Lane, In Review
Next Up, In Next Line, Next To Do
In Progress, Progress Dev

C.3 Cartões

Individualmente falando, os cartões também vão ter um efeito importante para o
cálculo das métricas que são representadas no Metriqs. Para que tal seja possível
é necessário utilizar o Plug-In Scrum Points do Trello. Deste modo será possível
definir uma escala de medição e atribuir a um cartão que represente todo o ciclo de
vida de um cartão. Ex: Escala Temporal (Semanas, Dias, Horas, Minutos), Escala de
Dificuldade ou Escala de Pontos.
Embora o mais aconselhável seja uma escala temporal, é necessário que todos os
cartões contenham, desde a sua criação, uma estimativa que represente desde que
este entrou na lane Backlog até ficar Live. Também existe a possibilidade de intro-
duzir o tempo real do ciclo de desenvolvimento e deve ser introduzido quando um
cartão entra em Live. Deste modo é possível saber se ao longo do projecto as estima-
tivas de desenvolvimento se têm aproximado da realidade.

87

88 Appendix D. Activity Diagram

Appendix D

Activity Diagram

D.1 Login and Update Activity Diagram

FIGURE D.1: Registry and Data Sending Diagram

89

Bibliography

[1] B. Bostrom, "Information Systems Development Supporting Methodologies
With Computerized Tools",

[2] Qold R© — Effortless monitoring - https://www.qold.co/

[3] Unplugg: Add intelligence to your energy products - http://unplu.gg/

[4] K. Beck, "Embracing Change with Extreme Programming", 1999

[5] W. Royce, "Managing the Development of Large Software Systems", 1970

[6] J. Highsmith, A. Cockburn, "Agile software development: the business of inno-
vation", 2001

[7] K. Beck, M. Beedle, A. van Bennekum, A. Cockburn, W. Cunningham, M. Fowler,
J. Grenning, J. Highsmith, A. Hunt, R. Jeffries, J. Kern, B. Marick, R. C. Martin
S. Mellor, K. Schwaber, J. Sutherland, D. Thomas, "Manifesto for Agile Software
Development", 2001

[8] A. Turing, "Computing Machinery and Intelligence", 1950

[9] E. Novoseltseva, "Natural Language Processing Projects Startups to Watch
in 2017", https://apiumhub.com/tech-blog-barcelona/natural-language-processing-
projects/

[10] T. Jackins, "What is natural language processing and how does it work?",
http://blog.neospeech.com/what-is-natural-language-processing/

[11] C. Misra, V. Kunar, U. Kunar, "Identifying some important success factors in
adopting agile software development practices", 2008

[12] M. Paulk, Extreme Programming from a CMM Perspective, 2001.

[13] K. Beck, "Extreme Programming Explained — Embrace Change", 1999

[14] K. Beck, C. Andres, "Extreme Programming Explained — Embrace Change",
2005

[15] K. Schwaber, "SCRUM Development Process", 2004.

[16] R. Ramsin, "Agile Methodologies: Crystal", 2012.

[17] R. Davies, "DSDM Explained", 2004.

[18] C. Giardino, M. Unterkalmsteiner, N. Paternoster, T. Gorschek and P. Abra-
hamsson"What Do We Know about Software Development in Startups?", 2004

[19] M. Cristal, D. Wildt, R. Prikladnicki"Usage of SCRUM Practices within a Global
Company", 2008

90 BIBLIOGRAPHY

[20] B. Boehm, R. Turner, "Balancing Agility and Discipline: Evaluating and Inte-
grating Agile and Plan-Driven Methods", 2004

[21] K. Waters, "Disadvantages of Agile Development", 2007 -
http://www.allaboutagile.com/disadvantages-of-agile-development/

[22] W. Pierce, "Agile: strong and weak points", 2016 - https://atlaz.io/blog/agile-
strong-and-weak-points/

[23] Slack - https://slack.com/is

[24] Google Hangouts
https://hangouts.google.com/

[25] E. Griffith, "Slack growth skyrockets: 10,000 new active users each week", 2015
http://fortune.com/2015/02/12/slack-growth/

[26] A. Wiesen, "Making calls from Hangouts — in Gmail and across the web", 2013
https://gmail.googleblog.com/2013/07/making-calls-from-hangouts-in-gmail-and.html

[27] Trello - https://trello.com/

[28] Github - https://github.com/

[29] Github Enterprise - https://enterprise.github.com/

[30] "AI - Natural Language Processing" - https://www.tutorialspoint.com/artificial_intelligence/artificial_intelligence_natural_language_processing.htm

[31] "Lkit: A Toolkit for Natuaral Language Interface Construction" -
https://www.scm.tees.ac.uk/isg/aia/nlp/NLP-overview.pdf

[32] J. Cifuentes, "Bots are big: This AI startup turns Slack into Smarter-
Child on steroidsh", http://venturebeat.com/2016/03/18/bots-are-big-this-ai-startup-
can-turn-slack-into-smarterchild-on-steroids/

[33] Conversate Limited, "A Review of Natural Language APIs For
Bots", 2016, https://medium.com/@Conversate/natural-language-apis-for-bots-
e791f090e32f#.j735qlh9l

[34] Wit.ai - https://wit.ai/

[35] Botkit - Building Blocks for Building - https://github.com/howdyai/botkit

[36] IBM Watson - https://www.ibm.com/watson/

[37] Microsoft Azure NLP Luis - https://azure.microsoft.com/en-us/services/cognitive-
services/language-understanding-intelligent-service/

[38] Api.ai - https://api.ai/

[39] "What is Kanban?" - https://leankit.com/learn/kanban/what-is-kanban/

[40] J. Highsmith, "Agile Software Development Ecosystems", 2002

[41] S. Wambler, "Introduction to Test Driven Development (TDD)" -
http://agiledata.org/essays/tdd.html

BIBLIOGRAPHY 91

[42] T. Mochal, "Use PERT technique for more accurate estimates" -
http://www.techrepublic.com/blog/it-consultant/use-pert-technique-for-more-accurate-
estimates/

[43] N. Mittal, "The Burn-Down Chart: An Effective Planning and Tracking
Tool" - https://www.scrumalliance.org/community/articles/2013/august/burn-down-
chart-%E2%80%93-an-effective-planning-and-tracki

[44] S. Brown, "Software Architecture for Developers", 2012

[45] Ruby on Rails - https://rubyonrails.org/

[46] Model View Controller, https://en.wikipedia.org/wiki/Model%E2%80%93view%E2%80%93controller

[47] S. Ruby, D. Thomas, D.Hansson, "Agile Web Development with Rails 5", 2016

[48] "What Is REST?", http://www.restapitutorial.com/lessons/whatisrest.html

[49] PostgreSQL - https://www.postgresql.org/

[50] M. Anicas, "How To Use PostgreSQL with Your Ruby on Rails Application on
Ubuntu 14.04", 2015 - https://www.digitalocean.com/community/tutorials/how-to-use-
postgresql-with-your-ruby-on-rails-application-on-ubuntu-14-04

[51] Go by Example: Goroutines .https://gobyexample.com/goroutines

[52] N. Deshpande, E. Sponsler, N. Weiss, "Analysis of the Go runtime scheduler",
2011

[53] "How Stacks are Handled in Go",https://blog.cloudflare.com/how-stacks-are-
handled-in-go/

[54] The Go Blog - Go maps in action, https://blog.golang.org/go-maps-in-action

[55] N. Finch, "Intro to BoltDB: Painless Performant Persistence",
https://npf.io/2014/07/intro-to-boltdb-painless-performant-persistence/

[56] M. Rouse, "ACID (atomicity, consistency, isolation, and durability)", 2016 -
http://searchsqlserver.techtarget.com/definition/ACID

[57] Real Time Messaging API - https://api.slack.com/rtm

	Abstract
	Resumo
	Acknowledgement
	Introduction
	Problem and Motivation
	Objective
	Context
	Agile Methodology
	Natural Language Processing

	Solution
	Document Structure

	State of the Art
	Agile Software Development
	Types of Agile Methodologies
	World Impact

	Whitesmith
	Communication Tools
	Project Management Tools
	Internal Tools

	Natural Language Processor
	NLP Applied Today
	Development Tools and APIs
	Comparative Analysis

	Project Management and Operations
	Methodology
	Lean Software Development
	Kanban

	Plan
	First Semester
	Second Semester

	Risks
	Operations
	GitHub
	CircleCI
	Heroku
	Sentry

	Requisites
	System’s Actors
	Requirements Collection
	Functional Requirements
	Non-Functional Requirements

	Architecture
	System
	Context Diagram
	Modules
	Metrics Application
	Content Updater
	Chatbot

	Development
	Communication Servers
	Data Collection
	Metrics Application
	ChatBot Application

	Applications Features
	Data Collector Application
	Metrics Application
	Chatbot

	Verification and Validation
	Functional Testing
	Data Collector Tests
	Metrics Application Tests
	Chatbot Tests

	Non-Functional Tests
	Maintainability Tests
	Extensibility Tests
	Compatibility Tests
	Answer Time Tests

	Solution Validation
	Metrics Application
	ChatBot

	Conclusion
	The Project
	Future Work
	Internship and Final Thoughts

	Whitesmith Member Interview Form
	Gantt Diagrams
	First Semester
	Final
	Second Semester
	Inicial

	Trello Usage Rules
	Introdução
	Lanes
	Cartões

	Activity Diagram
	Login and Update Activity Diagram

