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Abstract

In this dissertation we show the main ideas concerning on convex sets (in an understood way) and
extended convex functions. Our aim is to deal, didactically, with the main topics about convexity, as
well as the consequent we explore the the involved concepts in Convex Analysis. In this sense, we
carried out a bibliographical review that contemplated theorems, lemmas, corollaries and relevant
propositions in several Articles, and Books. We hope that this study may constitute an important
research source either for students, teachers or researchers who wish to learn more about lower
semicontinuous and extended convex function in Rn.

Keywords: Lower semicontinuous function, extended convex function, convex envelope, convex-
ity.





Resumo

Nesta dissertação, apresentamos as principais ideias concernentes aos conjuntos convexos (de forma
subentendida) e às funções convexas estendidas. Nosso principal foco é tratar, de forma didática, os
principais tópicos envolvidos na Análise Convexa, assim como a consequente exploração dos conceitos
matemáticos envolvidos. Nesse sentido, realizamos uma revisão bibliográfica que contemplou teore-
mas, lemas, corolários e proposições relevantes em diversos Artigos, e Livros. Assim, esperamos que
este material constitua uma importante fonte de pesquisa a estudantes, professores e pesquisadores que
almejem estudar conteúdos relacionados as funções estendidas em Rn semicontínuas inferiormente e
convexas.

Palavras chave: Funções semicontínuas inferiores, funções convexas extendidas, convexidade.
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Chapter 1

Introduction

The research for this thesis was motivated by the article [5], where the goal is to replace a nonconvex
objective function by the best possible convex underestimator. This process is well-known by
Convexification and several approaches to do it have been proposed in recent years, see [7] and [10].
Once a good convex underestimator is found, the underlying global optimization of the original
objective function is an algorithm of the branch-and-bound type (ver um artigo de tawarmalani em
global optimization).

In this thesis, we review basic topological concepts related to closed functions, to convex functions
and both. The functions we are interested in are of the type f colonRn → [−∞,∞], so-called extended
functions in Rn. Most of the known basic results on convex analysis apply to functions that are proper
(i.e., , never −∞ and not +∞ everywhere). Since the tools that we have in mind using [4] generate
functions that are not proper, we thought have revisit basic results on convex and/or closed functions
to understand where the theory might fail. A paragraph on [8, pp. 24] roughly explains what are the
remedies when the results apply to extended functions, but it is not obvious or clear that it does work.

1.1 Notation

A quick review of the notation follows, which is fairly standard. For a set K ⊆Rn, int(K) denotes
the interior of K, cl(K) the closure and aff(K) the affine hull. A set K is convex if it contains the line
segment between any two points in K. The conv(K) represents the convex hull of K, the smallest
convex set that contains K. The ri(K) denotes the relative interior of a convex set K, a slightly more
complex definition. For x ∈Rn and r ≥ 0, we use B(x;r) to denote the ball of radius r centered at x.

Theoretical results on convex sets will in general be assumed - from the classical [8], or the more
recent [6] with a focus on optimization. Some of most relevant to our work are, e.g. ,

Lemma 1.1.1 If K ⊆Rn is a convex set, x ∈ ri(K) and y ∈ cl(K) then, x+ t(y− x) ∈ ri(K), for every
t ∈ [0,1).

Lemma 1.1.2 If A : Rn → Rm is a linear mapping and K ⊆ Rn is a convex set then, A(K) ≡
{Ax : x ∈ K} ⊆Rm is also a convex set.

Lemma 1.1.3 If A : Rn → Rm is a linear mapping and K ⊆ Rn is a convex set then, A(ri(K)) =

ri(A(K)).
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2 Introduction

Lemma 1.1.4 If C,K ∈Rn are convex sets such that ri(C)∩ ri(K) ̸= /0 then, ri(C∩K) = ri(C)∩ ri(K)

and cl(C∩K) = cl(C)∩ cl(K).

Let A,B ⊂Rn. The Minkwoski sum of two sets A and B, namely A+B = {a+b : a ∈ A,b ∈ B}. In
particular if either A or B is the emptyset then A+B is the emptyset. The multiplication of nonnegative
scalar λ with a set A defined as λ ·A = {λa : a ∈ A}. In particular, if A is the emptyset then λ ·A is
the emptyset.

Lemma 1.1.5 If C ⊆Rn is convex and contains the origin then λC is convex and increasing in λ > 0.

Proof: The proof that λC is convex is straighforward. Let 0 < λ < µ , arbitrary and let x = λy ∈ λC,
for some y ∈C. Since both 0,µy ∈ µC and x = λy = (1−λ/µ)0+(λ/µ)(µy), where λ/µ ∈ (0,1),
we conclude that x ∈ µC. �

1.2 Structure of the thesis

This is a synthesis work on the concepts of convex analysis that seems to us to be fundamental to
that objective, and trying to make the definitions as geometric as possible because they convey more
intuition without forget that their algebraic version allow numerical calculation.

Therefore, in chapter 2 we define the epigraphic set and study its properties on this context, and
their operations. In Chapter 3, we define function lower semicontinuous, or closed, and study its
properties, where, we explain why it is relevant in the context of optimization to handle functions
that are lower semicontinuous. In chapter 4 we define convex function and study its most elementary
properties, but excluding differentiability, trying to highlight the relevance of being or not own, be
closed or not. In Chapter 5, we study the recession function, starting from the concept of recession
cone, in order to characterize the perspective function that is a function that preserves the convexity.
In Chapter 6 we apply the disjunctive programming tool to finding the convex envelope of x/y on
a (positive) rectangle. Though the results are not fully new, see [9] and [10], we believe that the
arguments may lead to novel ways of finding the convex envelope of other nonconvex functions. And
finally the conclusion.



Chapter 2

Basic concepts with functions

In this chapter we present the main theoretical foundations that we use in the development of this
thesis and we describe the settings we wish to consider and introduce some terminology which will be
used throughout. We also provide some general results on the construction the epigraphical hull of a
certain function over a general domain, some propositions are posed in a more specific way, attending
to our needs in the development of the thesis. We state some definitions and results that are derived
from the convex analysis, see , [6], [7] and [8]. In our development we use the function in extended
value, i.e., , if f is real function f : Rn → [−∞,+∞]. The domain is always Rn.

2.1 The epigraph

In this section we start with the definitions of the epigraph set, which is loosely speaking all the
points that are above the graph including the graph line itself. Distinguish weather the epigraph whose
functions value −∞ or not or simply formed with real numbers.

Definition 2.1.1 Given a function f

Epi( f ) def
= {(x, t) ∈Rn ×R : f (x)≤ t} is the epigraph of f ;

epi( f ) def
= {(x, t) ∈Rn ×R : f (x)≤ t, f (x) ∈R} is the finite epigraph of f .

The definition between the two concepts is our decision. The reason will become throughout the text.
Not only the function values determine the epigraph, the epigraph also determines the function

values through
f (x) = inf{t : t ∈ Epi( f )|x}, (2.1)

where, Epi( f )|x = {t : f (x) ≤ t, for some x ∈ Epi( f )}, as convention, we assume that the infimum
over the empty set is +∞.

Definition 2.1.2 We say that E ⊆Rn ×R is an epigraph set if, for every x ∈Rn, the set E|x is either
/0,R or a closed interval [t̄,+∞).

The set Epi( f ) is always an epigraph set. If E is an epigraph set then, for some f , E = Epi( f ).
The effective domain of f is the set of objects where the function value is either a real number or −∞.
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4 Basic concepts with functions

The next definitions is derived from epigraph definitions as follows:

Definition 2.1.3 Given a function f

Dom( f ) def
= {x ∈Rn : Epi( f )|x ̸= /0} is the effective domain of f ;

dom( f ) def
= {x ∈Rn : Epi( f )|x ̸= /0,R} is the finite effective domain of f .

The operation of taking linear combinations of functions will be prevalent throughout the text.
Some simple technical difficulties are avoided if we restrict the analysis to proper functions.

Definition 2.1.4 We say that a function f is proper if f (x)>−∞, for all x ∈R, and f ̸≡+∞.

If f is proper then Epi( f ) = epi( f ) and Dom( f ) = dom( f ). A function that is not proper is called
improper. Improper functions do arise from proper ones in many natural situations. Moreover, simple
operations with proper functions, e.g. the sum are not assured to be well defined.

Certain properties of the function f can be cast into properties of the epigraph. For example, a
function is proper if and only if its epigraph is nonempty and it does not contain a vertical line. The
following result is another example.

Proposition 2.1.5 The set Epi( f ) is a cone if and only if f is positively homogeneous (i.e., , f (λx) =
λ f (x),for every x ∈Rn and every λ > 0).

Proof: Assume f is positively homogeneous. Then, for every λ > 0,

(x, t) ∈ Epi( f ) ⇒ f (x)≤ t ⇒ λ f (x) = f (λx)≤ λ t ⇒ (λx,λ t) = λ (x, t) ∈ Epi( f ).

Reciprocally, assume Epi( f ) is a cone. Then, for every λ > 0,

f (λx) = inf{t : (λx, t) ∈ Epi( f )}
= λ inf{t/λ : λ (x, t/λ ) ∈ Epi f}
= λ f (x).

�

2.2 The epigraphical hull

Given a nonconvex epigraph, a natural idea is to take a convex hull of its epigraph.

Proposition 2.2.1 The intersection of a family of epigraphs is an epigraph set.

Proof: Denote by F a family of epigraph sets F ⊆Rn ×R and let E = ∩F∈F F . For a fixed x ∈Rn,

E|x =

{
t : (x, t) ∈

⋂
F∈F

F

}
=
⋂

F∈F

(F |x) .
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If F |x = /0, for some F ∈ F , then E|x = /0; if F |x =R, for every F ∈ F , then E|x =R; Otherwise,

E|x = ∩F∈F ′ [t̄F ,+∞),

for some nonempty F ′ ⊆ F , where t̄F ∈R, for each F ∈ F ′. Let

t̄ = sup
{

tF : F ∈
⋂

F ′
}
.

If t̄ =+∞ then E|x = /0, while if t̄ ∈R then E|x = [t̄,+∞). In any case, the desired result follows. �

Definition 2.2.2 Let F be a subset of Rn ×R. We say that E = Epi.hull(F) is the epigraphical hull
of F if E is the intersection of all epigraphs that contain F.

From Proposition 2.2.1, the epigraphical hull is always an epigraph set. Identifying the epigraphical
hull of a given set F is straightforward. For each x ∈Rn, Epi.hull(F)|x is either: /0, if F |x is empty;
R, if F |x is unbounded below; or, [t̄,+∞), for t̄ equal to the largest lower bound on F |x.

2.3 Some epigraph calculus

In this section, we show that the epigraphical hull may be used as tool a to assure that certain operations
with functions are always well defined.

2.3.1 The supremum function

The supremum function suph∈H h where H denotes a family of functions, is always well defined.

Proposition 2.3.1 Let H be a family of functions. Then,

Epi
(

sup
h∈H

h
)
=
⋂

h∈H

Epi(h).

Proof:

(x, t) ∈ Epi
(

sup
h∈H

h
)
↔ sup

h∈H
h(x)≤ t ↔ h(x)≤ t, h ∈ H ↔ (x, t) ∈

⋂
h∈H

Epi(h).

�

Note that the supremum function may be improper even if all the functions h,h ∈ H , are proper.

2.3.2 The sum function

The sum of two functions may not always well defined. At points x where |g(x)|= |h(x)|= ∞ and
g(x) =−h(x) the function g+h is undefined.

Proposition 2.3.2 Let g�h : Rn → [−∞,+∞] defined by

(g�h)(x)≡

{
+∞ if |g(x)|= |h(x)|= ∞ and have opposite signs ,
g(x)+h(x) otherwise.
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Then, Epi(g�h)|x ≡ Epi(g)|x +Epi(h)|x.

Proof: Let x ∈Rn. If either Epi(g)|x or Epi(h)|x is the empty set then (g�h)(x) = +∞ so that

Epi(g�h)|x = /0 = Epi(g)|x +Epi(h)|x.

So, now, we assume that both Epi(g)|x and Epi(h)|x are nonempty. Then,

t ∈ Epi(g�h)|x ⇐⇒ g(x)+h(x)≤ t

⇐⇒ s1 + s2 = t, for some s1 ∈ Epi(g)|x,s2 ∈ Epi(h)|x,
⇐⇒ t ∈ Epi(g)|x +Epi(h)|x.

�

The function g�h may be improper even if both g,h are proper, in which case g+h = g�h. In
simple terms, g�h coincides with g+h except at those points where ∞−∞ occurs. At such points,
g�h is set to +∞.

2.3.3 The scalar multiplication

The multiplication of a positive scalar and a function always be well defined. When λ is zero, λg is
undefined when |g(x)|= ∞.

Proposition 2.3.3 Let λ � g : Rn → [−∞,+∞], where λ ≥ 0, be defined by (λ � g)(x) ≡ λg(x) if
λ > 0, and

(0�g)(x)≡

{
0 if g(x)<+∞

+∞ if g(x) = +∞.

Then, Epi(λ �g)|x = λ ·Epi(g)|x if λ > 0, and

Epi(0�g)|x ≡

{
[0,+∞) if g(x)<+∞

/0 if g(x) = +∞.

}
≡ Epi.hull(0 ·Epi(g))|x.

Proof: Let x ∈Rn. If g(x) = +∞ then (λ �g)(x) = +∞ so that

Epi(λ �g)|x = /0 = λ ·Epi(g)|x.

So, now, we assume that both Epi(g)|x is nonempty. Assuming λ > 0, then,

t ∈ Epi(λ �g)|x ⇐⇒ λg(x)≤ t

⇐⇒ λ s = t, for some s ∈ Epi(g)|x
⇐⇒ t ∈ λ ·Epi(g)|x.

Assuming λ = 0, then t ∈ Epi(λ �g)|x if and only if t ≥ 0, which concludes the proof. �

If g is proper then λ �g is proper. Moreover, λg ≡ g. In simple terms, λ �g coincides with λg
except at those points where 0× (+∞) or 0× (−∞) occurs. At such points, λ �g is set to +∞ or 0,
respectively.
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2.3.4 The infimal convolution

The sum of two epigraphs may not be an epigraph set. For example, if g(x)≡ 0, h(x)≡

{
1/x if x > 0,
+∞ if x ≤ 0.

then
Epi(g)+Epi(h) = {(x,y)+(z,w) : y ≥ 0, z > 0,w ≥ 1/z}= {(x̄, ȳ) : ȳ > 0},

Fig. 2.1

the open positive half space plan, which is not an epigraph. One inclusion is trivial. For the other,
set x = x̄−1/ȳ, z = x̄− x and y = ȳ−1/z, w = 1/z, see [1, pp. 250].

It is interest to understand what is the function whose epigraph is the epigraphical hull of the sum
of two epigraphs. The answer, justified by our next result, is the infimal convolution or epi-sum.

Proposition 2.3.4 Let g�h : Rn → [−∞,+∞] be defined by

(g�h)(x)≡

 +∞ if Ω(x) = /0
inf

y∈Ω(x)
g(y)+h(x− y) if Ω(x) ̸= /0.

where Ω(x) = Rn \ {y ∈Rn : |g(y)|= |h(x− y)|= ∞ and have opposite signs}. Then, Epi(g�h) =
Epi.hull(Epi(g)+Epi(h)).

Proof: Let x ∈Rn, arbitrary. We will show that

Epi(g�h)|x = Epi.hull(Epi(g)+Epi(h)) |x. (2.2)

If Ω(x) = /0 then (g�h)(x) = +∞, so that Epi(g�h)|x = /0. Now, we show, by contradiction, that
Epi(g)+Epi(h)|x = /0 as well. Suppose there is (x, t) ∈ Epi(g)+Epi(h). Hence, there are (y,s1) ∈
Epi(g),(x− y,s2) ∈ Epi(h) such that t = s1 + s2, a contradiction because, then, y ∈ Ω(x). Hence,
Epi(g)+Epi(h)|x = /0 which implies Epi.hull(Epi(g)+Epi(h)) |x = /0. If Ω(x) ̸= /0 then

(x, t) ∈ Epi(g�h) (2.3)
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if and only if
inf

y∈Ω(x)
g(y)+h(x− y)≤ t

which, in turn, is equivalent to

(y,s1)+(x− y,s2) = (x, t + ε), for some (y,s1) ∈ Epi(g),(x− y,s2) ∈ Epi(h), for every ε > 0,

or, in other words,
(x, t + ε) ∈ Epi(g)+Epi(h), for every ε > 0,

or, equivalently,
(x, t) ∈ Epi.hull(Epi(g)+Epi(h)) .

�

If both g,h are proper then Ω(x) is the emptyset everwhere. Thus g�h is simply given by the
well-known infimum expression. It may occur that g�h is improper. In simple terms, Epi(g�h)
coincides with Epi(g)+Epi(h) except at those points where (∞−∞) occurs.

The infimum sum operation between two extended functions is associative.

We believe that the extend the infimal convolution of two functions to more than two in the
following way:

(�m
i=1gi)(x) =


+∞ if Ω(x) = /0 inf

m

∑
i=1

gi(yi)

s.t. (y1,y2, . . . ,ym) ∈ Ω(x)

 if Ω(x) ̸= /0.

where Ω(x) is the set of those (y1,y2, . . . ,ym) ∈Rn ×Rn ×·· ·×Rn such that

x = y1 + y2 + · · ·+ ym

and there is no pair (yi,y j), i ̸= j, where |gi(yi)|= |g j(y j)|= ∞, and gi(yi) =−g j(y j). Then,

Epi(�m
i=1gi) = Epi.hull

(
m

∑
i=1

Epi(gi)

)
.

2.3.5 The epi-multiplication

The multiplication of a positive scalar and an epigraph is always an epigraph. When λ = 0, the set
λ Epi(g) may not be an epigraph.

Our next result applies to a function operation known as epi-multiplication, which is closely
related to the perspective function concept to be introduced later.
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Proposition 2.3.5 Let g�λ : Rn → [−∞,+∞], where λ ≥ 0, defined by (g�λ )(x)≡ λg(x/λ ), when
λ > 0, and

(g�0)(x)≡


+∞ if g ≡+∞,

0 if x = 0, g ̸≡+∞,

+∞ if x ̸= 0, g ̸≡+∞.

Then, Epi(g�λ ) = λ ·Epi(g), when λ > 0, and

Epi(g�0)≡

{
{0}× [0,+∞) if g ̸≡ ∞

/0 if g ≡+∞.

}
≡ Epi.hull(0 ·Epi(g)).

Proof: Assume λ > 0 and let x ∈Rn. Then,

(x, t) ∈ Epi(g�λ ) ⇐⇒ λg(x/λ )≤ t,

⇐⇒ g(x/λ )≤ t/λ

⇐⇒ (x, t)/λ ∈ Epi(g)

⇐⇒ (x, t) ∈ λ ·Epi(g).

Therefore, when λ > 0,

Epi(g�λ ) = λ ·Epi(g) = Epi.hull(λ ·Epi(g)) .

Now, assume λ = 0 and consider separately the cases: g ≡+∞ and g ̸≡+∞. If g ≡+∞ then

Epi(g�λ ) = /0 = λ ·Epi(g) = Epi.hull(λ ·Epi(g)) .

If g ̸≡+∞ then
Epi(g�λ )|= {(0, t) : t ≥ 0}= Epi.hull{(0,0)}.

On the other hand,
λ ·Epi(g) = {(0,0)},

The desired result follows. �

If g is proper then g�λ is always proper, for every λ ≥ 0. In simple terms, λ > 0, Epi(g�λ ) is
an enlargement or reduction (in size) of Epi( f ) through multiplication by λ .





Chapter 3

Closedness and Lower semi-continuity

In this chapter, we will study the characterization of functions whose epigraph are closed sets, the
lower semicontinuous function. The infimum function correspond a minimum, see [3], [6] and [8].

3.1 Lower semicontinuity

Definition 3.1.1 We say that f is closed if its epigraph is a closed set.

Proposition 3.1.2 f is closed if and only if all sublevel sets Lα( f )≡ {x ∈Rn : f (x)≤ α} are closed.

Proof: (⇒)

Let {xk} ⊆ Lα( f ) be a convergent sequence to x ∈Rn, arbitrary. Then, {(xk,α)} ⊆ Epi( f ) is a
convergent sequence to (x,α), which belongs to Epi( f ) because Epi( f ) is closed. Thus, x ∈ Lα( f ).

(⇐)

Let {(xk, tk)} ⊆ Epi( f ) be a convergent sequence to (x, t), arbitrary. Fix a finite α > t, arbitrary.
Then, for all k large enough, f (xk)≤ tk < α . Thus, for all k large enough, xk ∈ Lα( f ), which implies
that x ∈ Lα( f ) because Lα( f ) is closed. Thus, (x,α) ∈ Epi( f ), for all α > t, which implies that
(x, t) ∈ Epi( f ). �

The proposition above justifies the importance of closed functions in the context of optimization.
Namely, when the feasible region of an optimization problem is a subset of Rn defined as the
intersection of a finite number of sublevel sets then closedness of all the functions involved implies
closedness of the feasible region. Moreover, when the feasible region is compact, closedness of the
objective function implies the existence of a global minimizer.

Lower semi-continuity of f is, as we shall see, a necessary and sufficient condition for closedness.

Definition 3.1.3 We say that f is lower semicontinuous (Lsc) at x if

∀ε > 0, ∃δ > 0 such that f (y)+ ε ≥ f (x), ∀y ∈ B(x,δ ). (3.1)

11



12 Closedness and Lower semi-continuity

The definition above stems from the definition of continuity: we say that f is continuous at x, and
mathematically say limy→x f (y) = f (x), if

∀ε > 0, ∃δ > 0 such that −ε ≤ f (y)− f (x)︸ ︷︷ ︸
Lsc

≤ ε, ∀y ∈ B(x,δ ). (3.2)

Note that the definition of Lsc allows for the arithmetic with ∞ values, while the definition of
continuity does not.

Lemma 3.1.4 If f is closed function, then f is Lsc at x if and only if

liminf
y→x

f (y)≡ sup
δ>0

(
F(δ )≡ inf

y∈B(x,δ )
f (y)

)
≥ f (x). (3.3)

Proof: Assume (3.1) holds and, by contradiction, assume (3.3) does not hold. Since F is nonincreas-
ing, there exists ε > 0 such that F(δ )+ ε < f (x), for every δ > 0, which contradicts (3.1). Recipro-
cally, assume (3.3) holds. Fix ε > 0, arbitrary. Then, there exists δ > 0 such that F(δ )+ ε ≥ f (x).
Thus, (3.1) holds. �

When f is Lower semicontinuous at every x ∈Rn we will simply say that f is Lower semicontin-
uous, or Lsc for short.

Proposition 3.1.5 f is closed if and only if f is Lsc.

Proof: (⇒)
Assume that Epi( f ) is closed. By contradiction, suppose f is not Lsc at some x ∈Rn. Clearly,

f (x)>−∞. Moreover, from Lemma 3.1.4, there exists ε > 0 and L ∈R such that

F(δ )+ ε < L ≤ f (x), for every δ > 0. (3.4)

Now, consider two sequences {δk ≡ 1/k} and {zk} where zk ∈ B(x,δk) and

f (zk)−
ε

2
≤ inf

y∈B(x,δk)
f (y) (F(δk)) .

Since {δk} is a positive sequence converging to zero, then {zk} is a sequence converging to x.
Moreover, since f (zk)≤ F(δk)+ ε/2 < L− ε/2, for every k, the sequence {(zk,L− ε/2)} ⊆ Epi( f )
is convergent to (x,L−ε/2) ∈ Epi( f ), because Epi( f ) is closed. Thus, f (x)≤ L−ε/2 ≤ f (x)−ε/2,
a contradiction.

(⇐)
Assume that f is Lsc. Let {(xk, tk)} ⊆ Epi( f ) be a convergent sequence to (x, t), arbitrary. Since

f is Lsc at x,

f (x) ≤ sup
δ>0

(
inf

y∈B(x,δ )
f (y)

)
≤ sup

δ>0

(
inf

xk : xk∈B(x,δ )
f (xk)

)
≤ sup

δ>0

(
inf

xk : xk∈B(x,δ )
tk

)
= lim

k
tk = t.

�
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3.2 Operations with closed functions (checking closedness)

In this section, we consider some of the operations functions studied in section (2.3).

Proposition 3.2.1 Let H be a family of closed functions h : Rn → [−∞,+∞]. Then, the function
suph∈H h is closed.

Proof: Let H be a family of Lsc functions h and denote f ≡ suph∈H h. Fix x ∈Rn, arbitrary. Then,
for every h ∈ H ,

sup
δ>0

(
inf

y∈B(x,δ )
f (y)

)
≥ sup

δ>0

(
inf

y∈B(x,δ )
h(y)

)
≥ h(x),

because h is Lsc. Thus,

sup
δ>0

(
inf

y∈B(x,δ )
f (y)

)
≥ sup

h∈H
h(x) = f (x).

Hence, f is Lsc. �

In general, the sum of two closed functions is not closed, as our next example shows

g(x)≡

{
1/x if x > 0
+∞ if x ≤ 0

, h(x)≡

{
−1/x if x > 0
−∞ if x ≤ 0

, (g�h)(x)≡

{
0 if x > 0
+∞ if x ≤ 0

Both g and h are closed but g�h is not closed.
The infimal convolution of two closed functions is not closed, in general. This is essentially a

consequence that the sum of two unbounded closed (convex) sets need not be closed1. For example,
the following subsets of R2,

S = {(x1,x2) : x2 = 0}, T = {(x1,x2) : x1 > 0, x2 ≥ 1/x1}

are both closed (and convex). However, S+T = {(x1,x2) : x2 > 0}, which is not closed (though
convex). Now, consider the following functions

g(x)≡ 1S(x)≡

{
0 if x ∈ S
+∞ if x ̸∈ S

, h(x)≡ 1T (x)≡

{
0 if x ∈ T
+∞ if x ̸∈ T

,

which are both closed because

Epi(g) = S× [0,∞), Epi(h) = T × [0,∞).

One may verify that (g�h)(x)≡ 1S+T (x) so that

Epi(g�h) = (S+T )× [0,∞),

which is not closed. Note that any choice of closed sets S,T such that S+T is not closed would serve
the same purpose of defining a counter example.

Proposition 3.2.2 If g is a closed function and λ ≥ 0 then, λ �g is a closed function.
1Obviously the sum of two bounded convex sets are always closed.
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Proof: Assume λ > 0. Then,

liminf
y→x

g(y)≥ g(x)⇒ liminf
y→x

λg(y)≥ λg(x).

Thus, in this case, λ � g is closed. Now, assume λ = 0 and consider two cases: g(x) < +∞ or
g(x) = +∞.

If g(x)<+∞ then (0�g)(x) = 0 and (0�g)(y)≥ 0, for all y. Thus, in this case

liminf
y→x

(0�g)(y)≥ 0 = (0�g)(x).

If g(x) = +∞ then, since g is closed, there exists δ > 0 such that g(y) = +∞, for all y ∈ B(x,δ ). Thus,
(0�g)(y) = +∞, for all y ∈ B(x,δ ), which implies

liminf
y→x

(0�g)(y) = +∞ = (0�g)(x).

�

Proposition 3.2.3 If g is a closed function and λ ≥ 0 then, g�λ is a closed function.

Proof: Assume λ > 0. Then, Epi(g�λ ) = λ Epi(g). Since Epi(g) is closed, Epi(g�λ ) is also
closed. Now, assume λ = 0 and consider two cases: g ≡+∞ or g ̸≡+∞. If g ≡+∞ then Epi(g�0) =
/0, which is closed; If g ̸≡+∞ then Epi(g�0) = {0}× [0,+∞) (cartesian product), which is closed as
well. �

3.3 Closure of f

When f is not closed we may consider the problem of finding the “closest” closed function.

Lemma 3.3.1 If E is an epigraph set then clE is also an epigraph set.

Proof: This is a direct consequence of Theorem 3.3.3 below. Here we present a direct proof. Let
(x, t) ∈ cl(E). Then, there exists a sequence {(xk, tk)} ⊂ E convergent to (x, t). Let s > t, arbitrary.
Then, for all k large enough, f (xk)≤ tk < s. Thus, there exists a sequence {(xk,s)} ⊂ E convergent to
(x,s). Hence, (x,s) ∈ cl(E), for all s > t. Now, for any x̄ ∈Rn,

{(x̄, t) ∈Rn ×R : (x̄, t) ∈ cl(E)}= clE ∩{(x, t) ∈Rn ×R : x = x̄}, (3.5)

which is closed because it is the intersection of two closed sets. The set {t ∈R : (x̄, t) ∈ cl(E)} is the
linear projection of the set (3.5) onto Rn. Thus, it is closed as well. �

Definition 3.3.2 The closure of f , or lower semicontinuous regularization of f , is the function
(cl f ) : Rn → [−∞,+∞] whose epigraph is clEpi( f ).
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Theorem 3.3.3 If f is a closed function, the function g : Rn → [−∞,+∞] defined by

g(x)≡ liminf
y→x

f (y)

is Lsc. Moreover, Epi(g) = clEpi( f ).

Proof: Let x ∈Rn, arbitrary. Fix finite ε > 0, arbitrary. From the definition of g, there exists δ > 0
such that

inf
y∈B(x,δ )

f (y)≥ g(x)− ε

2
. (3.6)

On the other hand, for every y ∈Rn, there exists δy > 0, such that

inf
z∈B(y,δy)

f (z)≤ g(y)+
ε

2
. (3.7)

Without loss of generality, we may assume that

B(y,δy)⊆ B(x,δ ), for every y ∈ B(x,δ ).

Thus,
B(x,δ ) =

⋃
y∈B(x,δ )

B(y,δy),

which implies that

inf
y∈B(x,δ )

f (y) = inf
y∈B(x,δ )

(
inf

z∈B(y,δy)
f (z)

)
≤ inf

y∈B(x,δ )

(
g(y)+

ε

2

)
=

ε

2
+ inf

y∈B(x,δ )
g(y)

Thus, from (3.6),
inf

y∈B(x,δ )
g(y)+ ε ≥ g(x).

Thus, g is Lsc. It remains to be shown that Epi(g) = clEpi(g). Let (x, t) be an interior point to Epi( f ).
Then, there is ε > 0 such that

f (y)≤ s, for all (y,s) ∈ B((x, t),ε).

In particular, f (y)≤ t, for all y ∈ B(x,ε), which implies that g(x)≤ t. Thus, (x, t) ∈ Epi(g). We have
thus proved that intEpi( f )⊆ Epi(g). Now, from Proposition 3.1.5, the set Epi(g) is closed because,
as we have proved g is Lsc. Thus,

clEpi( f ) = cl(intEpi( f ))⊆ cl(Epi(g)) = Epi(g),

It remains to be shown that Epi(g) ⊆ clEpi( f ). Let (x, t) ∈ Epi(g), arbitrary. Fix a finite s > t,
arbitrary. In every open ball B(x,δ ), there exists y such that f (y)≤ s. Thus,

B((x,s),δ )∩Epi( f ) ̸= /0, for every δ > 0.
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Thus, (x,s) ∈ clEpi( f ), for every s > t. Since clEpi( f ) is closed, (x, t) ∈ clEpi( f ). �

Theorem 3.3.3 provides an characterization of the function values of cl( f ), namely,

cl f (x) = liminf
y→x

f (y). (3.8)



Chapter 4

Convex functions

Convex functions of real variables in Rn form an important class of functions in the context real
analysis. They are widely used in optimization and also in many areas of applied mathematics. The
definitions and properties of the following chapter can be found in classical book [8], or [2], [3] and
[6].

4.1 Basic definition

Definition 4.1.1 We say that f is convex if Epi( f ) is convex.

We recognize convex function with Jensen’s Inequality. But extended function is a special because
can take ∞−∞.

Theorem 4.1.2 (Jensen’s inequality) f is convex if and only if Dom( f ) is convex and

f (λx+(1−λ )y)≤ λ f (x)+(1−λ ) f (y), (4.1)

for every x,y ∈ Dom( f ) and λ ∈ (0,1).

Proof: (⇒)
Let x,y ∈ Dom( f ). Thus, there are r,s ∈R such that (x,r),(y,s) ∈ Epi( f ). Since and Epi( f ) is

convex, for every λ ∈ (0,1),

λ (x,r)+(1−λ )(y,s) = (λx+(1−λ )y,λ r+(1−λ )s) ∈ Epi( f ).

Therefore, λx+(1−λ )y ∈ Dom( f ), which implies that Dom( f ) is convex.
Let x,y ∈ Dom( f ) and λ ∈ (0,1), arbitrary. Two separate cases need to be considered: either (i)

both x,y ∈ dom( f ), (ii) x ̸∈ dom( f ). The third case, y ̸∈ dom( f ) is not necessary to be verified.
If both x,y ∈ dom( f ) then, (x, f (x)),(y, f (y)) ∈ Epi( f ) and, since Epi( f ) is convex,

λ (x, f (x))+(1−λ )(y, f (y)) = (λx+(1−λ )y,λ f (x)+(1−λ ) f (y)) ∈ Epi( f ),

17



18 Convex functions

from where (4.1) follows. If x ̸∈ dom( f ) then, (x,s) ∈ Epi( f ), for all s ∈R and (y, t) ∈ Epi( f ), for
some t ∈R. Since Epi( f ) is convex,

λ (x,s)+(1−λ )(y, t) = (λx+(1−λ )y,λ s+(1−λ )t) ∈ Epi( f ),

for any s ∈R. Thus, f (λx+(1−λ )y) =−∞ so that (4.1) follows.
(⇐)
Let (x,r),(y,s) ∈ Epi( f ) and λ ∈ (0,1), arbitrary. If x,y ∈ dom( f ) then, from (4.1),

f (λx+(1−λ )y)≤ λ f (x)+(1−λ ) f (y)≤ λ r+(1−λ )s,

which implies that

λ (x,r)+(1−λ )(y,s) = (λx+(1−λ )y,λ r+(1−λ )s) ∈ Epi( f ). (4.2)

If x ∈ Dom( f )\dom( f ) then, from (4.1),

f (λx+(1−λ )y)≤−∞,

Which implies that f (λx+(1−λ )y) = −∞,. Thus, also in this case, (4.2) holds. Thus, Epi( f ) is
convex. �

Other authors, with specific explanation use different inequalities.

Theorem 4.1.3 f is convex if and only if

f (λx+(1−λ )y)< λA+(1−λ )B, (4.3)

for every x,y ∈ Dom( f ), every λ ∈ (0,1) and every (A,B) ∈R2 such that (A,B)> ( f (x), f (y)).

Proof: (⇒)
Let x,y ∈ Dom( f ), λ ∈ (0,1) and (A,B)> ( f (x), f (y)), arbitrary. Then, for some δ > 0, (x,A−

δ ),(y,B−δ ) ∈ Epi( f ). Since Epi( f ) is convex,

λ (x,A−δ )+(1−λ )(y,B−δ ) = (λx+(1−λ )y,λA+(1−λ )B−δ ) ∈ Epi( f ),

from where (4.3) follows.
(⇐)
Let (x,r),(y,s) ∈ Epi( f ) and λ ∈ (0,1), arbitrary. Then, x,y ∈ Dom( f ) and (r + δ ,s+ δ ) >

( f (x), f (y)), for every δ > 0. From (4.3),

(λx+(1−λ )y,λ (r+δ )+(1−λ )(s+δ )) = (λx+(1−λ )y,λ r(1−λ )s+δ ) ∈ Epi( f ),

for every δ > 0. Since Epi( f ) is an epigraph set,

(λx+(1−λ )y,λ r(1−λ )s) = λ (x,r)+(1−λ )(y,s) ∈ Epi( f ).
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Thus, Epi( f ) is convex. �

The follows two results of convex function will be used later.

Proposition 4.1.4 f is convex if and only if, for every x,d ∈ Rn, the restriction g : R→ [−∞,+∞]

defined by g(t)≡ f (x+ td) is convex.

Proof: (⇒)
Let x,d fixed, Epi( f ) is convex. Where Epi( f )= {(x,s) : (x+td,s)∈Epi( f )}. Let (t1,s1),(t2,s2)∈

Epi( f ) and λ ∈ [0,1]. For, (x+ t1d,s1),(x+ t2d,s2) ∈ Epi( f ) as Epi( f ) is convex, then

λ (x+ t1,s1)+(1−λ )(x+ t2d,s2) =
(

x+(λ t1 +(1−λ )t2)d,λ s1 +(1−λ )s2

)
∈ Epi( f ).

Hence,
(λ t1 +(1−λ )t2,λ s1 +(1−λ )s2) = λ (t1,s1)+(1−λ )(t2,s2) ∈ Epi( f )

(⇐) Let (x1,s1),(x2,s2) ∈ Epi( f ) and λ ∈ [0,1]. Let,

λ (x1,s1)+(1−λ )(x2,s2) = (λx1 +(1−λ )x2,λ s1 +(1−λ )s2)

= (x2 +λ (x1 − x2),s2 +λ (s1 − s2)) ∈ Epi( f )

Let g(t)≡ f (x2 +λ (x1 − x2)), t ∈R, then (1,s1),(0,s2) ∈ Epi(g). Where, Epi(g) is convex, then

λ (1,s1)+(1−λ )(0,s2) = (λ ,λ s1 +(1−λ )s2) ∈ Epi(g).

Hence,
(x2 +λ (x1 − x2),λ s1 +(1−λ )s2) = λ (x1,s1)+(1−λ )(x2,s2) ∈ Epi( f ).

�

Note that the proposition above use epigraph sets not Jensen’s Inequalities.

Theorem 4.1.5 If f is convex and x ∈ dom( f ) then, for any d ∈Rn,

f (x+λd)− f (x)
λ

(4.4)

is nondecreasing in λ > 0.

Proof: First, observe that (4.4) equals
(
h� 1

λ

)
(y), where h denotes the function defined by h(y)≡

f (x+ y)− f (x).
The epigraph of h is the set

Epi( f )− (x, f (x)),

which is convex, because f is convex, and contains the origin.
The epigraph of h� (1/λ ) is (1/λ )Epi(h) (see Proposition 2.3.5). From Lemma 1.1.5, the set
(1/λ )Epi(h) is decreasing in λ > 0. Hence, for any fixed d ∈Rn, (4.4) is increasing in λ > 0. �

What is the aspect of convex function with −∞ values.
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Proposition 4.1.6 Let f be convex. If there is x̂∈ core(dom( f )) such that f (x̂)>−∞ then f (x)>−∞,
for every x ∈Rn.1

Proof: By contradiction, suppose (x,s) ∈ E pi( f ), for every real s. Since x̂ ∈ core(dom( f )), there is
some real t > 0 with x̂+ t(x̂− x) in dom( f ), and hence a real r with (x̂+ t(x̂− x),r) in E pi( f ). Since
Epi( f ) is convex,

1
1+ t

(x̂+ t(x̂− x),r)+
t

1+ t
(x,s) =

(
x̂,

r+ ts
1+ t

)
∈ Epi( f ),

for every real s. But, this implies that (x̂,S) ∈ Epi( f ), for every real S, a contradiction. �

Theorem 4.1.7 Let f be convex function. If f is improper, then f (x) =−∞, for every x ∈ ri(Dom f ).

Proof: The result holds trivially when ri(Dom f ) = /0. So, suppose ri(Dom f ) ̸= /0. In particular,
Dom( f ) ̸= /0. If f (x) ∈R, for every x ∈ Dom( f ) then f is proper, a contradiction. So, let x ∈ Dom( f )
be such that f (x) =−∞, let z ∈ ri(Dom f ), arbitrary but distinct from x. Then, there is µ > 1 such
that y ≡ x+µ(z− x) ∈ Dom( f ). Therefore,

z =
(

1− 1
µ

)
x+

1
µ

y ∈ Dom( f ).

Since x,y ∈ Dom( f ), there is (A,B)> ( f (x), f (y)). By Theorem 4.1.3,

f (z)<
(

1− 1
µ

)
A+

1
µ

B. (4.5)

If f (z) ∈ R then we may choose A small enough, because f (x) = −∞, to contradict (4.5). Hence,
f (z) =−∞. �

4.2 Closed convex functions

Proposition 4.2.1 If f is convex then cl f is convex.

Proof: The epigraph of cl f is the Epi( f ), since the closed of convex set is also convex, then, cl f is
convex. �

Our next results characterizes cl f when f is not closed. But need this lemma first.

Lemma 4.2.2 If f is convex then

ri(Epi f ) = {(x, t) : x ∈ ri(dom f ), f (x)< t}

1The core of a convex set C is the set of points x ∈C such that for any d ∈Rn, x+ td ∈C, for all t > 0 small enough.
This set clearly contains the interior of C but it may be larger.
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Proof: From Lemma 1.1.3 in the Introduction,

ri(Dom f ) = A · ri(Epi f ),

where A stands for the projection onto Rn, which is a linear operator from Rn+1 to Rn. Thus,

ri(Epi f ) =
⋃

x∈ri(Dom f )

{x}×R(x), (4.6)

where, for each x, R(x)⊆R. It remains to be shown that R(x) = {t : f (x)< t}. Let x ∈ ri(Dom f ),
arbitrary. Then,

{x}×R(x) = {x}×R ∩ riEpi( f )

= ri({x}×R) ∩ ri(Epi f )

= ri({x}×R ∩ Epi( f )) , (4.7)

=

{
( f (x),+∞) if f (x) ∈R
R if f (x) =−∞

where (4.7) follows from Lemma 1.1.4 in the Introduction. In any case, r ∈ R(x) if and only if
r > f (x), which concludes the proof. �

Proposition 4.2.3 Let f convex, and let y ∈ ri(Dom f ). Then,

(cl f )(x) = lim
t→0+

f (x+ t(y− x)) (4.8)

for every x ∈Rn.

Proof: Since xt
def
= x+ t(y− x)→ x when t ∈ 0+, we certainly have

(cl f )(x) = liminf
z→x

f (z)

≤ liminf
t→0+

f (x+ t(y− x)) (4.9)

Now proving the converse inequality by showing that

β ≤ limsup
t→0+

f (x+ t(y− x))

for every β ≥ (cl f )(x).

Let (y,α) ∈ ri(Epi f ) and another β ≥ (cl f )(x). Thus

(x,β ) ∈ Epi(cl f ) = cl(Epi f ),

then
(x,β )+ t

(
(y,α)− (x,β )

)
∈ ri(Epi f )
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for every t ∈ (0,1]. Therefore, (
x+ t(y− x),β + t(α −β )

)
∈ Epi( f ) (4.10)

for every t ∈ (0,1]. From (4.10) and (4.9) implies (4.8). �



Chapter 5

The Recession and the Perspective (of a
convex function)

In this chapter we are interested in the behaviour of the function in infinity. And we will see some
results that will be necessary for the analysis of that conditions, see [8].

5.1 The recession cone

Definition 5.1.1 The recession cone of a nonempty convex set C ⊆Rn is the following subset of Rn,

C∞ =
⋂
x∈C

C∞(x),

where C∞(x)≡ {d ∈Rn : x+λd ∈C, for all λ ≥ 0}, for a given x ∈C.

The set C∞(x) is the set of directions d along which and departing from x ∈C the points remain in
C. Thus, C∞ is the set of directions d along which independently of the chosen departing point x ∈C
the points remain in C. In particular, C∞ contains the origin.
It is easy to verify that C∞(x) is a convex cone so that, being the intersection of convex cones, the set
C∞ is also a convex cone. An alternative characterization of C∞ is as follows.

Theorem 5.1.2 C∞ = {d ∈Rn : C+d ⊆C} .

Proof: If d ∈C∞ then, for every x ∈C, x+d ∈C. Thus, C+d ⊆C. Reciprocally, take any d ∈Rn

such that C+d ⊆C and any x ∈C. Then, for every λ ≥ 0,

x+λd = x+(⌊λ⌋+λ )d = (x+ ⌊λ⌋d)+δd = y+δd = δ (y+d)+(1−δ )y ∈C.

where y ∈C and δ ∈ [0,1). Thus, d ∈C∞(x), for every x ∈C. �

If C is not closed, C∞ need not be closed. For example, if C = {(x,y) : x,y > 0}∪{(0,0)} then
C∞ =C, which is not closed. Another example, D =C∪{(0,y) : y > 0} then D∞ = {(0,0)}, shows
that a larger C does not imply a larger C∞. The same example shows that C∞ may be singleton even

23
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when C is unbounded. The same examples also show that if C is not closed, the sets C∞(x) may differ,
accross all x ∈C.

Theorem 5.1.3 If C is closed then C∞ is closed.

Proof: Let {dk} ⊆C∞ be a convergent sequence to d. For every x ∈C and every λ ≥ 0,

x+λd = lim
k

x+λdk ∈C,

because the sequence {x+λdk} ⊆C is convergent and C is closed. �

If C is closed then C∞(x) is closed across all x ∈C, as results shows.

Theorem 5.1.4 (clC)∞ = (clC)∞(x), for all x ∈ clC.

Proof: Take x ∈ clC, arbitrary. From the definition, (clC)∞ ⊆ (clC)∞(x). Reciprocally, let d ∈
(clC)∞(x), arbitrary. Take any y ∈ clC and any λ ≥ 0. Then, for any µ ∈ (0,1],

µ

(
x+

λ

µ
d
)
+(1−µ)y ∈ clC.

Moreover,

lim
µ→0+

µx+(1−µ)y+λd = lim
µ→0+

µ

(
x+

λ

µ
d
)
+(1−µ)y = y+λd ∈ clC,

because clC is closed. Thus d ∈ (clC)∞(y), for all y ∈ clC, which implies that (clC)∞(x)⊆ (clC)∞.
�

Theorem 5.1.5 (riC)∞ = (clC)∞.

Proof: Both sets ri(C) and cl(C) are nonempty and convex [8, p45,Th6.2]. Assume d ∈ (riC)∞

and take any x ∈ ri(C). Then, for every λ ≥ 0, x+λd ∈ ri(C). Since x ∈ ri(C)⊆ cl(C), we conclude
that d ∈ (clC)∞(x) = (clC)∞. Reciprocally, assume d ∈ (clC)∞ and take any x ∈ ri(C). Then, for
every λ > 0, x+λd ∈ cl(C). Thus, from [8, p45,Th6.1], x+µd ∈ ri(C), for every µ ∈ [0,λ ). Thus,
x+λd ∈ ri(C), for every λ ≥ 0, which implies d ∈ (riC)∞. �

Now we will show, that, if C is closed, C∞ is singleton if and only if C is bounded. But we need
the next lemmma first.

Lemma 5.1.6 Let d ∈Rn such that ∥d∥= 1. Then, d ∈ (clC)∞ if and only if there exists a sequence
{xk} ⊆ clC such that {∥xk∥} diverges to +∞ and {xk/∥xk∥} converges to d.

Proof: Assume d ∈ (clC)∞ and consider the sequence {xk ≡ x+ kd} ⊆ clC. Since

∥x+ kd∥ ≥ ∥kd∥−∥x∥ ≥ k∥d∥,
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from where we conclude that {∥xk∥} diverges to +∞. Furthermore,

x+ kd
∥x+ kd∥

=
x

∥x+ kd∥
+

d
∥x/k+d∥

.

We conclude that {xk/∥xk∥} converges to d. Reciprocally, assume the existence of such a sequence
{xk} ⊆ clC. Take x ∈ clC and λ > 0, both arbitrary. Then, for all k large enough, λ/∥xk∥ ∈ [0,1].
Therefore, for all k large enough,(

1− λ

∥xk∥

)
x+
(

λ

∥xk∥

)
xk ∈ clC,

which implies that

x+λd = lim
k

x+λ
xk

∥xk∥
−λ

x
∥xk∥

= lim
k

(
1− λ

∥xk∥

)
x+
(

λ

∥xk∥

)
xk ∈ clC.

�

Theorem 5.1.7 The set clC is bounded if and only if (clC)∞ is singleton.

Proof: If (clC)∞ contains other vectors besides the origin, from Lemma 5.1.6, clC must be un-
bounded. Reciprocally, if clC is unbounded then there exists an unbounded sequence {xk} ⊆ clC,
that does not contain the origin. The sequence {xk/∥xk∥} is bounded and, therefore, it contains a
convergent subsequence. The limit of such sequence must be different from the origin, as all its
elements have norm one. �

The equivalent form of Lemmma 5.1.6 is as follows:

Lemma 5.1.8 Let d ∈Rn. Then, d ∈ (clC)∞ if and only if there exists a sequence of scalars {λk} ↓ 0
and a sequence {xk} ⊆ clC such that {λkxk} converges to d.

Proof: Assume d ∈ (clC)∞ and consider the sequence of scalars {λk ≡ 1/k} ↓ 0 and the sequence
{xk ≡ x+ kd} ⊆ clC, for any fixed x ∈ clC. Then,

lim
k

λkxk = lim
k

1
k
(x+ kd) = lim

k

x
k
+d = d.

Reciprocally, assume the existence of a sequence of scalars {λk} ↓ 0 and a sequence {xk} ⊆ clC such
that {λkxk} converges to d. Take any x ∈ clC and any λ > 0. Then, for all k large enough, λλk ∈ [0,1].
Therefore, for all k large enough,

(1−λλk)x+(λλk)xk ∈ clC,

which implies that

x+λd = lim
k

x+λ (λkxk) = lim
k
(x+λλkxk)−λλkx = lim

k
(1−λλk)x+(λλk)xk ∈ clC.

�
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Proposition 5.1.9 Let C be a family of nonempty, convex and closed subsets of Rn such that
⋂

C∈C C
is nonempty. Then, (⋂

C∈C

C

)
∞

=
⋂

C∈C

C∞.

Proof: Denote D ≡ ∩C∈CC. Let d ∈ D∞ and take any x ∈ D. From definiton, d ∈ D∞(x). Thus, for
any C ∈ C , we have that, not only x ∈C but also x+λd ∈C, for all λ ≥ 0. Hence, d ∈C∞(x), for any
C ∈ C . Since, every C ∈ C is closed, we have that

d ∈
⋂

C∈C

C∞(x) =
⋂

C∈C

C∞.

Reciprocally, let d ∈ ∩C∈CC∞. Take any x ∈ D and any C ∈ C . Since C is closed, d ∈C∞ =C∞(x).
Thus, x+λd ∈C, for all λ ≥ 0. Hence,

x+λd ∈
⋂

C∈C

C = D, for all λ ≥ 0.

Thus, d ∈ D∞(x), for any x ∈ D, which implies d ∈ D∞. �

5.2 Recession functions

Building on the concept of recession cone, we are now interested in understanding the behavior of
limit in ∞.

Theorem 5.2.1 Let E be a nonempty convex subset of Rn. If E is an epigraph set then E∞ is also an
epigraph set.

Proof: Let (d, t) ∈ E∞. Then, (x,u)+λ (d, t) = (x+λd,u+λ t) ∈ E, for for every (x,u) ∈ E and
every λ ≥ 0. Now, consider s > t. Take any (x,u) ∈ E and any λ > 0. Then, (x,u)+ λ (d,s) =
(x+λd,u+λ s) ∈ E, because u+λ s > λ t and E is an epigraph set. Hence, (d,s) ∈ E∞.

Now, consider a sequence of scalars {tk} converging to t̄ in the set

{t : (d, t) ∈ E∞}. (5.1)

In particular, (x,u)+λ (d, tk) = (x+λd,u+λ tk) ∈ E, for every (x,u) ∈ E and every λ ≥ 0. The
sequence of scalars {u+λ tk} converges to u+λ t̄ and, since E is an epigraph set, (x+λd,u+λ t̄) =
(x,u)+λ (d, t̄) ∈ E, for every (x,u) ∈ E and every λ ≥ 0. Hence, t̄ belongs to (5.1), which is, then,
closed, and, henceforth, E∞ is an epigraph set. �

Recall that the epigraph of f is nonempty if and only if f is not +∞ everywhere.

Definition 5.2.2 Let f be convex and not +∞ everywhere. Then, the recession function of f is the
function f∞ : Rn → [−∞,∞] such that

Epi( f∞) = (Epi f )
∞
.
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The recession function f∞ enjoys the following basic properties.

Theorem 5.2.3 The function f∞ is positively homogeneous and not +∞ everywhere. Moreover, for
every d ∈Rn,

f∞(d) =

 +∞ if there ∃xs. t. f (x) =−∞, f (x+d)>−∞,

sup
x∈dom( f )

{ f (x+d)− f (x)} otherwise.

Proof: From the definition of recession cone, (Epi f )
∞

is a cone and contains the origin. Now,
since (0,0) ∈ (Epi f )

∞
= Epi( f∞), then f∞(0)≤ 0. Thus, f∞ is not +∞ everywhere. Moreover, since

(Epi f )
∞
= Epi( f∞) is a cone, f∞ is positively homogeneous, i.e., f∞(λd) = λ f∞(d), for every d ∈Rn,

and every λ > 0 - see Proposition 2.1.5. Moreover, from Theorem 5.1.2,

f∞(d) = inf{t : (d, t) ∈ Epi( f∞)}
= inf{t : (d, t) ∈ (Epi f )

∞
}

= inf{t : Epi( f )+(d, t)⊆ Epi( f )}
= inf{t : (x,u)+(d, t) ∈ Epi( f ), ∀(x,u) ∈ Epi( f )}
= inf{t : f (x+d)≤ u+ t, ∀(x,u) ∈ Epi( f )} .

Now, we observe that Epi( f ) is the disjoint union of two sets,

{(x,u) ∈ Epi( f ), f (x) ∈R} , {(x,u) ∈ Epi( f ), f (x) =−∞}

(the second set is empty if f is proper). Now, since

(x,u) ∈ Epi( f ), f (x) ∈R ⇐⇒ x ∈ dom( f ), f (x)≤ u,

(x,u) ∈ Epi( f ), f (x) =−∞ ⇐⇒ x ∈ Dom( f )\dom( f ), u ∈R

we have that

f∞(d) = inf

{
t :

f (x+d)≤ u+ t, ∀x ∈ dom( f ), f (x)≤ u,
f (x+d)≤ u+ t, ∀x ∈ Dom( f )\dom( f ), ∀u ∈R

}

= inf

{
t :

f (x+d)≤ f (x)+ t, ∀x ∈ dom( f )
f (x+d)≤ u+ t, ∀x ∈ Dom( f )\dom( f ), ∀u ∈R

}
.

Thus, if there exists x ∈ Dom( f )\dom( f ) such that f (x+d)>−∞ then, f∞(d) = +∞. Otherwise,
f (x+d) =−∞, for every x ∈ Dom( f )\dom( f ) and so,

f∞(d) = inf{t : f (x+d)≤ f (x)+ t, ∀x ∈ dom( f )}
= sup{ f (x+d)− f (x) : x ∈ dom( f )} .

�



28 The Recession and the Perspective (of a convex function)

Note that, if f is proper then dom( f ) = Dom( f ) ̸= /0. Hence, in this case f∞ is simply given
through

f∞(d) = sup{ f (x+d)− f (x) : x ∈ dom( f )} ,

which cannot be −∞. Thus, since f∞ is not +∞ everywhere, f∞ is also proper.

Theorem 5.2.4 If f is closed then f∞ is closed. Moreover, for every d ∈Rn,

f∞(d) =


−∞ if there ∃xs. t. f (x+λd) =−∞,∀λ ≥ 0,

sup
λ>0

f (x+λd)− f (x)
λ

if x ∈ dom( f ),

+∞ if there ∃x and λ > 0s. t. f (x) =−∞, f (x+λd)>−∞

Proof: Take any d ∈Rn. Since f is closed, see Proposition 5.1.2,

f∞(d) = inf{t : (d, t) ∈ Epi( f∞)}
= inf{t : (d, t) ∈ (Epi f )

∞
}

= inf{t : (x,u)+λ (d, t) ∈ Epi f ,∀λ ≥ 0}
= inf{t : f (x+λd)≤ u+λ t, ∀λ ≥ 0} ,

for any (x,u) ∈ Epi f . If x ∈ dom( f ) then we may choose u = f (x) and so,

f∞(d) = inf{t : (x, f (x))+λ (d, t) ∈ Epi f ,∀λ ≥ 0}
= inf{t : (x, f (x))+λ (d, t) ∈ Epi f ,∀λ > 0}
= inf{t : f (x+λd)≤ f (x)+λ t, ∀λ > 0}

= inf
{

t :
f (x+λd)− f (x)

λ
≤ t, ∀λ > 0

}
= sup

λ>0

f (x+λd)− f (x)
λ

.

Otherwise, x ∈ Dom( f )\dom( f ).
If f (x+ λd) = −∞, for all λ > 0, then f∞(d) = −∞. Otherwise, f (x+ λd) > −∞, for some

λ > 0 and so, f∞(d) = +∞. �

Theorem 5.2.5 If f is convex and closed then, for every x ∈ dom( f ),

sup
λ>0

f (x+λd)− f (x)
λ

= lim
λ→+∞

f (x+λd)− f (x)
λ

(5.2)

Proof: Let x ∈ Dom f .

(Epi f )∞ = {(d,µ) ∈Rn ×R|(x, f (x))+λ (d,µ) ∈ Epi f ,∀ λ > 0}

and hence (d,µ) ∈ (Epi f )∞ if and only if for any x ∈ Dom f we have

f (x+λd)≤ f (x)+λ µ,∀ λ > 0,
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which means exactly that

g(d) := sup
λ→0

f (x+λd)− f (x)
λ

and hence (Epi f )∞ = Epig, for every x ∈ Dom f , proving the formula (5.2), that the limit in λ

coincides with the supremum in λ > 0 simply follows by recalling that the convexity of implies that
fixed x,d ∈Rn, for any s > 0, the function

s → f (x+ sd)− f (x)
s

is nondecreasing. �

5.3 The perspective function

Definition 5.3.1 Given f , let f̃ : Rn ×R→ [−∞,+∞] defined by

f̃ (x, t) = t f
(x

t

)
,

when t > 0, and +∞ otherwise. This function f̃ is called the perspective of f . Note that

Dom( f̃ ) = {(x, t) ∈Rn ×R : t > 0,x/t ∈ Dom( f )} ,
Epi( f̃ ) = {(x, t,δ ) ∈Rn ×R×R : t > 0, t f (x/t)≤ δ} .

Theorem 5.3.2 If f is convex then, f̃ : Rn ×R→ [−∞,+∞] is convex.

Proof: We will use Theorem 4.1.2 to show the f̃ is convex. Let (x1, t1),(x2, t2) ∈ Dom( f̃ ) and
λ ∈ (0,1), arbitrary. Since λ t1 +(1−λ )t2 > 0,

f̃ (λ (x1, t1)+(1−λ )(x2, t2)) =

= f̃ (λx1 +(1−λ )x2,λ t1 +(1−λ )t2)

= (λ t1 +(1−λ )t2) f
(

λx1 +(1−λ )x2

λ t1 +(1−λ )t2

)
= (λ t1 +(1−λ )t2) f

(
λ t1

λ t1 +(1−λ )t2
· x1

t1
+

(1−λ )t2
λ t1 +(1−λ )t2

· x2

t2

)
.

Since x1/t1,x2/t2 ∈ Dom( f ) and Dom( f ) is convex, then

λ t1
λ t1 +(1−λ )t2

x1

t1
+

(1−λ )t2
λ t1 +(1−λ )t2

x2

t2
∈ dom( f )
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Thus, λ (x1, t1)+(1−λ )(x2, t2) ∈ dom( f̃ ). Moreover,

f̃ (λ (x1, t1)+(1−λ )(x2, t2)) =

≤ (λ t1 +(1−λ )t2)
[(

λ t1
λ t1 +(1−λ )t2

)
f
(

x1

t1

)
+

(
λ t2

λ t1 +(1−λ )t2

)
f
(

x2

t2

)]
= λ t1 f

(
x1

t1

)
+(1−λ )t2 f

(
x2

t2

)
= λ f̃ (x1, t1)+(1−λ ) f̃ (x2, t2).

Hence, f̃ is convex. �

5.4 The convex hull of the union of convex sets

Consider a set K ⊆Rn defined by functions gi : Rn → [−∞,+∞] there,

K = {x ∈Rn : gi(x)≤ 0, i = 1,2, . . . ,m} (5.3)

If all gi are convex (and closed) then K is convex (and closed). It will on interest to characterize in
algebraic terms the set

P = clconv(K1 ∪K2)

where K1 and K2 are both defined on the terms (5.3). Namely,

K1 = {x ∈Rn : G1(x)≤ 0} and K2 = {x ∈Rn : G2(x)≤ 0}

where G1,G2 are vector of function gi closed and convex (not necessarily of the same number). The
theorem below provides a higher-dimensional algebra characterization of P.

Theorem 5.4.1 If the set K1,K2 are nonempty then x and P if and only if

x = x1 + x2

cl G̃1(λ1,x1)≤ 0, cl G̃2(λ2,x2)≤ 0

λ1 +λ2 =1, λ1,λ2 ≥ 0.

where cl G̃i(λ ,x) denotes the vector mapping the conjugate are the closeness of the perpective of each
conjugate of Gi.

For example, consider f : R2 → [−∞,+∞] defined by

f (x,y) =

{
a/y− x whenever y ∈ [c,d],
+∞ otherwise .

where a > 0 and 0 < c < d. Since dom( f ) = [c,d]×R we conclude that f is proper. We may check
that f is convex (it is in the sense of convex functions). Moreover, its epigraph is
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Epi( f ) = {(x,y, t) : f (x,y)≤ t, y ∈ [c,d]}
= {(x,y, t) : a/y− x ≤ t, y ∈ [c,d]} .

which is closed, so f is also closed. Now, consider the perspective of f defined by

f̃ (λ ,x,y) =

{
λ f (x/λ ,y/λ ) whenever λ > 0 and y/λ ∈ [c,d],
+∞ otherwise .

=

{
λ 2a/y− x whenever λ > 0 and y ∈ [λc,λd],
+∞ otherwise .

The epigraph of f̃ is

Epi( f̃ ) =
{
(λ ,x,y, t) : f̃ (λ ,x,y)≤ t

}
=

{
(λ ,x,y, t) : λ

2a/y− x ≤ t, λc ≤ y ≤ λd, λ > 0
}
.

Thus, the closure of the epigraph of f̃ is

cl(Epi f̃ ) =
{
(λ ,x,y, t) : λ

2a/y− x ≤ t, λc ≤ x ≤ λd, λ ≥ 0
}
.

Thus, the closure of f̃ is

cl f̃ (λ ,x,y) =

{
λ 2a/y− x whenever λ ≥ 0 and y ∈ [λc,λd],
+∞ otherwise .





Chapter 6

(Application) the lower convex envelope
of x/y

In this chapter, we show example of how to obtain a convex envelope, given a nonconvex functions,
for more examples, see [9] and [10].

6.1 Bivariate function over rectangle

Consider f : R2 → [−∞,+∞] defined by x/y on the square [a,b]× [c,d] ⊂ R2, with 0 < a < b and
0 < c < d, and by +∞ outside the same square. Epigraph and domain are given by

Epi( f ) = {(x,y, t) : x/y ≤ t, a ≤ x ≤ b, c ≤ y ≤ d}, Dom( f ) = [a,b]× [c,d].

Hence, the function is proper and closed. For fixed x ∈ [a,b], f (·,y) is convex strictly decreasing,
while, for fixed y ∈ [c,d], f (x, ·) is affine increasing. Nevertheless, the function is not convex, as our
nest result shows. The nonconvexity of f - see Figure 6.1 is hardly noticeable. Interestingly, the
function x2/y, on the same domain, is convex.

Fig. 6.1 The fractional term x/y in the positive orthant.

33
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Proposition 6.1.1 Let P ≡ (a,c) denote the lower left corner of the domain Dom( f ) = [a,b]× [c,d]
and let Q ≡ P+αd, for some α > 0 and direction d ≡ (c,

√
a2 + c2−a)> 0, be any point in the same

square [a,b]× [c,d]. Then,
f ((P+Q)/2)> ( f (P)+ f (Q))/2. (6.1)

and, so, f is not convex.

Proof: The midpoint between P and Q has coordinates(
a+(α/2)c,c+(α/2)

(√
a2 + c2 −a

))
.

Hence,

f
(

1
2

P+
1
2

Q
)
−
(

1
2

f (P)+
1
2

f (Q)

)
=

a+(α/2)c
c+(α/2)z

− 1
2

a
c
− 1

2
a+αc
c+αz

,

where to simplify notation we employ z ≡
√

a2 + c2 −a. Now, we perform algebraic operations to get
a single denominator. The denominator is positive, the numerator is(

a+
α

2
c
)
(c)(c+αz)−

(a
2

)(
c+

α

2
z
)
(c+αz)−

(a
2
+

α

2
c
)(

c+
α

2
z
)
(c) =

=
(a

2

)
(c)(c+αz)+

(a
2
+

α

2
c
)
(c)
(

α

2
z
)
−
(a

2

)(
c+

α

2
z
)
(c+αz)

=
(a

2

)
(c+αz)

(
−α

2
z
)
+
(a

2

)
(c)
(

α

2
z
)
+
(

α

2
c
)
(c)
(

α

2
z
)

=
(a

2

)
(αz)

(
−α

2
z
)
+
(

α

2
c
)
(c)
(

α

2
z
)

=

(
α2

4
z
)(

c2 −az
)

Now, we observe that

c2 −az = c2 −a
(√

a2 + c2 −a
)
= c2

(
1−
(a

c

)(√(a
c

)2
+1−

(a
c

)))
> 0,

because x
(√

x2 +1− x
)
< 1/2, for every x > 0. Simply note that

(
2x2 +1

)2
= 4x4 +4x2 +1 > 4x4 +4x2 = 4x2 (x2 +1

)
=
(

2x
√

x2 +1
)2

,

from where we deduce that 2x
(√

x2 +1− x
)
= 2x

√
x2 +1−2x2 < 1. �

We want to find a characterization a conv( f ) which by definition is the best convex underestimator
of f . We will do so by first characterizing convepi( f ) which is the same as epiconv( f ).

Lemma 6.1.2 For every P1 ≡ (x1/y1,x1,y1),P2 ≡ (x2/y2,x2,y2) ∈ epi( f ), the relative interior of the
line segment P1P2 is either empty or the whole set. Moreover, it is nonempty if and only if

(y2 − y1)

(
x1

y1
− x2

y2

)
≥ 0
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Proof: First, note that, for any pair of points (t1,x1,y1) and (t2,x2,y2) in epi( f ), and for any
λ ∈ [0,1],

(λ t1 +(1−λ )t2)(λy1 +(1−λ )y2)− (λ t1y1 +(1−λ )t2y2) =

= λ
2t1y1 +λ (1−λ )t1y2 +λ (1−λ )t2y1 +(1−λ )2t2y2 −λ t1y1 − (1−λ )t2y2

= −λ (1−λ )t1y1 +λ (1−λ )t1y2 +λ (1−λ )t2y1 −λ (1−λ )t2y2

= λ (1−λ )(y2 − y1)(t1 − t2)

= λ (1−λ )(y2 − y1)(t1 − t2) . (6.2)

Now, every point in the relative interior of the segment P1P2 is of the following form for some
λ ∈ (0,1), t

x
y

≡ λ

 x1/y1

x1

y1

+(1−λ )

 x2/y2

x2

y2

=

 λ (x1/y1)+(1−λ )(x2/y2)

λx1 +(1−λ )x2

λy1 +(1−λ )y2

 .
Clearly x ∈ [a,b] and y ∈ [c,d]. Moreover, from (6.2),

ty− x = (λ (x1/y1)+(1−λ )(x2/y2))(λy1 +(1−λ )y2)− (λx1 +(1−λ )x2)

= λ (1−λ )(y2 − y1)(x1/y1 − x2/y2).

Hence, the sign of ty− x does not depend on λ , from where the desired result follows. �

6.2 The union of two sets

Consider the following sets K1,K2 ⊆R3, where 0 < a < b and 0 < c < d,

K1 = {(a,y, t) : a/y ≤ t, c ≤ y ≤ d}
K2 = {(b,y, t) : b/y ≤ t, c ≤ y ≤ d} .

Clearly, these two disjoint sets are closed and convex. We will be interested in characterizing

clconv
(
K1 ∪K2)

From [4, Theorem 1], (x,y, t) ∈ clconv
(
K1 ∪K2

)
if and only if

x = λ1a+λ2b

y = z1 + z2

t = s1 + s2

for any λ = (λ1,λ2) that satisfies

λ1,λ2 ≥ 0, λ1 +λ2 = 1,
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and any (z1,s1) e (z2,s2) that satisfies

λ
2
1 a/z1 − s1 ≤ 0, λ1c ≤ z1 ≤ λ1d

λ
2
2 b/z2 − s2 ≤ 0, λ2c ≤ z2 ≤ λ2d.

Lemma 6.2.1 Assume 0 < l ≤ u < y. If 0 < B ≤ A then, the (global) minimizer of f (z) ≡ A/z+
B/(y− z) on [l,u]⊂R is

t = mid

(
l,

y

1+
√

B/A
,u

)
. (6.3)

Proof: The derivative of f is f ′(z)≡−A/z2 +B/(y− z)2; the second derivative is f ′′(z)≡ 2A/z3 +

2B/(y− z)3 > 0, for every z ∈ [l,u]. Moreover, f ′(z) = 0 if and only if

(A−B)z2 − (2Ay)z+(Ay2) = 0. (6.4)

Thus, if A = B, the minimizer of f on [l,u] is mid(l,y/2,u); if A > B, the quadratic function in (6.4)
has the two roots:

r ≡ A−
√

AB
A−B

y, r2 ≡
A+

√
AB

A−B
y.

Since 0 < r < y < r2, then the minimizer of f on [l,u] is mid(l,r,u). Since

A−
√

AB
A−B

=
(
√

A)(
√

A−
√

B)
(
√

A+
√

B)(
√

A−
√

B)
=

√
A√

A+
√

B
=

1
1+
√

B/A

the desired result follows. �

Lemma 6.2.2 Assume S(y) ≡ {(z1,z2)⊆ [C,D]× [E,F ] : z1 + z2 = y} is nonempty, where 0 < C ≤
D < y and 0 < E ≤ F < y. Then, 0 < l ≡ max(C,y−F)≤ min(D,y−E)≡ u < y and, if 0 < B ≤ A,
the (global) minimizer of f (z1,z2) ≡ A/z1 +B/z2 on S(y) is (z̄1, z̄2) = (t,y− t), where t defined by
(6.3).

Proof: The (global) minimimum value of f on S(y) coincides with the minimum value of f (z1)≡
A/z1 +B/(y− z1) on [l,u]. Now, the desired result follows from Lemma 6.2.1. �

Note that, if 0 < A < B then Lemma 6.2.2 still applies with the roles of z1 and z2 interchanged.

For a given (x,y) ∈ (a,b)× [c,d], the value of the convex envelope of x/y on (a,b)× [c,d] is the
minimum value of the following optimization problem

min λ1 (a/y1)+λ2 (b/y2)

s. t. x = λ1a+λ2b, λ1 +λ2 = 1, λ1,λ2 ≥ 0
y = λ1y1 +λ2y2, c ≤ y1 ≤ d, c ≤ y2 ≤ d.

(6.5)
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Thus, the values of (λ1,λ2) are uniquely determined. In fact, through Cramer’s rule,

λ1 =
b− x
b−a

∈ (0,1), λ2 =
x−a
b−a

∈ (0,1).

Therefore, with these variables fixed, (6.5) becomes equivalent to

min

A︷︸︸︷
λ

2
1 a /z1 +

B︷︸︸︷
λ

2
2 b /z2 (6.6)

s. t. y = z1 + z2, λ1c︸︷︷︸
C

≤ z1 ≤ λ1d︸︷︷︸
D

, λ2c︸︷︷︸
E

≤ z2 ≤ λ2d︸︷︷︸
F

, (6.7)

where (z1,z2)≡ (λ1y1,λ2y2). Note that

λ
2
1 a−λ

2
2 b =

(
1
a

)(
λ1a−λ2

√
ab
)(

λ1a+λ2
√

ab
)
=

(
√

ab− x)(
√

ab+ x)
b−a

,

which implies that λ 2
1 a−λ 2

2 b is: positive when x ∈ (a,
√

ab); zero when x =
√

ab; and, negative when
x ∈ (

√
ab,b).

If x ∈ (a,
√

ab) then, from Lemma 6.2.2, the optimal solution of (6.6) is (z̄1, z̄2) = (t,y− t) for
t = mid(l,r,u), where

r = y

(
λ 2

1 a
)
−
√(

λ 2
1 a
)(

λ 2
2 b
)

λ 2
1 a−λ 2

2 b
= y

λ1a
λ1a+λ2

√
ab

l = max(λ1c,y−λ2d) =

{
λ1c se y ≤ ȳ1 ≡ λ1c+λ2d
y−λ2d se y > ȳ1

u = min(λ1d,y−λ2c) =

{
y−λ2c se y ≤ ȳ2 ≡ λ2c+λ1d
λ1d se y > ȳ2

If x =
√

ab then, from Lemma 6.2.2, the optimal solution of (6.6) is (z̄1, z̄2) = (t,y− t) for t =
mid(l,r,u), where r = y/2 and l,u are defined as above.

If x ∈ (
√

ab,b) then, from Lemma 6.2.2, the optimal solution of (6.6) is (z̄1, z̄2) = (y− t, t) for
t = mid(l,r,u), where

r = y

(
λ 2

2 b
)
−
√(

λ 2
1 a
)(

λ 2
2 b
)

λ 2
2 b−λ 2

1 a
= y

λ2b
λ1a+λ2

√
ab

l = max(λ2c,y−λ1d) =

{
λ2c se y ≤ ȳ2

y−λ1d se y > ȳ2

u = min(λ2d,y−λ1c) =

{
y−λ1c se y ≤ ȳ1

λ2d se y > ȳ1

and ȳ1, ȳ2 defined before.
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6.2.1 Numerical example

Consider the underestimator of x/y described on 6.5 over (a,b)× [c,d]. We start off by looking at
a uniform mesh divide into 20 equal parts. Comparing the minimum gap value, for the rectangle
(a,b)× [c,d]. The results is

[a,b]× [c,d] point (x∗,y∗) x∗/y∗ Maximum gap
(0.1,0.5)× [0.1,0.5] (0.1421,0.2684) 0.5294 0.2573
(0.1,4.0)× [0.1,0.5] (0.7158,0.2684) 2.6669 3.3620
(0.1,0.5)× [0.1,4.0] (0.1211,2.1530) 0.0562 0.1248
(0.5,4.0)× [0.5,4.0] (0.6842,1.7890) 0.3824 0.5101
(0.1,4.0)× [0.1,4.0] (0.3053,1.9470) 0.1568 2.3004

Table 6.1 Uniform mesh from near the origin

The maximum gap distant from the origin, for uniform mesh.

[a,b]× [c,d] point (x∗,y∗) x∗/y∗ Maximum gap
(4.0,5.0)× [4.0,5.0] (4.2630,4.5260) 0.9419 0.0033
(4.0,10.0)× [4.0,5.0] (6.8420,4.4720) 1.5300 0.0557
(4.0,5.0)× [4.0,10.0] (4.1050,7.1580) 0.5735 0.0032
(5.0,10.0)× [5.0,10.0] (5.7890,7.3680) 0.7857 0.0359
(4.0,10.0)× [4.0,10.0] (4.9470,6.8420) 0.7230 0.0672

Table 6.2 Uniform mesh from distant of the origin

(a) Maximum gap on (0.1,4.0)× [0.1,4.0] (b) Maximum gap on (4.0,10.0)× [0.1,4.0]

Therefore, we can conclude that we will have a better convex envelope if the rectangle is distant
from the origin, as the second table shows, and the Figure 6.2b.



Chapter 7

Conclusion

In this chapter, we summarise the work and results presented.
This dissertation aimed to study the convexification of certain nonconvex functions over rectangle,

showing in very simple way a geometric characterization.
We first made a review for some concepts of Algebra, Analysis and other sciences connected with

this purpose. In ours searches we find residual books dealing with Convex Analysis. Convex Analysis
is a basic prerequisite for students who want to understand issues related to linear programming
and optimization, theoretical knowledge in solving problems related to optimization is practically
alienated to the knowledge of convex sets and functions. Through the study of some definitions,
theorems and their respective demonstrations creates a safe environment of being able to model the
problems consistently and correctly, avoiding more complexity. In this sense, although there are many
applications relating to sets and convex functions, it is perceived that the same concepts are not easy
to understand. In this way, we hope that this material could, in a didactic way make the understanding
of this type of study easy.

According to the first introduction of the epigraphic set in this matter gives us guarantees of
perception of geometric form that is the purpose of this research work, without taking the focus on
differentiable convex functions.
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